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Abstract

Our contributions involve extending and improving Gaussian mixture model (GMM)-
based approaches to segmentation and restoration. For segmentation, we extend the GMM
paradigm by incorporating a multiscale correlation model of pixel dependance into the
standard approach. In particular, we modify the standard GMM by introducing a multi-
scale neighborhood clique that incorporates the correlation between pixels in space and
scale. We modify the likelihood function of the image field by a penalization term that is
derived from our multiscale neighborhood clique. Maximum Likelihood (ML) estimation
via the Expectation Maximization (EM) algorithm is used to estimate the parameters of
our new model. Then, utilizing the parameter estimates, we segment the image field with a
MAP classifier. We demonstrate that our new algorithm provides superior segmentations
of synthetic images, as well as Magnetic Resonance (MR) images of the human brain, yet
is computationally efficient.

The restoration of digital images that are corrupted with additive Gaussian and/or
impulsive noise is a difficult task. A salient requirement for an effective algorithm is that
details and edges in the image must be preserved. In this thesis, we demonstrate that a
window-based Gaussian mixture model can be applied in the development of a robust
nonlinear filter for image restoration. Via the EM algorithm, we utilize ML estimation of
the spatially-varying model parameters to achieve the desired noise suppression and detail
preservation. We demonstrate that this approach is a powerful tool which gives us infor-
mation into the local statistics of noisy images. We demonstrate that the estimated local
statistics can be efficiently utilized for outlier detection, edge detection, and suppression
of quantization error in image coding.The advantages of our algorithm is that it can simul-
taneously suppress additive Gaussian and impulsive noise, while preserving fine details
and edges.

Thesis Supervisor: W. Clement Karl
Title: Research Scientist
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Chapter 1

Introduction

1.1 Image Segmentation and Restoration
Among the most important and common tasks in image processing are image restoration

and image segmentation [1]. Image segmentation is the process of separating an image

into homogenous regions [1,2]. Image segmentation is of fundamental importance in such

areas as video coding, computer vision, and medical imaging. The most widely-used

image segmentation algorithms have focused on different strategies based upon: region

growing and splitting, edge-detection techniques, Bayesian statistical models, and recently

emerging multiresolution approaches [2].

The presence of noise in digital images is common and in many cases lowers the qual-

ity and usefulness of an image. Images can be corrupted by additive impulsive and white

Gaussian noise due to a noisy sensor, data storage, and transmission over noisy channels

[3]. In many cases, the noise cannot be completely characterized statistically, a priori.

Image restoration is the process of recovering the visual information in a degraded image.

Most of the traditional methods of image restoration are linear and assume an additive

Gaussian noise model for the data [4]. While these procedures may be optimal when the

noise model is exact, they are sensitive to small deviations from this model, and more

robust techniques are required [3,4].

Thus, a common theme in image segmentation and restoration is that uncertainty plays

a fundamental role [1]. Due to this uncertainty, we develop probabilistic models which

must characterize the data of interest accurately, while at the same time be efficient in

implementation. The aim of this thesis is in the development of robust methods for image

restoration and segmentation through the estimation of spatially varying parameters of the



statistical model characterizing non-stationary images. The statistical model we develop

will be applied to the challenging problem of automatic segmentation of Magnetic Reso-

nance (MR) images of the human brain. Furthermore, a slight modification of the model

will be used to develop a novel non-linear filter as a robust approach to image restoration.

1.2 Part 1: Background on MR Brain Image Segmentation
Magnetic Resonance Imaging (MRI) has been successfully used to produce two-

dimensional images of the brain at high resolution (see figure 1.1). These high quality

images have allowed physicians to readily diagnose various brain pathologies -- from

mental disorders to the growth of cancerous tumors [5]. Furthermore, series of two

dimensional MR images have been used to construct three-dimensional images of

various brain structures. Brain tissues will have different intensities in MR images based

upon their physical properties. Myelinated axons will appear white, clusters of cell

bodies will appear gray, and cerebrospinal fluid (CSF) and air pockets will appear black

[5]. A common first step in brain morphometrics is the segmentation of MRI data by

human experts into gray and white matter regions. This process is quite meticulous and

requires a great deal of time, and costly resources [6].



Figure 1.1: MR Image of Brain (Tl-Weighted Coronal Section)

1.2.1 Background

Several researchers have proposed using automatic algorithms to segment brain MR

images into the various major classes of brain tissue - white matter, grey matter, and

cerebrospinal fluid (CSF). An effective algorithm must address the following challenges

in yielding clinically acceptable segmentations: partial voluming which causes mixing of

pure class intensities near the edges, impulsive and additive Gaussian noise which is an

inherent problem in the acquisition of MR images, isolating the brain from surrounding

bone and neck musculature, and the high intensity variance amongst pixels from the

same tissue class. Furthermore, in many MRI systems, intrascan intensity

inhomogeneities, due to radio frequency coils, may present a great deal of difficulty by

producing images that are corrupted by a bias field. In images corrupted by a bias field,

absolute intensity is no longer a good indicator of tissue type. Additionally, the proposed

algorithm should require minimal user supervision.

A very popular approach is the use of Bayesian statistics and the development of an a

priori model of the image field. Several researchers have proposed the use of a Markov



Random Field (MRF) model which utilizes the strong correlation between neighboring

pixels [2]. One important disadvantage of the MRF-based approach is in its

computational complexity in optimizing all the parameters, which require techniques

such as simulated annealing [2]. For example, Ashton et al. [6] employed the use of a

Gibbs Random Field (GRF) to model the brain image. Using the GRF model, the brain

tissue is segmented. A contour model is then used to gain information about the general

size, shape, and location of tissue structures. The authors also merged the segmentations

of a series of MR images for reconstruction of 3-D models of brain structures.

Another approach which has been proposed is the use of neural networks [7].

However, the approach requires training data and is computationally inefficient. An

important advantage of the neural network approach was that it allowed for a set of rules

to be utilized in the segmentation scheme which incorporated the geometry of the brain

in the field labeling process.

Another method which has been applied to MR brain image segmentation is the use

of conventional edge detection and region growing [6]. However, many salient edges in

MR images of the brain are "ramp edges." In images, a ramp edge can be defined as a

gradual change in intensity over space. The aforementioned problem of partial voluming

is manifested in MR images of the brain as ramp edges between homogenous regions of

tissues. The detection of ramp edges of this type is a very challenging problem in signal

processing [3].

Wells et. al have applied a mixture model to MR brain images, and utilized

Maximum Likelihood estimates of the parameters of the mixture model in developing a

segmentation scheme [5]. Wells "adaptive segmentation" algorithm uses knowledge of

tissue intensity properties to correct MR images corrupted by bias fields and then

segments the processed MR images. Wells models the pixel intensities of the brain tissue



as a Gaussian mixture model and utilizes a Maximum Likelihood (ML) based parameter

estimation technique to correct and segment the image field. A salient short-coming of

Wells' model of the image field is that in using the Gaussian mixture model, the spatial

correlation of pixels is ignored.

Ambroise et al. [8] have proposed to modify the Gaussian mixture model by

introducing spatial contiguity constraints. These constraints were defined by a

neighborhood structure that they introduced into a likelihood function of the data. The

resulting segmentations that their approach generated were more accurate than the

traditional Gaussian mixture model-based approach.

In our research, we shall employ a multiresolution-based approach to image

segmentation which extends the work of Ambroise et al. Thus, we include here a

literature review of methods used for multiresolution image segmentation.

Within the past few years, wavelets have emerged as a powerful tool employed by

the signal processing community to be used in the study of signals and images of

interest. Mallat and Zhong have proposed the use of wavelets for the decomposition of a

signal into different levels of resolution [9]. They have described a multiscale algorithm

to characterize edges based upon wavelet transform extrema. At each scale, the wavelet

transform extrema are detected based upon Lipschitz regularity. The Lipschitz regularity

is simply a metric for local singularity in a signal. Thus, an abrupt change in the intensity

of a signal would be classified as a local singularity. The decay of the maxima across

scales is approximated using an exponential function. The exponential function provides

a means of finding the Lipschitz regularity across scales. Using the Lipschitz criteria, the

authors were able to define the location and strength of edges. Edges represent a partition

of images into disjoint regions. A salient difference between edge detection and



segmentation is that in edge detection, the focus is on finding the boundaries between

regions, not on the regions themselves.

Bongovanni et al. [10] have used a pyramid structure to detect bimodality in a

population distribution. Briefly, an image is broken up into N 8x8 blocks (where N is

power of 2). Then, within each block population, the bimodal pixel distribution

parameters are estimated. Sets of four neighboring blocks are "merged." The information

regarding the bimodal distributions of each of these "children" blocks are used to arrive

at a bimodal distribution for the "parent" block, given that there is a bimodal

distribution. The process is continued until we arrive at a bimodal segmentation of the

entire image.

In a study by Park et al. [11], the authors employ the use of local variance within a

window to indicate the presence of edges. The window size is varied, and local variance

calculations are computed. Based upon the variance values, an optimal window size is

found for each pixel. Depending on the window size and the local statistics, an edge

detector of a various scale is applied locally. Thus, they propose that the local variance is

a strong indicator of the resolution corresponding to an individual pixel. The resolution

of a pixel is defined by its local neighborhood. For example, near edges, the local

variance will be high, thus a smaller window size and high resolution edge detector is

used.

Bello [2], uses both MRFs and wavelets to perform segmentation. Using the wavelet

packet approach of Coifman, certain subbands are picked based upon their mean square

intensity per pixel. These subbands are segmented using a MRF model. The correlation

across channels is used in the refinement of MRF parameters using simulated annealing.

Data is fused at specific resolution levels in order to obtain a texture label segmentation

at that level. A distance measure is developed to judge the correlation across channels.



Based upon this distance measurement, a decision whether to merge data from different

subbands is made.

Vincken et al. [12], developed a multiscale image segmentation technique which

employs probabilistic linking across scales. An image is convolved with a Gaussian

kernel to get coarser approximations of the image (lower resolutions). A model-directed

linking scheme is used to establish a "child-parent" linkage of segments from adjacent

scales.

Fosgate et al. [13] developed a multiscale segmentation algorithm for use in the

classification of synthetic aperture radar (SAR) imagery. Essentially, the authors utilized

a window-based multiscale stochastic process based upon an autoregressive model of

SAR imagery at different resolutions.

1.3 Part 2: Background on Nonlinear Filters for Image Restoration
The restoration and enhancement of degraded images are of fundamental importance in

image processing applications. Images can be corrupted by various noise processes such

as additive Gaussian and impulsive noise due to a noisy sensor, data storage, very low-bit

rate lossy compression, and transmission over noisy channels. An example of impulsive

and Gaussian noise is shown in figure 1.2. Most of the traditional methods of image resto-

ration and enhancement are linear and assume an additive Gaussian noise model for the

data [3,4]. Linear filters are optimal under Gaussian models of the noise distribution, but

are generally sensitive to small deviations from these models. The most widely used linear

filter is the mean filter. It achieves noise reduction by averaging over a neighborhood of

pixels. However, if the noise distribution is long-tailed or impulsive, the result is not satis-

factory. Another disadvantage of the mean filter is that it tends to blur the edges, and often

eliminates fine detail of the image. Thus, nonlinear filters have been developed which are



able to suppress the noise while preserving the integrity of edge and detail information

[3,4].

Figure 1.2: Examples of Impulsive and Gaussian Noise

(A) - Original Image (B) - Image corrupted with
Impulsive and Gaussian Noise

1.3.1 Background
An important family of nonlinear filters is based on the theory of order statistics [4].

The median filter, as the most popular order statistics filter, has been widely used for its

simplicity and robustness, despite its relative poor performance in preserving the details,

enhancing the edges, and suppressing Gaussian noise [3,4]. The median filter was intro-

duced by Tukey [14] as a method to smooth discrete-time signals. A median filter replaces

the center pixel of a sliding processing window by the median of the pixel window popu-

lation. We include a brief review of other well-known nonlinear filters.

Robust statistics have also been utilized in the development of nonlinear filters. In

conjunction with maximum likelihood estimation, the relative ranks of the data within the

window are utilized to arrive at an output. The L-estimators are defined as fixed linear

combinations of order statistics. Some examples of these types of filters are the a-trimmed

mean (a-TM) and the K-Nearest Neighbor (KNN) filters [15].



There has been recent research into the generalization of median filters by using a

combination of different order-statistics. Bovik et al. [16], have used a weighted linear

combination of order statistics of the input sequence which utilizes the properties of the

mean and median filters. The outputs are chosen to minimize the resultant mean-square

error. Furthermore, recent work into adaptive filters have yielded robust filters which are

able to suppress signal-dependant noise as well as random noise [17].

Rabiee et al. [3] have developed a robust nonlinear filter which combines generalized

maximum likelihood reasoning and order statistics (GMLOS). The GMLOS filter is able

to suppress impulsive noise while preserving detail and edges. Furthermore, the GMLOS

filter demonstrates edge-sharpening properties. However, the performance degrades in the

presence of additive Gaussian noise with high variance.

Homomorphic filters are one of the oldest classes of what are termed digital nonlinear

filters [18]. Nonlinear mean filters can be considered to be special cases of homomorphic

systems. The center pixel of a moving processing window is replaced by a nonlinear

weighting of the neighboring pixel intensities. Such a filter scheme is more effective than

the mean filter in removing impulsive noise while still suppressing Gaussian noise, but the

filter is not robust to simultaneous positive and negative spike noise (salt-and-pepper).

Morphological filters belong to the class of nonlinear filters which have their origins

in shape analysis and set theory in mathematics [18]. The erosion and dilation operators

have proven to be robust to additive Gaussian noise and in preserving edges and details.

However, a short-coming of morphological filters is in failure to suppress impulsive noise

when it occurs at high incidence in digital images [3].

As a departure from order statistics filters, Park et al. [19] utilized a MRF to model the

pixel population within a sliding processing window. While their filter was able to sup-

press impulsive noise, the suppression of additive Gaussian noise was not demonstrated.



Furthermore, the MRF model substantially increases the computational complexity of the

filter.

Thus, there is still active research in the development of nonlinear filters which are

able to suppress noise while preserving the salient features of an image such as fine details

and edges. The challenge is in developing an algorithm which is robust to both the impul-

sive and additive Gaussian noise models, while at the same time is computationally effi-

cient to implement.

1.4 Thesis Contributions
Our contributions involve extending and improving Gaussian mixture model-based

approaches to segmentation and restoration. For segmentation, we extend the GMM para-

digm by incorporating a multiscale correlation model of pixel dependance into the stan-

dard approach. As will be shown, this multiscale correlation model provides superior

segmentations, yet is computationally efficient.

We also extend the GMM methodology applied to image restoration by exploiting the

identified GMM parameters for outlier detection and edge preservation. We will show that

such knowledge allows us to achieve improved restorations. Furthermore, we apply our

novel algorithm to suppress quantization error in image coding.

In the following paragraphs, we summarize the major contributions of our thesis.

1.4.1 Image Segmentation Using Mixture Models and Multiresolution Analysis
A popular approach to image segmentation involves the use of the Gaussian mixture

model and maximum likelihood (ML) parameter estimation via the Expectation Maximi-

zation (EM) algorithm. Most such approaches assume the pixels are statistically indepen-

dent of one another. The independence assumption allows the model to utilize the well-

characterized Gaussian density function and greatly simplifies the computational com-

plexity of parameter estimation algorithms. In reality, natural images are nonstationary



and the pixels are statistically correlated with one another. Such correlation motivates the

use of correlation models such as MRF-based models. While these MRF-based models

incorporate correlation into the segmentation schemes, they are computationally expen-

sive.

In this thesis, we model the statistical dependance of neighboring pixels to achieve

more accurate segmentation than can be obtained under the standard GMM i.i.d assump-

tion, yet do so at a similar computational cost. In particular, we extend the work of

Ambroise et al. by developing a multiresolution neighborhood structure. We assume that

pixels are statistically dependant upon their local neighborhoods as well as pixels of

coarser resolutions of the image. We have developed an image field model that captures

this statistical dependance across both scale and space. By assuming this statistical depen-

dance, our segmentation algorithm is robust to noise and the segmentation maps maintain

the contiguous nature of regions, producing high quality segmentations of images in gen-

eral, and MR brain images in particular. Moreover, our novel multiscale algorithm is com-

putationally efficient.

1.4.2 Novel Nonlinear Filter Via ML Estimation of Spatially Varying Parameters
The restoration of digital images that are corrupted with additive Gaussian and/or

impulsive noise is a difficult task. A salient requirement for an effective algorithm is that

details and edges in the image must be preserved. Fine local details and edges can be mod-

eled as significant deviations of local statistics which convey important visual informa-

tion. Such deviations in local statistics implies that images are nonstationary. While most

previous approaches have utilized a sliding processing window due to the nonstationarity

of natural images, the methods utilized were sensitive to deviations in the noise model. In

this thesis, we demonstrate that a window-based Gaussian mixture model can be applied

in the development of a robust nonlinear filter for image restoration. Via the Expectation



Maximization (EM) algorithm, we utilize ML estimation of the spatially-varying model

parameters to achieve the desired noise suppression and detail preservation. We demon-

strate that this approach is a powerful tool which gives us information into the local statis-

tics of noisy images. The advantages of our algorithm is that it can simultaneously

suppress additive Gaussian and impulsive noise, while preserving fine details and edges.

In contrast to our algorithm, most existing techniques use simple methods by just replac-

ing the center pixel of window with a weighted mean. Such techniques do not exploit the

information contained in the local statistics in restoring a center pixel of the processing

window. We demonstrate how the local statistics can be utilized in the challenging tasks

of edge detection as well as suppression of quantization noise in transform-based image

coding.

1.5 Thesis Organization
Chapter 1 includes a literature review on relevant research of various techniques of image

segmentation in general and MR image segmentation specifically. Furthermore, a review

of published studies on nonlinear filters for image restoration is included.

Chapter 2 includes a review of Maximum Likelihood (ML) parameter estimation of

Gaussian mixture models via the EM algorithm. Chapter 3 presents our research in the

development of a robust segmentation algorithm which combines multiresolution analysis

and Gaussian mixture models of images. The algorithm is applied to synthetic images as

well as MR images of the brain. Chapter 4 presents an application of Gaussian mixture

models to the development of a novel nonlinear filter for image restoration. Chapter 5

includes the application of our new nonlinear filter to the suppression of quantization arti-

facts in very low-bit rate image compression. Finally, Chapter 6 concludes with a discus-

sion of the salient results of our research as well as suggests some possible future research

directions.



Chapter 2

Review of Maximum Likelihood Parameter Estimation
of Mixture Models

Before we begin with a detailed description of our novel image segmentation

algorithm, we include here a review of preliminary concepts and background material

related to applications of Gaussian mixture models to image segmentation. After

introduction of this review material, we will in subsequent chapters show our new

developments based upon the fundamental work presented in this chapter.

Our review proceeds in the following way. First, for the task of image segmentation,

we discuss the model of the image field. Second, we explicitly define the generalized

Gaussian mixture model (GMM) and its applicability to modelling image fields. Then

we include the framework by which the GMM model parameters are estimated. In

particular, we motivate the ML parameter estimation approach. We include a description

of how ML parameter estimation is achieved using the EM algorithm. Finally, we have

performed simulations to study the performance of previous GMM-based image

segmentation algorithms. We discuss their drawbacks and motivate our developments in

subsequent chapters.

Thus, the material presented in this chapter presents no new results or algorithms.

The chapter's intended purpose is to assemble together much of the theory and

background that we will refer to throughout the thesis. Also, this will allow us to

compare the results presented here with our new results that are presented in subsequent

chapters.



2.1 Model-based Image Segmentation
The overall goal of image segmentation is to identify regions that display similar

characteristics in some sense. We accomplish this by assigning each pixel to be a

member of one of K classes or homogeneous regions. Robust segmentation algorithms

often utilize a model of the image field [20]. A statistical model of the image field is in

the form of a probability density function (pdf) of the pixel intensities. Often the

parameters of the pdf are not known a priori, thus we can utilize parameter estimation

theory to achieve an efficient and consistent estimate of the model parameters [21]. To

be an efficient estimator of a nonrandom parameter, the estimator must be unbiased, and

its error variance must be minimized. The estimator is consistent when its mean-square

error converges to zero as the data size increases to infinity [21].

2.2 Generalized Independent Gaussian Mixture Model

In this section, we formally describe the Gaussian Mixture Model (GMM). Our

objective is to provide a framework for modelling the image field. In subsequent

sections, we show how images can be segmented using ML parameter estimation of the

GMM.

The GMM, we assumes the image field, Y(i,j), consists of intensities from K

different classes. As an example, in MR brain images these classes represent different

tissues (i.e. White Matter, Gray Matter, and CSF). In the GMM, pixel intensities are

assumed to be independent and identically distributed (i.i.d). The i.i.d assumption allows

for simple computation with the well-known Gaussian density functions. The intensity of

each class is characterized by one of K different Gaussian density functions. Therefore,

the model for the data is given by:



K

P (Yi) = _P(Yi = Ylki =)p (ki =j) (2.1)
j=1

where p (yi = Ylki = j) is the conditional probability of each pixel and is defined

by the Gaussian:

p (yi= Yki = j) = N(l, j 2) (2.2)

and p (ki = j) is the prior probability that the class of pixel i is class j. We point out

that the notation emphasizes individual pixel statistics rather than the entire image. Thus

(2.1) defines a Gaussian mixture.

To characterize the GMM, we define the parameter vector Q = [g'1 a1
2 (2 .2

2  Rk

Gk2] T. Given the data and with knowledge of (D, we can easily compute the Maximum a

posteriori (MAP) estimate of the class,ki at pixel i. We define the MAP estimate, ki, of

the class of pixel i as:

ki = argmax p (ki = jjyi = Y) (2.3)

We can proceed to segment an image by assigning class memberships to each pixel

individually using the above MAP estimate of the pixel class.

In practice, the conditional density parameters, C•i (e.g. gi and ai2), and prior

probabilities, p (ki = j, are not known a priori. For these reasons, the Maximum

Likelihood (ML) estimation technique is used to find the estimated value of Q•i based

upon data in the image field. Since the class correspondence of each pixel in the image

field is not known a priori, ML estimation for the conditional density parameters is a

challenging nonlinear optimization problem. An attractive iterative technique to solve

this problem is the Expectation Maximization (EM) algorithm [20].

2.3 Maximum Likelihood Parameter Estimation of Gaussian Mixture



Models

We shall describe the applications of the EM algorithm for ML-based parameter estima-

tion. Let Y be a set of data of interest. Let p(YlI)) be defined as the probability density

function (pdf) which describes the intensity distribution of Y However, the challenge is to

estimate Q, without knowledge of the class of each pixel. ML estimation is defined as find-

ing d4 ML such that:

$ML = argmax p(YIj~) (2.4)

We have defined yi to be the intensity of pixel i. Furthermore, we let ki indicate the

class of pixel i. In general ki is not observable and is referred to as the missing data. In

keeping with the terminology used for ki, yi by itself is referred to as the incomplete data.

A very popular approach to solving this incomplete data problem is by use of the EM

algorithm, which alternately estimates the missing data and then takes this estimate as a

given to estimate the parameters [21].

2.3.1 Expectation Maximization Algorithm
The purpose of this section is to include a description of the EM algorithm. We utilize

the EM algorithm throughout most of this thesis find ML estimates of our model parame-

ters.

The EM algorithm is an iterative technique, which converges to ML estimates when

there is only one local maxima of the log-likelihood function [20]. For a rigorous proof of

the convergence properties of the EM algorithm, please see the references of [20, 22].

Functionally, the EM algorithm is described by two steps at each iteration: the expec-

tation step (E-step) is described by

R(cIDi(P)) = E[logp(YI|Q)jy,4 (P)] (2.5)



which represents the expectation of the log-likelihood function given the parameter

estimates at the pth iteration. Furthermore, the M-step is described by the following:

s(P+ ) = ar max R(dI4~P))  (2.6)

which estimates the parameters that maximize the expectation of the log-likelihood

function. Thus, we see that at each iteration, the M-step produces a "new" estimate of the

parameters.

The E and M-step for the GMM-based EM algorithm have been derived in many past

studies on the generalized Gaussian mixture model [20]. We shall include the results of

this derivation. The E Step can be deduced to the following:

(p) p(ki = klp ()) iki = k, P ()
Zik = (2.7)

j=1

In simplified form, this expression is based on Bayes' Law. Simply, zik is the probabil-

ity that pixel i belongs to class k, given its intensity, yi, and current model parameters at

the pth iteration of the process, D(P).

Furthermore, p(yilk i = k, D p)) is the conditional probability of pixel i given it is a

member of class k. The summation in the denominator is a normalization term.

N

nk() = i k t )  (2.8)
i=l 1

p(ki = kljD (p+ 1)) = n (2.9)



Equations (2.8) and (2.9) are used to estimate the class prior probabilities at step p.

Here, N is the total number of pixels in the image field. After the E-step, the following two

equations will form the M-step

n

mk (p + 1) Yiik(P) (2.10)
(Pi=

n

k (= ) - Zik i kY1-mk pl)2(2.11)
nk i= 1

The M-step produces the new parameter estimates to be used in the next iteration of

the process. For the Gaussian density function, the mean and variance are sufficient to

fully characterize the pdf. The iterations are continued until the parameters converge to

local maxima of the log-likelihood function. We see that the estimator is only a function of

the data, and thus is valid. Furthermore, since these are ML estimates, they are efficient

estimates given the efficient estimator exists. From estimation theory it is known that

when an efficient estimator exists, it is the ML estimator [21].

2.4 Overview of GMM-based Algorithm for Image Segmentation

In image processing, a practical application of the EM algorithm is in estimating the

parameters of the pdfs which characterize the distributions of the pixel intensities. The

parameter vector, b = [mI ao2 .. mK GK2] T, Was defined in section 2.2. Further let Y be a (N

x 1) vector of all the pixel intensities in the given image. Then assuming the pixels are

independent, we define p(Yc1 ) as

N K

p(Y|I) = I Yp(yr e k)p(y|iI, yj e k) (2.12)
i=lk=l



Then we estimate bML using equation (2.4). We resort to the EM algorithm for its

solution. The implementation of the GMM-based image segmentation algorithm is parti-

tioned into the following set of rules:

1) Find an initial estimate of the parameters, (D(o). For example, in the case of MRI

segmentation, this requires a general guess for the means and variances for the three dif-

ferent classes (white matter, gray matter, and CSF). White matter will have the highest

mean and CSF will have the lowest mean. Because of the variation between different MRI

acquisition systems, the histogram of the image should be used to generate the initial

parameters. The prior class probabilities, p(ki = k), are assumed to be equally likely.

2) The EM algorithm is used to find the ML estimates of parameters which character-

ize the pdfof the image field.

3) Using the parameters generated by the EM, a maximum a posteriori (MAP) estima-

tor is used to decide which class each pixel belongs to based on an a prior model of the

image field.

The Gaussian mixture model has been used in previous studies in automated MRI

brain segmentation as well as image segmentation in general [5]. The GMM assumes the

pixel distribution is independent and identically distributed (i.i.d). The advantage this

assumption has is that it reduces the computational complexity of the segmentation task

by allowing the use of the simple, and well-characterized Gaussian density functions.

However, a short coming of this model is that it fails to utilize the strong spatial correla-

tion between neighboring pixels which is a prominent characteristic of natural images in

general and MR brain images in particular [2]. Let us define here the term, "spatial corre-

lation," as we refer to it in this thesis. We assume that neighboring pixels are spatially cor-

related because they have a high probability of belonging to the same class. For example,

in natural images, one can make a reasonable assumption that neighboring pixels, located



in the interior of a homogenous region, belong to the same class, ka. If a pixel, i, of this

neighborhood has an intensity closer to the mean of another class, kb, a classifier such as

the Minimum Distance Classifier (MDC) would incorrectly classify pixel i to belong class

kb while the surrounding pixels were classified to be members of ka. Clearly, the prior

knowledge regarding pixel correlation is important in being able to correctly classify pix-

els.

The Gaussian mixture model was described in section (2.2). After obtaining ML esti-

mates of the GMM parameter via the EM algorithm, we can segment the image field using

the MAP classifier which was described by equation (2.3). Figure (2.1) illustrates the

overall segmentation process.

Figure 2.1: Schematic of Segmentation via the EM algorithm

Iterates until
convergence to
ML parameter
Estimates

w



2.5 Experimental Results and Conclusions

In this section, we present examples of the GMM-based segmentation algorithm. Our

objective is to evaluate the performance that can be achieved using the standard GMM.

We show the drawbacks of standard GMM-based segmentation algorithms using both

synthetic and real images. This will allow us to motivate our new developments in the

forthcoming chapter and compare with the results of this chapter.

2.5.1 Segmentation of Synthetic Test Image

We use synthetic images where we know what the "correct" segmentation should be.

In the first set of experiments we applied the EM algorithm for MAP segmentation of syn-

thetic images shown in figure (2.2). The synthetic images were formed by three vertical

blocks. Each block consists of pixels from one of three Gaussian processes of a given

mean and variance.

Pixels within the same block come from the same process. Pixels are also i.i.d. Classes

1, 2, and 3 have means of 50, 100, and 150, respectively. All classes have a variance of

225. Note, an equivalent description of the synthetic image is to state that the image con-

sists of three blocks of constant intensities of 50, 100, and 150, and the image is then cor-

rupted with an additive white Gaussian noise with a variance of 225. As figure (2.3)

illustrates, the histogram distributions of the processes overlap due to the high variance.

The image of figure (2.2b), is similar to (2.2a), except for the two-pixel wide horizontal

line across the image field. The purpose of this line is that we would like to study the per-

formance of segmentation algorithms in segmenting the fine features of an image.



Figure 2.2: Synthetic Test Images

(A) - Test Image 1 kD) - let 111ageo L/

(A) Classes 1,2, and 3 and have means of 50, 100, and 150, respectively.
All classes have a variance of 225. (B) Same as (A) with a 2-pixel wide
horizontal strip from class 3 running through the other classes. The correct
segmentation for these two images is obvious.

Figure 2.3: Histogram of synthetic image in Figure (2.2A).

The segmentations of the test images are shown in figure (2.4). Clearly, the segmenta-

tion failed to reflect the spatial correlation existing between pixels of the same region. The



spottiness of these segmentation maps indicate classification errors. Because of i.i.d

assumption, those pixels which have intensities at the tails of the Gaussian pdf's will be

erroneously classified.

Figure 2.4: Segmentation of the test Images.

(A) - MAP Segmentation via (B) - MAP Segmentation via
EM Algorithm. EM Algorithm

2.5.2 Segmentation of MR Image of Brain
An MR image was made available from the Center for Morphometric Analysis (CMA)

at the Massachusetts General Hospital in Charlestown, MA. Figure (2.5) shows a T1-

weighted coronal brain scan. Also, the image histogram is calculated.

Often, Gaussian noise corrupts MR images of the brain in the acquisition process. We

accentuate this corruption process by adding white Gaussian noise to an MR image of the

brain. Thus, figure (2.6) is the noisy version of the MR brain image. Specifically, additive

white Gaussian noise (AWGN) with zero mean and variance of 225 was added to the

image. The segmentation map of the noisy image was generated using the EM algorithm.

The result is shown in figure (2.7). A "good" segmentation should have contiguous

regions [23]. Again since the GMM-based segmentation has failed to exploit the spatial



correlations, the resulting segmentation is poor. This failure is due to the GMM-based

assumption that pixels are i.i.d.

Figure 2.5: MR Image of the brain with corresponding image histogram

(A) - MR Image of Brain (Ti-Weighted Coronal Section)

(B) - Image histogram. White matter corresponds to higher
intensities, whereas gray matter is intermediate, and CSF and
air have low intensity.



Figure 2.6: Brain MRI with Additive Gaussian Noise

Figure 2.7: Segmentation map of noisy image with GMM-based segmentation algo-
rithm.

2.5.3 Conclusions



In this chapter, we have reviewed the GMM. Using ML estimation of the GMM

parameters, we demonstrated how images can be segmented. ML estimation was achieved

using the EM algorithm. We performed simulations to study the performance of GMM-

base d segmentation algorithms. From the results of these simulations, we have illustrated

the drawbacks of the GMM-based segmentation. While this segmentation algorithm is

computationally efficient to implement, it failed to reflect the spatial correlation of images

because the GMM assumption is that the data is i.i.d. This failure was evident in the clas-

sification errors on a pixel-by-pixel basis.

Recently, Ambroise et al, have proposed to modify the likelihood function of the

GMM. Specifically, they incorporated a neighborhood penalization term which had the

desired effect of biasing their modified algorithm to classify pixels to the same class as

their neighbors. In the forthcoming chapter, we extend their work by utilizing multiresolu-

tion analysis of the image field. We propose a multiresolution neighborhood which is

defined in both scale and space. Moreover, our novel approach is computationally tracta-

ble.



Chapter 3

A New Statistical Model for Image Segmentation
As previously mentioned, in most natural images, there is strong correlation between

neighboring pixels. For example, if the neighbors of a given pixel are classified to belong

to a certain region class the probability that the pixel itself also belongs to the same class is

more likely. Since the GMM-based segmentation is premised on the assumption that pix-

els are i.i.d, the spatial correlation is ignored in the model, and hence results in poor seg-

mentations. In images, spatial correlation can be extended across resolutions as

demonstrated in recently published multiresolution-based statistical models of images

[12,13]. In this chapter we introduce a new multiresolution model of the image field that

efficiently incorporates the spatial correlation into the EM algorithm across different

scales, and thus into the resulting segmentation.

The chapter proceeds in the following way. First, we motivate the multiresolution-

based approach our algorithm utilizes. Second, we develop a neighborhood clique which

will be defined across scale and space. Then we unite multiresolution analysis with our

neighborhood clique and formally describe our novel algorithm. Following that, we

present applications of our algorithm in segmenting synthetic test images and MR brain

images. We discuss the results of our simulations and compare our methods with the

GMM-based segmentation algorithm of the previous chapter.

3.1 Multiresolution analysis of images
Here, we motivate the multiresolution approach to image segmentation. Within the

image processing community, multiresolution-based image segmentation has emerged as

a powerful method for producing high-quality segmentations of images [13]. In fact, the



human visual system (HVS) is known to process images using information at different

resolutions [24]. Thus, we see that image segmentation is a multiresolution problem. Burt

and Adelson proposed the Laplacian Pyramid as a compact representation of images [25].

Each resolution of the pyramid will contain information which emphasizes different fea-

tures of the image. At increasingly finer resolutions the detail of an image is more promi-

nent. At the lower resolutions, only the largest features of an image are detectable. Our

goal is to efficiently combine the information at various scales and produce accurate seg-

mentations of the image field.

3.1.1 Wavelet-based decomposition of images

Using the Discrete Wavelet Transform (DWT), an image can be resolved into different

frequency subbands using the pyramid algorithm [26]. By choosing an orthonormal basis

to represent the image, one can construct a set of two-dimensional filters to isolate the sub-

bands of interest. For many of the popular basis functions, their corresponding filters have

been studied in great depth [26]. In the current study, we will mainly, except where other-

wise stated, implement the DWT using the Haar basis because of its simplicity. The DWT

can be implemented using other basis functions. We shall also briefly discuss the use of

higher order basis functions of the Daubechies family in the implementation of our algo-

rithm. From our experimental results, the majority of the energy in brain MR images is

captured in the low frequency subbands. Thus, we will only use the low-frequency sub-

bands isolated by the DWT. Starting at the original scale, So, of an NxN image, one can

produce a collection of successively coarser low-pass filtered images {So, S1,.., Sj}, pro-

duced by the DWT. Via the downsampling involved in the pyramid algorithm, the number

of data points decreases by a factor of 4 at each coarser scale without aliasing. Thus, the

image obtained from the coarsest scale, Sj, will be of size x . By operating on the
2 2

coarse resolutions, we can estimate parameters using less data points.



As figure (3.1) demonstrates, the low pass sequences of images can be mapped onto a

quadtree structure. Each pixel at resolution J corresponds to four "child" pixels at resolu-

tion J-1. Thus the pixel at resolution J is defined as a "parent" pixel to its respective

"child" pixels at resolution J-1. In turn, the pixels at resolution J-1 are parents to their cor-

responding child pixels at resolution J-2. In this study, we take advantage of this quadtree

structure to develop an algorithm for image segmentation. We will make the following

assumptions: the pdf of pixel i at resolution J-2 is dependant upon its neighbors, further-

more, the pdf is dependant upon the parent pixel at resolution J-1 and grandparent at reso-

lution J, as well as the neighbors of the parent and grandparent. Thus, our model will

attempt to utilize the dependance of the pdf across both scale and space towards the goal

of a more robust segmentation algorithm. Hence, our aim is to modify the Gaussian mix-

ture density pdf such that we penalize the likelihood of pixel membership to a certain class

when its neighbors, parent, and parent's neighbors have a low probability of belonging to

this same class.

From chapter one, it was pointed out that other researchers have implemented multi-

scale Markov random field models which also are directed at penalization of this "scale-

space" likelihood. However, implementation of Markov random field models are compu-

tationally intensive and optimization of the model parameters requires the use of tech-

niques such as simulated annealing and other gradient search methods [2].



Figure 3.1: Multiscale Quadtree illustration.

Scale J=2 (Coarsest Scale)
Pixel Y(2,0,0) is a parent to
Y(1,1,1) and a "grand-parent"
to pixels of Scale J=0

Scale J=1
Pixel Y(1,1,1) is a parent to
four pixels of Scale J=0

Scale J=0
(Original Image)

Pixels are indicated by scale and space. Y(X,Y,Z) indicates a pixel at scale
X and location within that scale is denoted by (Y,Z). A pixel at scale J=2 is
shown with its 4 children at J=1, and 16 grand-children at scale J=0

3.1.2 Multiresolution EM Algorithm

The EM algorithm has been shown to be a method of maximizing the following equiv-

alent log-likelihood function of the image field []

K n K n

L(ZA) = I Ziklog (p (ki = k) p(Ygi 4'k' (yi e k))) - I ZiklOg (Zik) (3.1)
k=li= k= i=

We have kept consistent with the notation used throughout this chapter. Z is a matrix

whose elements are all the Zik of the image. Recall, that the EM algorithm iterates until the

parameter matrix, D, converges to a local maxima of the log-likelihood function. In the E-

step of the EM algorithm, we have defined an explicit expression for zik as shown in equa-

tion (2.7). Specifically, given the intensity yj and D, zik is the probability that pixel i



belongs to class k. Thus, the outputs of the EM algorithm, D and Z, also maximize L(Z,D).

The proof that the EM algorithm maximizes L(Z,A) can be found in [27].

As is apparent, L(Z,O) does not account for the spatial correlation of the data. We pro-

pose to modify the likelihood equation (3.1), by the addition of a penalization term, V(Z).

Our penalization term will bias the likelihood of a pixel, i, belonging to the same class, ka,

of its neighbors. Thus, we can view V(Z) as modifying the pdf to incorporate desirable

correlation properties. This prior probability on the pixel class probability is of a Gibbs

form and thus like an MRF on the class probabilities. The new likelihood expression is

given by the following equation:

U(Z,4) = L(Z,4) + V (Z) (3.2)

The penalization term, V(Z), will incorporate the quadtree data structure illustrated in

figure (3.1) as well as a simple "clique" or pixel neighborhood system. Within the same

resolution, we define the neighborhood of a pixel, i, to be all pixels which are adjacent to

pixel i (top, down, right, left, and diagonal). Furthermore, a pixel at resolution J-2, will be

defined to have a neighborhood at resolution J-1 which consists of the parent of i as well

as the parent's neighborhood. This neighborhood can be extended further across resolution

to include the "grand-parents" of i at resolution J. In practice, we only incorporate the

information from scales J=0, 1, and 2. The neighborhoods at each resolution will have dif-

ferent weightings in the neighborhood interaction weights of the penalization term. Let us

define the following neighborhood interaction weight (NIW):

a if pixel i and r are neighbors at resolution 0

f3 if pixel i and r are neighbors at resolution 0 and 1 (3.3)

vi =y if pixel i and r are neighbors at resolution 0 and 2
0 else



Using the NIW of (3.3), we propose the following penalization term

J K N N

V (Z) = x XYZjiZjrkVirj (3.4)
j=Ok= li= Ir= 1

Where zjik is the probability of pixel, i, from resolution j being a member of class k.

V(Z) weights neighborhoods which have pixels that are members of the same class more

than heterogenous neighborhoods. Furthermore, we see that V(Z) is only dependant on the

probability matrix, Z, whose elements are the individual pixel probabilities, zjik.

A modified version of the EM algorithm can be used to maximize the new penalized

likelihood equation, U(Z,cD). We shall call the modified EM algorithm the Multiresolution

EM (MEM) algorithm. The attractiveness of the MEM algorithm is in the approach of uti-

lizing a multiresolution neighborhood. The coarser resolutions will allow for the segmen-

tation of the more prominent features in the image. However, the information at the finer

levels is important for accurate segmentation along boundaries and for segmenting highly

detailed regions. Thus this has two advantages: 1) the MEM algorithm has desirable corre-

lation properties and avoids blurring, and 2) misclassifications are reduced. Here, we

present an overview of the MEM algorithm:

3.2 Overview of MEM algorithm
1) First, we must generate a multiresolution sequence of images using the DWT. In

this thesis, we utilize scales J=0, 1, and 2 in the MEM algorithm. Note, J=0 is the original

image, and J=2 is the coarsest scale.

2) Then, using the standard GMM-based segmentation algorithm of the previous chap-

ter, we segment scales J=1 and J=2. Recall, that the segmentation of an image is based on

a MAP classifier. Thus, this step also produces the probability matrices ZI and Z2 , where

Zj is a matrix whose elements are the individual Zjik. We hold Z1 and Z2 fixed, and we uti-



lize these matrices in our multiresolution segmentation algorithm. We emphasize that thus

far, the segmentation of one scale does not affect another scale. It is possible to have alter-

native implementations in which all scales affect one another in a scale-recursive fashion,

and this approach may be investigated as an extension of this thesis.

3) Now, we are able to modify the EM algorithm to segment the finest level image.

Since the additional term, V(Z), does not contain any parameters, D, of the image model,

the M-step will remain the same. However, the E-step will change since it is dependant

upon Zjik. In particular, equation (2.7) must be modified to incorporate this modified multi-

resolution likelihood. In the multiresolution framework, zik will be expressed as

p(ki = kle ')p(Yilk i = k, 0 (p))exp ( Y ZjrkVirj

ZOik ik(P)Or= 1l (3.5)

_p(ki = s|ID(P))p(yilki = s, D(P))exp Zjrsvirs

s=1 Ij=Or=

The above expression was derived using Lagrange multiplier optimization and is the

equivalent of equation (2.7). The details of our derivation are quite similar to the deriva-

tion of Ambroise et al. [8]. We use the terms zoik and Zik interchangeably. We can interpret

equation (3.5) as a modified conditional probability of pixel i belonging to class k. The

probability is conditioned on the current parameters, D, and the likelihoods of the neigh-

bors of pixel i belonging to class k. The rest of the E-step is the same as the monoresolu-

tion EM algorithm. The M-step is not changed. Note, we are interested only in calculating

the new Zik at the original resolution, J=0, only. From step 2 of our algorithm, recall that

we hold zlik and Z2ik fixed.

From equation (3.5), we see that Zoik appears on both sides of the equation. Specifi-

cally, the summations in the exponential contain Zoik if the summation index, j, equals



zero. This suggests an iterative algorithm to compute Zoik. In equation (3.5), we point out

that the index, p, refers to the iteration of the EM algorithm. Thus, at every iteration of the

EM algorithm, we solve for Zoik. Experimentally, we have found that a few iterations of

equation (3.5) produces a reasonable probability matrix, Z.

4)After obtaining Z, we proceed to the M-step. We stress that our new developments

have not modified the M-step of the EM algorithm. Thus, given Z, we estimate the param-

eters, O(P), of our model using the equations (2.8) through (2.11).

5) With the overall updated EM model parameters, we go back to step 3. Experimen-

tally, we have found that five to six iterations are required for the elements of Q and Z to

converge to their final values.

6) We finally segment the original image by assigning class memberships to each

pixel, i, by choosing the class for which Zik is maximum:

ki = argmax Zik (3.6)
k

3.2.1 Applications of the MEM algorithm towards image segmentation

Given an image Y, we compute a two-level Discrete Wavelet Transform (DWT) using

any desired bases. In this thesis, we have used the Haar basis and also include an example

using a seventh-order Daubechies Wavelet (DB7). The DWT will provide a collection of

low-pass filtered images, { S..S2), where So is the original image and S2 is the coarsest

image. We derive zik1 and zik2 using the conventional EM algorithm via the monoresolu-

tion Gaussian mixture model, and segment S1 and S2. As previously noted, we hold zik 1

and zik2 fixed. Then after this information is provided, we can apply the MEM algorithm

to SO. Figure (3.2) provides an illustration of this process.



Figure 3.2: Illustration of Multiresolution segmentation algorithm..

So (S & S2) EM

Zlik & Z2ik

So
S Multiresolution EM Segmentation

Segmentation Map

The Discrete Wavelet Transform (DWT) is used to generate a collection
of images at different resolutions. The conventional EM algorithm is used
for resolutions S 1 and S2, and the output values are used to segment the
original image, So

3.2.2 Evolution of Model Parameters Across Scales

An attractive feature of this multiresolution implementation of the EM algorithm is

that the output parameters of one resolution can be used as the initial estimates of the next

finer resolution. Starting at the coarsest scale Sj, (experimental results indicate that J = 2,

or 3 give best results), we implement the ML-based segmentation using the EM algorithm

as described above. After arriving at the ML estimate of the parameter vector 0, the afore-

mentioned MAP detector is used to segment the image at the current scale. Thus, after

segmentation, the pdf's of each tissue class will be characterized by the parameter matrix.

Using the estimated parameter matrix, 4)j, of the previous scale, we can derive the initial

parameter estimate, Ij-_1, needed for the current image field. The evolution across scales

of the parameters of the tissue class is defined by the following derivation.



Given data points {X1,2,..,N) in a homogenous region of a specific tissue class from

scale Sj. 1 with mean, g 1, and variance ;12, the DWT performs a discrete-time convolution

with impulse response of the low-pass filter. In the case of the Haar filter, the low-pass

coefficients are defined to be: {h(O) = 1/4, h(1) = 1/,. 1. Let Y1,2,..,N be the output points

of the convolution. We see in general that:

Yk = h (0) Xk_ 1 + h(1) -Xk  (3.7)

E[Yk] = m - (h(O) +h(1)) (3.8)

Var [Yk] = 2 . (h2(0) + h2(1)) (3.9)

Thus we establish that given the parameter, QDj, from scale J, we can derive the initial

estimates of the parameter matrix at scale J-1. We employ this analysis for the initial esti-

mates used in segmenting S2 and S1. The MEM algorithm's initial estimate needed for

segmenting So is provided by using the final estimates of the parameters of S1.

3.2.3 Summary of MEM algorithm
The aim of the MEM algorithm is modify the pdf of the GMM such that we penalize

the likelihood of a pixel belonging to a class other than the class its neighbors belong to.

Thus, our procedure is:

1. Generate a multiresolution sequence of images using the DWT that is three levels

deep.

2. Segment the coarser images using the well-known GMM-based segmentation algo-

rithm.



3. Using the information provided by the coarser segmentations, we incorporate the

penalization term from Equation (3.2) into the likelihood function of the image field. We

point out that we do initialize each scale.

4. We modify the E-step of the EM algorithm to account for the penalization term as

shown in Equation (3.5).

5. Using the probability matrix, Z, that results from the EM algorithm, we segment the

finest level image.

3.3 Experimental Results and Conclusions
3.3.1 Segmentation of Synthetic Test Image

To demonstrate the robustness of the MEM algorithm and compare its performance

against the traditional GMM-based segmentation algorithm, we applied the MEM to a

series of test images. Specifically, our goal is to demonstrate that a multiresolution seg-

mentation will result in a more accurate segmentation of the image field. We also will

demonstrate that while the NEM algorithm of Ambroise et al. performs better than the

GMM-based segmentation algorithm, the NEM's segmentations are not as accurate as our

algorithm's segmentations. Moreover, we also illustrate that an ad-hoc algorithm based

upon low-pass filtering, degrades the edges of an image field and thus results in a poor

segmentation.

In our first set of experiments, we segment the same two test images, (2.2a) and (2.2b),

of section (2.5.1) in chapter 2. The segmentations of the test images are shown in figures

(3.3a-f). Clearly, the GMM-based segmentation failed to demonstrate the spatial correla-

tion existing between pixels of the same region. The MEM algorithm provides a subjec-

tively and quantitatively superior segmentation. We also compared our MEM algorithm to

the Neighborhood EM (NEM) algorithm of Ambroise et al. While the NEM algorithm



performs better than the conventional EM algorithm, our new MEM algorithm yields a

more accurate segmentation map.



Figure 3.3: Monoresolution and Multir Images

A- Segmentation of 2.2a via NEM

C- Segmentation of 2.2a via GMM

10 20 30 40 50 80 70 80 90 100

E- Segmentation of 2.2a via NEM

B- Segmentation of 2.2b via NEM

D- Segmentation of 2.2b via GMM

F- Segmentation of 2.2b via NEM
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An ad-hoc algorithm was also used to segment the test image. In many standard

approaches to image segmentation, the image is first low-pass filtered to suppress the

noise. In this experiment, the test image was convolved with a low pass filter either once

or twice and then segmented with the conventional EM-based segmentation algorithm. As

figure (3.4) demonstrates, the low-pass filtering succeeded in reducing the variances of the

three classes, and thus improved the segmentation. However, as a result of the low-pass

filtering, the borders of the regions are blurred, and the resultant segmentation near the

edges is poor. This effectively is creating the partial voluming which causes class confu-

sion. In figure (3.5), we illustrate this occurrence by including an example of a one dimen-

sional signal being processed by a set of low-pass filters. The filtering has severely

degraded the edges and this results in a "mixed" set of data which will be erroneously

classified. The extension of this example to two dimensions is straightforward.

This blurring effect is most prominent in the segmentation of Test Image 2 of figure

(2.2b). The horizontal line is not detected using this ad-hoc algorithm. However, because

the MEM algorithm utilizes the information available in all the scales, we succeed in seg-

menting the horizontal line. Had we only utilized the information in the coarser resolu-

tions, the horizontal line would not have been detected. Thus, this example demonstrates

that the MEM algorithm is able to reliably segment structured images with fine details, in

the presence of noise.



Figure 3.4: Ad-Hoc Segmentation of Test Image after Low-Pass Filtering

(A) - Segmentation map of 2.2a. (B) - Histogram of 2.2a after tilterming.
Note the poor performance near Note the reduction of variance of the
the edges of blocks. classes.

(C) - Segmentation map of 2.2b (D) - Segmentation map of 2.2b
after low pass filtering once. after low pass filtering twice



Figure 3.5: 1-D example of Partial Voluming.

Low Low
SPass Pass

Filter Filter

1-D example of Partial Voluming due to low-pass filtering operations. We see
that after filtering, it becomes challenging to classify the "mixed" data points along the
edges. The extension of this example to 2-D images is straightforward.

3.3.2 Segmentation of MR Image of Brain

Here, we segment the same brain image, figure (2.5a), shown in the previous chapter.

Using the MEM algorithm, figure (3.6) shows a MEM-based segmentation map of the

brain image. We also include the segmentations generated by the GMM-based algorithm

as well as the NEM algorithm. Furthermore, the probability matrix, Z, can be visualized as

a "probabilistic segmentation map" as shown in figure (3.7). Z can be used to generate

probabilistic segmentations for the corresponding three tissue classes. Each subimage

indicates which pixels have the highest probability of belonging to a specified class. Prob-

abilistic segmentation maps can be generated using the other segmentation approaches

that we have studied, although we do not show them here.



Figure 3.6: Comparison of segmentation maps of MR image of human brain

A- MEM Segmentation B- GMM-based Segmentation

C- NEM Segmentation



F g MEM algorithm

(A) - Pixels with
a high probability
of belonging to
CSF or air are
given higher intensities
in this subimage.

(B) - Pixels with a
high probability of
belonging to Gray
Matter are given
higher intensities
in this subimage.

(C) - Pixels with a
high probability of
belonging to White
Matter are given
high intensities in
this subimage.
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We also attempt to segment the noisy MR brain image, figure (2.6), of the previous

chapter. A segmentation map of the noisy image was generated using the MEM algorithm.

The segmentation is compared with a the GMM-based segmentation, the NEM algorithm,

and low-pass filter ad-hoc algorithm. Figure (3.8) shows the segmentation maps of all

these aforementioned schemes. We see that even in the presence of excessive noise, the

MEM algorithm is able to derive a smooth segmentation of the image field. However, both

the GMM-based algorithm and the NEM algorithm had apparent errors in classification of

the pixels. The low-pass filter ad-hoc algorithm did result in a smooth segmentation of the

image field. This can be explained because the filtering reduced the noise and thus,

allowed for a smooth segmentation. However, as we have pointed out, in images with fine

details and sharp edges, the low-pass filtering can have the adverse affect of partial volum-

ing. Because of the multiresolution approach of our MEM algorithm, we avoid the partial

voluming.



Figure 3.8: Segmentation maps of noisy brain image

A- MEM Segmentation B- GMM-Based Segmentation

20 40 B 80 100 120

C- Low-Pass Ad-Hoc Segmentation D- NEM Segmentation

3.3.3 Higher Order Basis Functions

The MEM algorithm is modular and can be implemented efficiently with other basis

functions. Here, using a seventh order Daubechies wavelet (DB7), we include results of

segmentation of both the "synthetic" test image as well as an MR image of the brain. The

"Wavelets Toolbox" of MATLAB was used for implementation of the DWT. Figure (3.9)

includes segmentation maps of the images of figures (2.2a) and (2.5). While the brain seg-

mentation is comparable to the Haar-based implementation, there is a noticeable differ-

ence in the segmentation of the "synthetic" image, (2.2a). There are a few more errors in



classification near edges when using DB7. This can be understood from knowledge of the

frequency response of the DB7 filter. Because DB7 has more energy at the lower frequen-

cies, the edges will be more blurred because edge information is typically at higher fre-

quencies.

Figure 3.9: Segmentation Using Higher Order Wavelets

(A) - MEM segmentation of image 2.2a (B) - MEM segmentation of MR Image
using Seventh Order Daubechies Wavelet using Seventh Order Daubechies

Wavelet.

3.3.4 Conclusions
In this chapter we introduced a novel multiresolution algorithm for image segmenta-

tion. Our algorithm incorporates a penalty based upon a multiresolution neighborhood
clique into the likelihood function of the image field. This penalty captures the correlation
between neighboring pixels. The conventional GMM-based algorithm assumes pixels are
i.i.d. We showed that the MEM algorithm is robust with respect to additive Gaussian noise
and produces better segmentation maps than the conventional GMM-based segmentation
algorithm. Specifically, the MEM algorithm avoids the partial voluming which usually
occurs when images are filtered. The simulations indicated that the MEM algorithm is
able to segment fine details in images. The MEM algorithm is modular and can be imple-
mented with different basis function for multiresolution analysis. Moreover, our scheme is



computationally tractable. In contrast, MRF-based models require much more computa-

tional processing.



Chapter 4

Image Restoration Via ML Parameter Estimation of
Spatially Varying Models

Images can be corrupted by various noise processes such as impulsive and additive

Gaussian noise due to a noisy sensor, lossy compression, and transmission over noisy

channels. In modem communication systems, digital filters are often utilized to process

data, voice, image, and video streams. In general, a digital filter used in image processing

must satisfy one or more of the following requirements:

1. Restore the original image from its noisy version (smoothing)
2. Enhance certain features (edges) of the degraded image (sharpening)
3. Preserve fine detail in images (detail preservation)
4. Be implementable in real time (computational efficiency)

In restoring digital images, we attempt to simultaneously suppress noise and preserve

the essential visual information in images. To accomplish this, an accurate model of the

image field is important. The model parameters are not known a priori. Thus, given the

data of the image field, we can utilize robust estimation techniques to find the estimates of

the model parameters.

In this chapter, we shall develop a nonlinear filter to restore digital images corrupted by

noise. Most nonlinear filters used for image restoration apply a "sliding" processing

window. The windowing is used because most natural images are nonstationary. We also

apply this windowing technique and model the data within the window using the

generalized Gaussian mixture model. As we move the window about the image field, we

use MAP estimation to restore the center pixel of the window. We shall utilize ML



parameter estimation via the EM algorithm to estimate the model parameters at each

window location.

The rest of the chapter is organized as follows: the next section describes in more

detail the theory, implementation, and applications of our algorithm. Then we include a

section which analyzes the performance of our filter on the benchmark test image, "Lena."

Moreover, we include a comparative study of our algorithm and the mean and median fil-

ters. We conclude the chapter with a general discussion of the results and implications of

our study, and we consider future extensions of this work.

4.1 Bayesian EM Filter
4.1.1 Noise Model

We assume that each pixel of the degraded input data set from the image field obeys an

additive model

Yi = Xi + Wi (4.1)

where the original pixel xi and the noise process wi are statistically independent. Fur-

thermore, the pixels are assumed to be independent of one another. In this development, a

parametric model has been used to characterize the observed data. Again, this parametric

model is in the form of a pdf, p(YIQ~), where Y is a vector of the data and 4Q is a vector of

the model parameters. Furthermore, given the nonstationarity of images, we would expect

the model parameters to be spatially varying. For these reasons we take the approach of

estimating these parameters using a sliding processing window of data surrounding the

center pixel. Figure 4.1 illustrates the sliding window technique used in our algorithm.

In this chapter, we take a Bayesian approach to the restoration of noisy images. We

model the image intensities as composed of a number of classes. Each such class is char-

acterized by a corresponding probability density function, in particular, by a Gaussian of

given mean and variance. The observed data are assumed to be samples from these class



densities. Thus, the data as a whole can be characterized by a Gaussian mixture density

as was defined in Chapter 2 by equation (2.1). For each pixel we find the maximum a pos-

teriori (MAP) estimate of corresponding pixel class and replace the value at that pixel

with the mean of the corresponding class. In practice, we do not really know the parame-

ters of the class densities, or even the number of such classes. For these reasons, we find

the Maximum Likelihood (ML) estimates of the pixel class density parameters based on

the data in the window. Since the class correspondence of each pixel in the window of data

is not known a-priori, ML estimation for the class parameters is a challenging nonlinear

problem. We resort to the expectation maximization (EM) algorithm for its solution. In

addition, since the number of classes at each location is also unknown and, in general, spa-

tially varying, we combine the ML approach with the Akaike Information Criterion (AIC)

[28] to determine the number of classes directly from the data. Finally, based on these esti-

mated class parameters we process the center pixel as described above.

Figure 4.1: Schematic of Novel Nonlinear Filter
Initial Parameter Number of Classes, K

Estimates, o0

Image

4.1.2 Outlier Detection
Since our method reestimates the class parameters for each pixel, it adapts to the

spatially-varying structure of the image. Since the EM algorithm effectively performs

classification of every pixel in the data window, we also obtain information about the



local distribution of the pixel intensities. We use this information to identify local outlier

classes, which are then excluded from further processing. This makes our procedure

robust to such effects as impulsive noise. Impulsive noise can be considered as a noise

which makes a pixel an outlier. We shall use the following definition for an outlier class:

Definition 1.1 Let Y be a vector of data points within a window. Then, let W be the

subset of the data points in Y which are members of certain class, kw, that is

characterized by a Gaussian pdf with a given mean, I wy, and variance, a, 2. Class kw is

an outlier class if and only if the prior probability of kw, p(kw) is estimated to be less

than a as shown by equation (4.2). Thus, an outlier class has a low prior probability.

p (k,) < a (4.2)

4.1.3 MAP Estimation Applied to Image Restoration
First we seek the MAP estimate, ` , of the class of pixel i as:

k = argmax p(klyi) (4.3)
k

= argmax p(Yily E k)p(k) (4.4)
k

Where we assume that there are up to K classes, and p(yilyi k) is the probability of

pixel i given it is from class k given by:

p(yily i E k) = N(mk,k 2) (4.5)

and p(ki) is the prior probability of class ki. Assuming that p(ki) and the class

parameters, {mk,k2 }, for each class k are known, we can easily compute this MAP

estimate of the class at each pixel. Given this MAP estimate of the class at pixel i, we

then replace the value of the pixel by the mean of the corresponding class.

4.1.4 ML Parameter Estimation of Spatially Varying Image Models
Unfortunately, in practice, p(ki) and the class parameters {mk,Ok2) are not known a

priori. Further, given the nonstationarity of images, we would expect these parameters to



be spatially varying. The approach we thus take is to estimate these quantities for each

pixel using a window of data surrounding the given pixel i as depicted in Figure 4.1. In

particular, we find the Maximum Likelihood estimates of the pixel class density

parameters. Let 1 = [ml, a 12,m2,a22,..,mk, Ck2]T be a vector of all the class parameters

(assuming the number of classes K is known) and Y a vector of all the pixel intensities in

the given window. Then, assuming that the pixels are independent, we estimate the

elements of D as:

0 = argmaxp(Y11) (4.6)

where p(YI) is defined as:

NK

p(114) = jJ Y p (k) p(yljc, yi k) (4.7)
i=lk=l

Since the densities themselves depend on 4), ML estimation for the class parameters

is a challenging nonlinear problem. We resort to the expectation maximization (EM)

algorithm for its solution [20]. The EM algorithm also finds the ML estimate of the prior

probabilities, p(ki). Now, in reality we also do not know the number of classes K at each

pixel, which itself will in general be spatially varying. Again, our approach is to estimate

this value from the data in the window about pixel yi by combining the ML estimation

approach above with the Akaike Information Criterion (AIC) [28].

4.1.5 Estimation of Optimal Number of Classes
As previously mentioned, the "windowing" approach used in this thesis presents a

new problem in estimating the model parameters. In particular, the number of classes of

data within a window are not known a priori. In homogenous regions there will typically

be only one class. However, near edges, there may be two or more classes. In the context

of image restoration, the AIC poses the problem as finding the best number of classes, K,



to fit the data model within the window. We seek to choose K that will minimize the fol-

lowing cost function:

AIC(K) = -2log {pk (YI ML) } + 2K' (4.8)

where KVML is the Maximum Likelihood(ML) estimate of the model parameters for

that given K. K' is the number of independently adjustable parameters of the K-class

model. K' in general is equal to K. Y is a vector of the pixel intensities within that

window. At each pixel, yi, in the image, we estimate the optimal number of classes for

the data surrounding yi.

4.1.6 Edge-preserving Property of Bayesian EM (BEM) Filter
The edge-preserving property of the BEM filter is due to allowing for multiple

classes within a window. The "mean" or averaging filter, is often used to reduce additive

Gaussian noise, blurs edges by replacing the center pixel with the average of the pixel

intensities located on both sides of the edge. However, our filter will only use the mean

of one class of pixels. Furthermore, those classes whose a prior probabilities, p(ki), are

estimated to be relatively small in comparison with other classes can be considered

outliers. Identification of outliers will reduce the effects of impulsive noise.

4.1.7 Edge Detection Property of BEM Filter
We have also utilized the estimated variances of inlier classes to gain an additional

insight into the homogeneity of an image. The variance of the class to which the center

pixel is estimated to belong will be high in regions near edges and other singularities in

the image, and low in homogenous regions. An example in one dimension is illustrated

in figure 4.2. Using the estimated inlier class variance, we propose that the BEM filter

can perform effective edge-detection on noisy images while simultaneously restoring

images. Our restored image utilizes the mean of the inlier class as the output of the BEM



filter. To generate edge maps, we use the variance of the inlier class as the replacement

value of the center pixel.

Figure 4.2: High Variance edges..

Pixel populations located on edges will in general, have higher variances.
Extensions of this example to two dimensions is straightforward

4.2 Experimental Results
Our algorithm was applied on the test image "Lena" as shown in figure (4.3). The two

classes of noise used to corrupt the image are the additive Gaussian noise and the

impulsive (salt&pepper) noise processes. The peak signal-to-noise ratio (PSNR) was

measured with the original uncorrupted image serving as the reference. We judge the

quality of the restoration by measuring the improvement in PSNR and the subjective

quality of the restored image. PSNR is defined by the following equation

_ 2552

PSNR = 0llog n 11 (4.9)

(y (i) -v (i))

Here, n represents the total number of pixels in an image. Here, y(i) is the original

(reference) image, and v(i) is the restored image. PSNR is among the most popular metrics

used to judge the performance of restoration methods [3].

Figures (4.4), (4.5), and (4.6) include the results of our simulations for the median

filter, mean filter, and the BEM filter. Our algorithm is demonstrated to be superior to the



mean and median filters both in terms of PSNR and subjective image quality in presence

of Gaussian noise. Its performance is comparable to the median filter in the presence of

impulsive noise in terms of PSNR, but has a better subjective quality by producing sharper

images. In the presence of both impulsive and Gaussian noise processes our filter

outperforms both median and mean filters in terms of PSNR and subjective image quality

as illustrated in figures (4.4) and (4.5). The images are displayed using a grayscale map,

where each image is normalized so that its peak intensity is 255 and its lowest intensity is

0.

Moreover, the BEM filter can be used to detect the edges in presence of noise as

illustrated in figure (4.7). We compare the edge map of the "Lena" image obtained via a

Marr-Hildreth edge detector with the edge map obtained using the BEM filter. From figure

(4.7b), we see that the Marr-Hildreth edge detector is sensitive to impulsive noise.

However, the BEM filter produces a superior edge map even in the presence of noise.



Figure 4.3: Test Image "Lena," and Noisy Image with Gaussian and Impulsive noise.

(A) - Original Lena Image

)- Corrupted with a4 ise



Figure 4.4: Restoration with Mean Filter, PSNR = 23.85 dB

(A) - Restored with Mean Filter



(A) - Restored with BEM filter, PSNR = 26.8 dB.

(B) - Restored With Median Filter, PSNR = 24.75 dB.



Figure 4.6: BEM, Median and Mean Filter Restoration of Noisy Images
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Figure 4.7: Edge Detection Of BEM Filter

(A) - Edge Map of Marr-Hildreth (B) - Edge Map of Marr-Hildreth
Edge Detector with Original "Lena' Edge Detector with Noisy "Lena"

(C) - Localized Variance of BEM
Filter with Noisy "Lena"

4.3 Conclusions
In this chapter, we have presented a novel nonlinear filter which utilizes ML parameter

estimation via the EM algorithm using a sliding processing window. We model the local



distribution of pixels in a window as a Gaussian Mixture. Using only the data within the

window, we estimate the number of classes and the parameters of the classes. We identify

outlier classes which makes our filter robust to impulsive noise as well preserves details

and edge integrity. Furthermore, this new BEM filter was shown to attenuate Gaussian

noise in addition to impulsive noise. In past studies, it has proven difficult to develop a

filter which is capable of suppressing both Gaussian and impulsive noise at high levels.

Indeed, a challenging task is to suppress these noise processes while preserving edges and

fine details.

Moreover, the localized variances computed by our BEM filter provide important

information about the level and location of smooth regions in the image and location of

edges which could be used in many applications such as edge-detection and segmentation

based image coding. We demonstrated that the BEM filter can produce edge maps even in

the presence of noise.

Another salient issue is in regards to the window size used for processing. In this

study, a three by three window was used because of simplicity of implementation and also

because most other nonlinear filters use the three by three window [3]. However, in

homogenous regions, a larger window would invariably reduce the error variance.

Conversely, near edges, a larger window would cause blurring. Thus, a possible extension

for our Gaussian mixture model is to utilize the statistics to make the window size

adaptive to fit the data. Similar to how we allowed for changes in the number of classes,

K, entropy-based cost functions not unlike the AIC can be used for this purpose. We point

out that adaptive windows have been implemented with models other than the GMM [17].



Chapter 5

Reduction of Compression Artifacts with Bayesian Post-
processing

5.1 Introduction
In modem multimedia communication systems, data compression is needed to

increase the rate at which information is exchanged over band-limited communication

channels. In these systems, image and video compression at very low-bit rates are needed

for applications such as videophones, teleconferencing, and catalog browsing [26]. Often,

very low-bit rate compression techniques are lossy [29]. Lossy image compression at

lower bit rates often results in loss of information in the decompressed data, and hence

degradation of subjective image quality [26]. The most popular image coding algorithms

are transform-based. In this class of algorithms, after applying a transform such as the

Discrete-Cosine Transform (DCT) or Discrete Wavelet Transform (DWT), the coefficients

of the transform are quantized and entropy encoded to form the compressed bit stream.

The quantization step can be considered as the source of noise that causes the loss of

information in encoded data [26]. At lower bit rates the loss appears as ringing artifacts in

DWT based compression techniques [26], as illustrated in figure 5.1.



Figure 5.1: Ringing Compression Artifacts

(A) )

Fig. 5.1 - Ringing compression artifacts at lower bit rates. (a) Original Image (b) Wavelet

based encoded image at 0.125 bits per pixel.

Various algorithms have been proposed to reduce these artifacts by postfiltering of the

decoded bit streams. Among the most prominent algorithms to date are low pass filtering

(LPF), projection onto convex sets (POCS), and maximum a posteriori (MAP) techniques

[30]. These methods are mainly used to reduce the artifacts in the spatial domain after

decoding, whereas the noise is introduced in the transform domain. The recent results in

[29] suggest that the reduction of quantization noise in the transform domain or joint

transform and spatial domains, would be more efficient than the conventional spatial

domain approaches. In this chapter, we introduce a new transform domain postprocessing

algorithm that uses our Bayesian filter, described in the precious chapter, to filter the

transform coefficients prior to decoding. In the previous chapter, we assumed that the

noise statistics were not known a priori. In this chapter, we assume that the quantization

noise statistics are known and that the noise is uncorrelated with the image data. However,

we still have no knowledge of the image statistics. Hence, we must estimate the image

model parameters from the data. Knowledge of the noise statistics, and the assumption

that the noise is uncorrelated with the data, represents the key difference with the BEM



filter used in the preceding chapter. Our experimental results have shown that the BEM

postprocessing algorithm can effectively reduce quantization noise in wavelet-encoded

images. Section 5.2 introduces the BEM postfiltering algorithm. Finally, the experimental

results and concluding remarks are presented in section 5.3.

5.2 The Bayesian Postfiltering Algorithm
Given an N x N digital image, x, we will define the quantized transform image of x as

Y = Q [Tx] (5.1)

where T is the transform matrix (e.g. DCT or DWT), and Q[.] represents the

quantization function. Assuming a uniform quantizer is used, we can model Y as

Y = X+w (5.2)

Where X is the transform of x, and w is an additive zero-mean uniform noise process

with variance of 0 2, that represents the quantization noise. In this chapter, we shall make

the common assumption that w is uncorrelated with the signal X [29].

Now, we shall formulate the problem of estimating X from Y by using the BEM filter.

We use a sliding processing window of size L x L in Y, and try to estimate the true value of

the center pixel i, of the processing window from its neighbors. If the mean mx, and

variance axi, of i were known a priori, the weighted least-squares (WLS) algorithm could

have been used to estimate X [29]. Let x and y be the lexicographical ordering of the

pixels in the processing window, then to find the WLS estimate, we should search for .i

that minimize the functional

J = argmin, [ (-mx)' tM(-mx) + (y- ) tR(y--)] (5.3)



where M and R are weighting coefficient matrices. In this case I can be found

explicitly as

S=m + W (y-mx) (5.4)

Where W = (M + R)-'R. We can derive the value of W which minimizes (5.3) and this

is given by

W = ( 2 +a 2 ) (5.5)

unfortunately, in practice the mean and variance of each pixel intensity xi is not known

a priori. In practice, we cannot estimate the statistics of both the image and the noise from

the data alone. Therefore, our model shall make the following simplifying assumptions.

Since the noise is zero-mean and uncorrelated with the signal, we can assume

mxi = m Y (5.6)

Here my, is the mean of the inlier group for the processing window. The inlier group

was defined in chapter 4, and is found using the same mixture model based upon the EM

algorithm. Furthermore, we can assume the variance of xi, is given by

2 2 2
i = 'U-o, (5.7)

Variance of y is found as the variance of the inlier group in the processing window,

where the inlier class is associated with the class of the center pixel. The variance of the

quantizer noise is also known a priori. The above formulation is similar to the formulation

of the BEM filter in chapter 4, and hence we can estimate the essential information to

compute the least squares estimation of x, and restore digital images that have severe

quantization noise. The BEM postprocessing algorithm is summarized in Fig. 5.2.



Figure 5.2: The BEM postprocessing algorithm
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5.3 Experimental Results and Concluding Remarks
Our BEM post-processing algorithm was applied to real images so that we can

illustrate the performance of our algorithm. The Baboon test image is shown in figure 5.3

(a). The DWT of the Baboon was obtained using the DB4 wavelet. The 8 bits per pixel

(bpp) DWT coefficients were quantized to 3 bpp each. The inverse transform without

postprocessing shows a severely corrupted image as shown in figure 5.3 (b). The BEM

algorithm was then applied to the quantized coefficients prior to inverse transformation.

Significant improvements in subjective image quality can be observed in figure 5.3 (c).

Furthermore the BEM postprocessing resulted in 0.59 dB improvement of the peak signal

to noise ratio (PSNR).



Figure 5.3: BEM Processing of Coded Images

(B) Compressed Image

(A) Original Image

(C) BEM Post-Processed Image

Fig. 5.3 - Reduction of quantization artifacts with BEM filter. (a) Original Baboon (8 bpp), (b)

Decoded Baboon without filtering PSNR 20.05 dB (c) Baboon with BEM postprocessing

PSNR 20.64



Our experimental results confirmed that the BEM postprocessor can effectively reduce

the quantization artifacts in DWT transform based compression techniques. Our algorithm

is computationally efficient to implement and produces images that have a better

subjective quality and higher PSNR than the current iterative algorithms.

We must emphasize that the simulation used in this thesis did not attempt to use a

multilevel wavelet decomposition of images. Multilevel DWT is the most common

method used in wavelet-based compression algorithms. Here, we presented the results of a

singe level decomposition and subsequent quantization at 3 bpp. To achieve lower bit

rates, a multilevel decomposition is antecessor so that we can assign each subband a

specified number of bits per pixels. In future studies, we will implement the BEM

postfiltering algorithm on multilevel wavelet decomposition of images. This will

demonstrate its applications in real-time image and video compression systems.



Chapter 6

Conclusions and suggestions for future research

6.1 Thesis contributions
The focus of this thesis has been on extensions of the Gaussian mixture model to the chal-

lenging tasks of image segmentation and restoration. A salient commonality between

these two tasks is that uncertainty plays a fundamental role. We have developed probabi-

listic models to capture this uncertainty. Natural images are typically nonstationary. Fur-

thermore, the value of an image pixel of interest is strongly correlated with its local

neighbors. These two key assumptions have allowed us to develop robust methods for

segmenting and restoring images. The details of our algorithms were presented in chapters

3,4, and 5. Here we present a summary of our thesis contributions.

6.2 Multiresolution-based Mixture Models: Applications to image seg-
mentation.

In typical applications of the Generalized Gaussian Mixture model to image segmenta-

tion, the standard GMM assumes pixels are i.i.d, which yields segmentations that are sen-

sitive to noise and fails to reflect the contiguous nature of homogenous regions. Based on

this i.i.d assumption, ML estimation of the model parameters via the EM algorithm and

subsequent MAP classification are used to generate segmentation maps of the image field.

In practice, neighboring pixels of natural images are highly correlated. Thus, there is inter-

est in incorporating spatial correlation into a more robust segmentation algorithm. Typical

attempts to incorporate such correlation models into the segmentation process (e.g. MRF

Models) result in computationally taxing optimization problems. Ambroise et al. modified

the EM algorithm to include a neighborhood structure into the likelihood function at a

tractable computational cost. In our research, we extended this work by developing a



novel multiresolution neighborhood penalization term based upon a multiscale quadtree

structure. Using the multiresolution neighborhood, we modified the EM algorithm E-step

such that spatial correlation is incorporated into the estimation of the model parameters, in

particular, the tissue class probabilities. We have shown in simulated images as well as

MR images of the brain that our algorithm allows for accurate segmentations of the image

field. Moreover, in comparative studies, our multiresolution approach was more robust

than the NEM algorithm of Ambroise. By utilizing information at many resolutions, our

algorithm advantageously utilized the information in the coarser resolutions to segment

the prominent features of an image. The information in the coarser resolutions was uti-

lized to make our algorithm insensitive to Gaussian noise in images. Conversely, the NEM

algorithm was shown to be sensitive to Gaussian noise. Furthermore, we utilized the infor-

mation in the finest resolutions to segment fine details in images.

For the examples presented in this thesis, the weightings used for the scale-space

neighborhood were heuristic. The weights were chosen based upon the knowledge of what

the correct segmentation of the image field should be. While the same weights were used

for all the images in this thesis, we believe that a systematic approach to determining the

weights will yield a more robust segmentation algorithm.

Another important extension of this research deals with choosing the best wavelet for

multiresolution analysis. Our research demonstrated that different wavelets yield different

segmentation maps. A possible study can involve the implementation of our MEM algo-

rithm using wavelets of different smoothness. Images tend to differ in the sharpness of

their edges. Many images have sharp "step" edges whereas others have gradual ramp

edges. Accurate segmentation along ramp edges is very challenging. We propose that seg-

mentation along ramp edges can be more accurate by choosing the wavelet with the appro-

priate smoothness.



6.3 BEM Filter
In this study, we developed a windowed model of the image field using the General-

ized Gaussian Mixture model. Using a sliding processing window, we estimated the model

parameters using ML estimation via the EM algorithm. In contrast to existing methods,

our algorithm exploited the local statistics that we estimated in order to detect outliers and

preserving edges and fine details in images.

In future studies, the size of the processing window should be adaptive to the structure

of the image. For example, near edges and areas of fine detail, a smaller window is needed

to preserve these features. However, in homogenous regions, a larger window can be used

to reduce the error variance of the estimate and suppress additive Gaussian and impulsive

noise more effectively.

In compression schemes where uncorrelated quantization noise is responsible for sig-

nificant reduction in subjective image quality, we utilized the a prior statistics of the noise

to restore wavelet-based compressed images. This novel application of the BEM filter was

made possible as a result of the ML parameter estimates that the BEM filter outputs. Arti-

fact reduction in compressed images can perhaps dramatically reduce the bit rates that

images are coded at currently. If an effective post-processing algorithm is used at the

receiver of a communications channel, very-low bit rate wavelet-based image/video cod-

ing can be an attractive alternative to the current JPEG algorithm used in image coding.
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