
Measuring Nanometer, Three-Dimensional

Motions with Light Microscopy

by

Charles Quentin Davis

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1997

© Massachusetts Institute of Technology 1997. All rights reserved.

A uthor .. ' .......................
Department of Electrical Engineering and Computer Science

May 23, 1997

Certified by.

Accepted by.........

Dennis M. Freeman
Assistant Professor of Electrical Engineering

Thesis Supervisor

....... ........ . .·y .. A ur ... . Sm ith.........
Arthur'C. Smith

Chairman, Departmental Committee on Graduate Students

JUL 2 41997 Eng.





Measuring Nanometer, Three-Dimensional Motions with

Light Microscopy
by

Charles Quentin Davis

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 1997, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

Computational motion analysis of images from a light microscope is used to explore
mechanics in the microscopic worlds of cells and man-made micromachines. Images
of a moving target are taken using a strobe light and a CCD camera attached to
a microscope. Temporal sequences of stop-action images are recorded at multiple
planes of focus to characterize three-dimensional motions.

We demonstrate that motion resolution is limited by the motion detection al-
gorithm. The largest source of error in gradient-based and matching algorithms is
statistical bias. We present a new algorithm with errors that are typically smaller
than 0.02 pixels. With this algorithm and our video microscopy system, we can
measure motions of submicrometer targets with nanometer accuracy.

The system has been used to study both hearing structures and man-made micro-
machines. Analysis of electrically-induced motions of a microfabricated accelerometer
and a microfabricated angular velocity sensor allow visualization and quantification
of complex modes of motion that limit the performance of these sensors. Pilot studies
demonstrate that the system can also measure sound-induced motions of the human
stapes, where it can resolve complex modes of motion thought to be important for
loud sounds and for certain middle-ear pathologies. The system has also been used
to measure mechanical deformations in the mouse tectorial membrane, a gelatinous
inner-ear structure that has previously been a difficult target of study.

Our major application has been the study of sound-induced motions of sensory
cells and accessory structures in the ear of a lizard. Our results, while still prelimi-
nary, are the first direct measurements of sound-induced motions of hair bundles and
their overlying tectorial membrane. They indicate that the tectorial membrane does
not move as a rigid body but has significant shear throughout its thickness. There-
fore, the relative motion between the tectorial membrane and the reticular lamina is
not necessarily indicative of hair bundle rotation. Shear through the tectorial mem-
brane has not been previously reported. These results demonstrate that our system
can measure cochlear micromechanical processes that have previously eluded direct
experimental study.

Thesis Supervisor: Dennis M. Freeman
Title: Assistant Professor of Electrical Engineering
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Chapter 1

Introduction

The focus of many scientific disciplines has shifted from the macroscopic to the mi-

croscopic domain. For example, the thrust of biological research has changed from

the organismic to cellular and subcellular levels. Electrical structures are now built

largely from micron-scale transistors. Mechanical structures seem to be following suit

with the development of microelectromechanical systems (MEMS). All of these fields

rely on techniques for measuring physical processes at these microscopic scales. In

this thesis I describe a new technique for quantifying motions of microscopic struc-

tures, and demonstrate example applications in studying the mechanisms of hearing

and the behavior of MEMS.

Measuring motions at these small scales is difficult. The structures themselves are

small. Important mechanical structures in the ear include millimeter-sized bones and

micrometer-sized cellular structures. Features in MEMS devices span the millimeter

to micrometer range. Motions of these structures may be only a fraction of their size

- from nanometers to micrometers. The diminutive size of biological and man-made

micromachines enables them to have large accelerations with small forces and thereby

move at high frequencies. Bats can hear sounds at frequencies exceeding 100 kHz and

some MEMS devices also operate at those frequencies.

We have combined video microscopy, stroboscopic illumination, and computer vi-

sion to measure the three-dimensional motions of these microscopic structures with

nanometer precision. By exploiting stroboscopic illumination and the microscope's



ability to image different structures at different planes of focus, we can obtain a se-

quence of stop-action, three-dimensional images of moving structures. Computer vi-

sion algorithms are then applied to the images to estimate motion. This system, which

we call computer microvision, has many useful features. Since motion is estimated di-

rectly from video images, the structure whose motion is estimated is unambiguous. In

addition, three-dimensional motions of all visible structures can be estimated simulta-

neously. Furthermore, motion measurements are made in a non-contact fashion-the

only part of the measurement apparatus that touches the moving structures is light.

This thesis is organized as follows. Chapter 2, "Computer Microvision," presents

a overview of the computer microvision system. Chapters 3-6 are work done on

motion analysis. Chapters 7-9 highlight the applications of computer microvision.

Chapters 2-5 and 7 are organized as manuscripts to appear in peer-reviewed journals.

Different backgrounds are assumed in each of these chapters, owing to differences in

the audiences reached by the different journals.

Chapter 3, "Equivalence of Subpixel Motion Estimators Based on Optical Flow

and Block Matching," demonstrates the mathematical equivalence of these two broad

classes of motion estimators, and discusses useful insights to be gleaned from each

representation. This paper is in print (Davis et al., 1995). Chapter 4, "Statistics

of Subpixel Registration Algorithms based on Piecewise Linear Interpolators," and

Chapter 5, "Nanometer Registration with Light Microscopy: Characterization of Per-

formance Limitations," present theoretical and technical limitations of the computer

microvision system. Chapter 6, "Image Registration" further analyzes the motion

detection algorithms developed in Chapter 4, and extends those methods for three-

dimensional motions.

Chapter 7, "Using video microscopy to characterize micromechanics of biological

and man-made micromachines," demonstrates two example applications of the com-

puter microvision system. This paper is in print (Freeman and Davis, 1996). Chapter

8, "Direct Observations of Inner-ear Mechanics," includes an extensive description of

the apparatus to measure sound-induced motions results of sound-induced motions,

and work done to assess the viability of the in vitro preparation of the lizard cochlea.



Chapter 9, "Other Applications of Computer Microvision," demonstrates that the

computer microvision system has broad application. Motions of a isolated tectorial

membrane (used to study its mechanical properties), an in situ human stapes (used

to study middle ear mechanics), and a microfabricated gyroscope (used to study its

dynamic properties) are briefly examined.





Chapter 2

Computer Microvision

2.1 Abstract

Computational motion analysis of images from a light microscope provides new op-

portunities to explore mechanics in the microscopic worlds of cells and man-made mi-

cromachines. We have developed a system that can measure motions of submicrom-

eter targets with nanometer accuracy. Motion measurements of a microfabricated

accelerometer demonstrate the system's use as a diagnostic instrument to support

the design and manufacture of microelectromechanical systems. The system has also

been used to observe sound-induced motions of sensory cells and accessory structures

in the intact cochlea. These measurements reveal dynamical relations that may well

contribute to the ear's acute sensitivity to sound.

2.2 Computer microvision

We have combined computer vision with light microscopy to create a system that we

call computer microvision. This system enables us to visualize motions of structures

with micrometer dimensions over times from microseconds to days. Images of a

moving target are taken using a microscope (Zeiss Axioplan, Thornwood, NY) with

a strobe light (Chadwick-Helmuth xenon flashtube, El Monte, CA or an LED) and

a CCD camera (Photometrics 200 series with a Thompson 7883 CCD, Tucson, AZ).



Temporal sequences of stop-action images are recorded at multiple planes of focus to

characterize three-dimensional motions.

The sequences of recorded images can be viewed at playback speeds chosen to

facilitate human interpretation of motion. In addition, quantitative motion estimates

can be obtained directly from the images using algorithms from computer vision

(Horn, 1986). The quantitative motion estimates can also be used to amplify or

suppress specific modes of motion in the images. Viewing the modified images can

reveal modes of motion that are not obvious in the originals.

The computer microvision system can achieve nanometer motion resolution even

though the image resolution is much worse. Image resolution is limited by the optics

(Hopkins and Barham, 1950) to dimensions on the order of the wavelength of light

(550 nm for green light). However, one can detect motions of a blurred image that are

significantly smaller. Fundamental limitations on motion detection are determined

by the contrast of the target, by the resolution and precision of the optics and video

imager, and by the quantum nature of light.

Motion resolution is also limited by the computer vision algorithm. We have

developed algorithms to estimate displacements between two images taken at differ-

ent times. Generally displacements are much smaller than the pixel spacing of the

camera.' We identify regions of interest that contain a single moving structure and

determine the best estimate of rigid-body displacement between successive images in

a least-squares sense (Horn and Weldon, Jr., 1988). For subpixel displacements, this

gradient-based algorithm is equivalent to finding the shift that minimizes the sum

of squared differences between shifted versions of linearly interpolated images (Davis

et al., 1995). Linear interpolation introduces errors that cause a target-dependent

bias in the estimates. This bias is significantly larger than the variability of motion

estimates resulting from quantum nature of light and therefore is the limiting factor

in motion detection accuracy.

To reduce the bias, 2 we shift the second image one pixel in the direction that is

'Larger displacements can be accurately estimated using an iterative "pyramid" procedure (Burt,
1981) which reduces suprapixel motion estimation to subpixel estimation.

2 For simplicity, the bias-reduction method is described for one-dimensional images, but has been



opposite to its estimated displacement, repeat the algorithm to determine a second

estimate. Shifting the second image by one pixel can be done exactly and efficiently,

and the second estimate provides additional information. By dividing the first esti-

mate by the difference between the two estimates, which would be 1 if the algorithm

were unbiased, bias that is directly proportional to the displacement is eliminated.

This bias-reduction technique improves the accuracy of the original algorithm by a

factor of 4-10, depending on the images.

We have tested our system using targets whose motions could also be determined

with an independent method. Our noise floor is typically less than 4 nm - i.e., <1%

of the wavelength of the light that generates the images. The corresponding image

displacement is 1/100 pixel.

2.3 Cochlear micromechanics.

We have applied computer microvision to study the micromechanics of the cochlea3,

a biological micromachine that is sensitive to eardrum displacements as small as 100

picometers (von Bekesy, 1960; Fay and Popper, 1994). Although the cochlea has

been the target of many investigations, the mechanisms underlying its remarkable

sensitivity remain controversial.

Sensory cells in the cochlea are called hair cells and are organized along with

other cells and accessory structures to form a resonant partition in the saline-filled

inner ear. Hair cells are specialized for mechanical-to-electrochemical transduction

by a microscopic bundle of mechanically-sensitive sensory hairs (Hudspeth, 1983;

Hudspeth, 1989), that project into saline and are covered by a gelatinous structure

called the tectorial membrane. Relative motions between hair cells and the overlying

tectorial membrane cause hair bundle rotations that modulate the ionic conductance

of stress-gated ion channels in the hair-cell membrane. The mechanical stress is

believed to be generated by microscopic filaments called tip-links (Pickles and Corey,

extended and implemented for two and three dimensional motions.
3Preliminary results have been described elsewhere (Davis and Freeman, 1995).



1992; Hudspeth and Gillespie, 1994), which connect the tips of adjacent sensory hairs.

We have developed an in vitro preparation for studying the sound-induced mo-

tions of cochlear hair bundles.4 The cochlea of an alligator lizard is mounted in an

experimental chamber so that it can be observed with a microscope while being stim-

ulated by an underwater pressure transducer that simulates physiological stimulation.

Key structures including hair bundles and the tectorial membrane are directly im-

aged to determine relations between the motions of these structures during acoustical

stimulation - relations that have not previously been measured.

Typical results are shown in Figure 2-1. Displacements near the base of this hair

bundle are larger than those near the tip, i.e., the hair bundle is rotating about its

point of attachment to the hair cell. Displacements of the tectorial membrane are

generally smaller than those of either the base or tip of the hair bundle. Furthermore,

as the distance from the base of the hair bundle increases, the motion shows increasing

phase lag. By subtracting the displacement waveform of the tip of the hair bundle

from the base, one can determine that the displacement of the tip of the hair bundle

relative to the base is 0.3 pm peak-to-peak, corresponding to a hair bundle rotation of

30 peak-to-peak. Motions of five other hair bundles in this preparation were analyzed

and the results were qualitatively similar to those shown in Figure 2-1. Motions

orthogonal to the plane of focus were generally smaller (0.1 pm peak-to-peak) than

motions in the plane, and are consistent with in vivo measurements (Peake and Ling,

1980).

These data can also be used to determine displacements of individual sensory

hairs. Stimulation of the cochlea by a sinusoidal pressure generates nearly sinusoidal

motions of all the sensory hairs (Figure 2-2, middle left). To determine if there is

relative motion between the sensory hairs, we applied our motion detection algorithm

to estimate the motion of the right edge of the bundle and shifted the images to

compensate for that motion. The resulting images show relative motions between

sensory hairs (Figure 2-2, bottom left). These results suggest tip-links that connect

4 Surgical procedures are described elsewhere (Freeman et al., 1993). The care and use of animals
have been approved by the Massachusetts Institute of Technology Committee on Animal Care.



Figure 2-1: Sound-induced motions of a hair bundle and overlying tectorial membrane.
The double-headed arrows associate a sequence of images from our system (3 um spacing)
with the corresponding planes of section in the schematic drawing, which shows 6 of the
sensory hairs in the bundle of one cell and the overlying tectorial membrane (gray). Similar
images were obtained at 8 phases of the 513 Hz stimulus. The intensity (115 dB SPL in the
fluid adjacent to the basilar membrane) corresponds to approximately 89 dB SPL at the
eardrum. The leftmost waveforms show displacements in the x direction during one cycle of
the stimulus. The associated numbers are the peak-to-peak magnitude (in pm) and angle
(in degrees) of the fundamental component of the displacement. The rightmost waveforms
show differences between the left waveforms and the bottom left waveform.

the tips of neighboring stereocilia are stretched not only because the distance between

insertion points increases when the sensory hairs are rotated by equal angles, 5 but also

because the sensory hairs separate as they rotate. Motions of individual sensory hairs

have been measured elsewhere (MacDonald and Corey, 1996; Duncan et al., 1995), but
only for hair bundles that were stimulated with a water jet; the membranes through

which natural stimuli are delivered had been removed.

These results are the first direct measurements of sound-induced motions of hair

bundles with their overlying tectorial membrane, and the first measurements of sound-
induced motions of individual stereocilia. From similar measurements we hope to
better understand these micromechanical relations that contribute to the ear's acute
sensitivity to sound.

5If d is the distance between the bases of two parallel sensory hairs (Figure 2-1) whose lengths
differ by A, then the square of the distance between their tips is A2 + d2 + 2dA sin 6 where 9 is theangular rotation from the vertical. Thus, rotations of the hair bundle lead to tip-link stretch.
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Figure 2-2: Motions of sensory
hairs within a bundle. High-
lighted regions of images (right
panel, which is the second lowest
in Figure 2-1) from eight phases of
the stimulus period were stacked,
with regions from earlier phases on
top of regions from later phases.
The resulting montage is repeated
three times (middle left) to il-
lustrate the motions of individual
sensory hairs. The images in the
lower left panel were first shifted

r X IAlign

t
t to cancel the motion of the right

3 jim Dart of the hair bundle.

2.4 Micromechanics of MEMS.

We have applied computer microvision to study the motions of man-made micro-

electromechanical systems (MEMS). 6 These systems can be mass-produced and have

evolved during the past 15 years from scientific curiosities to commercial products,

holding promise to revolutionize the fields of sensor and actuator design.7

Figures 2-3 and 2-4 illustrate results for a microfabricated accelerometer.8 A

shuttle and associated combs are suspended above the substrate via a folded-beam

cantilever spring system. Accelerations of the substrate cause relative motions that

can be sensed as a change in capacitance between the interdigitated teeth of combs

attached to the shuttle and substrate. The shuttle can also be moved by applying an

electrical potential across the interdigitated teeth.

We applied a sinusoidal voltage to the combs and measured the horizontal displace-

ment of the shuttle with our computer microvision system. The resultant frequency

response is well approximated by a second-order, mass-spring system with a resonant

frequency of 8.86 kHz and a quality of tuning of 13.6. The standard deviation of

6 Preliminary results have been described elsewhere (Freeman and Davis, 1996).
7 For example, a micromachined accelerometer (Analog Devices ADXL50, Norwood, MA,

http://www.analog.com) is now used as the sensor for airbag deployment on vehicles made by
General Motors, Honda, and others.

8This accelerometer was fabricated using surface micromachining techniques at MCNC (Research
Triangle Park, NC). See http://www.mcnc.org/memshome.html for fabrication information.
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Figure 2-3: Frequency response of a
microfabricated accelerometer. The
right panel shows a schematic di-
agram of the moving parts of the
accelerometer and the two attach-
ment points to the substrate. The
left panels show the fundamental
component of the shuttle's horizon-
tal displacement as a function of
frequency. At each frequency, 5
trials9 were performed to estimate
the mean and standard deviation
(S.D.). The stimulus was a differen-
tial electrical signal to the two comb
drives (62 ± 2 cos(27rft) volts), with
the voltage referred to the substrate.

repeated measurements is less than 5 nm in magnitude and the signal to noise ratio is

nearly 60 dB at resonance. The standard deviation of repeated phase measurements

is less than 1 degree except when the magnitude is less than 50 nm.

The computer microvision system can also measure motions of the accelerometer

that are orthogonal to the plane of focus. In this device, out-of-plane motions repre-

sent failure modes that limit performance. Figure 2-4 shows that the motion of teeth

on opposing combs are nearly out-of-phase with one another and that the motion

near the center of the shuttle is small. Thus, the shuttle is rocking about a point near

its center. Repeatability of this measurement is within 4 nm in magnitude and a few

degrees in phase.

These results demonstrate the use of computer microvision as a diagnostic in-

strument for MEMS. MEMS are fabricated using VLSI-like methodologies similar to

those used to fabricate electronic devices. Unlike electronics, however, simple meth-

ods for testing and characterizing internal failure modes of micromechanical devices

do not exist. This limitation has important consequences for designers and fabrica-

tors of MEMS. For the designer, it can result in large numbers of costly prototypes.

9Images at 8 evenly-spaced phases of the sinusoidal stimulus were taken. The computer vision
algorithm was used to estimate the displacement between successive images to reconstruct the time
waveform, from which the magnitude and angle were computed.



Figure 2-4: Out-of-plane motions of a mi-
crofabricated accelerometer. The top im-
age shows three regions of interest on the
accelerometer: a moving tooth on the left
and right comb drives and the center por-
tion of the shuttle. The bottom panels
shows estimates of the out-of-plane displace-
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For the fabricator, yields are reduced because common techniques such as laser trim-

ming cannot be applied. Diagnostic instruments based on computer microvision hold

promise to facilitate the design and manufacture of MEMS in the same way that

signal analyzers facilitate the design and manufacture of electronics.

2.5 Comparison to other methods.

During the past decade, there has been enormous progress in the development of

scanned-probe microscopy techniques (e.g., Wickramasinghe, 1991) that (1) do not

require special preparations to view the target and (2) have at least an order of

magnitude better resolution than widefield optical microscopy. One could imagine

that an increase in image resolution would increase motion resolution (e.g., Weiss

et al., 1993), making a computer microvision built around a scanned-probe technique

superior to a system built around a widefield optical microscope as was done here.

Unfortunately, scanned-probe techniques have other limitations that preclude

their use in hearing: (1) they have extremely small working distances (< 10 nm)

and (2) they only measure surface structures. In Figure 2-1 we examined motions

that were 15,000 nm below the surface of the cochlea. These limitations also pre-

clude the use of scanned-probe microscopy in many MEMS applications. However, a

computer microvision system built around a scanned-probe microscopy could dramat-

ically increase both image and motion resolution for the class of MEMS applications

y



with a single moving surface, such as the accelerometer in Figure 2-3.

Computer microvision offers a number of advantages over other motion measure-

ment systems for either biological and man-made micromachines. For example, the

target whose motion is being measured is unambiguous in computer microvision, be-

cause the motions are determined directly from video images. This contrasts with

other motion measurement systems (e.g., utilizing a capacitive probe, the Mdssbauer

effect, laser interferometry) in which the target must be inferred from observations

using a separate imaging system.

Unlike other methods that estimate one component of the motion of one target

point (e.g., utilizing a capacitive probe, the M6ssbauer effect, laser interferometry),

computer microvision allows one to estimate the 3D displacement vectors. The cost

of this flexibility is the time required to digitize and store all of the images that are

needed. A typical data set consists of 104 images (13 planes times 8 phases) each

with 576 x 382 pixels. The total data collection time is typically 5 minutes. This

amount of time is large compared to the time needed to determine the motion of a

single structure using other measurement methods. However, from the resulting 104

images, one can estimate the 3D displacement waveform for every resolvable structure

in the field of view. Thus the total measurement time is in fact extraordinarily short

compared to the time it would take to make motion measurements of each structure

using another method.

Another advantage of determining motions directly from video images is that these

same images can be viewed by humans. Such viewing provides important checks

that the quantitative results make sense. After determining the motions of an image

sequence using computer microvision, we routinely shift each image to compensate for

the motion. The resulting sequence of shifted images should appear to be stationary.

Deviations are readily detected, and such deviations have often uncovered complex

modes of motions that were not readily apparent from the quantitative results. This

occurred, for example, when we first analyzed the hair bundle motions in Figure 2-1.

Shifting the images by the displacements obtained using computer microvision did

not stabilize the image as we had anticipated. Rather, it revealed motions between



the sensory hairs (Figure 2-2) that could have gone undetected using other motion

measurement systems.



Chapter 3

Equivalence of Subpixel Motion

Estimators Based on Optical Flow

and Block Matching1

3.1 Abstract

We compare two classes of algorithms for estimating subpixel, rigid-body translation

between two images. One class is based on optical flow. Optical flow algorithms deter-

mine translations between images from estimates of spatial and temporal derivatives

of brightness. The other class is based on block matching. Block matching algorithms

determine translations between images by minimizing the difference between shifted

(warped) versions of the original images.

We show that these two classes of algorithms are equivalent for subpixel displace-

ments. Specifically, we show that all block matching algorithms that use bilinear

interpolation can be recast into equivalent optical flow formulations, and that all al-

gorithms based on optical flow using first-order derivative estimators can be recast

into equivalent block matching formulations.

'This chapter is reprinted with permission from Davis et al. (1995).
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Figure 3-1: Block matching. Translation is determined by comparing shifted (warped)
versions of the original images and choosing the shift that gives the closest match.
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3.3 Introduction

This study was motivated by our work in hearing. We use a strobe light, microscope,

and CCD camera to take stop-action images of sound-induced motions of inner-ear

structures. Our video images result from orthographic projection of objects in the

microscope's focal plane. Thus rigid-body translations of inner ear structures result in

rigid-body translations of the image. Even after magnification by a light microscope,

sound-induced motions are much smaller than the pixel spacing of a modern video

camera. Thus, we are interested in algorithms for estimating subpixel, rigid-body

displacements between images.

Two popular classes of rigid-body motion estimation algorithms are optical flow

(Horn and Schunck, 1981; Aggarwal and Nandhakumar, 1988) and block matching

(Netravali and Haskell, 1988), both of which have been applied to estimate subpixel

displacements (Tian and Huhns, 1986; Giorda and Racciu, 1975). As shown in Fig-

ures 3-1 and 3-2, the ideas behind these two families of algorithms appear to be

completely different. After more carefully defining these families of algorithms, we

show by example how to convert an algorithm in one family into an equivalent algo-

rithm in the other. We then show that the conversion process is general. Thus, these

families of algorithms are equivalent for subpixel displacements.



Figure 3-2: Optical flow. Temporal and spatial gradients of brightness are used to estimate
translation in a single pass.

3.4 Definitions
3.4.1 Optical flow

Motion estimators based on optical flow share the constant brightness assumption

(Horn and Schunck, 1981), which states that the brightness E of an image remains

constant with time:

E(x, y, t) = E(x + Xd, y + yd, t + td)

where x and y represent spatial coordinates and t represents time. The right hand side

of the equation can be written as Taylor's series expanded about the point (x, y, t).

Then, after eliminating E(x, y, t) from both sides, the constant brightness equation

can be written as

0= OE(x, y, t) OE(x, y, t) d E(x, y, t)0= Zd +  Yd + td + "'"az ay at
where the ellipses represent higher order terms. We can simplify this equation by

using the camera's frame time as our unit of time so that td = 1 frame. Then

Exxd + Eyyd + Et + - = 0 (3.1)

where E,, E,, and Et represent the partial derivatives of the brightness function E.

Equation 3.1 can be made discrete by changing the functions with continuous

domain to functions with discrete domain (Horn and Schunck, 1981). Let G(i, j, k)

represent the gray (brightness) value from the camera, where i and j are the pixel

coordinates and k is the picture number. The transformation from E to G is generally



nontrivial, and details are given elsewhere (Janesick et al., 1987). For simplicity (and

without lack of generality) we choose our coordinate system so that G(i, j, k) =

E(i, j, k) for all i, j, k.

The discrete form of Equation 3.1 can be written as

Gxd + Gyd + Gt +--- = 0 (3.2)

where Gx, G,, and Gt are linear combinations of images and their integer shifts that

approximate the partial derivatives of the brightness function E. For example, if

first-order backward differences are used to approximate the spatial derivatives then

Gx(i, j, k) = G(i, j, k) -G(i- 1, j, k), where we assume that space is measured in units

of pixels. Throughout this paper, we consider only the case of rigid body translation.

For this case, the displacements Xd and yd are constants. Thus Equation 3.2 represents

a system of equations-one equation for each cluster of pixels for which Gx, G,, and Gt

can be calculated-with just two unknowns, Xd and Yd. This generally overdetermined

system of equations can be solved in the least squares sense by choosing ý and ý

equal to the values of Xd and yd that minimize the sum of the squares of the left-hand

side of Equation 3.2:

(E, ) arg min (Gx'd + Gyy' + Gt + )2(3.3)

where the sum is over all relevant clusters of pixels.

3.4.2 Block matching

Motion estimates based on block matching are based on the assumption that two

consecutive images E(x, y, 0) and E(x, y, 1) are related by a simple shift

E(x, y, 1) = E(x - Xd, y - Yd, 0).



The displacements xd and Yd are estimated by minimizing a measure of the magnitude

of the difference between shifted versions of the two images,

arg min E(i + xl,j + yi,1) - E(i + xo,j + 0, ) (3.4)
/I V ij

XdYdd

where x' = 1 - xo and yd = Yl - yo. The discrete form of this equation is simple

when the trial displacements x& and y' are integer multiples of the pixel spacing.

Then we can take x0o = Yo = 0 and express the minimization in terms of the discrete

brightness values G(i, j, k),

(i) =

arg min •G(i + x'd, + y, 1)-G(i,)j,0) .

X' ,yd'E{O,±-,--*} ij

However, we are interested in applications in which the displacements Xd and Yd are

subpixel. Thus to apply block matching, we must specify an interpolating function

F(x, y, k) to estimate the brightness between points sampled by the camera. One

common interpolating function is the bilinear interpolator (Parker et al., 1983; Girod,

1993), in which E(x + Zx, y + y', k) is approximated by

F(i + x', j + y', k) = (1 - xZ)(1 - y')G(i, j, k)+

x'(1 - y')G(i + 1,j, jk)+ (1 - x')ydG(i,j + 1, k)+

zX'ydG(i + 1, j + 1, k) (3.5)

where we have assumed 0 < x' < 1 and 0 < y' < 1.



3.5 Examples

In this section, we show that several common implementations of block matching

have equivalent optical flow realizations. The first three are one dimensional; the last

is two dimensional.

3.5.1 Example 1

Consider a block matching algorithm in which the displacement Xd is determined by

minimizing the sum of the squared differences between the first image and a shifted

(warped) second image:

zd = arg min (E(i + x', 1) - E(i, 0)) 2

After computing the shifts with linear interpolation (Equation 3.5) the minimization

problem becomes

Xd

arg min ((1 - x•)G(i, 1) + xzG(i + 1, 1) - G(i, 0))2

arg min (Gt + Gzx') 2  (3.6)

for 0 < xO < 1, where

Gx = G(i + 1, 1) - G(i, 1) (3.7)

Gt = G(i, 1) - G(i, O).

Notice that the form of Equation 3.6 is identical to that of Equation 3.3. It follows that

the block matching technique of warping the second image to match the first using

linear interpolation is equivalent to an optical flow method in which derivatives are

approximated by first differences given in Equations 3.7 and illustrated in Figure 3-3.
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Figure 3-3: Derivative estimators for Example 1. The left panel illustrates the spatial
derivative estimator, a forward difference operator that is applied to the image at time
k = 1. The right panel illustrates the temporal derivative estimator, a forward difference
operator that is applied to pixel i in the two images.

3.5.2 Example 2

Consider a block matching algorithm in which the displacement Xd is determined

by minimizing the sum of the squared differences between two images, each shifted

halfway:

Yd = arg min (E(i + , 1) - E(i - , 0)) 2

After using linear interpolation (Equation 3.5), the minimization problem becomes

d = arg min [(1 - )G(i, 1) + G(i + 1, 1)

- ((1 - )G(i, 0) + LG(i - 1, 0))2

= arg min E (Gt + Gx')2  (3.8)

for 0 < x' < 2, where

G= l[G(i + 1, 1) - G(i, 1) + G(i, 0) - G(i - 1,0)]

Gt = G(i, 1) - G(i, 0). (3.9)

As in the previous example, the form of Equation 3.8 is identical to that of Equa-

tion 3.3. It follows that this block matching technique is also equivalent to an optical

flow method. However, the derivative estimators, which are illustrated in Figure 3-4

are different from those for Example 1 (Figure 3-3).
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Figure 3-4: Derivative estimators for Example 2. The + and - symbols represent +1 and
-1; therefore the right panel represents Gt and the left represents 2G,.

3.5.3 Example 3

Here we estimate the displacement Xd by minimizing the sum of the squares of a more

complicated function:

xd= arg minE (E(i
1
2

1) - E(i + - ,0))2

After using linear interpolation (Equation 3.5), the minimization problem becomes

•i = arg min C 1[(1 - Xd)G(i, 1) + (1 + x~d')G(i + 1, 1)

-((1 + x')G(i, 0) + (1 - x')G(i + 1, 0)) 2

=arg minE (Gt + G+ x' )2

for -1 < xZ' 1, where

GX = (G(i + 1, 1) - G(i, 1) + G(i + 1, 0) - G(i, 0))

G= (G(i, 1) - G(i, 0) + G(i + 1, 1) - G(i + 1, 0)).

These derivative estimators, which are illustrated in Figure 3-5 are the one-

dimensional versions of Horn and Schunck's (1981) derivatives for optical flow. Con-

sequently, the standard optical flow technique is equivalent to the block matching

algorithm described in this section.
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Figure 3-5: Derivative estimators for Example 3.

3.5.4 Example 4

Consider the following two-dimensional example.

(yd-, ) = arg min E (E(i + ,J +  + - , 1)

1d  1 y' )

-E(i +- , + d0))
2 2 2 2

After using bilinear interpolation (Equation 3.5), the minimization problem is

(Y-d, Vd) = arg min E 1((1 - 2)(1 - y))G(i, j, 1)
X/dIYd 

i'j

+(1 + zx)(1 - y')G(i + 1,j, 1) + (1 - x2)(1 + y)G(i,j + 1, 1)

+(1 + x')(1 + y)G(i + 1,j + 1, 1) - (1 + x')(1 + yd)G(i,j, 0)

-(1 - x')(1 + y')G(i + 1,j, 0) - (1+ x)(1 - yd)G(i,j + 1,0)

-(1 - x)(1 -y'd)G(i + 1,j + 1, 0))

- arg min A (Gt + Gx'd + GYd + Gc'y')2

for -1 < xz, y• _ 1. G,, G,, G, and Gt are illustrated in Figure 3-6. G,, G,, and

Gt are estimators for gradients in x, y, and t respectively, and are equivalent to the

derivative estimators of Horn and Schunck (1981). G,, which results from x'y' terms

in the bilinear interpolation (Equation 3.5), represents a cross-derivative term that is

not typically included in optical flow formulations.
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Figure 3-6: Derivative estimators for Example 4. Gx, Gy, and Gt are equivalent to the
derivative estimators of Horn and Schunck(Horn and Schunck, 1981). Gc represents a
cross-derivative term that is not typically included in optical flow formulations.

3.6 Equivalence

In the previous section, we showed examples of equivalent block matching and optical

flow algorithms for estimating subpixel motions. In this section, we show that the

equivalence is general.

Theorem 1 All two-dimensional, block-matching algorithms that use bilinear inter-

polation and a mean-square error measure can be cast into an equivalent optical-flow

representation containing both first-order and cross-derivative estimators.

Proof: Substitute the bilinear approximations given in Equation 3.5 into Equation 3.4,

replace xl with xo + x' and yl with yo + y', and set q = 2. The resulting equation

can be re-written as

(x, ~i) = arg min (a + ix' + 7yd• +' + dy)2

where neither a, /, 7, nor 6 depend on x' or yd. Setting Gt = a, Gx = 3, G, = 7, and

GC = 6 completes the proof.

Theorem 2 All two-dimensional, optical-flow algorithms using only first-order

derivative estimators and the first-order cross-term can be cast into equivalent block-

matching algorithms.

Proof: We prove this theorem by constructing an interpolating function F that

when substituted into Equation 3.4 with q = 2 gives rise to the same minimization



problem that was given in Equation 3.3. This construction is not unique; we give

two possible constructions below.

Construction 1: Separate the terms in Equation 3.3 that depend on first image from

those that depend on the second image by defining

G'(i, j) = 2Gx(i, j, 1) G (i, j) = 2Gx(i, j, 0)Ga(i,j) = 2G (i,j,1) Go (i,j) = 2GY (i,j, O)

GI(i,j) = 4Gc(i,j, 1) G°(i,j) = -4Gc(i,j, 0)
G(i, j) = Gt(i, j, 1) G(i,j) = -Gt(i,j, O).

Substitute GX = (G1 + Ga)/2 G c = (G1 - G)/4

G = (G1 + Go)/ 2  Gt = GI - Go

into Equation 3.3. Equation 3.3 is now equivalent to Equation 3.4 with q = 2 if

E(x + xl, y + yi, 1) and E(x + xo, y + yo, 0) are approximated using the following

interpolating functions:

F(i + xl,j + yl, 1) = G~x + Gy + G 1zy + G

F(i + xo, j + yo+ 0) = GOx) + GOyO + GOxoyo + Go

where xl = 'd/2 = -zo and Yi = yd/2 = -Yo. These interpolation equations (and

therefore the constructed block matching algorithm) are valid for 0 < x', y' < 2.



Construction 2: Separate the terms in Equation 3.3 that depend on first image from

those that depend on the second image by defining

G (i,j)= 2Gx(i, j, 1) - 2Gc(i,j, 1)

G1(i, j)= 2G,(i,j, 1) - 2G(i, j, 1)

G1 (i, j)=- 4G(i, j, 1)

G (i, j) = Gt (i, j, 1) - Gx(i, j, 1) - Gy (i, j, 1) +Gc(i1)
G°(i, j) = 2Gx(i, j, 0) + 2Gc(i, j, 0)
GO(i, j) = 2Gy(i, j, 0) + 2Gc(i, j, 0)

G°(i, j) = -4Gc(i, j, 0)

G°(i, j) = -Gt(i, j, 0) -Gx(i, j, 0) -Gy(i, j, 0) -Gc(i, j, 0).

Substitute
GX = (G1 + Go)/2 + (G1 + G°)/4

G (G + (G+G)/2 + (G+ G)/4

Go = (G1 - G°)/4
Gt G=G-G )+(G/-G)/2+(G~ -Go)/2+(G4-GO)/4

into Equation 3.3. Equation 3.3 is now equivalent to Equation 3.4 with q = 2 if

E(x + xz, y + yl, 1) and E(x + xo, y + yo, 0) are approximated using the following

interpolating functions:

F(i + xl,j + yl, 1) = G~xj + Gyl, + Gxj+yl + +G

F(i + o, j + o, O) = Gzo+Gyo + Gxoyo + +G

where x1 = (1 + X•)/2, x0 = (1 - x')/2, yl = (1 + yd)/ 2 , and yo = (1 - yd)/2. These

interpolation equations (and therefore the constructed block matching algorithm) are

valid for -1 < x', Y < 1.

3.6.1 Example 2, revisited

In Example 2 we showed that a block matching algorithm in which linear interpola-

tion is used to shift each of two images by the same amount in opposite directions is
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Figure 3-7: Interpolating functions for Example 2. The dots in each panel illustrate bright-
ness G(i, k) as a function of pixel i. The top row shows brightnesses at time index k = 1; the
bottom row, at time index k = 0. The left column shows the linear interpolating function F
upon which Equation 3.8 is based. The center column shows the interpolating function F1
resulting from Construction 1 (Equation 3.10). The right column shows the interpolating
function F2 resulting from Construction 2 (Equation 3.11).

equivalent to an optical flow algorithm with the derivative estimators shown in Fig-

ure 3-4. In this section, we start with that optical flow algorithm and use Theorem 2

to generate two equivalent block matching algorithms.

Applying Construction 1 to Equation 3.9 yields the interpolation equations

F(i + /2, 1) (i + /2, 1) = (G(i + 1, 1) - G(i, 1))x/2 + G(i, 1)

Fi(i - x'd/2, 0) = (G(i - 1, 0) - G(i, 0))x'd/2 + G(i, 0). (3.10)

Alternatively, we could apply Construction 2 to obtain

F2(i + 1/2 + x'd/2, 1) = (G(i + 1, 1) - G(i, 1))xl/2 + G(i, 1)

F2 (i + 1/2 - x'/2, 0) = (G(i - 1, 0) - G(i, 0))x'/2 + G(i, 0). (3.11)

These interpolators are illustrated in Figure 3-7 along with the original linear inter-

polating function upon which Equation 3.8 was based. In this example, Construction

1 leads to the same linear interpolating function that was used to formulate the ex-

ample. However Construction 2 leads to an unusual interpolating function: F2 is in

fact a shifted version of of F1.
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Figure 3-8: Interpolating functions for Example 1. The panels are analogous to those in
Figure 3-7.

3.6.2 Example 1, revisited

We now apply the constructions to the optical flow algorithm developed in Example

1. The derivative estimators are shown in Figure 3-3, and application of Construction

1 to Equation 3.7 yields the interpolation equations

F (i + xzd/2, 1) = 2(G(i + 1, 1) - G(i, 1))x' /2 + G(i, 1)

Fi (i - x'd/2, 0) = G(i, 0).

Alternatively, we could apply Construction 2 to obtain

F2(i + 1/2 + x d/2, 1) = 2(G(i + 1, 1) - G(i, 1))x'd/2 + G(i, 1)

F2 (i + 1/2 - x'd/2, 0) = G(i, 0).

These interpolators are illustrated in Figure 3-8 along with the original linear inter-

polating function upon which Equation 3.6 was based. As in the previous example,

the two constructions lead to interpolating functions that are related by a shift of one

half the pixel spacing. However, in this example, neither construction leads to the

original linear interpolating function.



3.7 Extensions and limitations

3.7.1 Other measures of image difference

The block matching algorithms we have considered compare shifted images in a

magnitude-squared sense (i.e., q = 2 in Equation 3.4). However other types of com-

parisons, such as mean absolute difference (Gharavi and Mills, 1990; Komarek and

Pirsch, 1989), are often used. These other methods also produce an equivalent optical

flow algorithm by modifying the exponent in Equation 3.3.

3.7.2 Other interpolators

Block matching algorithms based on higher order interpolators (Parker et al., 1983),

such as bicubic splines, have equivalent optical flow algorithms which incorporate

higher order derivative estimators.

3.7.3 Relaxing the rigid body constraint

One method (Bergen et al., 1992) for estimating non-rigid body motion is to (1) par-

tition the images into subregions, (2) estimate "local" motions within the subregions

using a rigid body assumption, and (3) combine the local estimates to form a "global"

motion estimate that is not a simple translation. Our results still apply for the "local"

estimates in such a formulation.

3.7.4 Equivalence using only first-order optical flow

Theorem 1 generally produces an optical flow algorithm with a cross term. There-

fore it is not generally possible to cast an arbitrary block matching algorithm into

the strictly first-order optical flow framework used by Horn and Schunck (Horn and

Schunck, 1981). However, block matching based on linear (not bilinear) interpolation

will always fall into Horn and Schunck's first-order optical flow framework.



3.7.5 Casting into block matching with bilinear interpolation

The interpolators for the block matching algorithms produced by the Constructions

for Theorem 2 are in general not bilinear. However, our four examples can indeed

be placed into a bilinear interpolation block matching framework since the derivative

estimators at each time are at most two pixels wide. It is easy to show that wider

derivative estimators cannot be cast into a block matching algorithm that uses bilinear

interpolation.

3.8 Discussion

Block matching and optical flow algorithms appear to be completely different (Fig-

ures 3-1 and 3-2), and the accuracy of subpixel estimates based on the two methods

have been reported to be different (Tian and Huhns, 1986). However, we have shown

that if you choose corresponding algorithms from the two families, the estimators are

identical.

We suspect that there is a very basic reason for this equivalence. Both algorithms

must base subpixel estimates on an interpolation approximation to sample points in

the discrete image. As long as the order of approximation used by block match-

ing (e.g., bilinear interpolation) is equal to that used by optical flow, (e.g., through

the bilinear term in the Taylor's series) it is not surprising that the two families of

algorithms are equivalent.

Since block matching and optical flow methods generate numerically equivalent

estimates for subpixel displacements, other features may suggest choosing one over the

other. For example, the implementation of the optical flow algorithm may require

significantly fewer operations than an "equivalent" block matching algorithm. On

the other hand, block matching will tend to have better performance in terms of

estimation accuracy over suprapixel displacements.
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Chapter 4

Statistics of Subpixel Registration

Algorithms Based on Piecewise

Linear Interpolators

4.1 Abstract

Analysis of subpixel registration algorithms based on piecewise linear interpolators

(e.g., spatio-temporal gradients or block-matching) shows that registration errors con-

tain not only a random component from noise in the images but also a systematic bias

component. The bias component is present even if the images are noise-free and its

magnitude exceeds that of the random component for almost all imaging conditions.

Bias depends on both image content and on the displacement between the images.

For small displacements, bias increases nearly linearly with displacement. Based on

this observation, we have developed a closed-form method to reduce the bias by ap-

proximately a factor of four. This improvement is large compared to the improvement

that can be obtained using averaging and/or temporal oversampling.



4.2 Keywords

registration, subpixel, statistics, bias, piecewise linear interpolation

4.3 Introduction

In this paper, we examine statistical properties of registration algorithms based on

first-order spatio-temporal gradients (Horn and Schunck, 1981; Horn and Weldon,

Jr., 1988; Horn, 1986; Tian and Huhns, 1986; Aggarwal and Nandhakumar, 1988).

Unlike edge detection methods (Hachincha and Simon, 1988) or point-correspondence

methods (Roach and Aggarwal, 1980; Weng et al., 1993), algorithms based on spatio-

temporal gradients can be used to register arbitrary images: no prior knowledge of

the target is necessary. Furthermore, these algorithms take advantage of information

from all parts of the image (rather than just at edges or other features), which is

particularly important for the registration of noisy images. For subpixel registration,

these gradient-based algorithms are equivalent (Davis et al., 1995) to finding the shift

that minimizes the sum of squared differences between shifted versions of linearly

interpolated images (Netravali and Haskell, 1988; Giorda and Racciu, 1975). Thus

results in this paper apply equally to block-matching algorithms that use piecewise-

linear interpolation to achieve subpixel accuracy.

We show that registration errors consist of a random component that results from

image noise and a generally much larger systematic bias component that is intrinsic

to the registration algorithm. We show that bias results from systematic errors in

using a first-order Taylor's expansion of the image as a function of displacement.

Using a first-order Taylor's expansion of the registration estimate as a function of

displacement, we develop a closed-form method of reducing bias. When the new

algorithm is applied to video images from a light microscope, registration errors are

typically less than 1/200 pixel, without averaging.

These results have potential applications in diverse registration tasks, ranging

from lithographic mask alignment (Douglas, 1993) to satellite imagery (Pritt, 1994).



We have also applied these methods to analyze motions with nanometer precision.

Stroboscopic illumination is used to obtain a sequence of stop-action video images,

and the displacements between successive images are determined. Results have pro-

vided the first direct measurements of sound-induced motions of sensory receptor cells

and their overlying tectorial membrane in the inner ear (Davis and Freeman, 1995).

Similar techniques have also been used to measure motions of man-made microelec-

tromechanical systems (MEMS) (Freeman and Davis, 1996) and could provide the

basis for a "motion probe-station" for design and fabrication of MEMS.

In this paper, we present the registration algorithm based on first-order spatio-

temporal gradients and derive our bias-reducing method. We derive closed-form ex-

pressions for the performance of these two algorithms for a family of sinusoidal images.

We show computer simulations for four different images, and characterize the effect

of imaging noise on registration estimates. In the companion paper (Davis and Free-

man, 1997a), we demonstrate that our simulations are realistic by measuring the

motion of a calibrated displacement source with nanometer accuracy.

4.4 Registration algorithms

We consider two registration algorithms. The first is gradient based (Horn and

Schunck, 1981; Horn and Weldon, Jr., 1988). The second compensates for bias in

the first by repeated (four times) application of the first.

4.4.1 Gradient-based algorithm

Let A(x, y) and B(x, y) represent misaligned images of the same target. We assume

that the misalignment is purely translational, so that

d d d d
A(x - - dY- ) = B(x + ,5Y + )

2 2 2 2

where (di, dy) represents the displacement between the two images. If the displace-

ment is small, we can expand the offset images in Taylor's series and retain just the



linear terms so that

d, aA d, dA dd OB d, OBA(x, y) dA B(x, y)+ + d . (4.1)
2 0x 2 ay 2 8x 2 (y

The images A(x, y) and B(x, y) are sampled by the camera to give arrays of pixel

values A[i, j] and B[i, j]. We approximate the images and their partial derivatives at

points midway between pixels. For example, A ((i + )A, (j + A) is approximated

by A[i, j] where

A[i, j] = (A[i, j] + A[i+l,j] + A[i,j+l] + A[i+1,j+1])/4

and A represents the pixel spacing. The partial derivatives &A/Ox and &A/&x at

((i + !)A, (j + !)A) are approximated by

qx[i, j] = (A[i+1,j] - A[i,j] + A[i+1,j+1] - A[i,j+1])/2A (4.2)
y[i, j] = (A[i, j+1] - A[i, j] + A[i+1, j+1] - A[i+1,j])/2A.

Substituting these approximations into the Taylor's expansion yields

A[i,j] - H[i,j] = dx(Ax[i,j] + Bx[i,j])/2

+dy(Ay[i,j] + By [i,j])/2

which can be regarded as an array i, j of equations with two unknowns, dx and dy.

Because data from a camera are corrupted by noise, the constraint equations are

generally inconsistent. Such equations can be solved using least squares (Horn and

Weldon, Jr., 1988), and the solution can be expressed in closed form:

_ [zz ,-1 1
dx GxGx ZE GEG,] [ GGt(43)

dE E GGy ZEE GyGyJ EGE GtJ



where the sums are over i and j and

Gx[i,j] = (Aq[i,j] +7x[i,j]) /2
GY[i,j] = (A[i, j] + By[i, j])/2 (4.4)

Gt[i, j] = B[i, j] - A[i, j].

Hereafter, we refer to these equations as the "gradient-based algorithm" and (dl, dy)

as the "gradient-based estimate" of displacement.

4.4.2 Linear bias compensation

Gradient-based estimates have systematic errors (Section 4.6). The relation between

gradient-based estimates (d., d.) and the unknown displacement (dx, dy) can be

approximated by a simple linear model,

dx = aidx + 3id, (45)

d, = a2dx + ± 2dy

that can be used to predict dx and dy from the biased estimates if the four param-

eters al, a2, P1, and /2 were known. We have developed a method to estimate

those parameters directly from the two images being registered. The method exploits

integer-pixel shifts of the images, which are computationally simple and introduce no

shifting errors. First, we apply the gradient-based algorithm to determine an esti-

mate (dx, dy) of the displacement between the first and second images. Then we use

dx and dy to define three additional registration problems: (1) If d, > 0 let s, = +1,

otherwise let s, = -1. Shift the first image sx pixels in the +x direction and use the

gradient-based algorithm to make a second estimate (dx, dv), which will satisfy

dx = al (dx - sx) + (4.6)(4.6)dxy a2(dx - Sx) + 02dy*



(2) Analogously, use dy to define a shift s, in the +y direction and use the gradient-

based algorithm to make a third estimate (d , dY) satisfying

d. = aidx + l1(d, - s,) (4.7)
d = a 2dx + 2(dy - sy)

(3) Apply the gradient-based algorithm after shifting the first image sx in the +x

direction and sy in the +y direction to obtain

d -
y = a,(d - s) + (dy - s) (4.8)

dxy = a2(dx - sx) + 2(dy - Sy).

If the original motion was subpixel, then (ignoring errors due to noise) all three of

the additional problems involve estimating subpixel motions.

Equations 4.5-4.8 represent eight equations with six unknowns: four unknown

model parameters, al, a2, 31, and 02; and two unknown displacements, dx and dy.

Taking pairwise differences (i.e., Equations 4.5 - Equations 4.6 then Equations 4.5

- Equations 4.7 then Equations 4.5 - Equations 4.8) it follows that

dx = dx + sxal = dAx + s8y1 = dxxy + sxal + syl

d4 = dd + Sxa2 = dd + Sy 2 = + sxa2 + sy 32.

Any three of the four registration problems can be used to determine the model

parameters as well as the displacements dx and dy. We use the three with the smallest

displacement magnitude, i.e., (dx)2 + (y)2, (dx 2 + (x) 2 (dY 2  , (dy ), and (d~) 2 +

(dy)2 . We refer to estimates dx and d, based on this algorithm as estimates with

"linear bias compensation"

4.5 Methods

The subpixel registration algorithms were tested by applying them to estimate the

displacements between a test image and a computer-generated shift of the same image.



Computer-generated noise processes were applied to each image to simulate the effects

of imaging noise.

4.5.1 Images

We analyzed registration performance for pairs of four test images, and a family of

sinusoidal images. The first pair was a small dark spot on a bright background, which

was implemented as a radially-symmetric raised-cosine function (Hanning window),

E0 (1 - 1+cos2rri/5) for Jr = (iA -C) 2 + (jA - C) 2 < 2.5

Eo otherwise

B[i, j] Eo(1 1cos2r2/5 for J2 = (iA - cX - dx) 2 + (jA - c - dy) 2 < 2.5

Eo otherwise

where r represents the distance from the center of the simulated bead (cx, cy) to the

image point [i, j] and (dx, dy) is the displacement of the scene between the images.

This "simulated bead" image is easily parameterized, and therefore results obtained

with this image are easily reproduced. To avoid artifacts that could result if the

simulated beads were always aligned with the pixel grid, the bead's center point in

the first image is chosen randomly within the central 14 x 14 pixel portion of the

simulated image. The center point need not fall on pixel centers and is represented

in floating-point. The center point for the second simulated bead is offset from that

of the first by the desired test shift. To characterize the effect of signal energy on

registration, tests are also done using images with multiple simulated beads. For

the first image in each pair, seven beads are placed randomly in the central 14 x 14

pixel portion of the image, subject to the constraint that none of the beads touch one

another. For the second image, each center is shifted by the same test displacement.

The signal energy in these pictures is 7 times or 8.5 dB greater than that in the single

bead images.

The second and third image pairs are representative of our application of subpixel

registration to determining motions of sensory receptor cells in the inner ear and of



microelectromechanical systems (MEMS) using video microscopy. The fourth image

pair is a synthetic aperture radar (SAR) image of the Galapagos Islands, taken on

board the space shuttle.1 Shifts between measured images were simulated by (1)

computing the 256 x 256-point Fourier transform of the original 256 x 256 pixel image;

(2) multiplying by the pure-phase transfer function

H(kX, ky) = ej 27(x dk
-

+ ydk y)/ 256

where Xd and Yd represent the desired displacements in the x and y directions respec-

tively; (3) inverse transforming the product; and (4) cropping the resulting image

to be 32x32 pixels. Cropping the large FFT reduced the Gibbs effects created by

discontinuities at the image's boundary.

The family of sinusoidal image pairs is

A[i, j] = Eo + El cos i (4.9)

B[i, j] = Eo + El cos Q(i - dx)

where dx is the displacement of the scene in the second image with respect to the

first, Q is the spatial frequency of the sinusoids, and Eo 2 E1 since the brightness

cannot be negative.

4.5.2 Simulated noises

All simulated images include simulations of fixed-pattern noise, shot noise, and quan-

tization errors in the A/D converter. Each original image and shifted image is repre-

sented by an array of high-precision floating-point numbers that represent the average

number of electrons for each pixel (not necessarily an integer) in the absence of fixed-

pattern or shot noise. Fixed-pattern noise is simulated by multiplying the pixel values

by random gain factors taken from a Gaussian distribution (Press et al., 1992). The

mean of the distribution is set to one and the standard deviation is used as a pa-

IImage (P-43899) courtesy of the Jet Propulsion Laboratory, Pasadena, CA.

http://www.jpl.nasa.gov/archive/mpe2.html.



rameter to control the amount of fixed-pattern noise. Shot noise is simulated using

a Poisson pseudo-random number generator (Press et al., 1992) at each pixel, con-

verting the average number of electrons to an integer that represents the number of

electrons in one randomly chosen instance. The number of electrons is then divided

by 46.1 - the average number of electrons required to increment the A/D output

by one (Photometrics, 1993) - and truncated to obtain an integer representing the

output of the A/D.

Simulations with different fixed-pattern noise levels are accomplished by changing

the standard deviation of the Gaussian noise process. Simulations with different shot-

noise levels are accomplished by changing the amplitude scaling that represents the

lighting condition. For ease of comparison, both fixed-pattern and shot noises are

expressed in dB. The dB value reported for fixed-pattern noise represents the ratio

of the standard deviation of the Gaussian distribution to its mean. The dB value

reported for shot noise represents the ratio of the standard deviation of the Poisson

distribution to its mean. If the reported dB values for fixed-pattern and shot noises

are equal, then the energy in the noises are also equal.

All simulations were repeated 100 times using 100 image pairs with the same

fixed-pattern noise but with independent pseudo-random shot noises and quantization

errors. For each pair, consisting of an original and a shifted image, shift estimates

were generated. Bias was estimated as the sample mean of the difference between

the estimated and actual shift. The standard deviation was estimated by taking the

square root of the sample variance.

4.6 Bias in gradient-based estimates

4.6.1 Sinusoidal images

We now derive a closed-form expression for the gradient-based estimate as a function

of the known displacement d, and of the spatial frequency Q for the sinusoidal images.

Substituting Equations 4.9 into Equations 4.4 results in a set of equations that (after
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Figure 4-1: Registration estimates for
a sinusoidal image displaced in one
dimension. The solid, dotted, and
dashed curves illustrate gradient-based
estimates of displacement (Equation 4.3)
for sinusoidal images with frequencies Q
equal to 1, 2, and 3, respectively. The
Nyquist frequency is Q = 7r. The curves
are computed from Equation 4.10.
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dx (pixels)

some trigonometric simplification) can be written as

Gi[i, j] = -2El sin 1 sin (2i+-d.) cos

Gj[i, j] = 0

Gk [i, j] = 2El sin f2 sin C(2i+1-d) COS .

In this special case in which Gj[i, j] = O, Equation 4.3 can be simplified to give
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tan(Qdx/2)
dx =

tan R/2
(4.10)

Note that for this special case of one sinusoid in the image, the estimate is independent

of the summation region, as long as the summation region has at least one point where

Gi[i, j] / 0.

Plots of the relation between the estimate dx and the imposed displacement dx are

illustrated in Figure 4-1 for images with three different spatial frequencies. The esti-

mated displacement is exactly equal to the imposed displacement when the imposed

displacement is equal to -1, 0, and 1 pixel for all spatial frequencies. For frequencies

Q < 1Id,d e dx. However, there is increasing difference between the estimate and



imposed displacement for higher frequencies. Gradient-based estimates are systemat-

ically too small for subpixel displacements, too large for displacements between 1 and

7r/Q (half the wavelength), and are periodic with a period equal to the wavelength of

the sinusoid.

We refer to the difference between the estimated displacement and the imposed

displacement (d. - d.) as bias. As is evident from Figure 4-1, bias depends not only

on the imposed displacement, but also on the image: bias functions for images with

different spatial frequencies differ.

4.6.2 Two-dimensional images

Table 4.1 shows the two dimensional bias function for simulated motions of a simulated

bead. For d. = 0, the bias in the estimate of the x component of displacement (dx)

is zero independent of dy. For most subpixel displacements, the bias is positive for

negative dx and negative for positive dx. Thus the gradient-based algorithm typically

underestimates the imposed subpixel displacements-a trend that was also seen for

sinusoidal images (Figure 4-1). For small values of IdlI and Idyl, the bias in the

estimate of the x component of displacement is a nearly linear function of dx and

changes little with dy. However, for large displacements dx and dy, the bias depends

on both dx and dy, and the relation between bias and displacement is quite nonlinear.

The top bias function illustrated in Table 4.1 results from images of a very small

target (bead diameter of 5 pixels in a 32x32 image) containing a relatively large

fraction of energy at high spatial frequencies. One might expect that bias functions

for images with more energy in low spatial frequencies will tend to be smoother

functions of dx and dy. We used computer-simulated motions (see Methods) of three

measured images to test this hypothesis (Table 4.1). Results indicate that the two

images taken with our video microscopy system (the gyroscope and hair bundle) have

bias functions that are similar to that of the bead, and the measured SAR image has

significantly more bias. Nevertheless, all the bias functions are nearly linear functions

of the displacement (dx, dy) for small displacements, which is the hypothesis for linear

bias compensation.



Table 4.1: Bias in estimates of displacement without (Left) and with (Right) linear bias
compensation for (1) simulated motions of a simulated bead and (2) simulated motions of
a measured image of a gyroscope, SAR, and hair bundle. For the measured images, only
the center 32 x 32 pixels (enclosed by the box) were used-the larger region is shown for
clarity. Displacements were simulated for 21 x 21 values of (d, dy). Bias was calculated
as the difference between the average estimate of the x component of displacement (dx or
dx) and the imposed displacement dx. The surface represents the bias as a function of the
imposed displacements dx and dy. The contour lines in the lower part of the figure connect
points in the dx,dy plane that have bias equal to an integral multiple of 0.01. Shot noise
was -50 dB and fixed-pattern noise was -50 dB.
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Figure 4-2: Motion estimates with lin-
ear bias compensation for a sinusoidal
image. The solid, dotted, and dashed
curves illustrate estimates of displace-
ment with linear bias compensation for
sinusoidal images with frequencies Q
equal to 1, 2, and 3, respectively. The
curves are computed from Equation 4.11.

-1 0 1

dx (pixels)

4.7 Bias after linear bias compensation

4.7.1 Sinusoidal images

One can derive a closed-form expression for the estimate with linear bias compensation

(d,) when the image consists of a single sinusoid. An expression for d, is given in

Equation 4.10. If d. > 0, then d. > 0 and therefore

- =tan Q(d, - 1)/2dX =X tang/2

The values of dx and dx determine al,

tan Qdx/2 - tan -(dx - 1)/2
tanQ/2

Since a2 =1 = 02 = 0, it follows that

Stan Qdx/2
dt• (4.11)S= tan Qdx/2 - tan G(dx - 1)/2

for d. > 0. Values of de for dx < 0 follow from similar reasoning. Results for positive

and negative values of dx are plotted in Figure 4-2.

Figure 4-1 and Equation 4.10 both show that the gradient-based estimate d. is

S.... I , ....I
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equal to the imposed displacement d. when d, = -1, 0, and 1. Figure 4-2 shows

that estimates with linear bias compensation d, are equal to d, at two additional

values of d, near +0.5. Furthermore, the error in the estimate with compensation for

bias is generally smaller than the error in the estimate without bias compensation.

A more quantitative characterization of error in the estimate is given in Figure 4-

3, which shows the relation between the maximum error that results for subpixel

displacements (IdJ < 1) as a function of spatial frequency. Linear bias compensation

reduces the maximum subpixel bias by more than a factor of four. The improvement

is even greater for spatial frequencies near the Nyquist frequency ( 7 m i).

I I I I I ll 11111
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Frequency 0
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no bias compensation0.1 --

0-
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Figure 4-3: Maximum errors in esti-
mates of the displacements of a sinu-
soidal image with and without linear bias
compensation. The dashed line illus-
trates the maximum subpixel bias in gra-
dient-based estimates as a function of
the spatial frequency Q of the image.
This maximum subpixel bias is taken as
the biggest difference between d, and dx
(Equation 4.10) for any IdxJ < 1. The
solid line represents the analogous rela-
tion after linear bias compensation (i.e.,
the biggest difference between dz and dz
in Equation 4.11).

Figure 4-4: Bias in motion estimates:
simulated motions of a simulated bead,
default condition. Displacements are
simulated at 41 values of dx. Shot and
fixed-pattern noise are both -50 dB. The
dashed and solid lines indicate the bias
of the two algorithms. The shaded re-
gions around the lines are ±1 standard
deviation.
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4.7.2 Two-dimensional images

The right column in Table 4.1 shows two-dimensional bias functions for the linear bias

corrected algorithm. The algorithm had very little bias near 0, ±1, and ±0.5. The

maximum subpixel error for the four images dropped by a factor of 4.2 for the bead,

3.4 for the gyroscope, 5.8 for the SAR image, and 3.5 for the hair bundle (average:

4.2). Furthermore, as seen in the plots and the contour lines, the dependence on

orthogonal motions has been greatly reduced. Linear bias compensation therefore

can more independently measure displacement in the two directions. This reduction

enables more accurate measurements of displacements in the presence of confounding

orthogonal displacements.

4.8 Statistics of motion estimates

As shown in Table 4.1, the two dimensional bias function for the four images are

qualitatively similar. Registration bias for the simulated bead is in the middle of the

four. Because the simulated bead image (1) generates representative results, (2) is

easily parameterized and therefore easily reproduced, and (3) simplifies changing the

signal energy (adding more beads), we focus on this image to characterized registra-

tion performance as a function of signal energy, shot noise, and fixed-pattern noise.

To explore this multi-dimensional parameter space, we vary one parameter at a time

from a default condition that is representative of images from our video-microscope

system: a 32x32 pixel image of a single simulated bead with fixed-pattern and shot

noise at -50 dB. These noise levels were taken to approximate typical levels in high

resolution systems. Shot noise in CCD cameras is determined by the ratio of the

standard deviation to the mean number of electrons per pixel (Janesick et al., 1987)

and is typically on the order of -50 dB. Fixed pattern noise for the Sony XC-77

camera has been estimated (Healey and Kondepudy, 1994) to be -49 dB.

Results for the default case are shown in Figure 4-4. The bias in both algorithms is

larger than the variability at almost all imposed displacements. As with the sinusoidal

image, results for both algorithms shown in Figure 4-4 have no bias at d, = 0;
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Figure 4-5: Effect of shot noise on statistics of motion estimates. Motion estimates were
simulated as described in Figure 4-4 for images with 16 different levels of shot noise. We
report the energy in the shot noise in dB relative to the mean energy in the image; therefore,
the range of the abscissa corresponds to a 60 dB range in mean image brightness. Lines in
this figure show the maximum bias and maximum standard deviations (sd) across imposed
displacement d, as a function of shot noise energy. Statistics are shown for four conditions
as indicated in the legend: images with one and seven beads, with and without linear bias
compensation (LBC).

however, neither algorithm reduces the bias to zero at dx = ±1. Simulations without

noise (not shown) show that the bias in both algorithms is zero for d. = ±1 when

the noise eliminated - i.e., the non-zero bias at d. = ±1 in Figure 4-4 is a direct

consequence of noise. Thus, image noise gives rise not only to variability in motion

estimates but also to bias. This phenomenon is explored more fully in subsequent

sections. Finally, notice that the bias in estimates with linear bias compensation is

smaller than that without linear bias compensation for all imposed displacements.

Linear compensation for bias reduces the maximum bias by a factor of approximately

four.

4.8.1 Effect of shot noise

Figure 4-5 illustrates the effect of shot noise on simulated motions of a simulated bead.

For all simulated conditions, increasing the shot noise increases the variability of the

motion estimates. For shot noises smaller than -40 dB, the standard deviation for

the motion estimates depends linearly on shot noise amplitude. Increasing the signal

energy in the image by 8.5 dB (by changing the number of simulated beads from 1 to



7) decreases the standard deviation for the motion estimates by approximately 8 dB.

These data are consistent with the idea that the standard deviation of the motion

estimates is inversely proportional to the signal-to-noise ratio for the image.

When shot noise is small (< -50 dB), linear bias compensation reduces the bias

by nearly a factor of four. Increasing the shot noise energy tends to increase the bias

in motion estimates without bias compensation. This trend is reduced by linear bias

compensation. Except for the lowest signal-to-noise conditions simulated (one bead,

shot noise > -35 dB), the bias that remains after linear bias compensation is inde-

pendent of the energy in the shot noise. The result is that linear bias compensation

can reduce bias by more than a factor of 15 when shot noise is high (> -35 dB).

To understand the importance of these results for motion estimation algorithms,

one can compare the relative magnitudes of the bias and standard deviations of the

algorithms. For all energies of shot noise that were studied, the bias in estimates

without bias compensation is significantly larger than the standard deviation. Thus,

the systematic bias built into the gradient-based algorithm is greater than the vari-

ability in the estimates caused by noise even at high noise levels. This relation does

not generally hold for estimates with linear bias compensation. The much smaller

bias that remains after linear bias compensation is smaller than the standard devia-

tion for noisy images (shot noise > -42 dB for one bead images; > -37 dB for seven

bead images). However, for shot noise that is typical for our video microscopy system

(-50 dB), bias is the most significant part of the total error in motion estimates (i.e.,

bias + standard deviation) even after linear bias compensation.

4.8.2 Effect of fixed-pattern (background) noise

Figure 4-6 illustrates effects of fixed-pattern noise on motion estimates - effects

that are quite different from those of shot noise. The standard deviation of motion

estimates tends to increase with increasing shot noise (Figure 4-5). In contrast, the

variability tends to decrease with increasing fixed-pattern noise (Figure 4-6). More

noise leads to estimates with less variability but bigger errors: bias increases very

rapidly as fixed-pattern noise increases above -40 dB. Generally, high levels of fixed-
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pattern noise cause motion estimators to more consistently get the wrong answer.

Small amounts of fixed-pattern noise (< -50 dB for one bead images, < -42 dB

for seven bead images) have little effect on the statistics of motion estimates. Large

amounts of fixed-pattern noise (> -30 dB for one bead images, > -22 dB for seven

bead images) cause both algorithms to estimate 0 for all displacements: the maximum

subpixel bias approaches one pixel. For small amounts of fixed-pattern noise, linear

bias compensation reduced the bias by about a factor of four without making any

significant change in standard deviation. The bias in estimates with and without

linear bias compensation begin to increase at nearly the same levels of fixed-pattern

noise: -50 dB for one bead images and -42 dB for seven bead images.

The energies in the one and seven bead images are -31.3 dB and -22.8 dB relative

to the average energies in their backgrounds. It is interesting that the maximum errors

for linear bias compensation in Figure 4-6 are equal to 0.5 pixels when the energy

in the fixed-pattern noise is -32 dB for the one bead image and when the energy

is -24 dB for the seven bead image. The algorithm with linear bias compensation

weights the two competing motions (that of the bead and that of the background)

equally when their energies are equal.

4.9 Discussion

We have developed two approaches for studying motion estimation from video im-

ages: (1) theoretical analysis of sinusoidal images and (2) computer simulated motion



of both synthetic images and a stationary image from a video camera.2 Using these

methods, we have shown that gradient-based motion estimates are intrinsically bi-

ased. The bias is image-dependent: for some images the bias is a few percent of

the spacing between pixels, for other images the bias is as large as the displacements

being estimated. For sinusoidal images, bias is largest for images with the highest

spatial frequencies (Figures 4-1, 4-2, and 4-3). In many applications (including ours

which uses a scientific-grade CCD camera with a 12-bit digitizing system), bias is by

far the largest component of the error in motion estimates - much greater than the

random errors caused by noise in the measurement system.

We have proposed a linearized model for the bias in estimates based on optical

flow, and we have used the model to generate a new motion detection algorithm with

linear bias compensation. The algorithm uses data contained in just two video images:

no prior knowledge of the image is required. Prior knowledge of the target could be

used to estimate the parameters of the linear model; however, prior knowledge is not

the only source of information. In principle, the parameters could be determined by

simulating shifts of a single image. This was in fact the method used to generate

the lower bias functions in Table 4.1. However, software simulation of arbitrary

shifts is computationally intensive. The method takes advantage of the accuracy and

computational simplicity of shifting images by an integral number of pixels. The

new algorithm reduces the maximum subpixel bias by 3.4x - 15x, with a typical

reduction near factor of four.

We have characterized the effects of several important experimental conditions,

discussed below.

4.9.1 Effect of shot noise

Increasing shot noise increases the bias in estimates without linear bias compensation

(Figure 4-5). We interpret this result as follows. Suppose that shot noise results in

the spurious increase in the brightness of a pixel in the first of the two images used

2A third approach, using video images of a scene whose motion is independently known, is
discussed in the companion paper (Davis and Freeman, 1997a).



to estimate motion. The four sets of derivative estimates (Equations 4.2) which use

the noisy pixel3 will tend to give contradictory conclusions in the Taylor's expansion

(Equation 4.3). For example, assume that without the noise the spatial derivatives

(and therefore the temporal derivatives) near the given pixel are zero. Then the

estimates from pixels above, below, to the left, and to the right of the noisy pixel will

result in contradictory conclusions - that the motion is downward, upward, to the

right, and to the left, respectively. These errors tend to cancel each other. However,

each pixel contributes to the least-mean-square registration solution (Equation 4.3)

in proportion to the magnitude of the local change in brightness (Tanner and Mead,

1986). If the noise is large, the pixels near the noisy one contribute proportionately.

Therefore, noise tends to bias estimates based on optical flow toward zero (Figure 4-

5). Increasing the signal energy reduces the effect of shot noise by decreasing the

relative importance of noisy contributions to the least-mean-square problem.

The bias in estimates with linear bias compensation is nearly independent of

noise level (Figure 4-5). This follows from the previous argument by realizing that the

algorithm for linear bias compensation includes the effects of estimating displacements

that are both positive and negative. If the original estimate of motion is positive,

then the images are shifted so that the second estimate is negative and vice-versa.

Although each estimate is biased toward zero, the signs of the biases in the two

estimates are always opposite. The oppositely signed biases tend to cancel with

linear bias compensation.

4.9.2 Effect of fixed-pattern noise

Increasing fixed pattern noise increases the bias in estimates with and without bias

compensation (Figure 4-6). For images containing one (seven) bead and fixed-pattern

noises larger than -30 dB (-22 dB), both motion detection algorithms fail. If the

image were empty, fixed pattern noise would produce images that appear to contain

a stationary random pattern. When the image contains a moving target, motion of

3 For example, if the noisy pixel was [i',j'] then A, [i', j'], At [i' - 1,j'],A,[i',j' - 1], and ;i,[i' -
1, j' - 1] use the noisy pixel.



the target competes with the stationary, fixed-pattern noise. The important statistics

for understanding fixed-pattern noise are the energy in the signal and the energy in

the noise; both algorithms estimate that the displacement is about half the imposed

displacement when the energy in the signal and noise are equal.

4.9.3 Other error reduction techniques

We found that bias in estimates of rigid body motion could generally be reduced

by more than a factor of four by applying the linear bias compensation algorithm.

Should one regard this improvement as significant, or are there other (possibly sim-

pler) ways to achieve similar improvement? The computation required for the linear

bias compensation algorithm is approximately four times that required without bias

compensation. We discuss several alternative algorithms with similar computational

cost.

If four image pairs could be obtained, one might consider averaging as a method

to improve motion estimates. Averaging the images will decrease the shot noise of the

images and therefore improve estimates without linear bias compensation by shifting

the horizontal axis in Figure 4-5 to the left by 6 dB. Nevertheless, the improvement

using linear bias compensation is greater. In fact, for shot noise levels lower than

-33 dB, the improvement using linear bias compensation is greater than an arbitrarily

large reduction in shot noise. Image averaging is therefore not an effective use of

computational resources. Alternatively, we could average motion estimates instead

of averaging the images. Since the motion estimation process is nonlinear, results for

these two averaging schemes will not necessarily be the same. However, this averaging

strategy is also ineffective. Since the bias is large compared to the variability of

estimates without bias compensation (Figure 4-5), the total error is not significantly

reduced by averaging.

If the additional images can be obtained at a faster rate, one might be able to

construct better estimates by taking advantage of the fact that displacements between

the images are smaller. However, the results in Figure 4-4 suggest that temporal

oversampling is also ineffective. First consider the case that the total displacement



between the first and last image is less than 1/3 pixel. The bias in estimates without

bias compensation is nearly a linear function of the displacement of the target for

displacements less than 1/3 pixel. Therefore, the bias for smaller displacements is

proportionally smaller. However, if an estimate of the total displacement is formed

by summing the estimates of displacements between intermediate images, then the

total bias is unchanged. Furthermore, the random component of the error in this

summed estimate will be higher than that based on just the first and last image. The

case in which the total displacement between the first and last image is greater than

1/3 pixel is even worse. If the original distance was greater than 1/3 pixel (and less

than one), the sum of the four smaller biases will be greater than the original bias.

We conclude that simple algorithms based on temporal oversampling are ineffective

at reducing bias.

Alternatively, one could change the original registration algorithm by increasing

the number of terms in the Taylor expansion Equation 4.1. Unfortunately, formu-

lations with the higher-order terms cannot be solved in closed form. Furthermore,

multiple minima may exist4 for subpixel translations which forces one to use exhaus-

tive search to find the global minimum. For 1/100th pixel accuracy, exhaustive search

requires 104 separate runs of the algorithm, in comparison to the four runs required

by linear bias compensation.

To summarize, the linear bias compensation algorithm's factor of four reduction

in bias is a significant improvement which cannot be obtained using simple averag-

ing and/or oversampling techniques, nor easily obtained by changing the underlying

algorithm.

4.9.4 Extensions to supra-pixel motion estimation

Linear bias compensation can easily be extended to supra-pixel displacements through

a pyramid scheme (Burt, 1984). One can low-pass filter and downsample the images

4 For example, the algorithm resulting from keeping the bilinear term in the Taylor's expansion
(Equation 4.1) has two minima near (d,, dy) = (0.5, -0.8) and (-0.7, -0.5) for the problem A[i, j] =
sin 2i sin 2j, B[i,j] = sin(2i - 0.7) sin(2j + 0.9).



to obtain a subpixel problem. Using this estimate, the pictures can be shifted so

that less downsampling is required to maintain a subpixel estimation problem. The

shifting and downsampling can be repeated until no downsampling is needed to obtain

a subpixel motion estimation problem. This method is computationally expensive and

in practice our supra-pixel problems are only a few pixels. Consequently, we use the

gradient-based algorithm on the original images and shift the pictures one pixel in

directions indicated by the algorithm. We repeat until the estimates change sign

between steps-indicating the displacement between the images is now subpixel. We

then apply linear bias compensation to this subpixel problem.





Chapter 5

Nanometer Registration with Light

Microscopy: Characterization of

Performance Limitations

5.1 Keywords

registration, motion detection, bias compensation, video microscopy

5.2 Introduction

Fundamental limitations on image resolution and registration are different. Image res-

olution is limited by the optics (Hopkins and Barham, 1950). To a first approximation,

images are blurred by convolution with a point-spread function (Goodman, 1968; Born

and Wolf, 1975) whose width is on the order of the wavelength of light (typically

550 nm). However, blurred images can be aligned to within a small fraction of the

blurring width (Douglas, 1993; Tian and Huhns, 1986). The fundamental limitations

on registration are determined by the contrast of the target, by the resolution and

precision of the optics and video imager, and by the quantum nature of light.

Precision is also limited by mechanical vibrations. These vibrations can cause



relative motion between the camera and the target. This relative motion causes errors

in registration estimates. We show that this effect can be attenuated to less than 1 nm

through the use of a vibration-isolation table and long (> 200 ms) integration times.

Precision is also limited by the registration algorithm. In this paper, we examine

the two registration algorithms discussed in the companion paper (Davis and Free-

man, 1997b). Using a target with calibrated displacements, we show that registration

errors consist of a random component that results from image noise and a generally

much larger systematic component-bias-that is intrinsic to the registration algo-

rithm. When the new algorithm is applied to video images from a light microscope,

registration errors are typically less than 5 nm without averaging - i.e., <1% of the

wavelength of the light that generates the images.

These results have potential applications in diverse registration tasks, ranging

from lithographic mask alignment (Douglas, 1993; Grenon et al., 1995; Inderhees and

Kiefer, 1995) to construction of Gbyte memory chips (Behringer et al., 1991). We

have also applied these methods to analyze motions with nanometer precision. Stro-

boscopic illumination is used to obtain a sequence of stop-action video images, and the

displacements between successive images are determined. Results have provided the

first direct measurements of sound-induced motions of sensory receptor cells and their

overlying tectorial membrane in the inner ear (Davis and Freeman, 1995). Similar

techniques have also been used to measure motions of man-made microelectrome-

chanical systems (MEMS) (Freeman and Davis, 1996) and could provide the basis for

a "motion probe-station" for design and fabrication of MEMS.

5.3 Methods

This section describes our hardware for obtaining images of microscopic targets and

our method for reducing fixed-pattern noise. The section also describes our two test

targets.



5.3.1 Video images

Images from a light microscope (Zeiss Axioplan, Thornwood, NY) are projected onto

a scientific grade CCD camera (Photometrics 200 series with a Thompson 7883 CCD,

Tucson, AZ) and digitized with 12-bit resolution. Under most lighting conditions,

the predominate sources of image noise are shot noise and fixed-pattern noise. Shot

noise results from the quantum nature of light. The arrival of photons at a given pixel

location-and therefore the number of hole-electron pairs generated at that location-

can be modeled as a Poisson process (Janesick et al., 1987). Typical images from

our system have approximately 105 electrons per pixel (Photometrics, 1993). The

standard deviation of a Poisson random variable is equal to the square root of the

mean. Therefore, the ratio of the standard deviation to the mean number of electrons

collected is typically about 102.5/105 = 10-2.5 which is about -50 dB.

Fixed-pattern noise results from optical imperfections or from spatial variations

in the sensitivity of the video imager (Janesick et al., 1987). To reduce the effect

of fixed-pattern noise, we use a two-point correction technique (Hiraoka et al., 1987;

Healey and Kondepudy, 1994). After the microscope has been adjusted for Koehler

Illumination (Inoud, 1986), the focal plane of the microscope is moved so that the

target is out of focus. One hundred images are acquired and averaged (to reduce shot

noise); the resulting "bright" image gives an estimate of fixed-pattern noise at typical

illumination levels. Next, one hundred additional images are acquired and averaged

(to reduce dark and read noise (Janesick et al., 1987)) with the microscope light off.

This "dark" image gives an estimate of fixed-pattern offsets in the absence of light.

Subsequent images are then corrected for pixel-to-pixel variations in sensitivity and

offset by calculating a corrected image G, where

G[ij] = M[i, j] - D[i, j]
B[i, j] - D[i, j]

M[i, j] represents the gray value generated by the [i, j]th pixel in the measured image,

and B[i,j] and D[i,j] represent corresponding gray values in the bright and dark

images, respectively. For targets reported in this study, the ratio of the energy in



fixed-pattern noise to the average energy in the uncorrected image was typically

-45 dB. After two-point correction, this ratio was typically -56 dB.

5.3.2 Target with known position

To test our registration methods, we have constructed a target whose position is

calibratible. The target is a TiO2 particle with a diameter of 0.3 /m (Polysciences,

Warrington PA), which we refer to as a bead. The bead is embedded in mounting

medium (Mount Quick, Electron Microscopy Sciences, Fort Washington, PA) between

a pair of cover slips.

The cover slips are attached to an aluminum mounting block via a piezoelectric

stack, so that motion of the stack results in motion of the target relative to the

microscope. The distance the target moves is measured using a fiber-optic detector

(Angstrom Resolver, Opto Acoustics Sensors, Raleigh, NC) that uses an optic lever

technique (Cook and Hamm, 1979) to sense the distance between the tip of its fiber-

optic probe and a reflecting surface attached to the moving face of the piezoelectric

crystal. The relation between the fiber-optic detector and displacement is linear over a

50 pmrange-much greater than the maximal displacement of the piezoelectric stack.

With the detector, we determined that the relation between our electrical drive to the

stack (< ±125 V) and displacement is very linear (correlation coefficient of 0.9999992

between the piezoelectric drive and the detector output for 14 evenly-spaced drive

voltages). Unfortunately, the detector's sensitivity (Ctm/volt) was not known and

very difficult to calibrate (different calibration methods yielded different results).

Therefore, we did a 1 parameter fit between the simulations and the measurements

for the two registration algorithms at the 26 displacements examined. Thus our

results had 1 degree of freedom for 52 data points. The fitted sensitivity fell near the

mean of the sensitivity factors derived from the different calibration methods.



5.3.3 Motion detection

Pairs of 32 x 32 images are acquired - the first with the target in one fixed position,

and the second after the target has been displaced by the piezoelectric stack. The

light integration time was 62 ms. Registration algorithms are used to estimate the

known displacement of the stack. Tests consist of one hundred independent trials.

Each trial was characterized by an error equal to the difference between the displace-

ment estimate and the displacement measured with the optic lever device. Bias was

estimated as the sample mean of the errors and the standard deviation was taken as

the square root of the sample variance of the errors.

The performance of two motion detection algorithms, described in (Davis and

Freeman, 1997b) are compared to each other and to simulations of the above exper-

iment. The simulations included a mathematical model of the target, fixed-pattern

noise, shot noise, and quantization errors. See the companion paper (Davis and Free-

man, 1997b) for details on the simulations.

5.3.4 Stationary high-contrast target

To determine the effect of mechanical vibrations on registration estimates, we exam-

ined a stationary, very high-contrast target. The target was part of a glass micrometer

which had sharp contrast in both directions. A high-contrast target was used to min-

imize the effects of shot/fixed-pattern noise on registration performance. The target

was imaged for a variable amount of time while the total light, and thus shot noise,

remained constant. One hundred image pairs (size: 32 x 32 pixels) were acquired,

two point corrected, and analyzed for motion. Standard deviations of registration

estimates were computed.

Our video microscopy system rests on a vibration isolation table. This passive air

table is activated through pressurization with nitrogen. We determined the effect of

the air table on the variability of registration estimates by activating and deactivating

the table.
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5.4 Results

Images of a high-contrast, stationary target were analyzed for motion as a function

of the light integration time (Figure 5-1). The total amount of light was kept con-

stant. For integration times less than 10 ms, the vibration isolation table reduced

registration variability by 20 dB. For integration times greater than 10 ms, the vari-

ability decreased with increasing integration time. At a one second integration time,

the standard deviation of registration estimates were 0.8-0.9 nm, nearly a 20 dB im-

provement when using the air table and a 40 dB improvement without the air table.

For integration times less than one second, the vibration isolation table improved

results; however, the amount of improvement decreases with increasing integration

time.

We now compare results of the computer simulated bead from (Davis and Freeman,

1997b) to measurements of a 0.3 /pm diameter bead whose motion is independently

known (Figure 5-2). The results of the experiment and the simulations are similar.

The simulated and measured biases in motion estimates with and without linear bias

compensation are similar in both shape and peak magnitude. In the experiment, the

largest bias without bias compensation was 15.6 nm (0.068 pixels). The largest bias

with linear bias compensation was 4.5 nm (0.020 pixels) - a factor of 3.4 smaller. This

factor is slightly smaller than the 4.4x improvement in the simulations. The biases

from the simulation generally fall well within a standard deviation of the biases from

the measurements, but typically outside one standard error. The largest standard
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Figure 5-2: Comparison of simulations and measurements of statistics of registration esti-
mates. Calibrated motions of a single TiO 2 bead were estimated from video images obtained
from 100 independent trials at each of 20 different displacements. The thin lines and shaded
regions represent the bias and ±1 standard deviation for measurements. The thick lines rep-
resent the bias for simulations. The standard deviations of the simulations are not shown.
Noise levels in the simulations were taken to match those in the experiment: shot noise was
-50 dB and fixed-pattern noise was -55 dB.

deviation of motion estimates obtained from the experiments are 2.4 nm (0.010 pixels)

with LBC and 2.8 nm (0.012 pixels) without. These standard deviations are 36%/27%

larger than the simulations; the simulations did not include effects of mechanical

vibrations.

5.5 Discussion

5.5.1 Mechanical vibrations

Eliminating mechanical vibrations is critical to obtaining nanometer accuracy regis-

tration (Figure 5-1). There is a trade-off between how long one is willing to wait for

an image (integration time) and precision of the estimate. The vibration-isolation

table helps in that regard-reducing the time to sub-nanometer precision by a factor

of four. With a more sophisticated isolation table (e.g., an actively stabilized one),

we expect the need for long integration times to be reduced.
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5.5.2 Simulation versus measurements

The bias function that was measured experimentally has almost the same shape and

magnitude as the bias from the simulations. This result suggests that our simulations

have captured many of the features found in real-world experiments.

Furthermore, linear bias compensation reduced experimentally determined bias

by a factor of 3.4 - nearly the same result as predicted by the computer simulations.

These results suggest there is utility in using computer simulation for analyzing and

improving motion detection algorithms.

5.5.3 Importance for hearing research

We have demonstrated a method by which video imaging can be used to reliably

measure the subpixel motion of not only simple targets but also of complex targets.

Specifically, we have shown that our method can be applied to the measurement of the

small motions of inner-ear structures that result from acoustical stimulation. These

results provide an important new methodology - video imaging - for studying

inner-ear motion. Preliminary results (Davis and Freeman, 1995) demonstrate that

this is the first methodology which allows direct and concurrent measurement of

the motion of all inner-ear structures visible with light microscopy - not only the

motions of macroscopic structures but also motions of single sensory receptor cells

(typical dimensions of - 10 pm) and even motions of single sensory hairs (typical

dimensions of r 1 pm).



Chapter 6

Image Registration

6.1 Introduction

In this chapter, we further analyze and extend the 2D algorithms developed earlier.

First, we describe performance results from registering sinusoidal images. To

estimate subpixel motions, registration algorithms require interpolating functions, or

equivalently derivative estimators (Chapter 3). This approximation causes systematic

errors in registration estimates. We describe results which indicate that when using

a first-order Taylor's expansion of the constant brightness equation (i.e., using linear

interpolating functions), the derivative estimators that we use (developed by Horn

and Schunck, 1981) have the least subpixel bias for images that vary sinusoidally

in space. In particular, two spatial derivative estimators of infinite support perform

worse.

Second, we describe an extension of the 2D algorithms to estimating 3 translations

for rigid body motion from two volumes of data. These algorithms are used in other

chapters to estimate the motion of microscopic structures imaged with our computer

microvision system.

Finally, we describe a method to estimate all six degrees of freedom for rigid body

motion from two volumes of data. This algorithm has potential application in our

computer microvision system, but has not been implemented.



6.2 Sine wave analysis of subpixel registration al-

gorithms

The registration problem-estimating the motion between two images-is examined

for six algorithms when estimating the displacement between a one dimensional sine

wave and its subpixel translations. The algorithms can be considered to be gradient

based (derived from the constant brightness assumption) or block-matching based

(minimizing the sum of the squared differences between shifts of the pictures) (Davis

et al., 1995). All the algorithms had bias: displacement estimates generally did not

equal the displacement. Closed form solutions are found for five out of six basic

algorithms. The derivative estimators of Horn and Schunck (1981) have the smallest

errors, including two algorithms whose spatial derivatives had infinite support.

6.2.1 Introduction

Image registration is the process of aligning two images by finding the translation,

rotation, scaling, or other transformation between them so that they are most alike.

Typical applications include medical imaging, satellite imaging, semiconductor manu-

facturing (e.g., Pritt, 1994). Registration can also be used as a general-purpose motion

detection algorithm by using it between sequential images (e.g., Burt, 1984; Bergen

et al., 1992; Davis and Freeman, 1995).

Systematic registration errors-bias-are typically the largest source of error in

subpixel registrations (Chapter 4). Further, for motion detection applications, bias

error accumulates at every time step, generating very poor estimates after many

frames have been analyzed.

We examine bias in algorithms for the case of one dimensional sinusoidal im-

ages undergoing translation. The algorithms considered are one-dimensional and

use differing linear interpolation schemes. Several of the algorithms considered

can be interpreted as the one-dimensional simplification of existing linear or bilin-

ear algorithms from the literature (Horn and Schunck, 1981; Burt, 1984; Tian and



Huhns, 1986; Jdihne, 1990). Other algorithms considered have a heuristic argument

for good performance.

6.2.2 Methods

Algorithm

The continuous-domain constant brightness assumption (Horn and Schunck, 1981)

states that the brightness E of an image remains constant with time:

E(x, t) = E(x + Xd, t + td)

where x represents our 1D spatial coordinate and t represents time. The right hand

side of the equation can be written as Taylor's series expanded about the point (x, t).

Then, after eliminating E(x, t) from both sides, the constant brightness equation can

be written as
0 E(x, t) 0E(x, t)

= a Xd + 1 td +t '

where the ellipses represent higher order terms. We can simplify this equation by

using the camera's frame time as our unit of time so that td = 1 frame. Then

Ezxd + Et + -- -= 0

where Ex, and Et represent the partial derivatives of the brightness function E. The

discrete-domain analog of the equation is

Gxdx +Gt + = 0

where Gx[i, k] and Gt[i, k] are linear combinations of images and their integer shifts

that approximate the partial derivatives of the brightness function E. We assume

that a patch of the image is undergoing a rigid-body translation, and least squares is

used to combine information across the patch to estimate the translation: choose dx



equal to the values of d, that minimizes

i

where i ranges over the patch. We call this range the summation region.

We consider only the linear term in the Taylor expansion. Thus, our estimate of

the x translation is
-i GtGx

dX - iGE G,

The algorithms studied here differ by their derivative approximations. Note that

by equivalence (Davis et al., 1995), this class of algorithms can be re-cast as block

matching methods which minimize the sum of squared differences between shifted

versions of the original images, where the shifting is done using linear interpolation.

Sinusoidal images

Consider a brightness field that (1) varies sinusoidally in the x direction, and (2)

moves everywhere with velocity v in the x direction:

E(x, t) = Eo + El cos (x + 4 - vt)

where Eo 2 El since the brightness cannot be negative. Suppose that a camera

samples this brightness field uniformly in space and time with unit inter-pixel distance

and unit frame time. Then two consecutive images obtained at time indices 0 and 1

equal

G[i, j, 0] = Eo + El cos Q(i + ¢)
(6.1)

G[i, j, 1] = Eo + E1 cos Q(i + ¢ - d,)

where dx is the displacement of the scene in the second image with respect to the first.

We apply registration algorithms to these sinusoidal images to generate estimates of

displacement as a function of the known displacement dx, spatial frequency Q, and

phase 0 of the sinusoid. The Nyquist frequency of the sinusoids is Q = 7.



6.2.3 Results

In this section we describe the performance of six different registration algorithms,

from the most accurate to the least. The algorithms all use the linear term in the one

dimensional constant brightness equation. The algorithms differ in how they estimate

the space (G,) and time (Gt) derivatives.

Algorithm 1

Horn and Schunck (1981) suggested that when approximating a set of partial deriva-

tives, the approximations should estimate the derivatives at the same point. They

suggested using an average of several first differences to approximate the partial

derivatives midway between the sample points in space and time. For one dimen-

sional images, these approximations reduce to

Gt= ,+ G [i', 1] - G[i', 0] ( Et
(6.2)

G= El,=0 G[i + 1, k'] - G[i, k'] ~ Ex.

These derivative operators are shown graphically in Figure 6-1. The spatial and

temporal operators best estimate the derivatives at the same point: (i + 1/2, 1/2).

Substituting Equations 6.1 into Equations 6.2 results in a set of equations that

(after some trigonometric simplification) can be written as

Gt = 2E sin -dx sin c(2i+2-+1-dx) COS Q
2 2 2

G = -2E 1 sin sin 9(2i+24+1-dx) COS Qdx2 2 2

so that
= GtG tan(Qtd/2)
Ei GxGx tan 9/2 (6.3)

Note that after factoring the derivative approximations, the only term that depends

on the summation region is the same for the two derivative approximations. Conse-



1-

i-1 i i+
k=1l I--+| | |+1+1

k=O I-'TI I+ ---1-|
2Gx  2Gt

-1 -

;; II ,
'I /J

/I

I'

'I

,'II II

I'I

SI'

.1

-1 0 1

dx (pixels)

Figure 6-1: Algorithm 1's computational molecules (left) and displacement estimates (right)
for a 1D sinusoidal image. The left computational molecule illustrates the spatial derivative
estimator, the average of forward difference operators applied to the image at times k = 0
and k = 1. The right computational molecule illustrates the temporal derivative estimator,
the average of forward difference operator applied to pixels i and i+l1 in the two images. The
solid, dotted, and dashed curves in the plot (right) illustrate estimates of displacement based
on Algorithm 1 for sinusoidal images with frequencies Q equal to 1, 2, and 3, respectively.
The curves are computed from Equation 6.3.

quently, all dependence on the summation region cancels in the registration estimate.

Plots of the relation between the estimate d. and the imposed displacement d. are

illustrated in Figure 6-1 for images with three different spatial frequencies. The esti-

mated displacement is exactly equal to the imposed displacement when the imposed

displacement is equal to -1, 0, and 1 pixel for all spatial frequencies. Estimates are

odd symmetric with respect to the displacement, systematically too small for subpixel

displacements, too large for displacements between 1 and 7r/2 (half the wavelength),

and are periodic with a period equal to the wavelength of the sinusoid. The differ-

ence between the estimate and imposed displacement approaches 0 for low spatial

frequencies (Figure 6-7 and Figure 6-8) and approaches the displacement for higher

frequencies (Equation 6.3).

F
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Algorithm 2

Instead of testing spatial derivative estimators with a support of 4,5,6, etc., we will

test infinite support estimators by using the partial derivative of E in each image:

GC[i, k] = - (Ex(i, 1) + Ex(i, 0))
2

In practice we cannot use this estimator, but we can with our mathematically-specified

example. Since we only have two samples in the time dimension, we use first differ-

ences:

Gt[i, k] = G[i, 1] - G[i', 0] ~ Et

where we have selected approximations that best estimate derivatives at the same

point: (i, 1/2).

Substituting Equations 6.1 into these derivative estimators results in a set of

equations that can be written as

Gt = 2E 1 sin sin (2i+2d G= -E 1 cos Q2sin (2i+2-d)

so that
Ei GtGx 2 Qd(

dX = - = -Gtan (6.4)

Note that, similar to Algorithm 1, all the terms that depend on the summation region

cancel, leaving the estimate independent of the summation region.

This estimator (Figure 6-2) is odd symmetric, correctly estimates 0 displacement,

and overestimates non-zero displacements. It has the distinction of being the only

algorithm examined whose slope at d = 0 is correct. Thus, for very small motions,

dl| < 1, this algorithm is superior to the other 8. The price paid for this excellent

small displacement performance is poor estimates for d = 1: For all frequencies, its

maximum subpixel error is at least 2.5 times worse than Algorithm I (Figure 6-7).

Further, its maximum subpixel error is unbounded as the frequency approaches the

Nyquist rate (r). For frequencies below half the Nyquist rate, the high-quality, small-
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Figure 6-2: Algorithm 2's computational molecules (left) and displacement estimates (right)
for a 1D sinusoidal image. The left computational molecule illustrates the spatial derivative
estimator, the average of the exact derivative of the sinusoid at times k = 0 and k = 1.
The right computational molecule illustrates the temporal derivative estimator, the forward
difference operator applied to pixel i in the two images. The solid, dotted, and dashed curves
in the plot (right) illustrate estimates of displacement based on Algorithm 2 for sinusoidal
images with frequencies Q equal to 1, 2, and 3, respectively. The curves are computed from
Equation 6.4.

displacement estimates and the low-quality, large-displacement estimates cancel: This

algorithm has nearly the same error, averaged over all subpixel displacements, as

Algorithm I.

Algorithm 3

One possible explanation for the worse performance of Algorithm 2 when compared

to Algorithm 1 is the location of the derivative estimators. To test this hypothesis,

we use the same temporal derivative approximation as Algorithm 1:

1 i+1
Gt = 2 E G[i', 1] - G[i', 0] 0 Et.

i'=i

We use the average of two spatial partial derivatives :

1 1 1
G,[i, k] = 1 (Ex (i + - 1) + Ex(i + 0))2 2 2

I,

I/I

S1111.... I .... I ....1111 11 I ,
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Figure 6-3: Algorithm 3's computational molecules (left) and displacement estimates (right)
for a 1D sinusoidal image. The curves are computed from Equation 6.5.

in order to estimate both the space and time derivatives at (i + 1/2, 1/2). We can

evaluate this infinite-support derivate estimator for our mathematically specified si-

nusoidal images.

Substituting Equations 6.1 into these derivative estimators results in

Gt = 2E, sin nd sin n(2i+20+1-d.) Cos

Gx = -E1 cos " sin Q(2i+24+1-d=)

so that
d= Ei GtGx 2 Qdx

GX- G = - tan - cos -. (6.5)dx & GxGx Q' 2 2
Note that, similar to Algorithms 1 and 2, all the terms that depend on the summation

region cancel, leaving the estimate independent of the summation region.

This algorithm (Figure 6-3) is odd symmetric, correctly estimates 0 displacement,

and underestimates non-zero displacements. This algorithm and Algorithm 2 have

the same solution to sinusoidal estimation, except for the cos Q/2 term. This term has

the effect of controlling the maximum subpixel error as the frequency approaches the

Nyquist rate. In fact, its maximum subpixel error is always smaller than Algorithm

111111111111)~111(1111111
..
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2. Nevertheless, it has a larger average error (Figure 6-8) than Algorithm 2 except

for very high frequencies (Q >P 2.5).

This algorithm is qualitatively very similar to Algorithm 1, but quantitatively

worse than Algorithm 1 in every respect. It can be easily shown from the equations

of their estimates that for all subpixel displacements and all frequencies greater than 0,

the error in Algorithm 1 is less than or equal to the error in this algorithm (Algorithm

3). The inequality is strict for nonzero displacements.

Algorithm 4

Another realizable variation (Jdihne, 1990) of Algorithm 2 is to use an average of two

three-point derivative estimators for the spatial derivative approximation:

Gt = G[i, 1] - G[i, 0] , Et

G i •• (G[i + 1, 1] - G[i - 1, 1] + G[i + 1, 0] - G[i - 1, 0]) , Ex.

This third-order derivative estimator could potentially generate better estimates than

second-order estimators. The odd symmetry of derivative estimators require that the

center point of the estimator be zero. Thus, the three-point derivative estimator has

only two non-zero terms. The derivative estimators are co-localized at (i, 1/2).

Substituting Equations 6.1 into these derivative estimators results in

Gt = 2E1 sin -• sin Q(2i+20-d.)

Gx = -El sin cos ýd sin n(2i+20-d.)

so that
_ E GGx_ 2 tan (6.6)d = - = (6.6)d i GxGG sin Q

Note that, similar to Algorithms 1, 2, 3 and 4, all the terms that depend on the

summation region cancel, leaving the estimate independent of the summation region.

This algorithm (Figure 6-4) is odd symmetric, correctly estimates 0 displacement,
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Figure 6-4: Algorithm 4's computational molecules (left) and displacement estimates (right)
for a 1D sinusoidal image. The curves are computed from Equation 6.6.

and overestimates non-zero displacements. It is a poor performer: nearly a order

of magnitude worse than Algorithm I in both average (Figure 6-8) and maximum

(Figure 6-7) error for all frequencies.

Algorithm 5

This algorithm uses one first difference in space and time to estimate the derivatives.

The estimators are not co-localized: the space derivative is best estimated at (i +

1/2, 1) and the time at (i, 1/2). This algorithm is equivalent (Davis et al., 1995) to a

block matching algorithm in which the displacement Xd is determined by minimizing

the sum of the squared differences between the first image and a shifted second image

(Burt, 1984; Bergen et al., 1992; Tian and Huhns, 1986):

xw = arg min e (G[i + x', 1] - G[i, 0]) 2

where G at non-integer coordinates is approximated by linear interpolation.

, .... I I ....I
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Figure 6-5: Algorithm 5's computational molecules (bottom) and displacement estimates
(top) for three frequencies Q of a 1D sinusoidal image. The displacement estimates
were calculated using a summation region of five pixels. Estimates from images with 17
evenly-spaced phases of the sinusoid's phase ¢ are plotted for each frequency. The curves
are computed from Equation 6.7.

The derivative estimators are

Gt = G[i, 1] - G[i, 0] ^ Et

GX = G[i + 1, 1] - G[i, 0] ~ Ex.

Substituting Equations 6.1 into these derivative estimators results in

Gt = 2E 1 sin -d sin (2i+2-d)

Gx = -2E 1 sin a sin (2i+2- 1)
2 2

so that

S= Ei GG
x Ei GxGx

sin "d E sin n(2i+2€-d=) sin f(2i+24-2d=+1)

sin 1 sin 2 n(2i+24-2d,+1)sin 2

Unlike the previous estimators, this algorithm depends on the summation region.

Denote the number of pixels in the summation region N,. N, = 5 is common in

practice (Burt, 1984; Bergen et al., 1992); consequently, we analyze performance for

this case.

h

a)x
n

0-

-1 -

1 I .. I
-1 0 1

(6.7)

= 3
, , I . . . . I . . . . .I I .. . . I .



The derivative approximations are not odd-symmetric (about i), and neither is the

estimate. As shown in Figure 6-5, this algorithm correctly estimates displacements of

0 and 1. At all other displacements, the estimate depends on the phase of the sinusoid.

Estimates of negative displacements are very poor for all frequencies - estimates

may even have the wrong sign for •> 1.43. Estimates of positive displacements are

poor at high spatial frequencies, but become very good (comparable to algorithm 1)

for frequencies below half the Nyquist rate. Its maximum (Figure 6-7) and average

(Figure 6-8) errors for all subpixel displacements do not go to 0 as the frequency goes

to 0, and is greater than Algorithm I for all frequencies.

Algorithm 6

One possible fix to Algorithm 5 is treat both images equally. Instead of minimizing

the sum of the squared differences between the first image and a shifted second image

d= arg min (G[i + X ', 1] - G[i, 0]) 2

Si

shift both images half way:

X = arg min (G[i + , 1] - G[i - 0, O])

G at non-integer coordinates is approximated by linear interpolation.

The equivalent (Davis et al., 1995) derivative estimators use the average of two first

differences to estimate the spatial derivatives, while keeping the simple first difference

for the time derivative:

Gt = G[i, 1] - G[i, 0] , Et

Gx_ •21 (G[i + 1, 1] - G[i, 1] + G[i, 0] - G[i - 1, 0]) - Ex.

The offset first differences in the space derivative approximation and the time deriva-

tive approximation best approximate the derivatives at the same point as Algorithm

2: (i, 1/2).
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Figure 6-6: Algorithm 6's computational molecules (left) and displacement estimates (right)
for a 1D sinusoidal image. The curves are computed from Equation 6.8.

Substituting Equations 6.1 into these derivative estimators results in a set of

equations that can be written as

Gt = 2E 1 sin d sin £f(2i+20-d4)
2 2

Gx = -2E 1 sin a cos 2 ( sin (2i+2-d)

so that
S= GtGx sin "d - (6.8)2
Ei GxGx sin 1 cos (d(68)

Note that, in contrast to Algorithm 5, all the terms that depend on the summation

region cancel, leaving the estimate independent of the summation region.

This algorithm correctly estimates displacements of 0 and 1, overestimates positive

displacements and very poorly estimates negative displacements. Unlike all previous

Algorithms 1-4, this algorithm is not odd symmetric (Figure 6-6). While this al-

gorithm has very small error (matching Algorithm 1) for positive displacements, its

poor negative-displacement makes it worse than Algorithms 1-4 for subpixel displace-

ments in terms of maximal (Figure 6-7) and average (Figure 6-8) error. In contrast to

Algorithm 5, this algorithm's bias goes to zero as the spatial frequency goes to zero.

At higher spatial frequencies, this algorithm performs worse than Algorithm 5.
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A fix that one might consider is to use a combination of this algorithm and its

mirror (generated by flipping the computational molecules about i = 0). The first

step is to get Algorithm 4's estimate. If the estimate is positive, use that estimate; if

negative, use its mirror estimate. This fix would work if Algorithm 4's estimate always

has the correct sign; however, it does not. If the spatial frequency is greater than half

the Nyquist rate (Q > 7r/2), then the estimate is singular at d. = 1 - 7r/Q. For more

negative displacements, the sign of the estimate is wrong. Thus, Algorithm 4's poor

negative displacement performance cannot be eliminated with the above algorithm.

Figure 6-7: Maximum subpixel errors in
estimates of the displacements of a si-
nusoidal image as a function of the spa-
tial frequency Q2 of the image. This
maximum subpixel bias is taken as the
biggest difference between d. and dx for
any IdsI < 1. For Algorithms 1, 2,
3, 4, and 6, the maximum error was
found analytically (black lines). For Al-
gorithm 5, the maximum for a given fre-
quency was approximated by the max-
imum error from estimates with 1,000
evenly-spaced phases (0 < 0 < 2r)
at 100 evenly-spaced subpixel displace-
ments (gray line).

Figure 6-8: Average absolute subpixel
errors in estimates of the displacements
of a sinusoidal image as a function of the
spatial frequency Q of the images. For
Algorithms 1. 2, 3, 4, and 6, the av-
erage absolute error was found analyti-
cally by taking one half of the integral of
the absolute value of the estimate minus
the displacement, as the displacement
ranged from -1 to 1 (black lines). For
Algorithm 5, the average absolute error
for a given frequency was approximated
by the average absolute error from es-
timates with 1,000 evenly-spaced phases
(0 < q < 27) at 100 evenly-spaced sub-
pixel displacements (gray line).
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Table 6.1: Summary of algorithms and their performance for 1D sinusoidal images. The
left column describes the derivative estimators in terms of computational molecules. The
right column shows that algorithm's estimate of displacement between the sinusoidal images
(Equation 6.1).

Computational
Molecules

Estimate of
displacement d.

k=1
1.

k=0

i-1 i i+1

2Gx 2Gt

2.

2Gx

EJI
3.

2Gx

4.

4Gx

5.

Gx

6.

2Gx

Gt

2Gt

EED

Gt

CIDGt010l010I

tan
tan 2

2 tan 2dxQ 2

2 tan - cos -
Q 2 2

2 tan -Pd
sin 0

sin OdE sin (2i+24-d) sin Q(2i+20-2dx+1)
2 2 22sin sin sin2 (2i+2-2d+

sin -

sin 9 cos a(d-1)E 2O

The algorithms and their estimates are summarized in Table 6.1.



i-1 i i+1
k=1 - ++2+ Figure 6-9: Computational molecule resulting from a 2 pixel

moving average performed on the images before applying Al-
k=O 0 I-I-21- gorithm I. This algorithm has the same estimate as Algorithm

4Gx 2Gt I.

6.2.4 Generalizations

Composition rules for equivalent algorithms

Since our test image contains only one frequency, linear filtering merely changes the

DC value (Eo), and the amplitude (El) and phase (€) of the images. None of the

estimates from the 6 algorithms depend on E 0 or El. Only Algorithm 5 depends on 0;

changing ¢ may improve or degrade performance for a specific image, but not general

performance parameters like the maximum (Figure 6-7) or average (Figure 6-8) error.

Thus many algorithms have different computational molecules but the same esti-

mate for sinusoidal images. For example, when the filter h[i, k] = 1(G[i-1, k]+G[i, k])

is combined with Algorithm I, we get the computational molecule illustrated in Fig-

ure 6-9, but the same estimate as Algorithm I.

One dimensional motion of 2D images

We show that under fairly broad conditions, the results for Algorithms 1, 2, 3, 4,

and 6 are unaffected by allowing our image to vary in the y direction. That is, when

the image is sinusoidal in the x direction and displaced only in the x direction, the

x estimate is given in Table 6.1 and the y estimate is 0. The proof uses the two-

dimensional constant brightness equation taken out to the linear terms. In this case,

the estimates are

S G.GG E GGt-E G2 E G.Gt
S G -G, GG,- G2 E G2

dy = - G 2 E GGt+ GGy GGt
EGG, GG,- G2 G2

Let a• I ax = C Gx, where a& is the product of all the terms which can be factored

out of the summation and ax contains all the terms left inside the summation. Make

similar definitions for the other summations.



Theorem 3 For a given estimation algorithm and pair of ID images, if ax = at,

then dX = ot/ox.

Proof: The 1D estimates can be re-written as

E GtGx aiak C a.at
E Gx Gx a' E ai

Substituting ax for at and simplifying gives the desired results.

This factorization is how the estimates were derived in the Results section. The

next theorem states that this factorization is unaffected by letting the image vary in

the y direction, as long as that variation affects the part of Gx and Gt that depend

on the summation region in the same manner.

Theorem 4 For a given estimation algorithm and pair of 2D images, if ax = at,

then (1) dl = at/ax and (2) d, = 0.

Proof: The 2D estimates can be re-written as

am ayat (Fa1, Z emt-Zor O ,, it)

Substituting ax for at and simplifying gives the desired results.

The premises for Theorem 4 are true, for example, for the following generalization

to the images in Equation 4.9:

G[i,j, 0] = Eo + Elf(j) cos Q(i + ¢)

G[i, j, 1] = Eo + Elf(j) cos Q(i + 4 - dx)

where f(j) is an arbitrary function subject to the constraint that brightness cannot

be negative. If we use the same derivative estimators as in Table 6.1 at location j,

then E Gx = ax E f(j)ax and E Gt = ak E f(j)at. Thus if the 1D algorithm was

independent of the summation region (i.e., ax = at), then the 2D algorithm is also.



Similarly, if we average the 1D estimators at the same n points in j and if the 1D

algorithm was independent of the summation region then Theorem 2 still applies and

we get an x estimate that is independent of the variations in y.

A specific example of the 2D generalization is

G[i, j, 0] = Eo + El cos Qij cos Qi

G[i, j, 1] = E 0 + El cos ~ij cos t(i + q - dx)

which is a two-dimensional sinusoid pattern previously used, for example, by Barron

et al. (1994). In that paper, they allowed the image to translate in both directions,

but only reported results for two velocity/frequency pairs. Our results characterize

algorithms in an infinite, three parameter space (x and y spatial frequencies and x

displacement).



6.3 Three-dimensional, pure translation image

registration

In this section we briefly describe the extension of the two algorithms described in

Chapter 4 to three dimensions.

6.3.1 Gradient-based method

Following Section 4.4.1, let A(x, y, z) and B(x, y, z) represent misaligned 3D images

of the same target. We assume that the misalignment is purely translational, so that

d d d d d d
A(x-- -- ) = B(x+ ,y+ ,z+-2 2 2 2 2 2

where (dr, dy, d,) represents the displacement between the two 3D images. If the

displacement is small, we can expand the offset images in Taylor's series and retain

just the linear terms so that

d, &A d4 &A dz 6A d, 6B d, OB dz OB
A(x, y, z) - =OA dy A dA B(x, y, z) + + + .

2 dx 2 dy 2 z 2 ax 2y 2 9z

The 3D images A(x, y, z) and B(x, y, z) are sampled by the camera to give arrays

of pixel values A[i, j, k] and B[i, j, k]. We approximate the images and their partial

derivatives at points midway between pixels in order to obtain consistent estimates.

For example, A ((i + )A, (j + )A, (k + )A) is approximated by A[i, j, k] where

A[i, j, k] = (A[i, j, k] + A[i + 1, j, k] + A[i, j 1, k] + A[i + 1, j +1, k]+

A[i, j, k + 1] + A[i + 1, j, k + 1] + A[i,j + 1, k + 1] + A[i + 1, j + 1, k + 1]) /8

and aA/Ox at ((i+ )A, (j + !)A, (z + !)A) is approximated by

Aq[i, j, k ] = (A[i + 1, j, k ] - A[i, j, k] + A[i + 1, j + 1, k] - A[i, + 1, lk] +

A[i + 1, j, k + 1] - A[i, j, k + 1] + A[i + 1, j + 1, k + 1] - A[i, j + 1, +1k])/4A



where A represents the pixel spacing. Substituting these approximations into the

Taylor's expansion yields

A[i,j,k] - B[i,j,k] = dx(Ax[i,j,k] + Bx[i,j,k])/2

+ dy(Ay[i,j,k] + By[i,j,k])/2

+ dz(Az[i,j,k] +Bz[i,j,k])/2.

Substituting

Gx (i,j,k) =

G,[i, j, k] =

Gz[i, j, k] =

Gt[i, j, k] =

(Ax[i, j, k] + B[i, j, k]) /2

(~,[i, j, k] + [i, j, k]) /2
(Az[i, j,k] + z[i, j, k]) /2

[iý, j, k] - q[ij, j, k].

we obtain

Gt[i, j, k] = dxGx[i, j, k] + dyG[i, j, k] + dzGz[i, j, k]

which can be regarded as an array i, j, k of equations with three unknowns, dx, dy,

and dz. Because data from a camera are corrupted by noise, the constraint equations

are generally inconsistent. Such equations can be solved using least squares and the

solution can be expressed in closed form:

- 1

EEEGzG,

ZZZGzGx

ZZGzG,

EEEGzGY

EEEGxG,

EEEGzGz

E E E GGt

E E E GGt

EEEGzGt

where the sums are over i, j, and k. We refer to these equations as the "3D gradient-

based algorithm" and (Yd, , , ) as the "3D gradient-based estimate" of displacement.



6.3.2 Linear bias compensation

Following Section 4.4.2, we expect that the 3D gradient-based algorithm has system-

atic errors. The relation between 3D gradient-based estimates (, , d ) and the

unknown displacement (dx, dy, dz) can be approximated by a simple linear model,

Xd Pll P12 P13 dx

Yd P21 P22 P23 dy P dy

Xz P31 P32 P33 dz dz

If the 3D gradient-based algorithm were unbiased, the parameter matrix P would

equal the identity matrix. In general, however, the algorithm is biased and one must

estimate P in order to improve the estimate.

Just as in the 2D case, we re-run the 3D gradient-based algorithm after shifting

the second image by known integer amounts to obtain the information needed to

estimate P. All 8 corners of the shift cube containing the displacement (dX, dy, dz)

are performed to determine the shift at which the estimated displacement is smallest.

The estimate from that corner is combined with the estimates from the corners that

share an edge with the closest corner (see Figure 6-10) are combined to estimate

P. This problem has 12 non-linear equations and 12 unknowns (9 model parameters

and the 3 displacements). Nevertheless, by taking pairwise differences between these

equations, they are easily solved. For example, P12, which represents the dependence

on y of the x estimate, equals the difference between x estimates at the two shifts

that share the y edge.

All of the 3D results in other chapters use this 3D linear bias compensated algo-

rithm.



(1,1,1) Figure 6-10: Selection of shifts for 3D linear bias cor-
rection. The d represents the 3D subpixel displacement
to be estimated. The arrow indicates the distance that
the 3D gradient-based algorithm has to estimate with-
out shifting the second 3D image. In this example, the
estimated distance is smallest if the second 3D image is
shifted +1 pixel in the x and y directions. The 3D linear
bias correction algorithm uses the gradient-based algo-
rithm's estimates from the bolded corners to determine
the coefficients in the parameter matrix P.(1,0,0)



6.4 Extensions to six degrees of freedom

In this section we describe an algorithm for estimating general 3D rigid motion, which

includes both translations and rotations. Unlike the derivations for estimating pure

translations, we derive this algorithm in the continuous domain for both time and

space. This simplification enables us to estimate velocities rather than displacements.

Consequently, the discrete implementation of this algorithm requires the rotations

and translations to be small. How small "small" is has not been investigated. This

method is adapted from one described in Horn and Weldon, Jr. (1988).

Assuming that the brightness of the image is not affected by motion of the speci-

men (Horn and Schunck, 1981), the expansion of the total derivative of image bright-

ness E(x, y, z, t) is
OE Ox +E Oy OE Oz OE
az Ot ay at az at =t

By denoting (OE/Ox, OE/ay, OE/&z)T as Er, (OE/Ot) as Et, and

(ax/at, &y/&t, Oz/Ot)T as rt, the constant brightness assumption can be re-written

as

Er - rt + Et = 0.

rt represents the rigid-body velocity of the imaged target, which is composed of a

translational v and rotational w component:

rt = v+w x r.

Combining these last two equations gives

Er - (v + w x r) + Et = 0 (6.9)

which in the absence of noise is valid for all (x, y, z) at each time t.

In the presence of noise, Equation 6.9 represents an over-determined system equa-

tions for the unknown translational v and rotational w velocities. This system can
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be solved in a least-squares sense by minimizing the sum of the squares of errors:

v = arg min f J[Er -v' + Er (w' x r) + E] 2 dx dy dz.

Using the triple-scalar product identity, Er - (w x r) = (r x Er) -w, we obtain

= arg min [Er- v' + (rx Er) w' + Et]2 dx dy dz.

Differentiating with respect to v and w and setting equal to zero leads to a pair of

vector equations:

(JJfErErT)V+ (fffEr(r x Er)T)w = - ffErEt

( J(rx Er)ErT)v + (fJi (rx Er)(r x Er)T)0= -JJ (rx E)Et

where the differential dx dy dz has been omitted for conciseness, and ABT represents

the outer product of the two vectors A and B.

Assuming the symmetric, 6x6 matrix is invertible, the optimal solution in the

least-squares sense is

--1
v f ff ErErT f f f Er(r x Er)T - f ErEt

0f f f (r x Er)E T f f f (r x Er)(r x Er )T  -f f f(r x Er)Et
(6.10)

The conversion of the above continuous representation into a discrete represen-

tation is a direct extension of methods discussed in Horn and Schunck (1981). The

partial derivatives of the image brightness must be estimated from the measured

brightness G[i, j, k, 1]. As demonstrated earlier in this chapter, the estimates for the

four partial derivatives should be co-localized for best performance. We estimate the
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derivatives at (i + 1/2, j + 1/2, k + 1/2, 1/2):

1 j+1 k+1 1

Gx = - E E E G[i + 1, j', k', t'] - G[i, j', k', t'] 1 EX8 j=j k'=k t'=O

1 i+1 k+1 1

GY = E E E G[i',j + 1,k',t'] - G[i',j,k', t'] ~ Ey
i'=i k'=k tV=0

I i+1 j+1 1

Gz = - E E E G[i', j',k + 1,t']- G[i', j',k,t'] Ez
i'=i j'=j t'=0

1 i+1 j+1 k+1
Gt = - E E E G[i',j', k', 1] - G[i',j', k', 0] Et

i'=i j'=j k'=k

The rigid body motion can now be solved by discretizing Equation 6.10 and using

the above derivative approximations. At least six linear independent equations are

needed to solve for six unknowns in the least-squares sense. We expect in practice

that many more equations are necessary to provide robustness.

The units of time in this derivation are in terms of the camera's frame time.

Thus, the velocities estimated have units of pixels/frame or radians/frame, which is

numerically equivalent to the translation and rotation between the two image volumes.

Since the derivation used velocity, and velocity is the limit of a displacement or

rotation per length of time as the length of time approaches 0, this method implicitly

assumes that the translation and rotation between the two images is small. For

arbitrary translations, the images are still related by linear functions. In contrast, for

arbitrary rotations, the images are related by trigonometric functions which have to be

linearized by a small angle approximation to obtain the above solution. Furthermore,

rotations are order-dependent except for small angles.
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Chapter 7

Using Video Microscopy to

Characterize Micromechanics of

Biological and Man-made

Micromachines 1

7.1 Abstract

Microscopic mechanics at the scale of individual sensory receptor cells play an im-

portant signal processing role in the inner ear. However, there are few direct mea-

surements - in large part because the measurements are technically challenging.

The important structures are small (micrometers) and the motions are even smaller

(nanometers) as well as fast (audio frequencies from 20 Hz to 20 kHz). Furthermore,

to relate the motions of different structures, simultaneous measurements from many

targets are important.

We have developed a new method for visualizing and measuring the sound-induced

motions of inner-ear structures. We use (1) a light microscope to magnify the image

of the inner ear and to project the image onto a CCD camera, (2) optical sectioning

1This chapter is based on Freeman and Davis (1996).
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to obtain sequences of images that characterize the entire 3D structure, and (3) stro-

boscopic illumination to create slow motion video sequences in response to audio-

frequency stimuli. Even after optical magnification, sound-induced displacements of

inner-ear structures are small compared to the pixel spacing of modern CCD cam-

eras. Nevertheless, subpixel motions modulate the brightness field. We have modified

robot vision algorithms to determine motion from changes in the brightness field.

Although this system was designed to study mechanics of the inner ear, it has

broader application. We illustrate possible applications in MEMS with measurements

of the three-dimensional motions of the teeth in a microfabricated comb drive.

7.2 Background

During the past 15 years, microelectromechanical systems have evolved from scientific

curiosities to viable commercial products, holding promise for revolutionizing the

fields of sensor and actuator design. Enormous progress in molecular biology and cell

physiology during those same 15 years has enabled scientists to further understand

the pervasiveness and elegance of design of biological microelectromechanical systems.

Our research group is studying one such system - the cochlea, which is the part of

the inner ear that responds to sound.

The cochlea is a remarkable signal processing unit. It has a single mechanical

input: the piston-like motion of the stapes, which is the last in the chain of middle

ear bones that move when sound strikes the eardrum. Therefore, one could view the

cochlea as a simple displacement sensor - albeit, one with extraordinary sensitivity

(von B kesy, 1960; Fay and Popper, 1994). Using neural signals generated by the

cochlea, humans can reliably detect sounds that cause motions of the stapes on the

order of picometers - i.e., on the order of the diameter of a hydrogen atom. However,

the cochlea is more than a simple displacement sensor (Pickles, 1988). Its neural

outputs manifest considerable signal processing. The cochlea performs a high-quality

frequency analysis of low-level sounds: Q10dB > 600 has been recorded for motions in
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Figure 7-1: Structure of a hair cell. The left panel shows a schematic diagram of a hair
cell and its mechanically sensitive hair bundle. The scanning electron micrograph in the
right panel shows a surface view of a hair bundle in the cochlea of the lizard viewed in the
direction of the arrow. Each bundle contains 50 to 100 sensory hairs.

the saline-filled cochlea of the bat (K6ssl and Russell, 1995). Furthermore, cochlear

signal processing is profoundly nonlinear, even at the threshold of hearing. One

important nonlinearity is compression. Humans detect sounds differing in intensity

over a 120 decibel range. This range of intensities is compressed as it is encoded for

neurons with considerably smaller (20-50 dB) dynamic ranges. Our group is interested

in understanding the micromechanical mechanisms underlying these signal processing

capabilities of the cochlea.

Cochlear mechanics are organized hierarchically. Sensory reception in the

cochlea is mediated by hair cells (Hudspeth, 1983; Hudspeth, 1989), which are spe-

cialized for mechanoreception by a microscopic bundle of mechanically sensitive hairs

(Figure 7-1). Rotations of a hair bundle cause changes in the intracellular potential of

the hair cell, thereby stimulating the release of a neurotransmitter that causes action

potentials of cochlear neurons.

The mechanisms by which motions of hair bundles change intracellular potential

involve more microscopic mechanical events. Like all cells (Weiss, 1996b; Weiss,

1996a), hair cells are surrounded by a cell membrane. The cell membrane consists

of a lipid bilayer that acts as an electrical and chemical barrier between the inside
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Figure 7-2: Schematic representation of stress-gated ion channels in hair cells. Rotation
of the hair bundle (right) changes the mechanical stress in tip-links, which are represented
here as springs connecting adjacent sensory hairs. The change in tip-link stress modulates
the ionic conductivity of ion channels, schematized here as trap-doors. The inset shows a
magnified view near one tip-link. The gray and black images were taken from the left and
right panels, respectively.

and outside of the cell. In addition, the cell membrane contains integral membrane

proteins. One class of membrane proteins, the ion channels, act as pores through

which ionic currents can pass between the inside and outside of the cell. Hair cells

contain ion channels whose state of ionic conductivity is modulated by mechanical

stress. The mechanical stress that acts on these stress-gated ion channels is believed

to be generated by filaments called tip-links (Pickles and Corey, 1992; Hudspeth and

Gillespie, 1994), which connect the tips of adjacent sensory hairs (Figure 7-2).

Fluid dynamics plays a key role in cochlear micromechanics. Hair cells do

not operate in isolation but are organized along with other cells and tissues to form

a sensory epithelium (Figure 7-3). Displacements of the stapes cause pressures in the

fluids that act to deform the sensory epithelium. As the tissues deform, shearing mo-

tions between the hair cells and overlying tectorial membrane cause rotations of hair

bundles. Forces of fluid origin play a key role in determining motions of this coupled,

hydromechanical system. Interaction of mechanical properties of the epithelium with

inertial fluid forces accounts for much of the frequency selectivity exhibited in mo-

tion of the epithelium (Neely, 1981; Siebert, 1974; Viergever and Diependaal, 1986).

Fluid forces play a key role in determining the motions of hair bundles (Freeman and
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Figure 7-3: Schematic cross-section of the cochlea. The sensory epithelium and overlying
tectorial membrane (TM) separate two fluid-filled compartments. One is coupled to the oval
window (OW), into which the piston-like foot of the stapes fits; the other is connected to
the round window (RW), which is covered by a thin membrane. The right panel illustrates
deformations caused by motions of the stapes.

Weiss, 1988; Dallos et al., 1972) and contribute to a micromechanical resonance of

some hair bundles of lizards (Freeman and Weiss, 1990).

Cochlear structures are extensively cross-coupled. Although organized hier-

archically, the levels are not independent. For example, the state (open or closed) of

stress-gated ion channels (nanometer scale) has been shown to affect the stiffness of

the hair bundle (micrometer scale) (Howard and Hudspeth, 1988). Motions of hair

bundles are coupled both mechanically and hydrodynamically to one another and to

the sensory epithelium (millimeter scale). Through the surrounding fluids, hair cells

can also interact chemically and electrically.

In humans, the cochlear micromachine consists of approximately 15,000 hair cells,

each with more than 50 sensory hairs and associated tip-links in a saline-filled environ-

ment. The challenge is to understand how these parts - more than a million in each

ear - interact to form a system with the remarkable signal processing capabilities of

the ear.

7.3 Methods

We have developed a video system to measure sound-induced motions of cochlear

structures in an in vitro preparation of the alligator lizard cochlea (Davis and Free-

man, 1995). The cochlea is mounted in an experimental chamber so that it can be

viewed with a microscope while simultaneously being stimulated by an underwater
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Figure 7-4: Cross-sectional view of the experimental chamber. The cochlea is clamped
so that it seals a circular opening between two fluid-filled compartments. The cochlea is
stimulated by a piezoelectric disk that generates hydrodynamic pressures in the bottom
compartment; the top compartment is vented to the atmosphere. Sound pressure is cali-
brated using an underwater microphone located just under the cochlea.

pressure source (Figure 7-4). The chamber is mounted on the stage of a light mi-

croscope (Zeiss Axioplan, New York, NY) that projects magnified images of cochlear

structures onto a scientific grade CCD camera (Photometrics 200 series with a Thomp-

son 7883 CCD, Tucson, AZ). The camera has 576 x 384 pixels with 23 pm spacing.

Total magnification between the target and camera can be adjusted from 5 to 600.

Optical sectioning. Many biological tissues, including hair cells, are nearly trans-

parent. Images can be obtained from any part of such a tissue by altering the mi-

croscope's focus control. Thus images from a series of focal depths can be combined

into a three-dimensional image that characterizes all of the structures in the cochlea,

including hair cells, hair bundles, and the tectorial membrane. Optical sectioning

can also be used to generate three-dimensional images of opaque targets. However,

only unoccluded surface structures are visible. To automate the imaging of three-

dimensional structure, a computer-controlled stepper motor is used to adjust the

focus control of the microscope with a resolution of 1/11 1 m per step.

Stroboscopic illumination. The important motions of cochlear structures are at

audio frequencies, i.e., from 20 Hz to 20 kHz. These frequencies exceed the maximum
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rates of scientific-grade (12-bit) video imagers (it takes 3 seconds for our system to dig-

itize a full frame image and save it to the disk). Therefore, stroboscopic illumination

is used to slow the apparent rate of motion. We typically use a gas discharge strobe

lamp (Chadwick-Helmuth Co. Inc., El Monte, CA) which generates high intensity

illumination. However, the light from a gas discharge strobe is not spatially uniform

and pulse-to-pulse variations can cause motion artifacts. Therefore, light from the

strobe is coupled to the microscope through a fiber optic scrambler (Technical Video

Ltd., Woods Hole, MA). The scrambler also isolates our system from the consider-

able electromagnetic interference that is generated by the strobe. The duration of

the strobe pulse (8 ps) limits the maximum frequency of motion that our system can

measure. To relax this constraint, we have recently developed a stroboscopic light

source using an LED (AND Division of Purdy Electronics Corp., Sunnyvale, CA).

Although they generate less intense light, LEDs radiate much less electromagnetic

interference and are orders of magnitude faster.

Subpixel motion estimates from video images. Fundamental limitations on

image resolution and on motion detection from images are different. Image resolution

is limited by the optics (Hopkins and Barham, 1950). To a first approximation,

images are blurred by convolution with a point-spread function (Goodman, 1968; Born

and Wolf, 1975), which limits resolution to distances on the order of the wavelength

of light (typically 550 nm). However, one can detect motions of a blurred image

that are significantly smaller. The fundamental limitations on motion detection are

determined by the quantum nature of light (shot noise) and by the video imager.

Subpixel displacements can be estimated from changes in brightness (Figure 7-

5) using methods originally developed for robot vision (Horn, 1986). Generally we

identify regions of interest that contain a single moving structure. Images at successive

times are then analyzed to determine the best rigid-body translation in a least-squares

sense (Horn and Weldon, Jr., 1988).
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Figure 7-5: Variations in brightness caused by subpixel motions. The array of squares in
each panel represents the pixels of a video camera; the gray disk represents the image of a
simple scene; and the bar plots represent the brightness of the row of pixels indicated by the
arrow. The three panels illustrate rightward motion of the disk. Although the displacements
are subpixel, information about the motion is available from changes in the brightness of
the pixels near the edges.

10 pm

Lx

Figure 7-6: Cochlear structures in the alligator lizard. This figure shows a portion
(240 x 240 pixels) of a video image of the lizard cochlea. The white square surrounds
one hair bundle; several other hair bundles are also visible. The faint vertical structure at
the right edge of the image is the edge of the tectorial membrane (see Figure 7-3). Total
optical magnification from specimen to video camera was 100x.

7.4 Results

7.4.1 Sound-induced motions of cochlear structures

Figure 7-6 shows the cochlea of an alligator lizard as imaged with our system. The

hair bundles of hair cells and the overlying tectorial membrane are clearly visible.

Generally 30 to 60 hair cells are contained in the field of view. Approximately 20 can

be seen in Figure 7-6, which shows only a portion of the camera's field of view.

Because the cochlea is nearly transparent, one can view structures both above and
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Figure 7-7: Three-dimensional image of a hair bundle. The bottom 2D image shows a
magnified and tilted version of the highlighted part of Figure 7-6. The other images are
from a sequence of planes, each 3 pm above the previous one. The double-headed arrows
associate each image with the corresponding plane of section in the schematic drawing on
the left. The scale bar applies to both the x and z directions; y is foreshortened.

below those shown in Figure 7-6 by changing the plane of focus. In this experiment,

images were acquired at 13 planes of focus separated by 3 pm. In general, one

can obtain sufficiently many images to determine the three-dimensional structure of

any visible structure in the cochlea. Figure 7-7 illustrates how the sequence of two-

dimensional images can be combined to obtain a three-dimensional image of a hair

bundle and overlying tectorial membrane.

Three-dimensional images of the cochlea were obtained at 8 phases of the sinu-

soidal stimulus. The resulting data set consisted of 104 images of 576 x 382 pixels (13

planes times 8 phases) and total data collection time was 5 minutes. This amount

of time is large compared to the time needed to determine the motion of a single

structure using other measurement methods, such as laser interferometry. However,

from the resulting 104 images, one can estimate the three-dimensional displacement

waveform for every resolvable structure in the field of view. Thus the total measure-

ment time is in fact extraordinarily short compared to the time it would take to make

motion measurements of each structure using another method. We illustrate the util-

ity of this feature by showing how two separate analyses of the same data set may

be used to address two issues at different spatial scales - the relation between hair
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bundle motion and that of the overlying tectorial membrane, and relations among

the motions of neighboring sensory hairs within a hair bundle.

To determine motions of the hair bundle and overlying tectorial membrane, we

analyzed motions of the structures in the 6 images of Figure 7-7. Displacements near

the base of the hair bundle were larger than those near the tip (Figure 7-8), which

demonstrates that the hair bundle is rotating about its point of attachment to the

hair cell. Displacements of the tectorial membrane were generally smaller than those

of either the base or tip of the hair bundle. Furthermore, as distance from the base

of the hair bundle increases, the motion shows increasing phase lag.

To get a quantitative estimate of hair bundle rotation, each displacement waveform

was subtracted from the displacement waveform for the base. The results show that

the displacement of the tip of the hair bundle relative to the base is 0.3 pm peak-to-

peak. Since the planes through the tip and base are separated by 6 jm, hair bundle

rotation is approximately 30 peak-to-peak. Motions of five other hair bundles in this

data set were analyzed and the results were qualitatively similar to those shown in

Figure 7-8.

In all of our 12 experiments to date, displacements of the tips and bases of hair

bundles have been larger than those of the overlying tectorial membrane for frequen-

cies throughout the lizard's auditory range. This result is consistent with the idea

that inertial forces arising from the mass of the tectorial membrane and surrounding

fluid tend to resist motion of the tectorial membrane (Mammano and Nobili, 1993).

This result is not consistent with other theories that suggest that the tectorial mem-

brane is a resonant structure (Allen, 1980). However, our results should be regarded

as preliminary. Control experiments must be performed to assure that the cochlea is

not damaged during experimentation. Regardless of the ultimate resolution of this

particular issue, the important point is that video microscopy can be used to make

measurements to directly test theoretical conceptions.

The same data set used in the previous analysis can also be used to study mechan-

ical events at the level of individual sensory hairs. The sinusoidal stimulus generates

nearly sinusoidal motions of all the sensory hairs (top right panel of Figure 7-9). To
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determine if there is relative motion between the sensory hairs, we applied our mo-

tion detection algorithm to estimate the motion of the right edge of the bundle and

shifted the images to compensate for that motion. The resulting images show relative

motions between sensory hairs (bottom right panel of Figure 7-9).

Although tip-links are too small to be resolved in a light microscope, the results in

Figure 7-9 show that we can directly measure the motions of the sensory hairs to which

the tip-links are attached. The relative motions of the tips of the sensory hairs give

direct estimates of tip-link stretch, which is the physiologically important mechanical

input for transduction mechanisms at the nanometer scale. Although preliminary,
our results suggest that tip-links are stretched not only because the distance between

insertion points increases when the hairs are rotated by equal angles (as illustrated

in Figure 7-2), but also because the angular displacement of shorter hairs is greater
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Figure 7-9: Motions of sensory hairs within a bundle. The left panel is an enlarged image
of the hair bundle in Figure 7-7, at a plane of section near the center of the bundle (second
from bottom). The highlighted region was extracted from each of eight images acquired
during the stimulus period and positioned so that regions from earlier phases are on top
of regions from later phases. The resulting montage, which illustrates motions during one
period, is repeated three times to generate the images in the right panels. The upper and
lower right panels are similar, except that the images used to generate the lower panel were
first shifted to cancel the motion of the right part of the hair bundle.

than that of longer hairs. Motions of individual sensory hairs have been measured

elsewhere (Duncan et al., 1995; MacDonald and Corey, 1996) but only for hair bundles

that were stimulated with a water jet; the membranes through which natural stimuli

are delivered had been removed.

7.4.2 Three-dimensional motions of a comb drive

Although originally developed to measure motions of cochlear structures, our video

system has broader application. We have performed several pilot experiments to

determine if it can be used to measure the motions of man-made micromechanical

devices.

Figure 7-10 shows an image of a microfabricated accelerometer obtained using our

system. The comb drive was driven with an 8.8 Hz sinusoidal voltage, 44 volts peak-

to-peak with an 80 volt DC offset. Images were obtained at 45 planes of focus with

0.45 ,pm spacing to generate a three-dimensional image. Three-dimensional images

taken at 8 phases of the sinusoidal stimulus were analyzed to determine the motions

of the stationary and fixed teeth highlighted in Figure 7-10. Displacements of the

moving tooth were approximately 2 pm peak-to-peak in the horizontal direction (left
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Figure 7-10: Motions of teeth in a comb drive. The field of view of this image (64x
magnification) of a microfabricated accelerometer is focused on the central shuttle and
associated comb drives. Most of the folded-beam cantilever that supports the shuttle lies
above and below the field of view; only a small portion of it is visible near the center of
the image. The portions of the images in the white boxes were analyzed to determine the
motions of a stationary (top) and moving (bottom) tooth of the comb drive, and results are
shown in the three plots as dashed and solid curves, respectively. The left, center, and right
panels show average displacements in the horizontal, vertical, and out-of-plane directions,
respectively.

plot, solid line). These displacements are significantly larger than the corresponding

displacements of the fixed tooth, which serve as control measurements to assess the

stability of the measurement system. Vertical motions (center plot) were about 6 nm

peak-to-peak for both the fixed and moving teeth, which is near the noise floor of our

measurement system (without averaging).

Our system can also measure out-of-plane motions. Although one cannot use

optical sectioning to "see through" opaque structures, three-dimensional images of

opaque structures still provide information about three-dimensional structure and

motion, as illustrated in Figure 7-11. Image brightness is greatest when the tooth

is "in focus" and decreases as the plane of focus is moved higher or lower. Our

motion detection algorithm takes advantage of these changes in brightness to align

three-dimensional images of the same tooth taken at different phases of the sinusoidal

stimulus. Results indicate that the out-of-plane displacement of the moving tooth was
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Figure 7-11: Three-dimensional image of a tooth in a comb drive. This figure illustrates 6
images of the stationary tooth highlighted in Figure 7-10. The images are at different planes
of focus, separated by 2.27 pm. The double-headed arrows associate each image with the
corresponding plane of section in the schematic drawing on the left. The scale bar applies
to both the x and z directions; y is foreshortened.

80 nm peak-to-peak. The out-of-plane displacement of the stationary tooth was much

smaller (26 nm peak-to-peak).

7.5 Discussion

We have developed a video system that can be used to characterize the motions of both

biological and man-made micromechanical systems. Using stroboscopic illumination,

we observed motions over the entire audio range of frequencies, and can in principle

observe motions at much higher frequencies. Using the optical sectioning property of

a light microscope, we measured three-dimensional motions of both transparent (bi-

ological) and opaque (silicon) structures. Quantitative results were obtained directly

from the video images, based on motion detection algorithms originally developed for

robot vision.
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7.5.1 Implications for hearing research

Using the video system, we have obtained the first direct experimental observations of

the relation between sound-induced motions of the tectorial membrane and hair bun-

dle displacement. We have also obtained the first direct experimental observations of

sound-induced motions of sensory hairs within a bundle. Although these results must

be regarded as preliminary until control experiments have tested the viability of our

preparations, they demonstrate how video microscopy can be used to probe important

cochlear mechanisms at a variety of spatial scales: from ion channels (nanometers) to

hair bundles (micrometers) to the entire cochlea (millimeters). Video microscopy has

opened the experimental door to understanding key relations in cochlear mechanics

that have previously been addressed only theoretically.

7.5.2 Implications for MEMS

Tools for characterizing the performance of man-made micromachines are primitive

by comparison to those available for electronic devices. For many micromachines,

tools for assessing internal failure modes do not exist, and only the terminal behav-

iors can be tested. The inability to characterize internal failure modes has important

consequences for both the designer and fabricator. For the designer, it can result

in large numbers of prototypes. For the fabricator, it means reduced yields because

common techniques such as laser trimming cannot be applied. As the complexity

of micromachines increases and as their production becomes a commercial endeavor,

developing better tools for characterizing the performance of micromachines will be-

come crucial. Results in this paper demonstrate the potential use of video methods

for characterizing the performance of MEMS devices.

7.5.3 Comparison to other motion measurement systems

A number of systems have been developed to measure micromechanical motions. Our

method is different from and has several advantages over previous methods, including

the M6ssbauer method (Johnstone and Boyle, 1967), photodiode method (Crawford
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and Fettiplace, 1985), capacitive probe (Wilson and Johnstone, 1975), and laser in-

terferometry (Khanna and Leonard, 1982; Ruggero and Rich, 1991). (1) Our motion

estimates are derived directly from sequences of images. Thus all of our quantita-

tive results can be checked qualitatively by simply viewing the slow-motion video

sequences. For example, to test that the displacement estimates in Figure 7-8 were

qualitatively correct, each image was shifted by the estimated displacement in a di-

rection to compensate for the motion. The resulting sequence of images, which should

be stationary, provided a test that motions were estimated properly. (2) In the video

method, the identity of the target whose motion is measured is unambiguous since

motion is determined directly from images of the target. All the other methods listed

above require additional observations to determine which motion is being measured.

(3) Unlike any of the other methods listed above, the video method allows simul-

taneous measurement of motions of many structures in the same specimen. This is

a significant advantage when determining interrelations among motions of different

structures. (4) The video method provides estimates of all three components of rigid

body translation for every structure in the image. The other methods listed above

provide an estimate of just one component of motion. (5) In contrast to some meth-

ods (e.g., the Mdssbauer method, some laser interferometric methods (Cooper and

Rhode, 1992) and some photodiode methods (Crawford and Fettiplace, 1985)) our

method does not require any mechanical contact with the moving specimen. Me-

chanical contact has been shown to affect motions of cochlear structures (Khanna

and Leonard, 1986), and it seems inescapable that similar degradations would occur

in high-performance man-made micromachines.

The video method has one important disadvantage: it is particularly sensitive to

vibrations of the microscope and camera. To reduce vibrations, we use a pneumatic

vibration isolation table, which very effectively reduces vibrations at high frequencies

but has little effect for low frequencies (<10 Hz). Although low frequency vibrations

contaminate the output signals of all motion detectors, the contamination can gener-

ally be filtered out - provided that the frequencies of interest are sufficiently different

from the contamination frequencies. However, in the video method, images are ac-
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quired at a low rate, typically 0.3 Hz. Low frequency vibrations of the microscope

or camera cause displacements of the images that cannot be distinguished from mo-

tions near the frequency of interest. These vibrations determine the noise floor of our

measurements, which under optimal conditions (e.g., high contrast target, no nearby

structures with confounding motions) is approximately 5 nm without averaging -

i.e., 1% of the wavelength of the light that generates the images. With averaging we

have reduced the noise to less than 1 nm. We are currently working on other methods

to reduce this noise floor.
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Chapter 8

Direct Observations of Inner-ear

Mechanics

8.1 Introduction

All vertebrates transduce the mechanical energy in sound into an electrical repre-

sentation at sensory cells called hair cells (e.g., Howard et al., 1988). Hair cells

have a mechanically sensitive tuft of sensory hairs (hair bundles) that protrude into

the fluids in the inner ear. In most cochleae including all mammals, a gelatinous

membrane called the tectorial membrane (TM) surrounds the hair bundles. Be-

cause of the close proximity to the transduction apparatus (the hair bundles), the

TM is thought to play a critical role in cochlear function (e.g., Davis, 1958; Dallos

et al., 1972; Allen, 1980; Freeman and Weiss, 1988; Mammano and Nobili, 1993).

Although the tectorial membrane plays a prominent role in theories of cochlear

function, we are the only group to have published measurements of sound-induced

motions of both the TM and underlying hair bundles (Davis and Freeman, 1995; Free-

man and Davis, 1996). The paucity of direct measurements is due to the difficulties

in measuring sound-induced motions: the motions that result from moderate sounds

are smaller than 1 Am and the tectorial membrane is almost transparent.

This chapter describes in detail our work done to measure sound-induced motions

of an in vitro preparation of the alligator lizard cochlea, including motions of the
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tectorial membrane (TM) and underlying hair bundles.

The lizard was chosen as the experimental animal for many reasons. First, the

lizard cochlea is planar (Mulroy, 1974) and therefore simple to image with a micro-

scope. Second, the lizard cochlea has two distinct anatomical regions-one with and

one without a TM. Thus, insight into the functional significance of the TM can be

obtained by comparing responses from the two regions. Third, there exists a large

body of information about cochlear function both proximal and distal to the mi-

cromechanics in the lizard cochlea. This information along with measurements of

the sound-induced cochlear motions can be used to understand the entire peripheral

auditory system. Fourth, the lizard shares non-linear properties such as two tone

suppression (Holton and Weiss, 1978; Holton, 1980) and a compressive non-linearity

(Holton and Weiss, 1983) with mammalian cochleae. Consequently, understanding

the lizard cochlea may provide insight into mammalian hearing as well.

An in vitro preparation was chosen primarily for imaging considerations. In situ,

one has difficultly imaging the basilar papilla and cannot image hair bundles or the

TM. In contrast, in vitro, individual sensory hairs of hair bundles and the TM can

be resolved.

This work included four major areas: (1) designing the apparatus for holding,

stimulating, and measuring motions of in vitro preparation, (2) developing the in

vitro preparation, (3) measuring sound-induced motions, and (4) developing mea-

surement protocols for addressing important issues in cochlear physiology. As soon

as the apparatus and in vitro preparation were sufficiently advanced to make sound-

induced motion measurements, work in the four areas proceeded in parallel. Parallel

development enabled us to identify the most significant technical hurdles more quickly.

However, most of our sound-induced motion measurements were not done with our

most recent experimental apparatus. Furthermore, we have only very recently been

able to measure an in vitro electrical response from the mechanoelectric transduction

of sound. The methods for maintaining an electrical response in vitro are still being

worked out; consequently, none of the motion measurements were done on cochleae

that could transduce sound. Nevertheless, the motion measurements performed are
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the first report on sound-induced motions of the tectorial membrane and underly-

ing hair bundles, and they demonstrate how these methods can be used to address

important issues in cochlear mechanics.

With motion measurements of the tectorial membrane (TM) one could determine

if the TM moves as a rigid body at auditory frequencies. The TM has been modeled

both as a rigid body (e.g., Davis, 1958; Freeman and Weiss, 1988) and as a compliant

structure (e.g., Allen, 1980).

With additional measurements of the reticular lamina, one could determine the

relation between TM and reticular lamina (RL) motion. In particular, by compar-

ing the relative motion magnitudes, one could determine if the TM is resonant as

hypothesized by Allen (1980). While the ratio of the motions of the TM to the RL

is useful for determining which structure moves the most, that ratio is not the most

significant for understanding the functional role of the TM. Relative motions of the

tectorial membrane and reticular lamina is thought to play a key role in determining

the angular displacement of hair bundles. To assess the functional role of the TM,

one could compute the difference between the radial displacements of the TM and

RL. To account for the variability in the magnitude of the motion in different prepa-

rations and at different frequencies, each difference between displacements of the TM

and RL is normalized by the corresponding RL displacement to yield the microme-

chanical transfer function used in previous theoretical studies (Allen, 1980; Freeman

and Weiss, 1988). With this transfer function, one could determine whether the fre-

quency selectivity found on the auditory nerve (Weiss et al., 1976) is the same as the

frequency selectivity of the relative motion between the TM and RL.

A widely held belief in cochlear mechanics is that the rotation of hair bundles

that are in contact with the tectorial membrane is proportional to the relative mo-

tion between the TM and RL. For example, Davis (1958) hypothesized that all hair

bundles are deflected by differential displacement between the TM and RL. When

later evidence suggested that mammalian inner hair cells are not attached to the

TM, Dallos et al. (1972) modified Davis's (1958) model for inner hair cells, but re-

stated the claim that outer hair cells are deflected by differential displacement between
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the TM and RL. This belief is also held in more modern theories of mechanics (e.g.,

Allen, 1980; Freeman and Weiss, 1988; Neely, 1993). Experimentally, Hemmert et al.

(1995) measured motions of the TM and basilar membrane, but their method pre-

cluded measurement hair bundle or reticular lamina motion.1 Consequently, in order

to relate their measurements to hair cell stimulation, they also have to assume some

relation between TM motion and hair bundle rotation.

With additional measurements of the tips of the hair bundles underlying the TM,

one could determine the relation between motions of the TM, RL, and tips of the hair

bundles. By taking the ratio between radial displacements of the TM and tips of the

hair bundle, one could determine if the they are in fact the same. Furthermore, one

could also directly compute the relation between hair bundle rotation and TM/RL

shear by dividing the difference between the displacement of the tips and the RL by

the difference between the displacement of the TM and the RL. With anatomical

knowledge that the TM covers the tips of the hair bundle, these ratios can also

determined whether the TM shears throughout its thickness, which is a mode of

motion not previously reported.

8.2 Methods

8.2.1 Motion-measurement apparatus

The small displacements that we wish to measure place special constraints on the

video-imaging system. Even after magnification by a light microscope, the displace-

ments generate only small intensity differences in the individual pixels of the CCD

camera. These small intensity differences, and therefore motion detection algorithms

based on those differences are acutely sensitive to imaging degradations such as those

caused by shot noise, dark noise, read noise, charge transfer efficiency, and inter-pixel

gain variations (See Janesick et al. (1987) for details on CCD cameras). Accordingly,

1They placed high-contrast marker beads on the TM and basilar membrane and used both laser
doppler and a photodiode pair to estimate the beads' motion. Beads could not be placed on the
reticular lamina or hair bundles; therefore, their motion could not be measured.
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we use a scientific-grade CCD camera (Photometrics 200 series, 12 bit dynamic range,

Photometrics AZ) to improve the system's motion resolution. Since the frame rate of

scientific-grade CCD cameras is very slow compared to audio frequencies, the inner

ear must be stroboscopically illuminated to slow its apparent motion.

To prevent spatial aliasing by the CCD camera, the image of the specimen must

be bandlimited by a spatial low pass filter. Since all microscopes have finite-sized

apertures, they all bandlimit the images they transmit. Accordingly, we use micro-

scope optics (Zeiss Axioplan with a 40x, 0.75 NA water immersion objective) that (1)

have the greatest resolution (highest spatial cutoff frequency) and (2) have enough

magnification to prevent spatial aliasing.

The signal for the acoustic drive and the strobe light were generated by a two-

channel, 12 bit D/A converter (DT 1497, Data Translations). The acoustic drive was

temporally low passed filtered with a passive 9 kHz reconstruction filter (J1202, TTE,

Inc. Los Angeles, CA), amplified by a 40 dB amplifier, and powered a piezoelectric

disk attached to the experimental chamber. The piezoelectric disk converted the

electrical energy into acoustic energy in the experimental chamber's saline. The other

channel of the D/A converter is used to trigger the strobe light at known phases of

the stimulus frequency, so that stop-action pictures can be taken.

With the above hardware, stroboscopic pictures can be taken with an average rate

of one picture every three seconds. We will now describe some aspects of the motion

measurement system in more detail.

Illumination

Stroboscopic illumination is used to slow the apparent motion of the cochlea. We use

two different sources for stroboscopic illumination. The first is a gas-discharge tube

(Model 8440, Chadwick-Helmuth, CA), and the second is an LED2.

Three types of instabilities are common in strobe lights: temporal, intensity, and

2Typically we use a 18 candela, 590 nm, non-diffused LED with a 40 viewing angle (AND190HYP,
AND division of Purdy Electronics, CA) or a 1 candela diffused red LED with a 600 viewing angle
(CMD53SRD/G, Chicago Miniature Lamp, Buffalo Grove, IL).
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spatial instabilities. Temporal instabilities (variations in the time between the trigger

and the flash) cause the specimen to be illuminated at the wrong time, leading to

incorrect motion measurements. Compensating for temporal instabilities is extremely

difficult; accordingly, both of the devices that we use have very small temporal insta-

bilities (< 1 ps). The gas-discharge tube followed by a broad-band green filter has

an instantaneous brightness about 4,000 times that of the LED; however, the strobe

light has much greater intensity and spatial instabilities.

Gas-discharge strobe. The intensity instabilities (variations in the brightness of

individual flashes) for the strobe light are typically 4.5%. Since small motions do

not change the entire picture's average brightness, the average brightness of all the

pictures can be normalized to have the same value. Thus, problems resulting from

intensity instabilities are largely eliminated and typically do not cause errors in motion

estimation.

Spatial instabilities, caused by wandering of the strobe light's arc, result in a

nonuniformly-illuminated specimen and the structure of the nonuniformity changes

with every picture. Since subpixel motion detection algorithms interpret changes in

intensity as motion; spatial instabilities must be minimized. The spatial instabilities

are minimized through the use of a fiber optic scrambler (Technical Video, Ltd.,

Woods Hole, MA).

If more than one strobe flash per picture is desired (e.g., to increase the light

level, or to average out substrate vibrations, or to average out intensity instabilities),

the strobe light can flash up to 500 Hz. However, above 70 Hz the total amount of

light received no longer increases linearly with the number of flashes. Below a 70 Hz

flash rate, the coefficient of variation (standard deviation divided by the mean) for

the average picture brightness is 4.5% for 1 flash, < 3.8% for 2 flashes, and < 1.5%

for 25 flashes per picture.

The gas-discharge strobe has a pulse-width (full width at half the maximum light

output) of 12-23 ~s, depending on the firing rate.3 Thus the sampling theorem implies

3Above 140 flashes per second the pulse width is 12 ps; below 70, 23 ps. We typically use the
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that the gas-discharge strobe cannot be used to sample signals above 41-22 kHz. We

typically acquire images at 8 phases of motion; therefore, the strobe light starts to

limit the independence of the 8 phases above 10-5 kHz (depending on the firing rate).

LED. The LED is placed in a tungsten lamp house at the same position as a

tungsten bulb. The LED is driven by a computer-controlled D/A converter via a

voltage-to-current converter. The intensity of the emitted light from an LED is nearly

linear with respect to the current through the device, and has a response time in the

10s of nanoseconds. Because LED's are so fast, the shortest light pulse width is

limited in practice by the electronics driving the LED to roughly 1 Ius. The lens on

the LED makes the illumination almost critical rather than K6lher (Inoue, 1986). The

LED's die is visible in the specimen plane; a low-angle diffuser is used to make the

light more uniform. LED's with integrated diffusers can also be used, and preliminary

results indicate that they yield more consistent motion estimates along the optic axis.

Nevertheless, the only diffused LED that is bright enough for motion measurements

emits red light. Red light reduces the microscope's resolution (Born and Wolf, 1975).

The apparent size of the LED at the specimen plane of the microscope depends on the

magnification used and the viewing angle of the LED. Typical viewing angles used

are 4-15'; smaller viewing angles increase the brightness but decrease the illuminated

field of view.

Unlike the gas-discharge strobe, the LED must be flashed many times in order to

generate sufficient light. Exposure times on the order of 62 ms are needed at 100x

magnification for the lizard preparation. In order to achieve this amount of light, the

LED is pulsed on with typically a 1/8th duty cycle for 0.5 seconds (See Figure 8-1).

Pulsing the LED on and off over 0.5 seconds has the advantage of averaging out the

substrate vibrations (Figure 5-1).

The LED has negligible spatial, temporal, and intensity instabilities, making it

the strobed light source of choice. On the other hand, in high light-level applications

(e.g., very high magnifications or polarized microscopy), the gas-discharge strobe can
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Stimulus

Light on
Light off 1 P 2

Pic. 1 Pic. 2

Figure 8-1: Light integration. The
top curve shows a time waveform of

Time the electrical stimulus to the specimen.
The bottom curve shows the command
voltage (that controls the current) to
the LED. The LED is turned on mul-
tiple times at the same stimulus phase
before the camera reads out the image.

generate 30 times (4000 x 14.10-6 x 70/.125) more light per second than the brightest

LED.

Magnification

We analyze the effects due to diffraction to find the minimum microscope magnifica-

tion consistent with the sampling theorem. To the extent that other optical degrada-

tions cause more blurring than the diffraction limit, even smaller magnifications may

be acceptable.

The amplitude point spread function for the in-focus plane h(x, y) is (Born and

Wolf, 1975)
A2q2  (a2irr

h(x, y) = Io, a2 J1 ( qa2

where Io, is the average light intensity, a is the aperture radius in the objective, q is

the objective's focal length, and A is the wavelength of the light. For the Zeiss 40x,

1.95 mm, water immersion objective, the aperture radius is 3.1 mm and focal length

is 4.11 mm (Hohman, 1997). Using a = Aq/a, the Fourier transform of the amplitude

PSF H(fx, fy) can be determined:

7203 a2(r/aT) afh(xy)-Ioa) 1  (o2( 3 J1) .

H(fx, fy) = (Io 3---) circ(af) (8.1)

where

circ(r) =
r<l

r>l
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and 4 indicates Fourier transform pairs.

The output from the camera is a function of the light's intensity as opposed to

the light's amplitude. Thus, the amplitude PSF has to be squared to get a physically

meaningful result; the intensity PSF k(x, y):

k(x, y) = h2(x, y) 4 K(fx, fy) = H(fe, fl) * H(f,, l,)

where * denotes convolution.

The amplitude of the intensity PSF k(x, y) monotonically decreases with distance

from the origin. Because H(fx, f,) is non-zero for af < 1, K(fx, fy) is non-zero for

af < 2. Thus the intensity PSF K(fx, fy) is bandlimited to

2 2a= f+ f <-=-
a Aq

For the Zeiss 40x objective, the intensity PSF is bandlimited to 2.74 Am-1 , assuming

that A = 550nm. The Nyquist sampling frequency f, is twice the highest frequency in

the signal or 5.49 pm- '. This sampling frequency corresponds to a sampling period

T, of 1/f, = 0.18 Mm/pixel.

Since the sampling period of a camera is the ratio of the pixel spacing (23 sm

for our Photometrics camera) to the magnification, the lowest magnification required

not to alias the signal is (23 C/m/pixel)/(0.18 pm/pixel) = 128x.

We now compare this theoretical prediction with measurements. Figure 8-2 shows

the intensity PSF measured at two magnifications. The 400x PSF indicates that the

Fourier transform is non-zero (i.e., above the noise floor which has been reduced 10-

fold by averaging 100 images) for f < +0.37r. Therefore, a magnification of 400x

oversamples the specimen by a factor of 3.33; the Nyquist magnification is 120x.

Thus, the theoretical and experimental Nyquist magnifications agree to within 6%.

The data from 100x magnification illustrates that while this magnification aliases a

little, the power aliased is negligible. Since 100x provides a much larger field of view

than our next possible magnification (160x), we use 100x.

129



400x magnification
l ,I ,,,11 31 I,,I ,,,11

le+06

le+05 -

le+04 -

1000 -

100°

10
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Figure 8-2: Magnitude spectra of the microscope's intensity point spread function. The
left panels show the magnitude of the Fourier transform of the image (averaged 100 times
to reduce shot noise) of a 0.3 pm TiO2 bead at 400x magnification. The right panels
are data from the same bead taken at 100x magnification. The bottom images show the
two-dimensional FFT magnitude, with 0 frequency at the center of the image. The top
plots show the FFT magnitude as a function of the horizontal spatial frequency fx, with
the vertical spatial frequency fy set to 0.

Motion detection

We characterize the magnitude and phase of radial and longitudinal displacements of

cochlear structures from sequences of video images taken at different phases of the

stimulus (Figure 8-3). Rectangular regions of interest are manually drawn to enclose

an object of interest (e.g., a hair bundle). Displacements between the object in suc-

cessive images are estimated using the linear bias corrected gradient-based algorithm

discussed in Chapter 4.

We characterize transverse motions as well as radial and longitudinal motions by

collecting the above images at multiple planes of focus. Thus, we acquire a temporal

sequence of 3D images. We estimate the three rigid-body translations between the
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Figure 8-3: Illustration 
of the method for estimat-

ing motion from video images. Data are taken with

translation

ht e strobe s nchronized to n different hases of the

stimulus. The phases are evenly spaced in 360 de-
grees. If the estimated displacement between the

0o00o first two phases is dl,2 , between the second and
e i phase third is d2,3, etc., then the data points plotted are

0 o (1,0), (2,dl,2), (3,d1 ,2+d2,3), etc. Thus the symbols
0 o map out one period of the motion, with the caveat
o o that the DC component is arbitrary. For clarity in

S o • i , . . . . • . ,• ^, •. • .

0-0 the plots, the first point (1,0) is repeated as the last
point (n+1,0).

images using the linear bias correction method discussed in Chapter 6.

8.2.2 Preparation

Adult alligator lizards (Gerrhonotus multicarinatus), 13-75 g body weight, were anes-

thetized by cooling to 4-8' C for 60 minutes and then sacrificed by decapitation

followed by pithing the brain. A dorsal approach was used-first removing the skin,

muscle, and triangular bone to expose the skull. A razor blade was used to break

through the skull into a semi-circular canal. From this starting hole, the bone over the

sacculus was carefully chipped away. In earlier experiments the sacculus was removed

by washing it away with saline; in later experiments, by pulling the endolymphatic

membrane apart with two forceps and then gently suctioning the sacculus (in pieces)

out through 0.8 mm ID glass tube connected to a peristaltic pump. After removal of

the sacculus, the cochlear duct was visible in its bony recess. The eighth nerve was

cut by a razor blade fragment that had been sharpened to a point. In all but the last

few experiments, cochlear duct was removed by using fine forceps to manually grasp

the auditory nerve and to lift the duct out of the head. In the latest experiments, the

duct was extracted from the head using locking forceps mounted on a micromanip-

ulator. The forceps were opened remotely through a hydraulic mechanism to reduce

operator-induced vibrations of the forceps. The cochlear duct was lifted from the head

by the auditory nerve at a rate of approximately 100 pm/sec. In earlier experiments

the cochlear duct was extracted from the head into air, and then pushed through an
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clamp

1 mm

k

piezoelectric

Figure 8-4: Experimental chamber for measuring motions of inner ear structures: three
views with different scales. The sensory receptor organ is positioned over a hole in plexiglass
(top panel) and held in place by a PEEK ring concentric with the plexiglass hole (shown in
cross section). Force on the ring, provided through a spring-loaded beam (bottom panel),
maintains a chemical and hydrodynamic seal between artificial endolymph (AE) above the
organ and artificial perilymph (AP) below. Hair cells and the TM can be viewed through
the 40X microscope objective while a piezoelectric disk generates sound pressure in AP.

air/water interface into the experimental chamber. In later experiments, the entire

lizard head was submerged in saline so that the duct could be extracted and manip-

ulated without going through an air/water interface. After extraction, the vestibular

membrane was sometimes opened before and sometimes after positioning over a hole

in the experimental chamber that separated two fluid-filled regions (Figure 8-4).

The care and use of animals have been approved by the Massachusetts Institute

of Technology Committee on Animal Care.

8.2.3 Experimental chamber

Clamp

In the experimental chamber, the cochlear duct is held over a 0.74 mm diameter
hole in a plexiglass sheet (Acrylite FF acrylic, Cryo Industries, Rockway, NJ) by
a 0.76 mm diameter PEEK (polyetheretherketone) ring. The size of the hole and
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crank
clamp spring

Figure 8-5: Experimental chamber
for measuring motions of inner ear
structures, highlighting the clamp-
ing apparatus and the low-frequency
shunt (LF shunt). Rotating the
crank pulls on the spring which
causes the clamp to pivot and hold
the ear over a small hole (See Fig-
ure 8-4). A hole in the plexiglass
connects the upper and lower baths
and provides a low-frequency hydro-
dynamic shunt.

10 mm

ring were chosen to simulate the bony ring that supports the duct in vivo. Plastic

was chosen so that upon accidental penetration of the epithelium, the cochlear duct

would not be electrically shorted. Electrical shorting would shunt the gross electrical

response of the cochlea. The ring is approximately 100 pm thick and was cut with

a razor blade from 30 mil ID PEEK tubing (McMaster-Carr, NJ). The ring is glued

with a plastic adhesive (Plastic Welder, Devcon Corp., Danvers, MA) to a stainless

steel clamp.

The clamp is glued to a hinge 20 mm away and 6 mm above the chamber hole

(Figure 8-5). The clamp's path through space is therefore circular. Ideally, the clamp

would come straight down on the cochlear duct since any lateral motions will pull on

the tissues. The ratio of the vertical motion to the horizontal motion toward the spring

is approximately 3.4. Making the clamp longer or the hinge shorter would increase

this ratio, but would also increase unintended motion in the orthogonal direction. The

hinge, made from concentric stainless steel tubes, is designed to minimize rotations

orthogonal to the intended rotations. These rotations cause undesirable translations

of the clamp that increase with the clamp's length. Decreasing the height of the hinge

would have the undesirable effect of reducing the force applied by the spring to clamp

the ear.
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Low-frequency shunt

In vivo the helicotrema prevents DC pressures from forming across the receptor organ.

A hole in the plexiglass connects the upper and lower baths of the chamber and

prevents the developments of static pressures across the basilar membrane caused, for

example, by osmotic pressure when some of the water evaporates out of the saline.

The hydrodynamic impedance of this low-frequency shunt should not be too low or

else the cochlea will not be stimulated hydrodynamically. Furthermore, the electrical

impedance of this shunt should not be too low or else the cochlea's electrical response

will be short circuited.

The low-frequency shunt is constructed using a glass tube 3 mm long with an ID

of 0.1 mm. The hydrodynamic resistance through a tube is

8pl
Rh =Rh - 7rr 4

where /t is the viscosity of the fluid (approximately that of water), 1 is the length

of the tube, and r is the radius. Thus Rh = 1.1 x 1012 Ns/mS. The hydrodynamic

inertance through a tube is
pl

L =
7rr 2

where p is the density of the fluid (approximately that of water). Thus L = 1.0 x

109 Ns/m 5 . The hydrodynamic impedance Z = Rh + Ljw is compared in Figure 8-6

to a model of the impedance of the basilar membrane in vivo (Rosowski et al., 1985).

This glass tube provides a low-frequency shunt while attenuating the magnitude of

the volume velocity of the fluid to the basilar membrane by no more than 8 dB.

The electrical impedance of the low-frequency shunt must be sufficiently large so

that any electrical response from the cochlea is not attenuated significantly. The

electrical resistance of the saline in the glass tube is

1
R =e = r 2ANa [NaCl]

where ANaCt is the equivalent ionic conductivity for NaCl (the predominate species
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- shunt used in the experimental cham-
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in perilymph), and [NaCl] is the concentration of NaC1. At a concentration of

175 mM (175 mol/m 3 ), ANaCI = 0.0116 m2/Q mol (Weast, 1987, page D-167). Thus

Re = 190 kQ. The calculation for 175 mM KCl (ANaCl = 0.0139 m2/Q mol), the

predominate species in endolymph, is Re = 160 kQ. In comparison, we estimate the

resistance of the cochlear duct (Rcd) by multiplying the specific resistance of the sen-

sory epithelium of the frog sacculus, 50 Q cm 2 (Corey and Hudspeth, 1983), by the

area of the chamber's hole for the cochlear duct, r(.074 cm) 2 to obtain Red = 3 kQ

< Re. Since the length of the glass tube is much greater than the thickness of the

basilar membrane, the electrical capacitance of the cochlear duct is much greater

than that of the low-frequency shunt. Consequently, the electrical impedance of the

low-frequency shunt is much greater than the cochlear duct for all frequencies.

The low-frequency shunt provides a DC hydrodynamic path across the cochlea,

while not significantly affecting the AC hydrodynamic path or electrical impedance

across the cochlea.

Stimulation

A piezoelectric disk morph, obtained from a Panasonic EFR series 40 kHz ultrasonic

transducer and waterproofed with Krulex urethane glue, seals the left-most opening

(Figure 8-8) in the bottom fluid-filled region and provides the hydrodynamic stimula-

tion to the cochlear duct. In later experiments the piezoelectric disk was electrically

shielded with copper foil (See Electrical Measurements section for details.).

A pressure transducer (EPX, Entran Devices Inc., Farfield, NJ) monitors the fluid
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pressure under the duct in order to calibrate the sound source.

The chamber's hydrodynamic stimulator can produce at least 100 dB SPL pres-

sures over the frequency range 0.02-20 kHz. The stimulator's power spectrum is not

constant across frequency; consequently, the drive voltage to the piezoelectric disk

must change when collecting data for a constant-amplitude, swept-frequency experi-

ment. On the other hand, the piezoelectric disk is fairly linear with respect to both

amplitude and frequency distortion products. For example, upon driving the piezo-

electric disk to generate two 114 dB SPL hydrodynamic tones, the largest distortion

product (difference tones) was 42 dB down from the drive tones. The largest cubic

distortion product was 45 dB down.

Perfusion

The requirement of perfusing both apical and basal sides of the cochlear duct com-

plicates the design and construction of the chamber. Perfusion is needed to provide

the cells with nutrients and a constant chemical environment.

Perfusion requirements are similar to those for the low-frequency shunt: (1) min-

imize the DC pressure across the duct when perfusing and (2) minimize shorting

the duct either electrically or hydrodynamically. Our implementation is shown in

Figure 8-7.

Saline influx to the basal surface is through a 1.5 m, 0.15 mm ID PEEK tube. This

influx tube's hydrodynamic impedance is more than 40 dB larger than that of the

model of the basilar membrane (Rosowski et al., 1985). Perfusion efflux is through a

very large inside diameter (6.4 mm) tube in order to keep the fluid beneath the basilar

membrane near atmospheric pressure. The efflux from the apical and basal surfaces

is drawn by a peristaltic pump from the same collecting o-ring, ensuring that the

hydrostatic head on both sides is the same. The collecting o-ring is distant from both

surfaces of the cochlear duct to reduce fluid mixing near the duct. Apical influx is

accomplished through a glass tube placed on the cochlear duct's o-ring. Apical efflux

is through a covered slot connecting the two o-rings. The lower perfusion efflux path

can be sealed with a sliding vent to enable hydrodynamic stimulation and electrical
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isolation. The vent is held in place by 3 screws with spring washers. A thin layer

of Vaseline is put on the vent to improve the low frequency seal. A sliding vent is

used as a switch because it displaces very little volume to open and close. Any fluid

volume displaced by the switch would cause a large increase in static pressure on the

basal side of the cochlear duct. This pressure increase would tension or even tear the

basilar membrane.

The chemical isolation between the top and bottom baths in the chamber was

tested by perfusing saline with red food coloring in the bottom bath and blue food

coloring in the top bath. The dyes stained the cochlear duct, but did not pass through.

In particular, the red dye perfused in the bottom bath stained the region around the

papilla and the limbic bulge. The blue dye stained the part of the cochlear duct

outside of the clamp and the limbic bulge (which made the limbic bulge look purple).

Electrical Measurements

The cochlea transduces a mechanical input signal into an electrical output signal;

therefore, measuring the electrical response to sound is a common and natural way

to assess the viability of cochlear preparations. Assessing the viability of each prepa-

ration is critical in biological experiments, because viability may affect the motions

of inner ear structures. For example, the motion of the basilar membrane in mam-
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Figure 8-7: Experimental chamber
for measuring motions of inner ear
structures, highlighting the perfu-
sion apparatus. A sliding plexiglass
(Acrylite FF acrylic, Cryo Indus-
tries, Rockway, NJ) top piece is held
by three screws with spring wash-
ers (not shown). The top piece can
either vent (solid lines) the lower
chamber to the efflux o-ring (perfu-
sion out) or can hydrodynamically
seal (dotted lines) the lower bath
from the top bath. A partially cov-
ered slot connects the top bath to
the efflux o-ring.
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Figure 8-8: Experimental chamber
for measuring motions of inner ear
structures, highlighting the stimu-
lating and electrical measurement
apparatus. Two holes drilled into
the lower bath contain Ag/AgCl
electrodes. Two additional elec-
trodes (not shown) are placed in
the o-ring containing the ear. The
four electrodes are used to measure

/ the ear's electrical response to sound
stimulation provided by the piezo-
electric disk. A pressure transducer
is inserted into the lower bath to
calibrate the sound pressure of the

1 m acoustic stimulus.10 mm

mals is nonlinearly related to the sound pressure when the electrical responses of the

cochlea are normal, but becomes linear as the electrical response deteriorates (Dallos

et al., 1996). Consequently, we designed the chamber to be able to measure elec-

trical responses. In addition to measuring the audio-frequency electrical response,

our electronics duplicate the DC electrical potential (called the endolymphatic po-

tential or EP) that exists across the apical and basal sides of the cochlea in vivo. Our

implementation is shown in Figure 8-8.

Two Ag/AgCl electrodes (E205, Warner Instruments, CT) are placed in both the

top and bottom baths. A four-electrode voltage clamp configuration is used (Corey

and Hudspeth, 1983). The electric potential is sensed with one of the electrodes in

each pair and the other is used to drive current. The bottom bath is kept at ground,

while the top bath is kept at 16 mV, the EP for the alligator lizard (Weiss, Altmann

and Mulroy, 1978). The current needed to keep the top bath at 16 mV is converted

into voltage, amplified, and low-pass filtered with a 2nd order Butterworth at 20 kHz

to reduce high-frequency noise. The circuit has two outputs: a 106 V/A DC-coupled

output and a 108 V/A AC-coupled output. The source resistance of the voltage clamp

circuit (excluding the Ag/AgCl electrodes) is 0.1 Q at DC. The DC-coupled output

enables measurement of the cochlear duct's impedance. The impedance is typically

4-5 kQ, which is comparable to the estimate of 3 kQ made above.
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The AC-coupled output enables measurement of the cochlear microphonic current.

Since the cochlea responds at the same frequency as the stimulus, the limiting factor in

making AC measurements is cross-talk with the piezoelectric stimulator4 . To reduce

cross-talk, (1) the ground side of the piezoelectric disk faces the chamber; (2) the

drive to the piezoelectric disk is coaxial cable; (3) the first 6 mm of the liquid path in

the chamber is an insulating oil rather than saline (flexible 20 pm thick plastic wrap

separates the oil and saline regions); and (4) the entire piezoelectric disk is covered

with 25 pm thick copper foil which is soldered to the ground on the coaxial cable.

To measure the cross-talk, a piece of flexible 20 pm thick plastic (Saran Wrap, Dow

Chemical Co., Midland, MI or Glad sandwich bag, First Brands Corp., Danbury,

CT) was placed where the cochlear duct should go. With only methods (1) and

(2), 7 volt rms 500 Hz tone on the piezo (equivalent 104 dB SPL at the eardrum)

produced 400 pA response. Frog sacculus hair cells have a maximal response near

170 pA (Assad et al., 1991). Consequently, the cross-talk level with methods (1) and

(2) were a significant fraction of the best response we could expect with the lizard (10

hair cells times 170 pA is only a factor of 4 larger than the cross-talk). With all four

the cross-talk reducing methods, the cross-talk was reduced to 410 pA - equal to

the current through only 10 transduction channels (Holton and Hudspeth, 1986). The

microphonic measuring equipment is sensitive enough to measure 6% of the maximum

current through a single hair bundle.

8.2.4 In situ microphonic measurements

We measured the microphonic in situ, in order to assess the viability of the cochlea

during surgery, The measurement methods are comparable to Kaplan et al. (1983),

however the electrode placements were different because we used a dorsal approach

while Kaplan et al. (1983) used a ventral approach. The reference electrode was

placed in muscle either anterolateral to the cochlea or along the midline in the neck.

The positive electrode was placed as close to the cochlea as possible. After removing

4The cochlea also responds at harmonics of the stimulus (usually with a smaller amplitude)
making amplifier noise another limitation.
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the dorsal portion of the skull, the positive electrode was placed on the sacculus.

After removing the sacculus, the positive electrode was placed within 0.5 mm of

the cochlear duct. The electrical signal was amplified by an 80 dB instrumentation

amplifier, low-pass filtered with a 3 pole Butterworth at 20 kHz, and sampled by an

A/D converter (DSP-16, Ariel Corporation, NJ) at 50 kHz using the SYSid software

package (version 4.18, AT&T Bell Labs, NJ and Ariel Corporation, NJ).

Acoustic clicks were presented with a microphone system (ER-10B, Etymotic Re-

search, IL) that was sealed to the external ear of the lizard with Vaseline. A computer-

generated click was sent through a unity-gain power amplifier (D-75, Crown Interna-

tional, Inc., Elkhart, IN) to the microphone system's speaker. Clicks were presented

at a rate of 98 per second, which was chosen to minimize the time to collect averaged

responses (typically 2,000 averages), while not degrading the microphonic potential's

amplitude. Kaplan et al. (1983) determined that the amplitude of the cochlear mi-

crophonic potential is constant with respect to click rates out to 100 Hz. The neural

response amplitude is down by a factor of 2 at 100 Hz from its value at low click rep-

etition rates; however, this reduction is of little concern since we are more interested

in the microphonic component.

The microphonic potential was measured by playing both condensing and rarefact-

ing acoustic clicks to the ear and recording the difference between the two averaged

response waveforms. The contralateral columella was cut to prevent the undisturbed

contralateral cochlea from responding to the ipsilateral acoustic stimulation. In some

experiments the measurements were done in vivo. The lizard was anesthetized with

urethane (1.4% of its body weight). Although severed blood vessels were closed with

hemostats, blood loss was a problem. In other experiments, the lizards were decapi-

tated and pithed, following the procedure outlined in Section 8.2.2. These experiments

were done with A. J. Aranyosi.

8.2.5 Glass probe stimulation

A mechanical method of stimulating the cochlea was developed in order to assess

the viability of the preparation at surgical stages at which acoustic stimulation was
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impossible. A glass pipette was pulled (Vertical pipette puller model 700C, David

Kopf Instruments, Inc., Tujunga, CA) from a glass capillary tube (Model GC200-15,

2mm OD, Warner Instrument Corp., CT). The pipette was fire polished to a sealed

tip diameter of 100 tim. The pipette was attached to a piezoelectric bimorph that

was mounted on a 3-axis micromanipulator (Rucker and Kolls, Inc., Milpitas, CA).

Motions of the pipette on the order of 25 pm p-p were observed under stroboscopic

illumination at 300 Hz and 10 V p-p, when the pipette was in air. At 1 kHz, the

amplitude dropped to 8 im p-p.

8.2.6 Intracellular recordings

Intracellular potential recordings were performed with the assistance of Pankaj Oberoi

and A. J. Aranyosi at the Eaton Peabody Laboratory of Auditory Physiology in

a sound-proof, electrically shielded chamber (Ver et al., 1975). The cochlear duct

was extracted and clamped into the sound stimulating chamber. Microelectrodes

were pulled (Sutter Instrument Model P80/PC Flaming Brown) from glass pipettes

(1.2 mm OD; 0.6 ID; omega dot) with approximately 0.2 4m tip diameter (30 MQ

typical electrode resistance) and filled with 2 M KC1 and methyl blue dye to improve

visualization. A Ag/AgC1 wire was inserted for electrical contact. The electrode was

placed on a micromanipulator that advances the electrode hydraulically from outside

the chamber. Recording electronics (Axoprobe la, Axon Instruments) measured the

potential difference between the microelectrode and a Ag/AgC1 reference electrode in

the top bath. The cochlea was stimulated with sound via the piezoelectric disk built

into the sound stimulating chamber.

8.2.7 Solutions

The following were the three most commonly used solutions.

* Artificial perilymph (171 mM NaC1, 2 mM KC1, 2 mM CaCl 2, 3 mM D-glucose,

5 mM HEPES buffer) (Freeman et al., 1993). Osmolarity: 330 mosmoles.
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* L-15 Medium (Leibovitz) with 20 mM HEPES buffer and 5 mM D-glucose.

Osmolarity: 350 mosmoles.

* 90% L-15 Medium (Leibovitz) and 10% chicken serum, with 20 mM HEPES

buffer and 5 mM D-glucose. (Freeman et al., 1993) Osmolarity: 360 mosmoles.

All solutions were adjusted to a pH of 7.3 ±0.05 by adding NaOH.

The L-15 solutions have amino acids and vitamins, which increase the osmolar-

ity and also provide many of the nutrients that the cochlear duct may need. L-

15/chicken serum also provides proteins that the duct may need; however, those

proteins greatly increase the number of bubbles in solution (similar to whipped egg

whites)-attenuating the hydrodynamic stimulus in the experimental chamber. Most

of the sound-induced motion studies and in vitro microphonic studies used artificial

perilymph. L-15/chicken serum was used in the intracellular recording experiments.

L-15 was used in most of the in situ microphonic studies. While a systematic com-

parison of the effect of the different solutions on the cochlea was not performed, no

effects were noticed.

8.3 Results

8.3.1 Microphonic

In vitro microphonic measurements

After clamping the cochlear duct into the experimental chamber, we were able to

observe sound induced motions and to measure the cochlea's electrical response.

In seven preparations, the voltage across the cochlea was measured while keeping

the current through the cochlea at 0 amps. In all seven, the potentials measured-

< 0.2 /tV @ 350 Hz, and < 2 pV @ 3 kHz-were comparable to the potentials

measured when the cochlea was replaced with saran wrap. These potentials are hard

to compare with existing in vivo measurements because the electrical connections of

the in vitro system to the recording electrodes differs from that in vivo. Nevertheless,
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the in vivo cochlear microphonic measured on the round window at 320 Hz is 20 dB

larger than what we measured (Kaplan et al., 1983). In vivo microphonics measured

in scala media at 500 Hz are 40 dB larger than what we measured at 350 Hz (Weiss,

Altmann and Mulroy, 1978). Therefore, if the cochleae were transducing sound, we

expect that the responses should have been well above our cross-talk levels measured

in the absence of a cochlea.

In 14 preparations, we measured the current through the cochlea while keeping

the voltage across the basilar papilla constant. The DC voltage was fixed at 16.5 mV,

which is the same as the voltage measured in vivo (Weiss, Altmann and Mulroy, 1978).

In this voltage clamp mode, the source resistance is less than 2 Q below 1 kHz; as

long as the impedance of the duct is much greater 2 2, impedance changes due to

surgical methods should have minimal effects on the measured currents. The median

impedance was 4.5 kQ, with an interquartile range of 3.5-5.7 kQ and a range of 1.3-

72 kQ. Thus, comparisons with other studies are easier to interpret. Nevertheless,

transduction currents have not been measured in the lizard; so we have to compare

to other reptiles. In the chick, maximal cochlear hair cell transduction currents have

been reported to be 114 pA (Kimitsuki and Ohmori, 1992) and later 50 pA (Kimitsuki

et al., 1996). In the turtle, maximal cochlear hair cell transduction currents have

been reported to be 200-400 pA (Crawford et al., 1989) and later 140 pA (Crawford

et al., 1991). Before shielding the piezoelectric disk stimulator and using oil next to

the piezoelectric disk, the median microphonic current at 330 Hz was 200 pA (n=6).

After shielding, the median dropped to 38 pA (n=8). In both cases, the current was

comparable to the cross-talk measured under similar conditions. Thus, not even one

hair bundle was transducing in the 8 preparations after the improved shielding, and

no more than one was transducing before the improved shielding.

We now explore the four hypotheses of why we were unable to measure a micro-

phonic in vitro.
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Hypothesis I: Bad electronics

We tested our voltage clamp electronics for measuring the cochlear microphonic to

verify that if there were a microphonic we could measure it. In addition to standard

tests such as replacing the cochlea by a resistor, we tested the circuit under conditions

more similar to the cochlea by measuring the electrical response of the frog sacculus. 5

The sacculus was stimulated by a vibrating glass probe (Corey and Hudspeth, 1983)

at 95 Hz. With Corey and Hudspeth's (1983) original circuit, we measured a 2.5 nA

fundamental and a 9 nA second harmonic component of the electrical response. The

stimulating probe had to then be raised to switch measuring circuits. Upon lowering

the probe, our circuit measured a 1 nA fundamental and a 6 nA second harmonic.

Both sets of measurements are comparable to those in Corey and Hudspeth (1983);

the difference in the two circuits' responses is most likely due to a slightly different

stimulating condition.

Hypothesis II: Microphonic is electrically shorted

We performed intracellular recordings6 on 4 in vitro preparations in order to determine

if the hair cells were responding electrically to sound but the extracellular response

was being short-circuited.

In all 4 preparations, we were unable to measure an electrical response from cells

in the free-standing region of the basliar papilla.' The sensitivity of the measurement

apparatus was 0.2 mV peak-to-peak. In comparison, the intracellular response to

tone bursts measured in vivo was 20 mV peak-to-peak (Holton and Weiss, 1983) at

comparable sound pressure levels.

5This experiment was done with the assistance of Rick MacDonald and A. J. Aranyosi.
6These experiments were done with the assistance of Pankaj Oberoi and A. J. Aranyosi.
7Resting potentials are described later and are shown in Figure 8-10.
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We tested the hypothesis that our saline solutions could be compromising the cochlear

microphonic response by (1) performing the surgery up to the point where we could

control the chemical environment around the cochlea, and (2) testing the effect of our

saline by measuring changes in the in situ cochlear microphonic. The microphonic

was elicited by sound presented at the eardrum, and measured by a gross electrode

placed within 0.5 mm of the cochlea.

Figure 8-9 shows results from two experiments where saline was not perfused near

the cochlea except to keep the recording electrodes wet. The microphonic potential

dropped with time and increased when the acoustic click was louder. The basic trend

in the data suggests that the microphonic potential drops roughly at a rate of 20 dB

per 30 min. without perfusion.

Figure 8-9 also shows results from four experiments where we did perfuse saline

(oxygenated L-15). Perfusion was accomplished by mounting a glass capillary on a
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micromanipulator and lowering it within 0.5 mm of the cochlear duct. Saline was

suctioned from this capillary using a peristaltic pump while fresh saline was perfused

onto the head posterior to the saccular cavity with a syringe pump. The microphonic

typically dropped 6-10 dB in the first 15 minutes, and then stabilized for up to several

hours. In two of the three experiments where perfusion was stopped, the microphonic

potential dropped at roughly the same rate as when the cochlea was never perfused-

20 dB per 30 min. Upon restarting perfusion, the microphonic potential increased at

about the same rate.

Hypothesis IV: Cochlea is damaged from mechanical trauma

Several strategies were taken to determine (1) if the cochlea was being mechanically

damaged, (2) when the damage was happening, and (3) how to reduce the damage.

Intracellular recordings. We performed intracellular recordings 8 on 4 in vitro

preparations in order to measure the resting potential of the cells in the cochlear

duct. Figure 8-10 shows the resting potentials in the four preparations. In 3 out of

the 4 preparations, the median DC membrane potentials for cells on the basilar papilla

were -64, -77, and -70 mV. These potentials are comparable to those measured in

vivo for hair cells (median of -73 mV) and 25 mV too positive for supporting cells

(Weiss, Peake, Ling and Holton, 1978). Thus, our recordings were either from hair

cells that were not transducing (none of the cells had a measurable response to sound)

but could maintain a resting potential or in supporting cells with depolarized resting

potentials. In the fourth preparation, membrane potentials near the basilar papilla

had a median of -15 mV, but cells on the limbic bulge had a median resting potential

of -71 mV.

In vivo microphonic measurements during surgery. Microphonic measure-

ments were taken at different stages of the surgery in 6 in vivo preparations of anes-

thetized lizards. These experiments were very difficult to do without causing severe

8 These experiments were done with the assistance of Pankaj Oberoi and A. J. Aranyosi.
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Figure 8-10: Intracellular resting po-
tentials from cells in 4 in vitro prepa-
rations. The box plots represent the
median, interquartile range, and range
of the cells measured in each prepara-
tion. The number of cells in each box
plot is indicated above the plot. BP
denotes cells measured in the basliar
papilla; LB, in the limbic bulge.

blood loss from a large vessel beneath the triangular bone' which has to be cut to

widely access the sacculus dorsally. In 4 of the 6 preparations, we were able to measure

both a neural response and a microphonic. These responses were maintained until

exposing the sacculus, during which cutting the triangular bone was necessary. The

other 2 failed from instrumentation problems or overdosing the lizard with anesthetic.

In a seventh anesthetized lizard experiment, a baseline of microphonic/neural

recordings were made, and then the lizard was decapitated. Results show that the

neural response lasts for 10-15 minutes after decapitation, and the microphonic lasts

over 2 hours. Since the cochlear duct can be removed in under 30 minutes after

decapitation, we decided to repeat this type of microphonic surgery experiments after

decapitation. These experiments are vastly simpler and faster to perform, and more

closely mimic the surgery used in motion experiments.

In situ microphonic measurements during surgery. Microphonic measure-

ments were taken at different stages of the surgery in 11 preparations' 0 (See Figure 8-

11). In these preparations, the lizards were decapitated, pithed, and their cochlear

ducts were exposed following the procedure outlined in Section 8.2.2. Quantitative

interpretation of the microphonic across different stages of the surgery is difficult be-

cause the hydrodynamic environment in which the cochlea rests changes at the various

9Figure 1 in (Mulroy, 1974) shows the triangular bone unlabeled.
'oThese experiments were done with the assistance of A. J. Aranyosi.
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surgical stages. Consequently, we examine the binary decision: does a measurable

cochlear microphonic response exist.

In 7 out of the 11 preparations, we could still measure a cochlear microphonic after

cutting the VIIIth nerve-the last step before removal of the cochlear duct. In 3 out

of the remaining 4, we were able to measure a microphonic at some stage and then

the microphonic dropped below our noise floor. In 2 out of the 11, we had to increase

the amplitude of the acoustic click by 20 dB in order to measure a microphonic. In 1

case, we did not increase the click amplitude when the microphonic potential dropped

below our noise floor.

Unlike the microphonic, the neural response to acoustic clicks was typically absent.

Occasionally, a neural response was present in the first measurement (15-20 minutes

post decapitation), but the amplitude of the neural dropped quickly with time.

In vitro microphonic measurement. In a very recent experiment, the cochlear

duct was extracted from the head using locking forceps mounted on a micromanip-

ulator'n; previous extraction were done manually. The cochlear duct was held 1 cm

above the head, which was submerged in saline (L-15). The cochlear duct was shaken

with the glass probe stimulator to elicit an electrical response.

Results from this experiment are shown in Figure 8-12. The cochlear microphonic

responded non-linearly with stimulus amplitude after removal from the head. Fifty

"This experiment was done with the assistance of A. J. Aranyosi.
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Figure 8-12: Magnitude of the cochlear
microphonic as a function of the 2 kHz
electrical drive to the glass-probe stim-
ulator. The circles represent the mag-
nitude of the cochlear microphonic af-
ter the cochlear duct was removed
from the head and before application
of glutaraldehyde. The line repre-
sents a least-squares fit to the data
and has a slope of 0.6 on a log-log
~cale. The nlusesp renresent data after

0.1 1 10 the application of glutaraldehyde. The
Stimulus Drive (V) least-squares fit has a slope of 1.0 indi-

cating a linear dependence on the stim-
ulus drive.

microliters of a 50% glutaraldehyde solution was perfused near the duct. After eight

minutes fresh saline was perfused near the duct so that the electrical environment

near the recording electrode would be the same as prior to perfusion. The magnitude

of the electrical response dropped by 12 dB and became linear-indicating that we

reached the crosstalk level of our experimental apparatus.

8.3.2 Preliminary results of lizard ear motions

In this section we describe measurements of micromechanics in the tectorial region of

the alligator lizard cochlea. A microphonic was not measured in any of the prepara-

tions, and for that reason these results must be considered preliminary. Nevertheless,

these results demonstrate how this method can be used to address important issues

in cochlear mechanics. Specifically, we examine (1) three-dimensional motions of the

whole basilar papilla, (2) the relation between the motion of the tectorial membrane

and the reticular lamina, and (3) the relation between the motion of the tectorial

membrane and the tips of the hair bundles.

Gross motions of the sensory receptor organ

In order to observe audio frequency motions of the in vitro preparation, a strobe light

was used to slow the apparent motion. When the preparation is stimulated, the entire
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Figure 8-13: Frequency response of the displacement of the tectorial region of the basilar
papilla for seven preparations. Data points for an individual experiment are represented as
circles connected by a line. The three orthogonal directions are defined in Figure 8-16. The
displacement magnitudes have been normalized to 120 dB SPL on the scala tympani side
of the basilar membrane. The average sound pressure used in the experiments was 119 dB
SPL, range 105-140 dB SPL. The angle is relative to the pressure on the scala tympani side
of the basilar membrane.

receptor organ moves roughly as a rigid body-pivoting about an axis parallel to its

longitudinal axis. Motions were clearly visible for sound pressures on the order of

100 dB SPL and for frequencies from 20 Hz to 5 kHz.

3D frequency response of the basilar papilla

In seven preparations, three-dimensional, sound-induced motions were examined at

frequencies between 40 Hz and 2 kHz in the tectorial region of the basilar papilla.

Displacements were analyzed in a 40 x 64 x 24 ym region (175 pixels x 280 pixels x

13 planes) near the center of the TM region of the basilar papilla. 12 Figure 8-13 shows

the motion of this region of the basilar papilla as a function of frequency. To first

order, the basilar papilla moves in phase with the sound pressure and the magnitude

of motion is independent of frequency.

The magnitude of the motion in the radial direction varied by 30 dB across prepa-

12In one preparation, only 9 planes where used, spanning 16 pm in depth. In another, 13 planes
were used, but they spanned 36 pm.
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rations. Variability in the displacement magnitude of the other directions were 20 dB.

Radial motions were larger than longitudinal motions in six of the seven preparations.

The average ratio of radial to longitudinal motions across experiments was 14 dB with

a range of -8 to 20 dB. The ratio of the magnitude of transverse motions to radial

motions had a mean of 3 dB, and ranged from -6 dB to 14 dB.

Figures 8-14 and 8-15 are images taken near the beginning of the experiment of

the preparations used in the frequency response plots. Many hair bundles can be

seen as well as the right (abneural) edge of the tectorial membrane. Circular cell

herniations (blebs) can be seen in 6 of the 7 preparations.

3D cochlear motions

To characterize three-dimensional, sound-induced motions in one alligator lizard

cochlea, a time sequence of 8 3D-images were analyzed. The cochlea was stimu-

lated with a 513 Hz, 92 dB SPL (referred to the eardrum or 118 dB SPL under the

basilar membrane) tone. Three-dimensional motion was estimated at a regular array

of regions of interest (See Figure 8-16). Estimates were binned in the longitudinal

direction and plotted as a function of the radial distance from the neural edge of the

basilar papilla. Motions in the radial direction were largest, between 400 and 500 nm

peak-to-peak. Longitudinal motions, which have been shown to excite hair cells mini-

mally (Shotwell et al., 1981), were an order of magnitude smaller. Transverse motions

increased abneurally from 100 nm to 330 nm.
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Figure 8-14: Images of the tectorial region of the basilar papilla at a focal plane near the
base of the hair bundles for 4 preparations. Five large otoconia can be seen in the lower
right preparation; one is visible in the lower left preparation.

152



Figure 8-15: Images of the tectorial region of the basilar papilla at a focal plane near the
base of the hair bundles for 3 preparations.
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Figure 8-16: Three-dimensional motions of the alligator lizard cochlea. The right image
shows the cochlea and the regular array of 40 regions of interest in which motion was esti-
mated. The magnitude of the motion in the radial, longitudinal, and transverse directions
are plotted on the left. The horizontal dashed line shows the measured motion of the basilar
membrane in the transverse direction obtained with the M6ssbauer technique (Peake and
Ling, 1980). The schematic cross-section in the lower left shows the basliar papilla (BP) with
a cluster of 5 hair cells resting on the basilar membrane. The hair cells' bundles protrude
into the overlying tectorial membrane (TM). The basilar membrane (BM) is the thinnest
(and therefore most compliant) just to the right of the basilar papilla (Mulroy, 1974). The
triangular limbus (TL) is a supporting structure abneural to the basliar papilla.
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Comparison of motions of the TM and reticular lamina

The tectorial membrane (TM) of the alligator lizard is almost completely transparent

when viewed with a light microscope. The most apparent structure is on its top

surface (top from the view in Figure 8-16). Circular structures slightly larger than hair

cells, fine filamentous structure, granular structures, and the radial and longitudinal

boundaries of the TM were the only structures in the TM with sufficient contrast

to estimate motion. To compare motions of the TM with those of the underlying

reticular lamina (RL), we identified a region of the TM in seven13 preparations that

could be readily tracked. Regions used 1 plane of focus and typically were 9 x 9 Am

in area (38 x 38 pixels). We analyzed sound-induced radial displacements of these

regions of the TM as well as the region of the RL directly underlying these TM

regions.

Figure 8-17 shows the ratio of the radial motion of the tectorial membrane and

reticular lamina as a function of frequency at constant sound pressure (mean 119 dB

SPL underneath the basilar membrane, range 105-140 dB SPL). The sound pressure

varied by less than 2 dB in each experiment, and had a range across experiments of

35 dB. The magnitude of this ratio is always less than 2 and is less than 1 in 120 out

of the 130 measurements. Thus, the tectorial membrane moves less than the reticular

lamina. Within each experiments, there was a slight trend for the tectorial membrane

to move less at high frequencies than at low frequencies. The relative phase between

the tectorial membrane and the reticular lamina is clustered around zero (indicating

that they are moving in phase), and -180', (indicating that they are moving exactly

out of phase). In one experiment repeated trials gave results which differed by 1800.

Figure 8-18 plots the micromechanical transfer function: the ratio of the difference

13In one other preparation, motions parallel to the excitatory (radial) direction were smaller than
motions along the length (longitudinal) direction. This motion is inconsistent with the other seven
preparations. Additionally, anatomical evidence (Mulroy, 1974) suggests that the most compliant
part of the cochlea would cause the basilar papilla to move radially the most, and the hair cells are
sensitive to those radial motions (Mulroy, 1974; Shotwell et al., 1981). We believe that the motion
in this preparation was distorted by a modification of the basilar membrane's compliance when
clamping the cochlear duct in the experimental chamber. Therefore, we excluded that experiment
from this micromechanical analysis.
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between the radial motion of the TM and RL to the radial motion of the RL. In all

7 preparations, the magnitude of the micromechanical transfer function was within

14 dB of unity for all frequencies. The micromechanical transfer functions for indi-

vidual experiments were roughly constant with frequency. In 4 of the 7 preparations,

the phase was near -180' for all frequencies. In the other 3 preparations, the phase

was near 0' for low frequencies and approached -180' near 800 Hz.

Comparison of TM and hair bundle tip motion

Figure 8-19 shows the ratio of the radial motion of the TM to the tips of a nearby hair

bundle. This ratio varied by 30 dB across preparations, but was fairly constant across

frequency for six of the seven preparations. At high frequencies, the TM moved at

least 2 times more than the tip of the hair bundle in five of the seven preparations.

At low frequencies, the TM moved at least 2 times more than the tip of the hair

bundle in four of the seven preparations. The other preparations had ratios near 1.

Four of the five preparations whose phase could be accurately estimated (both the
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Figure 8-17: Ratio of tectorial mem-
brane displacement to the reticular
lamina displacement for seven prepa-
rations. Displacements were measured
at the fundamental frequency of the
acoustic stimulus. Data points for
an individual experiment are repre-
sented as circles and connected by
lines. Motions of the tectorial mem-
brane were determined in regions of in-
terest that were hand-selected for good
contrast. Reticular lamina motions
were determined directly below the re-
gion selected for the tectorial mem-
brane. Phase estimates are indicated in
black when the numerator and denom-
inator of the ratio were both greater
than 100 nm. These estimates are more
reliable than the phase estimates indi-
cated in gray, for which either the nu-
merator or denominator was less than
100 nm.
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Figure 8-18: Ratio of the shear
(the difference between tectorial mem-
brane and reticular lamina motions) to
the reticular lamina motion for seven
preparations. The curves are derived
from data as in Figure 8-17.
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numerator and the denominator of the ratio exceeding 100 nm), had phases near 00

(indicating that the TM and tips of the hair bundles were moving in phase), while

the other had phases -1800, (indicating that the TM and tips of the hair bundles

were moving exactly out of phase).

Figure 8-20 shows the ratio between the differential radial motion of the hair

bundles tips and RL to the differential radial motion of the TM and RL. This ratio

was less than unity 126 out of the 130 measurements, which indicate that hair bundle

shear is not the smaller than the TM/RL shear. The phase of the ratio is near zero.

8.4 Discussion

8.4.1 Microphonic

Measuring the cochlear microphonic is a commonly used method to assess the via-

bility of the cochlea, since a critical step in cochlear function is mechano-to-electric

transduction. In 21 preparations, we were unable to measure an electrical response
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Figure 8-19: Ratio of tectorial mem-
brane displacement to that of the tips
of a hair bundle for seven preparations.
The displacement of the tectorial mem-
brane is the same as Figure 8-17. The
displacement of the tips of a hair bun-
dle was determined in a region of in-
terest enclosing the closest hair bundle
to the region of interest used in the
tectorial membrane calculation (typi-
cally within 10 pm). Shading in the
phase data is analogous to that in Fig-
ure 8-17.
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Figure 8-20: Ratio of the TM shear
(the difference between tectorial mem-
brane and reticular lamina displace-
ments) to the hair bundle shear (the
difference between hair bundle tips
and reticular lamina displacement) for
seven preparations. Displacements of
the tectorial membrane and the tips of
hair bundles are the same as in Fig-
ure 8-19. Displacements of the reticu-
lar lamina were determined separately
for the TM and tips, directly below the
respective region for the TM or tips.
The curves are derived from data as in
Figure 8-17.
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to sound. We considered four hypotheses to explain why we were unable to measure

a microphonic in vitro.

The first hypothesis was that the cochlea was transducing sound, but the elec-

tronics were unable to measure it. To demonstrate that this hypothesis was incorrect,

we placed a bullfrog saccular epithelium in the chamber and were able to measure

the typical ~ 10 nA transduction current (Corey and Hudspeth, 1983).

The second hypothesis was that the cochlea was transducing sound, but the re-

sponse was being short-circuited. We demonstrated that this hypothesis was incorrect

by measuring intracellular potentials in the cochlea. We did not see a response to

sound.

The third hypothesis was that the cochlea had lost its ability to transduce sound

due to an inappropriate chemical environment. We demonstrated that this hypothesis

was invalid by perfusing saline across the cochlea in situ and maintaining a micro-

phonic for several hours. Furthermore, the cochlear microphonic decreased when

perfusion stopped and increased upon re-starting the perfusion.

The fourth hypothesis was the cochlea had lost its ability to transduce sound due

to damage during surgery. From intracellular recordings on one preparation, we found

resting potentials on the limbic bulge to be 56 mV more negative than cells in the

basilar papilla. Since the limbic bulge is not as mechanically sensitive as the basilar

papilla (Peake and Ling, 1980), this evidence supports the surgical damage hypothe-

sis. From cochlear microphonic measurements in situ, we found that we can typically

perform all the surgical steps including cutting the VIIIth nerve while maintaining the

cochlear microphonic. Since we could not measure a sound-induced or a mechanical

displacement induced (using the glass probe stimulator) cochlear microphonic for the

21 preparations in the experimental chamber, this evidence supports the hypothesis

that damage is occurring after cutting the nerve and before measuring the micro-

phonic in the chamber. We have performed one experiment in which the cochlear

duct was removed from the head using hydraulically-controlled forceps mounted on a

micromanipulator. After lifting the cochlear duct 1 cm above the head, we were able

to measure an electrical response to mechanical displacement (induced with a glass
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probe stimulator). The electric response was non-linear (compressive) before appli-

cation of glutaraldehyde. After application of glutaraldehyde, the potential dropped

12 dB and became linear. We conclude that the potential measured before application

of glutaraldehyde was an electrical response from the cochlear duct - a response that

we were unable to measure previously. The cochlear duct contains both the basilar

papilla, which responds to sound, and the lagena, which is an otolith organ. The role

of the lagena has not been determined, and the lagena may respond to the glass probe

stimulator. Consequently, we cannot conclude that the response from the cochlear

duct was from the basilar papilla. Nevertheless, since we were unable to measure any

response before using the hydraulically-controlled forceps mounted on a micromanip-

ulator, we conclude that previous extraction techinques were damaging the cochlea.

The slow extraction technique holds promise for future in vitro experiments. Our

hypothesis for the mechanism of our success was that the slow extraction generates

forces at only very low frequencies, to which the hair bundles can adapt.

Our results from testing Hypothesis III (inappropriate chemical environment) also

provides useful information about both how to conduct the surgery and experiments.

Specifically, our results indicate that the microphonic decays/recovers at a rate of

20 dB per 30 minutes when perfusion is stopped/started. Furthermore, the cochlear

microphonic can recover from 30 minute periods with no perfusion. Consequently,

during surgeries to remove the cochlear duct, the surgeon has at least 30 minutes to

expose the cochlear duct and start perfusion. Typically only 15 minutes are needed

to reach the duct; consequently, the surgeon should feel no need to rush through

the surgery. Taking extra care not to mechanically disturb the duct is perhaps more

important than speed. Furthermore, allowing the duct 30 minutes to "recover" from

the surgery should make the cochlea have larger electrical responses during the exper-

iment. During motion measurements, the decay rate implies that the cochlea should

be perfused at least every 30 minutes. Since (1) the flow of saline (perfusion) causes

the basilar papilla to move and (2) basolateral perfusion requires the chamber's vent

to be open, perfusion is turned off during motion measurements. Motion measure-

ments take three seconds per picture or 20 seconds per 2D frequency/amplitude point
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(assuming eight evenly-spaced phases are taken); perfusion requirements dictate that

no more than 75 2D frequency/amplitude points are taken between perfusions. If 3D

motions are desired, then one is limited to about six points (assuming 13 planes of

section) between perfusions.

8.4.2 Motions of the sensory receptor organ

None of the motion measurements were done on cochleae that could transduce sound.

Nevertheless, these motion measurements are the first reported sound-induced mo-

tions of the tectorial membrane and underlying hair bundles. Where there is overlap,

our results agree with previously reported in vitro and in vivo measurements. Further-

more, they demonstrate how computer microvision can be used to address important

issues in cochlear mechanics.

Comparison with other measurements

Our results on the gross motion of the basilar papilla are consistent with all previously

reported data (both in vitro and in vivo).

There are two reports of sound-induced motions of the basilar papilla (Holton and

Hudspeth, 1983; Frishkopf and DeRosier, 1983). Their thrust was measuring motions

in the free-standing region of the basilar papilla, while our thrust was measuring

motions in the tectorial region. However, they also reported on the gross motion

of the basilar papilla to which we can compare. A cochlear microphonic was not

measured in either of the previous in vitro reports.

Hydrodynamic stimulation causes a rocking motion of the basilar papilla about

an axis parallel to its length (Figure 8-16), which is consistent with previous reports

(Holton and Hudspeth, 1983; Frishkopf and DeRosier, 1983). This observation is easy

to understand in terms of the anatomy. The basilar papilla is asymmetrically located

on the thin basilar membrane. With the assumptions that the basilar membrane has

spatially uniform stiffness and that the stiffness of the basilar membrane predominates

that of other structures, it follows that the abneural side of the basilar membrane will
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strech more than the neural side. This asymmetry would cause the basilar papilla to

rock back-and-forth as observed.

We found radial displacements of the basilar papilla on the order of 0.5 /pm in

response to sound pressures on the order of 120 dB SPL in the fluid. This finding

is consistent with those reported by Frishkopf and DeRosier (1983). Holton and

Hudspeth (1983) did not record the sound pressure in their chamber, thus a direct

comparison cannot be made with their results.

The transverse component of the 3D frequency response of the tectorial region of

the basilar papilla at constant sound pressure is, to first order, constant in magnitude

and has zero phase (Figure 8-13). This result is consistent with the basilar membrane

and extrastapes having similar tuning curves (Weiss, Peake, Ling and Holton, 1978;

Peake and Ling, 1980). Furthermore, the transverse motions of the basliar papilla

that we measured, in vitro and without a cochlear microphonic, span the same range

of magnitudes as those measured with the M6ssbauer technique in vivo and with a

cochlear microphonic (Peake and Ling, 1980).

8.4.3 Implications for the tectorial membrane

Unlike the gross motions of the basilar papilla, our results are the first measurements

of sound-induced motions of the tectorial membrane and underlying hair bundle.

Consequently, comparisons with others results cannot be made.

The motion of the TM was generally less than that of the RL (Figure 8-17) and

decreased slightly with frequency. Thus, these results indicate that the TM's mass

becomes mechanically important at high frequencies. If the TM were stationary, then

the micromechanical transfer function (Figure 8-18) would be equal to -1, which

is consistent with four of the seven preparations. In the other three preparations,

the phase was near zero at low frequencies and decreased to -180' with increasing

frequency. These results are characteristic of the response of a highly damped second

order resonant system. Thus an alternative explanation of the 180 phase lag is that

it could result as the high frequency asymptote of a second order resonant system.

These results indicate that damping should figure prominently in mechanical models
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of the TM.

Figures 8-19 and 8-20 demonstrate that the top of the tectorial membrane and

the tips of the hair bundles move differently. Since the tectorial membrane covers the

hair bundles (Mulroy, 1974), these results indicate that the TM shears through its

thickness. Thus, the TM cannot be treated as a rigid body.

8.4.4 Implications for frequency selectivity

The macromechanical motions of the basilar papilla (Figure 8-16) do not contribute to

the frequency selectivity seen on the auditory nerve (Weiss et al., 1976; Weiss, Peake,

Ling and Holton, 1978; Holton, 1980). A "second filter" is needed to account for

the sharp frequency selectivity of the auditory nerve in comparison to the macrome-

chanical motion of the basilar papilla. However, neither the micromechanical transfer

function (Figure 8-18) nor the transfer function relating TM/RL shear to hair bundle

rotation (Figure 8-20) is sharply tuned. Thus, these results indicate that the second

filter is not mechanical at the level of hair bundle rotation in the TM region.
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Chapter 9

Other Applications of Computer

Microvision

In the previous chapters, we have shown that computer microvision can be used to

solve problems in inner-ear mechanics and to analyze motions of a microfabricated

accelerometer. In this chapter we demonstrate that computer microvision has more

general applications. In particular, we demonstrate that computer microvision can be

used to measure motions of (1) the fibrillar structure in the mouse tectorial membrane,

(2) the human stapes, and (3) a microfabricated angular velocity sensor.

9.1 Mouse tectorial membrane

The tectorial membrane (TM) is strategically located in mammalian cochleae on top

of the hair bundles-the mechano-to-electric transduction apparatus. Consequently,

the TM is assumed to have great importance in cochlear function (See references in

Hawkins et al., 1996). The mechanical properties of the TM are critical to cochlear

models, but have not been extensively studied experimentally.

Abnet and Freeman (1997) have developed an isolated preparation of the mouse

tectorial membrane to study its mechanical properties. The TM is isolated, glued

to a glass slide, and 20 p/m magnetizable bead is attached to its surface. Sinusoidal

forces are generated using electromagnets. The displacement of the bead and of the
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Figure 9-1: Mechanical properties of the mouse tectorial membrane. The image (left) shows
the isolated mouse tectorial membrane. The radial fibrillar structure of the TM is easily
seen. Regions of interest (boxes) that were used to determine the deformation pattern in the
TM as a function of radial distance from the bead are shown on the TM. Two sets of regions
for each direction were made; a regularly-spaced grid along the TM (white boxes) and
regions surrounding non-magnetic marker beads (black boxes). The large (20 Pm diameter)
magnetizable bead is surrounded by a black box and a white box. The plots (right) show the
magnitude and phase of the fundamental component of longitudinal motion as a function of
the distance from the magnetizable bead. The magnetizable bead was driven with a 10 Hz,
0.8 pN longitudinal force.

TM are determined with computer microvision.

Motion measurements were taken in two series of regions of interest, one containing

and the other lacking high-contrast, non-magnetic marker beads (Figure 9-1). The

data indicate that there is not a significant difference in the motion estimates between

regions of interest that contain or lack marker beads. Consequently, marker beads do

not have to be used to characterize the motion of the TM.

Computer microvision provides significant advantages over previous methods (von

Bekesy, 1960; Zwislocki and Cefaratti, 1989) for studying mechanical properties of

the TM. For example, the tectorial membrane can be studied without chemical con-
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trast agents. The point impedance of the TM can be measured, which describes the

mechanical impedance of the TM seen by individual hair bundles. The space constant

(A) can also be determined from the same images, which describes the spatial extent

of coupling in the TM (e.g., Figure 9-1). In general, the 3D strain field throughout

the TM can be measured, which is important for characterizing (1) mechanical loads

on hair bundles, (2) interactions between hair bundles, and (3) the functional role of

the TM's fibrillar structure. Finally, measurement of displacements as small as a few

nanometers enables study of the mechanical role of the TM at normal hearing levels.

9.2 Human Stapes

Measurements of stapes motion from a fresh human cadaver were taken with the

computer microvision system using polarized, reflected light microscopy'. The ossi-

cles and tympanic membrane were left intact. Sound was delivered to the tympanic

membrane. The stapes was imaged through a hole drilled into the middle ear space.

A 3D frequency response of the stapes at a constant, uncalibrated SPL near 115

dB is shown in Figure 9-2. Variability is typically a decade below the mean magnitude

and around 100 of phase. The dependence of magnitude on frequency is similar to

that of the cat (Guinan and Peake, 1967). The similar phase of the motions in all

three directions indicate that this section of the stapes is moving in a straight line.

'These experiments were done with Susan Voss.
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Figure 9-2: Human stapes 3D frequency response. The image (left panel) shows the round
window (upper left) and the stapes (center). The rectangular region of interest highlights
a section of the posterior crus of the stapes near its joint with the incus. The anterior crus
can be faintly seen in the background. The right panels show the 3D frequency response
for the motion of posterior crus inside the highlighted region. A higher magnification (20 x
0.4 NA objective) was used to collect motion data, which gave a field of view equivalent to
the indicated region. That region was split lengthwise into four, so that separate motion
estimates could be made to calculate standard deviations of the measurements. The data
used to estimate the motion consisted of images taken at 8 time points for each of 40 planes
of focus (separated by 5 pm). In the image, the +x direction is to the right; +y, up; and
+z, out of the page.
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Computer microvision provides significant advantages over other methods of mea-

suring middle ear mechanics (Guinan and Peake, 1967; Gyo et al., 1987). Motion can

be measured without contrast aids (e.g., mirrors, silver particles, or steel spheres), the

placement of which could load or damage the ossicle. Each measurement provides 3D

motion estimates. Three-dimensional motion estimates from at least two positions

(and the assumption that the bone is rigid), can be used to calculate five degree of

freedom motion for the ossicle 2. This description could then determine, for example,

(1) the extent of flexing in ossicular joints, (2) the extent to which stapes motion is

piston-like, and (3) the ratio of stapes motion to malleus motion (lever arm ratio).

Middle ear mechanics provides a number of challenges to computer microvision,

the primary challenge being that the motions are thousands of times smaller than the

structures. At magnifications/numerical apertures sufficient for motion estimation,

only a fraction of an ossicle is visible. Thus, one has the additional problem of de-

termining orientation and position changes between measurements on different parts

of the ossicle. This challenge is not unique to computer microvision, and should be

easier to solve using a video method (like computer microvision) than other methods

of motion detection (such as laser doppler). With video methods, low-magnification

images can be taken to help register the higher magnification motion images.

9.3 Microfabricated angular velocity sensor

Microelectromechanical systems (MEMS) hold great commercial promise for revolu-

tionizing the fields of sensor and actuator design (O'Connor, 1992; Gabriel, 1995).

MEMS devices can be mass-produced, and their small size opens up a host of new

applications. We examined a microfabricated accelerometer in previous chapters; here

we examine a microfabricated angular velocity sensor called a tuning-fork gyroscope.3

The angular velocity sensor has two shuttles which are driven in the plane of the

2The sixth degree of freedom, rotation about the line connecting the regions of interest, can be
determined from motion estimates in three non-collinear regions of interest.

3This work was done with Laura Johnson. For more details, see Johnson (1997). The gyroscope
was designed and manufactured by C.S. Draper Laboratories (Cambridge, MA).
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Figure 9-3: Frequency response of a small section of one shuttle of microfabricated angular
velocity sensor in the driven (in-plane) and unintended (out-of-plane) directions. For 56
frequencies, images at 8 evenly-spaced phases of the stimulus were taken at 30 planes of
section spanning 16 pm. The magnitude (top) and phase (bottom) of the fundamental
component of motion is plotted.

device. The Coriolis force causes deflections of the shuttle's motion in proportion

to the imposed angular velocity. These deflections change the distance between the

shuttles and the device's substrate, which is measured as a change in capacitance and

interpreted as an angular velocity.

Figure 9-3 demonstrates that we can obtain a frequency response of the shuttle's

motion. The in-plane motion frequency response demonstrates that computer micro-

vision can measure a 60 dB range of motion amplitudes. Even though no angular

velocity was imposed on the device, we measured out-of-plane motions well above our

noise floor. These out-of-plane motions limit the device's ability to measure angular

velocities.

The computer microvision system can easily measure the resonant frequencies for

in-plane and out-of-plane motions, which are different. Furthermore, the out-of-plane

resonance consists of three sub-peaks. Computer microvision can resolve those peaks

as different modes of motion. The lowest-frequency peak coincides with the in-plane
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Figure 9-4: Frequency response of a the rocking and levitation out-of-plane modes of motion
of a microfabricated angular velocity sensor. For 56 frequencies, images at 8 evenly-spaced
phases of the stimulus were taken at 30 planes of section spanning 16 Am. Three-dimensional
motion estimates from an array of 12 regions of interest spanning the shuttle's length were
combined to estimate the modes of motion. For the rocking mode, an angle waveform
(relative to the substrate) was computed from the slope of the linear least-squares fit to the
array of displacement waveforms. The magnitude and phase of the fundamental component
of this angle waveform is plotted for each frequency. For the levitation mode, a levitation
waveform was computed as the average across the regions of the out-of-plane displacement
not accounted for by the rotation. Plotted are magnitude and phase of the fundamental
component of this levitation waveform. The center of rotation was chosen to be in the
center of the shuttle.

resonance. The other two peaks result from (1) the entire shuttle "levitating" above

the substrate and (2) the shuttle "rocking" about an axis that is parallel to the

substrate and orthogonal to the in-plane motion.

Figure 9-4 demonstrates the frequency response of the levitation and rocking

modes of the shuttle's motion. The data illustrate that computer microvision can

measure rotations approaching one millidegree. Further, one can see that the reso-

nant frequencies of the two modes are different, and their combination accounts for

the higher frequency peaks in the out-of-plane frequency response shown in Figure 9-

3. The device has other modes of motion, which for example caused the spurious
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positive phase in the in-plane frequency response (Johnson, 1997). By combining

three-dimensional motion estimates across different regions of the shuttle, computer

microvision can characterize all the modes of motion. Knowledge of the modes is

critical for designers to be able to fabricate better devices. Just as electronic engi-

neers have electronic probe stations to test their devices, computer microvision holds

promise to become a "motion probe station" for MEMS designers.

9.4 Conclusions

Computer microvision combines video microscopy with computer vision to estimate

nanometer, three-dimensional motions. We have measured motions of structures

whose size spanned 68 dB (0.3 Im to 800 pm), whose motions spanned 66 dB (5 nm

to 10,000 nm), and at frequencies spanning 94 dB (1 Hz to 50 kHz). In principle,

computer microvision can measure motions of structures over an even larger range of

size, motions, and frequencies.

The system provides non-contact motion measurements without the need for arti-

ficial contrast enhancements. The target whose motion is estimated is unambiguous,

since estimates are determined from images of the target. Furthermore, the images

can be analyzed at multiple scales to estimate gross motions and fine details.

We have used this system to make important contributions in hearing-by ana-

lyzing sound-induced motions of the alligator lizard papilla, sound-induced motions

of the human stapes, and the mechanical deformation pattern in isolated tectorial

membranes-as well in the study of micromachines-by analyzing electrically-induced

motions of a microfabricated accelerometer and a microfabricated angular velocity

sensor.

We feel that computer microvision is a very general-purpose tool whose range of

applications is only now being discovered.
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