ON WEAKLY 2-ABSORBING SEMI-PRIMARY SUBMODULES OF MODULES OVER COMMUTATIVE RINGS

PAIROTE YIARAYONG* AND MANOJ SIRIPITUKDET

Department of Mathematics, Faculty of Science, Naresuan University, Phitsanuloke 65000, Thailand

* Corresponding author: pairote0027@hotmail.com

Abstract

Let R be a commutative ring with identity and let M be a unitary R-module. We say that a proper submodule N of M is a weakly 2 -absorbing semi-primary submodule if $a_{1}, a_{2} \in R, m \in N$ with $0 \neq a_{1} a_{2} m \in N$, then $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} m \in N$ or $a_{2}^{n} m \in N$ for some positive integer n. In this paper, we study weakly 2 -absorbing semi-primary submodules and we prove some basic properties of these submodules. Also, we give a characterization of weakly 2-absorbing semi-primary submodules and we investigate weakly 2 -absorbing semi-primary submodules of some well-known modules.

1. Introduction

Throughout this paper, we assume that all rings are commutative with $1 \neq 0$. Let R be a commutative ring and let M be an R-module. We will denote by $(N: M)$ a residual of N by M, that is, the set of all $r \in R$ such that $r M \subseteq N$. Clearly, $\sqrt{I}=\left\{r \in R: r^{n} \in I\right.$ for some positive integer $\left.n\right\}$ denotes the radical ideal of R.

In 2003, Anderson and Smith [1] introduced the concept of a weakly prime ideal of a commutative ring. They said that a proper ideal P of the commutative ring R is weakly prime if $a, b \in R$ and $0 \neq a b \in P$, then $a \in P$ or $b \in P$. A weakly primary ideals were first introduced and studied by Atani and Farzalipour in [2]. Recall that a proper ideal P of R is called a weakly primary ideal of R as in [2] if for $a, b \in R$ with $0 \neq a b \in P$, then $a \in P$ or $b^{n} \in P$ for some positive integer n. Clearly, a weakly prime ideal of R is also a

Key words and phrases. weakly 2-absorbing semi-primary submodule; 2-absorbing semi-primary submodule; absorbing semiprimary triple-zero; weakly 2 -absorbing primary ideal.
weakly primary ideal of R. The concept of weakly 2-absorbing ideals, which is a generalization of 2-absorbing ideals, was introduced by Badawi and Darani in [3]. Recall from [3] that a proper ideal I of R is said to be a weakly 2-absorbing ideal of R if whenever $a, b, c \in R$ with $0 \neq a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. In [4], Badawi et. al. defined a proper ideal I of a commutative ring R to be a weakly 2 -absorbing primary ideal if whenever $a, b, c \in R$ and $0 \neq a b c \in I$, then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$.

The concept of weakly prime submodule was introduced and studied by Behboodi and Koohi [5]. We recall that a proper submodule N of M is called a weakly prime submodule, if $0 \neq r m \in N$, where $r \in R, m \in M$, then $m \in N$ or $r \in(N: M)$. The idea of decomposition of submodules into weakly primary submodules were introduced by Atani and Farzalipour in [2]. A weakly primary submodule N of M to be a proper submodule of M and if $r \in R, m \in M$ and $0 \neq r m \in N$, then $m \in N$ or $r^{n} \in(N: M)$ for some positive integer n. Clearly, every primary submodule of a module is a weakly primary submodule. In [6], the concept of weakly 2 -absorbing submodule generalized to 2 -absorbing submodule of a module over a commutative ring. A proper submodule N of M is called a weakly 2 -absorbing submodule, if whenever $a, b \in R$ and $m \in M$ with $0 \neq a b m \in N$, then $a b \in(N: M)$ or $a m \in N$ or $b m \in N$. In 2016, Mostafanasab et al. [11] introduced the concept of weakly 2-absorbing primary submodules of modules over commutative rings with identities. Recall that a proper submodule N of M is called a weakly 2-absorbing primary submodule of M as in [11] if whenever $0 \neq a b m \in N$ for some $a, b \in R$ and $m \in M$, then $a b \in(N: M)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$. The concept of weakly classical prime submodule, which is a generalization of classical prime submodule, was introduced by Mostafanasab et al. in [10]. Recall from [10] that a proper submodule N of M is said to be a weakly classical prime submodule of M if whenever $a, b \in R$ and $m \in M$ with $0 \neq a b m \in N$, then $a m \in N$ or $b m \in N$. The concept of weakly classical primary submodule, a generalization of primary submodules was introduced and investigated in [9]. He weakly classical primary submodule N of M to be a proper submoduleof R and if $a, b \in R$ and $0 \neq a b m \in N$, then $a m \in N$ or $m b^{n} \in N$ for some positive integer n.

Motivated and inspired by the above works, the purposes of this paper are to introduce generalizations of weakly 2-absorbing primary submodule to the context of weakly 2 -absorbing semi-primary submodule. A proper submodule N of M to be a weakly 2-absorbing semi-primary submodule of M if whenever $0 \neq a_{1} a_{2} m \in N$ for $a_{1}, a_{2} \in R, m \in M$, then $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} m \in N$ or $a_{2}^{n} m \in N$ for some positive integer n. Some characterizations of weakly 2 -absorbing semi-primary submodules are obtained. Moreover, we investigate relationships between 2-absorbing semi-primary and weakly 2 -absorbing semi-primary submodules of modules over commutative rings.

2. Properties of weakly 2-Absorbing Semiprimary Submodules

The results of the following theorems seem to play an important role to study weakly 2 -absorbing semiprimary submodules of modules over commutative rings; these facts will be used frequently and normally we shall make no reference to this definition.

Definition 2.1. A proper submodule N of an R-module M is called a weakly 2-absorbing semi-primary (2-absorbing semi-primary) submodule, if for each $m \in M$ and $a_{1}, a_{2} \in R, 0 \neq a_{1} a_{2} m \in N\left(a_{1} a_{2} m \in N\right)$, then $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} m \in N$ or $a_{2}^{n} m \in N$ for some positive integer n.

Remark 2.1. It is easy to see that every weakly 2 -absorbing primary submodule (2-absorbing semi-primary) submodule is weakly 2-absorbing semi-primary submodule.

The following example shows that the converse of Definition 2.1 is not true.

Example 2.1. Let $R=\boldsymbol{Z}$ and $M=\boldsymbol{Z}$. Consider the submodule $N=12 \boldsymbol{Z}$ of M. It is easy to see that N is a 2-absorbing semi-primary submodule of M. Notice that $2 \cdot 2 \cdot 3 \in N$, but $2 \cdot 3 \notin N$ and $(2 \cdot 2)^{n} \notin(N: M)$ for all positive integer n. Therefore N is not a 2-absorbing primary submodule of M.

Example 2.2. Let $R=\boldsymbol{Z}$ and $M=\boldsymbol{Z}_{30}$. Consider the submodule $N=\{[0]\}$ of M. It is easy to see that N is a weakly 2 -absorbing semi-primary submodule of M. Notice that $(2 \cdot 3)[5] \in\{[0]\}$, but $2 \cdot 3 \notin \sqrt{(N: M)}, 2[5] \notin$ $\{[0]\}$ and $3^{n}[5] \notin\{[0]\}$ for all positive integer n. Therefore N is not a 2-absorbing semi-primary submodule of M.

Theorem 2.1. Let N be a proper submodule of an R-module M. Then the following statements hold:
(1) If N is a weakly 2-absorbing semi-primary submodule of M, then $(N: m)$ is a weakly 2-absorbing primary ideal of R for every $m \in M-N$.
(2) For every $m \in M-N$ if $(N: m)$ is a weakly primary ideal of R, then N is a weakly 2-absorbing semi-primary submodule of M.

Proof. 1. Let $a_{1}, a_{2}, a_{3} \in R$ such that $0 \neq a_{1} a_{2} a_{3} \in(N: m)$. Clearly, $0 \neq a_{1} a_{3}\left(a_{2} m\right) \in N$. By Definition 2.1, $a_{1} a_{3} \in \sqrt{(N: M)} \subseteq \sqrt{(N: m)}$ or $a_{1} a_{2} m \in N$ or $a_{3}^{n} a_{2} m \in N$ for some positive integer n. Therefore $a_{1} a_{2} \in(N: m)$ or $a_{2} a_{3} \in \sqrt{(N: m)}$ or $a_{1} a_{3} \in \sqrt{(N: m)}$. Hence $(N: m)$ is a weakly 2-absorbing primary ideal of R.
2. Let $a_{1}, a_{2} \in R$ such that $0 \neq a_{1} a_{2} m \in N$. Then $0 \neq a_{1} a_{2} \in(N: m)$. By assumption, $a_{1} \in(N: m)$ or $a_{2}^{n} \in(N: m)$ for some positive integer n. Therefore $a_{1} m \in N$ or $a_{2}^{n} m \in N$ for some positive integer n. Hence N is a weakly 2 -absorbing semi-primary submodule of M.

But the converse of the above theorem is not true. For every $m \in M-N$, if $(N: m)$ is weakly 2absorbing primary ideal, then N may not be weakly 2 -absorbing semi-primary. Let $M=\mathbf{Z} \times \mathbf{Z} \times \mathbf{Z}$ be an

Z-module. Consider the submodule $N=\{0\} \times 6 \mathbf{Z} \times \mathbf{Z}$ of M. Clearly, $\left(N:\left(m_{1}, m_{2}, m_{3}\right)\right)=\{0\}$ is a weakly 2-absorbing primary ideal of R, where $\left(m_{1}, m_{2}, m_{3}\right) \in M-N$. Notice that $(0,0,0) \neq(2 \cdot 3)(0,1,1) \in N$, but $2 \cdot 3 \notin \sqrt{(N: M)}, 2(0,1,1) \notin N$ and $3^{n}(0,1,1) \notin N$ for all positive integer n. Therefore N is not a weakly 2-absorbing semi-primary submodule of M.

Theorem 2.2. If N is a weakly 2-absorbing semi-primary submodule of an R-module M, then ($N: r$) is a weakly 2-absorbing semi-primary submodule of M containing N for every $r \in R-(N: M)$.

Proof. Let $a_{1}, a_{2} \in R$ and $m \in M$ such that $0 \neq a_{1} a_{2} m \in(N: r)$. Then $0 \neq a_{1} a_{2}(r m)=r a_{1} a_{2} m \in N$. By Definition 2.1, $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} r m \in N$ or $a_{2}^{n} r m \in N$ for some positive integer n. Therefore $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} m \in(N: r)$ or $a_{2}^{n} \in(N: r)$ for some positive integer n. Hence $(N: r)$ is a weakly 2-absorbing semi-primary submodule of M.

Theorem 2.3. Let $\{0\}$ be a 2-absorbing semi-primary submodule of an R-module M. Then N is a weakly 2-absorbing semi-primary submodule of M if and only if N is a 2-absorbing semi-primary submodule of M.

Proof. Suppose that N is a 2-absorbing semi-primary submodule of M. Clearly, N is a weakly 2-absorbing semi-primary submodule of M.

Conversely, assume that N is a weakly 2 -absorbing semi-primary submodule of M. Let $a_{1}, a_{2} \in R$ and $m \in M$ such that $a_{1} a_{2} m \in N$. If $a_{1} a_{2} m \notin\{0\}$, then $0 \neq a_{1} a_{2} m \in N$. By Definition 2.1, $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} m \in N$ or $a_{2}^{n} m \in N$ for some positive integer n. Now if $a_{1} a_{2} m \in\{0\}$, then $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} m \in N$ or $a_{2}^{n} m \in N$ for some positive integer n. Hence N is a 2 -absorbing semi-primary submodule of M.

Theorem 2.4. Let M and \dot{M} be two R-modules and $f: M \rightarrow \dot{M}$ be an epimorphism of an R-module. If N is a weakly 2-absorbing semi-primary submodule of M such that ker $f \subseteq N$, then $f(N)$ is a weakly 2 -absorbing semi-primary submodule of M.

Proof. Let $a_{1}, a_{2} \in R$ and $\dot{m} \in \dot{M}$ such that $0 \neq a_{1} a_{2} \dot{m} \in f(N)$. Thus $0 \neq a_{1} a_{2} \dot{m}=\dot{m}_{0}$ for some $\dot{m}_{0} \in f(N)$. Since f is an epimorphism, there exist $m \in M$ and $m_{0} \in N$ such that $\dot{m}=f(m)$ and $\dot{m}_{0}=f\left(m_{0}\right)$. This implies that $0 \neq a_{1} a_{2} f(m)=f\left(m_{0}\right)$. Therefore $f\left(a_{1} a_{2} m-m_{0}\right)=0$ and so $a_{1} a_{2} m-m_{0} \in \operatorname{ker} f \subseteq N$. Also, $0 \neq a_{1} a_{2} m \in N$, because if $a_{1} a_{2} m=0$, then $m_{0} \in \operatorname{ker} f$. It follows that $f\left(m_{0}\right)=0$, a contradiction. Now, since N is a weakly 2 -absorbing semi-primary, we have $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} m \in N$ or $a_{2}^{n} m \in N$ for some positive integer n. Therefore $a_{1} a_{2} \in \sqrt{(f(N): \dot{M})}$ or $a_{1} \dot{m} \in f(N)$ or $a_{2}^{n} \dot{m} \in f(N)$ for some positive integer n. Hence $f(N)$ is a 2 -absorbing semi-primary submodule of M.

Theorem 2.5. Let M be an R-module and $N \subseteq K$ be two submodules of M. If K is a weakly 2-absorbing semi-primary submodule of M, then K / N is a weakly 2 -absorbing semi-primary submodule of M / N.

Proof. Let $a_{1}, a_{2} \in R$ and $m \in M$ such that $N \neq a_{1} a_{2}(m+N) \in(K / N)$. Then $0 \neq a_{1} a_{2} m \in K$. By Definition 2.1, $a_{1} a_{2} \in \sqrt{(K: M)}$ or $a_{1} m \in K$ or $a_{2}^{n} m \in K$ for some positive integer n. Therefore $a_{1} a_{2} \in \sqrt{(K / N: M / N)}$ or $a_{1}(m+N) \in K / N$ or $a_{2}^{n}(m+N) \in K / N$ for some positive integer n. Hence K / N is a weakly 2 -absorbing semi-primary submodule of M / N.

Theorem 2.6. Let M be an R-module and $N \subseteq K$ be two submodules of M. Suppose that N is a weakly 2absorbing semi-primary submodule of M. If K / N is a weakly 2-absorbing semi-primary submodule of M / N, then K is a weakly 2-absorbing semi-primary submodule of M.

Proof. Let $a_{1}, a_{2} \in R$ and $m \in M$ such that $0 \neq a_{1} a_{2} m \in K$. If $a_{1} a_{2} m \in N$, then $0 \neq a_{1} a_{2} m \in N$. By Definition 2.1, $a_{1} a_{2} \in \sqrt{(N: M)} \subseteq \sqrt{(K: M)}$ or $a_{1} m \in N \subseteq K$ or $a_{2}^{n} m \in N \subseteq K$ for some positive integer n. If $a_{1} a_{2} m \notin N$, then $N \neq a_{1} a_{2}(m+N) \in N$. Again, by Definition 2.1, $a_{1} a_{2} \in \sqrt{(K / N: M / N)}$ or $a_{1}(m+N) \in K / N$ or $a_{2}^{n}(m+N) \in K / N$ for some positive integer n. Thus $a_{1} a_{2} \in \sqrt{(K: M)}$ or $a_{1} m \in K$ or $a_{2}^{n} m \in K$ for some positive integer n. Hence K is a weakly 2 -absorbing semi-primary submodule of M.

Corollary 2.1. Then N is a weakly 2-absorbing semi-primary submodule of an R-module M if and only if $N /\{0\}$ is a weakly 2-absorbing semi-primary submodule of an R-module $M /\{0\}$.

Proof. It is straightforward by Theorem 2.5 and Theorem 2.6.

Theorem 2.7. Let N be a submodule of an R-module M and S be a multiplicative subset of R. If N is a weakly 2-absorbing semi-primary submodule of M such that $(N: M) \cap S=\emptyset$, then $S^{-1} N$ is a weakly 2-absorbing semi-primary submodule of $S^{-1} M$.

Proof. Clearly, $S^{-1} N$ is a proper submodule of $S^{-1} M$. Let $a_{1}, a_{2} \in R, s_{1}, s_{2}, s_{3} \in S$ and $m \in M$ such that $0 \neq \frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \frac{m}{s_{3}} \in S^{-1} N$. Then there exists $s \in S$ such that $s a_{1} a_{2} m \in N$. If $s a_{1} a_{2} m=0$, then $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \frac{m}{s_{3}}=$ $\frac{s a_{1}}{s s_{1}} \frac{a_{2}}{s_{2}} \frac{m}{s_{3}}=\frac{0}{1}$, a contradiction. If $s a_{1} a_{2} m \neq 0$, then $0 \neq a_{1} a_{2}(s m) \in N$. By Definition 2.1, $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} s m \in N$ or $a_{2}^{n} s m \in N$ for some positive integer n. Thus $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \in \sqrt{\left(S^{-1} N: S^{-1} M\right)}$ or $\frac{a_{1}}{s_{1}} \frac{m}{s_{3}}=\frac{a_{1} s m}{s_{1} s_{3} s} \in$ $S^{-1} N$ or $\left(\frac{a_{2}}{s_{2}}\right)^{n} \frac{m}{s_{3}}=\frac{a_{2}^{n} s m}{s_{2}^{n} s_{3} s} \in S^{-1} N$ for some positive integer n. Hence $S^{-1} N$ is a weakly 2-absorbing semi-primary submodule of $S^{-1} M$.

Theorem 2.8. Let N be a submodule of an R-module M and S be a multiplicative subset of R. If $S^{-1} N$ is a weakly 2-absorbing semi-primary submodule of $S^{-1} M$ such that $S \cap Z d(N)=\emptyset$ and $S \cap Z d(M / N)=\emptyset$, then N is a weakly 2-absorbing semi-primary submodule of M.

Proof. Let $a_{1}, a_{2} \in R$ and $m \in M$ such that $0 \neq a_{1} a_{2} m \in N$. Then $\frac{a_{1}}{1} \frac{a_{2}}{1} \frac{m}{1} \in S^{-1} N$. If $\frac{a_{1}}{1} \frac{a_{2}}{1} \frac{m}{1}=\frac{0}{1}$, then there exists $s \in S$ such that $s a_{1} a_{2} m=0$ which is a contradiction. If $\frac{a_{1}}{1} \frac{a_{2}}{1} \frac{m}{1} \neq \frac{0}{1}$, then $\frac{0}{1} \neq \frac{a_{1}}{1} \frac{a_{2}}{1} \frac{m}{1} \in S^{-1} N$. By Definition 2.1, $\frac{a_{1}}{1} \frac{a_{2}}{1} \in \sqrt{\left(S^{-1} N: S^{-1} M\right)}$ or $\frac{a_{1}}{1} \frac{m}{1} \in S^{-1} N$ or $\left(\frac{a_{2}}{1}\right)^{n} \frac{m}{1} \in S^{-1} N$ for some positive integer
n. If $\frac{a_{1}}{1} \frac{a_{2}}{1} \in \sqrt{\left(S^{-1} N: S^{-1} M\right)}$, then $\left(\frac{a_{1}}{1} \frac{a_{2}}{1}\right)^{n} \in\left(S^{-1} N: S^{-1} M\right)$ for some positive integer n. Thus there exists $s \in S$ such that $s\left(a_{1} a_{2}\right)^{n} M \subseteq N$ for some positive integer n. Since $S \cap Z d(M / N)=\emptyset$, we have $\left(a_{1} a_{2}\right)^{n} M \subseteq N$ so $a_{1} a_{2} \in \sqrt{(N: M)}$. If $\frac{a_{1}}{1} \frac{m}{1} \in S^{-1} N$, there exists $s \in S$ such that $s a_{1} m \in N$. Thus $s\left(a_{1} m+N\right)=s a_{1} m+N=N$. But $S \cap Z d(M / N)=\emptyset, a_{1} m \in N$. If $\left(\frac{a_{2}}{1}\right)^{n} \frac{a_{m}}{1} \in N$, there exists $s \in S$ such that such that $s a_{1}^{n} m \in N$ for some positive integer n. Thus $s\left(a_{2}^{n} m+N\right)=s a_{2}^{n} m+N=N$ for some positive integer n. Since $S \cap Z d(M / N)=\emptyset$, we have $a_{2}^{n} m \in N$ for some positive integer n. Therefore N is a weakly 2-absorbing semi-primary submodule of M.

Theorem 2.9. Let N be a proper submodule of an R-module M. The following conditions are equivalent:
(1) N is a weakly 2-absorbing semi-primary submodule of M.
(2) For every $a_{1}, a_{2} \in R-(N: M)$ if $a_{1} a_{2} \in R-\sqrt{(N: M)}$, then $\left(N: a_{1} a_{2}\right) \subseteq\left(0: a_{1} a_{2}\right) \cup(N:$ $\left.a_{1}\right) \cup\left(N: a_{2}^{n}\right)$ for some positive integer n.
(3) For every $a_{1}, a_{2} \in R-(N: M)$ if R is a u-ring and $a_{1} a_{2} \in R-\sqrt{(N: M)}$, then $\left(N: a_{1} a_{2}\right) \subseteq(0$: $\left.a_{1} a_{2}\right)$ or $\left(N: a_{1} a_{2}\right) \subseteq\left(N: a_{1}\right)$ or $\left(N: a_{1} a_{2}\right) \subseteq\left(N: a_{2}^{n}\right)$ for some positive integer n.

Proof. $(1 \Rightarrow 2)$ Let $m \in\left(N: a_{1} a_{2}\right)$. Then $a_{1} a_{2} m \in N$. If $a_{1} a_{2} m=0$, then $m \in\left(0: a_{1} a_{2}\right) \subseteq(0:$ $\left.a_{1} a_{2}\right) \cup\left(N: a_{1}\right) \cup\left(N: a_{2}^{n}\right)$ for some positive integer n. If $a_{1} a_{2} m \neq 0$, then $0 \neq a_{1} a_{2} m \in N$. By Definition 2.1, $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} m \in N$ or $a_{2}^{n} m \in N$ for some positive integer n. But $a_{1} a_{2} \in R-\sqrt{(N: M)}$, $m \in\left(N: a_{1}\right)$ or $m \in\left(N: a_{2}^{n}\right)$ for some positive integer n. Therefore $m \in\left(N: a_{1}\right) \cup\left(N: a_{2}^{n}\right)$ for some positive integer n. Hence $\left(N: a_{1} a_{2}\right)=\left(0: a_{1} a_{2}\right) \cup\left(N: a_{1}\right) \cup\left(N: a_{2}^{n}\right)$ for some positive integer n.
($2 \Leftrightarrow 3$) It is obvious.
$(2 \Rightarrow 1)$ Let $a_{1}, a_{2} \in R$ such that $0 \neq a_{1} a_{2} m \in N$. Then $m \in\left(N: a_{1} a_{2}\right)$ and $m \notin(N: 0)$. By assumption, $m \in\left(0: a_{1} a_{2}\right) \cup\left(N: a_{1}\right) \cup\left(N: a_{2}^{n}\right)$ for some positive integer n. Clearly, $a_{1} m \in N$ or $a_{2}^{n} m \in N$ for some positive integer n. Hence N is a weakly 2-absorbing semi-primary submodule of M.

Corollary 2.2. Let N be a proper submodule of an R-module M. The following conditions are equivalent:
(1) N is a weakly 2-absorbing semi-primary submodule of M.
(2) For every $a \in R-(N: M)$ and every ideal I of R such that $I \nsubseteq(N: M)$, if $a I \nsubseteq \sqrt{(N: M)}$, then $(N: a I) \subseteq(0: a I) \cup(N: a) \cup\left(N: I^{n}\right)$ for some positive integer n.
(3) For every $a \in R-(N: M)$ and every ideal I of R such that $I \nsubseteq(N: M)$, if R is a u-ring and $a I \nsubseteq \sqrt{(N: M)}$, then $(N: a I) \subseteq(0: a I)$ or $(N: a I) \subseteq(N: a)$ or $(N: a I) \subseteq\left(N: I^{n}\right)$ for some positive integer n.
(4) For every ideals I, J of R such that $I, J \nsubseteq(N: M)$, if $I J \nsubseteq \sqrt{(N: M)}$, then $(N: I J) \subseteq(0$: $I J) \cup(N: I) \cup\left(N: J^{n}\right)$ for some positive integer n.
(5) For every ideals I, J of R such that $I, J \nsubseteq(N: M)$, if R is a u-ring and $I J \nsubseteq \sqrt{(N: M)}$, then $(N: I J) \subseteq(0: I J)$ or $(N: I J) \subseteq(N: I)$ or $(N: I J) \subseteq\left(N: J^{n}\right)$ for some positive integer n.

Proof. It is clear from Theorem 2.9.

Theorem 2.10. Let N be a proper submodule of an R-module M. The following conditions are equivalent:
(1) N is a weakly 2-absorbing semi-primary submodule of M.
(2) For every $a \in R-(N: M)$ and $m \in M$, if am $\notin N$, then $(N: a m) \subseteq(0: a m) \cup(\sqrt{((N: M)}$: a) $\cup \sqrt{(N: m)}$.

Proof. $(1 \Rightarrow 2)$ Let $a \in R-(N: M)$ and $m \in M$ such that am $\notin N$. Assume that $r \in(N: a m)$. Then $r a m \in N$. If $r a m \neq 0$, then $0 \neq r a m \in N$. By Definition 2.1 , ar $\in \sqrt{(N: M)}$ or $a m \in N$ or $r^{n} m \in N$ for some positive integer n. Since $a m \notin N$, we have $r \in(\sqrt{(N: M)}: a)$ or $r \in \sqrt{(N: m)}$. This implies that $r \in(\sqrt{(N: M)}: a) \cup \sqrt{(N: m)} \subseteq(0: a m) \cup(\sqrt{((N: M)}: a) \cup \sqrt{(N: m)}$. Thus $(N: a m) \subseteq(0:$ $a m) \cup(\sqrt{((N: M)}: a) \cup \sqrt{(N: m)}$. If $r a m=0$, then $r \in(0: a m) \subseteq(0: a m) \cup(\sqrt{((N: M)}: a) \cup \sqrt{(N: m)}$. Therefore $(N: a m) \subseteq(0: a m) \cup(\sqrt{((N: M)}: a) \cup \sqrt{(N: m)}$. $(2 \Rightarrow 1)$ It is clear.

Corollary 2.3. Let N be a proper submodule of an R-module M. The following conditions are equivalent:
(1) N is a weakly 2-absorbing semi-primary submodule of M.
(2) For every ideal I of R such that $I \subseteq R-(N: M)$ and $m \in M$, if $\operatorname{Im} \nsubseteq N$, then $(N: I m) \subseteq(0$:

$$
I m) \cup(\sqrt{(N: M)}: I) \cup \sqrt{(N: m)}
$$

Proof. It is clear from Theorem 2.10.

Definition 2.2. Let N be a proper submodule of M. If N is a 2-absorbing semi-primary submodule and $a_{1} a_{2} m=0, a_{1} a_{2} \notin \sqrt{(N: M)}, a_{1} m \notin N$ and $a_{2}^{n} m \notin N$ for all positive integer n, then $\left(a_{1}, a_{2}, m\right)$ is called a absorbing semi-primary triple-zero of N where $a_{1}, a_{2} \in R, m \in M$.

Theorem 2.11. Let N be a weakly 2-absorbing semi-primary submodule of an R-module M. Suppose that K is a submodule of M and $a_{1}, a_{2} \in R$ such that $N \subseteq K$ and $a_{1} a_{2} K \subseteq N$. If $\left(a_{1}, a_{2}, m\right)$ is not a absorbing semi-primary triple-zero of N for every $m \in K$, then $a_{1} a_{2} \in \sqrt{(K: M)}$ or $a_{1} K \subseteq N$ or $a_{2}^{n} K \subseteq N$ for some positive integer n.

Proof. Assume that $a_{1} a_{2} \notin \sqrt{(K: M)}, a_{1} K \nsubseteq N$ and $a_{2}^{n} K \nsubseteq N$ for all positive integer n. Then there are $k_{1}, k_{2} \in K$ such that $a_{1} k_{1} \notin N$ and $a_{2}^{n} k_{2} \notin N$ for all positive integer n. If $a_{1} a_{2} k_{1} \neq 0$, then $0 \neq a_{1} a_{2} k_{1} \in N$. By Definition 2.1, $a_{2}^{n_{1}} k_{1} \in N$ for some positive integer n_{1}. So let $a_{1} a_{2} k_{1}=0$. By Definition $2.2, a_{2}^{n_{2}} k_{1} \in N$ for some positive integer n_{2}. Now if $a_{1} a_{2} k_{2} \neq 0$, then $0 \neq a_{1} a_{2} k_{2} \in N$. Again, by Definition $2.1, a k_{2} \in N$. Next let $a_{1} a_{2} k_{2}=0$. Now by Definition $2.2, a_{1} k_{2} \in N$. Let $n_{0}=\max \left\{n_{1}, n_{2}\right\}$. Then $a_{2}^{n_{0}} k_{1}, a_{1} k_{2} \in N$. Since $a_{1} a_{2} K \subseteq N$, we have $a_{1} a_{2}\left(k_{1}+k_{2}\right) \in N$. If $a_{1} a_{2}\left(k_{1}+k_{2}\right) \neq 0$, then $0 \neq a_{1} a_{2}\left(k_{1}+k_{2}\right) \in N$. Thus by Definition 2.1, $a_{1}\left(k_{1}+k_{2}\right) \in N$ or $a_{2}^{n_{3}}\left(k_{1}+k_{2}\right) \in N$ for some positive integer n_{3}. This implies that $a_{1} k_{1} \in N$
or $a_{2}^{n_{4}} k_{2} \in N$ where $n_{4}=\max \left\{n_{0}, n_{3}\right\}$ and we get a contradiction. Assume that $a_{1} a_{2}\left(k_{1}+k_{2}\right)=0$. New since $\left(a_{1}, a_{2}, k_{1}+k_{2}\right)$ is not a absorbing semi-primary triple-zero of N, we have $a_{1}\left(k_{1}+k_{2}\right) \in N$ or $a_{2}^{n_{5}}\left(k_{1}+k_{2}\right) \in N$ for some positive integer n_{5}. Clearly, $a_{1} k_{1} \in N$ or $a_{2}^{n_{6}} k_{2} \in N$, where $n_{6}=\max \left\{n_{0}, n_{5}\right\}$, which again is a contradiction. Hence $a_{1} a_{2} \in \sqrt{(K: M)}$ or $a_{1} K \subseteq N$ or $a_{2}^{n} K \subseteq N$ for some positive integer n.

Theorem 2.12. Let N be a weakly 2-absorbing semi-primary submodule of an R-module M. Suppose that $\left(a_{1}, a_{2}, m\right)$ is a absorbing semi-primary triple-zero of N for some $a_{1}, a_{2} \in R$ and $m \in M$. Then
(1) $a_{1} a_{2} N=\{0\}$;
(2) $a_{1}(N: M) m=\{0\} ;$
(3) $(N: M) a_{2} m=\{0\}$;
(4) $(N: M)^{2} m=\{0\}$;
(5) $a_{1}(N: M) N=\{0\}$;
(6) $(N: M) a_{2} N=\{0\}$.

Proof. 1. Suppose that $a_{1} a_{2} N \neq\{0\}$. Then there exists $m_{0} \in N$ such that $a_{1} a_{2} m_{0} \notin\{0\}$. Thus $a_{1} a_{2} m+$ $a_{1} a_{2} m_{0} \neq 0$ so $0 \neq a_{1} a_{2}\left(m+m_{0}\right) \in N$. By Definition 2.1, $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1}\left(m+m_{0}\right) \in N$ or $a_{2}^{n}\left(m+m_{0}\right) \in N$ for some positive integer n. Therefore $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} m \in N$ or $a_{2}^{n} m \in N$ for some positive integer n. This is a contradiction. Hence $a_{1} a_{2} N=\{0\}$.
2. Suppose that $a_{1}(N: M) m \neq\{0\}$. Then there exists $r \in(N: M)$ such that $a_{1} r m \neq 0$. Since $r m \in N$, we have $0 \neq a_{1}\left(a_{2}+r\right) m \in N$. By Definition 2.1, $a_{1}\left(a_{2}+r\right) \in \sqrt{(N: M)}$ or $a_{1} m \in N$ or $\left(a_{2}+r\right)^{n} m \in N$ for some positive integer n. Thus $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} m \in N$ or $a_{2}^{n} \in N$ for some positive integer n. This is a contradiction. Hence $a_{1}(N: M) m=\{0\}$.

3 . The proof is similar to part 2.
4. Assume that $(N: M)^{2} m \neq\{0\}$. Then there exist $r, s \in(N: M)$ such that $r s m \neq 0$. Then by parts 1 and $2,\left(a_{1}+r\right)\left(a_{2}+s\right) m \neq 0$. Clearly, $0 \neq\left(a_{1}+r\right)\left(a_{2}+s\right) m \in N$. By Definition 2.1, $\left(a_{1}+r\right)\left(a_{2}+s\right) \in \sqrt{(N: M)}$ or $\left(a_{1}+r\right) m \in N$ or $\left(a_{2}+s\right)^{n} m \in N$ for some positive integer n. Therefore $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} m \in N$ or $a_{2}^{n} \in N$ for some positive integer n. This is a contradiction. Hence $(N: M)^{2} m=\{0\}$.
5. Suppose that $a_{1}(N: M) N \neq\{0\}$. Then there exist $r \in(N: M)$ and $m_{0} \in N$ such that $a_{1} r m_{0} \neq 0$. Therefore by parts 1 and 2 we conclude that $a_{1}\left(a_{2}+r\right)\left(m+m_{0}\right) \neq 0$. Clearly, $0 \neq a_{1}\left(a_{2}+r\right)\left(m+m_{0}\right) \in N$. By Definition 2.1, $a_{1}\left(a_{2}+r\right) \in \sqrt{(N: M)}$ or $a_{1}\left(m+m_{0}\right) \in N$ or $\left(a_{2}+r\right)^{n}\left(m+m_{0}\right) \in N$ for some positive integer n. Therefore $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} m \in N$ or $a_{2}^{n} m \in N$ for some positive integer n. This is a contradiction. Hence $a_{1}(N: M) N=\{0\}$.
6. The proof is similar to part 5 .

Theorem 2.13. Let M be an R-module. If N is a weakly 2 -absorbing semi-primary submodule of M that is not 2-absorbing semi-primary, then $(N: M)^{2} N=\{0\}$.

Proof. Suppose that N is a weakly 2-absorbing semi-primary submodule of M that is not 2-absorbing semi-primary submodule. Then there exists a absorbing semi-primary triple-zero $\left(a_{1}, a_{2}, m\right)$ of N for some $a_{1}, a_{2} \in R$ and $m \in M$. Assume that $(N: M)^{2} N \neq\{0\}$. Then there exist $r, s \in(N: M)$ and $m_{0} \in N$ such that $r s m_{0} \neq 0$. Since $\left(a_{1}+r\right)\left(a_{2}+s\right)\left(m+m_{0}\right) \neq 0$, we have $0 \neq\left(a_{1}+r\right)\left(a_{2}+s\right)\left(m+m_{0}\right) \in N$. By Definition 2.1, $\left(a_{1}+r\right)\left(a_{2}+s\right) \in \sqrt{(N: M)}$ or $\left(a_{1}+r\right)(m+n) \in N$ or $\left(a_{2}+s\right)^{n}(m+n) \in N$ for some positive integer n. Therefore $a_{1} a_{2} \in \sqrt{(N: M)}$ or $a_{1} m \in N$ or $a_{2}^{n} m \in N$. This is a contradiction. Hence $(N: M)^{2} N=\{0\}$.

Corollary 2.4. Let M be a multiplication R-module. If N is a weakly 2-absorbing semi-primary submodule of M that is not 2-absorbing semi-primary submodule, then $N^{3}=\{0\}$.

Proof. Suppose that N is a weakly 2-absorbing semi-primary submodule of M that is not 2-absorbing semiprimary submodule. By assumption, $N=(N: M) M$. Then by Theorem 2.13, $N^{3}=(N: M)^{3} M=(N$: $M)^{2}((N: M) M)=(N: M)^{2} N=\{0\}$.

Lemma 2.1. Suppose that N is a weakly 2-absorbing semi-primary submodule of an R-module M and ($0: m_{2}$) is a 2-absorbing primary ideal of a ring R where $m_{2} \in M-N$. For all $m_{1} \in M$, if $r s \in(N:$ $\left.m_{1}\right)-\sqrt{\left(N: m_{2}\right)}$, then $\left(N: r s m_{2}\right) \subseteq\left(N: r m_{2}\right) \cup \sqrt{\left(N: s^{n} m_{2}\right)}$ for some positive integer n.

Proof. Suppose that $r s \in\left(N: m_{1}\right)-\left(N: m_{2}\right)$ where $m_{1} \in M$ and $m_{2} \in M-N$. Let $a \in\left(N: r s m_{2}\right)$. Then $(\operatorname{ars}) m_{2}=a\left(r s m_{2}\right) \in N$ so ars $\in\left(N: m_{2}\right)$. If $\operatorname{arsm}_{2} \neq 0$, then $0 \neq \operatorname{ars} \in\left(N: m_{2}\right)$. By assumption, $\operatorname{ar} \in\left(N: m_{2}\right)$ or $a s \in \sqrt{\left(N: m_{2}\right)}$ or $r s \in \sqrt{\left(N: m_{2}\right)}$. By the assumption, ar $\in\left(N: m_{2}\right)$ or as $\in \sqrt{\left(N: m_{2}\right)}$. Thus $a \in\left(N: r m_{2}\right)$ or $a \in \sqrt{\left(N: s^{n} m_{2}\right)}$ for some positive integer n. This implies that $\left(N: r s m_{2}\right) \subseteq\left(N: r m_{2}\right) \cup \sqrt{\left(N: s^{n} m_{2}\right)}$ for some positive integer n. Now if arsm${ }_{2}=0$, then ars $\in\left(0: m_{2}\right)$. Thus $a r \in\left(0: m_{2}\right)$ or $a s \in \sqrt{\left(N: m_{2}\right)}$ or $r s \in \sqrt{\left(N: m_{2}\right)}$. Therefore $\left(N: r s m_{2}\right) \subseteq\left(N: r m_{2}\right) \cup \sqrt{\left(N: s^{n} m_{2}\right)}$ for some positive integer n.

Proposition 2.1. Let N be an irreducible submodule of an R-module M. For all $r \in R$ if $(N: r)=\left(N: r^{2}\right)$, then N is a weakly 2-absorbing semi-primary submodule of M.

Proof. Let $a_{1}, a_{2} \in R$ and $m \in M$ such that $0 \neq a_{1} a_{2} m \in N$. Suppose that $a_{1} a_{2} \notin \sqrt{(N: M)}, a_{1} m \notin N$ and $a_{2}^{n} m \notin N$ for all positive integer n. Clearly, $N \subseteq\left(N+a_{1} a_{2} M\right) \cap\left(N+R a_{1} m\right) \cap\left(N+R a_{2}^{n} m\right)$ for all positive integer n. Let $m_{0} \in\left(N+a_{1} a_{2} M\right) \cap\left(N+R a_{1} m\right) \cap\left(N+R a_{2}^{n} m\right)$. This implies that $m_{0} \in N+a_{1} a_{2} M, m_{0} \in$ $N+R a_{1} m$ and $m_{0} \in N+R a_{2}^{n} m$. Then there exist $r_{1}, r_{2} \in R, m_{1} \in M$ and $n_{1}, n_{2} \in N$ such that $n_{1}+a_{1} a_{2} m_{1}=$ $m_{0}=n_{2}+r_{1} a_{1} m=m_{0}=n_{3}+b_{2}^{n} m$. Since $a_{1} n_{1}+a_{1}^{2} a_{2} m_{1}=a_{1} m_{0}=a_{1} n_{2}+r_{1} a_{1}^{2} m=a_{1} m_{0}=a_{1} n_{3}+a_{1} b_{2}^{n} m$,
we have $a_{1}^{2} r_{1} m \in N$. It follows that $r_{1} m \in\left(N: a_{1}^{2}\right)$. By the assumption, $r_{1} m \in\left(N: a_{1}\right)$, so that $r_{1} a_{1} m \in N$. Thus $N=\left(N+a_{1} a_{2} M\right) \cap\left(N+R a_{1} m\right) \cap\left(N+R a_{2}^{n} m\right)$. Now since N is an irreducible, we have $N+a_{1} a_{2} M \subseteq N$ or $a_{1} m \in N+R a_{1} m \subseteq N$ or $a_{2}^{n} m \in N+R a_{2}^{n} m \subseteq N$, a contradiction. Hence N is a weakly 2-absorbing semi-primary submodule of M.

Theorem 2.14. Let M_{i} be an R_{i}-module and N_{i} be a proper submodule of M_{i}, for $i=1,2$. If $N_{1} \times M_{2}$ is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2}$, then N_{1} is a weakly 2-absorbing semi-primary submodule of M_{1}.

Proof. Suppose that $N_{1} \times M_{2}$ is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2}$. Let $a_{1}, a_{2} \in R_{1}$ and $m \in M_{1}$ such that $0 \neq a_{1} a_{2} m \in N_{1}$. Then $(0,0) \neq\left(a_{1}, 0\right)\left(a_{2}, 0\right)(m, 0)=\left(a_{1} a_{2} m, 0\right) \in N_{1} \times M_{2}$. By Definition 2.1, $\left(a_{1} a_{2}, 0\right)=\left(a_{1}, 0\right)\left(a_{2}, 0\right) \in \sqrt{\left(N_{1} \times M_{2}: M_{1} \times M_{2}\right)}$ or $\left(a_{1} m, 0\right)=\left(a_{1}, 0\right)(m, 0) \in N_{1} \times M_{2}$ or $\left(a_{2}^{n} m, 0\right)=\left(a_{2}, 0\right)^{n}(m, 0) \in N_{1} \times M_{2}$ for some positive integer n. This implies that $a_{1} a_{2} \in \sqrt{\left(N_{1}: M_{1}\right)}$ or $a_{1} m \in N_{1}$ or $a_{2}^{n} m \in N_{1}$ for some positive integer n. Hence N_{1} is a weakly 2-absorbing semi-primary submodule of M_{1}.

Corollary 2.5. Let M_{i} be an R_{i}-module and N_{i} be a proper submodule of M_{i}, for $i=1,2$. If $M_{1} \times N_{2}$ is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2}$, then N_{2} is a weakly 2-absorbing semi-primary submodule of M_{2}.

Proof. It is clear from Theorem 2.14.

Corollary 2.6. Let M_{i} be an R_{i}-module and N_{i} be a proper submodule of M_{i}, for $i=1,2, \ldots, k$. If $M_{1} \times$ $M_{2} \times \ldots \times M_{j-1} \times N_{j} \times M_{j+1} \times \ldots \times M_{k}$ is a weakly 2 -absorbing semi-primary submodule of $M_{1} \times M_{2} \times \ldots \times M_{k}$, then N_{j} is a weakly 2-absorbing semi-primary submodule of M_{j}.

Proof. It is clear from Theorem 2.14 and Corollary 2.5.

Theorem 2.15. Let M_{i} be an R-module and let N_{i} be a proper submodule of M_{i}, for $i=1,2$. Then the following conditions are equivalent:
(1) $N_{1} \times M_{2}$ is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2}$.
(2) (a) N_{1} is a weakly 2-absorbing semi-primary submodule of M_{1}.
(b) For each $a_{1}, a_{2} \in R$ and $m \in M_{1}$ such that $a_{1} a_{2} m=0$, if $a_{1} a_{2} \notin \sqrt{\left(N_{1}: M_{1}\right)}$ and $a_{1} m \notin$ $N_{1}, a_{2}^{n} m \notin N_{1}$ for all positive integer n, then $a_{1} a_{2} \in\left(0: M_{2}\right)$.

Proof. $(1 \Rightarrow 2)$. (a). This follows from Theorem 2.14.
(b). Let $a_{1} a_{2} m=0, a_{1} m \notin N_{1}$ and $a_{2}^{n} m \notin N_{1}$ for all positive integer n, where $a_{1}, a_{2} \in R$ and $m \in M_{1}$.

Suppose that $a_{1} a_{2} \notin\left(0: M_{2}\right)$. There exists $m_{2} \in M_{2}$ such that $a_{1} a_{2} m_{2} \neq 0$. Thus $(0,0) \neq a_{1} a_{2}\left(m, m_{2}\right)=$
$\left(a_{1} a_{2} m, a_{1} a_{2} m_{2}\right) \in N_{1} \times M_{2}$. By part 1, i.e., $a_{1} a_{2} \in \sqrt{\left(N_{1} \times M_{2}: M_{1} \times M_{2}\right)}$ or $a_{1}\left(m, m_{2}\right) \in N_{1} \times M_{2}$ or $a_{2}^{n}\left(m, m_{2}\right) \in N_{1} \times M_{2}$ for some positive integer n. Thus $a_{1} a_{2} \in \sqrt{\left(N_{1}: M_{1}\right)}$ or $a_{1} m \in N_{1}$ or $a_{2}^{n} m \in N_{1}$ which is a contradiction. Hence $a_{1} a_{2} \in\left(0: M_{2}\right)$.
$(2 \Rightarrow 1)$. Let $a_{1}, a_{2} \in R$ and $\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2}$ such that $(0,0) \neq\left(a_{1} a_{2} m_{1}, a_{1} a_{2} m_{2}\right)=a_{1} a_{2}\left(m_{1}, m_{2}\right) \in$ $N_{1} \times M_{2}$. If $a_{1} a_{2} m_{1} \neq 0$, then $0 \neq a_{1} a_{2} m_{1} \in N_{1}$. By part (a), $a_{1} a_{2} \in \sqrt{\left(N_{1}: M_{1}\right)}$ or $a_{1} m_{1} \in N_{1}$ or $a_{2}^{n} m_{1} \in N_{1}$ for some positive integer n. So $a_{1} a_{2} \in \sqrt{\left(N_{1} \times M_{2}: M_{1} \times M_{2}\right)}$ or $a_{1}\left(m_{1}, m_{2}\right)=\left(a_{1} m_{1}, a_{1} m_{2}\right) \in$ $N_{1} \times M_{2}$ or $a_{2}^{n}\left(m_{1}, m_{2}\right)=\left(a_{2}^{n} m_{1}, a_{2}^{n} m_{2}\right) \in N_{1} \times M_{2}$, and thus we are done. If $a_{1} a_{2} m_{1}=0$, then $a_{1} a_{2} m_{2} \neq 0$. Therefore $a_{1} a_{2} \notin\left(0: M_{2}\right)$. By part (b), $a_{1} a_{2} \in \sqrt{\left(N_{1}: M_{1}\right)}$ or $a_{1} m_{1} \in N_{1}$ or $a_{2}^{n} m_{1} \in N_{1}$ for some positive integer n. Thus $a_{1} a_{2} \in \sqrt{\left(N_{1} \times M_{2}: M_{1} \times M_{2}\right)}$ or $a_{1}\left(m_{1}, m_{2}\right) \in N_{1} \times M_{2}$ or $a_{2}^{n}\left(m_{1}, m_{2}\right) \in N_{1} \times M_{2}$. Hence $N_{1} \times M_{2}$ is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2}$.

Corollary 2.7. Let M_{i} be an R-module and let N_{i} be a proper submodule of M_{i}, for $i=1,2$. Then the following conditions are equivalent:
(1) $M_{1} \times N_{2}$ is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2}$.
(2) (a) N_{2} is a weakly 2-absorbing semi-primary submodule of M_{2}.
(b) For each $a_{1}, a_{2} \in R$ and $m \in M_{2}$ such that $a_{1} a_{2} m=0$, if $a_{1} a_{2} \notin \sqrt{\left(N_{2}: M_{2}\right)}, a_{1} m \notin N_{2}$ and $a_{2}^{n} m \notin N_{2}$ for all positive integer n, then $a_{1} a_{2} \in\left(0: M_{1}\right)$.

Proof. This follows from Theorem 2.15.

Corollary 2.8. Let M_{i} be an R-module and let N_{i} be a proper submodule of M_{i}, for $i=1,2, \ldots, k$. Then the following conditions are equivalent:
(1) $M_{1} \times M_{2} \times \ldots \times M_{i-1} \times N_{i} \times M_{i+1} \times M_{k}$ is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2} \times \ldots \times M_{k}$.
(2) (a) N_{i} is a weakly 2-absorbing semi-primary submodule of M_{i}.
(b) For each $a_{1}, a_{2} \in R$ and $m \in M_{2}$ such that $a_{1} a_{2} m=0$, if $a_{1} a_{2} \notin \sqrt{\left(N_{2}: M_{2}\right)}, a_{1} m \notin N_{2}$ and $a_{2}^{n} m \notin N_{2}$ for all positive integer n, then there exists $j \in\{1,2, \ldots, k\}$ such that $a_{1} a_{2} \in\left(0: M_{j}\right)$.

Proof. This follows from Theorem 2.15.

Theorem 2.16. Let N_{i} be a proper submodule of an R_{i}-module M_{i}, for $i=1,2$. Then the following conditions are equivalent:
(1) N_{1} is a 2-absorbing semi-primary submodule of M_{1}.
(2) $N_{1} \times M_{2}$ is a 2-absorbing semi-primary submodule of $M_{1} \times M_{2}$.
(3) $N_{1} \times M_{2}$ is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2}$, where $M_{2} \neq\{0\}$.

Proof. $(1 \Rightarrow 2)$. This is clear, by Theorem 2.15.
$(2 \Rightarrow 3)$. The proof is clear.
(3 $\Rightarrow 1$). Suppose that $N_{1} \times M_{2}$ is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2}$, where $M_{2} \neq\{0\}$. Let $a_{1}, a_{2} \in R_{1}$ and $m \in M_{1}$ such that $a_{1} a_{2} m \in N_{1}$. By assumption, there exists $m_{2} \in M_{2}$ such that $m_{2} \neq 0$. Since $\left(a_{1}, 1\right)\left(a_{2}, 1\right)\left(m, m_{2}\right)=\left(a_{1} a_{2} m, m_{2}\right) \neq(0,0)$, we have $(0,0) \neq\left(a_{1}, 1\right)\left(a_{2}, 1\right)\left(m, m_{2}\right) \in$ $N_{1} \times M_{2}$. By Definition 2.1, $\left(a_{1}, 1\right)\left(a_{2}, 1\right) \in \sqrt{\left(N_{1} \times M_{2}: M_{1} \times M_{2}\right)}$ or $\left(a_{1}, 1\right)\left(m, m_{2}\right) \in N_{1} \times M_{2}$ or $\left(a_{2}, 1\right)^{n}\left(m, m_{2}\right) \in N_{1} \times M_{2}$ for some positive integer n. Therefore $a_{1} a_{2} \in \sqrt{\left(N_{1}: M_{1}\right)}$ or $a_{1} m \in N_{1}$ or $a_{2}^{n} m \in N_{1}$ for some positive integer n and hence N_{1} is a 2 -absorbing semi-primary submodule of M_{1}.

Corollary 2.9. Let N_{i} be a proper submodule of an R_{i}-module M_{i}, for $i=1,2$. Then the following conditions are equivalent:
(1) N_{2} is a 2-absorbing semi-primary submodule of M_{1}.
(2) $M_{1} \times N_{2}$ is a 2-absorbing semi-primary submodule of $M_{1} \times M_{2}$.
(3) $M_{1} \times N_{2}$ is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2}$, where $M_{1} \neq\{0\}$.

Proof. This follows from Theorem 2.16.

Corollary 2.10. Let N_{i} be a proper submodule of an R_{i}-module M_{i}, for $i=1,2, \ldots, k$. Then the following conditions are equivalent:
(1) N_{i} is a 2-absorbing semi-primary submodule of M_{1}.
(2) $M_{1} \times M_{2} \times \ldots \times M_{i-1} \times N_{i} \times M_{i+1} \times M_{k}$ is a 2-absorbing semi-primary submodule of $M_{1} \times M_{2} \times \ldots \times M_{k}$.
(3) $M_{1} \times M_{2} \times \ldots \times M_{i-1} \times N_{i} \times M_{i+1} \times M_{k}$ is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2} \times \ldots \times M_{k}$, where $M_{j} \neq\{0\}$.

Proof. This follows from Theorem 2.16 and Corollary 2.9.

Theorem 2.17. Let N_{i} be a proper submodule of an R_{i}-module M_{i}, for $i=1,2$. If $N_{1} \times N_{2}$ is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2}$, then
(1) N_{1} is a weakly 2-absorbing semi-primary submodule of M_{1}.
(2) N_{2} is a weakly 2-absorbing semi-primary submodule of M_{2}.

Proof. (1). Suppose that $N_{1} \times N_{2}$ is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2}$. Let $a_{1}, a_{2} \in$ R_{1} and $m \in M_{1}$ such that $0 \neq a_{1} a_{2} m \in N_{1}$. Clearly, $(0,0) \neq\left(a_{1}, 1\right)\left(a_{2}, 1\right)\left(m, m_{2}\right)=\left(a_{1} a_{2} m, m_{2}\right) \in N_{1} \times N_{2}$. By Definition 2.1, $\left.\left(a_{1} a_{2}, 1\right)=\left(a_{1}, 1\right)\left(a_{2}, 1\right) \in \sqrt{\left(N_{1} \times N_{2}: M_{1} \times M_{2}\right.}\right)$ or $\left(a_{1} m, m_{2}\right)=\left(a_{1}, 1\right)\left(m, m_{2}\right) \in$ $N_{1} \times N_{2}$ or $\left(a_{2}^{n} m, m_{2}\right)=\left(a_{2}, 1\right)^{n}\left(m, m_{2}\right) \in N_{1} \times N_{2}$ for some positive integer n. Therefore $a_{1} a_{2} \in \sqrt{\left(N_{1}: M_{1}\right)}$ or $a_{1} m \in N_{1}$ or $a_{2}^{n} m \in N_{1}$ for some positive integer n. Hence N_{1} is a weakly 2-absorbing semi-primary submodule of M_{1}.
(2). This follows from part 1.

Example 2.3. Let $M=\boldsymbol{Z} \times \boldsymbol{Z}$ be an \boldsymbol{Z}-module. Consider the submodule $N=5 \boldsymbol{Z} \times 12 \boldsymbol{Z}$ of M. It is easy to see that $5 \boldsymbol{Z}$ and $12 \boldsymbol{Z}$ are weakly 2 -absorbing semi-primary submodule of M. Notice that $(0,0) \neq 2 \cdot 3(5,2) \in N$, but $2 \cdot 3 \notin \sqrt{(M: N)}, 2(5,2) \notin N$, and $(2 \cdot 3)^{n} \notin(N: M)$ for all positive integer n. Therefore N is not a weakly 2-absorbing semi-primary submodule of M. This example shows that the converse of Theorem 2.17 is not true.

Theorem 2.18. Let N_{i} be a submodule of an R_{i}-module M_{i}, for $i=1,2,3$. If N is a weakly 2 -absorbing semi-primary submodule of $M_{1} \times M_{2} \times M_{3}$, then $N=\{(0,0,0)\}$ or N is a 2 -absorbing semi-primary submodule of $M_{1} \times M_{2} \times M_{3}$.

Proof. Suppose that N is a weakly 2 -absorbing semi-primary submodule of $M_{1} \times M_{2} \times M_{3}$ that is not 2-absorbing semi-primary. We will show that $N=\{(0,0,0)\}$. Now suppose that $N_{1} \times N_{2} \times N_{3}=N \neq$ $\{0\} \times\{0\} \times\{0\}$. Thus $N_{i} \neq\{0\}$, for some $i=1,2,3$. We claim that $N_{1} \neq\{0\}$. There exists $m_{1} \in N_{1}$ such that $m_{1} \neq 0$. To show that $N_{2}=M_{2}$ or $N_{3}=M_{3}$. Assume that $N_{2} \neq M_{2}$ and $N_{3} \neq M_{3}$. Thus there exist $m_{2} \in$ M_{2} and $m_{3} \in M_{3}$ such that $m_{2} \notin N_{2}$ and $m_{3} \notin N_{3}$. Since $(1,0,1)(1,1,0)\left(m_{1}, m_{2}, m_{3}\right)=\left(m_{1}, 0,0\right) \neq(0,0,0)$, we have $(0,0,0) \neq(1,0,1)(1,1,0)\left(m_{1}, m_{2}, m_{3}\right) \in N_{1} \times N_{2} \times N_{3}$. By Definition 2.1, we get $(1,0,1)(1,1,0) \in$ $\sqrt{\left(N_{1} \times N_{2} \times N_{3}: M_{1} \times M_{2} \times M_{3}\right)}$ or $(1,0,1)\left(m_{1}, m_{2}, m_{3}\right) \in N$ or $(1,1,0)^{n}\left(m_{1}, m_{2}, m_{3}\right) \in N$, for some positive integer n. So $m_{2} \in N_{2}$ or $m_{3} \in N_{3}$, a contradiction. Therefore $N=N_{1} \times M_{2} \times N_{3}$ or $N=$ $N_{1} \times N_{2} \times M_{3}$. If $N=N_{1} \times M_{2} \times N_{3}$, then $(0,1,0) \in\left(N: M_{1} \times M_{2} \times M_{3}\right)$. By Theorem 2.13, $\{0\} \times M_{2} \times\{0\}=$ $(0,1,0)^{2} N \subseteq\left(N: N_{1} \times M_{2} \times N_{3}\right)^{2} N=\{(0,0,0)\}$, which is a contradiction. Hence $N=\{(0,0,0)\}$.

Theorem 2.19. Let N_{i} be a submodule of an R_{i}-module M_{i}, for $i=1,2,3$. If $N \neq\{(0,0,0)\}$ and N is a 2-absorbing semi-primary submodule of $M_{1} \times M_{2} \times M_{3}$, then N is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2} \times M_{3}$.

Proof. Similar to the proof of Theorem 2.18

The above theorem shows the relationship between 2-absorbing semi-primary and weakly 2 -absorbing semi-primary submodules in $R_{1} \times R_{2} \times R_{3}$-modules. From the above theorem, we have the following corollary.

Corollary 2.11. Let N_{i} be a submodule of an R_{i}-module M_{i}, for $i=1,2,3$ with $N \neq\{(0,0,0)\}$. Then N is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2} \times M_{3}$ if and only if N is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2} \times M_{3}$.

Proof. This follows from Theorem 2.18.

Corollary 2.12. Let N_{i} be a submodule of an R_{i}-module M_{i}, for $i=1,2, \ldots, k \geq 3$ with $N \neq\{(0,0, \ldots, 0)\}$.
Then N is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2} \times \ldots \times M_{k}$ if and only if N is a weakly 2-absorbing semi-primary submodule of $M_{1} \times M_{2} \times \ldots \times M_{k}$.

Proof. This follows from Theorem 2.19.

References

[1] D. Anderson and E. Smith, Weakly prime ideals. Houston J. Math., 29 (2003), $831-840$.
[2] S.E. Atani and F. Farzalipour, On weakly primary ideals. Georgian Math. J., 12 (3) (2005), $423-429$.
[3] A. Badawi and A.Y. Darani, On weakly 2-absorbing ideals of commutative rings. Houston J. Math., 39 (2013), $441-452$.
[4] A. Badawi, U. Tekir and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings. J. Korean Math. Soc., 52(1)(2015), $97-111$.
[5] M. Behboodi and H. Koohy, Weakly prime modules. Vietnam J. Math., 322 (2004), 185-195.
[6] A.Y. Darani and F. Soheilnia, On 2-absorbing and weakly 2- absorbing submodules. Thai J. Math., 9, (2011), $577-584$.
[7] Z.A. El-Bast and P.F. Smith, Multiplication modules. Comm. Algebra, 6(4)(1988), 755-779.
[8] M. Larsen and P. McCarthy, Multiplicative theory of ideals. Academic Press, New York, London (1971).
[9] H. Mostafanasab, On weakly classical primary submodules. Bull. Belg. Math. Soc., 22(5)(2015), 743 - 760.
[10] H. Mostafanasab, U. Tekir and K.H. Oral, Weakly classical prime submodules. Math. J., 56 (2016), 1085 - 1101.
[11] H. Mostafanasab, E. Yetkin, U. Tekir and A.Y. Darani, On 2-absorbing primary submodules of modules over commutative rings. An. St. Univ. Ovidius Constanta, 24(1)(2016), 335-351.
[12] Sh. Payrovi and S. Babaei, On the 2-absorbing submodules. Iran. J. Math. Sci. Inform., 10(1) (2015), 131 -137.
[13] R. Sharp, Steps in commutative algebra. Cambridge University Press, Cambridge-New York-Sydney (2000).
[14] N. Zamani, ϕ-prime submodules. Glasgow Math. J., 52(2) (2010), $253-259$.

