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Chapter 1

Background and Introduction

1.1 General Introduction to Grinding

Grinding is an important process in many areas of manufacturing. Historically, grinding has

been used as both a coarse process, for high-speed material removal, and as a fine process for

finishing applications. There is intense interest in the manufacturing industry in improving

grinding, to yield improvements in figure precision, surface finish, and cost. There is also

interest in broadening the uses of grinding, to include ductile-mode material removal for

brittle materials, such as optical glass. At Lawrence Livermore National Laboratory one

use of precision grinding under study is the manufacture of precision optics. The quest for

high-precision parts in optics and other fields is driving a new look at the fundamentals of

grinding.

1.2 Defining the Study of Balance Errors

At issue in this thesis is the effect of balance on grinding. Balance error is caused by

a mass concentration that is not symmetrically distributed about the axis of rotation.

This imbalance results in a time-varying force normal to the axis of rotation. In any one

sensitive direction, the imbalance looks like a sinusoidal force oscillation; it is also, and

more completely, a force vector which rotates around with the machinery, having a period

of once per revolution. The magnitude of the imbalance force changes as the square of the

rotational speed. An imbalance can be thought of as a lump of dough stuck onto a rolling

pin. When the rolling pin is spun, the dough causes a wobble in the spinning motion.



The nonuniform mass of the dough stuck to the rolling pin results in a time-varying force

normal to the axis of rotation. This is caused by non-uniform centripetal acceleration in

the spinning shaft. The equation for force magnitude of an imbalance is

F = mrw2 , (1.1)

where m is the mass of imbalance, r is the distance out from the axis of rotation, and w

is the rotational speed. This equation can be easily derived from first principles of rotating

objects; it is the magnitude of the sine term which describes unidirectional force oscillation

due to imbalance. Alternately, it may be thought of as the unidirectional component of

the constant magnitude imbalance phasor, which rotates with the spindle. In grinding,

the same phenomenon as the rolling pin occurs when there is a nonsymmetric "lump"

of mass in the rotational part of the grinding system. This "lump" of mass may be the

product of a geometric nonuniformity: nonuniform mass distribution around the grinding

wheel, nonsymmetric fixturing, or uneven mass distribution in the grinding spindle itself,

for example.

In a precision machining system, it is often useful to determine an error budget which

compares the results of different sources of error on the total dimensional error of the

machined part. The imbalance force can be looked at as one element of the total error

budget for the grinding process. There are many other (some undetermined) sources of error

in grinding. Examples include thermal errors, seismic errors, and out-of-roundness errors.

Added precision in grinding can be enabled through a detailed study of the dimensional

error budget. The overall balance error is a combination of balance errors in the spindle,

fixturing, and grinding wheel. Imbalance is an error source which directly couples with

machine dynamics: it can excite natural modes of the machine tool, which can in turn

worsen the spindle error motion and ultimately contribute to part errors.

1.3 Application of the Study

A thorough study of the effects of imbalance on precision grinding will give Lawrence Liv-

ermore the ability to produce better-quality parts at lower cost. Ultimately, engineers and

machinists will be able to specify a balancing tolerance for the machine based on a given

part tolerance. They will be able to pick a grinding speed based on machine dynamics,
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to minimize errors on the part. They may even use known imbalances to compensate for

geometric errors in the grinding wheel. This will produce parts of better form (including

surface waviness) and finish. Engineers and machinists would also have the ability to weigh

the relative importance of balance errors against other error sources. This could reduce cost

as personnel will be able to make an informed decision regarding the necessity of balancing

the system and to what degree it needs to be balanced. This thesis will be a first step in

the direction of a more thorough understanding of balance.

1.4 Is balancing worthy of study?

Balancing in grinding is a problem worthy of study. One reason is that balancing errors

may not be fully correctable, so it is important to determine to what extent they affect the

quality of the work. Typically, a balance error is removed by first "truing" the grinding wheel

and then adding mass to specific locations on the wheel to minimize the force magnitude

given in equation 1.1. The act of truing is cutting the wheel at speed so that it is of

uniform roundness in a radial sense and planar in an axial sense. A wheel which has

not been trued will have "high spots" or "low spots" so that the wheel's contact with

the workpiece is not uniform throughout the rotation of the wheel. But truing is not

completely effective. It is a single-point correction of the wheel's geometry and in some

types of grinding (for example, spherical) there is a large contact line between the wheel

and the workpiece. Also a grinding wheel can never be perfectly trued, to zero runout,

since at some level the force required to true the wheel will be greater than the force needed

to bend the wheel away from the truing tool. Another reason balancing errors are not

fully correctable is that imbalance may be generated during the grinding process itself: if

the wheel wear is nonuniform, for example. Finally, the study of balancing in grinding

is a challenging problem. It requires a familiarity with the concepts and terminology of

precision engineering. It requires a thorough experimental effort including high-speed data

acquisition, high-speed spindle analysis, and modal analysis of the grinding system. Careful

modeling of the grinding process can also yield valuable insight, although this is still an

emerging area in the literature.



1.5 Overview of this Study

To study balancing in grinding, I examined a simple mechanical system. It was essential

to study such a well-defined system, as opposed to a large, complex system such as a ma-

chining center. The use of a compact, well-defined system enabled easy quantification of

the imbalance force input, its phase angle to any geometric decentering, and good under-

standing of the machine mode shapes. It is important to understand a simple system such

as the one I examined given that imbalance is so intimately coupled to machine dynamics.

It is possible to extend the results presented here to industrial machines, although that is

not part of this work.

In addition to the empirical testing, I modeled the simple mechanical system to look at

how mode shapes, balance, and geometric error interplay to yield spindle error motion. I will

present the results of this model along with the results from a more global grinding model.

The global model, presented at ASPE in November 1996 [4] allows one to examine the

effects of changing global machine parameters like stiffness and damping. This geometrically

abstract, one-dimensional model will be presented to demonstrate the usefulness of an

abstract approach for first-order understanding but it will not be the main focus of this

thesis.

1.6 Literature Review

In the early stages of this project, I did an extensive literature search and found some

literature relevant to the study of effects of balance in grinding. The first area of interest

is the related field of chatter in machine tools. There are many articles on chatter in the

literature and although chatter is a different phenomenon than imbalance, the literature

can be instructive in that it links material removal processes with machine dynamics. This

literature is useful as background in the derivation of a dynamic grinding model. One article

which was of particular interest to this project, since it suggested a cutting process modeled

as a damper, is [16].

There are a wide variety of grinding process models available in the literature, but many

times these are not extendible past the specific application for which they were derived. A

very simple and useful grinding process model for this project was found in [9]. Additionally

useful was [14]. The model discussed in these papers was chosen for its simplicity and
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applicability to our problem. For a broad view of this field, an excellent survey paper exists

which covers about fifty different process models for grinding [26]. The models surveyed in

this paper cover many specifics of grinding which are beyond the scope of this thesis, such

as material surface integrity and thermal effects. The paper is an excellent starting-point

for any advanced attempts at modeling the grinding process.

There are several useful references on balancing of high-speed machinery. A good start

in this area is [5], which gives the reader a good background in various global approaches

to machine balancing. In addition, there are many textbooks on rotor dynamics. Two

good references in this field can be found in [6] and [20]. There is some literature pertaining

specifically to balancing of grinding wheels. Gawlak briefly describes a series of experiments

done with unbalanced wheels to determine workpiece waviness [7], while Layne discusses

approaches for controlling imbalance in-process [15]. Generally helpful to me throughout

the course of this project was the staff at Balance Dynamics Corporation [2], a manufacturer

of in-process system balancing equipment. One of their internal papers provides a good look

at the effect of using their proprietary balancer on grinding wheel excursion [3].

One of the most useful publications in this work was the ANSI Axis of Rotation Stan-

dard [1]. The standard was helpful in designing experiments to measure spindle error and

characterizing spindle error. It is highly recommended by the author for any work involving

precision spindles. Also of interest is the ISO balance standard for rigid rotors [8]. This

gives curves for allowable imbalances in machining, broken down by process type.

1.7 Road Map

This thesis is organized as follows. In Chapter Two, I describe the experimental and analyt-

ical sequence and the motivation behind them. Chapter Three describes the experimental

hardware used in the project. Chapter Four discusses the modal analysis performed as part

of the project. Chapter Five deals with models of the grinding systems: the first section

discusses a general one-dimensional model, while the remaining two sections discuss an an-

alytical model and a modal analysis software model to predict spindle error motions due

to imbalance in the grinding system tested in this thesis. Chapter Six presents the results

of experiments performed on the grinding system alongside the results for the two models.

Chapter Seven talks about some of the problems I faced in carrying out the project, so that



others might learn from my experiences. Chapter Eight recommends extensions of the tests

and discusses industrial applications of the results.
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Chapter 2

Project Description

2.1 Analytical

The goal of the analytical portion of the project is to understand imbalance as a driver

of machine dynamics. Unlike some of the other potential error sources in a machining op-

eration, imbalance directly excites resonances in the machine tool itself. One could liken

an unbalanced rotor to a shaker, used in dynamic testing. In a given plane containing the

axis of rotation, the imbalance looks like a sinusoidal force input, occurring at the shaft

rotational frequency. For this reason, imbalance could potentially cause catastrophic errors

in the part, as well as damage to the machine itself, in an extreme case. More commonly,

imbalance will deteriorate form accuracy or surface finish. Understanding of machine os-

cillations generated by an imbalance is important because it is machine oscillations which

lead directly to spindle error motion (an observable error in the instantaneous location of

the spindle axis of rotation). Spindle error motion is then transmitted through the cutting

process into errors on the part.

It should be noted here that rotors can exhibit nonsynchronous (i.e. occurring at a

frequency other than once per revolution) effects such as whip and whirl [6, pages 1.73-1.78].

Whirl always occurs at the natural frequency of the shaft, regardless of the frequency of

rotation. (For the spindle used here the natural frequency of the shaft is on the order of 1000

Hz.) Whirl and whip, motions of the rotor out of the plane containing the axis of rotation,

are usually brought on by nonlinear effects within the rotor (many of them hydrodynamic

or friction-induced). These phenomena, while potentially important second-order effects,

will not be addressed in this thesis, which concentrates on synchronous disturbances.



There are two distinct purposes for the models that will be presented here. The first

purpose is to understand how imbalance may affect the dynamics of a large machine tool,

abstracted to one dimension. A global model allows parameters within the grinder, such as

stiffness, damping, and the grinding process model to be varied. The second purpose is to

describe the dynamics of a "simple" grinding system in three dimensions.

From each distinct purpose comes a distinct model. The first model looks at how

imbalance affects a generic machine tool. The results of this one-dimensional grinding

model were presented at ASPE [4]. The model is geometrically abstract, including lumped

parameters for stiffness, damping, and inertial terms. It is included in this thesis mainly

as a demonstration of the usefulness of the approach for rudimentary understanding of a

complex system like a grinding machine. This model has three distinct components: a rotary

system (source of imbalance forces), a machine structure, and a material removal process.

The most important contribution of this model is in expressing the potential complexity of

machine dynamics. By numerically varying parameters in the model, for example air-film

stiffness, one can get an understanding of how sensitive the parameter is to imbalance or

any other disturbance. Since the model is abstract, it could be used to compare different

types and sizes of grinding machine. This model is also useful because it is possible to apply

to many other types of machine tools.

The second model is specific to the experimental air-bearing grinding system described in

this thesis. As such, the geometric parameters are chosen to reflect the real system as closely

as possible. This model predicts spindle error motion in three axes for the experimental

system from input imbalance force. The dynamics of the model are based on oscillatory

modes observed in the system from modal analysis. The input frequency can be swept

through the speed range of the system and error motion in each axis predicted at each

speed. This model could be incorporated into a more global model by adding surrounding

machine structures, a part spindle, and a cutting process model (although this will not be

covered here). This model is derived from empirical knowledge about the oscillatory mode

shapes and natural frequencies of the system.

In addition, there is a third model presented, which uses built-in features of the modal

analysis package to predict displacements given an input sinusoidal force. This is much

easier to implement than the analytical model; it is ready to run in the software at the

conclusion of modal analysis.
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2.2 Experimental

The experimental portion of the project consists of characterizing a "simple" grinding sys-

tem, a Westwind air bearing spindle (commercially available precision grinding spindle)

atop either of a pair of dynamometers. The whole assembly is mounted to a large granite

block, which is isolated from the floor by compressed-air pistons. In the operating frequency

range, the granite block looks like mechanical ground to the system. Two dynamometers

were chosen, a JR3 6-axis strain gauge load cell and a Kistler 3-axis (translation only) piezo-

electric load cell. Being a piezoelectric cell, the Kistler is significantly stiffer than the JR3.

Using the dynamometers serves two purposes: 1) they give a force output, analogous to the

force felt by the machine structure in a more complete machine tool; 2) they add system

dynamics by interacting with the very stiff grinding spindle. It is the second purpose that

is the most interesting to this project: by adding a dynamometer we are essentially simu-

lating a more complex structure in a compact and well-instrumented fashion. In addition

to the two load cell systems, some data were taken with the air spindle bolted directly to

the granite table. This much stiffer system showed very little in the way of resonant effects,

and serves as a baseline to the other tests.

Three major types of data were taken for the Westwind/load-cell system. First, natural

mode data were taken. Understanding the relevant natural modes of the system is crucial

to understanding the effects of any dynamic excitation, such as imbalance. To accomplish

this, a commercially-available modal analysis package was used in conjunction with 3-axis

accelerometers placed in 33 locations in a mesh around the system. The results of these

tests show natural frequency and mode shape data for each natural mode of each of three

systems (Westwind with JR3, Kistler, and no load cell).

Second, spindle error motion data were taken. Understanding spindle error motion is

fundamental to a precision grinding system, as it is spindle error motion, carried through

the cutting process, which maps onto the workpiece as surface figure or finish errors. To

observe spindle error, an orthogonal set of three capacitance gauges was used. The gauges

measured the motion of a steel metrology ball which rotates with the spindle. Two gauges

measure radial errors, one in the y-direction and one in the z-direction (see figure 3-1). A

third gauge measures axial error motion (x-direction). The gauge outputs were amplified,

passed through anti-aliasing filters, and then sampled at 25 kHz with a Pentium computer.



Third, the outputs from the dynamometer were measured. These are important because

as part of a larger machine the force transmitted to the table might excite machine modes.

These were amplified with either a Kistler charge amplifier or a JR3 strain gauge amplifier,

passed through an anti-aliasing filter, and sampled at 25 kHz on a Tektronix 8-channel

data acquisition system. In addition, a timing window which triggered a light sensor once

per revolution was used as a reference pulse and sampled by the Pentium, as well as the

Tektronix A/D boards.

Experiments on the system were designed according to questions that a machine or

process designer might ask:

* "How fast should I cut?"

* "What difference does a 'softer' or 'stiffer' machine make?"

* "How are wheel truing and balance related?"

* "How does error motion scale with imbalance magnitude?"

* "If I add damping, will that improve the spindle error motion due to imbalance?"

To answer the first question, "How fast should I cut?", the effect of varying the spindle

speed over a frequency range was tested, both at the best attainable level of balance, and

with an imbalance weight attached to the spindle. The answer to the second question,

"What difference does a 'softer' machine make?" came from changing the load cell under

the spindle. This is analogous to changing the entire machine structure. This enables

determination of which effects are load-cell independent and hence intrinsic to the spindle

or instrumentation. Both "best" balance and the lowest level of imbalance were tested.

"How are wheel truing and balance related?" To answer this, a series of tests were run

with known ball decenter and imbalance which varied in phase angle with respect to the

decenter. The ball decenter was used in place of an untrue grinding wheel. These tests were

run at several speeds, both with and without a load cell. In the case with the load cell, the

tests were run both below and above all fundamental modes of the system.

To answer "How does error motion scale with imbalance magnitude?", a series of in-

creasing masses were used and the spindle was spun at a variety of speeds, both at a system

harmonic and below the system harmonics. Finally, the damping question was answered
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by adding a thin layer of Sorbothane damping material in parallel with the soft (JR3) load

cell and measuring spindle error motion and dynamometer force both with and without a

low level of imbalance. It is important to note that dynamometer force output between the

undamped and damped JR3 systems is not directly comparable: the Sorbothane transmits

force which is not measured by the load cell.

2.3 Comparing Analysis and Experiment

To tie the experimental data together with the modeling data, Bode-style frequency response

plots were drawn that allow comparison of predictions and experimental results. These plots

allow us to determine how relevant are the models at predicting important effects in the

spindle.





Chapter 3

Experimental Apparatus

3.1 Mechanical System

This chapter describes the setup I used to acquire empirical data on imbalance. The heart of

the setup is a Westwind [27] air bearing spindle, model D1150-03A. This is a commercially-

available precision grinding spindle with a speed rating of up to 50,000 rpm. The spindle

requires a constant supply of 80 psi air to keep the rotor supported by the air bearings.

The air, after passing through an air dryer, flows in through the back of the spindle and out

the front around the rotor and through an exhaust hole. Inside the spindle, the air flows

through passages which are oriented so as to provide stiffness in both the axial (thrust)

and radial directions. It is important that the air be left on at all times. (With the air

off, damage can easily occur if an air bearing is rotated even slightly.) There is no contact

between the rotor and any part of the stator; the spindle motor turns the shaft through

magnetic forces. The motor is a DC brushless device with a pulse-width modulated power

amplifier, and is controlled by a Volkmann motor drive controller. The spindle itself is a

cylindrical unit; in this setup it was provided with an optional bottom-mount housing which

the cylinder is attached to at the front side and cantilevered out the back. (This housing

arrangement provides for some interesting vibrational modes, which will be covered later.)

The nose of the spindle contains a taper chuck used to hold cutting tools, or in the case of

these experiments, a metrology ball. Figure 3-1 shows a schematic of the Westwind spindle

and other relevant apparatus.

Cooling water flows through the spindle to keep the temperature constant. We used a

thermograph to keep track of the spindle and ambient temperatures while operating. The



isolated granite block

Figure 3-1: Schematic of mechanical system: spindle, load cell, and capacitance gauges.

water, supplied by the Laboratory's cooling water system, ensured that the temperature of

the spindle stayed at 70 F, fluctuating only ± 1.5 F over the course of a 24-hour period.

Over the short time period of the experiments (on the order of a minute), temperature

fluctuation was not a significant factor.

The spindle sits on a very large (16' long X 3' high X 3.5' deep) granite beam which was

isolated from the floor on 4 corners. This large mass is chosen as a good approximation to

mechanical "ground": its dynamics occur at frequencies lower than the ones of concern in the

spindle tests. For example, the first bending mode of the block on its isolators is estimated

to be at 30 Hz. To attach the spindle to the granite block, we use three methods which,

from a vibrations standpoint, comprise three completely different mechanical systems.

The most basic method of attachment involves clamping the spindle directly to the block

using toe clamps. Of the three setups, this is by far the stiffest. The latter two methods are

more involved, requiring load cells to be placed between the spindle and the table. I chose

two very different load cells to examine. Both are mounted between 2 aluminum plates which

have been fly-cut flat on both sides. The bottom plate is bolted to the table and the spindle

housing bolts to the top plate. The first load cell is made by JR3 [11] and it is a strain-gauge



Table 3.1: Stiffness of JR3 Load Cell

type cell, with 6 axes of measurement output: the three force axes (x, y, and z) and the

three moments about those force axes (moment about x, moment about y, and moment

about z). Please see table 3.1 for quoted stiffness values in each direction. Physically the

load cell is a "pancake", about an inch thick and 6 inches in diameter. The output passes

through a JR3 strain gauge amplifier before being sampled by the data acquisition system.

This system (spindle-JR3 load cell) had some very pronounced problems at a number of

resonances in the 6,000 to 12,000 rpm (100 to 200 Hz) range, and so in addition it was

tested with some added damping material. The damping was accomplished by adding a

thin layer (0.115" uncompressed) of 30-durometer Sorbothane [22] material in parallel with

the load cell, along two sides of the spindle. To bridge the rest of the gap between the

aluminum fixture plates, a 1.5-inch aluminum boxbeam was used. Once the Sorbothane

was compressed between the boxbeam and the upper aluminum fixture plate, it lost about

25% of its thickness, which is in the design range for the material.

The second load cell is made by Kistler [12] (#9257A) and it is a piezoelectric type, and

hence much stiffer than the JR3. It measures force only, along each of the principal axes

x, y, and z. This load cell is designed for in-process measurement of machine tool forces in

a manufacturing operation. The output from each channel goes to a Kistler 5004 charge

amplifier before being sampled by the data acquisition system. Table 3.2 shows the quoted

stiffness values for this load cell.

On the spindle rotor, to the rear of the chuck, I added an aluminum "balance ring." This

ring fits over the rotor (figure 3-3) and is held there by two opposing set screws. Another

two opposing tapped holes allow the placement of a third set screw, which is used as an

imbalance mass. The balance ring has a tight (close to interference) fit around the rotor, so

that moving the position of the ring has a minimal effect on radial location of the imbalance

JR3 Direction Global Direction Stiffness, N/m or N m/rad
Kx Ky 130e6
Ky Kx 130e6
Kz Kz 1.12e9

KMx KMy 3.84e6
KMy KMx 3.84e6
KMz -KMz 1.20e6



Table 3.2: Stiffness of Kistler Load Cell

Table 3.3: Imbalance Masses

mass. Since the opposite tapped hole is empty, we know exactly the imbalance mass; if we

assume the center of mass of the setscrew to be its geometric center, we know the radius

at which the imbalance mass acts on the system. Using four different lengths of set screw

allowed me four different masses, although for most of the experiments only the smallest

mass ("A") was used. The balance ring can be loosened and rotated to any position on

the rotor, which is useful for phase angle experiments: it allows any relative angle between

imbalance and geometric decenter to be adjusted. Refer to table 3.3 for a description of the

imbalance masses used.

The metrology ball was originally a stock Lion Precision [17] ball (B014-5770) which

was modified to fit in a 5/8-inch collet. This meant machining a new cylinder of steel, 5/8"

in diameter with a 1/4" internal bore. The idea behind adjustment of the metrology ball

center is a flexure shaft. Four setscrews, at 90 degrees to each other, put pressure on the

flexure and in this way move the center of the ball around. (Refer to figure 3-2.) Our steel

bore had an interference fit for the back half of the Lion flexure shaft, with about 0.001" of

radial travel for the shaft in front of the flexure. This enabled ball centering adjustments

within a range of about 100 microinches. This setup was extremely repeatable test to

test, holding a ball offset to within 5 microinches and maintaining the offset angle after

high speeds and spindown. Using this ball, we were able to maintain a known geometric

decenter or get the ball running true within a few microinches.

To measure the position of the metrology ball at rest and at high speeds I employed

Designation Mass, g Effective Radius, cm
A 0.4883 2.301
B 0.8679 2.454
C 1.2273 2.625
D 1.9297 2.948
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Figure 3-2: Cross-section of metrology ball, showing flexure shaft.

three orthogonal Pioneer [19] capacitance gauges. These are mounted in an aluminum

fixture that can be adjusted for the diameter of the ball. Two capacitance gauges look

at the ball radially: one looks horizontally at the ball (labeled "Radiall") and the second

looks vertically up at the ball ("Radial2"). The third capacitance gauge looks end-on

at the ball ("Axial"). The fixture is clamped to an angle iron, which is toe-clamped to

the granite block. (See figure 3-1.) By using a light screwdriver, the capacitance gauge

fixture can be tapped so that the gauges are in range on the ball. Once in range, the

clamps are locked down. Finer adjustment can be made using the offset potentiometers

on the capacitance gauge amplifier. The amplifiers are also supplied by Pioneer, but in

this application were integrated into one LLNL-designed cabinet. Each capacitance gauge

amplifier has three ranges with a full-scale of 1000, 100, and 10 microinches, respectively.

For most of the experiments, the 100-microinch full scale was used. The capacitance gauges

were calibrated over their operating range using a Mituyo calibration tester (model 521-106),
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Figure 3-3: Top view schematic of spindle analyzer setup showing 1/rev counter.

with a positioning resolution of 10 microinches, and a nanovoltmeter.

To measure the rotational speed of the shaft, a timing window and photoeye were used.

(The imbalance due to the timing window is insignificant compared to the added mass

imbalance.) As part of the metrology ball fixture, there is an aluminum disk with a 0.1"

window. The "counter", which sits alongside the Radiall capacitance gauge, has a photoeye

connected to a +5/0 Volt logic gate. This provides a once-per-revolution pulse (see figure 6-

1) which can be used both to determine the rotational speed and as an angle by which other

parameters (e.g. imbalance forces and ball decenter) can be referenced. In general, 0 degrees

refers to the start of the counter pulse. This setup can be seen in figure 3-3.

angle 
iron

I

I
I A=



3.2 Data Acquisition

Data acquisition for the Westwind spindle system was a challenge. In order to acquire

data with the JR3 dynamometer, we needed 10 channels of synchronized input (6 from the

load cell, 3 from the capacitance gauges, and 1 from the counter). This was accomplished

using two different CPUs with three different A/D boards. The first CPU is a Tektronix

2510 8-channel dedicated data acquisition system. It acquires data at 25 kHz per channel,

with built-in 12.5 kHz anti-aliasing filters. It has two A/D boards (labeled "lower" and

"upper"). To acquire the data for the capacitance gauges, we use a Pentium PC with a

4-channel National Instruments A/D board which samples at 25 kHz per channel. The

outputs from the Pioneer capacitance gauge amplifiers are first passed through a Stanford

Research anti-aliasing filter (set at 12.5 kHz) and then sampled by the National Instruments

A/D board. Each of the three A/D boards takes samples of the counter pulse signal, which

is used post-acquisition to synchronize and reference the data. The data is saved to disk in

ASCII format on the Pentium, but a fairly elaborate process must be used to extract the

data from the Tektronix system. Figure 3-4 shows a flowchart for data acquisition with the

JR3 dynamometer.

Starting the two CPUs at the same instant for the acquisition was a challenge. This was

accomplished with a lot of help from and work by a data acquisition specialist. Essentially,

the Pentium system waits for the Tektronix to begin acquisition, and then starts its own,

within one clock pulse (40 microseconds) of the Tektronix starting. This works using a

"trigger out" feature of the Tektronix. The Tektronix has a "trigger out" that goes from

0 to +5 Volts when the acquisition starts. This trigger pulse is coupled through an AND

logic gate with the clock on the Pentium A/D board. The Pentium A/D waits for its own

clock to start to signal the beginning of its data acquisition, and this cannot happen until

the Tektronix has started. Refer to figure 3-5 for a schematic of the synchronization setup.

This was implemented using a dedicated C program which ran in the PC. It should be

noted here that there is a potential problem with discrepancy between the clock speeds of

the two systems: this can be sorted out after the data has been collected. The counter

pulse serves as a time reference to synchronize the two datasets during data analysis. (An

alternative solution would have been to use a calibrated frequency generator as a reference

pulse. However, lack of extra input channels prevented this in our case.)
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Figure 3-4: Flowchart for 12-channel data acquisition with JR3 dynamometer.
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In addition to performing startup synchronization of the two systems, the PC program

had a graphical interface to monitor capacitance gauge position and spindle speed and a

direct memory access (DMA) routine to record data. The DMA ran in the background and

could take data indefinitely. It did this by writing data to the hard disk every time half of

its allocated buffer was filled. By the time the second half of the buffer filled, the DMA was

ready to overwrite the first half, and this process could continue until the hard disk filled.

cap gagers DMA
start address

n/2

n - buffer allocation is
each d1 is dumped to disk
asit fill

Tektronix once Tektronix starts data acquisition,
C AID Pentium clock begins sending pulses to mux & A/D

clock speed - 40 microsee (both clocks)
max sync error on start 40 microsec

Tektronix

Figure 3-5: Synchronization scheme for 12-channel data acquisition using two CPUs.

The reason we did not use a frequency generator for synchronization of the two systems

was simply a lack of channels. In order to take rotational speed data, capacitance gauge

data, and force data from the JR3 load cell we needed to use our maximum channel capacity

of 12 channels (the ten referred to above plus two additional channels for synchronization

across the three A/D cards). As a compromise, we used the once per revolution counter

pulse as a synchronization pulse, even though this has the disadvantage of slowing down in

frequency over the course of the acquisition time (one second). This is because the spindle

drifts down in speed approximately 1% over that time period.

------



In the case of the Kistler setup, data acquisition was much simpler. This required only

7 channels of input (3 for the Kistler outputs, 3 capacitance gauges, and counter pulse). All

7 channels could be acquired on the Tektronix 2510, with an additional counter channel to

synchronize data from the two A/D boards. There was no need to synchronize two systems.

The graphical interface on the PC could still be used to track ball position and rotational

speed, although the PC was not used to acquire any data. Figure 3-6 gives a flowchart for

the Kistler data acquisition.

Figure 3-6: Flowchart for 8-channel data acquisition with Kistler dynamometer.
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Chapter 4

Empirical Modal Analysis

This chapter discusses empirical modal analysis, which was performed on each of the three

systems: Westwind-JR3, Westwind-JR3-damping, and Westwind-Kistler, as well as a fourth

system, the Westwind spindle bolted directly to the granite tabletop. Modal analysis yielded

fundamental insight into the dynamics of the spindle system.

4.1 Procedure

Empirical modal analysis works by measuring structural response to a force input at a series

of locations ("nodes"). Then the frequency responses at each node are combined to yield

information on the mode shapes at each frequency. To do this in practice, the structure

is instrumented with three-axis accelerometers at each desired node and excited with an

instrumented hammer. A spectrum analyzer takes the time signal from each accelerom-

eter and the hammer and converts it into a frequency response spectrum. Knowing the

input and output frequency responses allows determination of a numerical transfer function

between the excitation point and each node, in each direction. A software package then

takes these "frequency response functions" and knowledge of the location of the nodes (the

"mesh") and curvefits the frequency response functions to yield mode shapes for the struc-

ture. Alternately, modal analysis may be performed by instrumenting the structure with

an accelerometer in one location and exciting the structure in multiple locations: the two

processes are mathematically equivalent, although for many systems it is easier to instru-

ment small accelerometers at each node than it is to get a much larger hammer to strike at

each node.



For the modal tests presented here, we used STAR modal analysis software, which is

a commercially-available empirical modal analysis package [23]. The STAR software im-

ports frequency spectra from the spectrum analyzer (Hewlett Packard 3566A multi-channel

analyzer) and does one of several curvefit routines to determine the empirical modal fre-

quencies and mode shapes. It should be noted here that modal analysis is not an exact

science; it involves a fair amount of experienced decision-making on the part of the person

conducting the test and analyzing the data. For example, a few frequency spectra from a

system may show a small "bump" at the same frequency (in contrast to high, clean peaks at

other frequencies). Whether or not this small bump is worth curvefitting as its own mode is

entirely up to the experimenter. Mode shape data from such low peaks is often so deep "in

the noise" that useful results are often impossible to extract. In practice, the experimenter

usually curvefits anything remotely promising, and then later decides which modes are due

to real system oscillation and which are relics of noisy data acquisition.

For this system, we instrumented 33 points on and around the spindle structure with

Endevco model 63-500 three-axis accelerometers. These points included four on the under-

lying granite block (at each corner of the mounting plates), four on the aluminum plate

under the load cell, four on the aluminum plate above the load cell, eight on the spindle

housing, eight on the spindle tailstock, four on the headstock, and one on the rotor (at the

balance ring location). Figure 4-1 shows the mesh used in the tests of the Westwind spindle

mounted to a JR3 dynamometer. Each intersection of lines on the mesh represents a node,

or accelerometer placement location. The large cone is the front of the spindle, with the

cone vertex representing the location of the balance ring on the rotor. The box in the center

is the spindle housing, while the left-most four points are locations on the spindle tailstock.

At the bottom are the four points on the granite table and above those, the four points on

the bottom aluminum plate. Another square of four points above those represents the top

aluminum plate. In between is the dynamometer. The mesh used on the Kistler and no

load cell tests is similar to the one in figure 4-1.

The frequency response was measured at each point by a three-axis accelerometer. The

spindle was excited on the housing with a Dytran 5801A3 instrumented hammer, at a 45-

degree angle to the Y and Z axes, near the joint between housing and spindle. This point

was chosen as it would excite both the housing modes and the spindle modes, in two of

the three orthogonal directions. Each frequency response function output by the spectrum

_ _· _ _·__ __ __i·_____ ~·_··~I
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Figure 4-1: Mesh used in STAR JR3 tests.



analyzer was actually the average of ten hammer strikes, performed in-process by the HP

spectrum analyzer.

After data importation into STAR and curvefitting, the software allows the user to look

at an animated picture of the motion of the structure at each calculated natural frequency.

This is extremely useful as it gives the user an intuitive (and exaggerated) picture of how

the structure is moving at each frequency. The software also provides tables of magnitude

and phase of the motion of each node at each natural frequency. In addition, the software

enables simulation of response to a driving sinusoid (or any arbitrary function) at any one of

the nodes. This feature was useful, as it enabled a computational model of system response

to an imbalance driving function.

4.2 Results

The empirical modal analysis testing produced results which are central to this project. It

showed that the spindle-load cell system was essentially oscillating in a rigid-body fashion,

which enabled construction of an analytical rigid-body model for spindle oscillation. By

rigid-body, we mean that the entire spindle structure, housing included, moves rigidly about

the compliant load cell with respect to the granite table. Most of the oscillatory modes

involved the spindle structure as a whole rotating with respect to the granite table, often

about the center of the load cell. In some cases, the center of rotation was somewhere

else on the spindle, giving the impression of combined translational and rotational motion

(although for purposes of the analytical model, this was combined into rotational motion

about the stationary point).

In addition, there were other useful results: the base of the system does not move

appreciably with respect to the granite table to which it was bolted. However, there is some

appreciable "slip" between the spindle housing and the aluminum plate to which it is bolted

at some frequencies. This is probably due to the addition of (low-friction) circuitboard

material between the housing and the plate, which cuts down on an electrical noise problem

(which did not turn out to be "noise"; see Chapter Seven). In addition, at some frequencies

the tailstock of the spindle moves relative to the housing (and 180 degrees out of phase).

This is an expected effect; according to Westwind, they have received customer feedback

about a resonance between their spindle and housing at some rotational speeds. They call

_ __.



the effect "belling", the ringing of the spindle (which is attached only at the front of the

housing) inside its housing. At some frequencies there is noticeable axial motion of the

spindle rotor. Refer to the tables presented in this chapter for the numerical results of each

modal test and descriptions of the global mode shapes.

4.2.1 Westwind-JR3 system

Table 4.1 shows the modal analysis results for the JR3 system without damping material.

In these tables, the damping value in Hz refers to the width of the peak in Hz at the

half-amplitude point on the peak. In all cases the peak is very narrow; there is very little

damping in the load cell. The two curvefits ("normal" and "advanced") refer to different

algorithms used within the STAR software to calculate modal peaks. It is often useful to

run several of the available algorithms on the raw spectrum analyzer data; often one curvefit

algorithm will pick up on a mode that another missed. Some of the algorithms are tailored

to find "local" modes; others find "global" modes of the whole structure.

The first four modes of this system are all rigid-body modes: predominantly the spindle

rotating about the center of the load cell in one of the three rotational degrees of freedom.

Refer to figures 4-2, 4-3, and 4-4 for STAR-generated pictures of three of these modes. The

mode at 128.8 Hz is not pictured; the mode shape generated by STAR is very similar to that

pictured in figure 4-3. The figures show the maximum displacement of the structure at both

ends of its travel. (They are taken from the STAR results animation of these modes.) Of

course, the amplitudes of oscillation are greatly exaggerated for purposes of visualization.

The higher-frequency modes are more complex, and involve combinations of translation

and rotation of the spindle structure with relation to the load cell. (An example of this can

be seen in figure 4-5, the mode at 289 Hz, where the spindle translates in the Z-direction

and rotates about Y at the same time.) At 323 Hz there is a great deal of translation in

the Z-direction and simultaneous rotation about the Y direction. The highest mode, at 464

Hz, has the spindle twisting about its centerline, with the rotor moving axially at the same

time.

With the addition of damping material, not very much changes in the STAR results.

Table 4.2 presents the results of the modal tests on the JR3 plus damping material system.

The first mode drops slightly in frequency, while the highest raises in frequency, but both

of these changes are relatively minimal. Nor does the peak width (damping) change ap-



Table 4.1: JR3, no damping: natural frequencies and mode shape descriptions. *-see related
figure

Normal Curve Fit Advanced Curve Fit
Mode no. Freq, Hz Damp, Hz Freq, Hz Damp, Hz Description

1* 96.7 1.5 97.5 3.1 rigid-body about Y axis, load cell
2* 113.3 1.4 113.2 1.5 rigid-body about X axis, load cell
3 128.8 0.7 rigid-body about X axis, LC,

some tail shake about Z
4* 163.3 2.7 163.3 2.8 rigid-body about Z axis, LC
5* 289.5 2.3 288.9 7.7 Z dir trans, some My also
6 323.2 7.5 323.7 7.4 Z dir trans
7 464.3 2.1 463.8 4.5 twist about CL of spindle,

some motion of rotor in axial dir

Z

Yi-

Figure 4-2: Undamped JR3 system, mode 1, 96.7 Hz. Rotation about Y axis of load cell.
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Figure 4-3: Undamped JR3 system, mode 2, 113.3 Hz. Rotation about X axis of load cell.
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Figure 4-4: Undamped JR3 system, mode 4, 163.3 Hz. Rotation about Z axis of load cell.
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Figure 4-5: Undamped JR3 system, mode 5, 289.5 Hz. Combined translation and rotation.

Table 4.2: JR3 with damping: natural frequencies and mode shape descriptions

Normal Curve Fit Advanced Curve Fit
Mode no. Freq, Hz Damp, Hz Freq, Hz Damp, Hz Description

1 93.9 2.0 93.9 2.1 rigid-body about Y axis, load cell
2 123.0 2.3 122.7 2.6 rigid-body about X axis, LC,

some tail shake about Z
3 130.0 1.5 similar to 2
4 165.6 3.9 164.5 4.6 rigid-body about Z axis, LC
5 167.5 3.0 Z direction translation
6 289.3 1.2 289.5 5.5 Z dir trans, some My also
7 320.9 8.8 321.2 8.1 similar to 6
8 491.1 0.2 spindle shaft moving axially,

some Z trans

preciably between the two tests. Most of the data is very similar between the undamped

and damped JR3 systems. This is probably because this choice and placement of damping

material, which was a first attempt at solving the spindle oscillation problem, is not well-

matched to the system. A more optimal damping design, possibly with harder damping

material, could be expected to more significantly change the modal analysis results.

4.2.2 Westwind-Kistler system

Table 4.3 shows the modal analysis results for the Westwind-Kistler system. The fact that

this system is stiffer than the JR3-Westwind system is readily apparent. The first mode
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6



Table 4.3: Kistler: natural frequencies and mode shape descriptions

occurs at 127 Hz, as compared to 97 for the JR3 system. Also, there are fewer fundamental

modes - only five. The Kistler frequency response data was subjectively much cleaner that

that for the JR3; the modal peaks were more pronounced and there were less questionable

peaks "in the noise." The first three modes are of the spindle about the load cell principal

axes: Y, X, and Z. At higher frequencies, we see an almost pure translation in the Z-direction

at 412 Hz and at 464 Hz a large motion of the rotor against its thrust bearings (axially).

4.2.3 Westwind (no load cell)

Finally, the fourth modal test performed looks at the spindle by itself, bolted to the granite

block. This data can be seen in table 4.4. This structure by itself (no load cell) is extremely

stiff: one way to tell is to look at the relative motion between nearby nodes. On the earlier

tests (with load cell) the nodes mostly move together, in a rigid fashion. On the tests of

the spindle alone, however, there is sometimes great motion between neighboring points

(i.e. a twist in the housing at the first mode, which was never observed with a load cell in

place). This suggests that nothing is moving very much at all for these tests! One of the

modes observed here, 457 Hz, is similar to the highest seen on the JR3 and Kistler tests

(both at 464 Hz): the motion of the rotor of the spindle in an axial sense is a component of

the modes of all three systems at this frequency. This suggests that this mode is "load cell

independent" and derives from the spindle itself. Refer to figure 4-6 for a picture of this

mode on the system with no load cell.

Normal Curve Fit Advanced Curve Fit
Mode no. Freq, Hz Damp, Hz Freq, Hz Damp, Hz Description

1 127.0 1.5 rigid-body about X axis, load cell
2 138.4 2.9 139.0 3.2 rigid-body about X axis, load cell,

rotor moves clockwise about axis
of rotation

3 274.1 3.8 273.9 3.9 rotation about Z axis, LC,
tail motion slightly lags housing

4 412.3 9.9 412.7 12.1 pure Z translation
5 463.9 5.4 461.4 6.9 large axial motion of rotor,

Z dir trans, some rot. about Y, LC



Table 4.4: Spindle natural frequencies and mode shape descriptions (no load cell) *-see
related figure

Normal Curve Fit Advanced Curve Fit
Mode no. Freq, Hz Damp, Hz Freq, Hz Damp, Hz Description

1 246.1 0.3 tail moves in Z direction
2 301.8 6.3 297.8 10.5 similar to 1
3 317.5 0.4 twist of housing about Z,

tail out of phase w/ housing
4 429.8 1.0 425.4 12.3 twist of housing about Z,

tail in phase w/ housing,
tail rotates about CL of spindle,
rotor moves axially

5* 456.5 5.0 455.9 7.0 rotor moves axially
6 474.7 12.8 478.6 18.5 similar to 3,

except tail in phase w/ housing
7 696.0 14.7 translation in Z and X directions,

rotor moves in Z direction
8 752.8 15.3 745.2 21.3 similar to 7

Many of the other modes in the spindle structure by itself seem to be lost when the

spindle is coupled to a load cell: this makes sense if these local modes are small in relative

amplitude. Add a stiff system on top of a compliant spring and the modes involving the

compliant spring will dominate the oscillations.

The modal data presented here was very helpful in this experiment. It allowed us to

understand the shapes of the resonances we observed in our early spindle tests. Later, the

modal data allowed us to model the structure and make predictions about spindle error

motion based on system resonances.



Figure 4-6: System with no load cell, rotor moving axially, 456.5 Hz.
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Chapter 5

Models

5.1 General Model

5.1.1 Description

This section details the model presented at the ASPE conference in 1996 [4]. The model

was used to check assumptions about the relevant grinding parameters given an imbalance

and a wheel decenter as inputs. The model allowed us to compare the relevance of different

machine parameters in precision grinding. The model is schematically shown in figure 5-1.

This model is not meant to be applied to the real system investigated in this thesis.

Rather, it looks at a large machine tool in a dynamic sense, in one dimension. For the model

I will describe, it is important to note that only time-varying terms are considered. That

is, constant-infeed cutting force is not considered, nor is cutting displacement. One should

think of the model as providing insight into the error motions and oscillating forces about

the process operating points. The model looks at small oscillatory behavior surrounding a

large constant offset.

There are two inputs to the system: the imbalance force which is an oscillating sinusoid

in one degree of freedom input to the grinding wheel mass, and a geometric decenter of the

grinding wheel which is added as a force term acting between the grinding wheel mass and

the workpiece rotor mass. This second input will be described in more detail below. In this

model, we consider three resultant forces: the workpiece spindle force, the cutting process

force, and the grinding spindle force. Workpiece and grinding spindle forces are the forces

transmitted through the spring-dashpots connecting these spindle masses to the rest of the



force

ground

Figure 5-1: Dynamic grinding model.

machine tool. In a real machine, these correspond to the force "seen" by the air bearing.

Cutting process force is the force between the spindles, felt by the workpiece.

At the heart of the model is a cutting process. For this model, I used a cutting model

proposed by Thomas Kurfess in [9]. According to Dr. Kurfess, "The harder you push, the

faster you grind," [13] and so the cutting process looks like a dashpot for small displacements.

Putting Dr. Kurfess' statement another way,

A
F = Kp (5.1)

KpV

where F is the cutting process force, A is the surface area of the contact patch, V is

the relative velocity between cutting wheel and workpiece, and i is the infeed velocity.

K, is Preston's coefficient, which is process-dependent and usually determined empirically.

Thus, a model for the grinding process looks like a dashpot with damping constant Bp

equal to Ay. In practice, we determined Bp from a spark-out test: we let the wheel

dwell in one spot and watched as process force decayed to zero. The rate of decay is

proportional to e (- Kloop/ Bp )t, where Kloop is loop stiffness of the grinding machine, measured

in a static test. In this way force oscillations due to imbalance on the grinding wheel play into



velocity oscillations through the cutting model. Also, the grinding interaction is modeled

as providing damping to the machine.

Separately, I wanted to consider the effect of arbitrary geometric eccentricities on the

system. One of the central tenets of this model was the separation of effects due to pure

imbalance and pure geometric eccentricity. An example of a geometric eccentricity would

be an out-of-center grinding wheel or a wheel with lobes on the surface. (As opposed to an

imbalance which imposes a pure force on the system.) In order to input this to the model,

I considered the case of a pure displacement of the wheel, and its effects on the cutting

process. A time-varying displacement x would have velocity :. This velocity would then

couple into the cutting process equation to yield a force, since F = Bp. In this way an

arbitrary velocity can be input to the model as an additional cutting process force acting

on both masses: the grinding rotor and the workpiece rotor. In my implementation of the

model, I used a simple wheel decenter as the velocity input; this looks like a sinusoid with a

period of once per revolution of the grinding wheel. Using this method, one can phase-shift

one input force relative to the other, to consider cases where the effects of imbalance and

decenter happen separately. Of course, one input may be set to zero to consider cases where

the imbalance or decenter dominates.

Each mass, the workpiece rotor and the grinding wheel, is separately sprung via simple

air bearing models to the larger mass of the machine. Originally, this machine mass was one

continuous element that surrounded the cutting elements, but later some simple machine

dynamics (a spring-dashpot) were added to make the model more complete. In addition,

the entire machine is separated from ground by a spring-dashpot, to simulate the effects of

isolation.

This model evolved over time from a very simple two-mass (workpiece and grinding

wheel) model to the one presented here. Once the graphical representation was worked out,

I derived a differential equation for each mass, using EF = ma. The total forces acting

on each mass came from the spring and dashpot equations which relate force to relative

displacement or velocity, respectively. For this four degree-of-freedom model, I used MAT-

LAB to simulate the response of each mass to force inputs. An example MATLAB script

can be found in Appendix A. This script was used with the latest (unreleased) MATLAB

ODE solvers, which allow better specification of error tolerancing and script specification

of simulation parameters, among other improvements [21]. (The new solvers are available
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Figure 5-2: Effect of varying spindle stiffness on grinding process force and force transmitted
to spindle.

from http://www.mathworks.com/.)

5.1.2 Simulation Results

For the purposes of the presentation at ASPE, this model was used to determine the effect

of varying different machine parameters on the cutting process force. A sample output of

the model can be seen in figure 5-2.

Figure 5-2 shows the effect of spindle stiffness on the cutting process force: as the

spindle gets stiffer, more of the oscillating imbalance force component is transmitted to the

machine through the spindle mount and less through the process. The abscissa is the ratio

of impedances of spindle stiffness and damping in the cutting process. The ordinate is the

cutting process force and grinding spindle force, normalized to the imbalance force. At

some impedance ratio (approximately 0.5), the cutting process force and grinding spindle

force are equal. The values in the graph were obtained by increasing the value for spindle



stiffness in the model and keeping all other process parameters the same. The grinding

speed in the model is 5000 rpm, which is (unintentionally) close to the modeled resonance

of the workpiece rotor on its air bearing. Because of this resonance, the ratio of cutting

process force to imbalance force is greater than 1 on the left edge of the graph. In the

absence of resonances, this value would be expected to be equal to one with a soft spindle,

meaning that 100 percent of the imbalance force was being transmitted through the process

and none through the spindle bearing.

The model was also used at ASPE to show the effects of increasing process damping.

(Recall that process damping can be increased by increasing the cutting area A or decreasing

the relative surface speed V.) As process damping is increased relative to spindle stiffness,

the amount of spindle excursion decreases. This makes sense: with more damping in the

cutting process the spindle shaft can be expected to vibrate less. See figure 5-3; here, spindle

excursion was normalized to the excursion of a free-running spindle. Note in figure 5-3 that

on the far right, the normalized spindle excursion is asymptotic to a flat line. This is because,

at a high level of process damping, the system is overdamped and no further reduction in

spindle excursion can be derived from additional damping. The value of the asymptote,

in this case 0.78, is dependent on grinding spindle stiffness. The stiffness of the grinding

spindle sets the free-running excursion of the spindle given an input force imbalance (by

Hooke's Law, F = Kx). The dependent variable, normalized spindle excursion, is obtained

by taking the ratio of in-process excursion to free-running excursion. Since free-running

excursion is dependent almost entirely on spindle stiffness, it is spindle stiffness which sets

the value for the high-end asymptote. A higher value for spindle stiffness results in a higher

value of the asymptote. This makes sense physically: in very stiff systems one would expect

very little change in excursion with change in process damping, and thus the asymptote

would be close to 1.

Also the transfer function between input imbalance force and cutting process force over

a range of cutting speeds was found for this model. This is presented in figure 5-4. This

transfer function was computed by varying the grinding speed while keeping the other pa-

rameters the same in the simulations. The resonant peak at approximately 22,000 rpm

is the resonance of the tool spindle on its air bearing, based on the parameters chosen in

this model. The plot has the shape of a typical second-order system transfer function: it

looks like a spring (nearly flat response) below resonance and a free mass above resonance
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Figure 5-3: Effect of increasing process damping on spindle excursion.
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Figure 5-4: Magnitude transfer function between imbalance driving force and process force
for ASPE model.

(dropping with a slope of -20 dB/decade). This graph shows that in this model, imbalance

oscillation is attenuated with a relatively steep slope above the resonance of the grinding

spindle on its bearing. From this set of simulations, there is little influence from the reso-

nance of the workpiece spindle on its bearing, which in this case occurs at 2,300 rpm. It

should also be noted that the ratio between cutting process force and imbalance force is

small over all frequencies; this is because in this simulation the value for damping given by

KVA is small compared to the stiffness of the spring between the grinding rotor and the

machine. Most of the imbalance force is carried in this spring. With a relatively "soft"

cutting process model such as the one used in these simulations, the dominant predictor

of the imbalance-cutting process transfer function is the frequency response of the grinding

spindle on its bearing.

These graphs are provided as an example of the potential usefulness of this modeling

technique. It is relatively easy to derive a lumped-parameter model for a large machine



Table 5.1: Modes of JR3-Westwind system used in analytical model

tool; a model such as this highlights the complexity of machine dynamics. Such a model

could prove useful in machine design as well as tolerancing for imbalance or truing.

5.2 Explicit Analytical Model

This section discusses an analytical model heuristically derived from the mode shapes and

frequencies determined with STAR modal analysis. The procedure in obtaining this model

was to isolate desired modes to be included, determine independent equations of motion for

each mode based on the mode shape, and then drive those equations of motion numerically

with an imbalance forcing function. Then predicted error motion of the metrology ball could

be determined by combining the results of the simulation in the relevant sensitive directions.

To begin, I decided on the JR3 (undamped) system, and looked at the frequencies and mode

shapes given in table 5.1.

Looking at the animation results, I decided to throw out the mode occurring at 128 Hz.

The relative displacements of the nodes in the model were large for adjacent points of the

stiff spindle structure, which suggested that the mode was small in amplitude compared to

the others. (The others were significantly "cleaner" rigid-body motions.) Also, looking at

the frequency spectra from the accelerometers, the mode at 128 Hz was small in amplitude

compared to the others.

Discounting the mode at 128 Hz, I was left with six modes. The first three were rigid-

body rotations approximately about the center of the load cell. The fourth, fifth and sixth

modes had centers of rotation about other points on the structure. Since I possessed quoted

values from the load cell manufacturer for stiffness of the load cell, I could derive equations

Frequency, Hz Rot. Speed, rpm Mode shape
96.65 5,800 rigid-body rotation about load cell Y
113.25 6,800 rigid-body rotation about load cell X
128.76 7,720 rotation about load cell X
163.29 9,800 rigid-body rotation about load cell Z
289.51 17,370 rigid-body rotation about top corner of spindle
323.19 19,400 rigid-body rotation about spindle tail
464.29 27,850 rigid-body rotation about spindle shaft

i`



Table 5.2: Moments about load cell axes

Moment Value, kg m 2

IX 10.41

Iy 7.584
Iz 1.140

of motion for each of the first three modes. For each mode, I had the natural frequency

and rotary spring stiffness. From these I could determine the rotary moment of inertia. For

example, in the case of the moment-about-X direction, the natural frequency of the mode

is given by

MX _= 2 7r fM, (5.2)

where KMx is the load-cell stiffness in the moment-about-X direction, Ix is the (un-

known) moment of inertia about that axis, and fM. is the natural frequency of that mode,

in this case 113.25 Hz. By solving the equation for I, I obtained a value for the rotary mo-

ment of inertia of the spindle about load cell X. Using this procedure I was able to estimate

rotary inertia about each of the three load cell axes. These can be seen in table 5.2.

At this point I had stiffness and rotary moment of inertia for three fundamental modes,

enough to formulate three analytic equations of motion describing those modes. The other

three modes presented more of a problem: I did not have the convenience of supplied stiffness

data for those modes. For each, I only had natural frequency and mode shape, which was

a rotation about a point on the spindle (not the load cell center, as before). However, it

is possible to determine a translated rotary moment of inertia about any arbitrary center

of rotation using the parallel-axis theorem. I already had rotary moments of inertia about

each of the three load cell axes, so moments of inertia about any arbitrary point relative to

the structure could be computed. For these "arbitrary" points I chose the stationary points

(centers of rotation) of the remaining three modes. Using the computed moment of inertia

about the center of rotation of the mode and the natural frequency of that rotation, it is

straightforward to compute an equivalent stiffness value using an equation of the form of

equation 5.2. By this procedure I was able to formulate approximate equations of motion

for the other three modes.



Table 5.3: Moments and equivalent stiffnesses for six modes

I first had to find moments of inertia about the stationary points of modes four, five,

and six. Each calculation required two applications of the parallel-axis theorem: the first to

translate from load-cell center (where the moments in table 5.2 are defined) to approximate

spindle center, and the second to translate from there to the stationary point on the spindle

(the axis of rotation of the structure for the mode in question). This was necessary because

the parallel-axis theorem must always translate between the center of mass of a body and

any other point in space. For the approximate center of mass of the spindle, I chose a point

that was geometrically in the center of the large mass.

The parallel axis theorem in this case is:

Itrans = Ictr + mdp,  (5.3)

where Itrans is the translated moment of inertia, Ictr is the moment of inertia about

the center of mass, m is the mass of the body, and dp is the distance between the parallel

axes. I obtained the mass of the spindle, m, from the manufacturer. By the applying the

parallel-axis theorem twice for each of the remaining three modes, I was able to compute

moments of inertia for those modes. From there, an application of an equation like 5.2

for each mode gives an equivalent stiffness for that mode. Table 5.3 presents the rotary

moments of inertia and equivalent stiffness about each of the centers of rotation for the six

modes.

Knowing the stiffness and moment of inertia of each mode allows the analytic expression

of the unforced equation of motion for that mode, for some arbitrary choice of damping

constant. (It would be potentially more accurate to use damping values provided by the

modal analysis software; this was not done in this case due to time constraints.) The general

axis I, kg m K, N m/rad
load cell x 10.41 3.84e6
load cell y 7.584 3.84e6
load cell z 1.140 1.20e6

top corner spindle 9.580 3.17e7
spindle tail 12.41 5.12e7

spindle centerline 6.159 5.24e7



form for the rotational equations of motion for the unforced system are given by:

I1 + B9 + KO = 0, (5.4)

where I is the rotary moment of inertia, 9 is the angle of rotation, B is the damping,

and K is the stiffness. Each equation of motion is forced by its own forcing function, which

in this case is a moment function specified by the imbalance driving the system and the

distance from that force input to the center of rotation of the relevant mode. Adding in

forcing, we have

I + B9 + KO = Adsin (wt + ¢), (5.5)

where A is the amplitude of imbalance force, d is the moment distance from that force

to the center of rotation of the mode, w is the spindle speed (frequency of imbalance driver),

and ¢ is the phase lag between a reference phase and the phase of maximum excitation of

the relevant mode. In this system, the +Y direction serves as the reference direction for

phase. Since the modes involve rotation in different directions, each is excited in some phase

relative to the others by the rotating imbalance sinusoid.

For the equations of motion, I arbitrarily chose B so that ( = 0.1; all modes are lightly

damped for solution stability. (B is related to C by B = 2(•-I.) Earlier incarnations of

the algorithm without any damping had not been numerically stable.

After deriving the six independent equations of motion for the system, including damp-

ing and excitation phase, I made the decision to drop the highest mode, for two reasons.

The principal reason is that the mode is about the spindle centerline and therefore it is

hard to excite with a rotating imbalance. Second, the high frequency of the mode places

it beyond the range of my experiments and other testing (about 28,000 rpm). For these

reasons I decided to drop the mode from consideration.

At this point I had five equations of motion that, when solved, would yield angles of

rotation about each of five points on the structure. It remained to translate these rotations

to displacements of the metrology ball. In this way the model could be compared to empir-

ical data from the capacitance gauges. The translation from rotation to ball translation for

each mode was accomplished using small-angle approximations (valid because the angles of

rotation are on the order of thousandths of a radian!) and trigonometry. Each rotational



mode contributes to translation in two of the three sensitive directions of measurement. By

adding the contributions from each mode, the overall spindle error motion in each of the

three directions can be predicted.

The end result of this derivation is a model that predicts spindle deflections due to

imbalance as a function of rotational speed and imbalance mass. This model uses knowledge

of the system mode shapes obtained through empirical modal analysis and supplied values

for system stiffness. This modeling technique is powerful because it is rooted in experimental

modal data but permits analytical insight into the dynamics of the system. The model is

flexible in that the relevant parameters are accessible: it is easy to analytically change values

of system damping, for example. It is also easy to see how the model works, and the user has

great flexibility in choosing a solution method for the differential equations of motion. This

can be contrasted with the forced response synthesis model (see the next section) available

in some modal analysis packages, which is essentially a "black box" algorithm which outputs

system motion based on driving-point sinusoids and mode shape data.

Appendix B gives the MATLAB ode code and post-processing code (translation from

rotation angle to metrology ball translation) for the analytical model used in this thesis.

The next chapter presents results of the analytical model for the JR3 (no damping) system

alongside experimental spindle error results.

5.3 Implicit STAR Model

To predict motions of the spindle structure driven by imbalance, I also used the Forced

Response Synthesis feature which is built in to the STAR modal analysis software. This

feature allows the user to drive the system at a specified node or nodes with a sinusoidal force

oscillation. Following the calculation of one structural response, the user may superimpose

a second result. In this way, many sinusoidal drivers may excite the system at different

nodes, with different phases. After the simulation is completed, the user is provided with

a table of results for each node. These results consist of the amplitude of oscillation and

phase relative to the driving function. In addition, the user can look at an animated display

of system motion due to the driving forces. Refer to [24] for more information.

For the Westwind spindle-load cell system I simulated imbalance by the superposition of

two sinusoids, exciting the structure at the location of the imbalance ring. One sinusoid, at



90 degrees to the other in direction, acted with a 90-degree phase lag. This pair of sinusoids

looks like a rotating imbalance to the structure model in STAR. The force amplitude of

the sinusoids was chosen to equal the theoretical imbalance magnitude at each rotational

speed. In this way, spindle motion due to imbalance was predicted. Since it was quick

to run compared to deriving an analytical model, I ran this simulation for each of three

systems: JR3-Westwind, JR3-Westwind-damping, and Kistler-Westwind. The results are

presented alongside the experimental results in the next chapter.

This method has the advantage over the analytical method of requiring practically zero

time: once the modal data is processed, the forced response can be calculated immediately.

As mentioned in the last section, the disadvantages are that there is less insight into sys-

tem dynamics with this method and there is no explicit system model in which to vary

parameters.





Chapter 6

Experimental and Model Results

This chapter presents and discusses results from both the experimental capacitance gauge

and load cell data collected and two different models: the analytical lumped-parameter

model and the output from STAR software forced-response synthesis.

6.1 Sample Experimental and Model Outputs

Figure 6-1 shows a sample output from the data acquisition system. The upper plot

shows the counter pulse output: this is the once-per-revolution signal that indicates when

the timing window has passed the photo-eye. Looking at this signal allows determination

of the revolution speed of the spindle. It also serves as a reference for determining phase

angle information from the other signals. In the case of the JR3 data acquisition, which

required two CPUs and three A/D boards, one counter pulse signal was measured by each

board to serve as a reference between the three boards. In this manner differences in clock

speed, for example, could be determined.

The lower plot of figure 6-1 shows a sample capacitance gauge output, synchronous

with the counter signal. This is for the radiall, or Y-direction capacitance gauge, which

at this speed is predominantly showing the effects of a ball decenter of 27.5 microinches.

(Making for a peak-to-peak displacement of 55 microinches.) Before each data measurement,

the amount of ball decenter and phase relative to the timing window was measured by

hand. These values were later subtracted out using Tehranchi's identity [25] for summing

complex exponentials, to determine the amplitude and phase due to imbalance alone. (See

Appendix C for further discussion.) For each test, three synchronous measurements from
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Figure 6-1: Sample data trace from experiment, 3000 rpm with undamped JR3 system.
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Figure 6-2: Sample output trace from analytical model, 9000 rpm with undamped JR3
system. Displacements are in microinches.

the capacitance gauges were made, and in the case of the JR3 load cell, six force directions

were also measured synchronously (three for the Kistler load cell). This data was taken

over 1/3 second at a sampling rate of 25 kHz per channel. (The combined data file size for

each JR3 test is over 800 kilobytes.) Amplitude and phase information for each signal of

interest was determined graphically, using MATLAB routines.

A sample output from the analytical lumped-parameter model can be seen in figure 6-2.

This figure shows the model running with an excitation speed of 9,000 rpm and mass "A" for

imbalance. The three graphs show the translational motion in the X, Y, and Z directions,

respectively. In the first 0.03 seconds of simulation, the initial conditions are settling out

(due to the light damping in this model; earlier versions with no damping showed many

frequency components for each trace!) and the model is settling into a stable once-per-

revolution oscillation which can be compared with the experimental data gathered from the

capacitance gauges. Phase and magnitude information from the model were determined
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graphically using MATLAB scripts.

6.2 Undamped JR3 System: Empirical Error Motion and

Two Models

This section compares capacitance gauge data for the JR3 system with no damping material

and the two models discussed previously. Those models are the analytical model, which is

presented in the middle graph, and the STAR forced response synthesis, which is presented

in the bottom graph. There are six figures: three for oscillation amplitude in each direction

and three for phase (relative to the driving force) in each direction. Figures 6-3, 6-5, and 6-

7 compare the amplitude information while figures 6-4, 6-6, and 6-8 compare the phase

information.

Looking at figure 6-3, which looks at X-direction or axial data, we notice first that there

is a large discrepancy in the oscillation magnitudes predicted by the two models and the

capacitance-gauge data. In this case, take as an example the resonance at 5,800 rpm. (This

mode is pictured in figure 4-2.) Taking the analytical model first, the discrepancy could

be due to any of several different factors. For one, the damping of oscillatory modes in

the model was chosen more or less arbitrarily. Since it is damping that entirely determines

peak height at resonance, the choice of C as 0.1 may be much larger than the actual system

damping, and may be pushing down the resonant peaks.

Another factor in the discrepancy between experiment and the analytical model may

be unmodelled dynamics: the analytical model assumes direct excitation of the spindle

structure (stator) at the imbalance ring location. In actuality, the imbalance is acting on

the spindle shaft which is coupled to the stator through an air bearing. For the purposes of

this model, the air bearing stiffness was assumed to be "infinite" (perfectly rigid coupling

between shaft and stator). The stiffness of the air bearing was assumed to be much larger

than the stiffness of the load cell. In actuality, however, the apparent shaft stiffness at the

shaft's end as quoted by the manufacturer is indeed finite. (4.5 x 107 Newtons per meter

at 10,000 rpm; air bearing stiffness is a function of rotational speed.) When compared in a

moment sense with the rotational load cell stiffnesses which dominate the rigid-body modes

of this system, the values are similar, suggesting that air bearing stiffness is an effect which

should have been included in the model. See Appendix D for details on the comparison of
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these stiffnesses and a discussion on the unmodelled dynamics of the air bearing shaft.

The analytical model missed the 9,700 rpm peak, but this is understandable given the

simplified mode shapes used by the analytical model: at this frequency the analytical model

has an equation of motion which specifies pure rotation about the load cell Z-axis only. For

this reason the model does not predict any appreciable motion of the ball in the X-direction.

In reality, the system is predominantly rotating about the load cell Z-axis but it is also

exhibiting some smaller motions in other directions, including axially. Obviously, in the

real system these effects are apparent. One problem with constructing a model "backed

out" from mode shape data is that it in simplifying the mode shapes to construct analytical

equations of motion, some information is lost. This, too, is a deficiency of this model. The

STAR model nicely predicts this motion at 9,700 rpm.

The analytical model predicts a high-speed resonance band at 16,000 to 18,000 rpm

that did not show up in the capacitance-gauge data or the predictions of STAR. This band

appears analytically because the model was constructed with high-end resonances at 17,400

rpm and 19,400 rpm. It is not clear why this band does not appear in the capacitance-gauge

data or the STAR simulation. One possible explanation is that damping in the analytical

model, which was arbitrarily chosen, was incorrect. Another is that the finer frequency mesh

of the analytical model (see figure 6-3) shows resonances that the empirical capacitance-

gauge data and STAR prediction miss. However, I would like to make the point here that

it was not my goal to tweak the analytical model until it matched the experiment perfectly

and then claim perfect understanding of the system; rather, I wanted to demonstrate that

modeling machine dynamics in this way is of potential use.

In the case of the STAR model (bottom graph of figure 6-3), the discrepancy between

oscillation amplitudes could be caused by incompatibility between the source of the modal

spectra and STAR. The STAR software determines mode shapes from input spectra from

another package - in this case a Hewlett-Packard spectrum analyzer. The compatibility of

the engineering units used for the spectra between these two pieces of software was set to

be the same but it is difficult to verify whether they are in fact the same. In many cases the

predictions of the STAR package are off by a more or less constant ratio from the actual

amplitudes.

However, I do not have a good explanation for the failure of the STAR package to predict

the large resonant peak in the capacitance-gauge data at 5,800 rpm. Across the three JR3



directions (X, Y, and Z), the STAR system failed to predict any appreciable motion below

9,700 rpm. A disadvantage of using the STAR forced response synthesis is that it is a "black

box" in the software and its results are hard to check. The failure to predict the mode could

arise from many mechanisms, including software error. One possible explanation, as with

the analytical model, is failure to take into account relevant machine dynamics. The STAR

model was excited through a node on the rotor, but when the modal data was taken the

stiffness of the rotor was different than at operating speed. Also, the system in the modal

tests was not excited via the rotor, but on the stator. So, the knowledge of the motion of

the rotor is limited in STAR to one accelerometer on the end of the rotor. This does not

give a wealth of information on rotor-stator dynamics. But I reiterate that I do not have

a satisfactory explanation as to why STAR is not predicting large-amplitude oscillation at

5,800 rpm.

Phase angle predictions and data in general show much poorer agreement than magni-

tude data. By phase angle, we mean the lead or lag of oscillation in a sensitive direction

relative to the force input oscillation in that direction. The discrepancy is potentially due

to a number of reasons: our experimental phase data is measured graphically from the

data files and thus there is some room for error in the measurement. Additionally, there is

overlap in phases: many different values of phase angle are equivalent. For example, it is

nearly impossible to tell the difference between a 175-degree lead in phase and a 175-degree

lag, yet when graphed in Bode form the two look wildly different. In practice they are only

10 degrees apart in terms of their effects on the system. Figure 6-4 shows the measured

and predicted phase for the undamped JR3 system in the X (axial) direction. There is

very little agreement between the data and the model predictions for phase angle. Phase

information is mainly presented here for completeness.

Figure 6-5, which looks at magnitude of oscillation in the Y, or radiall direction, shows

nice agreement between the capacitance-gauge data and the model data, with the exception

of a resonance at 6,700 rpm that was missed by both the analytical model and STAR. Again,

both of these models had knowledge of a mode at this frequency: this mode corresponds

to a rocking motion about the X-axis of the load cell (pictured in figure 4-3). It is unclear

why neither model predicted a resonant peak at 6,700 rpm. As stated before, possible

explanations include unmodelled dynamics of the bearing shaft and errors in damping value.

In the case of STAR it is difficult to pinpoint the source of errors. I would like to state
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Y (radiall) direction;

again that I do not have a satisfactory explanation for this discrepancy.

The large resonance at around 10,000 rpm was predicted well by both models. In the

experimental data, the capacitance gauge, which has a range of 1000 microinches, was

saturated over this frequency range! The undamped JR3 system shows a lot of oscillation

in this range, which corresponds to the entire spindle rotating about the Z-axis of the load

cell. (This mode is pictured in figure 4-4.)

There is better agreement in the phase data for the Y-direction than the X-direction.

(See figure 6-6.) Both models predict phase starting at zero degrees and ending up at

-180 degrees (+180 is equivalent), with a transition through approximately 10,000 rpm.

The STAR phase prediction, having fewer data points, shows a very abrupt transition to

-180 degrees. The capacitance-gauge data (top plot) shifts in phase at around 7,000 rpm,

to about +50 degrees, which is equivalent to a shift downward to -135 degrees. It then

continues to lag as frequency increases, like the STAR prediction.
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Figure 6-7 shows the capacitance-gauge amplitude of oscillation data versus two models

in the Z-direction (negative radial2 direction). Like the X-direction(figure 6-3) there is

some discrepancy in the locations of natural frequencies in this direction. The STAR model

missed a significant low-frequency oscillation at 5,800 rpm (this is the same resonance as

discussed earlier, in the discussion of figure 6-3). Again, it is unclear what was the cause of

STAR's failure to predict the resonance.

The analytical model missed the 9,700 rpm peak, but this is again understandable given

the simplified modes used by the analytical model: at this frequency the analytical model

has an equation of motion which specifies pure rotation about the load cell about the Z-axis.

Therefore, this simplified model does not predict any Z-axis translation of the spindle end.

In reality, however, this effect is observable. Again, this is a deficiency of the simplified

analytical model.

It is difficult to find much agreement in the phase information for the Z (negative radial2)
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direction. This data is plotted in figure 6-8.

It should be mentioned here that while the softness of the spring and variety of modes

encountered with the JR3-Westwind setup provided for an interesting set of experiments,

it is not recommended that this system be used for doing any in-process measurements of

grinding forces. Such a soft load cell has the disadvantage of introducing a very compliant

member into the machine structure and by this mechanism potentially introducing large

error motions into the grinding process.

6.3 Kistler System: Empirical Error Motion and STAR

Predictions

This section compares the results of the Kistler capacitance-gauge data to the predictions

made by STAR forced response synthesis for the frequency range from 3,000 to 20,000 rpm.
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Figure 6-9: Kistler system, as sensed in the X (axial) direction; comparison of data and
STAR model.

No analytical model was developed for this system.

In general, there is very good agreement between capacitance-gauge data and the STAR

predictions for the stiffer Kistler system. The exception is again the magnitudes of oscil-

lation predicted by the STAR routine: they are much smaller in magnitude than the test

results. This effect suggests that there is a systematic scaling error in our data, possibly

arising from incompatibility of units between the frequency spectra from each accelerometer

and the STAR program which combines those spectra into mode shapes.

Figure 6-9 shows the response of the Kistler system to imbalance in the X, or axial,

direction. There is good agreement in the placement of a natural frequency at around 8,300

rpm. The stiffer Kistler system exhibits a much cleaner frequency response spectrum than

does the JR3, in general. There are fewer natural frequencies to avoid in operation of the

machine. The phase angle has roughly the same shape between the test data and STAR

prediction but does not agree numerically.
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Figure 6-10: Kistler system, as sensed in the Y (radiall) direction; comparison of data and
STAR model.

In figure 6-10, we see the amplitude and phase response of the Kistler system in the Y,

or radiall, direction. Again, there is good agreement between the predictions of the STAR

model and test data, although STAR predicts a relatively larger oscillation at 8,300 rpm

than in actuality. The phase angle data is also in agreement over much of the speed range

of the experiments.

Lastly, figure 6-11 shows the Z-direction response of the Kistler system over the frequency

range tested. There is again good agreement between the STAR model and capacitance-

gauge data with regards to placement and relative magnitude of resonant peaks in this

sensitive direction. The shape of the phase curves show some agreement, as well.

The Kistler data makes a strong case for using modal analysis to predict potential ranges

of large spindle error. With this stiffer structure there is much better agreement between

the predictions of the STAR modal package and test data. Should this Westwind-Kistler

system be used as part of a larger machine tool, the results of this modal testing would be
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valuable in selecting a grinding speed for this system, or in specifying the demands that

such a spindle places on the dynamics of the machine.

6.4 Discussion of Error Motion Results

The important result from the last two sections is that modal testing is potentially very

beneficial in precision grinding applications. To fully instrument a spindle to obtain spindle

error motion is a time-intensive process. It requires setting up capacitance gauges to measure

spindle error motion in every relevant direction. It requires a data acquisition system for

the capacitance gauges, which is not commercially available for high-speed applications such

as this one. It requires a great deal of experimental testing to determine stable operation

frequencies for the machine. And at the end, the machine or process designer only has error

motion quantified in the directions in which they tested, and very little or no understanding

of the fundamental causes underlying that error motion.

On the other hand, modal testing is an established field with many software packages

for sale and an abundance of technical help available. A modal test of a machine tool

and data reduction could be performed by an experienced modal analysis expert in much

less time than a full spindle metrology test, and the modal testing software and equipment

is much more readily available than the custom hardware and software currently required

for spindle metrology. Once the modal test is completed, the machine tool mesh can be

computer-animated to determine relative displacements due to excitation forces: be they

imbalance error, seismic error, or other arbitrary force inputs. This sort of test can give

the machine or process designer an intuitive understanding of the causes behind spindle

error motion. Looking at a frequency spectrum of the modal data (excited at the spindle

rotor) will tell the process designer which speeds to avoid in operation of the machine

(resonances), in each sensitive direction. The modal data can also be incorporated into

generating analytical models (such as the one presented here) which may give the process

designer more understanding of the mechanisms at work. Finally, packages like STAR give

the user the option of adding lumped-parameter elements to their mesh, to investigate the

effects of adding damping to the system, for example. (Although this was not investigated

for this thesis.) The cost advantages of modal analysis over conventional spindle error

motion testing, at least for a first cut in understanding machine dynamics, are clear.



However, I would also like to express some reservations about modal analysis as a

panacea for spindle error determination: it should not be used without thought and un-

derstanding to accompany it. Some results of this modal analysis forced response synthesis

are troubling in that they do not predict error motion which is observed in the real system.

In the case of the JR3-Westwind system, STAR forced response synthesis did not predict

spindle error motion at all below 9,700 rpm, when that error motion was in fact present in

the experiments. (At higher frequencies there was decent agreement between STAR predic-

tions and experiment.) The source of this discrepancy is not understood and further work

would be needed to determine the cause of this discrepancy. In balance, modal analysis is

a promising alternative or supplement to traditional spindle error motion metrology.

This preliminary work also suggests that it will be worthwhile to pursue further work on

developing analytical models from modal test data. It would be helpful to start with a much

simpler system than the spindle-load cell of this thesis and perform empirical modal analysis

while deriving an analytical model alongside that analysis. In this way the analytical model

would be well-understood and rooted in physical reality. If, for example, modal analysis

was performed on a one-degree-of-freedom mass-spring system, the simple analytical model

derived alongside the modal data could be compared easily with the modal data. For

example, it would be easy to select a value for damping in the analytical model based on

modal testing results. In this way, the two processes would be well understood with at

a fundamental level. This kind of understanding would lead to better intuition for more

complicated models.

Overall, I would recommend the judicious use of commercially-available modal analysis

packages as an alternative to conventional spindle metrology methods. The insight and

time advantages of modal analysis make it worthwhile. Using analytical modeling to predict

error motion may also be useful, although I would recommend modeling the system from

the "ground up", instead of the approach taken here, which was to back out the analytical

model parameters from STAR modal testing results. This approach is of some use but fails

to adequately capture all of the relevant system dynamics.



6.5 JR3 System: Effects of Adding Damping Material

This section looks at the effect of adding damping material to the JR3-Westwind system on

spindle error motion. Both capacitance gauge data and STAR predictions for error motion

with damping are presented.

Figure 6-12 shows a comparison of axial, or X-direction, amplitude for the JR3 system.

It is clear from this picture that adding the Sorbothane damping material significantly

reduces error motion due to imbalance at spindle speeds near resonance. At 5,800 rpm,

the undamped system exhibits more than 350 microinches of axial excursion amplitude.

Adding the damping material reduces that error motion to around 80 microinches, less

than a quarter the amplitude of the original. At the next resonant peak, 9,700 rpm, the

addition of Sorbothane cuts the oscillation amplitude roughly in half. It can be seen from

the figure that at frequencies away from the resonant peaks, the damping material has much

less effect.

The lower half of figure 6-12 shows STAR simulation results for the same two systems.

Although (as mentioned before) STAR failed to predict the large resonant peak at 5,800

rpm, it did in general predict the same sort of behavior from the damped system. That is,

at frequencies of resonance the peak amplitude is reduced significantly, while at frequencies

away from those resonances there is little change from the undamped system.

Subjectively, during the data acquisition for the tests with the damping material, the

effects could be noticed immediately. Without the Sorbothane, the spindle "buzzed" near

the resonances when excited with imbalance. The oscillations were large enough that by

simply touching the spindle in different locations, one could predict the envelope of the

oscillatory mode shape at that frequency. It was also audible to the operator that the

spindle was near a resonance. Once the damping material was added, however, the system

quieted down noticeably around the resonances. The physical shaking had also significantly

lessened.

In figure 6-13, which shows the effect of adding damping material in the Y-direction,

we can see the same sort of results as in the axial direction. Here during the experimental

testing, the capacitance gauge signal in this "radiall" direction was saturated at 9,700 and

10,000 rpm without the damping material added - meaning more than 0.001" of radial

amplitude at these excitation speeds. Once the damping was added, however, this dropped
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Figure 6-12: JR3 system with and without damping material, as sensed in the X (axial)
direction; capacitance-gauge and STAR simulation results for displacement amplitude.
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Figure 6-13: JR3 system with and without damping material, as sensed in the Y (radiall)
direction; capacitance-gauge and STAR simulation results for displacement amplitude.

to around 900 microinches. In this case, by damping out the oscillation in a moment-

about-Z mode, the damping material was acting in a purely shear fashion (less effective

for Sorbothane than compression). This is because the damping material lay in a plane

defined by the X and Y axes. It is postulated that with compression damping material

placed more effectively (i.e. in the XZ or YZ-plane) for this disruptive mode, the results

would be even better. In addition, different types of damping material are available which

are designed for shear damping applications; in a machine design using a setup such as this

(lots of rotational modes), shear damping may be more effective.

The slight damping of this mode by the addition of the damping material can be seen

even more clearly in the STAR graph (lower half of figure 6-13). STAR predicts roughly a

30% reduction in amplitude at this frequency. This can be compared to a 50% reduction in

the X-direction (see lower half of figure 6-12).

Similar results hold for the system as viewed in the Z-direction (figure 6-14). The greater
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Figure 6-14: JR3 system with and without damping material, as sensed in the Z (-radial2)
direction; capacitance-gauge and STAR simulation results for displacement amplitude.

the oscillation amplitude, the more the effect of damping on the system. The addition of

damping material serves to level off the frequency response curve of the system. It is useful,

then, to add damping to a grinding system for rejecting imbalance disturbance, especially

if the natural frequencies of the grinding system are not known. If modal analysis or some

other method of determining natural frequencies in the system has been performed, then in

most cases it is easy to avoid those frequencies in the selection of spindle speed. If, however,

it is impossible to avoid running the system near resonance, or if the resonances are not well

understood, the addition of damping to the system may be the best first cut at reducing

the effects of imbalance or other process error sources.
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6.6 Force Transmitted to Machine Structure

In addition to causing error motion in the spindle, an unbalanced spindle also drives the

surrounding machine structure with an oscillating force. Figure 6-15 shows a plot of the

experimental force in the Y-direction over a range of spindle speeds. It is clear from this

plot that the significantly stiffer and less-damped Kistler load cell transmits higher forces

to the surrounding machine than the softer JR3 setup. It should be noted that this plot

is not normalized for input imbalance force, which is also shown as a reference. For the

purposes of comparing forces driving the machine structure, I chose the Y-direction because

it exhibited large displacements in the capacitance gauge measurements (due to moment-

about-Z oscillation), and it would be the chosen sensitive direction for peripheral grinding

with this setup. The force transmitted in the JR3 system with damping was not considered

as this force is not directly comparable with the others; the damping material transmits

some force which is not measured.

The tradeoffs between the two load cells are clear. With the less-damped Kistler load

cell, there is in general less spindle error motion due to imbalance but more force transmitted

into the surrounding machine structure. A softer load cell (JR3) exhibits more oscillation

amplitude but less force transmitted out from the imbalance source into the machine. These

conclusions can be extended to design of precision grinding machines: designing a stiffer

bearing or support structure will improve error motion seen by the part, but the downside

is that potentially more force due to imbalance will excite the machine structure. If the

surrounding structure has some "Achilles' heel" - a relatively compliant member in some

frequency range - imbalance forces may play into error motion through the mechanism of

indirect excitation of the structure, which would also carry through to part error. Again,

ideally all relevant natural modes of the machine tool should be understood, to minimize

potential errors on the part. With the understanding of machine mode shapes and fre-

quencies would come the intelligent selection of process speed and placement of damping

material, and avoid potentially expensive trial-and-error selection of grinding wheel speed

and other process parameters.
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6.7 Compensating for Decenter with Imbalance

One objective of this series of experiments was to determine whether, in practice, decenter

of the grinding wheel can be compensated with imbalance. In this series of experiments,

I used the Westwind spindle system with no load cell underneath (bolted directly to the

large granite table). I did this to get around problems of resonance encountered in the load

cell systems, and make for a "cleaner" test. I ran each test at 10,000 rpm. Before each

run, I measured the location and amplitude of the decenter of the ball. I then rotated the

imbalance ring to a specified phase angle ahead of the location of the maximum decenter. I

did this for angles starting at zero degrees and advancing in increments of 45 degrees back

around to zero again.

Figure 6-16 shows the results of this set of experiments. Along the abscissa one can see

the advancing phase lead in degrees. The ordinate axis shows a "normalized decenter." By

"normalized decenter," I mean the ratio of the output amplitude to the input decenter. This

normalization was necessary because at the small levels of decenter involved in these tests

(order of 30 microinches), some drift in decenter occurred between tests. (A 5 microinch

drift between tests would change the decenter by 17%.)

From the figure it is obvious that in conditions where the imbalance and decenter are

coincident, the effect of an initial decenter is greatly magnified - 400% in these tests.

As imbalance location physically advances relative to decenter, the magnification effect

lessens. At one location only, 225 degrees, the initial offset was improved by the addition

of imbalance. In this case an offset of 22.5 microinches was reduced to 11.3 microinches by

adding an imbalance. This has implications for correcting decenter (truing error in grinding

wheels) with imbalance. It is very difficult and time-intensive to true a grinding wheel. (This

process can take on the order of a week in some precision grinding applications!) On the

other hand, many grinding systems already come with in-process balancing (systems made

by Balance Dynamics [2], for instance). If the grinding speed is chosen so that there are

minimal adverse effects on the machine structure, it may be beneficial to apply a small

amount of imbalance to the system to compensate for truing errors in the wheel. The

dynamic balancers sold by Balance Dynamics work by sensing oscillation of the spindle

stator (via an accelerometer) and moving high-density fluid (Halon) between chambers in a

rotating assembly to minimize the shaking due to imbalance. If, instead, the balancer closed
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its loop around force sensed on the other side of the process (an in-process dynamometer,

for example), once-per-revolution geometric errors in the wheel could be compensated for by

applied imbalance; the closed-loop control system would take care of amplitude and phase

of the compensating imbalance. This is clearly an area for potential future research.

6.8 Effect of Increasing Mass of Imbalance

Two series of experiments were performed to determine the effect of increasing imbalance

mass on spindle error motion and force transmitted to the machine structure. Four set

screws were used as imbalance masses, designated A, B, C, and D (refer to table 3.3). The

spindle with undamped JR3 load cell was run at 3,000 rpm (below all resonances) and

5,800 rpm (approximately at the first mode). Figure 6-17 shows the increasing spindle

error motion in the Y-direction for both speeds, through the range of masses. Figure 6-18

shows the force transmitted to the machine at both speeds, through the range of masses.

In both cases, the relationship between the dependent variable and the increasing mass is

logarithmic-shaped. These graphs are provided as a reference to indicate what levels of

spindle error motion and force transmitted to the machine structure can be expected as the

amount of imbalance mass increases.
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Chapter 7

Experimental Challenges

The purpose of this chapter is to discuss some of the challenges I faced in conducting the

research presented. This chapter picks out several of the challenges I faced while conducting

the experiments so that others may learn from them.

7.1 "Noise" and Natural Modes

A major problem which stymied the acquisition of spindle data with the Westwind spindle

was "noise" in the load cell data. This problem took weeks to solve. Every time the spindle

was powered up, the load cell would register a good deal of noise, on the order of 1.5-2

volts in amplitude, surrounding the DC offset voltage. To combat the problem I tried a

variety of potential remedies. First, I talked to the supplier of the load cell (JR3) and asked

about electrical noise isolation. Their load cell amplifier was equipped with three different

electrical grounds, each referenced differently. Their technical support did not know which

ground wire to use in which application, so I tried all three separately. These did not seem

to change the output at all. Next, I looked at the power supply we were using for the JR3

amplifier. I compared the ground of that power supply to the electrical ground of the A/D

board and to the electrical ground of the room, and I got a 5-10 millivolt (AC, 60 Hz)

difference. Thinking that differences in ground voltage were a problem, I rearranged the

experimental setup so that all of the instruments were powered off of the same circuit and

dropped the ground differential to 2 millivolts. The problem persisted.

Next I looked at the cabling from the JR3 load cell to the amplifiers and through to the

computer. Thinking that electrical noise was being introduced through the cables, I used



aluminum foil to shield the cables, but to no avail.

Since JR3 could not tell me whether or not the load cell should be electrically isolated

from the system to which it was attached, I went ahead and tried isolating them. We used

a piece of circuitboard material, cut out for the mounting holes, in between the spindle and

the top mounting plate. (See figure 3-1.) In addition we isolated the mounting bolts from

the spindle using plastic sleeves and washers. This reduced the noise somewhat, but there

was still about ± 1.5 volts of noise (between about 100 Hz and 500 Hz in frequency) with

the motor running.

I also tried combinations of shunt resistors at the input to the A/D board, at the sug-

gestion of someone experienced with data acquisition. I shunted across from the instrument

negative to ground with a 10 kO resistor, and this yielded the best results up to that point,

although there was still an unacceptable level of electrical signal oscillation with the spindle

powered up.

The problem was not solved until a site visit by my thesis advisor, who identified the

cause immediately, and made it a major basis of this thesis. Reasoning that since the "noise"

was not at either the 60 Hz (power supply switching frequency) or 18 kHz (Volkmann drive

PWM switching frequency), he hypothesized that it was not electrical at all, but mechanical.

To test his hypothesis, he looked at the JR3 outputs with an oscilloscope while he tapped the

spindle with a screwdriver. The ringdown of the spindle after the excitation was identical

in magnitude and frequency to the "noise". We had been observing natural modes of the

system, excited by the powered rotation of the motor, and not electrical noise at all. It is

postulated that the high-speed switching of current in the electric motor coil was creating

a force oscillation which excited the system mechanically. (As current is passed through a

coil, force (F = i x B) acts to drive apart neighboring windings.) When the motor was

powered down, the mechanical oscillations rang down quickly, even as the spindle continued

to rotate at speed.

This discovery had two effects. The first dealt with taking meaningful spindle motion

data with the knowledge that modes were being excited in the spindle-load cell system

by the motor. This meant taking data at speed with the motor powered off, since the

modes would ring down almost immediately without motor power. To accomplish this, we

eliminated the electric braking routine from the spindle controller, so that the spindle would

spin down freely when stopped. Being an air-bearing spindle with large rotary inertia and



low frictional dissipation, the natural spin-down time without braking is on the order of 5

minutes from 10,000 rpm. To take spindle data, I spun the spindle to about 1% above the

desired speed, cut the controller power, and took the data after about a second of spin-down.

The far more important effect, however, was that understanding the modal behavior

of the test setup became of paramount importance. Since production shops and machine

designers use load cells to measure cutting parameters in-process, the dominant effect of

spindle modes in a system such as this is of great concern. This same effect had been

discovered by others at LLNL using a similar Westwind spindle and the same JR3 load cell

earlier in the year: the system had large natural-frequency oscillations (although this was

not understood at the time), and produced parts of poor quality when it produced parts

at all. The load cell idea was scrapped in that particular setup due to instabilities which

were ostensibly caused by natural frequency oscillations of the load cell-spindle system. In

an industrial machining center, it is important that care be taken to avoid this sort of

problem. There are many possible solutions, including using a stiffer load cell or adding

damping material to the system to reduce unwanted oscillations. Any of these fixes may

reduce vibrations to an acceptable level while preserving the ability to measure machining

forces in-process with a load cell.

In the case of this particular experimental setup, I decided to understand the modal

behavior as completely as possible in the remaining months. First, I obtained a spectrum

analyzer which would allow me to look at the output of the JR3 load cell in the frequency

domain. I watched as five dominant peaks, resonances of the system, shifted in magnitude

with different rotational speeds of the spindle. (I could also see electrical peaks at 60 Hz

and 18 kHz.) These were the fundamental modes of the system, and they occurred between

100 and 200 Hz. To further understand to which oscillatory modes these natural frequencies

corresponded, I undertook a rudimentary modal analysis. Using the JR3 load cell as a force

sensor, and looking at outputs in each of the three force and moment directions with the

spectrum analyzer, I excited the spindle with a plastic hammer and recorded the spectra.

Each spectrum was an average of ten "grabbed" spectra from a hammer strike. By exciting

the spindle in a variety of different locations, I was able to obtain different spectra which

could be compared, in each of the sensing directions. Figure 7-1 shows the spectra for

excitation of the spindle at the nose as sensed by the load cell in the X, Y, and Z-directions.

I repeated this rudimentary modal test using the stiffer Kistler 9257A load cell. My
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thought was that some effects would be inherent to the Westwind spindle itself and hence

"load cell independent." By testing with two different load cells, I could observe what these

effects were. (The original reason for adding the Kistler load cell was to see if the number

of system modes would decrease with that setup.) In reality, each setup proved to be its

own complex system. In modal tests with the load cell in place, many rigid-body modes

were apparent. In the test with just the spindle bolted to the granite block, bending modes

which took place within the spindle itself were much more apparent.

Using the frequency spectra obtained with different excitation points on the setup, I

attempted to deduce mode shapes for the system. I looked at peaks which occurred on all

the spectra and compared their magnitudes to come up with a hypothesis that explained

each peak. For example, if a peak featured prominently in the Z-direction, but not the

X- or Y-directions, I would hypothesize that the mode associated with that frequency was

predominantly translation in the Z-direction. I then looked at the three moment direction

spectra to see if the frequency showed up there, as well. Many times there would also be

a rotational component to the mode. This worked very well; I was able to come up with

simple explanations for the prominent natural frequencies for each setup. My hypotheses

were later validated and expanded by the more rigorous STAR modal tests.

Another upshot of the discovery of important natural modes in the system was the

addition of damping material to the JR3 setup. I tried adding damping to see if I could

in practice lessen the effect of the modes on spindle error. This modification would have

applications if this or a similar setup were used in a machining operation at the Laboratory.

I added thin strips of Sorbothane-30 material between the fixture plates in parallel with

the load cell, along the length of the fixture plates on two sides. I ran the imbalance tests

again with the damping material in place.

Ultimately, the discovery of natural modes led to a full modal test of the four systems

(spindle-JR3, spindle-JR3-damping, spindle-Kistler, and lone spindle) using STAR modal

analysis software. This testing provided the greatest insight into how the system oscillates

at various frequencies and gave animated mode shape data and the ability to simulate

arbitrary force inputs to the system, both of which are of great use to this project.



7.2 Clock Speed Differences

In taking the simultaneous load cell and spindle analyzer data with the two CPUs (as

described in Chapter Three) one problem we encountered was differences in the counter

pulses observed by each system. The counter pulse is the once-per-revolution signal from

the rotating timing wheel, as observed by the photoeye. We gathered counter pulse data on

each of the three A/D boards used in the data collection. Since the systems started taking

data at the same instant (within + 40 microseconds of each other) the reference pulses on

the datafiles initially lined up. However, after about a second of data collection, the pulses

from the two systems had drifted apart, with the Pentium pulse leading the two Tektronix

pulses by around 1%.

This differential can be attributed to different clock speeds between the two systems. In

most applications, the user of a computer does not care if his clock is running at 25 MHz

or 25.1 MHz, and so the manufacturers of PCs do not put much effort into using accurate

clock chips, or even making sure the clock speeds agree unit to unit. The drift between the

two systems also varied: in some cases it was a 0.8% lead, in others a 1.3% lead. It was

instructive to me to learn that this potential discrepancy exists in computer clocks; this

has implications not only in the kind of synchronization problems we faced in this project

but also potentially in applications like digital control. In our application, the problem is

relatively easy to fix after the data has been gathered, by measuring the offset on MATLAB

or a similar program and scaling one set of time data so that the two signals match.

7.3 Metrology Ball Drift

When taking the first sets of spindle and load cell data, I checked the position of the

metrology ball at the outset of each run. I rotated the spindle by hand and looked at the

maximum capacitance gauge offset and its position relative to the timing window. This

number varied between each run. Sometimes the drift from run to run was fifty microinches

or more. This meant that ball offset data could not be trusted, even within the same run.

Next I tried running the spindle at high speeds for long periods (order of hours) to see if

the ball offset would "seat" in one place. This worked in the short term, but over time

(overnight) thermal drift would move the ball to a new location.

Next I looked at the metrology ball setup with the help of a machinist. We noticed that
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simply tapping the fixture lightly with a small screwdriver would cause the ball to move

erratically, by as much as 100 microinches. Examining the ball fixture, we found a precision

metrology nightmare - there were three attachment systems in use simultaneously. The

ball shaft was attached to the spindle through a small aluminum collet, into a brass slip

ring, and finally into a the 5/8" Westwind spindle collet. The high number of degrees of

freedom made ball accuracy impossible.

The solution to this problem is the fixture presented in figure 3-2. This fixture consists

of a 5/8" sleeve for the metrology ball shaft which fits directly into the spindle collet. The

new fixture preserves the flexural adjustment of the ball center found in the original fixture,

and it eliminates two extra collets in the original system. Performance with the new fixture

is markedly better, with drift between tests on the order of two microinches, and consistent

angles of offset. The thermal drift problem also improved significantly with the new fixture.

This experience taught me the importance of thinking through each assembly in a precision

machine and making sure that it is properly constrained.

7.4 Spindle Analyzer and Anti-Aliasing Filter

Before the development of the new C code and synchronization routine for taking spindle

analyzer data (which is described in Chapter Three of this thesis), I was attempting to use a

spindle analyzer program that had been developed at the Laboratory five years before. This

program had originally been implemented in PASCAL, and then converted into C code, and

since then had been modified by three other users. It ran on a PC and took data from the

capacitance gauges through an A/D board. It had functions for displaying the resultant

spindle analyzer data in polar form and calculating relevant spindle error parameters. (For

example, asynchronous axial and radial error motion, as described in the ANSI Axis of

Rotation Standard [1].) Originally I was planning to use this software to acquire data for

my experiments.

At some rotational speeds, however, this software produced erratic results. It would

display a jagged "triangle wave" or yield outputs which were unreasonably low in error

magnitude (for example, one microinch of radial error at 9,000 rpm, for a setup that had

a known once per revolution error of 50 microinches). However, this occurred only at

multiples of 3,000 rpm in spindle speed. Previous users of the software advised me to "avoid
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those speeds." At other speeds the software performed consistently, producing believable

error plots. I read through the source code for the program, and could not find anything

glaringly wrong. I decided to check into sampling rate issues, since the errors appeared

to be so closely coupled with rotational speed. The software picked a sampling rate based

on fifty data points per revolution and real-time measured rotational speed, based on the

counter pulse output. It then commanded the A/D board to sample at this rate and took

the data. However, it also wrote half of the sampling rate (the Nyquist frequency) to an

address that anti-aliasing filters read. These filters were located external to the rest of the

data acquisition system, inside the box which contained the capacitance gauge amplifiers.

Next I found that the make and model on the actual filters did not match the one

given in the program. After talking to the manufacturer of the filters, I realized that an

entire section of code had been written for another filter and never changed. Each filter

was setting its anti-aliasing cutoff at tens of times the desired cutoff, and so high-frequency

data (which is plentiful in a rotating spindle!) was being aliased down and misinterpreted

by the software. A basic change in the code fixed the problem.

We did not use this code for our spindle analysis in the end due to problems of synchro-

nization with the Tektronix system. However, the experience pointed out the importance

of knowing exactly how data is processed at each step in a data acquisition system, and in

a larger sense the importance of understanding as completely as possible any tool used in

engineering.
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Chapter 8

Recommendations

8.1 Summary of Results

In the chapter "Project Description", I set up a series of questions relating to balance in

grinding that could be asked by a machine or process designer. These were:

* "How fast should I cut?"

* "What difference does a 'softer' or 'stiffer' machine make?"

* "How are wheel truing and balance related?"

* "How does error motion scale with imbalance magnitude?"

* "If I add damping, will that improve the spindle error motion due to imbalance?"

This thesis attempts to answer these questions through experiment and modeling. The

first question, "How fast should I cut?", can best be answered by understanding the resonant

frequencies of the machine structure. Assuming that large spindle error motion should be

avoided, the speed of the grinding wheel should be chosen such that it is far away from

resonances in the sensitive direction of cutting. In the Westwind-load cell systems described

in this thesis, each direction (X, Y, and Z) had its own set of resonant peaks, sometimes

at very different frequencies. Depending on the direction of concern in cutting, the spindle

speed can be chosen so as to avoid these resonances. Determining machine resonances can

be done in many ways: in this thesis I explored the relatively time-intensive capacitance-

gauge method of spindle characterization. In addition, I looked at a much quicker method:
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empirical modal analysis. From either of these methods, it is relatively easy to pick an

operational speed for a system which avoids large oscillation due to structural resonance.

The second question, "What difference does a 'softer' or 'stiffer' machine make?", was

explored by comparing the Westwind-JR3 system to the Westwind-Kistler system. With

the softer JR3 system, there were more structural resonances and spindle error motion was

in general larger than with the stiffer Kistler system. However, the Kistler system also

transmitted more force oscillation due to imbalance through to the external structure (in

this case the isolated granite block) than did the JR3. This result can be extended to other

grinding systems: if the underlying structure had been a conventional machine tool, rather

than an enormous granite block, it would have been subjected to larger force amplitudes

with the stiffer load cell. This force oscillation could excite additional machine dynamics in

the structural loop and contribute to error motion through that route. In the more general

case of machine design, however, the advantages of a stiff machine over a softer one are

obvious. A stiffer machine will reduce the spindle error motion due to imbalance, geometric

eccentricity of the wheel, or other error sources.

The next question, "How are wheel truing and balance related?", was explored with

a series of tests which used an offset metrology ball as an "untrued" grinding wheel and

an imbalance mass placed in varying angular positions relative to the decenter. With the

imbalance mass and decenter co-located angularly, the effects compounded, leading to a

more pronounced error motion. As the mass was rotated relative to the decenter, however,

the amount of error motion lessened. And at one location the imbalance did compensate out

some of the decenter. One of the central developments in this work is explicitly separating

these two effects, which are often confused in practice. These tests showed that the effects

are indeed separate, and either reinforce each other, increasing error motion, or cancel each

other, lessening error motion. This has some potential applications in the truing of grinding

wheels: if it is possible to add a small amount of imbalance to a grinding wheel to offset a

small truing error this may save process setup time greatly. This method is already used

in the manufacture of large grinding wheels: once the center hole is drilled, material is

removed to change the balance of the wheel until the wheel runs true. This idea does not

seem to be applied yet in precision grinding, however.

"How does error motion scale with imbalance magnitude?" was investigated by increas-

ing the mass of imbalance and watching how both error motion and force transmitted to
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the machine in one direction changed. From the results, there is a logarithmic shape to the

relationship between both magnitude of imbalance and force transmitted to the surrounding

machine as imbalance mass increases.

The final question posed was, "If I add damping will that improve the spindle error

motion due to imbalance?" After tests on the JR3-Westwind system, the answer is definitely

yes. The addition of damping to that system, across a critical gap of machine motion,

greatly improved the error motion due to imbalance. In these tests, that fix was very

quick: a back-of-the-envelope calculation of an appropriate damping material thickness,

and addition of the material to the system on top of boxbeam. This reduced displacement

oscillation due to imbalance by a factor of two or better in some cases. The addition of

damping flattens out resonant peaks in the frequency response of the machine, making for

a more homogenous frequency response curve. It would seem that most precision machine

tools would benefit greatly from the intelligent addition of damping material. Vibrating

energy which is dissipated in damping material is energy that is not carried through the

cutting process to the part surface!

8.2 Extension of Study

There are many paths to pursue to carry this study forward. One potentially very interesting

experiment would be to perform empirical modal analysis on a large machine tool, such as

one of the air-bearing grinders set up on a T-base foundation at Lawrence Livermore. By

using the modal data to predict system resonances in the sensitive direction of grinding,

grinding speeds which were sensitive to imbalance of the spindle could be predicted. Then

these predictions could be tested by measuring the error motion of the spindle across its

range of operating speeds. Even more interesting would be the correlation of part surface

roughness across the range of cutting speeds with modal data for the structure. This type of

experiment would yield insight into the importance of balance as it relates to both surface

finish and cutting speed. It would also validate the idea that modal analysis can be used as

a cheaper alternative to more costly spindle analysis methods for quantifying error motion

of a machine at various speeds.

Another set of experiments which would be an excellent complement to this thesis

would be the investigation of decenter versus imbalance in a commercial precision grinding
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machine. This set of tests could consist of two parts: the first part showing that truing

error can be compensated by carefully-chosen imbalance and the second part investigating

the quality of work produced by a traditionally trued and balanced system and the new

unbalanced system. This would show the feasibility of such a procedure in precision grinding

applications. Additionally, the closed-loop use of a dynamic balancer to compensate for force

oscillation on the part (as opposed to shaking of the spindle stator) could be investigated.

One very useful set of experiments would be to validate the dashpot model ( [9]) of the

grinding process over a frequency range. In the general one-dimensional model presented

in this thesis, the dashpot is assumed to be good over all frequencies. In practice, however,

the interaction between grinding wheel and workpiece could potentially be much more

complicated. The dashpot model may hold at low frequencies, with the Hertzian-contact

stiffness between the wheel and workpiece dominating at higher frequencies, for example.

To explore these ideas, a series of experiments with an instrumented workpiece and varying

grinding wheel rotational speeds (exciting the system at different frequencies) and varying

infeed speeds could be undertaken. The results from these experiments would be a step

towards formulating a robust cutting process model.

Further modeling work could also be undertaken, to develop a lumped-parameter model

of a grinding machine like the one presented in this thesis. An enhanced model could use

well-measured parameters from a commercial grinding machine as its process parameters. It

could be extended to multiple dimensions and degrees of freedom from the model presented

here. The goal of this model would be to simulate a real grinding machine and predict the

magnitude of relevant variables of the grinding process. With the level of understanding

from a robust, validated model would come many advantages. Effects of many types of

error sources (i.e. balance, decenter, thermal errors, seismic errors) could be studied, and

error budgeting for the system vastly improved. In addition, having a robust model of a

large grinder would have potentially rewarding applications in active control of the grinding

process instead of the open-loop grinding most common today. (See [10].)

Very helpful in any work of this sort would be a model which predicts part surface finish

based on wheel geometry, wheel speed, part composition, input grinding force, and input

spindle error motion. Then force and error motion could be input from a separate model

(akin to the general model presented in this thesis) and part surface predicted using the

cutting model. The model would ideally be able to be modified for any of a number of
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grinding configurations - cup grinding, peripheral grinding, face grinding, etc. Currently

the grinding models which exist are very application-specific and not easily modified to

solve general problems. Having a robust cutting model would be of great help to precision

grinding research.

8.3 Industrial Applications

There are a number of potential industrial applications from the work presented in this

thesis. One is that empirical modal testing is a potentially useful alternative to other

types of spindle error motion analysis. It has the advantage of being much faster than

capacitance gauge testing and provides good insight into the dynamics of the machine

tool. With understanding of the dynamics comes an intelligent choice of process speed and

perhaps good guidelines for the amount of imbalance and decenter which can be tolerated in

the process. Further, this thesis has demonstrated that knowledge derived from the modal

testing can be used to produce useful analytical and theoretical models of the machine tool.

As the tolerances in precision grinding get ever smaller, it will be of paramount importance

to understand the dynamics of the system as fully as possible.

Another potential application is compensation of truing error with chosen imbalance.

In precision grinding, much time is spent in getting the wheel trued to an acceptable level

of error. With electro-discharge machining methods and a bronze-bond wheel this can

sometimes take on the order of days. The judicious addition of a small imbalance could

correct the truing error with minimal effect on the part. This method is already being used

in the manufacture of grinding wheels; it should be attempted in precision grinding. If

found to be practical, it could save a great deal of time in process set up.

Finally, it has been shown here that adding damping to a grinding system can greatly

reduce spindle error motion due to imbalance. This could translate into improved process

quality with no adverse effects. This is another potential solution to the problem of imbal-

ance in grinding. By flattening out the frequency response spectrum of the machine, the

effects of resonant frequencies can be lessened. Many existing precision grinding machines

could benefit from the careful addition of damping material. It is helpful in dissipating

energy from diverse error sources that would otherwise go into the cutting process.
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Appendix A

MATLAB Script for General

Grinding Model

function [outl,out2,out3] = Grind10(t,y)

%%%%% SOLUTION PARAMETERS %%%%%

% return default tspan, yO, options
% start and end times

out2 = [0; 0; 0; 0; 0; 0; 0; 0]; % IC's

out3 = odeset('atol',le-12);%,'outfun','odeplot');

return; % graph output

end

dy = zeros(size(y));

%error allowance and

%%%%% DEFINITION OF VARIABLES %%%%%

% component
% machine mass 1
% wkpc spindle mass
% tool spindle mass
% machine mass 2

position
y(1,:)

velocity

y(5,:)
y(6,:)
y(7,:)
y(8,:)

%%%%% ELEMENT PARAMETERS %%%%%

M1 = 2000;

M2 = 1000; % 500/2.2 for Moore
M3 = 25.36/2.2;

M4 = 2000;
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K1 = 12.8e6;
K2 = le5;
K3 = 57.8e6;

K4 = 57.8e6;

Bi = le5;
B2 = le5;

B3 = le5;

B4 = 0; %see below

%%%%% CUTTING MODEL PARAMS %%%%%

rpm = 5000; % grinding spindle speed
A = le-6; % size of contact patch
Kp = 0.2e-4; % Preston coefficient (should itself be a function)

V = (rpm/60)*(pi*0.30); % relative velocity of surfaces
Fth = 0; % threshold grinding force for mat'l removal, assumed zero

%since we're already grinding

Bp = A/(Kp*V);
Fbp = Bp*(y(7,:) - y(6,:)) + Fth;

%%%%% FORCE INPUTS %/%%%

Me = .016;

e = 0.10;
omega = rpm*(2*pi/60);
Fbe = Me*e*omega^2*sin(omega*t);

delr = 100*2.54e-8;

phi = 0*(2*pi/360); %phase lag between peak imbalance and peak geo. eccent.

ygedot = delr*omega*cos(omega*t + phi); %deriv of fxn describing geom error

%displ

Fge = 0; %(ygedot*Bp) + Fth;

%%%%% ELEMENT FORCE RELATIONS %%%%%

Fkl = Kl*(y(l,:) - y(4,:));

Fk2 = K2*(y(4,:));

Fk3 = K3*(y(1,:) - y(2,:));

Fk4 = K4*(y(3,:) - y(4,:));

Fbi = Bl*(y(5,:) - y(8,:));

Fb2 = B2*(y(8,:));
Fb3 = B3*(y(5,:) - y(6,:));

Fb4 = 0; %B4*(y(7,:) - y(8,:));

%%%%% SYSTEM EQUATIONS %%%%%
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dy(1,:) = y(5,:);
dy(2,:) = y(6,:);
dy(3,:) = y(7,:);
dy(4,:) = y(8,:);

dy(5,:) = (1/M1) *(-Fkl - Fbl - Fk3 - Fb3);

dy(6,:) = (1/M2) *(Fk3 + Fb3 - Fbp - Fge);

dy(7,:) = (1/M3) *(Fbp + Fge + Fbe - Fk4 - Fb4);

dy(8,:) = (1/M4) *(Fk4 + Fb4 + Fkl + Fbl - Fk2 - Fb2);

outi = dy;

%%%%% HOW TO RUN %%%%%
% [T,Y] = ode45('GrindlO');
% o/p var name
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Appendix B

MATLAB Script for Analytical

Grinding Model

B.1 ODE solver

function [outi,out2,out3] = cactusman(t,y)

%%%%% SOLUTION PARAMETERS %%%%/

if length(t) == 0 % return default tspan, yO, options
outl = [0; 0.15]; % start and end times
out2 = [0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0]; % IC's
out3 = odeset('atol',le-6,'outfun','odeplot'); %error allowance and graph
return;

%output
end

dy = zeros(size(y));

%%%%% DEFINITION OF VARIABLES %%%%%

% position

% thetax
% thetay
% thetaz
% theta4a
% theta5

y(1,:)

y(2,:)

y(3,:)

y(4,:)

y(5,:)

time derivative (vel)

y(6,:)
y(7,:)
y(8,:)
y(9,:)
y(10,:)

%%%%% ELEMENT PARAMETERS %%%%%

Ii = 10.41;
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12 = 7.584;
14 = 1.140;
14a = 9.58;
15 = 12.41;
16 = 6.159;

Kmx = 3.84e6;

Kmy = 3.84e6;

Kmz = 1.20e6;

K4a = 3.17e7;

K5 = 5.12e7;
K6 = 5.24e7;

zeta = 0.1; %mode damping ratio

B1 = 2*zeta*sqrt(Kmy*I2);

B2 = 2*zeta*sqrt(Kmx*Il);

B4 = 2*zeta*sqrt(Kmz*I4);

B4a = 2*zeta*sqrt(K4a*I4a);

B5 = 2*zeta*sqrt(K5*I5);

Ms = 160/2.2;

dl = 0.21868; %meters
d2 = 0.12303;

d3 = 0.27702;

d4 = 0.43736;

d5 = 0.22296;

db = 0.08096;

%%%%% INPUTS %%%%%

rpm = 50e3;

Me = 0.4883e-3; % mass 'A'
e = 2.301e-2; % mass 'A'
omega = rpm*(2*pi/60);

a = Me*e*omega^2;

%%%%% SYSTEM EQUATIONS %%%%%

dy(1,:) = y(6,:);
dy(2,:) = y(7,:);
dy(3,:) = y(8,:);
dy(4,:) = y(9,:);
dy(5,:) = y(lO,:);
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dy(6,:) = (1/I2) *(-Kmy*y(l,:) - Bl*y(6,:) + a*sin(omega*t + 3*pi/2)*dl);

dy(7,:) = (1/I1) *(-Kmx*y(2,:) - B2*y(7,:) + a*sin(omega*t + pi )*d2);

dy(8,:) = (1/I4) *(-Kmz*y(3,:) - B4*y(8,:) + a*sin(omega*t )*dl);
dy(9,:) = (1/I4a)*(-K4a*y(4,:) - B4a*y(9,:) + a*sin(omega*t + 3*pi/2)*d3);

dy(10O,:) = (1/15) *(-K5*y(5,:) - B5*y(10,:) + a*sin(omega*t + 3*pi/2)*d4);

outl = dy;

%%%%% HOW TO RUN %%%%%
%path('/mit/case/thesis/MATLAB/odesuite',path)

% [T,A] = ode45('cactusman');
% o/p var name

% use the file post2.m to convert coordinates and add in ball decenter

B.2 Post Processor

% post-processor for cactusman.m model
% this routine will map the trans. and rot. deflections from the model into
% spindle error motion

%%%%% SYSTEM DIMENSIONS %%%%%

dl = 0.21868; %meters, make sure same as cactusman.m

d2 = 0.12303;

d3 = 0.27702;

d4 = 0.43736;

d5 = 0.22296;

db = 0.08096;

radl = (d2^2 + (dl + db)^2)^0.5;

rad2 = ((d2 - d5)^2 + (d3 + db)^2)^0.5;

angl = atan(d2/(dl + db));
ang2 = atan((d3 + db)/(d5 - d2));

%%%%% INPUTS %%%%%

rpm = 50e3;

omega = rpm*(2*pi/60);
driver = sin(omega*T);

%%%%% OUTPUTS %%%%%

ythetax = -d2*sin(A(:,l));

zthetax = -d2*(l - cos(A(:,l)));
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zthetay = (radl*sin(angi - A(:,2))) - d2;

xthetay = (radl*cos(angl - A(:,2))) - (dl + db);

ythetaz = (dl + db)*sin(A(:,3));

xthetaz = -(dl + db)*(1 - cos(A(:,3)));

ztheta4a = -(rad2*cos(ang2 - A(:,4))) + (d5 - d2);

xtheta4a = (rad2*sin(ang2 - A(:,4))) - (d3 + db);

ztheta5 = -(d4 + db)*sin(A(:,5));

xtheta5 = -(d4 + db)*(l - cos(A(:,5)));

x = xthetay + xthetaz + xtheta4a + xtheta5;

y = ythetax + ythetaz;

z = zthetax + zthetay + ztheta4a + ztheta5;

xe = x/2.54e-8; % in English units (microinches)
ye = y/2.54e-8;

ze = z/2.54e-8;
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Appendix C

Data Reduction

C.1 MATLAB Procedure

Each spindle test (approximately one second of data) was stored to its own data file (around

800 Kbytes of data) and the relevant information on rotational speed, amplitude, and phase

of each relevant signal had to be extracted from this file. This was done graphically using

MATLAB scripts which, after a data file had been loaded (as a large, multiple-column

array), allowed the determination of the relevant parameters. The scripts allow the user

to click on a region of the graph, zoom in, and then they output desired quantities after

getting user input from the graph. Amplitude of the signal was found by taking half of the

peak-to-peak value. Phase was found relative to the once per revolution counter pulse, and

then later adjusted for phase relative to the desired sensitive direction. A portion of an

example MATLAB script, for reduction of Kistler axial data, follows.

clear;
load ka39.dat;
J = ka39;

%%% FREQUENCY DETERMINATION

plot(J(:,7),J(:,8)); %plot pulses

title('Choose frequency window:');

corner = ginput(3); % this corner routine lets the user zoom in on a
% region by clicking on the bottom left, bottom right, and top corners
axis([corner(1,l) corner(2,1) corner(1,2) corner(3,2)]); % reset the axis
title('Choose 5-tick span for frequency measurement:'); % prompts next step
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freqin = ginput(2); . choose 5-pulse span over early part of data
Freq = 5/(freqin(2,1) - freqin(1,1));
RPM = Freq * 60

%%% AXIAL DATA EXTRACTION

plot(J(:,7),J(:,8),J(:,7),J(:,3)); %axial plot
title('Choose axial window:');
corner = ginput(3);
axis([corner(1,1) corner(2,1) corner(1,2) corner(3,2)]);
title('Choose top-bottom displacement:');

Vppin = ginput(2); %top-to-bottom magnitude determination
Vppaxial = Vppin(1,2) - Vppin(2,2);
AmplAx = (Vppaxial/9.8867e-3)/2

title('Choose tick-peak-tick triple:');

Phain = ginput(3); .left-to-right input of pulse-peak-pulse
Phalagaxi = ( (Phain(2,1) - Phain(1,1)) / (Phain(3,1) - Phain(1,1)) ) * 360

Similar MATLAB scripts enabled data reduction for the different types of data files.

The data was then entered into arrays which were stored and graphed on MATLAB.

C.2 Tehranchi's Identity

Before each set of data was obtained, the amount of ball decenter and its phase were

measured manually. This was for the purpose of correcting the data for the geometric

offset, so that only error motion due to imbalance remained. To do this, one must apply

Tehranchi's identity, which allows the subtraction of two sinusoids of the same frequency,

but different amplitudes and phases.

Aej(wt+±) - Bej(wt +±O) = Cej (wt+0) (C.1)

where

C= /A2 + B 2 - 2AB cos( - ) (C.2)

and
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- corrected for offset
- uncorrected data
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Figure C-I: Effect of correcting the capacitance gauge output
trace of radiall (Y) cap gauge on Kistler system.
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x 104

for initial geometric decenter:

(C.3)

An example of the result of applying this formula to the data can be seen in figure C-

1. This graph shows the output of the radiall capacitance gauge for the Kistler load cell

system over a speed range, for both the uncorrected and corrected data sets. At the large

amplitudes (600 microinches at 16,000 rpm) there is not much difference between corrected

and uncorrected data, but at lower speeds (i.e. 3,000 rpm), almost all of the signal oscillation

is due to geometric decenter. Once corrected, the amplitude at these speeds drops near

zero, suggesting that unbalance plays a minimal role at low speeds compared to geometric

decenter. Also interesting in this particular example is the evidence of a possible harmonic

oscillation at 10,600 rpm which does not appear in the uncorrected data.
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Appendix D

Comparing Westwind Stiffness

with Load Cell Stiffness

To compare the apparent stiffness at the spindle shaft to the rotational stiffness of the load

cell, I converted the spindle translational stiffness into an equivalent rotational stiffness

about the load cell center.

For small displacements the rotational stiffness about a point can be expressed in terms

of the translational stiffness by

Kr = Kd2  (D.1)

where Kr is the effective rotational stiffness, K is the translational stiffness, and d is

the moment arm length. This equation can be easily derived by considering a translational

spring at the end of a fixed moment arm and finding an equivalent Kr based on the spring

constant K. Using this equation, we can compute an approximate rotational stiffness about

the load cell center for the air bearing. This allows direct comparison of the air bearing

stiffness to the load cell rotational stiffnesses which dominate the Westwind-JR3 modes.

The manufacturer's apparent translational stiffness at the end of the shaft at 10,000

rpm is 4.5 x 107 Newtons per meter. Using 0.25 meters as the moment arm distance (d),

the effective stiffness of the spindle shaft about load cell center is approximately 3 x 106

Newton-meters per radian, which can be compared with about 4 x 106 N m/rad for the load

cell rotational stiffnesses about X and Y. (See table 3.1 for more exact load cell stiffnesses.)

The fact that these spring values are very close suggests that a better model would consist
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of a force driving the spindle mass (about 7 kg), which is then connected to the larger stator

mass (about 50 kg) via the air bearing spring. Air bearing stiffness is an effect which should

have been considered in the model presented in this thesis.

As a check on the spindle manufacturer's apparent shaft stiffness values, I used their

values to analytically compute expected shaft deflections due to imbalance (no load cell

present). I then compared those predictions with experimental data on spindle deflections

due to imbalance with no load cell present. The empirical and estimated deflections agreed

to within a factor of two across the range of speeds tested in these experiments, which

suggests that the manufacturer's stiffness values are believable. At 5,800 rpm actual spindle

deflection (no load cell) was 8 microinches, while at 18,000 rpm spindle deflection was

52 microinches. These deflections are noteworthy, and again point to the possibility of

unmodelled spindle dynamics as a source of the discrepancies between the analytical model

and the experimental data. A better analytical model would attempt to include these

dynamics.

; , Y
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