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Abstract. The most common failure mode of alu-
minium electrolytic capacitor is the so-called wear out
fault. It is caused by the high core temperature of
the capacitor. Therefore, life cycle calculations gener-
ally use temperature data to estimate degradation level.
Core temperature-based life cycle calculations can con-
sider different current loads on capacitors. The calcula-
tion method uses scaling factors for different ripple cur-
rent waveforms. However, it is not observed that tem-
perature only is responsible for aging, but current wave-
form also influences the level of degradation. There-
fore, sinusoidal and PWM-loaded capacitor tests were
performed under the same temperature conditions. The
results show that the pore distribution of aluminium an-
ode foil has changed during the test. The pore diame-
ter reduces and it leads to an increase in the ESR value
and decrease in the capacitance, electrolyte amount and
weight. Comparative results show that the PWM-loaded
capacitor is more degraded than the capacitor loaded by
sinusoidal test current.
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1. Introduction

Aluminium electrolytic capacitors have been used al-
most in every power electronic system and application,

such as Power Factor Correction (PFC) circuits, power
supplies, PWM inverters or other switch-mode convert-
ers, because they have relatively high capacitance and
low cost. The capacitor as an energy storage element
is used as a voltage level compensator between input
and output power levels to decrease the ripple of the
DC-side voltage level.

The common faults in electrolytic capacitors during
long-term usage or misapplication are wear-out faults
[1], [2], [3], [4], [5], [6], [7], [20], [21] and [22] due to the
vaporization of electrolyte caused by high core tem-
perature. Inside the capacitor, there are continuous
hydrolysis and oxide-layer forming mechanisms due to
current flow through the anode foil (Fig. 1). The alu-
minium anode foil is oxidized by the oxygen from the
water content of the electrolyte. The thicken oxide
layer of the anode foil, the reducing electrolyte and
the increasing hydrogen gas formation are the different
appearances of the degradation.

The occurrence of degradation can be delayed and its
level can be reduced if the operating temperature and
the heat generated by the ripple current are lowered.
The capacitor core temperature (TC) is determined [8]
by Eq. (1):

TC = TA + I2C,rmsRESRRth, (1)

where TA denotes the ambient temperature, IC,rms

symbolizes the capacitor RMS current, RESR denotes
the equivalent serial resistance and Rth denotes the
thermal resistance between the capacitor can and the
environment. Decrease in the inner temperature of ca-
pacitor by 10 ◦C in the rated operating temperature
doubles the capacitor lifespan.
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Fig. 1: Oxide-layer forming mechanism in an aluminium elec-
trolytic capacitor.

The RESR is a construction dependent parameter,
which contains the inner resistance of the conductive
components (dielectric losses and ohmic resistance of
raw materials, electrolyte, terminals and connections).
This is a relatively small resistance but still not negli-
gible. Beside the ripple current, these resistances are
responsible for the temperature increase in the core.
Reliability and lifetime of the capacitor are mainly in-
fluenced by the ripple current [22], [23] and [24].

There are numerous standards, which include the
test procedures of aluminium electrolytic capacitors
like: AEC-Q200, IEC 60384-1, IEC 60384-4 and CECC
[14], [15] and [16]. Capacitor tests performed by man-
ufacturers use mostly sinusoidal and constant voltage.
Recently, PWM converters are widespread [1], [2], [3],
[4], [5], [6], [8], [9], [10], [11], [12], [13] and [17]. Since
these circuits operate switch-mode, the electrolytic ca-
pacitors are loaded with PWM voltage. Therefore, the
load current of the capacitors is high-frequency rippled
current, which causes substantial degradation in ca-
pacitor structural materials. The ESR value of PWM-
loaded capacitor increases while the capacitance and
weight decrease. The reduced capacitance and lower
leakage current level imply the change of anode foil ox-
ide layer. The standardized test procedures are not
suitable for degradation analysis of capacitors loaded
by square-wave current.

The calculation of core temperature can be scaled by
correction factors to be valid for different ripple current
waveforms [18] and [19]. Lifecycle calculations consider
modified core temperatures by scaling factors for dif-
ferent ripple current waveforms. However, it is not
revealed how life cycle varies at the same core temper-
atures when the capacitor is loaded by different ripple
current. In this study, we analysed capacitor degra-

dation caused by different ripple current waveforms at
the same core temperatures.

2. Measurement Environment

For comparative analysis, different capacitors have
been loaded by the standard sinusoidal current and
PWM load.

During Endurance test with sinusoidal current, the
capacitor current is sinusoidal. The ambient temper-
ature is the recommended maximum operating tem-
perature of the tested capacitor, usually 85 or 105 ◦C
depending on its construction. The applied voltage is
constant during the entire test duration and both the
voltage and temperature are the rated values.

None of the standardized test procedures use high-
frequency square-wave voltage to load the capacitor,
therefore, a switch-mode power converter has been de-
veloped to ensure the PWM load to the analysed ca-
pacitor.

For degradation tests under PWM operation, a Two-
Quadrant Chopper has been used, which contains the
examined capacitor as can be seen in Fig. 2. The rated
voltage of the capacitor meets the supply voltage of the
converter. The converter contains an inductor (L) as
output, which loads the capacitor (C). Two switches
ensure the PWM voltage operation of the circuit.

Fig. 2: The concept of the test bench.

The elements of the test circuit had to be appropri-
ately chosen for the proper measurements. The ini-
tial parameters were the following: CR = 4700 µF,
UR = 400 V, ESR = 23 mΩ, Z = 28 mΩ,
d = 76.9 mm, l = 105.7 mm; IAC,R = 13.8 A.
The specifications of the circuit were the following:
fs = 10 kHz, T = 10 µs; the operating current and
ripple: Iop = 27.3 A, ∆Iop = 2.7 A, and the operating
current of the capacitor was calculated from IAC,R at
UT = 400 V.
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Tab. 1: Operating Leakage Currents (OLC) of the capacitors.

OLC before tests
(µA, measured after 24 h)

OLC after tests
(µA, measured after 24 h)

Sinusoidal
(50 Hz)

PWM
(10 kHz)

Sinusoidal
(50 Hz)

PWM
(10 kHz)

Lot A 77.5 78.65 50.75 47.7
Lot B 109.3 114.11 62.6 50.4
Lot C 69.64 72.54 45.4 42.07
Lot D 101.75 106.37 68.17 48.78

The signal generator is based on SG3524 IC, which
can generate accurate square waveform with variable
duty cycle. The IGBT modules (SEMIKRON SKM
195GB126D) were driven by HCPL-3120 IGBT gate
drive optocoupler circuits, which provides +15/− 5 V
signals. In order to minimize the losses, the inductor
resistance (RL) must be as small as possible, hence
the value RL = 1 Ω has been chosen. It can be seen
that in contrast to low resistance, relatively high power
dissipation occurs.

The specified ripple current can be ensured by cal-
culating the duty cycle (Eq. (2)) and the inductivity of
the coil (Eq. (3)) as the following:

TC =
T

2

(
Uavg

U
+ 1

)
= 0.534 · 10−4 s, (2)

L ≥ R

fs

(
2 ln

2U + R∆Iop
2U −R∆Iop

+ 1

)−1

= 7.272 mH. (3)

The environment was verified based on SPICE cir-
cuit simulation of the model and the realized equip-
ment was validated by test measurement. The circuit
can generate the needed current stress for capacitor
testing.

3. Test and Measurement
Results

The 48 capacitors have been chosen from the rated
voltage and capacitance domain of 400 V and 560 µF,
respectively. The tested capacitors were grouped into
four sets (Lot A – Lot D) based on their part numbers.
Each group contains 12 capacitors, 6 for standard test,
and 6 for PWM load test. The operating leakage cur-
rent (IOLC) was measured before the test procedure
in order to verify the same initial conditions for all
the tested capacitor pairs. The measurement was per-
formed on 105 ◦C (the maximum operating ambient
temperature of the capacitors) in a heating chamber.
As can be seen in Tab. 1, the currents converge to the
same values. Consequently, the conditions of the oxide
layers were similar.

The capacitors were tested with both the standard
equipment to perform sinusoidal tests and the devel-
oped test bench to perform PWM tests. The allowed
maximum ratings (current and voltage level) for the
alternating current tests were calculated according to
the catalogue data of capacitors.

When capacitors were tested with PWM load, it was
necessary to obtain the needed load current by Eq. (4),
which is equivalent to the current applied in standard
test. Capacitor ESR and power (P ) are known as a re-
sult of standard procedures:

P = I2ESR(f). (4)

The determined core temperature for all the tests
was 109 ◦C in order to ensure identical test condi-
tions for all capacitors and to avoid different capaci-
tor degradation and electrolyte vaporization caused by
different core temperatures. During test procedures,
the core temperatures of the capacitors were measured
with a K type thermocouple, which was inserted into
the capacitor. Based on the measured core tempera-
ture, the duty cycle of the PWM voltage signal was
adjusted to maintain 109 ◦C.

The weight and electrical parameters of the capaci-
tors (C, ESR, Z) were measured at the beginning of
the test and in every 250 hours.

Table 2, Tab. 3 and Tab. 4 show the aging effects
of 50 Hz sine and 10 kHz PWM voltage signals on the
capacitors at 20 ◦C ambient temperature.

The 10 kHz PWM voltage signal test resulted in
more intensive aging than the standard sinusoidal en-
durance test: higher rate of capacitance reduction,
weight loss and ESR increase were noticed. The weight
loss indicates the evaporation of the electrolyte, while
the change of the capacitance and ESR identify the
structural, chemical and volumetric transformation of
the anode, cathode and the electrolyte. The capac-
itance values decrease that can be explained by the
reduction of conducting plates (the charge storing ca-
pacity of anode foil is less) and/or distance increase
between them.

After the alternating current tests, the OLC mea-
surements were performed. The values of steady-state
OLCs were categorized in Tab. 1 for all tested capaci-
tors. The OLC measurements of Lot B can be seen in
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Tab. 2: Capacitance change of the capacitors.

Measure-
ment
time
(h)

Capacitance change (%, measured at 120 Hz, 20 ◦C)
Lot A Lot B Lot C Lot D

Sinusoidal
(50 Hz)

PWM
(10 kHz)

Sinusoidal
(50 Hz)

PWM
(10 kHz)

Sinusoidal
(50 Hz)

PWM
(10 kHz)

Sinusoidal
(50 Hz)

PWM
(10 kHz)

0 0 0 0 0 0 0 0 0
250 −1.03 −1.32 −1.3 −1.8 −0.88 −0.81 −0.31 −1.13
500 −1.05 −1.48 −2.56 −3.54 −2.09 −2.42 −1.23 −2.21
750 −1.5 −1.64 −4.06 −4.25 −3.18 −3.63 −2.51 −3.2

Tab. 3: ESR change of the capacitors.

Measure-
ment
time
(h)

ESR change (mΩ, measured at 120 Hz, 20 ◦C)
Lot A Lot B Lot C Lot D

Sinusoidal
(50 Hz)

PWM
(10 kHz)

Sinusoidal
(50 Hz)

PWM
(10 kHz)

Sinusoidal
(50 Hz)

PWM
(10 kHz)

Sinusoidal
(50 Hz)

PWM
(10 kHz)

0 104.77 104.91 112.56 113.29 104.74 102.95 93.44 92.42
250 106.9 107.38 119 123 116.42 116.62 101.68 100.59
500 111.18 112.62 138.2 148.07 142.8 144.57 107.8 108.89
750 115.34 117.64 153.75 166.29 162.38 165 113 114.93

Tab. 4: Weight loss of the capacitors.

Measure-
ment
time
(h)

Weight loss (g)
Lot A Lot B Lot C Lot D

Sinusoidal
(50 Hz)

PWM
(10 kHz)

Sinusoidal
(50 Hz)

PWM
(10 kHz)

Sinusoidal
(50 Hz)

PWM
(10 kHz)

Sinusoidal
(50 Hz)

PWM
(10 kHz)

0 0 0 0 0 0 0 0 0
250 0.02 0.04 0.12 0.16 0.05 0.09 0.12 0.08
500 0.04 0.11 0.19 0.21 0.11 0.19 0.15 0.19
750 0.09 0.14 0.23 0.27 0.17 0.28 0.27 0.32

(a) 10 kHz alternating current test. (b) Standard test. (c) Reference.

Fig. 3: Electron microscopy captures snapshot of anode foil.

Fig. 4 in detail. Both the waveforms and the steady-
state values of OLCs are different after performing AC
voltage tests. During 50 Hz and 10 kHz tests, the struc-
ture of the oxide layer was erratically transformed. The
spikes in the current waveforms can be explained by the
deformed spatial structure of the oxide layer. When
analysing the current waveform after 10 kHz test, it
can be concluded that spikes are more relevant. Lower
leakage current level can be observed in steady-state
because of the thickened oxide layer of anode. Since
the oxide layer went through a more significant defor-
mation, the OLC has less steady-state value when the
capacitor was tested with 10 kHz PWM signal instead
of 50 Hz sine wave.

Both the capacitance and OLC reduction imply an-
ode foil structural change. Therefore, the anode foils

were investigated with structural analysis. The mor-
phology of the anode foil surface was investigated with
a scanning electron microscope. As can be seen in
Fig. 3, there are no significant differences between the
results, hence the pore size distribution was examined
in order to find the reason for the capacitance and OLC
reduction.

The results were obtained from the pore size dis-
tribution and the specific surface area examinations.
Micro- and macroporosity, as well as specific surface
area, were measured by mercury intrusion and nitro-
gen adsorption porosimeters, after eight hours vacuum
treatment on 125 ◦C.

The change of the specific surface area was deter-
mined by nitrogen adsorption and the pore size distri-
bution was used for characterization of the degrada-
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Fig. 4: Operating leakage currents of Lot B capacitors.

tion of the anode surface. The differential logarithmic
pore volume functions in the range of 10–10000 nm
have a maximum in the interval of 1000–2000 nm pore
diameters. This maximal (Fig. 5) value is shifted to
a smaller (600–700 nm) pore size in the case of the ca-
pacitor tested on 10 kHz PWM voltage signal. It means
that the pits diameter of the foil narrowed during the
high-frequency test.
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Fig. 5: Pore volume distribution.

4. Conclusions

The general problem with the electrolytic capacitor is
the electrolyte vaporization during operation. Core
temperature is an important property of the tests be-
cause it influences the level of the degradation. It is
also affected by ambient temperature and load current.
The capacitors are loaded by dynamically changing
current in modern switched power electronics applica-
tions. The standard validation test methods work with
sinusoidal load current only. During tests, square-wave
voltage was applied (10 kHz PWM) on the tested ca-
pacitor beside the standard sinusoidal voltage (50 Hz).
The general electrical parameters of capacitor were
analysed. These values show that the PWM current
cause more severe degradation than sinusoidal load cur-
rent. The ESR values are increased, while the capac-
itance and weight decreased more than in the case of
the standard sinusoidal endurance test. The reduced
capacitance and lower leakage current level imply the
change of anode foil oxide layer.

In order to analyse the structural change of the an-
ode material, micro- and macroporosity, as well as spe-
cific surface area, were measured by mercury porosime-
ter. The pore size distribution showed that the PWM
voltage based current load decreased the pore diam-
eter of the capacitor anode foil. It initiated an ox-
ide layer formation, which consumes the electrolyte.
Therefore, the electrolyte transformation is accelerated
which leads to faster aging and shorten the lifetime.

The analyses showed that the introduction of a new
type of standard test, namely testing the degradation
under PWM load is worth to estimate the life span of
capacitors in PWM power converters.
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