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Abstract

Increasing silicon area and inter-chip communication costs allow and require that
modern general purpose computing devices incorporate large amounts of processing
on a single die. The increased area permits a wider choice of architectures to per-
form this computation. The traditional approach to utilizing this silicon area is to
place one, or a few, large processing elements on the die (microprocessors). This
style of computation achieves its performance by dynamically issuing new instruc-
tions at a very high rate. On the other hand, it has long been recognized that much
faster, more efficient processing is possible using application-specific and, even more
significantly, computation-specific processing elements. More recently, academic and
industry efforts have been working to use very fine-grain reconfigurable devices (such
as FPGAs) in order to attain this performance. Instead of large processors, these
devices place a large number of very small processing elements on the die, and con-
nect them in a configurable network. Coarse Grain Reconfigurable Architectures
(CGRAs) are a hybrid of these architectures, one that is capable of both dynamic
instruction streams and application-specific optimizations. Depending on the way in
which a CGRA is configured to run a given application, it can emulate a processor
solution, a fine-grain reconfigurable device, or a hybrid between the two. Although
initial indications are that CGRAs will be very efficient, it is not yet known how to
best design these devices. Our group has implemented a prototype CGRA device
called MATRIX. This thesis introduces several intermediate representations for the
configuration of a MATRIX chip, each with the ability to specify higher level concepts
than the previous languages and thus better suited to describing the algorithm being
implemented while avoiding the unimportant configuration details. We then describe
new tools that have been designed to convert these representations into an applica-
tion to run on MATRIX. To compile the more advanced intermediate representations
these tools include placement, routing, and power minimization algorithms. Using
these tools, we compile down specific applications and emulations of many different
general purpose computing architectures in order to achieve a better understanding
of how to most efficiently program using MATRIX. After compiling for MATRIX, we
vary the backend of the compiler so that we can experiment with compiling for simi-
lar architectures in an effort to analyze the usefulness of the various features of this



architecture. In this way, we learn which of MATRIX's features are useful for mapping
various applications, and we make design suggestions for general CGRAs. We also
develop insights into techniques for placement and heuristics for using these hybrid
architectures. Finally, by designing an intermediate representation which can be com-
piled from a high-level language, as well as being easily converted into an application
running on MATRIX, we will help define the role of high-level synthesis in compiling
for Coarse Grain Reconfigurable Architectures.

Keywords: CAD, FPGA, Coarse Grain, Reconfigurable, Placement, Routing, Power
Minimization, High-Level Synthesis

Thesis Supervisor: Thomas F. Knight, Jr.
Title: Senior Research Scientist
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Chapter 1

Introduction

Continuing advances in semiconductor technology have greatly increased the amount

of processing that can be performed by single-chip general purpose computing devices.

In addition, the relatively slow increase of inter-chip communication bandwidth re-

quires that modern high performance devices use as much of their potential on-chip

processing power as possible. This results in large, dense ICs and a large design space

for general purpose computing architectures.

There are several ways of viewing this design space, one way being in terms of

granularity. Designers have the option of building very large processing units, or many

smaller ones, in the same space. Traditional architectures are either very coarse grain,

such as microprocessors, or very fine grain such as FPGAs (Field Programmable Gate

Arrays). Both have their own advantages and disadvantages.

Very coarse grain devices, such as microprocessors, incorporate very few large

processing units which operate on wide data-words. Each unit is hardwired to perform

a small set of instructions on these data-words. Usually each unit is optimized for

a different set of instructions, such as integer and floating point, and the units are

generally hardwired to operate in parallel. The hardwired nature of these units allows

them to very rapidly perform their instructions. In fact, a great deal of area on modern

microprocessor chips is dedicated to cache memories in order to support a very high

rate of instruction issue. This allows these devices to efficiently handle very dynamic

instruction streams.



Unfortunately, because microprocessors and other coarse-grain computing devices

are highly optimized for simple, wide-word, dynamic instructions, they are relatively

inefficient when performing other kinds of operations. For example, many cycles are

required to build up a complex operations which are not part of the pre-selected

instruction set, out of the processor's instructions. In addition, when performing

short-word operations, a large amount of the device's processing power is not utilized.

On the other end of the design space, very fine grain devices, such as FPGAs,

incorporate a large number of very small processing elements. These elements are

arranged in a configurable interconnect network so that larger structures can be built

out of them. The configuration data used to define the functionality of the processing

units and network can be thought of as a very large, semantically powerful, instruction

word. Nearly any operation can be described, and mapped to hardware. In general,

this allows these devices to perform any particular operation faster than a coarse-

grain, microprocessor-like, device.

However, the size of this "instruction word" creates a number of problems with

fine-grain devices. First of all, reloading this instruction takes a relatively long time,

making dynamic instruction streams very difficult for these devices. Secondly, if the

operation being performed is, in fact, a wide word operation, a great deal of this

"instruction word" must be dedicated to re-describing the operation for each of the

small processing elements. Thus, fine grain processing elements are also not equipped

to take advantage of a large number of common computing operations.

The increasing available silicon area means that it is now possible to build a large

number of intermediate-grain processing elements. MATRIX (Multiple ALU Archi-

tecture with Reconfigurable Interconnect Experiment) [MD96] is the first such Coarse

Grain Reconfigurable Architecture (CGRA) exploiting the regularity and rapid in-

struction issue features of coarse-grain units, but still allowing these units to be

connected in an application-specific manner. This means that it is capable of deploy-

ing its coarse-grain resources, such as memory and processing, in a way that takes

advantage of the opportunities for optimization present in any given problem.

Another way to view the design space is by the way in which the resources of the



chip are being reused. Designers have the option of building processing units which

can be quickly reused in time, changing the operation they perform each cycle, or

many smaller ones which will not change what they do as quickly, but will make use

of all of the space on the chip.

Very coarse-grain devices, such as microprocessors, although they do waste a lot

of area (such as an FPU during an application that only does integer arithmetic),

reuse the complete ability of the chip each cycle, by doing an entirely new operation.

Very fine-grain devices, such as FPGAs, have small hard-wired units which do not

change their operation often, but there are usually tens of thousands of these units

on a single chip, all of which can be doing useful operations in parallel at the same

time, thus all of the spatial resources of the chip are being used. Chips that are

using all of the temporal resources of the chip can not run faster than their slowest

operation, and can not use their wasted area to parallelize a problem. Thus, they will

not be fast, but they will not take up a lot of space. On the other side, chips that

are using all of their spatial resources can run as quickly as the application dictates,

but will spread out in area while parallelizing the application in order to compensate

for using generalized fine-grain units instead of instruction-specific hardware (e.g. a

multiplier). Thus, they will use a lot of space but will run quickly.

This space thus constitutes a view of the basic space-time tradeoff. CGRAs can,

after fabrication time, allocate parts of the chip to a microprocessor-like implementa-

tion for a part of an application that does not require high-throughput, while using

more space for the parts of the application that do require high-throughput by using

FPGA-like implementations. This means that CGRAs can make better space-time

tradeoffs on a per-application basis by deploying a lot of its space resources when

faced with high-throughput constraints, and using its time resources to save on space

by reusing some of its area through time when faced with low-throughput constraints.

In this thesis, we study only the CGRA MATRIX, and attempt to apply our

knowledge to CGRAs and this entire space. Since MATRIX is a means of combining

elements of different architectures, there should be an intermediate language express-

ible in terms of certain architectures which compiles to MATRIX. While other group



members have designed the actual layout for MATRIX, and a verilog simulation of it,

this thesis will design this intermediate language as well as the tools to compile it

down, and investigate high-level synthesis possibilities for MATRIX.

The first step in this process is specifying this new intermediate language, the

new MATRIX Description Language (MDL+), to succeed the old MATRIX Descrip-

tion Language (MDL). Chapter 2 discusses the high-level motivations for designing

MDL+, and the mathematical view of MDL+ as a member of a family of intermediate

languages, such that it is a step on the road towards a high-level language which is

easily compiled down for CGRAs using high-level synthesis techniques.

Once the framework for the design of MDL+ is set, chapter 3 will describe the

actual MATRIX chip in sufficient detail to allow for a complete specification of the

MDL+ language. Chapter 4 will then go into great detail about the syntax and

semantics of MDL+, as well as describing the effects of the MDL+ compiler's Au-

tomatic Driving Phase, and providing a basic coverage of the interfaces and error

reporting mechanisms of the new MDL+ compiler.

Chapter 5 will go on to discuss the intelligent phases of the MDL+ compiler

which can automatically group high-level functionality into MATRIX constructs, place

MATRIX constructs on a MATRIX chip, and route the interconnect between these units

on a MATRIX chip. Through some discussion of how these phases of the compiler

were designed and how they act, we will begin to understand how to better program

for MATRIX, how to design CGRAs to be easily programmed, and how a high-level

synthesis compiler might compile high-level code to an MDL+ backend.

Chapter 6 will then attempt to learn more about these issues by using the MDL+

compiler to study both MATRIX and MDL+. This will include implementing example

applications in MDL+, examining various general-purpose computing architectures

modeled in MDL+, and studying the effects of modifying the backend of the MDL+

compiler.

Finally, Chapter 7 will summarize the benefits of MDL+ and the MDL+ compiler

over the previous state-of-the-art, as well as discussing what we have learned about

programming for CGRAs and about designing CGRAs. It will end by suggesting



directions for future work.

The most interesting material is the research that culminates in new heuristics for

designing coarse-grain reconfigurable architectures and for using these architectures,

including ideas about how to place and route for them. This material is located in

chapter 6 and the second half of chapter 7.





Chapter 2

The MDL Family of Languages

This chapter is intended to convey the big picture of what MDL+ is about. This ex-

tends into the motivation behind MDL+ including the desires for an eventual language

MDL++, and leads to an understanding of both the way MDL+ is implemented and

the way it is explained in this document. Finally, understanding this view of MDL+

should enable people to understand the abstraction layers available when program-

ming in MDL+ as well as the ways to take advantage of this power. We start with a

brief description of the mathematical ideal (section 2.2) and quickly progress through

the anatomy of an MDL+ compiler (section 2.3) to suggestions for how to program

using the power of MDL+. (section 2.4) This section should provide the motivation

and high-level understanding that will assist with the later chapters on the syntax

and semantics details of MDL+. (chapters 4,5)

2.1 Background

Before beginning the meat of this chapter, we provide a brief background of the

languages and compiler phases that we will be referring to. They were all mentioned

in chapter 1, and will be discussed in much more detail in later chapters, but this

section is intended to provide enough detail about each until it itself is discussed.

MDL - This is the original Matrix Description Language, first introduced in

[Esl95]. MDL is basically just a hardware description language for the MATRIX



chip. MDL was quickly designed and a compiler was developed for it as a quick

hack. Both the language and compiler were developed as a first-cut implementation.

The language was a good start, but not able to support much functionality due to

the amount of time put into the compiler. The language was also never completely

specified. The MDL compiler eventually got most of the bugs worked out of it, but

is probably still fairly buggy. It needs more power and flexibility, it does not have

a sufficient interface for error reporting, and was never well documented. Reading

through some of the MDL compiler's code verifies that it was a quick-hack project.

MDL+ - This is the programming language developed for this thesis. It attempts

to clean up both the specification of MDL and the implementation of the MDL

compiler, as well as adding many nice programming features that MDL lacked or

did not implement correctly, and adding higher-level programming possibilities. It is

intended to be able to serve, with only slight changes, as a front-end to a compiler

for various CGRAs besides MATRIX, and as a back-end to a compiler which performs

high-level synthesis on a high-level language. Several of the ideas for improving MDL

given in [Mat96b] have been incorporated into MDL+. Specification of the basic

MDL+ language will be given in chapter 4.

MDL++ - This name is being reserved for the possible occurrence of a truly

high-level compiler for MATRIX or other CGRA. MDL++ will be used throughout

this thesis to describe an unspecified high-level language such as C or Silage, perhaps

developed with MATRIX in mind, and the associated compiler which would turn this

high-level code into configuration bits for MATRIX. Topics relating to MDL++ will

be discussed in chapters 5 and 6, and a summary of suggestions for the design and

implementation of MDL++ will be given in section 7.3.6.

Automatic Driving Phase - There are many interconnect wires on a MATRIX

chip, and some must not be driven at any given time in order to conserve power and

decrease heat. This phase of the MDL+ compiler determines whether each line is

used by an MDL+ design, and might turn some wires on or off. The driver will be

discussed in section 4.3.



Automatic Routing Phase - It is possible to specify an MDL+ design such

that two units know that they are communicating with each other, but they do not

know which of the many interconnect wires they are using. This phase of the MDL+

compiler sets both of those units so that they are communicating over a specific wire

instead of merely knowing which unit they are communicating with. Once this is

done, the driving phase can set used wires to be driven and others to be turned off.

The router will be discussed in section 5.1.

Automatic Placing Phase - It is possible to specify in MDL+ that a unit

should be on a chip, but not specify where on the chip that unit should be placed.

This phase of the MDL+ compiler puts such units at specific locations on the chip.

Once this is done, the routing phase can figure out which wires can and will be used

to communicate with the unit. The placer will be discussed in section 5.2.

Automatic Grouping Phase - It is possible to specify in MDL+ that a chip

should contain a higher-level object that does not precisely correspond to a physical

unit that exists in the MATRIX hardware. This phase of the MDL+ compiler expresses

such units as pieces of actual MATRIX hardware, and combines them to some extent,

so that, for example, one basic unit on MATRIX might have one part of it acting as

a logical register between two logical-objects, and also have another part of it acting

as a logical memory unit. Once this is done, the placing phase can figure out where

to put the actual MATRIX basic units on the chip. The grouper will be discussed in

section 5.3.

High-Level Synthesis - This is the added functionality of the MDL++ compiler

over the MDL+ compiler, or the process of turning a high-level language like C or

Silage into a more hardware-oriented description. While high-level synthesis has

gathered more definitions in the literature, this is the one we are referring to when

we use the term in this thesis.



2.2 An Abstract view of MDL languages

When beginning the planning stages for MDL+, several objectives naturally come to

mind:

* Programming Extensibility It would be desirable to be able to use MDL

code with the MDL+ compiler. In fact, it would be best if we could interlink

pieces of MDL code with pieces of MDL+ code, for example have a legal MDL+

design where an MDL unit interacts with an MDL+ unit in the same chip layout.

* Multi-level code It would also be advantageous to possess the ability to let

users enter code at many levels - even given the power of an automatic grouper,

placer, and router, the user might have specifically tightly designed a certain

subpart of the cell, and want it placed in a specific part of the chip or even

routed exactly as specified. Thus, we want to provide the user access to MDL+

without automatic features, MDL+ with a router, MDL+ with a router and

placer, and a completely automatic MDL+ with a grouper. Upon reviewing

many projects and papers on high level synthesis (such as [RP90, GR94, WC95,

CHM91, Wak91, NON91, HDDW93, MCG+90, LND+91, CSW93, RvSC+93]),

it becomes clear that this is a key aspect of a high-level chip compiler.

* Human Interactions It would be best if human interaction could occur in both

directions, receiving information from the compiler at each stage and giving it

to the compiler at each stage. This means that in addition to being able to tell

the compiler where you want particular units placed, you should be able to ask

the compiler how the chip looked just before it was placed, so that you can try

to then place by hand.

Given these objectives we decided to design a family of MDL languages, each being

a superset of the previous ones, all based on MDL. Thus, any MDL code will be legal

in any MDL+ intermediate language, and MDL+ code will be allowed in MDL++,

but not necessarily in MDL. Finally, MDL++ is a subset of E* (Everything). This

"MDL view of the Universe" is shown in figure 2-1.



Figure 2-1: A Mathematical view of the various MDL Languages

Once we have decided on such a worldview, and given our objectives, it seems a

natural decision to specify MDL+ as a family of languages that are strictly subsets

of each other, all being supersets of MDL and all being subsets of MDL++.1 We

assign these MDL languages version numbers to correspond to the versions of the

MDL+ compiler releases. Given that each language is a superset of the previous

ones, each version of the compiler will be completely backwards-compatible, which

was an implicit desire in our Programming Extensibility objective.

MDL+ version 1.0 is the same as MDL except that it is much easier to program

in, essentially a language which could be desugared into the MDL Kernel. MDL+

1.1 is a small step ahead, adding minor functionality which we no longer considered

"just better MDL" but rather actually extensions to MDL. In practice, it is difficult to

decide which basic improvements belong in MDL+1.0 and which should be considered

additions available in MDL+1.1. Thus, we group all extensions besides the Automatic

Driving Phase, and consider them to be in MDL+1.0 for practical discussions. Then,

1Keep in mind through this discussion that MDL++ has never been specified, and might never
be specified. This is just a suggestion for it.
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the sole addition to the MDL+ compiler for version 1.1 becomes the Automatic

Driving Phase. MDL+1.1 is then considered "basic MDL+" and it is this language

that is discussed in chapter 4.

MDL+ 1.2 is a version of the compiler in which routing can be done automat-

ically, and thus the language MDL+ 1.2 is one where explicit routing information

can be omitted. MDL+ 1.3 can then omit placing information, and MDL+ 1.4 ac-

tually adds new constructs which can be defined (math-functional constructs instead

of physical-functional constructs) which the MDL+1.4 compiler then automatically

groups together into physical units that are available on MATRIX. These extensions

to MDL+ are discussed in chapter 5. All of the MDL+ languages fit onto a "Bullseye

of Languages" that is the middle piece of the above worldview. (Figure 2-2)

Designing the languages such that each one is a superset of the previous ones

is natural, and thus easy, because each compiler does more automatically than the

previous ones, allowing the user to either use new higher-level constructs (more stuff,

so a superset) or allows the user to omit more information (more possibilities allowed,

less constrained, so a superset). In short, the more the compiler does, the more the

options the user has, and since we never remove any possibilities the user now has a

superset of the possible programs that he can use in the new language.

2.3 The Anatomy of the MDL+ compiler

Now that we have a good idea of how the various MDL+ languages will be related,

in a mathematical sense, we need to specify how the compiler will be written. The

mathematical definition gives us a clear idea of possible intermediate languages for

the MDL+ compiler, namely the MDL+ 1.0 - MDL+ 1.4 languages. This is basically

the direction we proceeded in. Since the compiler has an internal state that is not the

lisp-like MDL+ code, it will not actually be storing these intermediate languages, but

it will have internal state that will have a one-to-one mapping to these languages, and

thus have the ability to print out the intermediate code as a user would understand

it at any point. Although this code will lack the nice human-designed hierarchy of



Figure 2-2: A Mathematical view of the MDL+ Intermediate Languages

i



Figure 2-3: A Block Diagram of the proposed MDL++ Compiler

the original code, it still enables us to achieve our Human Interactions objective from

above.

This design brings us to the picture of the MDL++ compiler shown in figure 2-3.

Note that the output at each stage is not only corresponding to a legal intermediate-

MDL+ code, but to all previous codes, since they were supersets of this intermediate

language. However, these phases of the compiling process are not all just desugaring

into some kernel of MDL+, but rather the compiler is actually automatically working

on the code and adding new detail (without a unique choice for which detail), for

example in the grouper, placer, and router pieces.

Of course, this figure is just a high-level view of the compiler as the actual MDL+

compiler does not make use of the MDL compiler. Nevertheless, the MDL+ compiler

has a code generator which (while being better than the MDL compiler) could function

as an MDL compilers' code generator. Similarly, MDL+ has a parser and scanner

that can parse a superset of MDL, and thus could parse MDL.



2.4 Multi-level MDL+ Programming

Proceeding through chapters 4 and 5, they will start by explaining the "inner" lan-

guages, that are subsets of the others, and then work outwards until they have ex-

plained all of MDL+. In this way we will progress forwards through the languages

(simple to complex) and backwards through the phases of compilation (last to first).

On a very real level, understanding of all intermediate languages is essential to the

writing of good efficient MDL+ code.

By Multi-level programming we mean that we can achieve the Multi-level Code

objective from above. That is, MDL+ code can include code from all intermediate

languages, and thus some of the code might completely specify a piece of the chip

while other code might just ask the compiler to place an ALU in one of the units

somewhere on the chip and connect it to other ALUs, whichever units they should

fall in.

For applications which are either very important to optimize or just not being

compiled to a state acceptable to the programmer, there also becomes a whole other

way to view Multi-level programming. By describing the MDL+ compiler the way

that we have, we have enabled the user to get into the guts of the compiler's work

at each level. Thus, an ambitious multi-level programmer can write multi-level code

(as described in the last paragraph) and then tell the MDL+ compiler to group it

and print out the resulting MDL+1.3 code. He can then re-group the pieces which

he does not like the automatic grouping of manually and run the MDL+ compiler

on this modified output, telling it to only run the placer and output MDL+1.2 code,

and so on. In this way, the programmer can view some of the compiler's automated

actions as suggestions, while allowing the compiler complete control over the aspects

that the programmer does not care about, is not capable of doing on his own, or is

content with.2

It is now clear how all of the objectives which we sought are realized by this

implementation of MDL+, and the reader is ready to proceed through the next few

21n professorial lingo, the compiler has become a grad student.



chapters secure enough in the big picture to understand the details.



Chapter 3

MATRIX

Before proceeding to the specification of the basics of MDL+ we take a break to dis-

cuss the hardware present on a MATRIX chip. This discussion of the theoretical basis

for CGRAs and the actual hardware on MATRIX provides an ability to understand

what the various constructs of MDL+ correspond to. This thesis is not actually about

MATRIX, but since this thesis is about compiling for CGRAs and MATRIX, a lot of

background about MATRIX is necessary before being able to understand the work

that we did. This chapter provides that background, so that the next chapter can

resume a discussion of the work actually done for this thesis. For further clarifica-

tion of material in this chapter, see the thesis that proposed the idea [DeH96], the

original paper to introduce MATRIX [MD96], and the MATRIX Micro-Architecture

specification [Mir95a].

Much of the basic description of MATRIX in this chapter is taken directly from

[Mir95b]. Many of the figures are from [Mir95b] and [Mir95a]. All of this other

material was produced for Reinventing Computing and is used with permission of the

authors.

3.1 Architecture Overview

MATRIX attempts to bridge the gap between microprocessors and FPGAs, such as

those offered by Xilinx. [Xil94] The best way to achieve this is by examining the way



in which the two computing machines limit and specify their operations. [DeH95]

Microprocessors place strict limits on their sets by specifying them in advance at

fabrication time. The set is often limited to less than 256 instructions and therefore

require very little "configuration data" (the actual instruction word - often 8 bits

or less). FPGAs on the other hand, have a large amount of configuration data (up

to 30 KBytes per configuration on some of the larger parts), but have an infinite

instruction set which is not fixed at fabrication time. MATRIX, therefore, aims to

limit its instruction set, but not absolutely fix it, at fabrication time. It should also

reduce the amount of configuration data required to specify each instruction, which

will help make each instruction much faster and allow for rapid instruction issue rates.

This is accomplished by creating a microprocessor-like basic block, consisting of

a Memory and fixed ALU (Arithmetic Logic Unit), and connecting them in a recon-

figurable mesh. Therefore, while each unit has an easy-to-specify configuration, the

combination of many such elements allows for a great deal of flexibility.

3.2 Basic Unit

The Basic Functional Unit (BFU) of MATRIX is the coarse grain building block out of

which more complex processing units can be built. It primarily consists of a memory

block and basic ALU. Figure 3-1 shows the block diagram for a BFU cell.

The main BFU memory is a 256 word by 8 bit wide memory block, which is ar-

ranged to be used in either single or dual port modes. In dual port mode, the memory

size is reduced to 128 words in order to be able to perform both read operations with-

out increasing the read latency of the memory. In both modes this read operation

takes place during the first half of the clock cycle and the values are latched for the

rest of the cycle. Write operations take place on the second half of the cycle. This

allows a BFU to perform register-file like operations such as A op B + A in one cycle.

The MATRIX ALU is a basic 8 bit arithmetic logic processing unit. It is capable

of performing the following operations:

* Pass
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Figure 3-1: MATRIX Basic Functional Unit

* Logic Operations - AND, OR, XOR

* Shifts - Left and Right, with and without carry

* Add

* Multiply

With optional input inversion this also allows NOT, NOR, NAND, and subtrac-

tion.

Several adjacent blocks can also be composed to form wider-word ALU's. For

example, four basic units can perform a 32-bit operation. The blocks can also be

configured so that they can serve as a pure memory, pure ALU, or an ALU/memory

(ALU/register file) combination.

Every input to the BFU is registered. This means that every BFU will be in its

own pipeline stage which allows for highly pipelined systems.



Figure 3-2: Level 1 Network Connections

3.3 Interconnect Network

The MATRIX network consists of three levels of interconnect structuring: a regular

neighbor mesh, longer switchable lines, and long broadcast lines.

On the first level, output of every BFU is passed to its nearest neighbors in all

directions, its neighbors 2 cells away in the cardinal directions, and itself. As a

result every cell receives 13 Level-i inputs. This network is intended to provide fast

connections between tightly packed cells. Figure 3-2 shows the connections on the

Level-i network.

The second level provides length-4 broadcast lines along rows and columns of

BFUs. Level-2 switches could operate in two modes. In one, the data passing through

the switch would be registered, creating an extra pipeline stage in the network. This

would be useful for synchronization. In the other mode, data would be passed without

registering. This would allow for longer chains of network connections to be built.

The possible number of links in these chains would depend on particular implemen-

tations of this design as well as the internal clock speed, but probably be as long as
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Figure 3-3: Level 2 Network Connections

three or four links. Due to the reduction in time to fabricate the MATRIX chip, as well

as simplicity in design, the option of not registering level 2 lines has not been imple-

mented in the current version of MATRIX, but it is still unclear whether it would have

been worth implementing. We will, by using the MDL+ compiler, discuss whether

the inability to leave level-2 lines unregistered has significantly hurt the ability to

automatically route MATRIX.

The BFUs on the main diagonal drive horizontal level-2 lines, and every other

BFU drives in the same direction, creating a checkerboard pattern. Each BFU drives

two level-2 lines, and can view all eight level-2 lines passing over it. Figure 3-3 shows

the level-2 connections on a five by five subgrid of BFUs.

The MATRIX level-3 network is intended to carry data long distances as rapidly

as possible. It consists of 4 shared network lines spanning every MATRIX row and

column. Each BFU cell gets to drive up to 4 inputs onto the level-3 network. The

delay across level-3 is one clock cycle per step, with steps at this level being up to

a full-chip long. Thus it is possible to get from any BFU to any other BFU in a



Figure 3-4: MATRIX Network Switch Architecture - BFU Cell

MATRIX array in 2 clock cycles.

3.4 Network Ports

The network is connected to the BFUs through the network ports, as shown in Fig-

ure 3-4. It is in these ports that much of the flexibility of the MATRIX architecture

is found.

A typical port is shown in Figure 3-5. The port is controlled by a 9 bit config-

uration word. This word can be interpreted in two ways, based on the value of the

9th bit. In Static-Value (Constant) mode, the lower eight bits of the configuration

word are passed directly to the BFU. This allows the port's value to be fixed to a

pre-programmed value. In the other mode, Static-Source, the lower 5 bits of the

configuration word select from the 30 incoming lines and the value on this line is

propagated to the BFU. In this mode, the BFU can be controlled by another BFU,

Level-2, Level-3
Network

Incoming
Network Lines

(L1, L2, L3)

Level-1 Network

Incoming
Network Lines

(L1, L2, L3)



Figure 3-5: Function Port Architecture

or from an external source.

For the Address/Data ports and network ports, a third mode is allowed: Dynamic

Source. In this mode the value coming from another network switch, the Floating

Port on the same side of the BFU (see figure 3-4), can be used to be select from the

30 incoming network lines. Thus, the port's value can be fixed by the configuration

word, come from a fixed source, or come from a source that can be selected on a cycle

by cycle basis.

While three modes on 30 input lines gives MATRIX a lot of flexibility, the ports

need to be very large in order to accommodate this many input lines and very large

MUXs. The BFU would be a lot smaller if less inputs were available, thus providing

more BFUs per chip. One goal of this thesis is to compile down our intermediate

representation to BFUs while watching to see how many inputs are really needed per

port, in order to determine if some of the current flexibility is not useful, or not as

efficient as having several more smaller BFUs.
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Figure 3-6: BFU Control Logic

3.5 Control

There are three portions of control logic in each MATRIX BFU, as shown in figure 3-6.

First is Compare/Reduce I which compares the local ALU output to a given pattern

and outputs a bit to every BFU which receives the level-i output from the local

BFU. Second, there is Compare/Reduce II which can compare any of the BFU's

neighbors' Compare/Reduce I outputs and either of the floating ports, and outputs

one bit. Third, there is the OR plane which can choose for input any four of the

neighborhood Compare/Reduce I values and both of the floating port inputs, and can

output 9 bits. Either the high bit from the OR plane output or the Compare/Reduce

II bit can determine the local context of the BFU for the next cycle.

This control logic can probably be improved. The OR-plane is useful because it is

the only thing on a MATRIX chip which can compose any arbitrary bit-level logic when

combined with a second OR plane to form a PLA, as shown in figure 3-7. However,

it takes up a lot of area, and is very complicated to test, and is therefore being left

out of the initial design of MATRIX. One goal of this thesis will be to determine its

usefulness, and whether it should be added to the next chip design. Similarly, we

will explore other logic options, such as changing the Compare/Reduce networks,
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Figure 3-7: Distributed PLA

not broadcasting Compare/Reduce I as widely, or changing the entire control logic

scheme.

3.6 Deployable Resources

The ability of one BFU to control another is one of the main fundamental advan-

tages of MATRIX's coarse-grain architecture. For larger primitive units, there are not

enough on a single die to make this kind of self-control interesting. For smaller cells,

one cell is not large enough to generate the control information for other cells. Thus,

it is only at this intermediate granularity that it becomes possible to deploy a chip's

resources at this level of flexibility. We thus mention this aspect of MATRIX before

completing our discussion of MATRIX and this chapter.

In terms of MATRIX, deployable resources means that every BFU can be configured

to serve whatever function it is most needed for. Depending on the type of architecture

MATRIX is imitating at the time, BFUs will be allocated to different functions.

Examples of how MATRIX can be configured to imitate various architectures, thus

deploying its resources in different ways, will be given in chapter 6 where in addition to

discussing MATRIX's ability to implement these architectures, we will discuss MDL+'s

ability to compile them. In addition to compiling versions of several existing general

purpose computing architectures, that chapter will discuss ways in which MDL+ and

MATRIX can deploy resources on an application-specific ASIC-type basis. The earlier

F



part of the chapter will include several ASIC-type MDL+ designs for MATRIX.

Thus, we will give a lot of evidence that MATRIX's resources are truly deploy-

able, in a way that cannot be achieved by very-coarse, or very-fine grain systems.

Designers simply need to decide what kind of processing style suits their needs, and

then descriptions of those architectures (or ASIC-like descriptions) can be compiled

automatically into an application which will run on MATRIX, deploying resources to

support the designers' preferred style. Developing this software is a large part of this

thesis, and we therefore return to discussion of MDL+ with the next chapter.



Chapter 4

MDL+ as Better MDL

This chapter describes the basic syntax and semantics of the MDL+ language that

corresponds to configuration details that are actually loaded onto the chip. Thus,

it will be describing how MDL+ includes the functionality of MDL, and what basic

forms of syntactic sugar MDL+ offers. This chapter will not discuss the aspects of

the MDL+ compiler which are at a fundamentally higher level, such as the automatic

routing, placement, and grouping that the compiler can do. Those aspects, as well as

the syntactic elements of MDL+'s grammar needed to support them, are discussed

in Chapter 5.

The first part of this chapter is devoted to explaining the basics behind MDL+.

The next part discusses the additions to MDL+ that are more than just cleaning up

MDL, but not actually intelligent phases of the compiler, namely MDL+'s automatic

driving phase. The end of this chapter is devoted to explaining the basic output

modes and compiler options that MDL+ provides, in order to make this chapter

complete and sufficient to enable the reader to write an MDL+ source file and then

compile and use it himself. For the complete grammar defined in this chapter, see

Appendix A.



4.1 Language Basics

MDL+ is a lexically scoped call-by-value language using a LISP-style syntax. MDL+

uses a LISP-like syntax for several reasons. It is easier to parse, seems to fit the

problem in that the language constructs actually correspond to physical resources,

and because MDL used a LISP-like syntax and it is easiest on MDL programmers if

we change the appearance of the language as little as possible.

The actual layout of an MDL source file is very simple: it is a list of successive

definitions. These definitions are read by the compiler in-order, and thus are read

in the environment defined by the definitions above the current one in the input file.

If any variables are defined above the current definition in the file, they are thus

bound in the current defining-environment, and so they can be used by the current

definition. Since MDL+ is lexically-scoped, they will be assumed to mean whatever

they were defined as in the file at the point above their use that is nearest their

use. Any places where variables are used in a more dynamically-scoped way will be

explicitly mentioned when the construct is explained.

4.1.1 Basic Statement Structure

Since this is a LISP-like syntax, each definition is enclosed in parenthesis. Each defi-

nition is a definition of a specific type of construct, and thus begins with a statement

that indicates which type of construct it is defining, such as def-bfu or def-port.

Since each definition is defining a specific instance of that type, the instance must

be named, and this name is always the second item listed, just after the def- item.

Finally, prior to the end parenthesis, the construct is defined with appropriate argu-

ments. These are discussed for each construct in the next section. Often it will be

allowed for these arguments to be omitted entirely, producing the default item of that

construct type bound to the appropriate name for future definitions to use.



4.1.2 Identifiers

The name given to an instance of some construct type must be a legal identifier,

which probably includes anything that it might have been named. Specifically, it

must start with a letter (lowercase or capital), an underscore (_), a colon (:), a period

(.), a hyphen (-), a forward slash (/), a dollar sign ($), a less-than sign (<), or a

greater than sign (>). Any subsequent characters can be any character that could

have started the identifier, but they can also be digits.

It is recommended that names be constrained to letters and digits but it does not

have to be so. Since MDL+ is context-insensitive where identifiers are concerned,

using an uppercase version of a letter yields the identical effect of using the lowercase

version of that letter.

4.1.3 Numbers

Whenever a number is required in an MDL+ file, it can either be represented by a

sequence of digits which will be interpreted as a decimal number, or precede a sequence

of hexadecimal digits with Ox or OX which will be interpreted as a hexadecimal

number.

4.1.4 Compare/Reduce Numbers

Besides decimal and hexadecimal numbers, MDL+ will also recognize Compare/Reduce-

Numbers or rednumbers. They should be prefixed with a Or or OR and each character

or bit of the number must be a 0, 1, x, or f. These letters are case insensitive, and an

x means that the bit compared against can be either a 0 or a 1, while an f means to

always fail. These numbers are only for use with the Compare/Reduce control-system

of MATRIX and are not allowed most places where normal numbers and hexadecimal

numbers are allowed. These numbers are also known as rednums.



4.1.5 Don't Cares

One concept that will appear throughout MDL+ is that of Don't Cares, or DCs.

Basically, whenever there is a configuration value or argument that could be entered

for some construct in MDL+ that the programmer does not care about at all, he can

enter "DC" in the MDL+ code instead, or omit the argument entirely. For specific

usage options, see the part of the next section that deals with the specific construct

that is of interest, since sometimes there are limited options, in order to clean up

unnecessary aspects of the grammar a bit. Usually, everything can either be omitted

entirely, or its values filled in with Don't Cares.

4.1.6 Copying Constructs

It is almost always permissible to define a construct with only one argument, where

that argument is either DC or the name of an instance of the same type of construct

which is defined in the current environment. Thus, for almost any legal type, it could

be substituted in the following code for mytype, thus producing two legal copies of

the type in the environment, both completely unspecified.

(def-mytype a dc)

(def-mytype b a)

At the point of the MDL+-code just after these two lines, a and b would both be

bound in the environment to completely unspecified (not caring) instances of the type

replacing mytype. Since MDL+ definitions are all passed arguments call-by-value, a

and b would refer to separate but identical instances, and not be merely aliases of

each other.

4.1.7 Inheritance

Another recurring theme in MDL+ is that of inheritance. With DCs, the ability to

rearrange and omit a lot of the MDL+ code, and inheritance, MDL+ files are much

shorter, more manageable, easier to write, and easier to understand than MDL files



used to be. Inheritance is not as pervasive in MDL+ as DCs are in that not every

construct can inherit from other constructs of its type. But the more useful examples

do have inheritance. For example, a BFU can be defined as being exactly the same as

another already-defined BFU, except for some explicit differences. Since the parent

BFU is evaluated at the time of definition, in a lexically-scoped manner, changes to

the parent BFU later in the source file will not affect the child BFU at all. Thus, it

might be best to view inheritance in MDL+ as copying an old instance of the type

to the new instance and then specifying changes to it.

This other view is not only more accurate, but it also provides insight into other

possibilities for how to use inheritance in MDL+ that a traditional view might not

encourage. For example, in a BFU definition, the changes to the parent BFU can be

specified prior to the parent BFU being named. In that case, the new BFU is formed

by first specifying a new implicit BFU from the new specifications and then treating

it as the parent of the actual explicitly-defined parent, and inheriting in reverse-order.

This will be explained further when there is a basis for understanding the specifics,

once the BFU has been discussed, in the next section.

4.1.8 Reserved Words

MDL+ has two types of reserved words that will thus be interpreted with special

meanings: Globally reserved words and locally reserved words. Globally reserved

words are special everywhere in an MDL+ file and thus can not be used as identifiers.

Locally reserved words are only special in specific contexts and thus are fine for use

in most cases. All globally reserved words are listed in appendix C, while locally

reserved words should be obvious for each context.

4.1.9 Lists

There are many parts of the MDL+ grammar that call for lists. Sometimes these

are sequences which are being defined, such as the sequence of all memory cells for

a BFU. Other times, each element of the list is intended to convey more information



about the configuration of a single item being defined. In this case, it is possible for

the configuration information from some of the list to contradict with information

from other elements of the list. When there are contradictions, the later elements

(right-most) will take precedence over the earlier elements (left-most). However, any

pieces of the earlier definition which are not contradicted by the later definitions will

remain.

For example, saying that the last two bits of a number are "01" followed by saying

that the second to last bit of the number is "1" will be understood as saying that

the last two digits of the number are "11". In general, this is the way the compiler

will understand items of configuration at least as large as a single number, while

any information smaller than a single number (a piece of a number) will actually be

completely replaced by later references. If our example had been the number 1 and

then the number 2, the compiler would understand the list as just the number 2.

4.1.10 Ordering Directions

There is a convention throughout MDL+ and MATRIX programming in general of an

implicit ordering on the opposite cardinal directions. South or down is "less than" or

"comes before" north or up. Similarly, west or left is less than or comes before east

or right. This convention is prevalent in many elements of the syntax and semantics

of MDL+, as explained in the next section.

4.1.11 Going Beyond MATRIX

Proceeding through the explanations of basic MDL+ in this chapter, there will be

several elements for which configuration is provided even though they do not exist on

the MATRIX hardware. These are generally elements that could have been used in

MATRIX, but were taken out of the design at some point either to conserve area on

the chip or to reduce the amount of time until the chip could be fabricated. They have

been included in MDL+ because they might be useful for simulation of hypothetical

chips, as well as a desire to be compatible with MDL source code.



4.1.12 Definitions

Here we define many words that will be used a lot in the upcoming section to describe

aspects of MDL+. All of them should seem to fit with their definitions fairly natu-

rally, but they do mean more in the context of MDL+ than they would in standard

language.

* Construct - This is a datatype for MDL+. In MDL+ code, there can be

definitions of constructs, which would then leave an instance of that construct in

the environment. They generally correspond directly to hardware on MATRIX,

but not always. The only types in MDL+ that are not constructs are simple

types: Numbers, strings, rednumbers, and Don't Cares. Examples are BFUs

and Memories.

* Instance - A specific example of a construct. After definition of a construct,

there is an instance of the type in the environment. Two instances of a construct

are always unique and not aliases of each other.

* Constructor - A globally reserved word in MDL+ that is used to indicate the

beginning of the definition of some construct. After that definition, there will

be a new instance of that construct. Each construct has its own constructor.

Examples are def-bfu and def-mem.

* Structure - A description of a piece of the grammar of MDL+. This is a

sequence of words and parenthesis that explain how a certain amount of the

MDL+ syntax is used. Some of the words will need to be written in the MDL+

file exactly as they are in the structure, and some are arguments that will need

to be replaced. The only other notation used in structures is Kleene closure.

There may be multiple structures allowable in MDL+ to do the same thing:

One structure for defining BFUs is (def-bfu Name Old) where Name is an

argument that is the string which names the BFU being defined, and Old is

an argument that is the string which names an already defined BFU. A second

structure for defining BFUs is (def-bfu Name DC) where Name is the same



kind of argument as above. Structures listed in the text will always be bold-

faced.

* Basic Structure - All constructs in MDL+ can be defined with two structures

such as those listed above for BFUs, one to copy an old instance of the same

type and one to create a completely unspecified instance of the type. Clearly,

these are not a sufficient set of structures. The basic structure is the structure

that includes all alternatives besides these two for defining a given construct.

It is considered basic because it is the only one that the language could not do

without.

* Keyword - Many basic structures will be of the form (Keyword Stuff) where

Keyword will need to be replaced by a specific string that is either a global or

local reserved word, and Stuff will need to be replaced by something special

to the construct. The word replacing Keyword for one of these constructs

is considered its keyword because it identifies the type of definition that the

program is making. Constructs can have no keywords, one keyword, or many

keywords.

* Argument - This is a word in a structure that is not meant to be used exactly

as written in the MDL+ code, but rather to be replaced with something else,

perhaps something described by its own structure.

* Default - If it is possible to define a construct with only a constructor and a

new name inside a pair of parenthesis, then the default for that construct is

whatever instance such a definition would produce. If not, then the construct

can still be said to have a default if it is possible to define it with the basic

structure of only a sole keyword inside a pair of parenthesis.

* Replacing - This means that one thing will get completely eliminated and

another put in its place. When A is replaced by B, the result is always exactly

the same as B. This word is used in conjunction with overriding in order to be

more specific about the behavior of inheritance and lists in MDL+.



* Overriding - This means that one thing will use its parts which are specified

to replace those parts in another thing. When A is overridden by B, the result

has in common with B every piece of B which was specified, and in common

with A any piece of information that was not specified in B. When a child

inherits from a parent, the child overrides the parent, as right-most elements of

lists override left-most elements of lists.

* Reverse Inheritance - Whenever inheritance is allowed in MDL+, the parent

may also be listed after the definition of the child in which case the parent

overrides the child instead of the child overriding the parent.

* Full Inheritance - This refers to a situation in which the parent may be listed

at any point in the child's definition, and multiple parents may be listed. The

items listed later always override the items listed earlier. Whenever inheritance

is available in MDL+, full inheritance is available.

4.1.13 Type Checking

MDL+ is a type-checking compiler, and will thus halt with an error message if a

name is used which is currently bound to an instance of a type which is not one of

the types allowable in the place that the name was used. For example, the first local

context of the A port of a BFU must be set to either the name of another BFU (a

string that is the name of another BFU) 1 or to a constant value. Thus, if it is given

a variable that is of type chip, the compiler will halt, since the user program did not

type-check.

For example, consider the code in figure 4-1. The first line defines a chip named

a and the remaining lines attempt to define a bfu named b which has the first local

context of its A port defined to be that chip named a. It could have defined the A

port value to be a number, e.g. 8, or the name of a constant variable, or even another

BFU, but not a chip. (See the explanations of BFUs (4.2.11), constants (4.2.1), and

1The syntax for this case actually includes more than just the string, e.g. "(static bfuname)"



(def-chip a)
(def-bfu b

(ports
(aport a)

Figure 4-1: Source code that does not type-check.

Parse Error:
need a constant or aluobj, you have an identifier that has been

defined to be something else. Only constants and aluobjs can be used
here. If your ID is a BFU, you might want to wrap it in a (static) if
you meant to use it, automatically routed, as static source. Bad ID: A
Last Line Read: 4

Figure 4-2: Typical error message for code that does not type-check.

chips (4.2.15) to avoid any confusion and completely understand this.) Thus, trying

to run this code through the MDL+ compiler would cause it to halt with the message

in figure 4-2.

4.1.14 Output

One of the things that is often most mysterious when learning a new programming

language is how to get any output out of it. In the case of MDL+, it is clear that

there are no statements other than definitions for the environment, so it is especially

unclear how the compiler will know to output something. In fact, if an input file

does not complete any chip definitions, the compiler will parse the input, and if it

is correct, the compiler will halt without outputting anything. However, when one

or more chips are defined in an MDL+ file, the compiler will process them with its

various automatic phases (discussed at the end of this chapter and in the next chapter)

and then output each chip to its own file. The form of the output will depend on the

command line arguments provided to the MDL+ compiler. It is illegal to define more

than ten chips in any one MDL+ file, but there is not much reason why that would



be done anyway.

The forms of output, and how to ask the compiler for them, will be discussed in

much more detail in section 4.4 at the end of this chapter. At this point, all that is

important is that if an MDL+ source file has a chip construct defined in it, then the

compiler will be able to produce from it a configuration file which can be loaded onto

a MATRIX chip to run the way the chip was specified in MDL+.

4.2 Language Constructs

The previous section provided a basic overview to the syntax and semantics of MDL+.

As with most LISP-like languages, the basics are very simple and all of the function-

ality lies in the details of the primitives. In this case, the primitives correspond to

the types of the language, or the various constructs. An instance of each type can be

created and placed in the environment with an appropriate definition statement, as

stated in the previous section, and then used later in the file.

All that is left is understanding each construct, which will correspond to some

hardware on the actual MATRIX chip. This section will go into detail to explain each

construct. After reading about any construct, it should be a simple matter to write

an MDL+ file that uses that construct.

4.2.1 Constants

Constants are the lowest level type that MDL+ has. (Numbers, Rednumbers, and

name strings are not types.) There are many different kinds of constants and they

are used in many different kinds of other situations. Many times, using one kind of

constant in a situation intended for another kind of constant will be a mistake, but

MDL+'s type-checking will not catch these errors, because as far as the compiler is

concerned all constants are equally appropriate for any places that need constants.

The benefit to this is that there are times when it might be desirable to use one kind

of constant in a place where a different kind is desired, and the compiler will not stop

you.



Constants are the lowest-level type in MDL+ and very useful because they are

basically just numbers. The difference between a constant and a number are twofold:

Constants can be bound to names and stored in the environment whereas numbers

can not be, and constants can also be DC, meaning that it does not matter what

number the constant represents, whereas numbers are just integers.

But the power of constants should not be underestimated just because they are

almost equivalent to numbers. Their greater power lies in providing an abstraction

layer between concepts and the lower-level number that is required for a MATRIX

chip to be configured to behave with the concept. Several ways to define constants

will shortly be described and they will be interpreted by the compiler to mean some

number and thus stored as constants that are just numbers, but they will only be

seen by the human user as higher-level concepts.

The only exception to the rule that all constants are as good as any others, is

that sometimes situations that call for constants will require constants in a certain

range (such as 0..31 for constants that are supposed to fit into five bits). In these

cases, the compiler will complain if the constant variable it is given has a value not

in the appropriate range. These are errors that are closer to run-time than the other

type-checking errors, but they are still compile-time errors.

Before continuing into the details of the ways in which constants can be defined,

there is one last warning. The compiler will always turn a constant definition into

either a number or a DC value, but that does not mean that it turns the definition

into the same number that you might think it should. If you then use that constant

in appropriate places, the compiler will know what values it meant by the number

it assigned to the constant and it will operate correctly. However, if you use it in a

place where a different kind of constant was assumed, then it is not guaranteed to

work correctly (it might, but it should particularly be avoided when it seems most

unusual). An example of a constant definition and use that would not be guaranteed

to do what you thought it should2 is defining a constant to be an Enable-value and

then using it as a Selection-value.

2It's not even clear that there would be a unique assumption of what it should do.



Description String
leftmost or bottom BFU BFU1
nth BFU, 1< n < 6 BFUn
Opposite-side perimeter VBFU otherio, otherside
Same-side perimeter VBFU sameio, thisside, thisio, sameside
Undriven zero, constant0, none

Table 4.1: String meanings in (const String) structure

Basic Definitions

Constants can be defined to be DC, like most other constructs. They can also be

defined to be just a number, or to be the value of a name that is bound to another

constant. Although these simple definitions are the only means of creating constants

that are ever needed, they are far from the only means that would ever be desired.

All definitions of constants use the constructor def-constant, and all must provide

the definition with some argument, since there is no default value.

Constant Value

There are two ways in which you can define a constant to be of the "Constant Value"

or "Static Value" kind. In the realm of BFUs "Constant Value" and "Static Value"

refer to 8-bit numbers that any of the eight ports can be set to. Thus, a constant can

be defined to be (constant NUM) where NUM is any 8-bit number (Any number

zero through 255.)

In the realm of VBFUs, or the perimeter of the MATRIX chip, "Constant Value"

and "Static Value" refer to the information that controls which BFU is allowed to

write a given Level-3 line. This information is considered constant or static because

it is configured to be the same BFU every cycle. To define a constant this way, define

it as (constant String) where String is BFU1 for the first BFU (in order bottom

to top and left to right), BFU2 for the second BFU, and so on, or other values as

explained in table 4.1.

Any other strings used in the (const String) structure must be names of con-



Description String

Local BFU local

L1,L2,or L3 line 11n1, 11 sw, 12_e2, 13_h4, etc.
Control Byte ctrl
Memory Read-Out Data md
Constant Value 1/Config read data cO
VBFUs diagonals lln, 11nd, etc.
VBFUs L1,L2,L3 lines 11_2, 12_1, 13_4, etc.
Ioport ioport, ioport
L3_3 High bits highbits
Undriven/No source none, constant, constant0, zero

Table 4.2: Strings in Static Source Structures

stants in the environment. As explained above, these constants could have been

defined using any means of constant definition.

Static Sources

Just like constant values or static values, there are two places that static sources are

used on a MATRIX chip. One is in the realm of BFUs where a port can be defined to

have whatever value is coming from a specific input line to that BFU. The port does

not provide a constant or static value, but it does provide the value that is coming

from a static or constant source every cycle. In the realm of VBFUs, the arbitration

of which BFU gets to drive a Level-3 line can be left up to the low bits from an input

line to that VBFU on a cycle-by-cycle basis. The choice of which BFU gets to drive

the line is not constant or static, but the source of the decision is static.

Both of these situations are encoded into MDL+ as constants with the (static

String) structure. When using this structure, the String must either be the name

of a line that enters the BFU ports (e.g. 11_nl) or the name of a line that enters the

VBFUs and can thus arbitrate the control of level-3 lines (e.g. 11_1). The possible

values the String can take on are listed in table 4.2.

No other values are allowed for the string in a static structure, not even the names

of already-defined constants.



Dynamic Sources

BFU ports can be set to be in Dynamic Source mode, in addition to Constant Value

Mode or Static Source Mode. In this case, the port looks to one of the Floating Ports

(the one on the same side of the BFU as it is) and uses the value of that port each

cycle to determine the line it will choose as the source of its value. Since no further

configuration is possible once a BFU is in dynamic source mode, and there is no such

mode available for VBFUs when determining which unit drives a level-3 line, thus

the syntax in MDL+ of specifying a constant to be a dynamic source is very simple:

it is a (dynamic) structure. So, for example, a line in an MDL+ file might read:

(def-constant dyn-con (dynamic))

ALU Values

Describing the functioning that the ALU should be performing in a single cycle is

complex as a concept, but that complex concept is actually implemented as an 8-

bit configuration byte. Thus, ALU values are legal constants. A novice MDL+

programmer might wonder what additional benefit is gained by allowing ALU values

to be interchangeable with other constants instead of just allowing them to be inserted

in the ALU port configuration of BFUs. The answer to this is simply that ALU values

belong almost anywhere in a chip's configuration that general constants belong. An

ALU value might go into a memory cell or into another BFU's port such that it could

eventually be passed into the BFU whose ALU port will use it to run an actual ALU.

Just as constant values, static sources, and dynamic sources have keywords to tell

the compiler what kind of constant is being defined, ALU values have the keyword

aluval. The structure of an ALU value definition is as follows: (aluval (Inst Ctx

We)) where any of the three arguments Inst, Ctx, and We can be omitted, but those

present must come in order.

If it matters which of the instructions the ALU will carry out in the cycle that

this ALU value controls an ALU, then the Inst argument to the ALU Value structure

must be specified. There are three types of instructions that might be passed in: shift



instructions, pass instructions, and general instructions.

To generate a shift instruction, use the following structure for the Inst argument:

(shift argl arg2 arg3), where argl is simply the letter a or b, arg2 is the letter r

or 1 and arg3 is f, c, 0, or 1. The first argument determines whether the ALU will

shift its A input or its B input. The second argument determines whether the ALU

will shift right or left (towards LSB or MSB). The third argument helps to determine

what will be done with the newly-empty position after shifting: 0 or 1 will insert

a 0 or 1, respectively. f will override the LSB/MSB setting of the BFU and force

the shift to use the carry-in from its designated Leftsource or Rightsource, which

can be useful for shift-rotations. c will keep the same bit that used to be in that

slot, essentially duplicating the low or high bit of the shifted number. For a better

understanding of these various configurations that a BFU could be in (MSB, LSB,

Leftsource, Rightsource), see section 4.2.5 on BFU-Configuration constructs.

To generate a pass instruction use the (Pass Inv) structure, where Pass is either

the string PassA or the string PassB depending on which ALU input the ALU

should be passing, and Inv is either the string Inv or omitted depending on whether

or not the ALU should be inverting all bits of the value it is passing before passing

it along.

To generate an arithmetic or logical instruction use the (Arith Inv) structure,

where Arith is one of the legal MATRIX arithmetic or logical operations that the

BFUs can perform, and the Inv argument is InvA, InvB, InvA InvB, or omitted

depending on which (if any) of the inputs to the ALU are supposed to be inverted

prior to the operation taking place. The legal operations are represented by the

following strings: and, or, xor, add, add0 (add but the carry-in of any LSB BFU is

forced to 0), addl (the carry-in of any LSB BFU is forced to 1), mul, mula (Multiply-

Add, A*B+FP1), mulaa (Multiply-Add-Add, A*B+FP1+FP2), and mcon (Multiply-

Continue, get the high byte of the previous cycle's mul, mula, or mulaa).

Now that the ways to specify an ALU value's Inst argument have been explained,

we continue to the Ctx and We arguments.

If it matters which of the two Compare/Reduce I words the output from the ALU



is compared with, specify the Ctx argument as (ctx 0) or (ctx 1).

If it matters whether the BFU's memory has the write enable bit set for that

cycle, specify the We argument as (we 0) or (we 1).

If any of the three arguments are passed to the ALU value structure, the omitted

arguments will all default to zero. But, if all three defaults are desired then they

must be written out explicitly, (aluval ((mul) (ctx 0) (we 0))), since omitting

all arguments will result in an ALU Value of Don't Care, and a resulting constant

defined in the environment of DC.

Memory Values

Just as there are constant values to control the ALU function of a BFU, there are

constant values to control the memory function of a BFU (that is inputted through

the MEM port of a BFU). The keyword for this kind of constant definition is mem-

val. The structure to use is (memval (Port AluA AluB Memdat Cfgwrite

Cfgread)). Any of the six arguments can be omitted. As with ALU values, if all of

them are omitted then the value will be the DC constant, but omitting any less than

all of them will just cause the omitted values to default.3 Most of the arguments have

an obvious connection to the MATRIX hardware in figure 3-1.

The Port argument can be passed as either (Port single) to indicate one 256-byte

memory, or (Port double) to indicate that the memory of the BFU is to be used

as two 128-byte memories, which can be accessed by different BFU ports (A,B). The

default is a single port.

The AluA argument controls one of the muxs just after the Memory unit of a

BFU. The AluA argument can be passed as either (AluA Input) to flip the mux to

passing the BFUs A port value, or (AluA Memory) to flip the mux to passing the

output of the memory's A port. The default is Input.

The AluB argument controls the other mux just after the Memory unit of a BFU.

The AluB argument can be passed as either (AluB Input) to make the mux pass

3Due to a known bug in MDL+, you can not omit arguments to a Memval prior to any that you
do not omit.



the BFU's B port value, or (AluB Memory) to make the mux pass the memory

unit's B port. The default is Input.

The Memdat argument controls the mux that comes just before the Data input

port of the Memory Unit. The argument can be passed as either (Memdat InputB)

to have the mux pass the BFUs B port value to the memory as its data, or (Memdat

local) to have the mux pass the ALU's output from the current cycle back to the

memory unit to act as the data for this cycle. The (Memdat local) memory configu-

ration is required for doing operations of the form A +- A op B in one cycle. The

default is InputB.

The Cfgwrite argument controls the configuration memory write enable. The

two options for the argument are (Cfgwrite disable) to not assert the enable, and

(Cfgwrite enable) to assert the enable. The default is (Cfgwrite disable).

The Cfgread argument controls the configuration memory read enable. The two

options for the argument are (Cfgread disable) to not assert the enable, and (Cf-

gread enable) to assert the enable. The default is (Cfgread disable).

Select Values

Select Values are constants that are used for the 12 IO Ports that are at the perimeter

of the chip. Each has three configuration words for output selection (One for the

data word, and one for each of two I/O bits.) These values decide which values are

outputted off-chip in the event that the port's output enable is set.

The structure of a constant definition for select values uses the keyword sel and

looks like (sel NUM) or (sel Words). If a number NUM is given, it must be a

four bit number, and it will be directly used to code the low-level bits. If Words, or

a sequence of strings, is given then they are used to determine as much as possible

about which line the programmer meant to select. The descriptions of what these

strings can choose, and the related strings that can be used, are shown in table 4.3.

In any case where an entire word is selected but only for an I/O Bit, the low bit

is chosen. Note that no one string will completely determine which line is selected.

If only some of where the line must be is determined, then the rest will default to



Description String

Lower or leftmost Column A, columnA

Higher or rightmost Column B, columnB
CR from a BFU 1 or 2 away for I/O Bits CR1_I, CR-2
L1 lines a BFU 1 or 2 away, for I/O Word 11_1, 11_2
L2 lines a BFU 1 or 2 away 12_1, 12_2
L3 lines 13_1, 13_2, 13_3, 13A
ID naming a constant with value 0..15 ID

Table 4.3: Strings defining Selection Values

one of the lines which the specification did not eliminate. It is possible to completely

specify a line, for example in this constant definition of a selection value:

(def-constant sel-con (sel B L2_1))

Finally, since the sequence of strings can be an empty sequence, a Selection Value

can be completely unspecified, as in this code:

(def-constant sel-any (sel))

Enable Values

Just like Select Values, Enable Values are constants that are used for the IO Ports

that are at the perimeter of the chip. Each has three configuration words for the

output enables (One for the data word, and one for each of two I/O bits.) These

values decide whether each of the I/O Word and bits are inputted on-chip and which

are outputted off-chip.

The structure of a constant definition for enable values uses the keyword en and

looks like (en NUM) or (en Words). If a number NUM is given, it must be a

four bit number, and it will be directly used to code the low-level bits. If Words, or

a sequence of strings, is given then they are used to determine as much as possible

about what the programmer wants the enable value to be which is often a question

of which line the programmer meant to select as the line whose bit will dynamically



Description String
Lower or leftmost Column A, columnA
Higher or rightmost Column B, columnB
L2 lines a BFU 1 or 2 away 12_1, 12-2
L3 lines 13_1, 13_2, 13_3, 13A_4
I/O Bit 0 or I/O Bit 1 io_0, io_1

Always Input input, zero
Always Output output, one
ID naming a constant with value 0..15 ID

Table 4.4: Strings defining Enable Values

decide the output enable value each cycle. The descriptions of what these strings can

choose, and the related strings that can be used, are shown in table 4.4.

Note that while any Enable Value can be chosen from any of these possibilities,

only the Output Enable of the Data Word at each port has much of the flexibility.

The two I/O Bit output enables must be constant, either always input or always

output.

Also, note that like Selection Values some strings will not completely specify the

output enable behavior (when the it depends on a Level-2 or Level-3 line that is not

completely specified) but unlike Selection Values some strings will completely specify

the output enable behavior (such as io.0 or input). If a list of strings contradicts

somewhat, the rules in the previous section will still hold and thus the rightmost

strings will determine the constant value stored. While this is still not recommended

for final code, the functionality is included since it might be useful for debugging.

However, use of this functionality should be done even more carefully with Enable

Values than with Selection values and some other lists, since the effects might not

always be clear to the programmer.

Just as with Selection Values, the sequence of strings can be an empty sequence,

resulting in a completely unspecified Enable Value:

(def-constant en-any (en))



Kind of Constant Keyword Related Hardware Default

Number or DC N/A Any N/A
Constant Value constant BFU Ports, L3 Controllers N/A
Static Source static BFU Ports, L3 Controllers N/A
Dynamic Source dynamic BFU Ports Ox1DC
ALU Value aluval BFU's ALU Port (Mul) (Ctx 0) (We 0)
Memory Value memval BFU's MEM Port Sing-Port AluA&B&Memdat-In

CfgR&W-Dis
Select Value sel IO Port Select Words DC
Enable Value en IO Port Enable Words DC

Table 4.5: Quick Summary of Types of Constants

Summary

One of the most important things to remember is that although a constant that has

been defined will likely have an integer value associated with it that can be retrieved

from it, a programmer should not make use of that value unless he is using it for

the purpose which is paired with the means he used to create it or he is sure that he

knows what he is doing. The danger is that the number has been changed in order

to indicate information about it to the system which will use it, but this information

might mean something different to another system that might try to use it. The

power is there to do some nasty hacks, and that power should be avoided or at most

used sparingly and carefully.

Since there are so many different kinds of constants, table 4.5 is provided as a

reference to them. For complete descriptions of their associated syntactic structures

and their semantic meanings, see the parts of this section that describe them in detail

and the parts of the later sections that describe the constructs that use constants

defined in the appropriate manner.

Although most constructs will not be nearly as involved as constants, each will

have a table such as table 4.6 which will summarize the basic qualities of that con-

struct. These tables are all combined in one large table that should be a useful

reference about the various MDL+ constructs while programming in MDL+. That



Type Constant
Constructor def-constant
Keyword Several
Default None
Inheritance No

Table 4.6: Quick Summary of Constants

table (table 4.31) is at the end of this section.

Constants can not inherit from each other. Table 4.6 mentions this fact for com-

pleteness, as there is not likely ever a time when it would be helpful for one constant to

inherit from another, instead of simply copying the "parent" constant to the "child".

4.2.2 Bitvecs

Now that we have defined the Constant construct which represents any single number,

it makes sense to have a construct for a list of such numbers. That is what the Bitvec

construct is. Note that the name Bitvec is somewhat misleading, since these are

usually representing an array of byte (8-bit) quantities and would thus better be

referred to as Bytevectors. Of course, any long list of bits (regardless of what word-

length they are grouped into) is still a bitvector, and this is the name that MDL used

to refer to such items, so MDL+ uses it as well.

Bitvecs are useful in two places: Or-planes and Memory configurations. The Or-

plane requires a bit vector to configure it, but the Or-plane was removed from MATRIX

prior to the chip fabrication, and was not used all that often beforehand anyway. The

other use is for the memory in each BFU, which consists of 256 one-byte (8 bit)

quantities.

Bitvecs use the keyword bitvec and have the basic structure (bitvec Value*)

where each of the list of arguments Value can take on many different forms, basically

corresponding to the various ways to define constants. Each one of those forms will

correspond to a constant value (integer number or Don't Care). The options and

examples of their use are listed in table 4.7.



Description Example Constant
Don't Care DC DC
Number 8 8
ID of constant C Value of C
Constant Value (constant 8) 8
Static Source (static 11nl) 769

Dynamic Source (dynamic) 476
ALU Value ((Mul) (ctx 1)) 64
Memory Value ((port double)) 32

Table 4.7: Values in a Bitvec

(def-constant c 9)
(def-bitvec b

(bitvec DC 8 C (constant 8) (static 11_nl) (dynamic)
((mul) (ctx 1)) ((port double)))

Figure 4-3: Sample Bitvec Definition

Thus, a Bitvec could be defined as shown in figure 4-3. Note that while this is a

legitimate Bitvec, it would not be a good definition of the memory cells of a BFU,

because it contains values that are not 8-bit quantities. From table 4.7 it is clear

that one of the values is 769 and another one of the values is 476, both larger than

256. This is because they were defined with ways intended for defining BFU port

configurations, which are 10-bit values. (8 bits plus 2 bits for determining whether it

is Constant Value, Static Source, or Dynamic Source.)

Bitvec constructs are summarized in table 4.8. The table says that the default

value of a Bitvec is DC because defining a Bitvec to be DC yields the same thing as

defining a Bitvec with its basic structure containing an empty list of Values. Bitvec

constructs are identical to Memory constructs. (see later part of this section on

Memory constructs.)



Type Bitvec
Constructor def-bitvec
Keyword bitvec
Default DC
Inheritance No

Table 4.8: Quick Summary of Bitvecs

4.2.3 Sub-BFU Constructs

BFUs are very large and complex, and thus require a lot of configuration. To this

end, there are many constructs in MDL+ which specify a subset of the configuration

of a BFU. An MDL+ programmer can always specify these elements of functionality

directly in a BFU definition, but when defined separately once, they can be combined

in unique ways to form several similar BFUs.

Although there is not much known about whether these will turn out to be a

good idea, since they have never been provided prior to MDL+, it is felt that they

will also sometimes provide a nice amount of abstraction when defining BFUs. It

has been pointed out that other times they will only serve to make an MDL+ source

file longer and potentially more confusing to read, and not assist much in reducing

the amount of complexity via abstraction. It is thus recommended that the MDL+

programmer figure out when separate specification of these constructs is aiding and

impeding code readability, and then either use them or not accordingly. The MDL+

compiler outputs the exact same code regardless of whether pieces of BFUs are defined

separately and then incorporated into the BFU definitions or first defined as part of

the BFU definitions.

Whichever side the reader may take in this debate, the pieces of the BFU's con-

figuration will be described with their individual constructs, and then the means of

incorporating the already-defined pieces and of defining them directly in the BFU

definition will both be explained in the section about the BFU construct. Since the

guts of the structure for each construct will only be explained in the sections for the

various constructs, even though these structures can be used directly in the BFU



construct, all of the sections about sub-BFU constructs will be important reading.

4.2.4 BFU Networks

This is the first of the sub-BFU constructs. The purpose of a BFU Network is to

specify the crossbar between the BFU's network-capable ports (N1,N2,FP1,FP2) and

the network lines it might output onto the higher-level-networks (2 L2 lines, 8 L3

lines).

The keyword for BFU Networks is network. The structure for a BFU Network

that is not being defined to be merely a copy of another BFU Network or DC, is

(network (Line Port)*). The asterisk indicates Kleene closure, or that there is

a sequence of zero or more (Line Port) arguments to the BFU Network construct.

Each Line argument needs to be one of the Level-2 or Level-3 lines that a BFU can

drive (12_dl, 12_d2, 13_vl, 13_v2, ... , 13_h4) and each Port argument needs to be either

one of the BFU's network ports (N1, N2) or one of the BFU's floating ports which can

be used as network ports (FP1, FP2). The Level-2 lines are referred to in a different

way than usual, with "dl" and "d2", because while 8 Level-2 lines cross over each

BFU (2 in each direction), only 2 emanate from each BFU. If the BFU has horizontal

L2 lines, "dl" points south or down and "d2" points north or up. As mentioned in

chapter 3, BFUs are viewed on a checkerboard-grid to determine whether they drive

horizontal or vertical Level-2 lines.

After some time programming for MATRIX programmers are expected to prefer

using "dl" and "d2" to actual directions, as it was with MDL, but people first starting

to program in MDL+ will likely find the "d" notation confusing. Table 4.9 should

provide these people all of the assistance they need in determining what "dl" and

"d2" mean for each BFU, as well as which BFUs drive horizontal Level-2 lines, and

which BFUs drive vertical Level-2 lines.

Use of table 4.9 is very simple. Add up the X-coordinate and the Y-coordinate of

the BFU in question to determine which half of the table to peruse. For example, any

BFU on the middle diagonal (X=Y) will fall in the top half of the table. Notice that

the convention of West and South being "lesser" and East and North being "greater"



X+Y L2 Driven 12_dl 12_d2

Even Horizontal West/Left East/Right
Odd Vertical South/Down North/Up

Table 4.9: Meaning of 12_d1 and 12_d2

Type BFU Network
Constructor def-bfu-network
Keyword network
Default DC
Inheritance No

Table 4.10: Quick Summary of BFU Networks

is preserved here.

If it does not matter at all which port a line will be driven from, because for

example, the line is not going to be driven at all, then it can be omitted from the

definition of the BFU Network. If all arguments after the network keyword are

omitted, the result will be the same kind of BFU Network that would have resulted

from simply defining a BFU Network to be DC, thus DC is listed as the default in

table 4.10.

4.2.5 BFU Configs

This is the sub-BFU construct which specifies the BFU configuration bits that deal

with higher-level concepts. These concepts include, for example, whether a BFU

should think of itself as the most or least significant block of a wider than one-BFU

operation. At the lower-level of actual configuration writes to a MATRIX chip these

bits are also associated with each other. If an MDL+ programmer does not agree

that they deal with higher-level concepts, it might be useful to think of a BFU Config

as being the sub-BFU construct that deals with any remaining BFU configuration

information that is not included in any of the other sub-BFU constructs. That is, as

the miscellaneous sub-BFU construct.



Flag MATRIX Meaning

ignorecarry No Unclear
carrypipeline Yes Register incoming carry prior to use
maddldyn No Use FP1 to select source for first add in MULA/A
madd2dyn No Use FP2 to select source for second add in MULAA
tsenable Yes Time-Switching Enabled for this BFU.
msb Yes This BFU is most significant byte in multi-word op
Isb Yes This BFU is least significant byte in multi-word op
left:Source Yes Source is next most significant byte, for left carries
right:Source Yes Source is next least significant byte, for right carries

Table 4.11: Flags allowed in BFU Configs

The constructor for BFU Configs is def-bfu-config and the basic structure is

very simple: (config Flag* ConTscycle) where the keyword is config, the first

argument is a list of flags, and the second argument sets the Time-Switching value

for the Write-Enable of the BFU's memory.

Each Flag argument simply sets one of those high-level concepts to be true for

the appropriate BFU. The possible flags and their meanings are explained in Table

4.11.

The Ignorecarry flag is included in MDL+ because it was in MDL, but it is unclear

what the meaning was intended to be. It might mean that the carry is always zero. If

that is the desired functionality, then the MDL+ programmer will have to implement

it on his own by making all shift operations insert 0 and specifying LSB for the sake

of the arithmetic operations.

The Carrypipeline flag is useful both for operations that the programmer needs,

because of the nature of the program, to occur over multiple cycles (such as a single

BFU computing a 16-bit addition) and for operations that are too wide for the carry-

chain to complete all BFU operations correctly within the clock period. (Extremely

long additions can not be completed in one cycle.)

The Madd1dyn and Madd2dyn options have been removed from MATRIX, essen-

tially choosing to always assert them, hardwired. (This saves area and complexity

in the hardware design.) Non-asserted Madd1dyn and Madd2dyn would free up the



FP1 and FP2 Ports during MULA and MULAA operations, instead always using the

default sources of L1_N1 and L1_NE, respectively. This implies that with the cur-

rent design of MATRIX, and MDL+, setting a BFU's ALU to a MULA or MULAA

operation precludes that BFU from using its FP1 or FP2 ports for other activities,

such as dynamic sourcing the A and B ports, or rebroadcasting certain Level-2 lines

in different directions.

The Tsenable flag means that all time-switched registers will only take new values

on mini-cycles that they are set to register on. The default is to turn time-switching

off. Time-Switching is a very powerful tool, especially for routing hard-to-route sit-

uations. However, it is recommended to leave Time-Switching off, for the current

MATRIX chip, since this is the one major facet of MATRIX that was not tested prior

to fabrication, and is never necessary for simple designs.

The MSB and LSB flags are for BFUs that are involved in multi-word operations

consisting of chains of BFUs. The most and least significant bytes should be config-

ured as MSB and LSB, respectively, so that they will act properly, such as the LSB

knowing that on an add it ignores its carry-in, and uses a zero instead.

The Left:Source and Right:Source flags are the only flags that contain arguments,

each having the argument Source. These flags, like MSB and LSB, are also flags for

BFUs that are involved in multi-word operations consisting of chains of BFUs. A

BFU's left source is used to determine its left carry-in and its right source is used to

determine its right carry-in. The Source argument can take on eight different values,

all strings, as listed and explained in Table 4.12.

The option of the Source argument being Control, would make the carry-in to a

BFU be the result of its Compare/Reduce II, in the current version of MATRIX. But,

before the OR-plane was eliminated from MATRIX to cut down the area of the chip,

this was the general Control Bit, which was chosen by the CtrlMux (see BFU Control

construct) to be either the result of Compare/Reduce II or the first bit of the result

from the OR-plane (MSB).

The final argument to BFU Configs is the ConTscycle, which is an optional ar-

gument. It has keyword tscycle and if given must have the structure (tscycle We



Source Meaning
North One slot up
East One slot right
South One slot down
West One slot left
Local Take carry from local carry out
Control Control bit from Compare/Reduce II as carry in
Zero Always constant 0
One Always constant 1

Table 4.12: Sources for Left and Right Flags

Type BFU Config
Constructor def-bfu-config
Keyword config
Default DC
Inheritance No

Table 4.13: Quick Summary of BFU Configs

Maddl Madd2) where any of the three arguments may be omitted.

The We argument has keyword WE and structure (WE NUM) where the NUM

argument can be any number. This number is the value of the current mini-cycle

which the BFU's memory's write-enable will latch on. The Maddl and Madd2 argu-

ments use similar structures with keywords Maddl and Madd2, but do not corre-

spond to anything in MATRIX. It is not even completely clear what they might be

considered to have corresponded to in the past. Thus, you should always omit them.

They are included here, and in the grammar of MDL+, for completeness since they

were included in MDL.

The list of flags in a BFU Config works as most lists do in MDL+: The later

arguments override the earlier arguments. A brief review of BFU Configs is available

in Table 4.13. It lists a default of DC because omitting all flags and omitting the

ConTscycle argument will provide a BFU Config identical to one defined merely to

be DC.



Keyword MATRIX Explanation [Legal Values
Inputsel Yes Mux before C/R II FP1, FP2
Ctrlmux No Mux determining Control Bit Reduce, Or
Or No Or-plane An ID or Bitvec instance
Reducel Yes Compare/Reduce I one or two 9-bit rednums
Reducell Yes Compare/Reduce II 21-bit rednum and TS
Crselect No Select 4 C/R I for Or-plane 0 to 4 CR-Dirs

Table 4.14: Control argument keywords and associated hardware

4.2.6 BFU Controls

One of the biggest problems with MATRIX is its lack of a good control system. As

opposed to its straightforward and natural ALU, memory systems, ports, and net-

works, the control system is completely unnatural and unintuitive as well as not very

powerful. This sub-BFU construct defines that control system.

The keyword for the main BFU Control structure is control, and the structure

is simply (control Piece*) where each possible argument Piece defines one element

of the control for that BFU.

The mapping from the possible arguments in the control structure to the control

hardware of a BFU is very straightforward. Figure 4-4 shows the basic control logic

in a MATRIX BFU, and it includes 6 configurable pieces: Two MUXs, two Com-

pare/Reduce boxes, the OR-plane, and which four of thirteen Neighborhood Com-

pare/Reduce values are selected for the OR-plane input. These six pieces each have

their own structure which can configure them in an argument Piece. The keywords

for these six structures and which pieces of hardware they can control are listed in

Table 4.14. The MATRIX column of the Table lists whether this hardware exists in the

actual MATRIX chip, after the elimination of the OR-plane. The Legal Values column

explains which arguments are allowed in the structure (Keyword Legal-Values) for

that keyword.

The TS argument for the Reducell keyword is optional, has structure (Tscycle

NUM) and specifies the time-switching mini-cycle on which the Compare/Reduce

II output value is supposed to latch while the BFU is in time-switching mode. The
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Figure 4-4: BFU Control Logic

Crselect keyword has a structure that takes a list of zero to four distinct CR-Dirs

as arguments. The legal CR-Dir arguments are: n1, n2, ne, el, e2, se, sl, s2, sw,

wl, w2, nw, local, zero. Local refers to the local BFU C/R I value, and zero refers

to constant value "0" instead of any C/R, since these were both options before the

Or-plane was removed, even though they are not present on the diagram in figure

4-4.

MDL+ will not currently accept an Or-plane if you include it in your file, but

it will accept any of the other information that is only needed when Or-planes are

around, in case you wish to specify designs which will show how useful Or-planes

are in an attempt to show that they should be included on the next chip. Another

known bug at this time is that Compare/Reduce II will not accept the optional TS

argument.

A useful abstraction in MDL+ is that the Reducell argument can, but need not,

be specified with a 21-bit rednumber value. Instead, it can be defined with a list

of arguments that each describe some subset (not necessarily strict) of the 21-bit

reduction number. Each argument in the list may be in any of the forms listed in

table 4.15. This improvement to MDL was initially suggested in [Mat96b].

There are four times in table 4.15 where there is an argument Bit-Desc that must

Port II

BFU Output



Argument Desc Explanation

21-bit compare Actually specify all bits, e.g. OrFFFXXX000111FFFXXX000
(Bit-Desc) Forces that bit to 1

(not Bit-Desc) Forces that bit to 0
(either Bit-Desc) Forces that bit to X
(fail Bit-Desc) Forces that bit to F
fail C/R II should always Fail/return 0
accept C/R II should always Accept/return 1

Table 4.15: Reducell Arguments

Bit-Desc ] Explanation
FPn, 0 < n < 7 The nth Floating Port bit (FP1 or FP2)
Bitn, 0 < n < 20 The nth C/R II bit
Local C/R II bit corresponding to Local C/R I
nl,n2,ne,etc (12 total) C/R II bit corresponding to that BFU

Table 4.16: Reducell Bit-Desc Legal Arguments

be given. That argument can always be chosen to be any of the options given in table

4.16. There are two basic kinds of advantages gained by using this system over just

using 21-bit rednumbers. First, it can shorten source code and make the code more

readable. Second, it can abstract away more details of MATRIX, such as which bit

encodes the reaction to which C/R I bit.

For example, consider the code in figure 4-5. The first two definitions are at the

same abstraction layer, but the second uses the new system and is more readable.

Someone reading the MDL+ source file does not need to count the "X"s and can thus

not miscount, just as the programmer did not need to count the "X"s and thus could

not have miscounted. It's also easy to read the line across as "The Reduce II accepts

any situation as long as the twelfth bit is asserted."

The third definition also uses the abstraction capability, since the programmer

probably knew he cared about the C/R I bit coming from the north-west neighbor

and then had to look that up on page 43 (appendix D, section 2) of the MATRIX

Micro-Architecture Specification [Mir95a] in order to determine that north-west cor-



(def-bfu-control old
(control
(Reduce II OrXXXXXXXXXXXX1XXXXXXXX)

(def-bfu-control new
(control
(ReduceII accept (bit12))

(def-bfu-control abst
(control
(ReduceII accept (nw))

(def-bfu-control best
(control
(ReduceII (nw))

Figure 4-5: Four Ways to define a simple C/R II value

responded to bit 12. This way (with the abst definition) the programmer does not

need to consult [Mir95a] and can not mistakenly copy down the wrong bit number.

Additionally, a person reading the MDL+ source code can not mistakenly look up the

bit number in [Mir95a] and can simply read the line across as "The ReducellI accepts

any situation as long as the North-West neighbor's Compare/Reduce I value is set."

Finally, the fourth definition is the best one. We consider it best because it is

shortest and omits any unnecessary details. However, if unsure about which of the

final two definitions is best, then the earlier one should be used since it is more clearly

correct. The fourth definition (the best definition) relies on the fact that the default

value of each Reducell is accept. Thus, putting an accept at the beginning of a

Reducell argument list never actually does anything. It is a natural default to assume

that nothing is cared about until those particular things are specified.

The BFU Control construct is summarized in table 4.17. The default listed is DC

because a BFU Control defined with an empty argument list is identical to one that

is defined to be DC.



Type BFU Control
Constructor def-bfu-control
Keyword control
Default DC
Inheritance No

Table 4.17: Quick Summary of BFU Controls

4.2.7 BFU Powers

Even with MDL, the BFU configuration dealing with power could be optionally omit-

ted. With MDL+ this section is even less needed than it was with MDL. That is

because of MDL+'s Automatic Driving phase, which will be discussed near the end

of this chapter. Basically, BFU Powers can be set to configure a MATRIX chip to

drive or not drive any Level-i or Level-2 line. All lines which are not so configured

are somewhat like Don't Cares, they might end up driven, not driven, or in some

other strange and possibly meaningless state.

For now, assume that every line which should be driven should specify enabled,

and every line which should not be driven should specify disabled. When you get to

the section about the Driver, there will be more information on how to best use BFU

Powers.

The keyword for BFU Powers is power and the basic structure is (power Pair*)

where any of the list of arguments Pair has the structure (Line Status). The Status

argument is simply one of two strings: Disable or Enable. The Line argument is

simply one of twelve Level-i lines (llnl, 11n2, line, etc.) or one of two level two

lines (12dl, 12d2). Note that the level-2 lines are marked "d" for direction, and their

meaning is once again that given in table 4.9. Also note that these lines have no

underscores (_) in their definitions, in an attempt to be consistent with MDL which

was inconsistent with itself.

Since BFU Powers with an empty list of arguments end up leaving all lines neither

driven nor undriven, like a BFU Power which is defined to be DC, the default behavior

listed in summary table 4.18 is that of DC.



Type BFU Power
Constructor def-bfu-power
Keyword power
Default DC
Inheritance No

Table 4.18: Quick Summary of BFU Powers

4.2.8 Ports

Just as BFU Ports (see the next construct) are sub-constructs of BFUs, so Ports are

sub-constructs of BFU Ports. A piece of the BFU definition is that of a single one of

its ports, and that is exactly what a Port defines. Since this is such a small amount

of configuration, the Port is a construct with a very simple structure. Though simple,

it is a very useful definition when building up our modular definition of BFUs.

The keyword for a Port is port, and its simple basic structure is (port Value

Value Tscycle) where the first Value is the port's configuration in the first local

context and the second Value is the port's configuration in the second local context.

All three of the arguments to the Port structure are optional, which leads to the

question of how to interpret only one Value argument. When provided only one

Value argument, the compiler assumes that it is intended for the first local context

(local context 0). Thus, for example, if the second local context needed the port's

configuration set to 8, but the first local context did not matter at all, the only way

to indicate that would be as:

(def-port Sec (port dc 8))

Meanwhile, if only the first local context was relevant and needed to be set to 8,

either of these lines of code could be used:

(def-port Firl (port 8 dc))

(def-port Fir2 (port 8))

It should be clear by now that a Value argument can be a number or a Don't Care,

but there are also many other possibilities. They are basically the core structures



Description Example Exception

Don't Care DC
Number 8
ID of constant C
Constant Value (constant 8)
Static Source (static l1_n) (static B)
Dynamic Source (dynamic)
ALU Value ((Mul) (ctx 1))
Memory Value ((port double))

Table 4.19: Ways to define a Value of a Port

of several kinds of constants. Since numbers and DCs are also core structures of

constants, these are not exceptions. Table 4.19 gives all possible means of defining

these Value arguments.

Note the one exception: That in addition to being able to use static structures the

way that they can be used to define constants, they can also be used here with the

name of a BFU as the only argument to a static structure. That is, in the example

from the table, B must already have been defined to be a BFU. This option represents

another level of indirection, saying that the static source is to come from a certain

other high-level BFU wherever it may be placed on the grid (at 11ln, 11_e2, 13_h3,

or anywhere else). When using this option, it will later be replaced by the actual

relationship between the BFUs during the Automatic Routing Phase which will be

explained in the next Chapter.

All of the other options listed in table 4.19 are not explained here because those

structures were already explained in the earlier part of this section that explained

the Constant construct. However, it is important that some of the structures here

maintain their keyword as necessary, and some do not have their keyword (specifically,

ALU Values and Memory Values). Since there are as many as nine different ways to

define each context of a Port and they are not actually explained at this point, we

provide figure 4-6 with MDL+ source code that defines nine Ports, using a different

structure to define each of them.

The third and final optional argument to the basic Port structure (after the two



(def-constant c 8)
(def-bfu b )

(def-port pl (port dc))
(def-port p2 (port 8))
(def-port p3 (port C))
(def-port p4 (port (constant 8)))
(def-port p5 (port (static 11_ni)))
(def-port p6 (port (static B)))
(def-port p7 (port (dynamic)))
(def-port p8 (port ((Mul) (ctx 1))))
(def-port p9 (port ((port double))))

Figure 4-6: Nine ways to define a Port

Value arguments) is the Tscycle argument. This argument deals with the mini-cycle

on which the value coming into this port is supposed to be latched when the BFU is

in time-switching mode. For ports which do not have time-switching capability this

argument should be omitted.

The structure of the Tscycle argument is (TScycle Value) where this Value is

an argument almost like the two Value arguments at the beginning of the main Port

structure. Normally this Value argument should just be a simple integer number or

the name of a constant variable that has been defined to be an integer number. But,

it is allowed to be almost anything that the other Value arguments could be. The

one exception is the case that was listed in the exception column of table 4.19. That

is, static structures must be used only as they can be used in constant definition. It

would not make any sense to use the name of a BFU in this case, especially if that

BFU were not even placed yet (see the next chapter's discussion of the Automatic

Placement Phase). Table 4.20 shows the possibilities that do exist for this Value

argument.

Ports are summarized in table 4.21. The default listed is DC because omitting all

three arguments will produce the same Port as declaring it to be DC.



Description Example

Don't Care DC
Number 8
ID of constant C
Constant Value (constant 8)
Static Source (static 11nl)
Dynamic Source (dynamic)
ALU Value ((Mul) (ctx 1))
Memory Value ((port double))

Table 4.20: Ways to define a Constant Number, for TScycle

Type Port
Constructor def-port

Keyword port
Default DC
Inheritance No

Table 4.21: Quick Summary of Ports

4.2.9 BFU Ports

Now that the Port construct is defined, it is time to define the BFU Ports construct.

Whereas the Port construct explained how any of the eight ports of a BFU are con-

figured, a BFU Ports construct explains how all eight ports of a BFU are configured.

To that end, it makes sense that the basic structure of a BFU Ports is basically just

a list of which Port constructs get mapped to which of the BFU's ports.

The constructor for BFU Ports is def-bfu-ports and the keyword is ports. Be

aware that this is only one letter different from the Port construct keyword of port.

The basic structure for the BFU Ports construct is (ports Pair*). In this case any

of the list of Pair arguments is meant to define one of the BFU's eight ports to be a

specific port configuration. As such, a Pair argument must fit the structure (Name

Value) where the Name argument must be a string that represents one of the eight

BFU ports, and the Value argument represents a port configuration.

The valid strings that can be given for the Name argument are listed in table



Name Description
alu Fa Port, for ALU function
mem Fm Port, for MEM function
aport A port
bport B Port
nlport First Network Port, Ni
n2port Second Network Port, N2
fplport First Floating Port, FP1
fp2port Second Floating Port, FP2

Table 4.22: Names for BFU Ports

4.22. The Value argument is optional and may be DC (for the default all-DC port

configuration), the name of a previously defined Port, or the structure used as the

basic structure of a Port construct. If using the basic structure from a Port construct,

the outer wrapping with the keyword port must be omitted.

These various ways of defining pieces of a BFU Ports are present in the MDL+

source code of figure 4-7.4 In the sample code, the aport has both local contexts

defined in one line, but the ALU has both local contexts defined in different lines.

The two A port lines could separated but the two ALU lines could not be united

because one of them is defining the ALU configuration to be a port which includes

both local contexts even though the programmer knows that one of them is about to

get overwritten.

Finally, note that the N1 port is defined to be DC, but this line of the code

accomplishes nothing because that is the default anyway. The ability to make DC

definitions like this is provided for two reasons: So that MDL files are better able

to compile with MDL+ (since MDL required all ports to be specified, and had a

non-working DC option) and for debugging purposes (replacing a definition with DC

can effectively comment-out a line when it is easier to do it this way).

Table 4.23 is provided as a review of BFU Ports. If no ports are specified at all

inside a basic structure for a BFU Ports definition, the result will be identical to the

4This code will actually not compile due to a known bug that prevents defining a piece of a BFU
Ports to be the name of an already defined port.



(def-port pl (port 8))
(def-port p2 (port ((mul))))
(def-bfu b )
(def-bfu-ports bp

(ports
(alu p2) ;; start off with whatever p2 is defining Icl ctx 0 of ALU
(mem ((port double)))
(aport (static 11_nl) (static 11_n2))
(bport (static b))
(alu dc ((add) (we 1))) ;; change the ALU Icl ctx 1
(niport dc)
(fp2port 9)

Figure 4-7: Sample BFU Ports definition

Type BFU Ports
Constructor def-bfu-ports
Keyword ports
Default DC
Inheritance No

Table 4.23: Quick Summary of BFU Ports

case where the BFU Ports was defined to be DC. Thus, the listed default is DC.

4.2.10 Memories

The last of the sub-BFU constructs, Memories describe the initial contents of the

memory unit of a BFU. The Bitvec construct already seems suited to this task. A

BFU's starting state consists of initial values for 256 8-bit cells, any of which the

programmer might not care about. Thus a Bitvec of up to 256 values, none of whose

values are greater than 256, is an ideal way to specify this configuration.

Memories are merely another means of saying the same thing as a Bitvec. Instead

of def-bitvec the constructor is def-mem, and instead of bitvec the keyword is

cells because it is defining memory cells. Besides that, there are no differences.

In fact, internal to the compiler, these two constructs are currently viewed as the



Type Memory
Constructor def-mem
Keyword cells
Default DC
Inheritance No

Table 4.24: Quick Summary of Memories

same construct, and it will even accept a mix-and-matching of the constructors and

keywords. Any place that an ID for a Bitvec or Memory is required, the other will

be accepted.

It is not surprising that the summary table for Memories (table 4.24) mirrors the

table for Bitvecs (table 4.8).

4.2.11 BFUs

After understanding all six sub-BFU constructs, a programmer should not have a hard

time learning about the BFU construct. Basically, the BFU construct is designed

to contain all of the configuration information possible for any single BFU. This is

divided into the six non-overlapping subsets that are each part of their own sub-BFU

construct.

The BFU construct is the first construct mentioned in this thesis to not have a

keyword of its own. Instead, it merely uses keywords of the sub-BFU constructs,

when necessary. The basic structure of a BFU construct is simply Piece*, which is

to say a list of Piece arguments, without any surrounding parenthesis or keyword. It

is because this list can be empty that several source-code figures above have defined

a BFU with a line such as:

(def-bfu b )

The empty space left after the ID "b" is simply one convention, used to suggest

that this is the definition of a BFU, that just happens to not have any parts of it

specified. The same convention calls for no space to be left when the same BFU



will be defined later in the file. In that case, this line is merely a declaration for

the purpose of telling the compiler that "b" is a BFU, and not actually meant to

define that BFU at all. The compiler does not care which convention is used, and

where blank spaces are left, but we recommend this as a good MDL+ programming

convention.

Of course, interesting BFUs are defined with non-empty lists. Each Piece in the

list can be an ID or the basic structure of any of the six sub-BFU constructs. If

an ID, it must name either a previously defined BFU or a previously defined sub-

BFU construct. If the basic structure of a sub-BFU construct, it should be complete,

including the keyword.

The obvious change since MDL is that names of sub-BFU constructs can now be

used, where MDL only provided the actual structures themselves. But that is not

the only change. Due to the argument to the BFU structure being any list of Pieces,

some pieces may be omitted, pieces may be given in any order, and pieces can even

be given more than once. That is, the programmer may make use of MDL+'s list

convention, to put things at the end of the list that are supposed to override things

at the beginning of the list. This ability to override can be several layers deep.

First of all, we observe that BFU constructs have inheritance. That is, the first

Piece in the list can be another BFU. Then, the new BFU being defined will have all

of the qualities of the parent BFU, except the ones overridden by later arguments.

And there are many more twists on this strategy. Several BFU names may be listed,

essentially saying to the compiler to "take BFU A and use it's configuration, except

for the details provided by BFU B, and I don't care what's in either A or B as soon

as C has anything to say."

Furthermore, sub-BFU Pieces, either names or structures, can override each other.

A BFU Ports with the ALU port and MEM port set can override a BFU Ports with

the ALU port and A port set, leaving the old A port, changing the ALU port, and

adding a new MEM port specification. But, it is important to remember that it is

never quite as simple as that. Constructs will "inherit" from each other in this way

that we call overriding instead of just "replace"ing each other, unless they are at the



(def-bfu-network net (network (12_di ni)))
(def-bitvec bits (bitvec DC 8 DC 9 10))
(def-bfu bful bits net

(cells 1)

(def-bfu bfu2 bful
(ports
(Aport (dynamic))

(ports
(Aport dc (static bful))

(network
(13_hl fp2)

(cells dc dc 2)

Figure 4-8: Sample BFU Definition

lowest level of Constants. So, when we say that the new ALU port definition will

override the old ALU port definition, that is only in the ways that it is defined to

care about. For example, if the old ALU Port definition specified the port value for

both local contexts, and the TScycle value, and the new ALU Port definition only

specified the second local context value, then the final ALU Port value for the BFU

will still retain the old value for the first local context and the TScycle value, but get

the new value for the second local context. This can be summed up very simply as

"If you don't care about what a value is, and someone else does, then their value will

persist."

Figure 4-8 contains MDL+ source code for an illustrative example of BFU defini-

tion. All of the structures should be familiar from earlier parts of this section, only

the combination and overriding of them should be new.

The first BFU in this code, bful, has its 12_dl line driven by its first Network

port (N1), and four of its first five memory slots are initialized (1, 8, DC, 9, 10).

The second BFU inherits from the first one, and replaces none of its values. It does

add the definition of the remaining uninitialized memory cell of the first five memory



Type BFU
Constructor def-bfu
Keyword None
Default DC
Inheritance Yes

Table 4.25: Quick Summary of BFUs

cells, add a network definition, and add a single port definition. bfu2 has its initial

memory cells starting with the values (1,8,2,9,10) and it has its Aport configured

to be in Dynamic Source more for the first local context and in Static Source mode

during the second local context.

This code is slightly nonsensical since it makes no sense to define the Aport to be

in dynamic source mode without defining the FP1 port configuration for the same

local context. However, the MDL+ compiler will still allow this case, because it does

describe a configuration of MATRIX, and this configuration might be a desirable one

to load onto the chip during some phase of testing the chip, or as a parent to inherit

from.

The behavior of the BFU construct is summarized in table 4.25. Recall that just

because BFUs have no keyword does not mean that all BFU construct definitions will

be devoid of keywords. Furthermore, the advanced MDL+ programmer should take

special note of the fact that the inheritance of BFUs allows him to use inheritance-like

overriding with many other constructs.

4.2.12 Layouts

Once all necessary BFUs are defined, the next step is to put them in the layout. The

layout is just the 6x6 grid that the BFUs eventually need to get placed in. Being a

higher-level construct like the BFU construct, a Layout contains a lot of configuration

information, is very much just a collection of other constructs, and has more higher-

level functionality like inheritance and the assistance of automatic compiler phases

that will be discussed in the next chapter.



Description Example Constant
Number 4 4
ID of constant C 1 < C < 6
Constant Value (constant 3) 3
ALU Value ((Mulaa)) 2
Memory Value ((cfgread enable)) 1

Table 4.26: Ways to define a Constant Number for Layout Coordinates

Also like the high-level BFU construct, Layouts have no keyword, and the basic

structure is just Piece*, a list of Piece arguments. This means that a layout, like a

BFU, can be defined with just an empty list. Unlike a BFU, there is no convention to

leave a blank space in such a definition, since there is no reason other than defining

an empty layout to use an empty list.

In the case of the Layout structure, a Piece represents something that is supposed

to be on the chip in the layout; for now, either a BFU or another layout. And since

it is going to be somewhere in the layout, it needs to be put in a specific location.

Thus the structure for the Piece argument is (Name Value Value) where Name is

the string that names a previously defined BFU or Layout, and each Value argument

is almost any means of defining a constant. (See table 4.26 which is the same as table

4.7 and table 4.20 except that here all of the numbers must resolve to values between

1 and 6, inclusive.) The first Value corresponds to the X-coordinate on the grid, and

the second Value to the Y-coordinate on the grid. Thus the BFU's location is said to

be (X,Y) in (Column,Row) notation.

It is not recommended to use ALU values or Memory Values to specify coordinates

in a layout. Also note that there will become more options for how to specify the

Piece argument to a layout once we introduce the Automatic Placement phase. The

coordinates will be allowed to be specified as DC, or omitted. There will also become

more possibilities after the Automatic Grouping Phase is introduced, with the option

to include other constructs besides BFUs and Layouts in a Layout. For now, all three

arguments to the structure for each Piece are mandatory, and only BFUs or Layouts

can be named by the first of the three.



Parse Error:
You try to put a shifted layout into a layout but: One of the bfus

that you're shifting over is not dc and shifts to a location off of
the layout (x or y coord greater than six).
Last Line Read: 3

Figure 4-9: Sample Error Message for over-shifting a non-DC BFU

If a BFU is named, it is fairly obvious what the consequences will be: That BFU

will be placed in the specified slot of the grid on the chip with this layout. It is less

clear what placing a Layout on another Layout at slot (x, y) means, but it is not

difficult to understand. It merely means that the old Layout will be translated so

that its lower left BFU slot ((1,1) is the "least" slot) is over the new slot (x, y) and

then all BFUs that have been placed in the old Layout will get placed at the location

they are over, in the new layout. Essentially, the compiler translates all BFUs in the

old layout by (x - 1, y - 1) and then places them in the new Layout at those new

coordinates.

This does in fact mean that many BFUs in the old Layout will be translated to

a point on the infinite grid that is not in the 6x6 grid on the new Layout. It is

required that any such BFUs that "fall over the edge of the world" are completely

unspecified (equivalent to the default, or to having been defined to be DC). If one of

these BFUs is partly specified, then the compiler will halt and output a compile-time

error message such as the one in figure 4-9.

Note that this error message will come about even if the BFU being shifted off

of the layout has been given a name and not specified at all besides that. This is

because the name might be later used to route signals from that location (and this

is in fact the only good reason to create such a BFU in the first place) in which case

the BFU must be on the layout.

The capability of putting a layout into another layout can be used for several

reasons. First, it could be used to get a stock-design that's been used before and

stick it onto the chip that is currently being defined, perhaps as a module. Second,

the programmer might be tiling some design onto the chip and this way he only needs



(def-bfu b
(ports
(alu ((passa)) ((passa)))
(aport 4 4)))

(def-layout row (b 1 1) (b 2 1) (b 3 1) (b 4 1) (b 5 1) (b 6 1))
(def-layout all (row 1 1) (row 1 2) (row 1 3) (row 1 4) (row 1 5) (row 1 6))

Figure 4-10: One BFU replicated 36 times by placing Layouts in Layouts

Type Layout
Constructor def-layout
Keyword None
Default DC
Inheritance Yes

Table 4.27: Quick Summary of Layouts

to define it once and can then place the entire design several times.

For example, consider figure 4-10 in which a single stock BFU has been placed at

every single location on the chip. (Every location is broadcasting the number 4 every

round.) Instead of 36 Pieces in the Layout, only 12 were required.

The Layout construct is summarized in table 4.27. The only potentially confusing

entry in this table is the one that lists Layouts as having inheritance. It does this

because an inheritance scheme is present for Layouts that is as robust as that for BFUs

by including a parent Layout in a child Layout at location (1,1). It is important to

remember that this means that placing two BFUs in the same spot of a Layout grid

will not simply replace the first one with the second one, but rather override the first

one with the second one. If having the two BFUs end up in the same location was a

mistake on the part of the programmer, this can lead to strange behavior that might

be difficult to diagnose correctly, however the grammar is kept this way because it

provides the potential for this very robust form of inheritance.



4.2.13 Connects

The only information about the interior of a chip that is not configured by a Layout

is the decisions of which BFUs will drive which Level-3 lines. Although this greatly

affects the interior of the chip, the arbitration is actually left to the VBFUs on the

perimeter of the chip, and thus the configuration of a Connect is really perimeter

configuration. That is why Connects are separate constructs from Layouts.

However, the programmer should be able to mostly stick with the abstraction that

a Connect is part of the interior of the chip. That is, a Connect merely specifies for

each Level-3 line, who gets to drive that line, and this is usually an interior-of-the-chip

problem. It becomes connected to the perimeter when the answer is that the line will

get driven by whoever the IOport says should be driving, or by the IOport itself.

The basic structure of a Connect construct is similar to that of BFUs and Layouts:

There is no keyword, and the basic structure is Pair* where each of the arguments

in the list, Pair, has the structure (Line Value). The Line argument is merely a

string that specifies one of the 48 Level-3 lines that a chip has. The Value argument

can be omitted, can be DC, or can be a constant defined with either a Constant

Value structure or a Static Source structure. Basically, it is intended that these

Value arguments should all be defined with the Constant Value Level-3 structures if

the line is always to be driven by the same source, and to be defined with the Static

Source Level-3 structures if the line is to be driven by different BFUs based on the

input of a certain line.

The possible Line arguments are all four-letter long strings. The first letter deter-

mines whether the line is over a Row (R, horizontal) or Column (C, vertical). The

second character is a digit, one through six, that specifies which row (R) or column

(C) the Level-3 line runs over. The third character is an underscore (_) to separate

the row or column determination from the rank within the row or column. The final

character is a digit from one through four, since each row and column on a MATRIX

chip has 4 level-3 lines running over it. Thus, some allowed Line arguments would be

R1_3, R3_1, R5_4, C6_1, and C2_2.

The structures for the Value argument were discussed in the earlier part of this



(def-connect c
(rl_1 (constant bful))
(r2_2 (constant bfu2))
(cl_3 (constant bful))
(c1_4 (constant bfu2))
(c2_1 (static none))
(c2_2 (constant none))

Figure 4-11: A typical Connect

Type Connect
Constructor def-connect
Keyword None
Default DC
Inheritance No

Table 4.28: Quick Summary of Connects

section that introduced constants, so we will not repeat that discussion here. But,

the most common Value arguments to a Connect are all Bfun for some n, 1 < n < 6.

These arguments represent saying that the Level-3 line will always be driven by the

same BFU in that row or column, in particular the BFU that is the nth one in the

row or column, counting from the lower end (south or down for columns, west or left

for rows). Some examples of these typical Connect arguments are given in figure 4-11.

Note that while the final two definition Pairs in the figure should have the same

operational effect on their lines, they ask for different configuration bits to be written

into the MATRIX chip. Thus, the Connect C will actually have different values

associated with its lines c2_1 and c2_2 (28 and 15 respectively).

Connects are summarized in table 4.28. Be sure to remember that when defining

a piece of a Connect with a static structure, it must fit the definition of the static

structure that is used for constants, not the one used for ports. In other words, it

can not refer to another BFU by name.



4.2.14 IOports

With a Layout and a Connect a MATRIX chip's internal state is completely configured

and specified. All that remains to be defined is how the chip will input and output

data from and to the off-chip world. This takes place through 12 IOports that are on

the perimeter of the chip, and the configuration information for each one can be set

in MDL+ using its own IOport construct.

At each IOport, there is an 8 bit data bus which can either input or output data,

and two I/O control bits which can each either input or output data. Thus, each

of the three (one 8-bit bus, two bits) needs an Output Enable to tell it whether to

be inputting or outputting. If in output mode, these same three things also need to

know which line to take the output from, which it knows based on a Selection word.

Remember that when in output mode, the outputted data will come back and appear

on the input lines, after two cycles of delay (because the input lines are always reading

the perimeter busses.)

The three words of output enables, and the three words of selection configuration,

together form the six words of configuration possible at each IOport. With an IOport

construct, any of these configuration words can be included or omitted. The IOport

construct has no keyword, and has the simple basic structure of Pair* where each

element of the list is an argument Pair whose structure is either (SelField SelVal)

or (EnField EnVal). The first option should be used for all Selection words being

configured, and the second for any Enable words being configured.

We will discuss selection words first. The SelField argument can take on any

of three strings as its value, to represent the three words it might be configuring:

datasel (to configure the source of the output onto the 8-bit data bus), bit1sel (to

configure the source of the bit that can be outputted at the first bit, or bit 0), and

bit2sel (to configure the source of the bit that can be outputted at the second bit,

or bit 1).

The SelVal argument can take on the same values as an argument to a constant

definition's (sel Arg) structure. That is, referring back to the Select Values part of

the part of this section to discuss Constants, SelVal can be either a NUM or a Words
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Table 4.29: Quick Summary of IOports

argument. The SelVal argument is the sole reason for Select Values to exist, and

one legal SelVal is, of course, the name of a constant that was defined to be a Select

Value.

Next, we discuss output enables and their (EnField EnVal) structure. The

EnField argument can take on any of three strings as its value, to represent the

three words it might be configuring: dataen (to configure the 8-bit data bus' output

enable), bitlen (to configure the first bit output enable, or that for bit 0), and bit2en

(to configure the second bit output enable, or that for bit 1).

The EnVal argument can take on the same values as an argument to a constant

definition's (en Arg) structure. That is, referring back to the Enable Values part of

the part of this section to discuss Constants, EnVal can be either a NUM or a Words

argument. The EnVal argument is the sole reason for Enable Values to exist, and one

legal EnVal is, of course, the name of a constant that was defined to be an Enable

Value.

A summary of the IOport construct is in table 4.29. The toughest thing about

IOports when programming in MDL+ is integrating them with the interior of the

chip, and remembering that sometimes changes to the interior of the chip will then

require modification of the IOports in the perimeter.

4.2.15 Chips

At this point, all configuration bits on a MATRIX chip can be set, but they all still

need to be brought together and identified as a single chip. That is the job of the

Chip construct - to unify a Layout, a. Connect, and 12 IOports. into one chip.
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Type IOport
Constructor def-ioport
Keyword None
Default DC
Inheritance No



Similar to a BFU or a Layout, a Chip is a high-level construct that basically just

groups functionality from the lower level constructs. As such, it contains a great deal

of configuration information, and has a similar structure. A Chip construct has no

keyword, can be defined with an empty basic structure, has full inheritance capability,

and has a basic structure that is basically just a list of pieces. The basic structure

is slightly more complicated than some of the previous ones: 5 Piece* where each of

the list's elements is an argument Piece which can be passed either just a string that

is the name of a piece of a chip or the structure (Name Value) which represents the

placement of an IOport.

When using Piece as just a name it must be a name that is defined in the current

environment to be a Layout, a Connect, or a Chip. Since this argument can be a

parent Chip, we have inheritance. Since a parent chip can come anywhere in the list,

we have what we have been referring to as full inheritance. Also relevant is that we

can override Layouts or Connects on their own or with Chips.

The only problem with just using the string option for the Piece argument is that

it leaves no way to specify IOports. To do that, use the (Name Value) structure.

Name is a two-character string where the first character is the letter representing the

side of the chip that the IOport should be on (N,W,E,S), and the second character

is the digit describing which IOport it is on that side, starting from the "lesser" side

of that side of the chip (0,1,2). A picture of a MATRIX chip, with all 12 IOports

pictured and labeled by name, should make figuring out the name of an IOport much

easier, and is provided in figure 4-12.

The Value argument needs to specify the configuration of the port which the Name

argument has just placed. Thus, the Value argument is just a string which is the name

of an already defined IOport construct.

Between the two means of defining the Piece argument, a Chip construct can

specify all of the configuration for the interior of a MATRIX chip (Layout, Connect)

as well as all of the configuration for that chip's communication with the off-chip

world (IOport) and can even inherit from previous such definitions (Chip).

5The reason being that there was no Chip-IOports construct.
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Type Chip
Constructor def-chip
Keyword None
Default DC
Inheritance Yes

Table 4.30: Quick Summary of Chips

However, recall that the Chip basic structure only takes identifiers of previously

defined pieces of chips, and not those definitions themselves. This keeps MDL+ source

code much neater and more abstract, but can be easily forgotten. A summary of the

Chip construct is available in table 4.30. The default is listed as DC because a Chip

defined with an empty basic structure (empty list) is the same as one defined to be

DC.

4.2.16 Summary

As a summary of the various construct types that MDL+ offers, and an easy reference

for programming in MDL+, much of the information that has been given in this

section for each construct is summarized in table 4.31. It contains the constructors

and keywords for all MDL+ types, what each constructs' default value is for those

which have default values, and whether they can inherit from other instances of the

same type.

This section should be sufficient preparation for programming in MDL+. The

remainder of this chapter will deal with the Automatic Driving Phase of the compiler

and then an overview of the error messages and output modes of the compiler. Both

of these remaining sections should serve to further facilitate understanding about the

MDL+ compiler and make programming using the MDL+ tools much easier, but this

section has already concluded the vast majority of the MDL+ language specification

and explanation.



Type Constructor Keyword Default Inheritance

Constant def-constant Several None No
Bitvec def-bitvec bitvec DC No
BFU Network def-bfu-network network DC No
BFU Config def-bfu-config config DC No
BFU Control def-bfu-control control DC No
BFU Power def-bfu-power power DC No
Port def-port port DC No
BFU Ports def-bfu-ports ports DC No
Memory def-mem cells DC No
BFU def-bfu None DC Yes
Layout def-layout None DC Yes
Connect def-connect None DC No
IOport def-ioport None DC No
Chip def-chip None DC Yes

Table 4.31: MDL+ Constructs

4.3 Automatic Driving Phase

The principal addition to the MDL+1.0 compiler that makes the MDL+1.1 compiler

is the automatic driving phase. All other improvements in the MDL+ grammar over

the MDL grammar have been rolled into the description of the MDL+1.0 grammar in

the previous section. While adding the driver to the compiler does add functionality

useful to the programmer and thus does change the look of MDL+ programs, it does

not actually change the grammar of MDL+ at all. Thus, while the MDL+1.1 compiler

is upgraded from the MDL+1.0 version, the two languages are exactly the same.

Since there is no need to explain the changes in language syntax, this section

quickly describes why the driver is needed, what the driver does, and finally how

driving should now be specified in MDL+.

4.3.1 Motivation for Driving

MDL+ has always provided the ability to enable or disable driving any line, which in

itself was an improvement over MDL. In MDL, level-3 lines could be specified much

as they can be in MDL+, but level-i and level-2 lines could only be explicitly turned



off. The MDL+ power section of BFU definition (or BFU Power construct) was a

Power-Disable section, and all level-1 and level-2 lines were implicitly defaulted to

being turned on.

When writing MDL code to be run on a simulation this was fine, since the pro-

grammer could omit the power-disable section (this was one of the few section that

an MDL programmer had the option to omit), and be sure that the lines he needed

were in fact being driven. The problem would arise when moving to running MDL-

generated code on an actual fabricated piece of silicon, which has never happened.

A MATRIX chip has so much interconnect on it, that actually driving all of the lines

on the chip at once would cause it to overheat and be destroyed. Thus, with MDL

the programmer would need to go through and specify all of the level-1, level-2, and

level-3 lines that he was not using to be not driven (or at least most of them). To

address this problem there was the assumption that the MDL compiler would be al-

tered at a point in time before the fabricated chips were received to default all lines

to not being driven. 6 This would of course solve the problem of accidentally blowing

out the chip, but not save MDL programmers from having to explicitly specify power

information for each BFU.

The MDL+ driver, on the other hand, should solve all of these problems. A

similar concept to it was suggested at one point as an extension to MDL, but was

never implemented. The basic idea is that the driver figures out which lines (level-l,

level-2, and level-3) are read and which lines are not. It then drives the lines that are

read and disables the driving of the lines that are not.

4.3.2 What the Driver Does

In MDL+ source code terms, keeping a line from being driven means specifying it

disabled in a BFU Power construct for the appropriate BFU for level-i or level-2

lines, and specifying the line to be driven by none in a Connect construct for level-3

lines. Driving a line means specifying it enabled in a BFU Power construct of the

6 The people doing the circuit design and layout for MATRIX were quite adamant about this being
the only acceptable situation.



appropriate BFU for level-i or level-2 lines, and specifying someone to drive the line

via a constant value or static source structure for level-3 lines.

Because the programmer might wish to override the wishes of the compiler, and

to support the option of human-involvement at all levels of multi-level programming,

the driver does not ever actually force a line to be driven or disabled. Instead, it

tries to drive lines or tries to disable them. It does this by, in MDL+ source code

terms again, using inheritance to cause the programmers specifications for each line

to override its decisions on each line. This way, if the programmer forces a line to

be driven or disabled, he will still get his way, but in the event that the programmer

does not care then the driver will do the most intelligent thing it can think of.

The only question remaining is how the driver decides which lines are being read

and thus requiring its attempt to have them be driven. This is not a simple question,

and there is no easy way for the driver to determine exactly which lines are going to

be read.

For any level-i or level-2 line, if there is some BFU port that reads that line in

static source mode then it is considered read and thus the driver attempts to have

the source of the line drive it. One can imagine a driver that is more conservative

than this and checks to make sure that the data is used. For example, imagine a BFU

that has its ALU port in constant value mode with a value that does not write the

memory (memory write enable is disabled). Furthermore, this BFU does not write

any level-3 lines, and no other BFUs read from the level-1 or level-2 lines that come

from this BFU. Clearly, the output of this BFU does not matter, and thus even if its

A port is in static source mode from one of its neighbors, an intelligent driver might

not require that line to be driven.

And there are many more examples, such as a BFU with its memory always set in

single port mode, the memory data mux coming from the local feedback line, and the

ALU port always a Pass A operation. Clearly, the B port of the BFU can never have

any effect. So what if the B port is in a mode where it reads one or more network

wires? Again this reading can be ignored, by a very advanced driver. It was deemed

that the MDL+ driver need not be this advanced, but it is important to understand



that these cases exist and not count on them being driven, since the driver might be

improved at some point. If an application wants a line to be driven, it should specify

that properly - in a BFU Power or Connect construct - and not merely add an

arbitrary read of the line.

In this first case, the driver was not made as conservative as possible because it

would require a vast amount of complexity in the algorithm, or else merely be checking

for a couple of cases which are very unlikely to happen anyway. Most importantly, the

driver already turns off enough lines that we do not believe any reasonable application

will overheat the chip beyond its tolerances.

The second way in which the driver could be far more intelligent is when it comes

to ports of BFUs that are in dynamic source mode. This means that depending on

the values of the associated floating ports, the dynamically sourced port might be

reading any of the 30 input lines that it can choose from. The safest way to handle

this, and the way in which the MDL+ driver does in fact handle it, is to attempt to

drive these 30 lines. (Actually, the local line is always driven, and the same with the

control byte, so it is really trying to drive 28 lines.)

This is the place in which the programmer can assist the driver the most, by

explicitly disabling the never-used lines that flow into a dynamically-sourced port.

The reason this job falls on the programmer is that it is a very hard, and sometimes

impossible, job for the compiler to do. To figure out which of the lines it could

disable, the compiler would need to determine what values could be flowing into

the appropriate floating port. Fortunately, floating ports can not themselves be in

dynamic source mode, and since it would not make any sense to put a floating port

that was arbitrating a dynamic port into constant value mode (because you could

just put the other port into static value mode with the same value and free up the

floating port), thus we can assume that the floating port is in static source mode.

For simplicity, and without loss of generality, assume that it is the A port that

is in dynamic source mode, and thus the FP1 port whose static source line we are

analyzing. The driver could reasonably check to make sure that the FPl port is in

static source mode and then check its value and thus find the line that is determining



which line will source the A port. However, determining all of the possible values on

this line might be extremely complicated. In the general case, this problem is provably

harder than solving the halting problem7 , and thus the driver does not attempt to

solve it.

Of course there are problems that are theoretically very difficult but in practice the

common case is never one of the more difficult ones, (e.g. there are many programs

for which it is easy to determine if they will halt) but we do not believe this to be

the case with the value-on-a-line problem. In an intuitive sense, if it were easy to

figure out exactly which values were going to be on the line, then it would not be

as useful a line for determining the source of our A port. There will be some cases

where dynamic source mode is being used to toggle between two lines, but we feel that

more of the time it will be used to toggle between many lines, perhaps determined

by some Instruction-Store memory. In a practical sense, figuring out all of the values

a level-1 line can take on means figuring out all of the values that some BFU can

calculate with its ALU or pass out of its memory. Figuring out the values on a level-2

line includes these possibilities but also includes any values that the BFU might have

re-transmitted from its input (these are included even in situations where the A, B,

Mem, and ALU ports are simple constant values, if any of the other four ports are

not). Finally, the line might be a level-3 line and this can be the most difficult of all,

because even figuring out who drove the unknown values on the level-3 line might

require figuring out all of the possible values that are being passed from the static

source that the control of that line was specified as. And all of this work would be

required to rediscover something that the programmer already thought he knew when

writing the code.

Now that we have discussed how the driver determines whether level-i and level-2

lines are being read, we move on to level-3 lines. The driver takes the simple way out

here as well. Basically, the MDL+ driver looks for each line at whether it has been

specified that someone gets to drive it. If so, then the driver assumes the line is read

7Consider a machine that simulates a MATRIX chip, observing this wire. If it ever hits a specific
value, the machine halts. Otherwise, it keeps running the simulation forever.



(the logic is that there would be no other reason for the programmer to specify who

is driving it.) If not, then the driver assumes that the line is not read (the logic is

that if it does not matter who is driving it then it can not matter whether it is being

driven.) This is a sufficient analysis, and saves the chip a large amount of power

again.

Of course, the driver could be far more intelligent in this case as well. Instead of

merely looking at whether a level-3 line is driven, it could also look at whether the

line is read by any BFUs and whether any BFUs thought that they were driving the

level-3 line (specified which network or floating port would drive it). In this case the

driver could observe that a given level-3 line is read, and is only being attempted to

be driven by a single BFU, and it could then assign that BFU to drive the line in

the Connect construct. For now, this seems like too much initiative being taken on

the part of the compiler, and like a response to a situation that should not happen,

and thus it has not been implemented. The most we have considered implementing

is an algorithm that would consider these cases, and issue a warning at compile-time

if something did not make sense. For example, if a level-3 line was read but no one

was allowed to drive it, a warning would be issued, possibly halting compilation or

possibly just alerting the user to the chance of an error in his code.

The final concern about the driver is that we set out when writing the MDL+

compiler to have it read and generate manageable and readable code, in part by

minimizing code-size through a process of eliminating the unnecessary configuration

data. The driver seems to counter this effort by putting in a piece of configuration

for each and every line on the chip. After the driver runs, the code is overrun by long

BFU Power specifications and long Connects. The verilog output can become mostly

power information, hiding away the programmer-relevant lines of configuration writes.

About these concerns we make two notes: First, if the programmer wishes MDL+

code to be outputted, then he always has the option of getting it either with or without

the driver's changes, essentially by asking for the input in MDL+1.0 or MDL+1.1.

Second, if the code is to be run on an actual fabricated chip then the driver must

turn off all of the unused lines regardless of any alternative wishes on our part, but if
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the code is to be run only on a simulation then all that is required is to turn on the

lines that are read, and it becomes irrelevant whether the other lines are turned on

or off.

This first note leads to the "-0" and "-1" options to the compiler, so that the

user can choose his MDL+ source-code output with or without the extra driving

information. The second note leads to the "-F" and "-S" options to the MDL+

compiler, which are both options to the Automatic Driving Phase. "-F" stands for

Fabricated chip, and tells the driver to do as much as it can, including turning off all

unused lines. "-S" stands for Simulation, and tells the driver to turn on all used lines

so that the simulation will work, but not to bother with turning off any other lines,

leaving the code size minimized and quite manageable to read. For more information

about these and all options to the MDL+ compiler, see the end of this chapter when

the interfaces of the compiler are discussed.

4.3.3 Programming in MDL+1.1

After understanding how the driving phase works, all that is left for the MDL+

programmer is to learn how to use it most effectively. These tips should seem fairly

obvious after the last section.

First there is the way in which the programmer can be most assisted by the driver:

That is, in not turning off lines. Every line that the programmer does not care about

in a Connect will be turned off, so there is no need for him to explicitly turn any

level-3 line off. The power will still be conserved, and his code will only state the

relevant information and thus be much more readable. Even the verilog output, given

compilation with the "-S" option, will be fairly readable and easy to debug.

When it comes to level-1 and level-2 lines, it is always safest to enable any lines

that are to be read, but if they are read with a static source port then they can be

omitted from the specification. As mentioned above, some future implementation of

the driver might disable driving of the line, but only if the programmer had already

messed up by making that port unable to affect any state of the chip.

Of course, interaction between the programmer and the compiler should include
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help in both directions. The place where the programmer can best help out the

compiler is with ports in dynamic source mode. If it is necessary to have a port in

dynamic source mode, and the programmer knows that the choice is really between

two of the input lines, and not all 30, then he should explicitly disable driving of

the rest of those lines. It will save the chip a lot of power, and is a case where it is

actually much easier for the programmer to do the specification then for the compiler

to deduce it, as explained above.

4.4 Error Reporting and Interface Details

Now that we have covered all of the syntax and semantics of basic MDL+ (MDL+1.1),

how the compiler will act on the code, and how the programmer can best use the

various constructs to program, all that remains to be said in order to assist a person in

actually using the MDL+ compiler to program for MATRIX is specifying its interface

and methods of error reporting. After this section, which ends this chapter, the

reader should be able to program in MDL+1.1. The next chapter will then describe

the various intelligent phases of the compiler, bringing the reader to competency on

MDL+1.4 and thus releasing all of the power of MDL+.

A good explanation of all of the command line arguments to MDL+ is given in

the MDL+ man pages (Appendix B), thus we will merely refer to that appendix here

for the interface details, and only explain the error reporting available in MDL+.

The error reporting available from MDL+ is far superior to what was possible with

MDL, and most of it is done at the point of parsing the input. Error messages from the

intelligent phases of the compiler (which are discussed in the next chapter), are mostly

warnings that it was not able to accomplish the job it was assigned. For example, if

the compiler is not able to route all of the wires on the chip (possibly because it was

impossible to do so) then it will do as much as it can, and print a warning message

for the user that it was unable to complete the job. The programmer should then

look at the output (perhaps run it again with the "-0" or "-1" option to see what it

looks like after routing), and change something. He might change the placement (by
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running it with the "-2" option, changing the placement of a couple BFUs, and then

re-running the code), or he might actually route in a way too complicated for the

router to have figured it out (by running it with the "-1" option, and then routing

the un-routed wires).

The parsing phase of the compiler can output many more errors, and as opposed

to the intelligent-phase errors, these errors halt the compiler and do not output any

data. All errors from the parsing phase of the compiler will be labeled as "Parse

Error:", with a description of the particular error, and the line number that the

compiler was parsing when it found the error. In most cases, this is the line that the

error occurs on, but it is possible that an error might occur at an earlier point in the

file, say at the definition of some variable, but not be noticed until later in the file,

say when the variable is used. Through a large amount of testing of MDL+ and use

of MDL+ no error has been on a line other than the one the compiler indicated, but

we still mention the possibility since it did happen with MDL.

The most basic kind of parse error is a syntax error. This means that the source

code file does not contain legal MDL+ source code matching the descriptions in this

chapter and the grammar in appendix E. The error is not a semantic one, but merely

a case where there is no possible way to understand it as a legal MDL+ statement-list.

To deal with a syntax error, the programmer should start by looking at the flagged

line of the source file, as the error will usually be obvious at this point. If it is not

obvious, he should look at the point in this file where the appropriate construct is

explained, and at the grammar in the appendix. If many tokens are on the flagged

line, he can add arbitrary line breaks at all points where white space is allowed, and

thus get a more specific error location from the compiler. Unfortunately, for syntax

errors the compiler will never be more specific than "syntax error."

Semantic errors, on the other hand, will be accompanied by extremely verbose

error messages. Since all of these error messages should sufficiently represent them-

selves, and in many cases offer assistance for how to alleviate the conditions that

caused them, we will not go into any further details here.

This completes this chapter and this tutorial for MDL+1.1. The next chapter will
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continue by discussing the intelligent automatic phases of the MDL+ compiler.
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Chapter 5

Intelligent Phases of the MDL+

Compiler

The MDL+ compiler has several intelligent phases of compilation which were initially

explained back in chapter 2. This chapter will delve into more detail about each of

them: The router which determines which wires two BFUs will use to communicate

with each other, the placer which decides where in a Layout a BFU will be placed, and

the grouper which decides how to group various definitions of high-level functionality

into BFUs.

To elucidate the functionality of each phase, as well as its effect on the MDL+

code, we will follow the definition of a simple 8-bit microprocessor in MATRIX. First

we will introduce it as it would look in MDL and basic MDL+1.1, a language which

has already been specified in chapter 4. Then, as each amount of functionality is

added to the compiler and thus the MDL+ language expanded to be able to make

use of that functionality, the 8-bit microprocessor's definition will be refined to take

advantage of these changes. Seeing the example evolve one step at a time should make

the job of each phase clear, and seeing the code overall migrate from the unreadable

MDL to the reasonable MDL+1.4 should make the usefulness of this thesis apparent.

Since the MDL code itself is very long, it is not included in this chapter, but

rather in appendix D. While reading through it laboriously is not advised, skimming

it over will help to make this chapter more meaningful. In total, the MDL code is 245
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Figure 5-1: 8 Bit Microprocessor on MATRIX

lines long, and it compiles to a file that is 12,888 lines long (and thus 12,888 MATRIX

configuration writes).

The MDL+ code is much easier to understand. Recall that there are five basic

units in the most-basic MATRIX 8-bit processor, as shown in figure 5-1. At Layout

location (1,3) there is a program-counter (PC) which counts through the addresses of

all of the instructions. It gives this data to the three instruction store memories (I-

stores) and they in turn determine the instruction appropriate to the current cycle and

pass it on to the BFU that is acting as the arithmetic logic unit of this microprocessor

(ALU), which in turn outputs the results each cycle. The F I-store determines which

function the ALU will perform, and the A and B I-stores provide the data to be

operated on.

Even given the above specification of the microprocessor, there is still a lot left

to be determined, which will specify the nature of what it does. The A and B units

could be providing a list of constants, which the ALU then operates on, they could

be providing the locations of the BFUs where the ALU will then take data from

(maybe the output of some other assemblies on the MATRIX chip, possibly even

other microprocessor assemblies), or the A and B units could be providing addresses

while the ALU BFU is always using its memory and ALU to perform A +- A op B

operations each cycle. For simplicity, we will implement the first case, which is least

likely to occur on an actual chip. The last case, which is the most interesting and

106

D000D
00LIJEI

FZJLF



(def-bfu PC

(ports
(alu ((passa)) ((addO))) ;; default to the first ctx for C/R I
(Aport (const 0) (static local))

(Bport dc (const 1))

(control

(ReduceI Orx00000100)

(ReduceII (not local))

Figure 5-2: PC definition in MDL+1.1

useful for a stand-alone microprocessor assembly, is a simple analogue of this one.

We build up the definition of this microprocessor for MATRIX in MDL+1.1 one

piece at a time, starting with the PC. While each piece of the code is in an appropriate

figure here, the entire MDL+1.1 source code is in appendix D.

The PC BFU is fairly simple. It counts up through the legal instruction addresses,

and outputs the numbers as it counts. When it has reached the last legal address, it

starts counting from the beginning again. Loops like this are more likely to occur on

a MATRIX chip than completing counters, that perhaps stay at the final instruction

number when done. Either is implementable and so we choose to implement the more

useful one, as shown in figure 5-2.

This is a PC that counts through the five instructions (0 through 4) repeatedly.

It does not take input from any other source, instead starting to count out at 0, and

progressing through its range over and over again. The reason that it is guaranteed to

start at zero, is because of the MATRIX convention to start chips out by configuration

writing all zeros to the address that is all zeros for several cycles before running a

program in a programmable global context. This has been guaranteed to put zeros

on all of the wires, with no other effect, thus convincing the PC that it has just

outputted zero, and everyone else will get that zero as well.

Once the current cycle number is generated by the PC, the design requires three

instruction stores (A,B,F) to read in that cycle and output an appropriate instruction.
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(def-bfu I-Store
(ports
(mem ((port single) (alua memory)))
(alu ((passa)))

(control (ReduceII fail)) ;; keep in lcl ctx 0

Figure 5-3: I-store definition in MDL+1.1

Thus, our basic MDL+ design starts with an I-store BFU from which they will all

inherit their basic I-store properties. The motivation for a common parent for these

three BFUs is that they only differ in the actual memory cells that they posses, and

cell initialization is a very well abstracted module in the definition of BFUs. The

definition of the BFU I-store is provided in figure 5-3.

This definition is fairly straightforward. The only relevant pieces of configuration

for the memory are that it is single ported in case we should wish some I-store to

possess more than 128 usable memory addresses, and that the ALU takes its first input

from the memory, which will thus be valued MEM[A]. Note that the importance of

the omitted memory configuration bits differs: We do not care at all how the MUXs

leading into the ALU B port or memory data port act, but we do care that the

configuration read and write enables are both disabled. Here, we count on MDL+

to default all obvious defaults correctly (enable signals all default to disabled) when

they are a small piece of a constant.

Once the MEM[A] value is passed into the A port of the ALU it is also passed

out of the ALU since the operation for the ALU is PASSA. Finally, all of this would

have to be specified in both local contexts if not for the control configuration. Here,

the Compare/Reduce II stage is always set to fail, and thus the control bit will

always be 0. (The Or-plane was removed, thus the control bit always comes from the

Compare/Reduce II value.)

Once the I-store parent BFU is set it is fairly easy to define all three I-stores

required for this problem, as is done in figure 5-4. The F I-store has its contents
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(def-bfu F I-store
(ports
(Aport (static llnl)))

(cells ((addO)) ((and)) ((xor)) ((or)) ((addl invb)) ;; last is a SUB

(def-bfu A I-store
(ports
(Aport (static llnw)))
(cells 0 1 2 3 4

(def-bfu B I-store
(ports
(Aport (static 12_wl)))
(cells 5 4 3 2 1

Figure 5-4: Definitions of A, B, and F in MDL+1.l

entered as we would think of them at a high level (as ALU instructions), whereas

the A and B I-stores are entered as the constant numbers, while they are all stored

internally by MDL+ as constant numbers. Note the ease with which the definitions

can be read: "Define the BFU F to be an I-store, except that its A port comes from

the north and its memory cells get initialized to this."

The A, B, and F I-stores provide the entire 24-bit instruction needed by the ALU,

and thus, we are now ready to define the ALU BFU, as in figure 5-5. To confirm the

directions of the level-1 lines controlling the A, B, and ALU function ports, consult

with figure 5-1.

Now all five relevant BFUs have been completely defined, and thus all that is

left for the MDL+ code to do is to place them at the proper locations in a Layout

and put that layout information in a chip definition, as in figure 5-6. Once this is

done, the source code can be compiled with the MDL+ compiler and it will generate

appropriate output code for the chip which can then be loaded into either a verilog

simulation of a MATRIX chip, or a MATRIX chip itself.

Now that the MDL+1.1 version of the 8-bit microprocessor has been completely
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(def-bfu ALU

(network (12_d2 ni))
(ports

(Aport (static 11_ne))
(Bport (static 11_el))
(ALU (static 11_nl))
(Nlport (static ll11n2)) ;; to rebroadcast to B from PC

(control (ReduceII fail)) ;; keep in lcl ctx 0

Figure 5-5: Definition of ALU in MDL+1.1

(def-layout Micro8-layout
(PC 1 3)
(F 1 2)
(A 2 2)
(B 2 1)
(ALU 1 1)

(def-chip Micro8
Micro8-layout)

Figure 5-6: Definition of Layout in MDL+1.1
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defined, the later sections of this chapter will only discuss changes from it for the

MDL+1.2, MDL+1.3, and MDL+1.4 versions. All of those versions of the code are

available in their entirety in appendix D.

5.1 The MDL+ Router

The first of the MDL+ intelligent automatic phases is the automatic routing phase.

In this phase, MATRIX wires which have been specified as communicating information

from some named BFU A to some other BFU B, will be re-configured into low-level

MATRIX configuration information. For example, if A is just to the north of B then

the BFU B will be written expecting this information from the 11.nl line instead of

from the BFU A.

5.1.1 Syntax

The syntax added to the MDL+1.2 language to enable it to use the power of the

router is very simple and has in fact already been introduced in chapter 4: When

setting a port of a BFU to a static source mode value, it can be set to a static source

that is the name of a BFU in addition to any other kind of static source. This is true

when defining a port as a part of a BFU definition or even just as part of a BFU

Ports definition or a Port definition.

The relevant structure is the (static Name) structure, with the same keyword

static that is used to set port values to other more basic kinds of static source mode

values. When using this structure, the Name argument must be a string that names

a BFU in the current environment. This means that that name need not refer to a

BFU at all points in the file, but it must refer to a BFU at the point of the use of

this structure. Thus, if the desired effect is to cause a static source mode of a yet to

be defined BFU, then an empty BFU definition of the source BFU can be used.

For example, assume again that BFU B is to have one of its ports set to static

source mode with that source being BFU A, but in this case BFU A has not been

defined yet. This situation is allowed if BFU A has been declared earlier, such as:
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(def-bfu A)

Of course, the compiler merely sees this as a definition of A to be the Don't Care

BFU, which will be replaced in the environment at the time of the actual declaration

of A. But, to the programmer this can be seen as a type-declaration. It is most

important when doing things like this in an MDL+ source file to remember that the

version of A that will source this line is the current definition of A in the environment

in the same chip as B once that chip is completely defined at the end of the file.

If there is only one definition of a chip in the file, and it has only one copy of A in

it, then this situation is very simple. If there are no BFUs named A in the chip with

B, or there is more than one BFU with that name, then the compiler will complain.

In some sense, this can be seen as a dynamically scoped variable, whose value is found

in the environment at the time of passing arguments to the def-chip structure.

5.1.2 Semantics

When used properly, the semantics of this new static source structure are fairly simple:

At the time of chip-definition (actually the slightly later routing phase) the reference

in the static source to another BFU is traced to that unique BFU in the chip's layout,

and a reference to its location relative to the destination BFU is put in place of the

reference to the name. Thus, the static source structure might be acting as (static

11_ni) or (static 12_w2).

The only exception is that this is the behavior when the compiler can figure out

how to route the wire. If the compiler can not figure out how to route the wire, it

will warn the user once per routing failure with the message:

Warning: routing not good enough yet...

If any wires could not be routed, the user must have the compiler output MDL+1.1

code (with "mdl -1") which will include one or more un-routed wires, then explicitly

route those wires and re-run MDL+ on the new code (effectively using "mdl -D").

The other alternative is to change the highest-level source code so that the MDL+
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router can handle routing all of the wires. One of these alternatives must be chosen,

because the driver and code-generator do not know how to handle un-routed wires

(as it makes no sense at that level) and will thus halt without completing. This is as

much a safeguard for the programmer as a result of the lack of other options since the

programmer might accidentally use code generated without all of the wires routed,

and it would probably cause strange errors, in effect "not being all there."

Finally, there is no guarantee that the MDL+ router will not do more complicated

things, but it is guaranteed to do any simple one-hop routing. In fact, it is guaranteed

to use more-local resources before less-local resources. If a level-i line can be used

to route a wire, it is used. If not, and a level-2 line can be used, it is used. If not,

but a level-3 wire could be used and is available then the source BFU is set to drive

a level-3 line which the destination BFU is then set to receive in static source mode.

In this final case, being available means not only that nothing is driving the level-3

line, but also that the source BFU either has a network or floating port free to drive

its local value onto that level-3 line, or is already passing its local output into one of

those network-capable ports. Alternatively, the compiler could use a level-3 line that

the source BFU is already driving its local output onto and the destination BFU can

receive.

If none of these one-hop paths are available to route the wire on, more than one

wire is necessary for the journey, and at least one BFU must be used to rebroadcast

the signal in the middle of this journey. In this case, the MDL+ router might make

use of many other wires and many other BFUs, or it might fail to route the signal,

with the error behavior described above.

These requirements that we have set up for the router, of always using the best

possible wire as long as they're available up until a certain point, leads us to using

a simple greedy algorithm for its implementation. The actual algorithm starts by

using level-1 lines and then level-2 lines whenever possible, since these resources are

not used up. It then uses level-3 lines to satisfy as many as possible of the remaining

wires that still need routing, starting with those which can be routed in one-hop.

Note that in theory all MATRIX chips are probably routable, when using time-
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switching. The BFUs can be slowed down enough that they will be able to bounce

and re-route many signals around until they can all get to the places where they were

meant to go, and all of these signals can be registered at their final destinations in the

appropriate mini-cycle when the data reaches the destination BFU. The reason that

this type of routing is not done by the MDL+ router, besides not being needed by most

designs we have looked at, is that time-switching was the one major component of the

MATRIX chip which was not tested prior to fabrication. In fact, the functionality of

time-switching on the MATRIX chip has never been verified in the verilog model, and

it is highly unlikely that it will work completely (if it works at all) on the hardware

once it returns from fabrication and a board is built to test it. With this in mind, we

did not implement time-switching as a means of routing.

5.1.3 8-Bit Microprocessor

Now that we have described the updates to the syntax of MDL+, and

of what the automatic router does, we are ready to update the code

microprocessor to make full use of the ability to route. This changes

ways.

The first change is that simple references to other locations become

the BFUs that are at those locations. Thus, in the definition of the

"ALU" the lines

the meaning

for the 8-bit

it in several

references to

BFU named

(Aport (static 11_ne))

(Bport (static 11_el))

(ALU (static 11_nl))

can be replaced by the lines:

(Aport (static A))

(Bport (static B))

(ALU (static F))

The second change is that the complex routing that we did to get the PC to the

B I-source by rebroadcasting it from the BFU named "ALU" can all be removed and
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replaced by a request to the router to find a way to route that. Really, this is all

that we wanted as programmers - for the value from the PC to somehow get to B.

We really did not care how the signal got there, and bouncing it through the BFU

"ALU" and then out through a level-2 line was just one possibility. Since we did not

have any particular attachment to that implementation and all we really cared about

was that the signal somehow got from the PC to the B I-store, the new code is much

more appropriate. The new code has the A port input on the "B" BFU configured

with the line:

(Aport (static PC))

The third change comes after noticing the results of the second one. Now, the

BFUs A, B, F all specify the A port to be configured as the above line of code, to

take their value from the PC. Since all of the I-stores have now agreed on where to

get their A port value from (not agreed in physical location but in abstract BFU

name), this information can be incorporated into the parent I-store BFU definition

instead of being in each one of the children definitions. In addition to making the

code shorter, this makes the code more natural since it is in fact a basic piece of an

instruction store that it gets its data from the PC, and not something that should be

specified with each I-store. The only difference between various instruction stores is

the instructions they output, which are stored in their memory cells, and now that is

all that is specified with the definition of each child instruction store.

The fully modified and updated MDL+1.2 code for the 8-bit MATRIX micropro-

cessor is available in appendix D.

5.1.4 Benefits

As a quick summary of the MDL+ automatic routing phase we review the benefits

of having a router in MDL+.

* Abstraction - The programmer is not generally concerned with the details

such as that one BFU is just to the left of another. He knows that a certain
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BFU should be receiving input from another BFU, and this is the level at which

he is now required to specify that information. As with abstraction in general,

this enables easier changes to the source code: For example, if one of the BFUs

moves then the programmer only needs to move it in the layout of the chip,

instead of the large job of changing all of the static sources of the wires it read

from and the ones that read input from it.

* Analysis - Using the automated tool we can get a better idea of what is useful

to routing. We can let MDL+ route several designs of ours, and see when it runs

into trouble. This can give us better insights into how we should be manually

placing BFUs. This is not the most informative automatic phase because what

it is doing is simpler than what other phases do.

* Readability - It is easier to read an MDL+ source file since it is no longer

necessary to look at the Layout to find out which BFU another is reading at

every encounter of a static source mode. It is also easier to write the code, be-

cause the programmer does not even need to know the details of where MATRIX

provides wires. Instead, he can just put the BFUs that need to communicate

with each other near each other, and if the compiler can not route it then he

can move them around a little. The easiest way to understand how it makes

the code shorter and more manageable to read and write is to compare it to the

MDL+1.1 code for the 8-bit microprocessor in appendix D.

5.2 The MDL+ Placer

The next of the MDL+ intelligent phases is the automatic placement phase. This

is the phase of the compiler that takes completely specified BFUs which it knows to

be on a chip, and puts them at particular locations of the layout in that chip. It

should be clear that this requires the additions that we made to the syntax for the

automatic routing phase, since without knowing where on the chip various BFUs are

to be located, it is impossible to actually route the BFUs together with specific wires.
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5.2.1 Syntax

There is only one small change to the syntax of MDL+1.2 to make MDL+1.3, and

that change occurs in the definition of Layout constructs. First of all, instead of

just being able to specify the location of a BFU in a layout as two arguments which

resolve to integer constants, they can also resolve to the Don't Care value, or even be

explicitly "DC". Instead of listing both coordinates as "DC" it is even permissible to

omit them both in which case two "DC" values are assumed.

Note that while it is permissible to make both row and column coordinates DC

or omit them both, specifying one as an integer constant and the other as DC is not

permitted, and will cause the compiler to halt with an informative error message.

Similarly, omitting both coordinates is allowed but omitting one of them is not.

5.2.2 Semantics

If both coordinates of a BFU are DC or if they are both omitted, then the compiler

assumes that the BFU is meant to be somewhere in the layout, but that the pro-

grammer does not wish to specify where. In this case, prior to running the automatic

routing phase, the automatic placement phase will place it at one of the locations

in the layout that is not taken by a partially-specified BFU which is forced to be in

exactly that position by the programmer.

In other words, the compiler treats any BFUs explicitly placed by the programmer

as stuck in those locations, and then finds places in the layout that are empty (or

occupied by completely unspecified (DC) BFUs) and puts the non-stuck BFUs in

them. In effect, it replaces the DCs or omitted arguments in the Layout construct's

structure with integers.

The placer is guaranteed to place all of the unplaced BFUs, but while it will try to

place them such that the router will be able to route the wires between them, it does

not guarantee that the router will be able to route the results. If the programmer is

unhappy with the automatic placement, he has several options:

* Using "mdl -2" to suggest placements, and then altering the placement in the
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code and re-compiling.

* Changing the original source code and re-compiling.

* Using "mdl -2" and then recompiling the input with "mdl -2Z" or the output

with "mdl -2UZ" until an acceptable placement is found, ending with recompil-

ing the acceptable MDL+1.2 output code.

* Using "mdl -2" and then recompiling the output with "mdl -2UY" until the

placement is acceptable, then recompiling the final output all the way.

* Using some combination of the above methods.

With all of the above in mind, the placer usually provides a good placement. Since

it does attempt to place things such that the router's preferred routing mechanisms

will be useful, placements are generally routable.

The actual algorithm controlling the placer is a simulated annealing algorithm,

[KGV83] thus it includes information about the placement problem but not a human-

designed way of solving the problem. This is designed to be the case in order to

maximize the chance of finding out useful insight from the placer about placement,

MATRIX, and CGRAs.

The details of the simulated annealing algorithm are as follows:

* Initial temperature is always 10.

* Maximum number of swaps is 30,000 plus 1,000 per wire that needs to be routed.

* The initial number of swaps performed at each temperature is 20 per BFU that

is not stuck to a particular location or is completely non specified plus 10 per

wire needing to be routed.

* The rate at which the temperature is changed after the maximum number of

swaps at a given temperature is 0.5 plus 0.002 per wire needing to be routed,

up to a maximum of 0.9.
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* The rate at which the number of swaps at each temperature is increased is

always 1.1.

* The function being minimized is a weighted sum of the wires needing to be

routed, including wires passing to, from, or to and from BFUs which are stuck

in place. Each wire routable with level-i resources is weighted as 0 points, each

wire routable with level-2 is weighted as 1 point, each wire routable with level-3

in one hop is weighted as 2 points, and each wire not routable in one hop is

weighted as 10 points. Since the router is very bad at dealing with multiple-hop

paths, and even if it can handle them they require a lot of retiming because

of the registers involved, the placer attempts to avoid such paths completely.

These are all equally weighted because any connection in MATRIX is routable

with two level-3 lines.

* If all of the wires needing routing are routable with level-i lines after the swaps

for a certain temperature have been completed, the algorithm halts immediately,

giving that answer. Otherwise, it continues until it has exceeded the maximum

number of swaps.

5.2.3 8-Bit Microprocessor

Now that we have described the updates to the syntax of MDL+, and the meaning

of what the automatic placer does, we are ready to update the code for the 8-bit

microprocessor to make full use of the ability to automatically place. Much simpler

than the changes because of the router, this merely removes all mention of exactly

where each BFU is to be placed in the layout definition, leaving the layout definition

in figure 5-7.

The fully modified and updated MDL+1.3 code for the 8-bit MATRIX micropro-

cessor is available in appendix D.
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(def-layout Micro8-layout
(PC)
(F)
(A)
(B)
(ALU)

Figure 5-7: Definition of Layout in MDL+1.3

5.2.4 Benefits

Though adding the placer does not make the MDL+ code much more readable or

much shorter, it does aid a lot by making the code more abstract, taking tough work

out of the hands of the human programmer, and aiding in our analysis.

This phase aids in giving the code extra potential for abstraction because the

programmer can now abstract away the unimportant details of exactly where BFUs

are placed, when these details are unimportant. If the programmer needs certain

BFUs to be placed in certain places, such as nearby an I/O port to input or output

data from the outside world to the chip, he can still specify their location. The

difference is that other BFUs that are placed near these BFUs just to be near them

are not specified anywhere in particular, while the reasons they were once placed

there, if any (such as to be near other BFUs who they share wires with), remain in

the specification.

The placer aids in removing tough work from being the programmer's responsi-

bility and aids in our analysis. It is able to aid in these areas because placing is such

a tough problem, and it removes this tough problem from the programmer's domain.

The placer also gives us insight into how to solve this problem for MATRIX by see-

ing it solved many times and gives us insight into how to design CGRAs such that

placement will be easy by varying the placer's assumptions about the routing phase

and seeing how that affects its behavior.

Finally, it helps us achieve insight into these various areas better because of the

algorithm's nature as a generic algorithm. If the algorithm was a specific implemen-
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tation of the way a human would place, then it would still be useful in making the

code more abstract and easier to modify and doing work so that the human program-

mer did not have to, but it would cease to be as useful a tool to study MATRIX and

CGRAs.

All of the ways in which the placer will help us learn more about manual placing,

MATRIX, and CGRAs are discussed in chapter 6.

5.3 The MDL+ Grouper

The last of the intelligent phases of the MDL+ compiler is the automatic grouping

phase. This is the phase that takes higher level notions such as ALUs, memories,

and registers, and groups their functionality into BFUs. Since these higher-level

constructs might include several pieces of several different BFUs, it would make no

sense to put them at specific places in the layout. Thus, while they can be included

in layouts, they can not be placed at specific locations in layouts, and they would

therefore make no sense if not for our placer. In this way, as the placer was only

possible because of the router, so the grouper is only possible because of the placer.

5.3.1 Syntax

The changes to the grammar of MDL+1.3 to give us MDL+1.4 are all in the form

of adding definition constructs and their appropriate structures in order to make

the high-level objects which can then be grouped. Currently there are three objects

available in MDL+:

* ALU Objects - The constructor is def-alu-obj and the basic structure is

Piece* where each argument Piece in the list is like the definition of a single

port in a BFU Ports definition, but only for the ALU port, A port, or B port.

The ALU port keyword is ALU, the A port keyword is Aport, and the B port

keyword is Bport. The difference between these definitions and the ones in a

BFU or BFU ports is that here they can only define at most one local context,

not two.
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* Memory Objects - The constructor is def-mem-obj and the basic structure

is From (cells Piece*) where From is an optional argument that is of the

form of a single local context argument to a BFU Ports or Port, and the rest

is an optional argument that looks just like the memory definition in a BFU

definition.

* Registers - The constructor is def-reg-obj and the basic structure is Name

where the Name argument is just a string that is the name of a BFU or an

object (ALU object, Memory Object, or another register).

Registers have an extremely simple syntax, and the other types of objects have

examples given as part of the new version of the MDL+ code for the 8-bit micropro-

cessor.

5.3.2 Semantics

Each of the existing MDL+ objects describes a subset of a BFU. An ALU object is

just the ALU of a BFU, taking its two inputs and performing certain operations on

them. A memory object is just the memory unit of a BFU, with its first argument

specifying where the address it should be reading out comes from, and the cells

argument specifying the initial configuration of the memory. Since memory objects

implement ROMs, this is the only configuration of the memory. The memory might

be implemented on actual BFUs as a single-ported memory, or half of a double-ported

memory depending on how much it is used and other considerations by the grouper.

A register object serves the sole purpose of adding a one-cycle delay to some signal.

In particular it delays the signal of the unit that it specifies with its argument.

The current implementation of the grouper possesses all of its intelligence in the

ways in which it abstracts up from the BFU level to the object level, and does not

do much grouping. ALU objects get their own BFU, and memory objects get their

own BFU, partly because of difficulties with MATRIX itself in combining these objects.

Then, registers are added to any ALU or memory object BFUs, as network or floating

ports that were previously unspecified but now drive level-2 or level-3 lines. The other
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option is to add the register as an entirely new BFU that then just passes its static

source mode input from another unit straight through its ALU. With the current

version of MATRIX (and likely any later ones), passing something through the level-2

and level-3 lines will actually end up adding on several more registered-delays, thus

the latter method is currently the preferred one.

Finally, note that while the syntax of layouts did not change at all, their semantics

changes slightly. The strings that are names given in Layout definitions used to be

able to represent BFUs or other Layouts. Now they can also include objects - ALU

objects, memory objects, or register objects - but when they do represent objects

they no longer have the option of being explicitly placed. Objects can not even be

specified to be "DC DC", even though that is the implicit definition. Instead, objects

should be defined to be in layouts of chips just by placing their name alone between

parenthesis as one of the arguments to a Layout definition.

5.3.3 8-Bit Microprocessor

Now that we have described the updates to the syntax of MDL+, and the meaning

of what the automatic grouper does, we are ready to update the code for the 8-

bit microprocessor to make full use of the ability to automatically group high-level

objects.

First, since I-stores are just memory objects, we can eliminate the definition of

an I-store and instead simply define A, B, and F to be memory objects, as is done

in figure 5-8. An advanced grouper might even notice that these memories were

small enough to be combined and thus include two in a double-ported memory unit

of a BFU, and then read out two values each round with time-switching or a new

ability of BFUs to do such things at once. This would be especially savory if the

implementation did not require high-throughput due to the problem it was a part of.

In this way, unnecessary throughput would be replaced by minimized area.

As is obvious from the figure the only negative development here is that all of the

memory objects need to repeat that they are taking their addresses for read-out from

the PC. Still, the tradeoff is a positive one.
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(def-mem-obj F (static PC)
(cells ((addO)) ((and)) ((xor)) ((or)) ((addi invb)) ;; last is a SUB

(def-mem-obj A (static PC)
(cells 0 1 2 3 4

(def-mem-obj B (static PC)
(cells 5 4 3 2 1

Figure 5-8: Definition of Memory Objects in MDL+1.4

(def-alu-obj ALU
(Aport (static A))
(Bport (static B))
(ALU (static F))

Figure 5-9: Definition of ALU Object in MDL+1.4

Second, the BFU named "ALU" can be turned into an ALU object, since all it

does is take in two signals and perform some ALU function on them. Thus, the

definition of the ALU turns into the code in figure 5-9. The benefit here is that

some of the code that was designed only to keep the BFU in the first local context

can now be eliminated, and the grouper might be able to combine the ALU and one

of the memory units for example, into a single BFU. This is especially the case if

the microprocessor has very low throughput requirements, since then some sort of

swapping between contexts or time-switching is possible.

Finally, note that while the definition of four out of the five components has

changed, and their types with them, the layout definition does not need to change at

all since the layout still includes the five objects with the same names.

The fully modified and updated MDL+1.4 code for the 8-bit MATRIX micropro-

cessor is available in appendix D.
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5.3.4 Benefits

The addition of the grouper to MDL+ makes code shorter, more readable, and more

abstract. It could also do a lot of work that the programmer would otherwise have

to do in combining these elements as tightly and appropriately as possible, and then

we would be able to gain a lot from analysis of how it did that. However, with the

current grouper that does not do much work these benefits are lost.

Thus, the benefits of the current grouper are mostly the effects it has on the source

code. When defining a memory object, it's actually called a memory object, and the

same with the other objects. This does make the code shorter and more readable but

the key point is that it makes the code more abstract, at a very high abstraction level.

After extending MDL+ this far, it is easy to see that any compiler that can compile

to a description of ALUs, memories, and registers, can then compiler for MATRIX

with MDL+ as a backend. Furthermore, if there are any other basic objects that the

compiler would need to have to compile to, or additional fields of specification for the

existing ones (such as a way to write the memories) then those new objects could be

created for MDL+ or the old objects modified.

In the end, it is this connection to the back-end of high-level synthesis and a

potential MDL++ compiler that is the most important part of the automatic grouping

phase.

5.4 Improvements to MDL+ code

As has been shown throughout this chapter, MDL+ code improves in readability and

shortens in length, as well as increasing in power, each time one of the intelligent

phases is added to the MDL+ compiler. While we have no definitive evidence or

wide-reaching study of this decrease in code length, we feel that it is an obvious side

effect, and provide table 5.1. This table lists the number of lines in the coded versions

of the MATRIX 8-bit microprocessor that are discussed through this chapter and are

all provided in their entireties in appendix D.

This table shows the decrease in code size that accompanies the increase in power
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Language [ Lines [ Words Bytes
MDL 245 701 5102
MDL+1.1 61 168 1074
MDL+1.2 54 146 896
MDL+1.3 54 136 876
MDL+1.4 42 104 672

Table 5.1: Length of 8-bit microprocessor implementations

of the compiler. It shows, as expected, that the greatest improvement lies in moving

from MDL to MDL+, although part of that benefit might be exaggerated since there

might be ways of implementing the MDL code in a shorter way, using MDL templates.

We do not believe that it would be legal in MDL to do so, but are not sure. Finally,

small differences should be neglected as they might be due to comments, except for

the differences from MDL+1.2 to MDL+1.3 which are precisely due to the omission

of the placement data in the definition of the Layout construct. All of the data in

this table was gathered with a UNIX 'wc' command and is not meant as anything

more than a summary of the feelings generated by the 8-bit microprocessor example.

For more substantive research and data see chapter 6, and for a discussion of the

improvements MDL+ has made over MDL see the appropriate section of chapter 7.
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Chapter 6

Research done with MDL+

This thesis has laid the background for MDL+ and discussed the reasons for doing it,

specified the basic and advanced features of MDL+, and referred to the research done

with MDL+. In this chapter, all of that research and discussion will be explained and

discussed. While no questions will be definitively answered, many will be addressed,

and many useful intuitions will be set up.

The research done using MDL+, and thus this chapter, can be split up into three

major categories. First, there are specific examples of MDL+ programs that have

been written and compiled using MDL+. Second, there are architectures which have

been compiled down with MDL+ to determine how the compiler and MATRIX would

handle different styles of designs. Third, MDL+ has been converted for use with

different backends. We will treat these three areas, which overlap somewhat, in this

order.

Of course, it is very hard to make general conclusions from the evidence that will

be given. Before beginning, we note that one of the more subtle reasons for this

is that the design of MDL+ affects the outcome of how it compiles user programs.

While this seems obvious, it is very important to keep it in mind while considering any

results given in this chapter. For example, consider the possible human bias to not

use level-2 lines. If we felt level-2 lines were useless, we might then write a compiler

that never considered level-2 lines as a routing option. We would be able to use it to

compile several examples and architectures and note that it never made use of level-2
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lines, and we could claim this as evidence that they are useless and should be omitted

from CGRA designs in the future. This would be a proof by circular reasoning, but

a large-scale computer project in the middle would make it seem much more solid.

While we are probably not guilty of circular reasoning, the same problem can easily

arise on a more subtle and innocent level. It is possible that for some intricate and

emergent reasons the compiler which we have designed can not make use of certain

characteristics even though they are useful. For example, the router might be able to

use level-2 lines but the placer might, because of the way that the grouper worked or

the way that we tend to describe designs, have placed the BFUs such that no one could

route them using level-2 lines. Of course, just because the placer placed BFUs so that

they could not use level-2 lines does not mean that the optimal placement would not

be much better because it could then use level-2 lines. Nonetheless, throughout this

chapter we will use the reasonable assumption that if our MDL+ compiler can not

make use of something, then it is hard to use. Given that we make this assumption,

this warning has been given at the outset.

At the end of this chapter we will specifically review some of the basic questions

about MATRIX, CGRAs, and MDL+ that were not addressed explicitly in the rest of

the chapter.

6.1 Examples

This section will discuss examples of programs that have been implemented in MDL+

for MATRIX. We will attempt to examine how the compiler treated these programs

with its automatic systems and thus learn about MDL+'s phases as well as MATRIX.

Though these examples are specific data points and not giving us general facts

about MATRIX and MDL+, it is still a useful starting point for this study as well

as giving us many useful intuitions which we believe will continue to hold as people

learn more about these sorts of problems.
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Figure 6-1: 8 Bit Microprocessor on MATRIX, placed by a human

6.1.1 8-Bit Microprocessor

We will start with the example that was strung throughout chapter 5, that of a simple

8-bit microprocessor. While this code has been discussed in that chapter, and is in

appendix D in its entirety, the ways in which the MDL+ compiler treats it have

yet to be discussed. The implications for small-word microprocessor architectures on

MATRIX and with MDL+ will be handled in section 6.2, while this section will treat

it as a good introductory example about how to compile for MATRIX.

Since the MDL+ grouper is in its infant stages of development, the MDL+1.4

code turns out to be no better for us than the MDL+1.3 code. The placer thus needs

to place five BFUs (PC, A, B, F, ALU) onto the layout of a chip. When we designed

this chip originally, we saw it placed as in figure 6-1 (as seen in [Mat96a]), but that

is not an easy to route design.

This human design has the three I-stores all clustered around the ALU, easily

providing their distributed 24-bit instruction to it each cycle over level-1 lines, and

similarly the PC is near enough to the F and A I-stores to get the cycle number to

them each cycle over level-i lines. The problem here is that the B I-store is two rows

down and one column over from the PC, and thus no level-i wires run between the

PC and the B I-store in order to communicate the address from which B should be

serving its stored value. Since level-2 and level-3 lines only run in a single row or
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column, they are always helpless to communicate data directly between two BFUs

that are neither in the same row nor the same column, thus there are no one-hop

paths at all between the PC and the B I-store.

In the MDL+1.2 code that we provided, the B I-store merely asked for the value

anyway, leaving it up to the router to figure out how to route this line. In the

MDL+1.0 code, the routing needed to be done explicitly, and so some rebroadcasting

was added. When doing this, the first question to be answered is which BFU should

be doing the rebroadcasting. If possible it should be a BFU that already existed

(non-DC) but has enough power left unspecified that it can add the rebroadcasting

functionality. It should also be in a position to receive from PC and transmit to B.

All of A, F, and ALU are in ideal positions for this. The only problem is that while all

three of them can read PC's level-i output and all three can have B read their level-1

output, all three are already using their level-1 output to communicate a different

signal. (The ALU is communicating the final output, and not read by anyone in this

description, but we clearly care which value it outputs from its ALU.)

This means that either one of these three must use a level-2 or level-3 line to

transmit the data to the B I-store, or a new BFU must be created. If we were to

create a new BFU we would have it be placed in the (2,3) spot to fill in the 2x3 grid

that this microprocessor is on, and it would merely read 1lwl into its A port for the

PC value, and pass that value through its ALU, which could then be read by the B

I-store as its lln2 value. Instead, we chose the option of using re-transmission on

network wires, which is what level-2 lines are generally used for. The ALU can read

the PC (although the basic design does not require it to) using level-i lines. Since it

is at location (1,1) it can transmit horizontally with its level-2 lines, which can then

be read by the B-Istore, thus controlling the data that the B-Istore sends right back

to the ALU.

This rebroadcasting design requires the memory of the B I-store to be slightly

off of the other memories, so that they (A, F) output the values they would-have-

outputted a cycle later than they used to, to keep them in-sync with the B ALU

that is getting each PC one cycle later. This detail was omitted from the previous
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chapter, as it is not even clear that the difference is exactly one cycle (depending on

network, network port, and level-2 line design it might be 2 cycles, which is the way

the current implementation works). Although the fix for this problem is simple, it

is a good indication of why the compiler was designed to always search out designs

that solely relied on one-hop paths, and if possible only level-i lines (thus no chance

of extra registers).

And, in this case, the compiler succeeded in its goal. The placement of the 8-bit

microprocessor by MDL+ is shown in figure 6-2 and it clearly is routable with only

level-i lines. Note that this, and the later figures of actual MDL+ placements, are not

bottom-left justified. The MDL+ placer has not implemented the proposed bottom-

left magnetism, so this is to be expected. Of course, they can always be shifted down

diagonally towards the bottom-left, but not all designs will be able to occupy the

BFU at (1,1). For example, this design can have the F BFU shifted to (1,2) or (2,1),

but not (1,1) because of the checkerboard pattern of level-2 lines. While the direction

of level-2 transmission is important to keep in mind, and will be relevant in later

examples, we could actually shift this example so that the F BFU moved to (1,1)

after noticing that the design uses only level-i lines.

In fact, this design is superior to the human placement of figure 6-1 in almost

every way. It only occupies a 2x3 grid, it uses only level-1 lines, and it can easily

be shifted in any direction, for example in order to fit in a 3x2 space. Finally, the

ALU, where the only output comes from (and the only input goes to if the A and B

instructions tell it where else on the chip to dynamically source lines from) is located

in the corner, and thus (depending on how the design is shifted) is near the most

other units. Much of this was true for the human design, but not all of it. While

using level-2 lines it was troublesome because it could not be arbitrarily shifted, in

addition to the reasons above. The only potential drawback to this machine-placed

design is that the empty slot in the 2x3 grid is not at one of the corners, potentially

making it harder to get another unit to overflow into this slot.

There are a few things we can learn from this example. First, we see the usefulness

of length-2 level-i lines. The human design puts all BFUs that need each other as
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close to each other as possible. But, the machine design shows an understanding that

being two units away in a cardinal direction is the same distance away as being only

one unit away, when using the most relevant distance metric. This results in the three

units that need to be communicating with the ALU and the PC being spread out a

bit more. Only one of the three is next to both the ALU and PC, while the other

two are each next to one and two away from the other in a cardinal direction.

Second, we start to notice a certain symmetry in the machine design. This is a

trend that will continue through many of the MDL+ placements. The B BFU and

the F BFU have the same needs, and so they end up in symmetrical positions: One

shifted a column from the PC and two rows from the ALU and the other shifted a

column from the ALU and two rows from the PC. Meanwhile, the third BFU with

the same needs is as close as possible to in between them, and could be placed one

column and one row off of either the ALU or PC, and merely one row off of the other.

Finding similar units placed at similar points in the design will be a recurring theme.

Third, we begin to notice the Knight-pairs or k-pairs. This is how we refer to any

two BFUs that are displaced from each other by one level in one cardinal direction
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and two in the other, the places where a knight would be able to move on a chess

board. BFUs that are k-pairs are as close as they can be to each other without

actually having any wires to communicate over in one-hop. One possible addition to

MATRIX would be adding wires for just such communication, but it is an unlikely

development.

Instead of changing MATRIX, we can use the notion of k-pairs to help our designing

ability. Notice that in the human design (figure 6-1) the only k-pair is the PC and

the B-Istore which need to communicate and thus there is a problem, in fact the

only major problem with that design. Next, consider the machine design (figure 6-2)

where there are two sets of k-pairs. The B and F I-stores form a k-pair but they have

no dependency on each other for signals so it does not matter. Similarly, the PC and

ALU BFUs form a k-pair with each other but they do not need any wires between

them. The absence of problem k-pairs in this design is a key to its success.

Gaining intuition about k-pairs starts us on the notion that one of the paths to

designing a MATRIX placement might be placing disjoint BFUs in k-pair positions.

Thus, we have acquired an intuition about how to place BFUs that do not depend on

each other in addition to the easier intuition on how to place BFUs that do depend on

each other. This intuition was, of course, not gleaned merely from this example, but

by watching MDL+ place many examples. Finally, the best non-dependent BFUs to

share a k-pair are the ones that share other BFUs which they both share wires with.

The reason is clear: They do not take up the few usable positions for the other BFUs,

and there are several slots remaining where those BFUs can communicate with both

of them. This is one example of logic which might be explicitly added to the MDL+

placer in the future.

6.1.2 Polynomial Evaluator

Another basic example of functionality on MATRIX is that of a basic group of BFUs

that would calculate a quadratic equation. That is, given any a, b, c, x, it would

output ax2 + bx + c each cycle. This problem was initially posed by Andre DeHon to

Ian Eslick. By the time people were done passing around the responsibility for it, Ian
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Figure 6-3: Polynomial Evaluator designed by a human

and Morris Matsa had developed a version of it on an old specification for MATRIX,

and Dan Hartman and Ethan Mirsky had given input on a few of the unclear details

of how MATRIX acts in special circumstances. Since the look of MATRIX changed a

lot, the initial design became out of date prior to MATRIX fabrication.

Finally, during the summer of 1996, Yael Levi designed a MATRIX chip to solve

this problem and implemented the solution in MDL. We have taken this solution

and converted it into MDL+. The MDL design, as shown in Yael Levi's figure 6-3

involves a lot of complicated level-2 wires rebroadcasting signals so that all timing

issues are worked out correctly to maximally pipeline the design. The MDL+ source

code instead asks the compiler to place and route an unpipelined version of the same

code. Should we wish to achieve the maximum throughput of one calculation every

two cycles we could always add registers to the MDL+ code before compiling it, or

add level-2 retiming to the design after the compiler places and routes it.

The polynomial evaluator's design is somewhat simple, working with a 2-cycle

period. All nine BFUs switch between local contexts each cycle, all being in the first

local context at the same time and then the second local context the next cycle. It
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starts with four one-byte values: x, a, b, and c. The BFU at (1,1) multiplies b * x to

get a 2-byte value over two cycles, outputting the low byte in the first cycle and the

high byte in the second cycle. The BFU at (1,2) does the same thing for x2 .

The 3 BFUs labeled Ax 2 then try to calculate that 3-byte value. The BFU at

(2,2) multiplies a by the low byte of x 2 while the BFU at (1,3) multiplies a by the

high byte of x2 , one starting in the first local context, and the other starting in the

second. Each of these two BFUs outputs a 16-bit result, but since they received their

byte of the x2 input off by a cycle, and output their output off by a cycle, thus the

high byte of the low bytes and the low byte of the high bytes is available at the same

time, and the BFU at (2,3) adds them together in order to calculate the middle of

the three bytes that make up ax2 .

At the same time, the BFU at (2,1) is adding the 8-bit constant c to the 16-bit

bx that it gets from the BFU at (1,1). It does this addition over the course of its

two cycles. When it gets the low byte from the BFU at (1,1) it adds in c with an

ADDO ALU operation. The next cycle it adds the high byte of bx from the BFU

at (1,1) to the constant 0, with the ADD operation taking the carry-in from its own

carry-out from the previous cycle. This requires the configuration of the BFU being

set to Right:Local as well as CarryPipeline. The result is that this BFU outputs

the quantity bx + c starting with the low byte in the second cycle and then the high

byte in the subsequent first cycle.

Finally, the three BFUs in the third column add the various pieces. The BFU at

(3,1) takes the low byte of bx + c from the BFU at (2,1) and the low byte of ax2 from

the BFU at (2,2) and adds them together to get the low byte of the answer. The BFU

at (3,2) adds the high byte of bx + c from the BFU at (2,1) and the middle byte of ax2

from the BFU at (2,3), to form the middle byte of the answer. And the BFU at (3,3)

adds the high byte of ax 2 from the BFU at (1,3) to the constant 0 to produce the high

byte of the answer. Since all of this data is delayed until a specific cycle (with level-2

wires for retiming) and the third column BFUs are not set to CarryPipeline, the

carry bits work correctly and these three BFUs compute a 24-bit ADD in one cycle.

The output is then the 24-bit answer of ax2 + bx + c.
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Figure 6-4: Polynomial Evaluator as placed by the compiler

The MDL+ compiler took these same BFUs (the algorithm still designed by a

human) and placed them as shown in figure 6-4. This design is not compact in a

3x3 grid as the human design was, but the BFU at (3,5) can clearly be moved to

(4,4) to make the design fit into a 3x3 grid. The compiler's design only uses level one

wires, but so did the human design (leaving the level-2 wires free for retiming, and

the level-3 wires free to input the new parameters every other cycle).

In many ways this design is similar to the human design, both being equally

good. However, there are differences that we can learn from even if they are not too

important. For example, the compiler does not try to put the x 2 BFU next to the

BFU that calculates the middle bits of ax2 . The compiler does not place them next

to each other because they do not need to be placed near each other. Although there

are two BFUs which they both share communications with, they do not communicate

with each other. That is why they are placed in a k-pair.

The only thing unique about this example is that the compiler placed the three

units computing the 24-bit add next to each other. It even placed them in order,

though not in a single row or column. While placing them next to each other is
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necessary for a working design (and not even diagonally next to each other) we will

see later in this chapter that the MDL+ compiler does not have enough information

to always do so, and that in this example it just got lucky.

Finally, this example shows us two possible uses for the MDL+ placer. First, it can

be used to show us alternate ways to place designs. While the human designer came

up with a suitable placement, the computer came up with a different way to place

that still works and has different benefits. The compiler's design still fits in a 3x3 grid

(after a slight adjustment) and still only uses level-1 wires for basic communication.

However, it has shifted the BFUs around enough that the three BFUs with the answer

are at one of the corners of the unit instead of on one of the sides. Depending on the

design of the rest of the chip, some other units might be using this answer instead of

merely having an IO port outputting them. In that case, their design would impact

which of these two designs we would choose for the polynomial evaluator.

Second, on a very basic level the human's work at placement was not necessary.

It would be far easier on the programmer to run the MDL+ compiler on his problem

and then possibly rearrange one or two BFUs. Given that the design the compiler

came up with was just as good as that of the human programmer, partially relying

on the compiler becomes a reasonable model for programming on MATRIX.

6.1.3 Other Examples

There are several other examples of designs on MATRIX available in [DeH96, Mir96,

Mat96b].

6.2 General Purpose Computing Architectures

This section contains many examples of how the MDL+ placer might place various

architectural styles that might be implemented on MATRIX. Every one of these pos-

sible placings was in fact an actual placing calculated by the MDL+ placer when the

MDL+ compiler was run on the example, but since the placer has been optimized over

time, such as by changing the parameters for the simulated annealing algorithm, and
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since the placer's algorithm is non-deterministic, these are still only possible placings,

and not necessarily the ones we would get by running the program again. They were

all compiled with "mdl -2".

6.2.1 8-Bit Microprocessor

The first example is that of an eight-bit microprocessor. We viewed this as seen in

figure 6-1 while the placer produced a chip as shown in figure 6-2. The ramifications

on general design have already been discussed above, and we will now consider the

use of these small microprocessors in MATRIX designs.

As these units are small and compile well, it seems advisable to use them when

applicable in MDL+ programs. They can be used to control a part of an algorithm

that runs slower than other parts, and thus does not need high throughput. If they

are placed well, as in figure 6-2, they can even run high-throughput parts of an

algorithm, since they can be doing something different every cycle. This architecture

seems like such a good building block that we have considered adding a "micro8"

object to MDL+ and having the grouper expand one of them into several BFUs. At

first it could expand one of these objects into five BFUs, but later it might group

these pieces with other pieces in the design or even with each other, as discussed in

section 5.3.

6.2.2 32-Bit Microprocessor

The next sample architecture is that of a 32-bit microprocessor. We viewed this as

seen in figure 6-5. Even though the PC can reach all of the I-stores in one cycle with

level-1 lines, this human design leaves much to be desired. Because of the design, the

I-stores share their row with none of the ALUs they need to supply instruction to,

and only one ALU shares each of their columns. Furthermore, that ALU was already

reachable with their level-i lines. Thus, none of the ALUs can receive instruction

with level-2 or level-3 lines in one-hop.

This would be all right if all wires were routable with level-i lines, but the F BFU
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Figure 6-5: 32 Bit Microprocessor on MATRIX, placed by a human

and B BFU each can not reach two of the other-side ALUs with their level-1 lines

and the A BFU can not reach the ALU at (1,1) with level-i lines. Meanwhile, the

PC can easily be connected with three ALUs even though it does not need to, and so

its position is wasted. The PC was placed there so that it was in between the I-stores

and as close as possible to all of them, but this ends up being the wrong decision. Of

course, the great benefit to this design is that is fits into a 4x2 grid.

Fortunately, this design is easily routable using multiple hops. Each of the in-

structions from the I-stores can reach the ALU directly beneath it in one cycle over

the ALU's l1_n1 line. Then, the ALU can take that instruction, and rebroadcast it

on the horizontal level-3 lines (say, 13_hl for F, 13h2 for A, and 13_h3 for B). Finally,

all four of the ALUs are set to read their A, B, and Function ports from the level-3

lines. Since all bytes of the 24-bit instruction word arrive via the same type of path,

none of them need to be sped up or slowed down relative to the others.

Our intuition tells us, as we learned in the previous section, that using all level-i

lines and never needing to rebroadcast is always a good idea. However, in this case it

is not immediately clear what the drawback to using multiple-hops is. Nonetheless,

our intuition does hold up and is thus strengthened, since the ALUs will be computing

based on an instruction several cycles old, and thus every branch will necessarily have

several branch delay slots.

To remedy this situation, in hopes of finding a placement that will not require
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Figure 6-6: 32 Bit Microprocessor on MATRIX, automatically placed with mdl -2

multiple-hop paths for any wires, we run this through the MDL+ placer. The au-

tomatic compiler produces a chip as shown in figure 6-6. The first thing apparent

about this design is that it is far less compact than the human one. Nonetheless, it

might fit onto certain chips better, given their other prior designs, since it takes up

only one row besides two jutting-out BFUs. The second most noticeable quality of

this design is that it is a machine-looking design. That is, it does not seem that a

human would be as likely to lay the pieces out in this manner.

Upon deeper consideration of the design, it becomes clear that there are several

things we can learn from it, as we did from the previous examples. Furthermore,

there are many advantages to it, and one big disadvantage. The biggest advantage

is that all wires are routable with one-hop level-i and level-2 wires, not even using

up any of the precious level-3 resources. Note that the PC, A, and B BFUs are all

two BFUs over from each other, thus all get to transmit horizontal level-2 lines. The

PC can reach the A I-store with level-1 lines, but needs its 12_d2 wire to transmit the

cycle to the F and B I-stores. Being in the middle of the ALUs, the F I-store can

transmit to all four ALU BFUs with level-1 lines, while the A and B I-stores can each
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communicate with three of the ALUs with level-i lines and transmit in the correct

direction to give their byte of the instruction to the fourth ALU with a level-2 wire.

In all, three level-2 wires are needed (four, but two of them are the same 12_d2 wire

from the PC).

We can make several observations about this design. First, the length-2 level-1

wires were useful again. Without them, this design would not be possible, since this

design makes use of the every-other BFU that can not transmit level-2 wires in a

direction still being able to transmit level-1 to half that distance of two units away.

Second, the entire width of the chip really can be used. This design would not be

possible on a chip that was less than six units wide. It is not merely a case of this

design spreading out when it could be more compact - other designs could place

these units in a more compact area but this design requires six BFUs wide. The

rightmost five BFUs in the third row are integral to the design, and there is no way

(given the rest of the design) that the PC could reach all of the I-stores in one-hop

besides being in the sixth slot on that line.

Third, we see once again that form follows function. The PC is needed by the

three I-stores but no one else, so it is moved to a spot far out of the main design, but

where it can still reach those I-stores. The three I-stores, on the other hand, are very

necessary for many units, and to be close to all of them they are placed in the middle

of the main design. The other option would be placing the ALUs in the middle and

the I-stores around them, but then there would be no way for the PC to transmit the

cycle to all of the I-stores in one-hop.

Fourth, again the design displays a lot of symmetry. Looking at the main design,

which is to say everything except for the PC, and treating the I-stores as all the same

(since they are as far as the placer is concerned), the design has both horizontal and

vertical symmetry. The A and B I-stores have the same set up as each other, with one

ALU next to them in a cardinal direction, two ALUs next to them diagonally, and one

ALU three units away but reachable with a level-2 line. And the final I-store, F, is

in the average of these situations, two ALUs two away in opposite cardinal directions

and two ALUs next to it.
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Fifth, we see that there is still a lot to be learned by examining the k-pairs. Only

the ALUs are in k-pairs in this design, and each of the four ALUs is in two k-pairs,

each with a different ALU. These k-pairs join the units that are most numerous but

do not need contact with each other at all. Once they are formed, they are slid

into a position where they do not take any of the valuable resources (in this case,

horizontally-transmitting level-2 BFUs in the third row). Then, the rest of the design

falls into place.

Finally, after having extolled this design's virtues, we mention the one great fault:

The ALUs are not near each other. While this was one of the key points of the design,

putting the ALUs in k-pairs with each other thus forming the diamond, in practice it

kills the design. The problem is that there is currently no way in MDL+ to tell the

compiler that the ALUs want to be next to each other in order to do a wide-word

operation. They can be set to take their left and right carries from specific directions,

but not from specific other BFUs, and thus there was no constraint keeping them

near each other. Thus, this design turns out to be an ideal 4-way SIMD architecture,

but not a real possibility for a 32-bit microprocessor.

6.2.3 MIMD

Devices utilizing more than one program counter (control unit) per die are considered

MIMD (Multiple-Instruction, Multiple-Data) machines. Figure 6-7 shows a generic

2-PC, 8-bit MIMD machine implemented on MATRIX. Just as in the VLIW case, a

variety of devices such as PADDI-2 [YR95] have chosen a specific data point of these

architectures, while MATRIX gives a designer the option of changing those choices.

[Mir96]

Since this is equivalent to placing two of our 8-bit microprocessors on the same

MATRIX chip, the observations we made earlier apply here as well. The points that

were mentioned about placing the "holes" in an 8-bit microprocessor design such that

many may easily be placed on the same chip start to become more relevant when we

consider using n-PC MIMD machines for larger values of n.

The MDL+ placer produced a chip for this 2-way MIMD design as shown in figure
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Figure 6-7: MIMD Architecture on MATRIX, placed by a human

6-8. This design is interesting both in that it shows us how two separate pieces of

a MATRIX design might be placed near each other, and because it gives us two new

ideas of how 8-bit microprocessors might be placed.

The 8-bit microprocessor with its PC at (3,1) is an obvious addition to our set of

possibilities. Since the PC needs to communicate with the three I-stores and they in

turn need to pass information on to the ALU, it puts each register stage in a separate

row. The drawback of this approach is of course that it requires three rows and three

columns, thus the minimum enclosing rectangle is 3x3, bigger than the other ways

of designing the microprocessor. The benefit of the layout of this design is that the

four corners of the 3x3 box are all empty, thus allowing other units to easily make

use of these resources, as the other unit in the figure did by sticking its B I-store in

the upper-left hand corner. Once again, this design uses only level-1 lines. Note that

none of its BFUs are in k-pairs.

The other microprocessor on this chip is in a more compact 2x3 design, again

only using level-1 wires, and again in a new configuration. The only k-pair here

includes the A and B I-stores which do not need to communicate, but both share

communications with the PC and ALU. There are, of course, many k-pairs with one

member in the upper microprocessor and one in the lower microprocessor, as should

be expected.

With this chip, we will make a few new observations. First, there are many ways
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Figure 6-8: MIMD Architecture on MATRIX, automatically placed with mdl -2

of laying out any small design, such as the 8-bit microprocessor that we have seen a

lot of. This implies a benefit of using an automatic placer, since it will be able to

try out each of these designs or even come up with new designs fitting the problem,

while the human would more likely default to an old design. Of course, part of the

beauty of our system is that the human can observe the final product and rearrange

units if he sees a better old design to put them into, or even a new one.

Second, the computer-designed chip seems more haphazardly-placed than the

human-designed chip. Given the placement algorithm this is not a coincidence,

nonetheless it is noteworthy. Furthermore, it is not merely true of this one exam-

ple: it will be more obvious in later examples and is present in earlier examples.

The human designs all show a desire to fix everything in a simple form and then tile

that form, while the computer designs use very irregular forms, because the placer's

algorithm gives no bias toward "regular" forms, likely bringing about better designs

since benefits arise on a MATRIX chip when the design includes more level-i lines,

not when the design looks more regular to a human.

Third, we note that the way in which any multiple-BFU structure is laid-out,
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Figure 6-9: VLIW Architecture on MATRIX, placed by a human

but in particular 8-bit microprocessors, will likely ultimately depend on the external

constraints on its data. The 8-bit microprocessor might need to receive data at the

ALU, and will almost always need to transmit data from the ALU. Thus, the design

which is chosen will most likely be the one that fits in the available space and puts

the ALU the closest to the other BFUs it needs to communicate with. This is why

having so many different designs is so useful. The human design and above computer

design leave the ALU at the corner of a 2x3 box, the upper design in this case leaves

the ALU at the middle of a 2x3 box, and the lower design on this chip leave the ALU

on its own column or row, jutting out of a 2x3 box with the two far corners empty.

6.2.4 VLIW

When 24 bits of instruction are insufficient, it is easy to deploy extra resources to the

instruction caches. This could result in the system shown in Figure 6-9, which is a

VLIW system. Here we can see how we do not need to replicate the program counter

and control. This allows for a much higher efficiency of silicon usage.

In a higher-form of MDL+ leading towards MDL++ this might be implemented as

a VLIW object construct which would require the user to specify all of the processor's

configuration. Then, the grouper would determine how many BFUs must be allocated

to being ALUs, and which of the ALU's ports will be in static value mode, static
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source mode, and dynamic source mode. The compiler could then allocate as many

additional BFUs to control as are necessary.

It should be obvious from this figure that there is only one problem from a place-

ment and routing perspective: the PC. The A, B, and F I-stores associated with each

ALU can reach their ALU with only two length-1 and one length-2 level-i lines, but

the PC needs to get its value to nine other BFUs and that is difficult. Given this

placement, the PC has level-i lines it can use to transmit to only two ALUs and

two I-stores, and it does not even need to transmit to the ALUs. This means that

of the 12 slots that it could transmit to over level-1 wires, two are filled by BFUs it

does not need to transmit to, and eight are filled by nothing at all, with only 2 of 12

filled with useful BFUs that are recipients. Most likely, the best way to route this

placement is to pass the PC value over its 12_d2 line horizontally to the three ALUs,

have them each rebroadcast on a level-3 line vertically, and have the I-stores pick up

these vertical level-3 lines and use it as the PC, then issuing their instructions to the

ALUs.

It might even seem that this is the best we can do, and that there would be no

way to place this design such that it would be routable without using the depletable

level-3 resources. However, the placer did an excellent job as can be seen in figure

6-10. Not only did the MDL+ compiler manage to avoid level-3 lines, it routed the

entire VLIW design using only level-1 wires. The three ALUs receive all of their

unique 24-bit instruction over level-1 lines (sometimes making use of the length-2

lines), and the PC has the 9 I-stores placed in nine of the twelve locations it can

transmit to using level-1 wires. The remaining three locations are unused, two to the

left and one because it is past the boundary of the chip to the right.

This design seems less compact, but it is actually very compact. While the com-

piler was not told to make the design compact, the user could easily shift the ALU

at (3,3) to the empty slot at (4,2) after placement, and the router would still be able

to route the entire chip using only level-1 lines. Then this design would use up only

a 3x5 sub-grid, whereas the human design required a 4x4 grid. Thus, the computer

design uses a smaller box (15 instead of 16 BFUs, or a box with 2 empty "wasted"

146



00FEIJFiJ
DLIIF

0000
Figure 6-10: VLIW Architecture on MATRIX, automatically placed with mdl -2

slots instead of three). Furthermore, two 3x5 units will fit on a single chip, whereas

two 4x4 units will not. Finally, since the computer's version uses only level-1 lines,

it can be flipped and translated and rotated as much as it wants and still work, thus

the two empty slots can be shifted to BFUs (4,3) and (5,3) which would be the only

corner of the unit not on a boundary edge of the chip, for maximal chance of being

used by other units.

Of course, this design faces the same major drawback of the 32-bit microprocessor

design: The ALUs can not form up wide-word operations because they are not all near

each other. As before, there are several ways we might deal with this problem, but

ultimately being able to place based on this information will be added to the compiler

when the ability to specify this information is added to MDL+. Also, as before, this

design might be useful, but probably not as the architecture it was intended for.

We can also learn from this automatically-compiled design. First, the placement

looks very much less structured and regular than the human placement. Once again,

realizing the actual goals of the design, the machine was able to find a better solution

when ignoring these human concerns. Of course, it was not as impressive this time,
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since the human needed to place the chip while keeping the ALUs near each other,

which might have on its own forced the more regular design.

Second, k-pairs have become a key point in this design. There are only three

other BFUs with which the PC does not need to communicate, and it has great need

for slots with which it can communicate. Furthermore, of the three BFUs it need

not transmit to, all must communicate with several of the BFUs that the PC does

transmit to. Thus, these three ALUs are perfect candidates for being in k-pairs with

the PC, and in fact all three end up in k-pairs with the PC - and end up the only

used k-pair slots for the PC, the other three that are on chip being left empty. Once

these BFUs are placed, everything else falls into place.

Third, the design is roughly symmetrical. Now that the design has become more

complex it is not as perfect a symmetry, and thus harder to see. Nonetheless, our

intuition gleaned from simpler examples does pay off. The three ALUs are located as

close to 120 degrees apart from each other as possible on this grid. The two to the

right are at the closer k-pair slots, and the one at the left is at one of the farther k-pair

slots. Considering the 8 possible k-pairs the PC could form on an infinite grid, there

are two empty slots between the ALUs at (6,6) and (6,2), one empty slot between the

ALUs at (6,2) and (3,3), and two empty slots between the ALUs at (3,3) and (6,6).

This is as close as possible to evenly distributed.

Fourth, certain design motivations can be traded-off once the design is mostly

set. For example, symmetry and k-pair concerns cause us to place the ALUs in their

current locations. Then, once the design is mostly set we decided that the ALU at

(3,3) should be moved to (4,2) to make the design more compact. This leaves it in a

k-pair with the PC, but makes the design no longer symmetric. Although trading off

symmetry for compactness at this stage is good, we recommend using the symmetry

heuristic when designing and only worrying about compactness once the design is

mostly set.
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Figure 6-11: SIMD Processor on MATRIX

6.2.5 SIMD

Instead of the extra instruction caches, if more processing power is needed to run

off of the single control, a SIMD (Single-Instruction, Multiple Data) parallel system

might be created. Figure 6-11 shows an example of this. Further decisions might

include whether the multiple data streams should arrive from off chip and be pipelined

through MATRIX, or be cached on-chip in which case more BFUs will need to be

allocated to being memories for the cache. In the SIMD case, the amount of processing

power is only limited by the number of BFUs on the die, and MATRIX can accomplish

much more computation than a processor would.

MDL+ has a very hard time placing this design, and fails to route it with only

one-hop paths. Ultimately, if a large amount of processing power is desired, the best

option might be to manually place the three I-stores, and several rebroadcasting BFUs

each of which follows some convention, such as F onto 13hl, A onto 13_h2, B onto

13_h3. Then, ALUs can be placed in any of the rebroadcasted rows (or columns) and

could even double as the BFUs doing the rebroadcasting with their network ports.

In fact, one BFU could serve as an ALU and do all three rebroadcasts, if it could

dedicate one of its floating ports to this cause. The other option, is to have different

ALUs rebroadcast each signal. For example, in the figure, the ALUs in the first

column could each broadcast F to their rows, the third column could rebroadcast A
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to their rows, and the fourth column could rebroadcast B to their rows. This method

clearly scales to any size of chip.

6.2.6 ASIC

Finally, and perhaps most importantly, in addition to these general-purpose struc-

tures, it is possible to create special purpose computing engines. As was mentioned

earlier, these kind of systems can achieve enormous speedups over a general-purpose

system. And, because MATRIX doesn't need to be configured until run time, users do

not need to spend the money or time developing custom silicon for these applications.

A couple of simple applications were described as examples at the beginning of this

chapter.

6.3 Other CGRAs

The final area of research using MDL+ that is available is changing the picture of

the chip that the placer and router see in order to see how they would act when

compiling for different backend chips. This should shed some light on how MATRIX

should be changed and how CGRAs in general should be designed. While the experi-

ments themselves are discussed here, the conclusions about MATRIX and CGRAs are

discussed in the next section.

6.3.1 Eliminating Level-2 wires

This is the easiest possible area for research of this type, since we do not even need

to change the MDL+ backend at all. The placer already placed so that level-1 wires

would be used when possible, and it never ended up using up all of the level-3 re-

sources. Thus, the few times that it used level-2 lines, they could be easily substituted

with level-3 lines that were unused. So, everything that the compiler was able to place

and route successfully it would still be able to place and route successfully.

However, the MDL+ compiler has also shown us that level-2 wires are not useless.
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There have been several times when it has made use of level-2 wires, and since it

does not do so unless it can not use level-1 wires, we know that without level-2 wires

these connections would have to be made with level-3 wires, which are longer than

the level-2 wires and thus some area on the chip would be wasted.

6.3.2 Unregistered Level-2 Wires

If level-2 wires were not registered then 2-hop and 3-hop level-2 paths would have

the same latency as 1-hop level-2 paths. As long as level-2 paths are registered at

the source port and the destination port, there is already plenty of time in the cycle

for this and so it would only require a little more hardware design and area, but not

slow down the rest of the chip. However, not registering a level-2 line at its source at

all, and thus making level-2 lines as quick as level-1 lines would slow down the cycle

considerably.

Nonetheless, we can change the backend of MDL+ to assume that 2-hop level-

2 paths are traversable in one cycle. This makes very many BFUs accessible in

one-cycle and not surprisingly makes almost anything routable, though this is not

an incredible gain since almost every design we tried to compile had already been

routable. Unfortunately, this would slow down the clock of the MATRIX chip too

much to have the few extra routable designs outweigh the slow-down to all other

designs.

6.3.3 No level-1 wires

In an attempt to confirm that bad design choices for MATRIX would not appear

positive in our research environment, we tried changing the backend of MDL+ so

that it would compile to an architecture just like MATRIX except without any level-1

lines.

The most noticeable effect is that it becomes hard to route any significant number

of units to each other unless they are all in the same row or column (since they must

use level-2 and level-3 lines which all connect BFUs that are in the same row or
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Figure 6-12: 8-bit microprocessor routed without level-1 lines

column. Thus, when we run our favorite 8-bit microprocessor example through the

new version of the compiler it turns out as in figure 6-12. Note that the PC is next to

the ALU even though they do not communicate with each other, because being next

to another BFU is no longer any more useful than being within a distance of three

or four.

MATRIX would not be as useful if every unit on a chip needed to be on the same

row or column, thus we were correct that it would be ridiculous to eliminate level-1

lines, and our method of research did not fail this test.

6.3.4 No diagonal lines

Even though it is unreasonable to think of eliminating all level-i lines, it has been

suggested that we should eliminate the diagonal level-1 lines and only leave the level-1

lines in the cardinal directions. We implemented this change to the backend of MDL+

and recompiled the 8-bit microprocessor example yet again.

Once again, upon running the 8-bit microprocessor example we got a result of

BFUs that "lined up." This time, they lined up in a row instead of a column, as
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Figure 6-13: 8-bit microprocessor routed without diagonal level-1 wires

shown in figure 6-13. Due to the existence of short level-i wires the PC and ALU

were divided, and each is within level-1 range (2 slots) of two of the three I-stores.

While this design can be improved (by moving the PC to slot (3,3)), it would still

not be able to use only level-1 lines. Even though we have not completed a large

enough survey to be able to conclusively decide whether diagonal level-i lines are

useful, it seems that they are very useful, even in some of the simplest designs.

6.3.5 No length-2 lines

Besides suggesting that all diagonal level-1 lines be eliminated, another popular sug-

gestion has been to eliminate all length-2 level-i lines. If both diagonal and length-2

level-1 lines were eliminated, then the cycle length on MATRIX could be shortened.

Although eliminating only length-2 lines would not cause as large an advantage, it

still would decrease the size of a BFU, thus we examine the possibility.

We have already seen that length-2 level-1 lines have often been used by the

compiler and seem to have enabled certain chips to be routed when they might not

have otherwise been routable. Nonetheless, we went ahead and altered the backend
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Figure 6-14: 8-bit microprocessor routed without length-2 level-1 wires

of MDL+ to eliminate length-2 level-i lines. Since several of our previous 8-bit

microprocessor designs have relied on length-2 level-i lines, we started by recompiling

that example, with the results shown in figure 6-14.

The compiler managed to find a new way that we have not seen yet to place the

microprocessor into a 2x3 grid while using only length-1 level-1 lines to route. While

this is a positive result, routing the 8-bit microprocessor with only length-1 level-i

wires is not very difficult. Thus, to test whether the compiler would be able to place

and route effectively without length-2 level-i lines, we tried running this modified

MDL+ on the VLIW example of figure 6-9. The unmodified MDL+ compiler is able

to place and route this design using only level-1 lines, but it seems to be at the limit

of its capabilities and it does use several length-2 level-1 lines, as shown in figure 6-10,

thus this seems like a great test for the case of eliminating length-2 lines. If the VLIW

architecture could still be routed, then length-2 lines must not be as important as we

had assumed. Expecting an answer to be strong in that the design either would or

would not be routable, we found an inconclusive answer, as shown in figure 6-15.

The first thing we can learn from this figure is that the absence of length-2 level-i
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Figure 6-15: VLIW architecture routed without length-2 level-1 wires

lines definitely made the situation more difficult for the compiler, as it did not find

an entirely-level-1 solution, and did not come up with the optimal solution. While

placing and routing this design would be hard for a human, it is not hard to notice

from the compiler's solution that some changes can be made to improve the design.

While these changes would be difficult for the machine to consider at once, it is

easy for a human to notice them. To start with, move the three BFUs in the final two

columns each one to the left or west. The PC still needs a level-3 line to reach those

A and B I-stores, and the F I-store still needs a level-2 line to reach the ALU. The

difference is that now the design is only five columns wide, and so the entire design

can be shifted over one column to the right or east. Shifting the entire design this

way does not effect level-1 lines, but it does mean that BFUs which used to be able to

use level-2 lines for some direction can not, and those that could not now can. Since

there were four non-level-1 lines of which three were only routable with level-3 wires,

there are now 4 of which only one requires a level-3 wire.

Therefore, the designs that are barely able to use only level-1 lines on MATRIX

rely on length-2 level-i lines, but they would be able to be automatically placed and
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routed without length-2 lines while only using a small number level-2 and level-3 lines.

6.3.6 Other Experiments

We have not done other experiments with altering the backend of the MDL+ compiler,

because they would be more subtle differences and thus require a much larger set of

applications to compile down using the changes in order to determine the true effects

of making those changes. However, now that the MDL+ tool is available, and easily

configurable in this manner, we expect that future studies might be done to determine

where the optimal point is for trading off more lines on one level with less lines on a

different level, as well as other experiments that we have not even thought of yet.

6.4 Questions about MATRIX

This chapter concludes by discussing the answers that our research has led us to with

regard to the questions asked about the architecture in chapter 3. Once again, we

can only give discussion about these issues and not definitive answers.

6.4.1 Level-2 lines

There are two questions dealing with level-2 lines. First, are they useful or would it

be better to replace them with more level-i or level-3 lines? And second, assuming

they remain will it be advisable to allow the option of not registering them or was

that wasted functionality?

It is hard to answer the first question. As mentioned in the last section, in all of

the examples that we have run level-2 wires have been neither necessary nor useless.

However, we did not implement any examples that taxed the amount of resources in

MATRIX, and thus more level-i or level-3 lines would be neither useless nor necessary

as well.

However, we have come up with dense designs, and even with our somewhat dense

designs they did not run out of wires to communicate on. Thus, it is our conclusion
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that level-2 lines can be eliminated and not replaced at all. This would start to put

a burden on the level-3 lines, and would start causing us to see a greater percentage

of the wires used. As long as we are correct and the amount of useful functionality is

not decreased, this would be a great tradeoff if it would release enough area to allow

for more BFUs on the chip. While none of our designs ran out of room on the chip,

it is easy to make such designs, even by tiling the old smaller designs.

We can not be sure how much more area would be freed up by eliminating the

level-2 lines, but it might be considerable. It includes 8 wires over each BFU on the

grid, as well as 8 of 30 inputs to each of 8 ports on each of the BFUs on the grid. It

also reduces the size of some of the perimeter of the chip.

It might not even matter if the number of BFUs on the chip increased, since the

largest benefit of eliminating the level-2 lines might be the decrease in complexity of

MATRIX. Even though MATRIX is a first implementation, it has the second system

effect [Bro95].' MATRIX is very complex, and thus harder to design, understand, and

use. Eliminating level-2 lines would remove the need to view a MATRIX grid as a

checkerboard pattern, and make all designs translatable by any number of rows or

columns. It would also remove the need for trying to figure out what capabilities

each BFU had (and what "dl" and "d2" mean) since all BFUs would have the same

abilities.

Given that we recommend eliminating the level-2 lines, it seems less important to

answer the question of whether unregistering level-2 lines would help. However, the

answer is clearly that it would help. In fact, it might help so much that level-2 lines

would be worth keeping.

Therefore, if many MDL+ designs had previously proved unroutable we would

suggest keeping level-2 lines around if they could be opted unregistered. However,

since most MDL+ designs are already routable and thus the great benefit of unreg-

istered level-2 lines not adding much real functionality to MATRIX, we continue to

recommend the removal of level-2 lines from MATRIX and CGRAs in general, even if

'This was intentionally designed into the system so that useless features could be eliminated in
a streamlined second system.
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they are unregistered.

Still, if the level-2 lines were going to be unregistered including being unregistered

at their source port then they would essentially become length-4 level-i lines, and

would aid in our placement and routing to the point that we might actually recom-

mend keeping level-2 lines in CGRAs. However, as we know that such a system is not

needed much, and would greatly increase the length of the critical path in a MATRIX

cycle, we still do not recommend keeping level-2 lines, even on this basis.

6.4.2 Level-1 lines

In the previous section we examined the possibility of compiling to a MATRIX chip

that had no diagonal level-i lines, and it seemed like a very bad idea. Thus, we

recommend keeping the diagonal level-1 lines. We believe that their great benefit lies

in the ability to create larger completely-connected and mostly-connected subgrids of

a MATRIX layout.

Length-2 level-1 lines, on the other hand, gave us only a slight improvement.

The elimination of length-2 lines, even in the worst case of a barely routable chip,

only required use of a few level-2 and level-3 lines. However, it seems that manually

placing and routing for such a chip would be less intuitive than for a MATRIX chip,

since being two spaces away is now equivalent to being four or five spaces away in

certain directions.

Therefore, we recommend eliminating length-2 level-1 lines from MATRIX and

CGRAs in general only if the decrease in area (due to the absence of the lines and the

smaller switches at the ports) is sufficient to add another row and column of BFUs.

In other words, it is not very bad to lose these lines, but it is bad. Thus, we would

suggest moving from a 6x6 grid of BFUs to a 7x7 grid of BFUs at the expense of the

length-2 lines, but not eliminating them for only small gains such as the gains that

would be sufficient to convince us to eliminate the level-2 lines.

In the event that both length-2 level-i lines and level-2 lines were eliminated,

as per our suggestions, there would be no intermediate between length-1 lines and

global level-3 lines, and more level-3 lines might need to be added. Thus, in the event
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that level-2 lines were already eliminated, we would suggest studying the system

carefully before eliminating the length-2 level-i lines, since their importance may

have increased.

6.4.3 Inputs to BFU ports

Here we must ask ourselves whether each BFU port really needs all 30 inputs to it, or

if that number can be reduced. The easiest answer, given that we have recommended

eliminating either level-2 or length-2 level-1 wires, is that by committing either of

those actions the BFU ports would be reduced in size. We have seen the local input

to be very useful in some designs, as well as the level-1 lines (besides possibly the

length-2 level-i lines). Thus, we do not recommend the elimination of any of these.

The only other remaining possibilities for elimination are the level-3 lines. One

way to reduce the number of level-3 lines entering each BFU port is to have each BFU

only be able to read 2 of the level-3 lines in each direction (in a checkerboard pattern)

or having half of the BFU's ports able to read half of the level-3 lines while the other

half of the ports can read the other lines. Any of these options seem to raise the

complexity level of the MATRIX grid a lot, and we therefore do not support them, in

an attempt to keep the grid as uniform as possible. However, given an improvement

in the automatic phases of the MDL+ compiler, and other CGRA programming tools,

it might become easier to think about and program devices that are complex in these

ways. Therefore, further study in these areas might be warranted, even though we

do not suggest adopting them at this time.

6.4.4 OR Plane

The OR plane was eliminated in the initial design of MATRIX, but the question

remains as to whether it should be reinstated and whether the chip lost too much

functionality with that decision. While it is very useful, in theory, to be able to

construct a PLA on the chip, such constructions had very long latencies, and were

hard to think about while programming, and thus were not used much in practice.
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Removing the OR plane from the design of MATRIX reduced the time to design the

chip, the time to test the chip, and the area of the chip, all by significant amounts.

Thus, given that we have several other means of control on the chip (including small

constructed microprocessors), we do not recommend adding an OR plane to CGRAs

in the future. Basically, through many designs we never desired an OR plane of the

type that would be available, and the time and area are thus not worth the effort.

6.4.5 Control

In general, the control options on a MATRIX chip are poor. Thus, in chapter 3 we

promised to consider which changes would be appropriate to the compare/reduce

systems and whether the control system should be entirely redone. While it is clear

to any MDL+ programmer or other user of MATRIX that the control system should

be entirely redone, we found that it was usable through these examples. It seems

that, as with other things on MATRIX, the difference will end up being decided by

the amount of automatic assistance in MDL+ and the programming environment.

If a high-level MDL++ compiler is available, and it has found sufficient ways to

compile down to the MATRIX control system, then at that point the control system

will not need to be redone. However, it seems that this scenario is unlikely, as the

current MATRIX control system leaves much to be desired. Therefore, we still recom-

mend an entire overhaul of the control system for any future version of MATRIX or

other CGRA.

We do not describe possible alternatives here for two reasons. First, it is a complex

question and beyond the scope of this project. It is sufficiently complex that the

MATRIX project went on for a couple of years before anything was done about this

problem. Second, something has since been done about this problem. The MATRIX

architects have devised a proprietary new control system, thus any quick suggestions

here would not be able to contribute much.
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6.4.6 Other Questions

By no means have we addressed all of the questions about the MATRIX architecture

which can be asked. Many more questions can also be discussed by using the MDL+

compiler as a tool, and yet more questions can be discussed by extending the MDL+

compiler with more functionality. Hopefully, this work has paved the way for much

more analysis which will now be easier to conduct.
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Chapter 7

Conclusion

We have covered a lot: The motivation for MDL+ was given in chapters 1 and 2, the

hardware MDL+ compiles to was described in chapter 3, the language and features of

the compiler were described in chapters 4 and 5, and what we learned from MDL+ was

discussed in chapter 6. In this chapter, we will start by discussing the improvements

that MDL+ represents over the previous state of the art. Then we will summarize

what we have learned with this thesis. We will conclude by suggesting future work

on MDL+ and related software and hardware.

7.1 Improvements from MDL

This section will discuss the improvements that MDL+ presents over the original

MDL. They are divided up into three sections: Improvements to the code that gen-

erates the compiler, improvements to the grammar that is accepted by the compiler,

and improvements to the output and error messages generated by the compiler.

7.1.1 Code Generating MDL+

A major advantage of MDL+ over MDL, even though it is the one that will be least

noticed by users, is that the code generating the executable is much improved. It will

hopefully crash less, be needing corrections less, and be easier to correct and improve.

The major change in order to improve the code that generates MDL+ is that it is
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all written in high-level object-oriented C++ instead of C. For MDL+, flex and bison

are still used to automatically generate code, and bison still generates C code (which

is now compiled with a C++ compiler), but all of the other code used for MDL+ is in

the form of one top-level procedure, a handful of helper procedures, and many C++

objects developed specially for MDL+. Some of these C++ classes are generated by

Perl scripts written specially for generating MDL+ classes.

The basic advantages of reliability and extensibility of C++ over C should be

obvious, but the greatest advantages come because MDL+ was written using the high-

level object-oriented features of C++ such as extreme modularity and abstraction.

Software hacks were not allowed to cross over between objects, as opposed to MDL

which had many really bad hacks of the type that might be expected in a C program.

For example, some bugs found long after the release of MDL were caused by some

C code accessing a piece of a data object (a C struct) by accessing the memory a

certain number of bytes displaced from the object pointer (an incorrect number of

bytes). With MDL+, these kinds of errors will not creep up.

Even when bugs are inevitably found in MDL+, they should be easier to track

down and correct than they were for MDL, because the code is written better. The

improvement in the quality of the code is a direct result of the motivations going into

this project. MDL was intended as a quick hack. Indeed, the MDL code itself warns

"It really sucks - I'm ashamed I havn't deleted it off the face of the earth...but that's

what I get for trying to hack up a quick solution!" in a comment that was dated more

than half a year before work began on MDL+. 1

Being a quick hack, the MDL code was not organized in an easy to read or

reason about fashion or an easy to modify fashion. It was not written modularly

in an object-oriented style, and it was not written with good error reporting. MDL+

has been designed from the start to be code that will last for a long time2 and be

easy to understand and alter. MDL+ has been written in an abstraction-oriented

1There's a lesson to be learned here. As the adage goes, if it's important enough to do, it's
important enough to do well.

2The irony is that the ARPA contract is running out soon, and MDL+ will in practice receive
much less use than MDL did.
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style with verbose and useful errors reported both in the event that the user inputs

something unexpected and in the event that the program itself acts in an improper

and unforeseen way.

Finally, the MDL+ code will be easier to upkeep than the MDL code because of

its superior documentation. The only specification of MDL was [Esl95], a document

which contained a sparsely explained (at points) description of an old temporary

version of MDL. This document differed from the actual functionality provided by

the MDL executable in many ways, and ultimately some of the most annoying errors

in it were details such as misspecifying aspects of the grammar, and listing keywords

for language constructs which were not the actual keywords used by the executable.

[Esl95] promised an appendix with the complete grammar of MDL, but ultimately

the only way to get this necessary information was to look at the hard to understand

yacc file.

MDL+ instead has a plethora of documentation, most likely too much. There

is high level information in the form of what is basically a programmer's manual

(chapter 4 of this thesis), the complete grammar (appendix E), and the yacc file

itself is more commented and thus more readable. The programmer's manual and

the grammar, as well as the list of known bugs and the man pages (like typical UNIX

man pages, very different from a programmer's manual, and provided in appendix

B), should be up to date.

Furthermore, when alterations are made to the code they will probably not result

in emergent errors which are only later observed and thus hard to track down. This

benefit is due to the regression test suite that has been set up to test MDL+'s parsing.

These tests, as they have been built up over the project, have been run almost every

time the MDL+ executable has been recompiled, and while they are not nearly as

complete as regression tests should be, they should provide a certain level of confidence

that errors have not been injected when the code is altered.

With much more attention to detail, and a perception that this project was sup-

posed to last and be extensible and correctable, MDL+ has developed much better

code than MDL had.
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7.1.2 MDL+'s Grammar

The actual grammar, or syntax, of MDL+ is a dramatic improvement over that of

MDL, and thus the source code is greatly cleaned up. The best possible evidence of

this is the code in appendix D where hard to read MDL code and easy to read MDL+

code with the same meaning are listed. In this section, we will discuss some of the

reasons why the MDL+ code looks so much better, and why it is easier to write, use,

and read.

Shorter Files

As has been alluded to at many points in this thesis, one of the biggest advantages

of MDL+ over MDL is that the code is shorter. There are several causes of this

decreased length:

* Don't Cares - A late patch of MDL included Don't Cares, but they were not

often actually used. One reason was that the code was in a legacy state already,

but the more important reasons were that they were only usable in certain

circumstances, and even in those circumstances they were quickly-developed

functionality and thus quite buggy. They were intended, when added to MDL,

as means of not overwriting all parental fields when a BFU inherited from

another BFU, not as general Don't Cares as they exist in MDL+. In their new

incarnation, Don't Cares enable a programmer to not specify details that he

does not care about, and allow the compiler to use this increased freedom when

compiling, and to in turn not generate more output code that it does not care

about.

* Omissions - Besides being able to substitute some real values with DCs, MDL+

allows almost all arguments to be omitted. A BFU's configuration provides a

lot of functionality, and most BFUs are simply not going to make use of most

of this, thus file sizes are greatly decreased. For example, most BFUs will not

be transmitting on all 10 possible level-2 and level-3 lines.
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* Inheritance - As with Don't Cares, MDL implemented BFU inheritance at a

late date and then very quickly, as a hack upon a hack. For the same reasons

as with DCs, programmers did not use this inheritance. The additional reason

that people did not use BFU inheritance was because a child still needed to have

all of its fields specified, the difference being that DC values would not override

parental values. This meant that MDL's inheritance both did not decrease the

code length by much and was much less useful. With MDL+, inheritance means

that BFU functionality that is common to several BFUs can be abstracted, as

with the I-stores in chapter 5. This makes the code shorter and more natural.

And in MDL+ there is a very rich version of inheritance which includes what

we have referred to as reverse-inheritance.

As there are many causes of the decrease in length, there are also many benefits

derived from the decrease in code length:

* Writable - It is much easier to write MDL+ files, since all that is required is

figuring out which functionality is desired on the MATRIX chip and then figuring

out how to explain that functionality in MDL+. With MDL, the programmer

also had to determine which values he would write for the fields he did not care

about, and what those fields were. It is also easier to abstract code with the

combination of omissions and inheritance.

* Short Output - The MDL compiler outputted the entire configuration data of

a chip, the MDL+ compiler outputs the configuration data that was requested

by the source code.

* Readable - Viewing the source file no longer requires sifting through all of the

randomly chosen values to find the ones that the programmer actually cared

about, since only the relevant ones are printed. Additionally, more relevant

data ends up on each page, making it easier to view at once. Many questions

(such as "Did he want that BFU at (1,1) or did he just need it on the chip?")

are no longer evoked by reading the source files.
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* Modifiable - Since it is easier to understand the code, and easier to write it,

it is thus easier to modify it.

Although shortening the source code is a major advantage of using MDL+ over

MDL, it is far from the only advantage. We will summarize some of the other benefits

of MDL+'s syntax.

One major advantage comes from the syntax changes associated with the intel-

ligent phases of the MDL+ compiler (discussed in chapter 5) and even the MDL+

driver (section 4.3). Each of these four phases reduces the complexity of trying to

read an MDL+ source file. Even when the code does not get shorter, it does reduce

the amount of "noise" data. For example, if the programmer cares that one wire is

driven but not another, he can merely use the first and ignore the second without

specifying BFU Power constructs. The person that reads his file can then assume that

used wires will be driven and other will not be driven, not needing to read through

extra parts of code.

Similarly, if the programmer wants two BFUs to communicate but does not care

which wire they use, he can "write" this in MDL+, instead of specifying which line

they use. And it is much easier to read a file as "There is a memory unit and it gets

its address from this ALU unit" than reading a file with many completely-specified

BFUs that happens to implement the same functionality.

Besides the multiple input modes (MDL+1.0, MDL+1.2, etc.) thus allowing

multi-level programming, the syntax is also cleaned up by certain command line

options to the executable. Being able to use the options to the driver (-S/-F) means

that a single source file can be used to compile an algorithm both for simulations

and for actual fabricated chips. Without these options, two source files would be

needed - one with minimal length not specifying any wires disabled, and one with

all wires explicitly configured as driven or not driven. While this is not a change to

the grammar of MDL+, it is an improvement that affects the MDL+ source code.

Similarly, the -U option implements the first "sureness" functionality of the MDL+

compiler. In general, the idea of sureness values is that besides just specifying, say, a

BFU to be placed somewhere or to not place it anywhere in particular, the program-
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mer could place it in a specific location with a certain amount of conviction, which

is to say a certain number that vaguely corresponds to the probability that the com-

piler will follow his suggestion. What the -U option provides is not yet implementing

sureness values, but it does give the programmer the option of using the same exact

source code file as either having some BFUs explicitly placed or not, which can be

seen as corresponding to MDL+ assuming default surenesses on placement to be ei-

ther 100% or 0%. Once again, this is not a change in the grammar, but it does affect

the source code.

A change that is actually a change to the grammar, and makes programming much

easier, is the small extensions to the basic MDL+ kernel, aspects of the grammar

which essentially desugar into MDL. For example, there are many places in MDL

where language structures require not only all fields to be defined, but for all of them

to be defined in order. MDL+ generally allows any order and any omissions, though

there are exceptions. This eliminates many careless syntax errors in the code, which

in the case of MDL were actually very difficult to track down.

Another improvement is the added datatypes available with MDL+, not just the

objects available with the grouper but the explicit control over each of the six pieces of

BFU configuration, the Port construct, etc. These constructs make more abstraction

possible in the MDL+ source code, since BFUs can then share these constructs,

without wasting all of the memory that would be required to inherit from an entire

other BFU. Additionally, if one of these objects changes a lot then its definition can

be placed separately from the rest of the larger object, perhaps at the beginning of

the file with other frequently changed data.

As has been mentioned, one of the most annoying aspects about MDL could

be that the keywords were often different than they had been specified. While this

problem in particular has been solved by specifying the language as it is implemented,

a related problem exists of the user using a wrong word. For example, a user of MDL

might specify a level-3 line to be driven by "thisside" when he meant "thisio". To

alleviate this problem, there are many more locally reserved words in MDL+ (but

not globally reserved words), so that in this example, while "thisio" is still accepted,
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"thisside" is accepted as well.

Another similar problem comes about because the globally reserved words are

case-sensitive, and MDL had an ad hoc method of deciding which letters would be

capitalized, so that the user would need to try each possibility to be sure. (There was

no accurate manual to consult, but there was the flex file.) There were often multiple

ways to specify the word, but even then many were capitalized in an unpredictable

manner. MDL+ globally reserved words, on the other hand, were designed with

consideration of a general convention: It should always be all right to completely

capitalize any of these words, to leave only the first letter of each sub-word capitalized,

and to leave the entire word lower-case. Sometime, where it might not be clear what

the middle option means, it might be necessary to consult the complete list of ways

to specify each globally reserved word in appendix C.

Finally, a feature which should soon be added to the MDL+ syntax is the abil-

ity to output chip descriptions to global context 1. Each MATRIX chip has two

programmable global contexts. MDL always outputs configuration information for

global context 0, and thus can never be used to produce configurations for global

context 1. In real situations, this can be devastating, vastly decreasing the power

of a MATRIX chip by increasing its context switching time which can be seen as its

major-instruction issue rate. The MDL+ compiler has been designed to output chip

descriptions in either global context. In fact the code generation routine that actually

prints the configuration information to the output file takes an argument of which

global context to print out writes for. This argument is hardcoded to 0, but could

easily be passed as 1 when the user desires it given a small change to the MDL+

syntax. As with all of the other changes to the syntax, with this change we would

achieve a large improvement to the MDL+ source code and compiler.

7.1.3 Output and Error Messages

Last, but not least, the MDL+ compiler is much better than the MDL compiler

because of the interfaces it provides for the user. The command line options provide

the user with much useful power, the output is much clearer and more concise, and
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the errors are far more explanative.

User Options and Output

For each of the intermediate languages of MDL+ (1.0,1.1,1.2,1.3) there is an input

mode and an output mode. By input modes, we mean that the source code may

contain elements from any of these languages. The existence of output modes is

much more explicit: Using the appropriate command line argument the user can get

the MDL+ compiler to output its configuration information for each chip in any of the

MDL+ intermediate languages. This realizes the multi-level programming objective

that we set out to possess in chapter 2.

To further achieve our human interaction objective, beyond just enabling the user

to access the data before and after the driver, router, placer, and grouper act, there

are other command line arguments that affect particular phases. For example, there

are the -S and -F options discussed in the previous section for the driving phase.

More useful for multi-level programming are the -Y and -Z options to the placement

phase which toggle whether the placer will act randomly or deterministically. These

options can be very useful for a user interacting with MDL+ when combined with

the -U option (see appendix B).

Having five normal output modes (and a sixth output mode for debugging), en-

ables MDL+ to output data in any form that the user might desire it. In addition,

MDL+ offers the user control over which automatic phases are run on each input file,

starting from any phase and then continuing all the way down through the lowest-

level phase. Yet, MDL+'s advantage when it comes to output is not limited to how

it gets to the point when it outputs data and at which points it will output data -

it also provides a great improvement in the actual form of the data it outputs.

MDL never outputted high-level MDL code, so there is no comparison possible

here, but MDL+ code that is outputted by the MDL+ compiler is formatted well in

that it is pretty-printed and only includes the specified configuration bits. Whatever

configuration data is left unspecified is omitted wherever the MDL+ grammar allows

it to be omitted, and listed as DC in the few remaining places. Thus, while lacking
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the abstraction and hierarchy built into human programs, MDL+ output from the

MDL+ compiler (at any of the intermediate stages) is still much more readable and

easy to understand than human-generated MDL code ever was.

Even the basic verilog output mode of the MDL+ compiler is far superior to the

output mode of the MDL compiler. The verilog output now consists of a list (one per

line) of verilog procedure calls which will write either configuration memory or main

memory to a MATRIX chip. The MDL compiler had outputted a list (one per line) of

numbers that included the addresses and data for memory writes, and information to

specify whether it was intended for a configuration memory write or a main memory

write, but all of this needed to be converted by another program to the form of the

MDL+ output files. Thus, MDL+ has removed the necessity of using that extra

program while making the file more readable. (Configuration writes actually say the

word "Config" in them, address and data are separated, etc.)

Of course, there are several other benefits to the MDL+ verilog output besides

the basic format. The verilog output code is now shorter, more correct, and much

more readable and thus debugable.

The verilog files are now shorter - often in total byte-length, always in number

of lines and thus number of cycles that it takes to load into an actual MATRIX chip.

They are shorter because the MDL+ compiler outputs only the configuration bytes

that the user cares about, whereas the MDL compiler specified configuration and

main memory writes for every memory byte on the MATRIX chip. Besides taking up

less space and requiring much less time to load into a MATRIX simulation (and an

actual MATRIX chip) the advantage behind this is that the code is more readable.

Furthermore, recall that we set out in chapter 1 to create a general purpose com-

puting device that had a shorter instruction word than FPGAs. While this has been

considered a benefit of MATRIX and CGRAs for a long time, this benefit has only

been realized with MDL+. Now, the instruction word is a lot shorter and only as

long as it takes to specify the configuration that the programmer cares about, as

opposed to FPGAs which generally must have their entire configuration loaded even

when only a small subset is relevant to the programmer.
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In fact, had the MDL compiler possessed this quality it would have greatly affected

the work that the MATRIX design team did to test the verilog model of the chip, and

to write tests for the fabricated chip itself. For the simulation, a complete global

context being loaded onto the chip takes about 20 minutes to half an hour to run

on a SPARC 20 with 132-196 megabytes of RAM. This is a long time, especially

since it is required upon starting up any test of MATRIX, and always needs to occur

before even the first test involving that configuration has run. With a very long list

of regression tests to be run on the verilog model of MATRIX we felt a need to avoid

this cost.

Some people proposed elaborate systems to examine each MDL file and compare

it to the previously loaded MDL file and a user-specified list of unpredictable events

that might happen when the previous MDL code runs, with the elaborate system

then producing a new MDL output file that was the subset of the file that actually

needed to be loaded in. Instead of this project, in practice the tests were designed by

writing a lot of code to generate the MATRIX configuration writes, re-implementing

the abstraction barriers in MDL, and going to great lengths and efforts to avoid

MDL in order to produce tests that would be able to run in a reasonable amount of

time. With MDL+, none of this effort would have been necessary, and the MATRIX

testing effort would likely have required less time to implement and been superior in

its correctness and ability to find errors in the hardware design.

Not only are the verilog output files more concise, but they are most likely more

accurate and correct. MDL output was periodically found to have bugs in it, but

the code generation in MDL+ has been debugged extensively and is written in a

very easy to understand and modify manner. The code has been checked by multiple

people, been used several times outside of the compiler and had its output checked

separately, and then inserted into the compiler and had its output checked again.

Of course, we do not mean to suggest that there will be no code generation errors

or bugs in MDL+. But, even when bugs are found, they will be easier to debug and

fix. While there are many reasons contributing to the ease of debugging which have

been mentioned, the most important aspect is that the verilog output is commented.
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% grep "Config" Micro8-mdl+.v I grep "16'h23" I grep -i "drive 11"
WriteConfig(16'h231c, 8'h0, l'bl);// Drive L1 - 4 unused, N,E,S,W

% grep "Config" Micro8-mdl+.v I grep "16'h22" I grep -i "msb"
WriteConfig(16'h220c, 8'hff, 1'bl);// Carry Byte - leftsrc, rightsrc, MSB, LSB

Figure 7-1: Examining an MDL+ verilog output file

Each line of the verilog output from MDL+ is a memory write to a MATRIX chip.

After the call to the verilog procedure which performs the write, the compiler outputs

the verilog comment characters and then prints a comment on the meaning of the

particular configuration byte written. These meanings are based only on the address,

but the non-obvious ones explain what the various data values would indicate.

This enables a user to easily read the verilog output and figure out what it is

doing. If a line is incorrect, or there when it should not be he can look at the code-

generator C++ code and grep through for the comment, quickly tracking down the

bug. Of course, the most difficult part of tracking the bug down in the past (with

MDL and while working on MDL++) has been determining which configuration write

was incorrect. For example, even after determining that an incorrect value is on a

wire, the user still needs to determine why the configuration made that possible. This

is exactly where it assists to have the comments in the verilog file. Where it used

to take a long time to track down specific facts about the output file, it is now one

command-line grep away, as shown in figure 7-1.

In this figure, we examine the verilog output from MDL+ running on one of the

versions of the 8-Bit microprocessor. Since we had named the chip in that case

"micro8", MDL+ put the output in a file named "Micro8-mdl+.v". This filename

specifies "mdl+" so as not to be confused with MDL output, ".v" so that we can tell

the verilog output from the MDL+ output modes, and it capitalizes the filename so

that a simple convention of always naming source files starting with lowercase letters

will ensure that source code is never overwritten by MDL+'s output.

Both lines of this example start by searching through the file for configuration

memory writes (including "Config") that were for a specific BFU (addresses are the
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only 16 bit fields, and the high byte is made up of two hexadecimal characters that

each specify a BFU or VBFU by row-then-column notation). The final search limits

the returned lines to those with a certain explanation in their comment portion. Thus,

the first search is to determine whether BFU (3,2) is driving its level-i lines, and the

second search is to determine whether BFU (2,2) has been configured to be the MSB

for wide-word operations. From this figure it should be clear how easy it is to get

information even from the lowest level of MDL+ output, an incredible leap forward

from MDL.

Error Reporting

There are too many different parse errors that MDL+ reports for us to attempt to

give specific details of them all here. Besides, the important point is not what help

they give, but that they do give help to the MDL+ programmer.

MDL's error checking and reporting is described completely in five lines from

[Esl95] which end by warning the user to "be careful!" While there are several situa-

tions which will prompt MDL to halt with some other error message, in practice most

people go through months of MDL programming without receiving any error other

than "Parse error: Parse error" which is not very helpful. Those error messages that

do specify more will sometimes explain which procedure of the MDL code received an

incorrect value, instead of explaining what that means in terms of MDL or the user.

Finally, there have been some basic parse errors that have caused the MDL compiler

to segmentation fault and core dump, although all such known instances have been

patched.

MDL+, while its error reporting of basic syntax errors could be greatly improved,

does explain many more parse errors. There are still designs that are so syntacticly

wrong that the compiler will merely terminate with "Parse Error: syntax error",

but in practice a vast majority of the errors detected leave long explanatory error

messages. And these explanations are always addressed to the MDL+ programmer

who need not be a C programmer.

Furthermore, MDL+ has not been known to segmentation fault due to bad syntax
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on the part of the MDL+ programmer. Even if something does go wrong with the

MDL+ executable (unforeseen bugs must be in there), they will likely be easier to

debug than MDL bugs were, since most unexpected events are actually checked for

by the executable, causing it to immediately halt and display an explanative error

message about what was detected at which point. These error messages are intended

for the C++ programmer who should then have the bug in the executable completely

diagnosed and be ready to attempt to track the cause down and fix the problem. While

these messages should never be seen by the user, it is worth noting that MDL+ has

been built with several strong independent layers of error reporting.

There are also some errors for the various phases of the compiler but these are

not as well developed, and it is hard to compare them with MDL, since MDL did not

have the automatic phases, let alone the error messages. Thus, we will not discuss

those here.

In conclusion, the MDL+ compiler provides much more functionality, is easier to

use, is better explained and specified, uses and produces code that is shorter and more

user-friendly, and is written with code that is much more understandable, debugable,

and extensible. Whereas MDL code warns "Don't even think about trying to read

or understand this code..." and suggests that it is bad because it was a quick hack,

MDL+ code was designed from the start to be robust and extensible. These are all

major improvements of MDL+ over the previous state of the art.

7.2 New Insights

This section will summarize, from the last couple chapters, the insights that we have

gleaned from designing and using MDL+. We will suggest heuristics for manual

placement, ideas of how to best use the MDL+ compiler, and opinions on the types

of designs that are more successful on MATRIX. Throughout this section we will

emphasize the useful heuristics that we have learned while discussing these insights.

Suggestions for future work will be reserved for the next section.
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7.2.1 Manual Placement

Through chapter 6 we have analyzed many different automatic placements, and dis-

cussed the ways in which we could learn from the ways the compiler treated those

designs. The first thing that we learned is that there are multiple ways of using the

placer:

* When working on manually placing a design, MDL+ can be used to suggest

several alternatives, eventually leading the programmer to a design of his own.

* The programmer can leave all of the work for the placer, since it will likely do

a decent job, and then if necessary clean up the automatically compiled design

after it is done.

Heuristic #1: Let the compiler do as much work as possible. While both of these

are legitimate alternatives, and any programmer is likely to pick and choose between

them at different times, we recommend relying heavily on the compiler. There will be

many times when the designs will need a lot of work, but they will often be sufficient

or need very little touching-up and thus the compiler can save the programmer from

a lot of tedious work.

Heuristic #2: Level-1 lines should be used whenever possible. Level-i lines are

not registered, while all other lines are. Level-1 lines are equally available to all BFUs

thus allowing designs with only level-i lines to be translated freely around the layout

grid. Since level-1 lines around a BFU are rotationally symmetric, designs with only

level-1 lines can also be rotated freely on the layout. Level-1 lines emit the least heat

of any lines, as soon as some are used several more must be driven and so they should

be used as well, and level-1 lines are not depletable resources. Since level-i lines are

short-range, using them will encourage designs to stay compact. Especially in the

initial design, other lines should not be used when a level-i line is available.

Heuristic #3: Use symmetry when initially placing. All of the best designs

seem to have some sort of natural symmetry in them, and the symmetry is always

explainable in terms of similar units each getting to be placed in similar circumstances.
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In many disciplines optimal solutions to similar problems result in symmetric designs,

and it will usually help to look out for symmetry even if the search only gets as far

as a better understanding of the needs of the units in a design and which ones are

in similar situations. While symmetry should be a major concern early in the design

process, it should cease to be a concern once the basic design is set.

Heuristic #4: Encourage compactness only after a basic design is achieved.

Once a basic design has been found, local optimizations that are sure to improve it

should be made. The most common of these is moving around a few BFUs so that

the design fits in a smaller rectangle, thus enabling it to be more easily inserted on a

chip or tiled several times.

Heuristic #5: Use Knight-pairs to place un-connected units. It is a good idea to

spend as much effort on placing un-connected units as is spent on placing connected

units. This is especially true when the un-connected units are each connected with

many of the same BFUs. Placing these un-connected BFUs in k-pairs with each other

can sometimes make the rest of the design obvious in a way that placing a few of

the connected BFUs next to each other never would. This is partially because there

are fewer options for slots to place BFUs where they will not be connected combined

with the fact that there are generally fewer once-removed un-connected BFU pairs

than there are BFUs that need to communicate with each other.

Heuristic #6: Place holes at edges and corners of designs. Besides placing un-

connected pairs, another way to place in a "reverse" order is by placing the holes, or

slots on the grid without used BFUs, first. Even if the holes are not placed first, they

should be considered before the design is complete. A hole in the center of a design

is not likely to ever get used by other units on a chip, most likely becoming wasted

area and a lost opportunity for high-connectivity between units. Always place the

holes near the BFUs that are likely to take input and provide output for the design,

otherwise it might be very hard to incorporate the design onto a chip that will use it.

Heuristic #7: Do not place in a vacuum. A very large effect on the design

of a unit will come from the other units on the same chip - they will determine

which shape is best, where holes should be to correspond to other units' jutting-out
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points, and how much level-3 usage is reasonable. Putting a design on several chips

with different other units present will cause MDL+ to place it differently, and manual

placement should be no different. Of all effects from other units, the largest will stem

from a design's interactions with those other units.

Heuristic #8: Ignore artificial regularity and structure. As we saw with several

of the examples, humans tend to have preconceived notions that add artificial con-

straints to the placement problem. Sometimes this is a benefit, such as when it keeps

BFUs that are performing a multi-word operation next to each other, but it is usually

harmful. BFUs should not be placed next to each other because they need to share

a line. Instead, the designer should always be asking himself the question "Why do

they need to be near each other?" and if the only answer deals with sharing a level-i

line then the implication is clearly that they can be two units apart in a cardinal

direction, not only next to each other. Insufficient questioning of design practices can

lead to an understandable reliance on imaginary constraints.

7.2.2 How to use MDL+

Since MDL+ was designed carefully from the objectives in chapter 2, the best ways

to use it are largely encompassed in the goals from that chapter that govern the ways

in which it can be used. After describing the implementation of MDL+ in detail in

chapters 4 and 5, we provide general insights on how to use MDL+ effectively here.

Heuristic #9: Use multi-level programming. One of the few common themes

that can be found when searching the literature on high-level synthesis is the need

for some element of multi-programming, as described when we set it as one of our

goals behind MDL+. In fact, multi-level programming can be very useful in any

environment such as MDL+, due to the compiler's interaction with the programmer

in the form of several intelligent automatic phases. Since MDL+ was designed in an

effort to be as multi-level programmable as possible, this turns out to be one of its

most useful features.

Programmers should not be afraid to use this feature. The best way to make use

of it is to start by programming at a high level and then compiling down to low level
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MDL+ code. If the code seems fine, then it can be left alone, but if it leaves something

to be desired then the programmer should interact with the compiler. Several ways

have been suggested for this interaction through this thesis, and any of them are all

right, as it is the interaction itself that is the key.

Heuristic #10: Let the driver do all of the driving except for dynamic sources.

The driver is quite good at doing a non-intelligent phase, and should therefore be

left alone to do its work. Unless there is some special reason to act differently,

programmers should not explicitly enable or disable any level-1 or level-2 lines and

should not turn off any level-3 lines. This will keep the code shorter while it remains

just as effective. The exception is that MDL+ programmers should explicitly disable

all lines that can be read by a dynamically sourced port but will not be read, for

reasons mentioned in section 4.3.

Heuristic #11: Use the "-S" option whenever possible. There is no reason to

make the code longer and thus slower to load and harder to read as well as having it

take up more space unless it will actually be loaded onto a physical fabricated chip.

Heuristic #12: Do not interfere with intelligent phases until they mess up. In-

telligent phases of the MDL+ compiler are not very intelligent, but they are intelligent

enough to do most of the things that they are responsible for. There is no reason to

manually route a chip until the compiler has been given a chance to route it, or place

it before the compiler has been given a chance to place it.

Heuristic #13: Try using "-2UZ" and "-2UY" when necessary. If the compiler

has a hard time placing a chip then let it try re-placing the chip again and again for

a long time until it finds a solution. After a while the compiler becomes less likely

to find a better solution than it has already found, but programmers should not be

afraid to try the "-Z" nondeterminism or "-Y" simulated nondeterminism. When the

initial placement is very bad, there is a good chance that the placer can do better.

Heuristic #14: Compiled designs can be incorporated into a chip. While it

would be unwise to forget the option of compiling an entire complicated chip at once,

programmers should remember that each design of a smaller unit can be compiled

on its own and then incorporated into a complete chip design after it is placed and
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routed. However, as suggested by an earlier piece of insight, such an approach should

only be taken after the compiler has failed to make a satisfactory design for the chip

as a whole.

7.2.3 MATRIX's Strong Points

After attempting to compile several different general purpose computing architectures

as well as several other MDL+ programs in the last chapter, we offer some ideas about

which architectures and types of programs MATRIX and CGRAs are best suited to.

We also review the elements of MATRIX that are not very useful for compilation.

Heuristic #15: If the architecture is important enough then it should be used.

While MATRIX and MDL+ performed better on some architectures than others, none

of them were so bad that they need to be avoided at all costs. If there is some general

purpose computing architecture that is very appropriate to an application, then it

should be emulated on MATRIX.

Heuristic #16: Small units are better than large units. High throughput might

require a large unit, but in general smaller units are easier to design and route,

and then connect to each other on a MATRIX chip. Therefore, whether the unit is

emulating a general purpose computing architecture or an ASIC design, it is better

if it is smaller.

Heuristic #17: Do not worry about running out of wires. MATRIX has many

wires on it, at least until our suggestions for eliminating some of them are imple-

mented. While we did not consider any examples that are heavily connected to the

point of risking running out of wires, we believe that we did consider sufficiently

dense designs to conclude that the ratio of wires to BFUs is large enough to prevent a

reasonably-connected group of BFUs from running out of wires to connect the signals

they share.

Heuristic #18: A chip can be modeled as connected clusters of BFUs. The small

heavily connected clusters of BFUs can be sparsely connected to each other to form

almost any design that might be desired on MATRIX. This type of implementation

is likely to use the smallest number and cheapest type of MATRIX resources while
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being able to modularly form most algorithms that might be desired on MATRIX.

Each cluster of BFUs might be emulating a general purpose computing architecture

or it might be an ASIC design.

Heuristic #19: Avoid level-2 lines and if possible length-2 level-1 lines. Use as

little of the control system as possible. In chapter 6 we suggested eliminating the level-

2 lines because they were not very useful for designs, while adding a lot of complexity

and area to a CGRA. We also suggested attempting to eliminate length-2 level-1

lines because they were not very useful while adding some area to the chip. Finally,

we suggested a complete overhaul of the control system. These resources should be

avoided because they are not very useful and in some cases not very easy to use and

also because they might not exist on CGRAs for a very long time. Thus, designs that

make heavy use of these features might soon require an extensive redesign.

In conclusion, we have gained many insights through this work with MDL+. To be

used best they should probably be treated like any group of heuristics, with common

sense arbitrating disputes between them. It is also important to remember that no

one has used MDL+ or programmed for MATRIX or any CGRA very extensively and

thus a lot of experimentation will be as helpful for an MDL+ programmer as any of

our other heuristics.

7.3 Future Work

While no one will likely ever do more work to improve MDL+ and extend it into

MDL++, this section is devoted to suggesting future work that should be done.

Some of it is work that would have been included in MDL+ if there had been more

time, and some of it involves major projects that should follow the MDL+ project.

7.3.1 Basic MDL+

Even though MDL+ has improved upon MDL in a lot of ways, there are still many

more ways in which MDL+ can be fixed and made even better. This is a list of some

of them.
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* Fix the known bugs. A file has been kept through the development of MDL+

that lists all currently known bugs in the program and even suggests ways to fix

many of them. Any further effort on MDL+ should start by working on these

problems.

* Add macro functionality to MDL+. A macro or package would be a group

of BFUs which could then be placed in a layout. When being placed, any

references in the package, including the names of the BFUs, would be changed

into unique names. In this way, a unit could be added to a layout several times

without the different copies of it confusing each other.

* Every list structure in the language should be able to be rearranged in order.

Currently, most lists can be arbitrarily ordered in the syntax of MDL+, but

some can not.

* Add explanations of basic syntax errors. When the compiler halts with most

parse errors it provides a good explanation of the cause of the error, but for

basic syntax errors is provides no explanation.

* Add an option to output verilog for a chip to be placed in the second pro-

grammable global context. There are two programmable global contexts, and

MDL+ has the ability to output a chip to either one but the syntax does not

provide a way for the user to ask MDL+ to output to the second context, thus

it always outputs to the first.

* Add sureness amounts to the syntax of many statements. Once the programmer

has a means of telling the compiler how sure he is that he wants a BFU placed

in a certain position or routed over a certain line the compiler can use those

suggestions to help its algorithm without being bound to them. This will add

to the amount of ability the MDL+ compiler has to interact with its user.

* Incorporate the Connect construct into the Layout construct. This idea was

implemented a long time ago but then abandoned, however it should be con-

sidered again. The Connect is usually thought of by the programmer as part
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(def-constant x 3)
(def-constant x (static 11_nl))
(def-bfu-ports d (ports (fpiport x x (tscycle 2)) (fplport 1)

(def-bfu b d)
(def-layout 1 (b 1 1))
(def-chip BadChip 1)

Figure 7-2: MDL+ code that does not make sense

of the internal MATRIX chip and thus should be specified with the rest of the

chip. Then, shifting a chip Layout across the grid would shift control of the

appropriate level-3 lines as well, as it should.

* Get feedback from users. At this point, not many people have used MDL+. If a

group of people used it for a while and then provided feedback on its capabilities,

it could be improved even further.

7.3.2 Driver

When discussing the driving phase we concluded that there was no need to make the

driver more intelligent to the extent that it would correct problems by, for example,

driving a level-3 line with some constant because it was being read. However, it would

be great to augment the driver to search out as many of these nonsensical elements

of design as possible and warn the user.

Consider figure 7-2. The only specification on the entire chip is that the BFU at

(1,1) has its first floating port (FP1) in static source mode receiving the level-i line

from its north as input.

Compiling this code with the MDL+ compiler and the -dS options shows that the

Driving Phase of the compiler has added a specification to the BFU just north of "b",

the BFU at location (1,2). That BFU, even though it has no configuration telling it

what to drive, has its 1llsl enabled. We could have the Driving Phase set the BFU

at (1,2) to have its Fm port always set to the constant ALU value PASSA, and the A

port set to the constant value 0, so that the BFU "b" is at least getting valid input

184



of some kind for its floating port, with the minimum power dissipated.

However, the more important thing would be to warn the user that he is having

a BFU look for a piece of its input to come from an unspecified value. Perhaps the

user meant to specify the BFU at (1,2) or thought that some package of lower-level

definitions that he had included would define the output of BFU (1,2). If so, this

warning would be very valuable. If not, in the less likely case, the user could ignore

the warning. So that the user has the option of ignoring the warning, it should merely

be a warning as the errors from the intelligent phases of the compiler are, and not

halt the compiler as the errors from the parser do.

Besides adding these warnings, the best way that the driver can be improved is by

adding to the MDL+ grammar a means of specifying where a dynamic source might

take input from. This would make it very easy on the programmer to indicate the

range of places that the driver needs to turn on, thus eliminating many of the 30

wires which the driver could not have easily eliminated.

Although adding warnings and adjusting the dynamic source syntax are the two

best ways that the driving phase can be improved, there are also ways in which it

might improve its analysis. First, there could be more analysis to determine whether

a line that is read actually has the value used somewhere. If the value is never used

then the line can be disabled even though it is read.

Second, in the absence of a change to the MDL+ syntax for dynamic sources, the

driver might be able to find a way of easily eliminating many of the possible sources

that the dynamic port might have chosen. Although figuring out exactly which lines

the dynamic source will choose in general is hard, the driver might be able to do some

analysis so that it can turn off many more lines in the cases where the analysis is

easy.

With each change to the automatic driving phase, we are trying to get closer to

the goal of MDL+ programmers never needing to see or use a BFU Power and never

needing to disable driving a line.
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7.3.3 Router

The syntax for the router and the router's algorithm could both be improved. The

syntax handles routing between BFUs, but should be extended to handle routing

between VBFUs as well as routing carry chains together for single-cycle wide word

operations or even multi-cycle pipelined operations.

The routing algorithm itself should be improved in at least two ways. First, it

should be extended to handle more cases by doing a lot of routing that requires two

hops. While the router currently handles routing every wire that can be routed in

one hop, it is very bad at routing other wires.

Second, the router should do a lot more timing analysis. At this point it merely

routes between two BFUs, and extra register objects can be added so that there will

be delays between the signal's generation and consumption, but it would be better

if the syntax allowed a user to specify that a BFU wanted to receive another BFU's

output after a delay of n cycles. Then, the router could be more intelligent, using

long paths and higher level network wires to route signals that need to take a long

time and using level-i lines for signals that can not have any delay at all.

Third, if the time switching capabilities of MATRIX are working once the chip is

fabricated then a router that always succeeds should be built using an algorithm that

keeps slowing the chip down until every line can be routed to its destination in the

appropriate number of macro-cycles.

7.3.4 Placer

As the placer has been the subject of most of our research, since it is one of the most

difficult parts of designing a MATRIX chip, it is also the target for a lot of suggested

future work.

To start with, there are several ways that an expanded MDL+ syntax might

enable a better placer to be designed. If MDL+ adds optional sureness values to each

placement, then the compiler could start using different algorithms. The simulated

annealing algorithm is a good one in general because it does not require a starting
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point that is near the optimal solution, but if the user provides a placement that is

close to the optimal solution then the placer could decide to use a different algorithm

to do a more conservative hill climbing of the problem.

Additionally, the compiler would be able to output the user-placed BFUs with

100% sureness values, and other BFUs with lower sureness values so that a "-2Z"

option would replace the old "-2UZ" option when the user merely wanted the orig-

inally unplaced BFUs to be re-placed. Furthermore, the compiler might update the

sureness values of BFUs depending on how its search went so that progressive calls

to "mdl -2Z" might become calls to the compiler to continue work instead of calls to

starting over and retrying as they are now.

Even without sureness values, future work on the placer might include modifying

the algorithm or even replacing it. Since we have developed several intuitions on

how to manually place, discussed in the last section, these heuristics might now be

incorporated as problem-specific patches to the algorithm or could even replace the old

algorithm. After all, part of the reason that a general simulated annealing algorithm

was chosen was because we did not have any heuristics teaching us how to place

MATRIX chips yet.

Future work could also take the opposite direction, realizing that there is still

more research to be done identifying how MDL+ would compiler to various chips.

In this case, a general algorithm might still be necessary, but it might be better to

replace the simulated annealing algorithm with an algorithm that is still general but

which can be designed more specifically for the problem of placing. One such class of

algorithms is genetic algorithms,3 and there are many other algorithms which might

start to become more appropriate to this problem as we learn more about it. Figuring

out which algorithms are best suited to solving this problem is one of the continuing

tasks for MDL+ research.

One of the advancements that could change the preferred placement algorithm

is getting a better interface to the router. Currently, the placer has a very efficient

means of keeping a good estimate of how routable the chip is at every point during

3This idea was suggested by Thomas Colthurst.
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the placement phase. However, as the router becomes more intelligent the placer

will either need to change the way it makes these calculations or actually interface

with the router and attempt to route the chip several times while arranging possible

placements.

Finally, there are several ways in which the current placer could be easily modified

that should be considered for future work. First, it could implement a magnetic

attraction to the bottom-left of a layout grid. In other words, the minimization

function could favor designs that kept themselves closer to the bottom-left of the

grid, in an effort to make layouts easily placeable inside other layouts as pieces of a

larger design.

Second, the function could be tweaked to encourage compactness of the design.

Due to the heuristic of not worrying about compactness until the basic design is set,

it might be best to add this to the minimization function only at low temperatures.

Such a change would not prevent programmers from needing to shift large segments of

the design over to points nearer each other, but it would probably snap all little easily

movable pieces into positions as close as possible, and there were several examples in

the last chapter of cases when this would have been beneficial.

Third, once the syntax of MDL+ has been extended to allow the compiler to

route carry chains together, the placer should be modified to use this information.

Once the placer has done its job, the routing of these wires should be trivial, but

the placement of BFUs based on this information would be invaluable. Until that

time, certain architectures will not usually be effectively automatically compiled on

MATRIX. With this adaption of the placer, the 32-bit microprocessor and the VLIW

example from the last chapter should be automatically placeable.

7.3.5 Grouper

Since the grouper is in a much more primitive state than the placer, initial future

work on it will probably be of a simpler nature. To start with, someone should make

the basic functionality work, having it actually group some objects together.

Once the basic grouper is working, more objects should be added to build up
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the primitives at this higher abstract layer so that there becomes less of a reason

for programmers to ever delve deeper. One high-level object for each basic general

purpose computing architecture might be a good way to start.

After the grouper is working and compiling from a larger set of objects, work will

need to be done to make it more intelligent. That is, it should perform analysis to

group objects into single BFUs as tightly as possible and it should be able to better

realize what an object needs. With these added forms of intelligence and analysis

the grouper might realize that two objects each only need a 128-byte memory and

a single local context, then combining them into a single BFU with its memory in

dual-port mode.

Next, as a more advanced placer should be developed that receives feedback from

the router it would be good for the grouper to receive some form of feedback from the

placer and router to help it determine which units should be grouped together in order

to make placement easier. If not feedback from the other phases, the grouper should

at least be given heuristics to help it guess at which groupings will make placement

easier.

Finally, some analysis should be done to discover the best way to view the resources

of a MATRIX chip. The grouper can use the determined metric as a minimization

function to help it figure out how it should group various units. One possible way to

view the chip is in term of the lines, since there are a finite number of them and due

to power considerations it is better to use fewer of them.

Another way to view the chip is in terms of BFUs since there are a finite number

of them available and a design that uses fewer BFUs can be included more times on a

chip, can have more other units put on a chip along with it, and in some cases being

smaller is what enables a design to fit on a single MATRIX chip instead of needing to

be spread out over multiple chips.

A third way to view the chip is in terms of the floating ports since they are a

limited resource that is in high demand. They can float between many different uses,

but each floating port can only be doing one thing at a time: enabling another port

on the BFU to be in dynamic source mode, enabling an additional signal to be driven
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onto the level-2 or level-3 lines, or enabling the ALU to calculate a MULA or MULAA

operation. In the end, the best metric of resource usage on a MATRIX chip might be

a combination of these three views.

7.3.6 High-Level Synthesis

After some use of MDL+, people should be able to determine which objects would

do a good job of compiling down to MATRIX. After these objects have been added to

the language and they can be grouped well, an MDL++ compiler should be designed

to compile a high-level language down to these constructs.

Even the small number of objects that are currently available should be a good

start for this, as Silage or any general dataflow-oriented language would probably

compile down somewhat easily to registers, ALUs, and memory units. Whenever the

high-level synthesis research and development indicates that another object would be

useful, it can be added to MDL+ and the grouper adjusted to group it.

This model of an MDL++ compiler should provide for a very good first imple-

mentation since it provides a very good abstraction barrier. First, it separates the

high-level synthesis from the low-level details of the design of CGRAs. A person

writing the MDL++ compiler which uses MDL+ as a backend would not even need

to know that there are BFUs on MATRIX or what their capabilities include. Instead,

he could constrain his thoughts to compiling for the MDL+ objects. A side effect

of this is that if the MATRIX hardware changes the MDL++ compiler will not need

to change. Instead, the MDL+ compiler will just be redesigned to provide the same

objects, grouping them into a different type of BFU.

Second, this division separates the problem of deciding on an architecture from the

problem of implementing that architecture. A large part of the job for the MDL++

compiler will be deciding which architecture is best for implementing each piece of the

design. Then, it will use the objects for those architectures and the MDL+ compiler

will worry about how to best place and route that architecture to make it efficient in

time and space.

Part of the reason that it is so hard to program for MATRIX is that there is an
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added dimension of efficiency being sought, since the design must be efficient not only

in space and time but over all possible architectural designs as well. [Mat96b] This

is a drawback of using MATRIX that directly comes from the feature that it does not

fix the application's architecture at fabrication time. By removing this problem to

a place where only it needs to be solved (architectural efficiency with MDL++) and

then solving the other problems separately (time and space efficiency with MDL+),

a useful abstraction line has been drawn.

While any actual input on the design of a high-level synthesis compiler is beyond

the scope of this project, MDL+ should have created an environment in which the

design work will be much easier. This is one of the most important results of MDL+,

and thus this future work is highly encouraged.

7.3.7 CGRAs

We have suggested many design changes for CGRAs and in particular for future

versions of the MATRIX chip. The OR plane should not be reinstated, the level-2

lines should be eliminated, the control system should be entirely redesigned, and

then the length-2 level-1 lines should be studied and possibly eliminated as well.

Even given all of those changes, CGRAs will continue to rely heavily on the

assistance provided for them by automatic compilation tools and CGRA-specific CAD

tools. An acceptance of CGRAs in the world and an increase in their use will only

come about if there is either a lot of work done in development of these tools or a

very good high-level synthesis compiler is built for CGRAs.

CGRAs are a new form of general purpose computing device that has advantages

over any single other form of computing device, but they are significantly harder to

program and use. Thus, CGRAs have the potential to be widely adopted in academic

and industry circles, but only when the software tools accompanying them make them

a better choice than combining several other architectures onto one chip in hardware.
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Appendix A

MDL+ version 1.0 Grammar

<program> = <statement>*
<statement> = <def-const> I <def-bfu-network> I <def-bfu-config> I

<def-bfu-control> I <def-bfu-power> I <def-port> I
<def-bfu-ports> I <def-bitvec> I <def-bfu> I
<def-layout> I <def-ioport> I <def-connect> I <def-chip>

<def-const> = (def-constant <id> <constval>)
<const-val> = dcl <num> I <checked-const-val> <checked-static-val>I

<checked-dynamic-val>I <wrapped-checked-alu-val>I
<wrapped-checked-mem-val> <wrapped-checked-sel-val>I
<id>

<checked-const-val> = (constant <num>) I (constant <13-driver>)
<13-driver> = <id> I Bful I Bfu2 I Bfu3 I Bfu4 I Bfu5 I Bfu6 I

otherio I otherside I sameio I thisio I sameside I thisside I
zero I constantO I none

<checked-static-val> = (static <srcaddr>) I (static <13-src-addr>)
<srcaddr> = local I 11_ni I 11_n2 I lne I ... I 13_h4 I ctrl I md I cO
<13-src-addr> = Llnd I Llsd I Lled I Llwd I Lln I Lls I Lle I Llw I

L1_1 I L1_2 I L2_1 I L2_2 I L3_1 I L3_2 I L3_3 I L3_4 I
ioport I ioport I none I constant I constantO I zero I
highbits

<checked-dynamic-val> = (dynamic)
<wrapped-checked-alu-val> = (aluval <checked-alu-val>)
<checked-alu-val> = (<inst>? (ctx 011)? (we 011)?)
<inst> = (shift alb rll fIcIOl) I (passalpassb inv?) I

(andlorixorladdladdOladdl mullmulalmulaa mcon inva? invb?)
<wrapped-checked-mem-val> = (memval <checked-mem-val>)
<checked-mem-val> = ((port singleldouble)? (alua input memory)?

(alub inputImemory)? (memdat inputbilocal)?
(cfgwrite disablelenable)? (cfgread disablelenable))

<wrapped-checked-sel-val> = (sel <checked-sel-val>)
<checked-sel-val> = <num> I <sel-val-item>*
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<sel-val-item> = A I B columnA I columnB I CR1 I CR_2 11_1 I 11_2
121 I 12 2 13 132 13_3 1 13 4 I <id>

<wrapped-checked-en-val> = (en <checked-en-val>)

<checked-en-val> = <num> ] <en-val-item>*
<en-val-item> = AI B columnA I columnB I 121 I 12_2 13_1 I 13_2

13_3 I 13_4 I 0I_0 I 1O_1 zero I one I input I output I <id>

<def-bfu-network> = (def-bfu-network <id> <bfu-network-val> )
<bfu-network-val> = dc I <checked-bfu-network-val> I <id>
<checked-bfu-network-val> = (network (<driven_12_13_line> <n_or_fpport>)*)
<driven_12_13 line> = 12_dl I 12_d2 1 13_vl I ... I 13_h4

<n_or_fpport> = ni I n2 I fpl I fp2

<def-bfu-config> = (def-bfu-config <id> <bfu-config-val> )
<bfu-config-val> = dc I <checked-bfu-config-val> I <id>
<checked-bfu-config-val> = (config <flag>* (tscycle (we <num>)?

(maddl <num>)? (madd2 <num>)?)?)

<flag> = ignorecarry I carrypipeline I maddIdyn I madd2dyn I tsenable
msb I lsb I left:<source> I right:<source>

<source> = north I east I south I west I local I control I zero I one

<def-bfu-control> = (def-bfu-control <id> <bfu-control-val> )
<bfu-control-val> = dc I <checked-bfu-control-val> I <id>
<checked-bfu-control-val> = (control (inputsel fpllfp2)? (ctrlmux reducelor)?

(or <bfu-mem-val>)?

(reducei <9bit-compare> <9bit-compare>)?

(reduceii <reduceii-item>*)?

(crselect <cr_dir>? <cr_dir>? <cr_dir>? <cr_dir>?)?)

<reduceii-item> = <21bit-compare> I (<reduceii-bit-desc>) I
(notleitherifail <reduceii-bit-desc>) I fail I accept

<reduceii-bit-desc> = fp[0..7] I bit[0..20] I local I
nlln2Ine elle21selsls2lswlwllw2Inw

<9bit-compare> = 0[r,R](Olllxlf)^9
<21bit-compare> = 0[r,R](01IxlIf)^21
<crdir> = nl I n2 I ne I ... I local I zero

<def-bfu-power> = (def-bfu-power <id> <bfu-power-val> )

<bfu-power-val> = dc I <checked-bfu-power-val> I <id>
<checked-bfu-power-val> = (power (<output-line> disable enable)*)
<output-line> = l1ni I ... I 12dl I 12d2

<def-port> = (def-port <id> <port-val> )
<port-val> = dc I <checked-port-val> I <id>
<checked-port-val> = (port <const-num>? <const-num>? (tscycle <const-num>?)?)
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<def-bfu-ports> = (def-bfu-ports <id> <bfu-ports-val>)
<bfu-ports-val> = dc I <checked-bfu-ports-val> I <id>
<checked-bfu-ports-val> = (ports (<port-name> <port-val>?)*)
<port-name> = alulmemlaport bportinlport n2port fplport fp2port
<port-val> = <unchecked-port-val> I id I dc
<unchecked-port-val> = <const-num>? <const-num>? (tscycle <const-num>?)?

<def-bitvec> = (def-mem <id> <bfu-mem-val>) I (def-bitvec <id> <bfu-mem-val>)
<bfu-mem-val> = dc I <checked-bfu-mem-val> I <id>
<checked-bfu-mem-val> = (cells <const-num>*) I (bitvec <const-num>*)

<def-bfu> = (def-bfu <id> <bfu-val>)
<bfu-val> = dc I <bfu-piece>* I <id>
<bfu-piece> = <checked-bfu-config-val> I <checked-bfu-network-val>

<checked-bfu-ports-val> I <checked-bfu-control-val>
<checked-bfu-power-val> I <checked-bfu-mem-val> I <id>

<def-layout> = (def-layout <id> <layout-val>)
<layout-val> = dc I <layout-piece>* I <id>
<layout-piece> = (<id> <const-num> <const-num>)

<def-ioport> = (def-ioport <id> <ioport-val>)
<ioport-val> = dc I <ioport-piece>* I <id>
<ioport-piece> = (<sel-field> <checked-sel-val>) I

(<en-field> <checked-en-val>)

<def-connect> = (def-connect <id> <connect-val>)
<connect-val> = dc I <connect-piece>* I <id>
<connect-piece> = (<13-spec> <connect-val-spec>?)
<13-spec> = [R,C][1..6]_[1..4]
<connect-val-spec> = <checked-const-val> I <checked-static-val> I dc

<def-chip> = (def-chip <id> <chip-val>)
<chip-val> = dc I <chip-piece>* I <id>
<chip-piece> = <id> I (<portname> <id>)
<portname> = [N,W,E,S][O,1,2]

<const-num> = dc I <num> I <id> I <checked-const-val> I <checked-static-val>
<checked-dynamic-val> I <checked-alu-val> I
<checked-mem-val>

<num> = {digit}+ I {O}{x}{hex-digit}+
<id> = <idfirst>(<idfirst>I{digit})*
<idfirst> = {letter}Ij_j:.j.-/j$1<l>
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Appendix B

MDL+ Man Pages

File Errors
In the event that mdl+ can not open up a file that you have

asked it to compile, it will exit giving you the name of the
troublesome file and an error code which can be looked up in
"/usr/include/sys/errno.h". No later files will be compiled.

Command Line Args
Although the program's output does not actually indicate it,

mdl+ can compile different files with different options set, all by
one call to the compiler. You can set the options with the command
line flags, and the compiler will observe them left-to-right.
Whenever you give it a filename (arg not prefixed with "-") it will
compile that file with the args set at that point. Then it will
continue with the rest of the command line. If at any point it can
not read a file, all processing stops (see section File Errors).

Some possible command line args control what kind of output the
program provides after parsing the input files. The default is to
output verilog files for each chip in the input file.

-v this is the default. Outputs a verilog file for each chip in
<chipname>-mdl+.v which when included in a verilog model of
the chip will load the chip's configuration.

-d this is the debug output. It outputs to standard output the
final object defined in the file and the entire contents of
the symbol table.

-0 this is the mdl+ 1.0 output mode.

-1 this is the mdl+ 1.1 output mode for chips that have not yet been
put through the Automatic Driving Phase. Running code through
mdl -0 is the same as running mdl -D on code generated from the
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original source by mdl -1. This option is for people who want to
get mdl+ 1.0 output, but don't want all of the added lines dealing
with power. It does clean up the code considerably.

-2 this is the mdl+ 1.2 output mode for chips that have not yet been
routed. Running code through mdl -0 is the same as running mdl -R

on code generated from the original source by mdl -2. This option

is useful sometimes in helping to understand better what was

automatically placed, since there is still an added level of
abstraction present that will be removed by the router. Using mdl -2
and mdl -1 should help understand how the router deals with problems.

-3 this is the mdl+ 1.3 output mode for chips that have not yet been
placed. Running code through mdl -0 is the same as running mdl -P
on code generated from the original source by mdl -3. This option

is useful sometimes in helping to understand better what was

automatically grouped, since there is still an added level of

abstraction present that will be removed by the placer and router.

Using mdl -3 and mdl -2 should help understand how the placer deals
with problems.

Other possible command line args control what automatic

improving or optimizing tools are used on your input, after it is
parsed, before it is outputted.

-N Do nothing.

-D Do the driving phase. If lines are specified driven or not,

leave that alone, otherwise if the line is used then drive it,

and finally if the user didn't specify that line and it isn't

used, then don't drive it in order to conserve power. This

phase has the options -S and -F associated with it.

-R In addition to driving, do the routing phase. This routes

wires that were only specified previously as coming from

another high-level construct, such as a BFU or a

VBFU. (Currently only BFUs.) You can not do the routing phase

without the driving phase, and get verilog output. You would

have to run mdl -Nv on the output of mdl -R1.

-P In addition to driving and routing (-R) also do the placement

phase. This places BFUs that were only specified previously

as being in a chip's layout, but not at which location. If

you wish to do the placement phase without the routing phase,

try mdl -P2 to do phases starting with placement, and print
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output just after the placement phase. You can not do the
placement phase without the routing and driving phases if you
wish chip-loadable verilog output. If that was what you wanted
you would have to run mdl -Nv on the output of mdl -P2.

-S This is an option for the Driving Phase. It is for when you
are compiling MDL+ code to be used in simulations, but not for
use on actual silicon. In this case, you need not worry about
turning off unused lines, and in the interest of shorter
output files, the driving phase does not specify these lines
as powered down. It does still force some lines to be driven.

-F This is an option for the Driving Phase. It is for when you
are compiling MDL+ code to be used on an actual Fabbed chip.
A Matrix chip would be ruined if all lines were driven, as it
would dissipate enough power to fry the chip. Thus, turning
off as many lines from being driven as possible is important.
This option will have the Driving Phase cause every line to
not be driven unless it is either specified by the user to be
driven or being read by another unit while the user did not
specify anything about it. This is the default.

-U This is an option useful when you're trying to either find out
different random possible placings of a chip (thus using the -Z
option) or trying to find different deterministic placings
(thus using the -Y option). It means that if the Placement
Phase is executed, it will ignore the placements you have
forced and re-place all BFUs on its own. You can use this as
a way to have suggestive-placings in your layout definition
which will get ignored, but it is intended so that you can keep
running mdl -2UZ or mdl -2UY on its output until you like the
result. This is most useful when you have many chip definitions
in a single file and only wish to work on the placement of
one of them. Note that mdl -2UY continuously being executed
will produce different results, just as mdl -2UZ will, except
that it is more likely to converge, and is far easier to re-
produce the result.

-Y This is the default. It is an option for the Placement Phase,
which causes the Automatic Placer to always yield the same
placement result. In other words, it makes the MDL+ compiler
deterministic. This option can be used in conjunction with the
-U option to produce iteratively different but reproducibly
random results. Repeatedly executing mdl -2UY on the same file
will cause the Placer to re-place the chip, each time with the
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initial placement based on the previous placement. This process
can converge, as opposed to using mdl -2UZ, but may be preferable
since you can reproduce your result by starting with the human-
written source code and applying mdl -2UY repeatedly again.

-Z This is the opposite of the -Y option. It makes the MDL+

compiler non-deterministic. It is an option for the Placement
Phase. Each call to mdl -Z on the same input file will
produce a possibly-different placement. For most chips, you
will probably get decent placement from the "standard"
deterministic placer, so this option is only recommended to

"Shake things up" when you aren't getting good results. To
return a novel result to the "standard" placement, assuming you
produced a placed but un-routed output file with mdl -2Z, you
can not run mdl -2UY on the output from the non-deterministic

run. This is because the BFUs are likely listed in a different

order than they used to be, and thus a deterministic random
algorithm will likely produce different results.

WARNINGS

Warning: WE on the memory of a BFU does in fact default to 0 (no
writes), in any specified ALU instruction. However, if you do not

tell the compiler that you care about the Fa port of the BFU at all,
then the WE becomes unspecified. MDL+ might or might not set it to
zero. (Although MDL+ will never actually set it to one, it could end

up as one if the config byte is not overwritten and the previous

application in the global context had it as a one. This should not be

a problem, since using the memory means you most likely pass its

values out through the ALU, but we figured we should mention it.

Warning: If MDL+ wants to write output to a file that already exists,

it will write over it. Often this is the desired effect since the

source file is really an automatically-generated file from the

previous MDL+ run. To ensure that you do not write over your own

human-generated code it is suggested that you maintain a convention of

not beginning your MDL+ source files' names with a capital letter. MDL+

will only produce output file names that begin with a capital letter.

KNOWN BUGS

Bug: The output mdl files generated by mdl -3 do not actually produce

correct output. mdl -3 code will ignore any unplaced BFUs.

Bugs: See the /mdl/knownbugs file. There's lots of them.
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Appendix C

MDL+ Globally Reserved Words

These are all words which are reserved with special meanings in all of any MDL+
program. There are also many other words which are reserved with special meanings
in specific contexts. For those words, look at the part of chapter 4 that is relevant to
the particular context.

The globally reserved words are reserved in a case-sensitive manner. Locally
reserved words are always reserved in a case-insensitive manner.

1This is also a locally reserved word, in the definition of static sources.
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Reserved Word Other versions
dc DC
def-constant DEF-CONSTANT
constant 1 CONSTANT const CONST
static STATIC
dynamic DYNAMIC
shift SHIFT
aluval ALUVAL
passa PASSA
passb PASSB
invA inva INVA
invB invb INVB
inv INV
ctx CTX
we WE
memval MEMVAL
port Port PORT
alua ALUA
alub ALUB
memdat MEMDAT
cfgwrite CFGWRITE
cfgread CFGREAD
network Network NETWORK
def-bfu-network DEF-BFU-NETWORK
def-bfu-config DEF-BFU-CONFIG
CONFIG Config config
TSCYCLE TSCycle tscycle
MADD1 MAddl Maddl maddl
MADD2 MAdd2 Madd2 madd2
DEF-BFU-CONTROL def-bfu-control
CONTROL Control control

Table C.1: Global Keywords in MDL+, part 1 of 2
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Reserved Word Other versions
INPUTSEL InputSel Inputsel inputsel
CTRLMUX CtrlMux Ctrlmux ctrlmux
REDUCEI Reducel Reducei Reducel reducel reducei reduceI
REDUCEII ReduceIIl Reduceii Reduce2 reduce2 reduceii reducell
CRSELECT CRSelect CRselect crselect
DEF-BFU-POWER Def-Bfu-Power def-bfu-power
POWER Power power
DEF-BFU-PORTS Def-Bfu-Ports def-bfu-ports
PORTS Ports ports
DEF-PORT Def-Port def-port
DEF-BITVEC Def-Bitvec def-bitvec
DEF-MEM Def-Mem def-mem
CELLS Cells cells
BITVEC Bitvec bitvec
DEF-BFU Def-Bfu def-bfu
DEF-LAYOUT Def-Layout def-layout
DEF-IOPORT DEF-IO-PORT Def-IOport Def-IO-Port def-ioport def-io-port
DATAEN DataEn Dataen dataen
BIT1EN BitlEn Bitlen bitlen
BIT2EN Bit2En Bit2en bit2en
DataSel Datasel datasel
BITISEL BitlSel Bit1sel bit1sel
BIT2SEL Bit2Sel Bit2sel bit2sel
SEL Sel sel
EN En en
DEF-CONNECT Def-Connect def-connect
DEF-CHIP Def-Chip def-chip
DEF-MEM-OBJ Def-Mem-Obj def-mem-obj
DEF-ALU-OBJ Def-Alu-Obj def-alu-obj
DEF-REG-OBJ Def-Reg-Obj def-reg-obj

Table C.2: Global Keywords in MDL+, part 2 of 2
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Appendix D

8 Bit Microprocessor implemented
in MDL

This appendix includes many versions of MDL and MDL+ source code which imple-
ment the 8-bit microprocessor that is depicted in figure 5-1 on MATRIX. Many excerpts
from these implementations are given in chapter 5. The implementations are given
in an order from smallest language (MDL) through ever increasing languages (more
functionality and more automatic phases) to the largest language (MDL+1.4).

D.1 MDL

This is the code for the MATRIX 8-bit microprocessor implemented in MDL:

;; MDL definition of an 8-bit microprocessor

(def-bitvec testbits OxO)

(def-constant dontcare (const 0))

(def-bitvec dontcarebits OxO)

(def-constant basic-mem
((Port Single) (ALUA Input)
(ALUB Input) (MemDat Input)
(CtxWrite Disable)

(CtxRead Disable))

(def-bfu PC
(config)
(network
(L2_dl Ni)
(L2_d2 Ni)
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(L3_vl N1)
(L3_v2 N1)
(L3_v3 N1)
(L3_v4 N1)
(L3_hl N1)
(L3_h2 Ni)
(L3_h3 N1)
(L3_h4 Ni))

(ports
(ALU ((passa) (ctx 0) (we 0))

((addO) (ctx 0) (we 0)))

(MEM basic-mem basic-mem)

(Aport (const 0) (static local))
(Bport dontcare (const 1))

(Niport dontcare dontcare)

(N2port dontcare dontcare)

(FPiport dontcare dontcare)

(FP2port dontcare dontcare)

(control

(InputSel FP2port) ;; dc

(CtrlMux REDUCE) ;; dc

(OR testbits) ;; dc
(ReduceI Orx00000100 Orx00000100)

(ReduceII OrOXXXXXXXXXXXXXXXXXXXX) ;; (not local)

(CRSelect N1 N2 NE W2)

(mem dontcare_bits)

(def-bitvec f-bits

10 ;; ((addO) (ctx 0) (we 0))
13 ;; ((and) (ctx 0) (we 0))
15 ;; ((xor) (ctx 0) (we 0))
14 ;; ((or) (ctx 0) (we 0))
43 ;; ((addl invb) (ctx 0) (we 0)) which is SUB

(def-bfu F
(config)
(network

(L2_dl N1)
(L2_d2 N1)
(L3-vl N1)
(L3_v2 Ni)
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(L3_v3 Ni)
(L3_v4 Ni)
(L3_hl Ni)
(L3_h2 Ni)
(L3_h3 N1)
(L3_h4 Ni))

(ports
(ALU ((passa) (ctx 0) (we 0))

dontcare)
(MEM ((port single) (alua memory) (ALUB Input) (MemDat Input)

(CtxWrite Disable) (CtxRead Disable))
basic-mem)

(Aport (static 11_ni) dontcare)
(Bport dontcare dontcare)
(Niport dontcare dontcare)
(N2port dontcare dontcare)
(FPiport dontcare dontcare)
(FP2port dontcare dontcare)

(control
(InputSel FP2port) ;; dc
(CtrlMux REDUCE) ;; dc
(OR test_bits) ;; dc
(Reducel Or000000000 Or000000000) ;; dc
(ReduceII OrFXXXXXXXXXXXXXXXXXXXX) ;; always stay in icl ctx 0
(CRSelect N1 N2 NE W2) ;; dc

(mem f-bits)

(def-bitvec a-bits 0 i 2 3 4)

(def-bfu A

(config)
(network

(L2_di Ni)
(L2_d2 Ni)

(L3-vi Ni)
(L3_v2 Ni)
(L3_v3 Ni)
(L3_v4 N1)
(L3hil Ni)
(L3_h2 Ni)
(L3_h3 Ni)
(L3-h4 Ni))
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(ports
(ALU ((passa) (ctx 0) (we 0))

dontcare)

(MEM ((port single) (alua memory) (ALUB Input) (MemDat Input)
(CtxWrite Disable) (CtxRead Disable))

basic-mem)

(Aport (static 11_nw) dontcare)

(Bport dontcare dontcare)

(Nlport dontcare dontcare)

(N2port dontcare dontcare)

(FPlport dontcare dontcare)

(FP2port dontcare dontcare)

(control

(InputSel FP2port) ;; dc

(CtrlMux REDUCE) ;; dc

(OR test_bits) ;; dc
(ReduceI Or000000000 Or000000000) ;; dc

(ReduceII OrFXXXXXXXXXXXXXXXXXXXX) ;; always fail, stay in lcl ctx 0
(CRSelect N1 N2 NE W2) ;; dc

(mem a-bits)

(def-bitvec b-bits 5 4 3 2 1)

(def-bfu B

(config)

(network

(L2_dl N1)
(L2_d2 N1)
(L3_vl N1)
(L3_v2 N1)
(L3_v3 N1)
(L3_v4 Ni)
(L3_hl Ni)
(L3_h2 Ni)
(L3_h3 Ni)
(L3_h4 N1))

(ports
(ALU ((passa) (ctx 0) (we 0))

dontcare)
(MEM ((port single) (alua memory) (ALUB Input) (MemDat Input)

(CtxWrite Disable) (CtxRead Disable))

basic-mem)

208



(Aport (static 12_wl) dontcare) ;; rebroadcast from alu
(Bport dontcare dontcare)
(Nlport dontcare dontcare)
(N2port dontcare dontcare)
(FPiport dontcare dontcare)
(FP2port dontcare dontcare)

(control
(InputSel FP2port) ;; dc
(CtrlMux REDUCE) ;; dc
(OR testbits) ;; dc

(ReduceI Or000000000 Or000000000) ;; dc
(ReduceII OrFXXXXXXXXXXXXXXXXXXXX) ;; always fail
(CRSelect N1 N2 NE W2) ;; dc

(mem b-bits)

(def-bfu ALU

(config)

(network

(L2dil Ni)
(L2_d2 Ni) ;; this one matters
(L3_vl N1)
(L3_v2 Ni)

(L3_v3 NI)

(L3_v4 Ni)

(L3_hi Ni)
(L3_h2 Ni)

(L3_h3 Ni)
(L3_h4 Ni))
(ports

(ALU (static 11_ni) dontcare)
(MEM basic-mem basic-mem)
(Aport (static 11_ne) dontcare)
(Bport (static lel) dontcare)
(Nlport (static 11_n2) dontcare) ;; to rebroadcast PC
(N2port dontcare dontcare)
(FPiport dontcare dontcare)
(FP2port dontcare dontcare)

(control

(InputSel FP2port) ;; dc
(CtrlMux REDUCE) ;; dc
(OR test bits) ;; dc
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(ReduceI OrOO0000000 OrOO0000000) ;; dc
(ReduceII OrFXXXXXXXXXXXXXXXXXXXX) ;; fail, stay in Icl ctx 0
(CRSelect N1 N2 NE W2) ;; dc

(mem dontcare_bits)

(def-layout chipcore
(PC 1 3)
(F 1 2)
(A 2 2)
(B 2 1)
(ALU 1 1)

;; Chip boundary definitions

;; MDL Assembler automatically converts the appropriate N1 to El to
;; maintain symmetry, etc...
(def-ioport anIOport ;; all DC

(DataSEL AL1_1)
(DataEN AL2_1)
(BitiSEL AL1_2)
(BitlEN input)
(Bit2SEL BL3_1)
(Bit2EN output)

(def-boundary-column aColumn ;; all DC
(L3Ctrll (static LI11))
(L3Ctrl2 (const bfu2))

(def-edge anEdge ;; all DC
(Ports anIOport anIOport anIOport)
(Columns aColumn aColumn aColumn aColumn aColumn aColumn)

(def-chip chip
(North anEdge) ;; dc
(East anEdge) ;; dc
(South anEdge) ;; dc
(West anEdge) ;; dc
(Core chipcore) ;; here i care
)
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D.2 MDL+1.1

This is the code for the MATRIX 8-bit microprocessor implemented in MDL+1.1,
which uses the basic version of the MDL+ compiler with the automatic driving phase.

;; this is an 8-bit microprocessor written in MDL+1.1

(def-bfu PC
(ports
(alu ((passa)) ((addO))) ;; default to the first ctx for C/R I
(Aport (const 0) (static local))
(Bport dc (const 1))

(control
(ReduceI Orx00000100)
(Reducell (not local))

(def-bfu I-Store
(ports
(mem ((port single) (alua memory)))
(alu ((passa)))

(control (ReduceII fail)) ;; keep in lcl ctx 0

(def-bfu F I-store
(ports
(Aport (static 11_nl)))

(cells ((addO)) ((and)) ((xor)) ((or)) ((addi invb)) ;; last is a SUB

(def-bfu A I-store
(ports

(Aport (static 11_nw)))
(cells 0 1 2 3 4

(def-bfu B I-store
(ports

(Aport (static 12_wl)))
(cells 5 4 3 2 1
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(def-bfu ALU

(network (12-d2 ni))
(ports

(Aport (static 11_ne))
(Bport (static 11_el))
(ALU (static llnl))
(Niport (static 11-n2)) ;; to rebroadcast to B from PC

(control (ReduceII fail)) ;; keep in lcl ctx 0

(def-layout Micro8-layout

(PC 1 3)
(F 1 2)

(A 2 2)

(B 2 1)
(ALU 1 1)

(def-chip Micro8

Micro8-layout)

D.3 MDL+1.2

This is the code for the MATRIX 8-bit microprocessor implemented in MDL+1.2,
which uses an MDL+ compiler like the one for MDL+1.1 except that it also has the
automatic routing phase.

;; this is an 8-bit microprocessor written in MDL+1.2

(def-bfu PC

(ports
(alu ((passa)) ((addO))) ;; default to the first ctx for C/R I

(Aport (const 0) (static local))

(Bport dc (const 1))

(control
(ReduceI OrxO0000100)
(ReduceII (not local))

(def-bfu I-Store
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(ports
(mem ((port single) (alua memory)))
(Aport (static PC))

(alu ((passa)))

(control (ReduceII fail)) ;; keep in icl ctx 0

(def-bfu F I-store
(cells ((addO)) ((and)) ((xor)) ((or)) ((addi invb)) ;; last is a SUB

(def-bfu A I-store
(cells 0 1 2 3 4

(def-bfu B I-store
(cells 5 4 3 2 1

(def-bfu ALU
(ports
(Aport (static A))
(Bport (static B))

(ALU (static F))

(control (ReduceII fail)) ;; keep in lcl ctx 0

(def-layout Micro8-layout

(PC 1 3)
(F 1 2)
(A 2 2)
(B 2 1)
(ALU 1 1)

(def-chip Micro8

Micro8-layout)

D.4 MDL+1.3

This is the code for the MATRIX 8-bit microprocessor implemented in MDL+1.3,
which uses an MDL+ compiler like the one for MDL+1.2 except that it also has the
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automatic placement phase.

;; this is an 8-bit microprocessor written in MDL+1.3

(def-bfu PC
(ports
(alu ((passa)) ((addO))) ;; default to the first ctx for C/R I
(Aport (const 0) (static local))
(Bport dc (const 1))

(control
(ReduceI OrxO0000100)

(ReduceII (not local))
)

(def-bfu I-Store
(ports
(mem ((port single)

(Aport (static PC))
(alu ((passa)))

(alua memory)))

(control (ReduceII fail)) ;; keep in icl ctx 0
)

F I-store

((addO)) ((and)) ((xor)) ((or)) ((addl invb)) ;; last is a SUB

I-store
1234

I-store
4321

(def-bfu ALU
(ports
(Aport (static A))

(Bport (static B))
(ALU (static F))

(control (ReduceII fail)) ;; keep in lcl ctx 0
)
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(def-layout Micro8-layout
(PC)
(F)
(A)
(B)
(ALU)

(def-chip Micro8
Micro8-layout)

D.5 MDL+1.4

This is the code for the MATRIX 8-bit microprocessor implemented in MDL+1.4,
which uses an MDL+ compiler like the one for MDL+1.3 except it also has the
automatic grouping phase.

;; this is an 8-bit microprocessor written in MDL+1.4

(def-bfu PC
(ports
(alu ((passa)) ((addO))) ;; default to the first ctx for C/R I
(Aport (const 0) (static local))

(Bport dc (const 1))

(control

(ReduceI OrxO0000100)

(ReduceII (not local))

(def-mem-obj F (static PC)
(cells ((addO)) ((and)) ((xor)) ((or)) ((addi invb)) ;; last is a SUB

(def-mem-obj
(cells 0 1

(def-mem-obj
(cells 5 4

(static PC)

34

(static PC)
21

(def-alu-obj ALU
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(Aport (static A))
(Bport (static B))
(ALU (static F))

(def-layout Micro8-layout

(PC)
(F)
(A)
(B)
(ALU)

(def-chip Micro8

Micro8-layout)
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Appendix E

Full MDL+ Grammar

<program> = <statement>*
<statement> = <def-const> I <def-bfu-network> I <def-bfu-config> I

<def-bfu-control> I <def-bfu-power> I <def-port> I
<def-bfu-ports> I <def-bitvec> I <def-bfu> I
<def-layout> I <def-ioport> I <def-connect> I <def-chip>

<def-const> = (def-constant <id> <constval>)
<constval> = dc <num> I <checked-const-val> I <checked-static-val>I

<checked-dynamic-val> I <wrapped-checked-alu-val>I
<wrapped-checked-mem-val> I <wrapped-checked-sel-val>I
<id>

<checked-const-val> = (constant <num>) I (constant <13-driver>)
<13-driver> = <id> I Bful I Bfu2 I Bfu3 I Bfu4 I Bfu5 I Bfu6 I

otherio I otherside I sameio I thisio I sameside I thisside
zero I constantO I none

<checked-static-src-val> = (static <srcaddr>) I (static <13-src-addr>) I
(static ID)

<checked-static-val> = (static <srcaddr>) I (static <13-src-addr>)
<srcaddr> = local I 11_nl I 11_n2 I l11ne I ... I 13_h4 I ctrl I md I cO
<13-src-addr> = LLnd I L1_sd I L1_ed I LLwd I Lln I Lls I L1_e I Llw I

L1_1 1 L1-2 I L2_1 I L2_2 I L3_1 I L3_2 I L3_3 I L3_4
ioport I ioport I none I constant I constantO I zero
highbits

<checked-dynamic-val> = (dynamic)
<wrapped-checked-alu-val> = (aluval <checked-alu-val>)
<checked-alu-val> = (<inst>? (ctx 011)? (we 011)?)
<inst> = (shift alb rnl fIclOll) I (passalpassb inv?) I

(andlor•xorladdladdOladdl mullmulalmulaalmcon inva? invb?)
<wrapped-checked-mem-val> = (memval <checked-mem-val>)
<checked-mem-val> = ((port singleldouble)? (alua inputImemory)?

(alub inputImemory)? (memdat inputbilocal)?
(cfgwrite disablelenable)? (cfgread disablelenable))
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<wrapped-checked-sel-val> = (sel <checked-sel-val>)
<checked-sel-val> = <num> I <sel-val-item>*
<sel-val-item> = AI B columnA I columnB I CR_1 CR_2 I 1I I 11_2

12_1 I 12_2 I 13_1 I 13_2 I 13_3 I 13_4 I <id>
<wrapped-checked-en-val> = (en <checked-en-val>)
<checked-en-val> = <num> I <en-val-item>*
<en-val-item> = AI B columnA I columnB I 12_1 I 12_2 I 13_1 I 13_2 2

13_3 I 13_4 I I0_0 I IO_1 I zero I one I input I output I <id>

<def-bfu-network> = (def-bfu-network <id> <bfu-network-val> )
<bfu-network-val> = dc I <checked-bfu-network-val> I <id>
<checked-bfu-network-val> = (network (<driven_12_13_line> <norfpport>)*)
<driven_12_13_line> = 12_dl I 12_d2 I 13_vl I ... I 13_h4
<norfpport> = nl I n2 I fpl I fp2

<def-bfu-config> = (def-bfu-config <id> <bfu-config-val> )
<bfu-config-val> = dc I <checked-bfu-config-val> I <id>
<checked-bfu-config-val> = (config <flag>* (tscycle (we <num>)?

(maddl <num>)? (madd2 <num>)?)?)
<flag> = ignorecarry I carrypipeline I maddidyn I madd2dyn I tsenable

msb I lsb I left:<source> I right:<source>
<source> = north I east I south I west I local I control I zero I one

<def-bfu-control> = (def-bfu-control <id> <bfu-control-val> )
<bfu-control-val> = dc I <checked-bfu-control-val> I <id>
<checked-bfu-control-val> = (control (inputsel fpllfp2)? (ctrlmux reducelor)?

(or <bfu-mem-val>)?
(reducei <9bit-compare> <9bit-compare>)?
(reduceii <reduceii-item>*)?
(crselect <crdir>? <cr_dir>? <crdir>? <crdir>?)?)

<reduceii-item> = <21bit-compare> I (<reduceii-bit-desc>) I
(notleitherlfail <reduceii-bit-desc>) I fail I accept

<reduceii-bit-desc> = fp[0..7] I bit[0..20] I local I
nlIn2Inelelle21se sils2 swIwllw21nw

<9bit-compare> = O[r,R](Olllxlf)^9
<21bit-compare> = O[r,R](Olllxlf)^21
<crdir> = ni I n2 I ne I ... I local I zero

<def-bfu-power> = (def-bfu-power <id> <bfu-power-val> )
<bfu-power-val> = dc I <checked-bfu-power-val> I <id>
<checked-bfu-power-val> = (power (<output-line> disablelenable)*)
<output-line> = l1ln I ... I 12dl I 12d2

<def-port> = (def-port <id> <port-val> )
<port-val> = dc I <checked-port-val> I <id>
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<checked-port-val> = (port <const-src>? <const-src>? (tscycle <const-num>?)?)

<def-bfu-ports> = (def-bfu-ports <id> <bfu-ports-val>)
<bfu-ports-val> = dc I <checked-bfu-ports-val> I <id>
<checked-bfu-ports-val> = (ports (<port-name> <port-val>?)*)
<port-name> = alulmemlaportlbportlnlportln2portlfplportlfp2port
<port-val> = <unchecked-port-val> I id I dc
<unchecked-port-val> = <const-src>? <const-src>? (tscycle <const-num>?)?

<def-bitvec> = (def-mem <id> <bfu-mem-val>) I (def-bitvec <id> <bfu-mem-val>)
<bfu-mem-val> = dc I <checked-bfu-mem-val> I <id>
<checked-bfu-mem-val> = (cells <const-num>*) I (bitvec <const-num>*)

<def-bfu> = (def-bfu <id> <bfu-val>)
<bfu-val> = dc I <bfu-piece>* I <id>
<bfu-piece> = <checked-bfu-config-val> I <checked-bfu-network-val>

<checked-bfu-ports-val> I <checked-bfu-control-val>
<checked-bfu-power-val> I <checked-bfu-mem-val> I <id>

<def-layout> = (def-layout <id> <layout-val>)
<layout-val> = dc I <layout-piece>* I <id>
<layout-piece> = (<id> <const-num> <const-num>) I (<id>)

<def-ioport> = (def-ioport <id> <ioport-val>)
<ioport-val> = dc I <ioport-piece>* I <id>
<ioport-piece> = (<sel-field> <checked-sel-val>) I

(<en-field> <checked-en-val>)

<def-connect> = (def-connect <id> <connect-val>)
<connect-val> = dc I <connect-piece>* I <id>
<connect-piece> = (<13-spec> <connect-val-spec>?)
<13-spec> = [R,C][1..6]_[1..4]
<connect-val-spec> = <checked-const-val> I <checked-static-val> I dc

<def-chip> = (def-chip <id> <chip-val>)
<chip-val> = dc I <chip-piece>* I <id>
<chip-piece> = <id> I (<portname> <id>)
<portname> = [N,W,E,S][O,1,2]

<def-mem-obj> = (def-mem-obj <id> <memobj-val>)
<memobj-val> = dc I <const-src>? <checked-bfu-mem-val>? I <id>

<def-alu-obj> = (def-alu-obj <id> <aluobj-val>)
<aluobj-val> = (<aluobj-port-name> <const-src>?)*
<aluobj-port-name> = alulaportIbport
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<def-reg-obj> = (def-reg-obj <id> dcl<id>)

<const-src> = dc I <num> I <id> I <checked-const-val> I
<checked-static-src-val> I <checked-dynamic-val>
<checked-alu-val> I <checked-mem-val>

<const-num> = dc I <num> I <id> I <checked-const-val> I <checked-static-val>
<checked-dynamic-val> I <checked-alu-val> I
<checked-mem-val>

<num> = {digit}+ I {O}{x}{hex-digit}+
<id> = <idfirst>(<idfirst>I{digit})*

<idfirst> = {letter}LI:i.I-1-/$1<l>
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