
Evaluation of the Regulatory Review Process
for the Software Development Life Cycle

by

Andrew Patrick Gnau

B.S., Systems Engineering (1995)
United States Naval Academy

SUBMITTED TO THE DEPARTMENT OF NUCLEAR ENGINEERING
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN NUCLEAR ENGINEERING
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FEBRUARY 1997

© 1997 Massachusetts Institute of Technology
All rights reserved

/7 ,4

Signature of Author

Department of Nuclear Engineering
January 17, 1997

Professor George E. Apostolakis
Thesis Supervisor

C ertified by :..
, / Professor Michael W. Golay

Thesis Reader

Accepted by

S/ e Professor Jeffrey P. Freidberg
Chairman, epartment Committee on Graduate Students

MAY A1 9 1997

Certified by.

-/

EVALUATION OF THE REGULATORY REVIEW PROCESS

FOR THE SOFTWARE DEVELOPMENT LIFE CYCLE

by

ANDREW PATRICK GNAU

Submitted to the Department of Nuclear Engineering
on January 17, 1997 in partial fulfillment of the

requirements for the Degree of Master of Science in
Nuclear Engineering

Abstract

The U.S. Nuclear Regulatory Commission (USNRC) has been dealing for some time with the
issue of how to regulate safety-related digital instrumentation and control (I&C) software to assure that it is
safe and reliable enough for introduction into nuclear power plant (NPP) applications. The review process
that exists was designed with analog technology in mind. New plant designs and many proposed retrofits,
however, involve digital systems that are less well understood and less suited to current evaluations than
analog systems. The need for a new and more appropriate regulatory method is, therefore, becoming
increasingly important.

The problem addressed in this work is to analyze the USNRC's proposed software development
review standard -- Branch Technical Position HICB-14, or 'BTP-14,' "Guidance on Software Reviews for
Digital Computer-Based Instrumentation and Control Systems" -- and Chapter 7 of the Standard Review
Plan (" Instrumentation and Controls") in light of current technology in the software development field to
determine how best the development process and the review standard can be applied to digital I&C
technology. This analysis resulted in the five following suggestions for the standard:

1. The major points and guiding principles of BTP-14 and associated documents need to be expressed
clearly and concisely in one location.

2. The guidance in BTP-14 and its associated documents should be consolidated into one stand-alone
document or should have a clear roadmap to guide the reviewer from one document to another with
minimal effort.

3. The guidance needs to have more than strictly a qualitative nature -- perhaps by requiring a
mathematical notation for all requirements.

4. More emphasis needs to be placed on using software development techniques with a system-safety
approach (e.g., checklists, HAZOP, information hiding, and the Dynamic Flowgraph Methodology).

5. A complementary mix of functional, structural, and random testing must be specified, possibly with
more emphasis on error prevention (as is emphasized in the Cleanroom software engineering process)
than on error detection and debugging.

Thesis Supervisor: George Apostolakis

Title: Professor of Nuclear Engineering

Acknowledgments

First I would like to thank my advisor, Professor George Apostolakis, for his support and
guidance in steering me around the trees so that I could better see the forest. I would also like to thank my
fellow research project members, Chris Garrett and Xinhui Chen, for their valuable insights into how to
improve my various thesis drafts, and my thesis reader, Professor Michael Golay, for taking the time to
evaluate my final draft.

In addition, I would like to thank all of the people who allowed me to vent my thoughts, ideas,
concerns, frustrations, and sometimes even joy in their direction: my great friends Yool Kim (without
whose help and support I never would have made it), Jen Rochlis (my sister separated-at-birth), Rob
McHenry (who also had the dubious pleasure of being my roommate), and my parents, Mr. and Mrs. Scott
and Beth Gnau. Thanks also to Associate Professor Mark J. Harper of the United States Naval Academy,
who helped me to get here in the first place, and to Drs. William Thompson and George W. W. Jones of
Dallastown (Pa.) Area High School, my lifetime career counselors.

Table of Contents

List of Figures... 11

Important Acronyms... 13

Frequently Referenced Documents 15

1 Introduction .. 17

1.1 Motivation and Problem Statement .. 17

1.2 Scope of the Work .. 17

1.3 Background ... 18

1.3.1 Digital Systems vs. Analog Systems 18

1.3.2 Digital I&C Safety Issues Identified by the National Research Council...19

1.3.3 Discussion of Key Digital I&C Safety Issues 20
1.3.3.1 Software Quality Assurance and Common-Mode Failure Potential 20
1.3.3.2 System Aspects of Digital I&C Technology 21
1.3.3.3 Safety and Reliability Assessment and Case-by-Case Licensing 24

1.3.4 Process vs. Product and Cleanroom Engineering 27
1.3.4.1 Error Prevention, NOT Error Correction.......................... 28
1.3.4.2 D ebugging 29
1.3.4.3 S im p licity 29
1.3.4.4 Functional (Correctness) Verification 30
1.3.4.5 Testing and Statistical Quality Control 31

1.3.5 Fundamental Software Design Questions ... 32

1.3.6 The USNRC's Approach to the Software Development Process 32

2 Software Review...35

2.1 The BTP-14 Review Process ... 35

2.1.1 B T P -14 35

2.1.2 SRP A ppendix 7.0-A ... 35

2.1.3 SRP Section 7.0 36

2.1.4 SRP Section 7.1 .. 36

2.1.5 SRP Appendix 7.1-A ... 39

2.1.6 SRP Appendix 7.1-B... 39

2.1.7 SRP A ppendix 7.1-C 39

2.1.8 Back to SRP Appendix 7.0-A ... 40

2.1.9 B ack to B TP-14.. 42

2.2 Evaluation of the BTP-14 Review Process 46

2.2.1 B ackground 46

2.2.2 Evaluation 48
2.2.2.1 SRP Section 7.0..50
2.2.2.2 SRP Section 7.1..................................... 51
2.2.2.3 SRP Appendix 7.1-A... 51
2.2.2.4 SRP Appendices 7.1-B and 7.1-C 52
2.2.2.5 SRP Appendix 7. O-A .. 53
2.2.2.6 B TP -14........................... 59

2.3 The Place of V&V and Testing in the BTP-14 Review Process..... 62

2.3.1 V&V Definitions...62

2.3.2 V&V Theory 63

2.3.3 V & V in BTP-14 64

2.3.4 V & V in the SRP 67

2.3.5 V&V Standards: Reg. Guide 1.152 and IEEE 7-4.3.2 67

2.3.6 V&V Standards: IEEE 1012, IEEE 1028, and Reg. Guide 1.lyy..............68

2.3.7 Testing and V&V in NUREG/CR-6101 .. 69

2.3.8 Methods and Types of Testing...70

2.3.9 What is the Right Mix of Testing Methods? .. 72

2.3.10 Problems with Testing 72

3 Improving Software Design and the BTP-14 Review
Process 77

3.1 General Observations on BTP-14 and the Ontario Hydro Software
Development Standard.. 77

3.1.1 Mathematical Notation.. 79

3.1.2 Mathematical Verification ... 79

3.1.3 Information Hiding 79

3.1.4 T esting.. .. 81

3.2 Recommended Actions to Improve the BTP-14 Review Process... 82

3.2.1 Recommendation #1 82

3.2.2 Recommendation #2 .. 82

3.2.3 Recommendation #3 .. 82

3.2.4 Recommendation #4 .. 83

3.2.5 Recommendation #5 .. 83

4 Conclusions *........................... 85

R eferences 87

Appendix A

Appendix B

Appendix C

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Comparison Between Analog and Digital
Instrumentation and Control Systems 91

Development of the NRC List of Digital
Instrumentation and Control Issues....................... 93

Sample "Completeness Criteria" for
Requirements .. 99

Lutz's "Safety Checklist" 101

Sample Guidance from BTP-14 103

Sample Guidance from SRP Section 7.0............. 107

Digital Issues Discussed in SRP Section 7.1 111

Sample Guidance from SRP Appendix 7.1-A 113

Guidance Topics from SRP Appendix 7.1-B......115

Digital Issues Discussed in SRP

Appendix 7.0-A 117

BTP-14 Software Characteristic Definitions 119

Safety Impact of Software Qualities from a
Regulator Viewpoint .. 121

Appendix M

Appendix

Appendix

Appendix P

Testing Strategies Appropriate to Software
Qualities........................... 123

Sample Prerequisites for and Extent of Testing.. 125

Typical Testing Strategies for Investigating
Software Qualities ... 127

Human Factors 131

List of Figures

Figure 1 Overview of Review Process 37

Figure 2 Overview of the Process for Reviewing the Unique Aspects of Digital Instrumentation and

Control System s 41

Figure 3 Software Review Process 43

Figure 4 Documents Produced During Each Life Cycle Stage 45

Figure 5 Defense-in-Depth and Diversity Review 54

Figure 6 Review of Software Lifecycle Process Planning................................... 55

Figure 7 Special Considerations in the Review of Functional Requirements for Digital Instrumentation

and Control System s 56

Figure 8 Review of Software Development Process Implementation 57

Figure 9 Review of Design Outputs 58

Figure 10 Verification and Validation Activities 66

Figure 11 Illustration of BTP-14 Review Path Discussed in Chapters 2 & 3 74

Figure 12 Sample of Tabular Representation ... 80

Important Acronyms

ACE -- abnormal conditions and events
ACRS -- Advisory Committee on Reactor Safeguards
AECL -- Atomic Energy Canada, Ltd.
ANSI -- American National Standards Institute
BTP -- Branch Technical Position
CFR -- Code of Federal Regulations
COTS -- commercial-off-the-shelf (software)
DFM -- Dynamic Flowgraph Methodology
D-in-D&D -- defense-in-depth and diversity
FMEA -- Failure Modes and Effects Analysis
FTA -- Fault Tree Analysis
GDC -- General Design Criteria
HAZOP -- hazard and operability (analysis)
HF -- human factors
I&C -- instrumentation and controls
IEEE -- Institute of Electrical and Electronics Engineers
MTTF -- mean-time-to-failure
NPP -- nuclear power plant
NRC -- National Research Council
OH -- Ontario Hydro
SQC -- statistical quality control
SRP -- Standard Review Plan
SRS -- Software Requirements Specification
Std -- Standard (as in IEEE Std 279)
SVVP -- Software Verification and Validation Plan
USNRC -- United States Nuclear Regulatory Commission
V&V -- Verification and Validation

Frequently Referenced Documents

(in order of appearance)

1. 'BTP-14' -- Branch Technical Position HICB-14 (Proposed) -- "Guidance on Software Reviews
for Digital Computer-Based Instrumentation and Control Systems" (Version 10.0), August 23,
1996.

2. 'SRP Chapter 7' -- Standard Review Plan, Chapter 7 (Draft) -- "Instrumentation & Controls"
* Section 7.0 -- "Instrumentation and Controls -- Overview of Review Process " (Version
4.0), August 22, 1996.
* Appendix 7.0-A -- "Review Process for Digital Instrumentation and Control Systems"
(Version 7.0), August 23, 1996.
* Section 7.1 -- "Instrumentation and Controls -- Introduction" (Version 8.0), August 23,
1996.
* Appendix 7.1-A -- "Acceptance Criteria and Guidelines for Instrumentation and
Control Systems Important to Safety" (Version 8.0), August 23, 1996.
* Appendix 7.1-B -- "Guidance for Evaluation of Conformance to ANSI/IEEE Std 279"
(Version 8.0), August 22, 1996.
* Appendix 7.1-C -- "Guidance for Evaluation of Conformance to IEEE Std 603"
(Version 2.0), August 22, 1996.

3. 10 CFR 50 (and 52) and corresponding appendices -- respective sections of the Code of Federal
Regulations

4. NUREG/CR-6101 -- "Software Reliability and Safety in Nuclear Reactor Protection Systems,"
November 1993.

5. 'IEEE 603' -- IEEE Std 603-1991 -- "IEEE Standard Criteria for Safety Systems for Nuclear
Power Generating Stations."

6. 'IEEE 279' -- IEEE Std 279-1971 -- "Criteria for Protection Systems for Nuclear Power
Generating Stations."

7. Regulatory Guide 1.153 -- "Criteria for Power, Instrumentation, and Control Portions of Safety
Systems," 1985.

8. 'Reg. Guide 1.152' -- Regulatory Guide 1.152 -- "Criteria for Digital Computers in Safety
Systems of Nuclear Power Plants," January 199 6.

9. 'IEEE 7-4.3.2' -- IEEE Std 7-4.3.2--1993 -- "IEEE Standard for Digital Computers in Safety
Systems of Nuclear Power Generating Stations."

10. 'Reg. Guide 1.lyy' -- Regulatory Guide 1.1yy (Draft) -- "Verification, Validation, Reviews, and
Audits for Digital Computer Software."

11. 'IEEE 1074' -- IEEE Std 1074-1991 -- "IEEE Standard for Developing Software Life Cycle
Processes."

12. 'IEEE 1012' -- IEEE Std 1012-1986 -- "IEEE Standard for Software Verification and Validation
Plans."

13. ANSI/ANS-10.4-1987 -- "American Standard Guidelines for the Verification and Validation of
Scientific and Engineering Computer Programs for the Nuclear Industry."

14. 'IEEE 1028' -- IEEE Std 1028-1988 -- "IEEE Standard for Software Reviews and Audits."

15. NUREG/CR-6263 -- "High Integrity Software for Nuclear Power Plants, " June 1995.

16. 'IEEE 830' -- IEEE Std 830-1993 -- "IEEE Recommended Practice for Software Requirements
Specifications."

17. 'RG 1.1ww' -- 'Reg. Guide 1.1ww' -- "Software Requirements Specifications for Digital
Computer Software."

18. CE-1001-STD Rev. 1 -- "Standard for Software Engineering of Safety Critical Software," January
1995.

1 Introduction

1.1 Motivation and Problem Statement

The U.S. Nuclear Regulatory Commission (USNRC) has been considering for some time the issue

of how to regulate safety-related (especially safety-critical) digital instrumentation and control (I&C)

software to ensure that it is safe and reliable enough for introduction into nuclear power plant (NPP)

applications. The process that exists was designed with analog technology in mind, but many new plant

designs and proposed retrofits involve digital systems that are less well understood and less suited to

current evaluations than analog systems. The need for a new and more appropriate regulatory method is,

therefore, becoming increasingly important.

While digital systems have many advantages over analog systems, they also introduce new

problems. Their discontinuous behavior is much less predictable than the continuous behavior of analog

systems. That is, the behavior of a continuous analog system between discrete test points can be

interpolated; but assumptions of such continuous or smoothly varying behavior for digital systems, in

which discrete logic applies, are not valid.' In addition, many failures can be difficult to foresee due to the

extremely large number of possible input, processing, and output states of a digital system. In general,

both the performance and the failure mechanisms of digital systems are different from those of analog

systems.'

The USNRC's (Proposed) Branch Technical Position HICB-14 ('BTP-14') 2 , "Guidance on

Software Reviews for Digital Computer-Based Instrumentation and Control Safety Systems," is based on

the principle that evaluation of software quality must include not only an evaluation of the software

product itself (as has traditionally been the focus), but also an evaluation of the software development

process. The problem then is to analyze the USNRC's proposed software development process review in

light of current technology in the software development field to determine how best the development

process and the review process can be applied to digital I&C technology.

1.2 Scope of the Work

The contents of this work are as follows. Section 1.1 of this introductory chapter discusses the

work motivation and problem statement, followed by discussion of the scope of the work in this section.

Section 1.3 discusses the background to the problem. This includes a basic comparison of digital and

analog technology, a brief summary of important digital I&C issues followed by a more detailed discussion

of the most pertinent ones, a discussion of the software development process vs. the software product, a

1 Introduction

listing of the fundamental software questions to be answered, and brief discussion of the USNRC's

approach to the software review process. Chapter 2 discusses the software review process. Section 2.1

gives an objective discussion of the USNRC's proposed review process for software and instrumentation &

control; 2.2 evaluates this review process; 2.3 discusses the specific issue of V&V within the BTP-14

regulatory process. This covers V&V definitions and theory; the place of various V&V standards; various

types and mixes of testing; and problems with testing. Chapter 3 deals with improving the BTP-14 review

process and the software development process. Section 3.1 compares and contrasts BTP-14 with the

Ontario Hydro software review standard; 3.2 makes suggestions for how to improve the BTP-14 review

process. Chapter 4 summarizes the conclusions of this work. (The initial focus of this work was human

factors. The focus soon changed, but some of the pertinent information from that pursuit has also been

included in the final appendix, Appendix P.)

1.3 Background

1.3.1 Digital Systems vs. Analog Systems

Digital, software-based technology offers many advantages over analog, hardware-based

technology, including reduced calibration (less device "drift") and maintenance, flexible and improved

information displays, and improved accuracy. Another notable difference with software is the absence of a

" wear-out" period of age-related failures, which can be important when traditional, hardware-based safety

mechanisms are replaced with new, software-based alternatives. However, digital technology also brings

with it problems not seen in the same way -- if at all -- in analog systems, such as the potential for

common-mode failures.3 As indicated in one of the most important digital I&C regulatory documents, the

key difference that makes it so much more difficult to assure reliability in digital systems is the

discontinuous behavior they exhibit.'

The National Research Council (NRC) was asked by the USNRC to define "the important safety

and reliability issues (concerning hardware, software, and man-machine interfaces) that arise from the

introduction of digital instrumentation and control technology in nuclear power plant operations, including

operations under normal, transient, and accident conditions."' The NRC noted a variety of inherent

differences between analog and digital systems in the areas of data collection, data transmission, control

logic implementation, operator interface, reliability, and preoperational and in-service testing. (The

complete description of these differences is in Appendix A.3)

The NRC identified some potential digital I&C problems based on recent retrofit experiences.

These problems include the areas of common-mode failures; diversity as protection against common-mode

failures; software specification development; software verification and validation; excessive complexity

(and resultant programming difficulties); environmental sensitivity (to such things as electromagnetic and

radio frequency interference, temperature, humidity, and smoke); lack of on-site plant experience with the

I Introduction

new technology; commercial dedication of hardware and software; reliability of software tools;

configuration management; and the need for an efficient regulatory certification process that can keep up

with rapidly changing digital technology.3

1.3.2 Digital I&C Safety Issues Identified by the National Research Council

In order to develop a specific list of safety issues related to the introduction of digital technology

into NPP I&C, the NRC studied the relation of digital technology to five standard 'approaches to safety'

given below. A brief description of the concern(s) about each issue is also given.3

1) Defense-in-depth -- Multiple elements of a defense-in-depth system can be
compromised by common-mode failures (e.g., a specification error could cause all
versions of a multi-version group of programs to fail despite their design for
defense-in-depth).

2) Safety margin assessment -- This involves a mix of probabilistic methods (to
assess the relative frequency and consequences of postulated accident scenarios and
to find design weaknesses) and deterministic methods (to assess the response and
performance of safety systems to identified accident scenarios). Applying such
mathematical techniques to the discrete logic and mathematics of software can be
very difficult for a number of reasons. Mathematical logic (rather than
straightforward, continuous mathematical methods) must be applied to software
specifications; such a process can often be more complex than the design of the
software itself. In addition, the extremely large number of possible inputs, outputs,
and system states makes definitive quantification of reliability very questionable.

3) Environmental qualification -- Environmental effects on software are different and
less well understood than such effects on hardware, and there is no corresponding
"wear-out" period for software as it ages. In fact, software can even become more
reliable with age, since more bugs may be found and corrected. (Another
difference is that once errors with software are detected, they can be removed
permanently, while errors with hardware can occur again despite being fixed.)

4) Requisite quality -- Requisite quality control and quality assurance techniques
(e.g., testing and documentation) are also less well understood for software systems
than they are for analog, hardware-based systems.

5) Failure vulnerability -- Independence, separation, and redundancy to reduce
failure vulnerability are often required to a greater degree for software than for
hardware because of the less-well-understood nature of common-mode failures in
software.

After analyzing these approaches to safety, the NRC investigating committee ultimately identified

six key technical issues (issues 1 through 6 on the following list) and two key strategic issues (issues 7 and

8 on the following list) of concern with respect to the introduction of digital I&C into NPPs. The particular

issues among these eight that are most directly related to this work will be discussed in more detail in

Section 1.3.3. The eight issues are: 3

1. Software quality assurance,

1 Introduction

2. Common-mode software failure potential,

3. System aspects of digital instrumentation and control [I&C] technology,

4. Human factors and human-machine interfaces or interaction,

5. Safety and reliability assessment methods,

6. Dedication of commercial off-the-shelf [COTS] hardware and software,

7. Case-by-case licensing process, and

8. Adequacy of technical infrastructure.

Issues 1, 2, 3, 5, and 7 deal most directly with the topic of this work. Discussion of them will

elaborate on the concerns in each of these areas and on possible methods for addressing them. A detailed

list of specific questions pertaining to the eight issues identified by the NRC can be found in Appendix B.

1.3.3 Discussion of Key Digital I&C Safety Issues

1.3.3.1 Software Quality Assurance and Common-Mode Failure Potential

Of the first issue, software quality assurance, the committee said that the " quality of software is

measured in terms of its ability to perform its intended functions. This, in turn, is traced to software

specifications and compliance with these specifications."' The committee went on to say that "neither of

the classic approaches of (a) controlling the software development process or (b) verifying the end-product

appears to be fully satisfactory in assuring adequate quality of software, particularly for use with safety-

critical systems." 3

The NRC evaluated a variety of quality assurance techniques, including various static and

dynamic analysis methods as well as reliability models and reliability growth models (which, respectively,

attempt to estimate and to predict reliability). There was no confidence expressed that any of these

methods is sufficient to provide confidence in the required level of reliability for a nuclear reactor I&C

system. 'Static analysis' as used here entails manual or automated inspections of such software

development products as the requirements, design, source code, or test plans. Dynamic analysis, the most

common example of which is program testing, involves checking the product behavior to determine if it

fulfills its requirements. Testing can only cover a fraction of the total possible software states, and proper

behavior of the untested states cannot simply be inferred from proper behavior of the tested states.

Reliability growth models are used to predict when the mean-time-to-failure (MTTF) of software in

development will be high enough to release the software. These predictions are then validated

experimentally during software testing. Reliability models, on the other hand, are used to estimate a

system's MTTF after its development. Some of the MTTF estimates derived with these models have been

too high to demonstrate practically, and several of their assumptions are questionable in the NRC's opinion

I Introduction

(e.g., that repairs always lead to failure rate decreases and that MTTF is independent of program size

despite the typical system quality of roughly constant defects per line).3

How to prevent or mitigate common-mode failures is also an issue. The USNRC staff believes

this problem to be likely in digital I&C systems due to the fact that "digital I&C systems may share code,

data transmission, data, and process equipment to a greater degree than analog systems." 2 Thus care must

be taken to prevent such sharing, which is counter to redundancy and results in severe consequences when

a single (shared) component fails.2 In fact, common-mode failure is the issue that the USNRC staff is most

worried about and the issue on which they have focused most of their efforts.4 Do analog solutions also

apply to digital systems? Are diversity and redundancy the best answers for high reliability? There have

been cases where the redundancy management was so complicated that it was the only source of errors in a

program (e.g., during flight testing of one NASA software system).5 The effectiveness and reliability of

methods such as 'N-version programming' have also been questioned.6 This programming method is

based on questionable assumptions of independence, because the N different versions start from the same

requirements. The requirements phase is the development stage to which many software design errors are

ultimately traced. Two different versions of the same program could thus fail from the same error if it is a

requirement or specification error. N-version programming is capable of providing at least partial

independence, but it cannot be relied upon exclusively for absolute independence.

Littlewood discusses numerous models for "failure behaviour of systems involving redundancy

and diversity" in a 1996 article.' In particular, she contrasts the use of redundancy with the use of diversity

by comparing the Hughes model and the Eckhardt & Lee model. The Hughes model7 (for hardware) is

based on a probability distribution of percentage of pieces of (the same) hardware that will fail for each

different stressful environment. This model attributes component failure dependencies to "variation in the

stressfulness of operating environments." A stressful environment will have the same effect (that is, an

increased likelihood of failure) on every component. Redundancy (more than one of the same component)

is the answer to this problem, since the more of the components there are, the less likely it is that they will

all fail. The Eckhardt & Lee' model (for software), on the other hand, attributes failure dependencies in

"design-diverse software" to the varying "intrinsic difficulty" of the inputs the software receives.

Diversity (different versions of the same program) is the answer to this problem; one software version may

fail on some particular difficult input, while another may not. Some empirical experiments have shown,

however, that a major factor in software failure dependencies is the fact that different program versions

sometimes have identical faults, often due to errors within the specifications.7

1.3.3.2 System Aspects of Digital I&C Technology

The NRC also believes that focusing on system aspects of digital systems (as opposed to focusing

on particular components or parts) is important in order to maintain operation within an adequate margin of

safety. For example, it is possible that each module or component in a system could function within its

I Introduction

own margin of safety, while the overall function of the system of modules falls outside the total margin of

safety for the system. Important aspects of digital systems and their interfaces were suggested for close

consideration, including sequential operation (i.e., control sequences must be faster than response times or

the responses will no longer be valid by the time they are processed), multiplexing, memory sharing (i.e.,

this must not lead to corruption of data), data transmission methods, and storage media. Designing a new

system with these factors in mind is fairly straightforward, but retrofitting into an existing plant can be

much more difficult.3

Reference 8 discusses the use of HAZOP, short for Hazard and Operability Study, as one

suggested approach to the issue of system safety. This is a technique that originated in the chemical

industry for the identification and analysis of hazards. Though designed with the chemical industry in

mind, it has generic aspects which are useful to apply to software development.'

Many of the methods for ensuring high software reliability that are covered in this work involve

looking specifically at code or other components of the software (and the system of which it is a part) to

determine what could go wrong with them and figure out how to prevent it or compensate for it. HAZOP,

on the other hand, looks not at these design components but at the physical or logical interconnections

between them."

As described in the HAZOP article by Redmill et al.9, an interconnection "represents the flow of

some entity (for example a fluid in a chemical plant, data in a computer system) between the components

which it connects." These entities have characteristics that depend on the particular situation (see the

"experimental frame" discussion in Appendix P), and the characteristics have intended "design values."

HAZOPs seek to find "what deviations from the design might occur, and then to determine their possible

causes and hazardous effects." This search is done via "guide words" which help to narrow the scope of

the search to certain classes of deviations. The meaning of the guide words can change with varying

situational contexts, leading to multiple "attitude-guide-word interpretation" possibilities. Questions

raised during the HAZOP study must lead to recommendations for action. The documented output of a

HAZOP, according to Redmill et al., should include:9

1. The objectives of the study,

2. The interconnection attributes evaluated, guide words used, and attribute-guide-
word interpretations,

3. Details of the hazards identified,

4. Any features existing in the design for the detection, elimination, or mitigation of
the hazards,

5. Recommendations, based on the [HAZOP] team members' expert knowledge, for
the elimination or mitigation of the hazards or their effects,

I Introduction

6. Recommendations for the study of uncertainties surrounding the causes or
consequences of identified hazards,

7. Questions to be answered, as follow-up work, regarding uncertainties about whether
a hazard could occur, and

8. Operational problems to be investigated for possible further hazards.

Also pointed out are benefits of using HAZOP in combination with a Failure Modes and Effects

Analysis (FMEA). HAZOPs search for both the cause of a deviation from a design intent and the possible

results of the deviation. FMEAs search strictly for consequences (in the system) given a failure (of a

component). At the very start of the software development process, when only high level system

information is known, a HAZOP might be applicable for investigating the interfaces between the system

and the environment (or other systems). As component information becomes available, a preliminary

FMEA can be done to find non-interaction hazards and to guide further hazard searches. With more

detailed information, both types of analyses can be useful. HAZOP may produce results that can be further

analyzed with a FMEA and vice versa. At high levels of detail (a low level in the system), a HAZOP can

become very tedious, so a FMEA is a better option. 9

In the book Safeware, Leveson addresses many of the problems of and possible solutions to

system safety from the perspective of software.'l In a study of the Galileo/Voyager space program, safety-

related software errors were found to stem primarily from system requirements, documented specifications,

and problems with the software interfaces to the rest of the system. Leveson suggests that the standard

generic methods to deal with problems such as these are ineffective: Making the requirements and code

"correct" (completely) is impractical, and using fault-tolerant techniques has limited effects only on

coding errors. Emphasis should instead be on system safety concepts such as requirements/code analysis,

hardware or software interlocks, fail-safe systems, and system self-monitoring."'

Leveson details a long series of "completeness criteria" to be used when evaluating system

requirements. These criteria cover such topics as deterministic matching of input with output, proper

system initialization and updating, specified system behavior during any "off-normal" situation, handling

of various input arrival rates and response times, and proper handling of hazard situations (e.g., fail-safety

or fault-tolerance).'0 (See Appendix C for a more detailed sample list of these criteria.)

Lutz of NASA's Jet Propulsion Laboratory has developed a " Safety Checklist" which stresses a

deterministic approach for finding software errors (the same type of approach endorsed by the USNRC in

BTP-14 via Reg. Guide 1.152, and IEEE 7-4.3.2)." The checklist is a series of "informal, natural-

language" translations of formal design criteria that target the particularly troublesome software design

areas of interface specifications and system robustness. It covers such issues as deterministic software

behavior, responses to early or late inputs/out-of-range inputs/varying input arrival rates, and proper

handling of errors and hazards (including predictable "performance degradation" when necessary)." As

1 Introduction

can be seen, there is some overlap of this list with that proposed by Leveson. Both of the lists deal with

such issues as:

* The software's ability to deal with any manner of input (e.g., early, late, non-
existent, or out-of-range, excessive or insufficient arrival rate),

* Deterministic software behavior (based on the inputs and software state),

* The existence of unused sensor information or unreachable software states (possibly
indicating superfluous -- or missing - functionality),

* The presence of at least one path to a safe or low-risk state from all hazardous
states, and

* The capability for smooth, predictable performance degradation when that is the
chosen error response (e.g., sacrificing some accuracy in order to decrease response
time).

(For the complete "Safety Checklist, " see Appendix D.)

The guidance of the Safety Checklist is driven by the same principles that drive BTP-14. They are

both concerned with verifying deterministic measures of the software performance, but the checklist is

somewhat more explicit in how to make such assessments. For example, question #10 on the list starts

generally (" Can input that is received before startup, while offline, or after shutdown influence the

software's behavior?") and then provides specific examples of how it might be manifested in a program to

guide the user (" For example, are the values of any counters, timers, or signals retained in software or

hardware during shutdown? If so, is the earliest or most-recent value retained?"). "

It is hard to determine at what point a list such as this is sufficient. Could this list be combined

with the requirements-targeted questions Leveson poses (discussed above)? Are the lists exclusive? Are

they complementary? A realistic solution might be to use a combination of available possibilities.

Combining multiple available technologies is a strategy favored in the software development standard used

by Ontario Hydro, which uses a variety of software development techniques, each with their own merits

and weaknesses, to strengthen and increase confidence in each other.

1.3.3.3 Safety and Reliability Assessment and Case-by-Case Licensing

The NRC feels that there must be agreed-upon methods of software safety and reliability

assessment in order to evaluate safety margins, compare performance with regulatory criteria (including

quantitative safety goals), and make safety trade-off comparisons (e.g., improved self-testing capability at

the cost of increased complexity to achieve it). Many current safety and reliability methods were not

designed with digital applications in mind. It has been suggested that perhaps a shift from statistical

methods to mathematical proof and logic techniques would be appropriate. The NRC suggests that new

methods should combine deterministic and probabilistic aspects and should stand up to reasonable

empirical testing. They should be acceptable to the appropriate experts and understandable and believable

I Introduction

to the public; and they should be consistent across applications, yet adaptable enough to keep up with

rapidly changing technology.3

Various methods have been proposed to improve the safety-critical software development process.

NUREG/CR-6263 offers a comprehensive list of "candidate guidelines" based on current software

industry practice and standards to aid in software life cycle review and assurance activities. It also

addresses areas where more research is needed, such as:12

1. Development of review criteria based on NPP software domain analyses

2. Identification of proven software designs that fulfill system safety

3. Better definition and measurement of reliability

4. Common notation for translation from system-level to software-level requirements

5. Common domain-related software safety performance requirements

6. An empirical study of software failures in high-integrity systems

7. Identification of successful fault-tolerant and error-handling techniques, and

8. Criteria for evaluating adequacy of path coverage in software testing.

The candidate guidelines offered by NUREG/CR-6263 cover a wide array of topics. One

important topic is the Software Requirements Specification (SRS). It is recommended that the SRS should

specify what abnormal software conditions or events (ACEs) the software should be able to detect, and that

it should specify the time-dependent input-output relations the software must implement not only for valid

inputs and conditions but also for invalid inputs and ACEs. 12

Numerous guidelines are offered with respect to software safety, such as the following:12

* It is stated that software requirements, designs, and safety-critical code "essential to
the safety function should be analyzed to identify ACEs that could prevent the
software...from meeting all software safety requirements..." (Guidelines 9-5
through 9-7).

* Also, "test cases should [include and] be derived from the ACE analysis to include
execution of rare conditions (abnormal events, extreme and boundary values,
exceptions, long run times, etc.), utilization of shared resources, workloads with
periods of high demand and extreme stress, and special timing conditions" (from
Guidelines 7-18 & 9-8). In addition, the "reliability of the software should be
demonstrated using a reliability demonstration test." "A description of the
operational profile used should be provided [including] a list of assumptions made
in constructing the profile and all information necessary to enable verification"
(from Guideline 7-22).

* It is mentioned in the related research interests that it would be useful to "identify
common software-related ACEs or hazards based on domain-specific experience."
Many people have expressed the need for a common database of nuclear-related

I Introduction

accidents, mishaps, and related data (information from all high-integrity/safety-
oriented systems and fields would be valuable). The proprietary nature of such
information continues to be a hindrance to these efforts.

In addition to the areas of necessary research described by NUREG/CR-6263 above, Littlewood

has proposed a "list of areas where technical work is required," many of which are major topics of concern

within the BTP-14 review process (and the associated Standard Review Plan). It is interesting to note that

Littlewood is admittedly "pessimistic about the outcome " of these topics, which include: "

1. Real statistical evidence for the relationship between processes and product
attributes.

2. Formal quantification of expert judgment, combination of expert judgments,
calibration, etc.

3. Composition of evidence from disparate sources, such as proof, statistics, judgment,
and others.

4. Quantitative theory to replace the present qualitative "claim limits."

5. Better probabilistic modeling of "structured" software.

6. Accelerated testing.

7. Better data: experiments, case studies and mandatory reporting requirements for
safety-critical systems in operational use.

8. Standards: better scientific basis, studies of efficacy, and so forth.

Littlewood discussed these thoughts at a two-day workshop in 1993 on the development of safe

software. This workshop involved twelve experts from the nuclear and computer software industries (four

panelists, eight observers from the USNRC and Lawrence Livermore National Laboratory). The observers

drew general as well as specific conclusions on the topics of diversity, reliability and testing, failure modes,

and other subjects during analysis of the panel discussions that were held. The following paragraphs

describe some of their more relevant conclusions on the respective (italicized) topics.'"

General. Software safety must be achieved with a variety of methods in tandem -- for example,

testing, formal methods, expert judgment, etc. In addition, there must be systematic methods for

combining the information from these different sources. Hazard analysis must be included in this process,

at both the system and software levels."3

Diversity. This can be helpful when introduced into the design as early in the process as possible -

- for example, by backing up a software component with a hardware component that executes the same

function. 'N-version programming' was not judged to be particularly helpful. It can even become a major

source of failure if overused.'3

1 Introduction

Reliability and Testing. Testing can demonstrate reliability only to the level of approximately 10-4

failures-per-demand. If higher reliability levels are required, other methods must be used to extend the

claims. In addition, to gain more knowledge and confidence, failure data must be kept in some organized

fashion for operational systems. Interestingly, doubt was expressed as to the merit of using FMEAs or

FMECAs ('Failure Modes, Effects, and Consequences Analyses') for software; these methods were felt to

be more appropriate for an overall system. It was also felt that software can have too many states to

reasonably use these methods."

Formal Methods. Much confidence was expressed in the ability of the rigor of formal methods

(and some less rigorous methods) to improve the software design process. It was felt that their rigor could

greatly increase individuals' understanding of software, and in so doing that they could lead to a better

ability to scrutinize software requirements and to a reduction of software design complexity."

During the workshop, Leveson (one of the panelists) discussed various "myths" related to the

field of software safety. One is that increasing software reliability, as is the focus of much of the literature

surveyed and mentioned previously, will increase safety. This is not necessarily true, since errors removed

may be unrelated to safety; software can be correct and 100% reliable, but still be unsafe due to poor

specifications. Another "myth" is that testing or 'proving' software correct (with formal verification) can

remove all errors. In addition, specifying 'correct' behavior in a formal, mathematical language can be as

difficult and error-prone as writing code, and it cannot account for some problems (e.g., timing/overload

problems). "

Safety and reliability assessment are part of the licensing process, which the NRC also questioned.

They raised questions as to how to make the NPP regulatory process more efficient, effective, and flexible

enough to suit quickly changing digital I&C technology. Digital upgrades and retrofits can generally be

licensed fairly quickly and easily, but not if the change involves an "unreviewed safety question," in

which case the licensing process is much more uncertain in terms of time and money. In addition, as the

process is now, by the time a design receives approval, the technology it uses may already be out-of-date.3

1.3.4 Process vs. Product and Cleanroom Engineering

BTP-14's focus on the process rather than the product is not a totally new concept. This is an idea

that is used in the manufacturing world in the 'Cleanroom engineering' process and its reliability

improvement methodology (referred to as the "Qualified Manufacturer's Listing").14 A discussion of

Cleanroom engineering will help to clarify the difference between these two approaches.

Cleanroom engineering seeks to manufacture products correctly from the start of the design

process, contrary to the traditional method of sampling finished products to find mistakes and then going

back through the production process to fix them. Engineers using the Cleanroom process seek to

determine what the root causes of problems are rather than simply to find the direct or immediate causes.

1 Introduction

This is more efficient, in the long run, because not only will the direct causes be fixed, but any causes

similar to the direct cause will also be found and prevented from causing problems later."

An example of fixing only the direct cause of a problem would be recalibrating a piece of

equipment that is creating parts slightly outside some size limit tolerance. Fixing the root cause might

involve determining why the piece of equipment is working improperly (e.g., faulty maintenance or

improper usage by the operators, both of which could result from inadequate training) and then making

changes to fix this weakness in the process. In software engineering, the difference between fixing only a

direct cause and fixing a root cause might be the difference between simply rewriting a piece of faulty code

versus determining the reason or the specific error underlying the fault (e.g., an ambiguous specification

that is misinterpreted by a programmer who is not familiar with nuclear engineering or NPP operation) in

order to avoid it in the future. A particular benefit of fixing the root cause of an error in software is that,

once a software error is removed, it will be gone permanently. This is an important difference from

hardware. It must be said that typically the failure causes in the manufacturing industry are known entities,

while with software the failure causes are often new factors that have not been thought of or considered

previously. However, the mindset of using error detection information to improve reliability (by fixing

root causes) rather than simply to predict reliability is valuable.

1.3.4.1 Error Prevention, NOT Error Correction

Cleanroom software (or system) engineering is a well-documented approach to software

development that has been maturing since the 1980's. This approach to software design is based on the

Cleanroom approach in industry and manufacturing, which " achieves reliability through elimination of all

product weakness at the design phase of the product" rather than by elimination of errors found during

testing.' 5 The closest that BTP-14 comes to this is in its initial Software Safety Plan, which includes a

requirement for safety analyses (aimed at error prevention) at each development stage. (These safety

analyses are described in Appendix E.)

The Qualified Manufacturer's Listing bears a strong similarity to the USNRC's software

evaluation process proposed in BTP-14 in that it emphasizes documentation. It also monitors and controls

development process steps in order to find "critical failure mechanisms."14 Tests are done only at critical

points and are much more efficient than tests placed randomly throughout the process.

One tenet which forms the basis of the Cleanroom approach is that, as described in a May 2, 1996,

memo from Dr. Donald W. Miller, Chairman, Instrumentation and Control Systems and Computers

Subcommittee of the Advisory Committee on Reactor Safeguards (ACRS) to other ACRS members, "a

significant fraction of errors in software systems occur in the requirements and design stages of the

software life cycle." 6 This is why Cleanroom software design emphasizes carrying out the process more

strictly during the initial design phases rather than during the later testing phases.

1 Introduction

1.3.4.2 Debugging

Cleanroom software engineering assumes that most well trained, capable software designers can

in fact design very good software from the beginning of the design process on their first attempt. Mills, the

original developer and proponent of the Cleanroom software development process at IBM, claims that box

structures create a " completeness and precision" in software design that fosters human design capability."

The software created for the U.S. census in 1980, consisting of 25,000 lines of code and operating on

twenty miniprocessors nationwide, never experienced an observed error. There are other such examples of

very well designed software too, such as the software for IBM wheelwriter typewriters (no failures ever

detected since the software came out in 1984). The designers of these software products all used functional

verification to achieve stepwise refinement of their software.'5

It is the notion of high designer ability that makes it possible for designers to go straight from

specifications to design without unit testing or debugging, instead waiting until the system level to test. In

fact, in Cleanroom engineering there are separate teams of software developers for specification,

development, and certification. In other words, the people who actually write a program do not debug it at

all. The certification team finds the errors and sends them back to the development team to be fixed.'7

No one assumes that software designers will make no mistakes, but Cleanroom supporters do

believe that the mistakes software designers would make in attempting to debug a program during the

design and coding phase could have complex and unforeseen effects that would be more difficult to fix

later on than the comparatively simple mistakes they make while programming. Estimates show that

debugging introduces new errors into a program approximately fifteen percent of the time. Debugging is

not used in Cleanroom software design because it is typically done with the goal of producing a correct

output rather than a correct function, which should be the goal of the programmer." Simple programming

mistakes can be caught by the testing team once an entire first version of the software product has been

completed. Another methodology that can complement the Cleanroom approach of error prevention rather

than debugging is the use of CASE (Computer-Aided Software Engineering) tools to automate the

requirements analysis and design specification phases and, potentially, the coding phase of the software

development life cycle. These tools allow a software designer to work graphically with a software

schematic, automating much of the manual work that is normally done and minimizing the chance for

inadvertent errors (e.g., incomplete requirements specifications or inaccurate design specifications). In

addition, they can automatically generate code, saving time not only in code implementation but also in

unit testing and integration (since there is more confidence in code that has been generated based on

generally tested and accepted formats).'"

1.3.4.3 Simplicity

The ACRS wants simplicity to be stressed more strongly in regard to reactor safety control

software. They feel that such systems "should be simple and separated from all other control systems

1 Introduction

which may be significantly more complex."' 16 Extra (unnecessary) functionality simply raises the

complexity level and, thus, the chance for error. One of the benefits realized from Cleanroom projects

already done is the simplicity of the software created. The designers tend to be conservative in light of the

scrutiny the Cleanroom design process receives and because of the need to actually demonstrate the

correctness of their work. Dyer, a Cleanroom expert, says that " a reasonable rule of thumb is that when

reading a design becomes difficult and proof arguments are not obvious, it is probably time to think harder

about the design and come up with a simpler, more valuable design." "

1.3.4.4 Functional (Correctness) Verification

Cleanroom software developers use mathematical proofs to achieve functional (or correctness)

verification of software parts, then refine the units stepwise until assembling them into a complete

program. Functional verification, which consists of a limited and well-defined set of verification-based

inspections, is based on a view of a program being a "rule for a mathematical function, mapping all

possible input states into final states." 17

While this sounds ideal theoretically, the practical merit of it is questionable. If "all possible"

input states are mapped to output states, that would indicate that we have accounted for all possible

scenarios and can therefore be confident that no unforeseen situations will arise (if the implementation of

our requirements was done properly). We are concerned, however, that in writing our requirements and

specifications and turning them into a program, we have not accounted for every possible input state. After

all, many accidents and disasters that have occurred and continue to occur are due to unforeseen

circumstances (e.g., strange combinations of factors that are acceptable individually but are dangerous

when combined).

In fact, according to Hecht, one of the biggest sources of software failures is rare events. The

need to test for such conditions was also described in the discussion of NUREG/CR-6263 (Guideline 9-8).

In a study of the Space Shuttle software, rare events were the leading cause of the most serious failure

categories. One rare event could almost always be handled; two were very difficult to handle; and three

virtually guaranteed failure. 9 It is apparent that the more complex a program is, the more difficult it is to

assure that strange interactions of rare events will not occur.

To make up for this weakness, the use of software fault tree analysis (FTA) in addition to

functional verification has been proposed for the purpose of program safety verification. FTA starts at the

system (not software) safety specifications and assumes few hazardous states. It moves forward from the

requirements to the actual program, using proof by contradiction to show that unsafe system states

(whether they are correct or incorrect states) are not reachable via the program code. 20 Therefore, FTA can

help in showing that the program does not do what it is not supposed to do. This indicates the potential of

the Dynamic Flowgraph Methodology (DFM) for our project as well, since DFM is used to construct fault

trees which identify paths leading to critical system events. DFM techniques can thus be used to single out

1 Introduction

particular problem spots within a program or system, so that efforts to fix the problems (e.g., testing) can

then be focused on a much more narrow target.2'

1.3.4.5 Testing and Statistical Quality Control

Debugging is not the only traditional element of software design that is left out of the Cleanroom

process. The traditional coverage testing methods (of each branch within a program or each complete path

through a program) are replaced with statistical usage testing." Some of the key problems with traditional

software testing, as opposed to statistical usage testing (which originates from the hardware community),

are identified by Levendel, head of a system verification department at AT&T Bell Laboratories, in an

article he wrote for IEEE Software.22 These problems include, among others:

* The lack of a clear testing and "hand-over" process between each development
phase (partly due to the large amount of overlapping of phases), and

* The use of testing almost exclusively for debugging rather than for estimating
product quality to aid in process control

Statistical usage testing is based on the premise that for most programs of substantial size,

complete testing of every case cannot be done, so the testing that is done is based statistically on usage

experience and expectations. (Some programs are simple enough that complete testing can in fact be

accomplished. The concern here, however, is with programs that are not so simple and are difficult or

impossible to test completely.) While coverage testing is theoretically more complete than statistical usage

testing, it is difficult in practice and is much less effective than usage testing, which focuses on high

failure-rate errors. Adams (1980) illustrated with data from an evaluation of nine IBM products which

showed that fixes stemming from usage testing caused an approximately thirty-times greater increase in

mean-time-to-failure per correction, on average, than fixes stemming from coverage testing.' 7

Of the standard functional and structural testing types, only functional testing (to verify correct

implementation of specifications) is retained "as is" in the Cleanroom process. Structural testing is

replaced by the correctness verification already described. If errors are found they are sent back through

the development and certification process. When the confidence in error-free software reaches a high

enough level, it is released. With continuing error-free usage, confidence can climb even higher. This

whole process achieves 'statistical quality control'."

It is the opinion of many people involved with quality control in industry that statistics is the only

tool that can lead to zero-defect level quality. Skeptics of SQC claim that statistical methods cannot be

applied to the deterministic functioning of computers, but supporters counter that the usage of computers

(as opposed to the computer functioning) is statistical."

Numerous ideas have been proposed that might supplement the SQC process used in Cleanroom

engineering. Levendel proposes comparing test results to specified quality criteria in order to determine

whether to fix particular problems or proceed with development. 22 He further proposes a method to reduce

1 Introduction

system complexity and seek out " design holes," areas of design incompleteness where errors are likely to

congregate. These design holes result from the inability of designers to fully comprehend the complexity

of the system and its requirements. Levendel reiterates the idea that when designers try to account for this

weakness in the usual way (program debugging), it leads to even more complex interactions which the

designers cannot always foresee. He also emphasizes that tests must be designed with actual system usage

profiles in mind and the tests must be run enough times for statistical confidence. 22

Dyer advocates achieving statistical assurance of software reliability by compiling test failure data

for successive software increments (versions of the same program), extrapolating the data to predict the

MTTF for each increment, and then weighting the results for each increment to determine an overall

system MTTF."5 Laprie also calls for the inclusion of historical failure data (much like the use of

increments) rather than just the present software version's data to determine reliability. He terms this the

" product-in-a-process" approach. This approach seeks to find the conditional probability of failure of

software upon execution given the failure data from previous operational versions of the software. There is

an assumption inherent to this methodology that different generations of the same software product are

similar. Laprie says that this method can be applied to an entire software system or to individual parts and

then combined. He claims that this adds the elusive quantitative nature to the otherwise qualitative focus of

software development process evaluation. 23

1.3.5 Fundamental Software Design Questions

The two most fundamental questions which must be answered in order for software for safety-

critical applications to be licensed are: 1) How do we determine that the system does what it is supposed to

do?, and 2) How do we determine that the system does not do what it is not supposed to do? The first

question has historically been dealt with in much more depth than the second question, as software is

usually subjected to regimented testing in order to determine if it does what it is supposed to do.

It is important to remember, however, that testing can only provide confidence that an error is

absent; it cannot prove it. In other words, testing cannot prove that a program will not do what it is not

supposed to do. In fact, program testing cannot even prove, except for trivially simple programs, that a

program will correctly do everything that we do want it to do. The USNRC's proposed software review

(and development) methodology focuses on the software development process in addition to (testing of)

the developed software product. Considering the entire development process, while not foolproof either,

provides more confidence that all aspects of the software's behavior (i.e., both behavior required of the

software and behavior from which it is prohibited) have been accounted for and designed into the software

at each step of its development.

1.3.6 The USNRC's Approach to the Software Development Process

BTP-14 is a standard used in the examination of software and its development process.

Evaluations are conducted for the software life cycle planning, implementation, and design outputs

1 Introduction

('design output' is the name for any of the documentation that is produced throughout the eight stages of

the software development life cycle -- planning, requirements, design, implementation, integration,

validation, installation, and operations & maintenance). The vehicle for analyzing all of these phases is

documentation: development project planning documents for the planning phase, 'process documents' for

the implementation phase, and the 'design outputs' themselves for the design output phase. 2

BTP-14 is part of a larger regulatory document called the Standard Review Plan (SRP). The

section of the SRP pertinent to software dependability in digital I&C systems is Chapter 7,

"Instrumentation and Controls," which provides guidance for reviewing I&C portions of applications for

nuclear reactor licenses or permits (or amendments to them) and related topical reports. Section 7.0 of SRP

Chapter 7 gives an overview of the I&C review process. SRP Appendix 7.0-A gives an overview of the

review process with regard to the unique digital issues involved with I&C systems. Section 7.1 gives an

overview of the regulatory bases for the SRP review process. The purpose of the BTPs, is to provide

enough guidance so that a reviewer with any amount of domain background (in this case, the nuclear

domain) can carry out an effective review of the corresponding BTP topic (in this case, the software

development process for software used in NPP digital I&C systems).

The BTP and the SRP are the major documents discussed in this work, but there are numerous

other supporting documents that are also used throughout the software review process. Please note that

throughout the discussion and evaluation of these various documents, individual references will not be

made every time one of the documents is mentioned. For convenience, however, there is a list of the most

commonly referenced documents (including the abbreviated names used for them in this work) on pages

10-11.

2 Software Review

2.1 The BTP-14 Review Process

The easiest way to explain what the term 'software development process' means in the context of

the USNRC's proposed software review process is to follow through the review process from beginning to

end, because the requirements that the reviewer must review are obviously the requirements that the

developer must design into the software during its development. Although the process is too complicated

to describe every activity in it completely, detail will be used in some key examples to illustrate the

complex nature of this regulatory process.

The purpose of this section is to develop an orderly description of the software development

review process. However, it is difficult to discern from all of the documentation involved an ordered,

logical procedure. Obviously, software development is not a linear process, but, theoretically, at least the

review process for software development should be fairly well defined. Certainly, some degree of

backtracking and cross-checking within the review process is inevitable (just as it is during the

development process), but at least the overall review framework should be well structured. (All of the

documents referenced in the following software review synopsis will be typed in boldface print where

discussion of them begins. Individual references will not be given, as the information here comes from the

corresponding documents being discussed.)

2.1.1 BTP-14

BTP-14 starts off with background material on a variety of topics. These topics include the BTP's

regulatory basis (i.e., from what laws and guidance it is derived), some basic definitions, and its overall

goal, which is to provide "guidelines for evaluating software life cycle processes for digital computer-

based instrumentation and control [I&C] systems."

In the very first paragraph of the background material comes the first reference to another

document, when it says that "the structure of this BTP is derived from the review process described in

Appendix 7.0-A [of the SRP]." This process is not described directly in the BTP, but it is necessary to be

familiar with it and with the rest of SRP Appendix 7.0-A in order to understand how to undertake the BTP

software review process in the larger context of the overall digital I&C system review.

2.1.2 SRP Appendix 7.0-A

The first introductory paragraph of SRP Appendix 7.0-A continues the referencing to other

regulatory documents. It says that Appendix 7.0-A " provides an overview of the process for reviewing the

2 Software Review

unique aspects of digital instrumentation and control (I&C) systems. It supplements.....(1) the overall I&C

system design described in Section 7.0 [of the SRP], (2) [and] the design criteria and commitments

described in Section 7.1....." It goes on to say that "more detailed information on the regulatory bases,

acceptance criteria, and review processes for specific issues are described in Section 7.1, related [BTPs],

and regulatory guides." Therefore we must also understand SRP Sections 7.0 and 7.1 (and the regulatory

guides) in order to understand Appendix 7.0-A, all of which we need to understand in order to correctly

use BTP-14.

2.1.3 SRP Section 7.0

The overall purpose of SRP Section 7.0 is to give an overview of the review process, (illustrated

in Figure 1) for I&C portions of reactor license applications and "generic safety evaluations of specific

topics." The first step according to SRP 7.0, after determining the application type, is to review the scope

and contents of the application in order to determine the necessary extent of the review and the resources

needed for it. (The scope and content points to consider for each type of application are explained in

Appendix F.)

After the reviewer determines that the information contained in the application is sufficient for the

review to progress (by consulting such other documents as Regulatory Guide 1.70 -- " Standard Format and

Content of Safety Analysis Reports for Nuclear Power Plants," appropriate SRP sections or BTPs, and/or

SRP Appendix 7.0-A), he should create an application-specific review plan to provide the applicant with an

appropriate schedule and all necessary information (e.g., specific review criteria) to prepare for the review.

Finally, the review should be carried out "using the acceptance criteria and review processes of the SRP."

This concludes the information from SRP Section 7.0 that is necessary for defining the software

development process.

2.1.4 SRP Section 7.1

This leads us to SRP Section 7.1. Section 7.1 discusses in-depth the types of I&C systems

important to safety (e.g., protection systems, emergency safety feature actuation systems, interlock

systems, diverse actuation systems, etc.) that are considered by the SRP as well as various acceptance

criteria and guidelines and their applicability. Some of the other important topics addressed by this section

include V&V, reliability, and testability.

Section 7.1 also describes the basis of certain rules for I&C systems important to safety. The rule

origins are found in IEEE 603 (a modified version of IEEE 279), Reg. Guide 1.153, 10 CFR 50, and

various GDC from Appendix A of 10 CFR 50. Official I&C system acceptance criteria come from the

"technical requirements of 10 CFR 50 including IEEE 279 and the GDC." Guidance for ways of

2 Software Review

§11

§ I

§ IV

§ vt

Figure 1 Overview of Review Process

(From SRP Section 7.0, p. 7.0-9)

2 Software Review

conforming to the requirements is provided in various industry codes and standards and the regulatory

guides that endorse them.

In addition, Section 7.1 provides seven clarifications for digital systems in the following review

areas (from Regulatory Guide 1.152 and IEEE 7-4.3.2):

1. Electromagnetic capability (in light of the range of environmental electromagnetic
conditions that could be experienced, e.g. lightning)

2. Computer system quality (in terms of software development and hardware/software
integration; qualification of existing commercial computers and pre-existing
software products; use of software tools; V&V; and Software Configuration
Management)

3. Equipment qualification

4. System integrity (to maintain functional capabilities under extreme conditions; may
include test and calibration capabilities in the system to detect failures)

5. Communications independence (i.e., of safety systems from non-safety systems)

6. Reliability (purely quantitative measures cannot be used when dealing with
software), and

7. Defense against common-mode failures. (GDC-21 is a particularly important
criterion in relation to common-mode failures. It mandates that there must be "high
functional reliability and inservice testability" and "redundancy and
independence...to assure that (1) no single failure results in loss of the protection
function, and (2) removal from service of any component or channel does not result
in loss of the required minimum redundancy unless the acceptable reliability...can
be otherwise demonstrated.")

(For more detailed information on the clarifications in these areas, see Appendix G.)

Compliance with all of these topics is assessed by the review process of SRP Section 7.1. First an

analysis must be done to ensure that all safety-related I&C systems necessary to comply with 10 CFR 50

are addressed and that all the appropriate acceptance criteria and acceptance guidelines for them, as listed

in Appendix 7.1-A, are identified. Exceptions taken to the (non-mandatory) acceptance guidelines are

reviewed to determine their acceptability and to ensure that they do not violate any of the (mandatory)

acceptance criteria. Items that have been approved by the USNRC staff previously should be identified

(and modifications should be noted for review), while completely new technologies should be identified so

that an acceptance basis may be developed for them. Any digital equipment reviewed must be evaluated

with the seven digital clarifications listed above in mind. A review of proposed solutions to any

'unresolved safety issues' must also be done. Guidance for reviewing such issues is found in Appendix

7.1-A and a related NUREG document (NUREG-0933).

The 'Implementation' instructions for Section 7.1 say that "implementation schedules for

conformance to parts of the method discussed herein are contained in the referenced regulatory guides."

2 Software Review 39

Again the user is left with the feeling that many of the important details of this part of the regulatory

process are not in this document itself, but scattered throughout many other documents. The searching and

cross-referencing required to do all of this makes the process seem quite a bit more disorganized and

tedious than it should be.

2.1.5 SRP Appendix 7.1-A

Before we return to Appendix 7.0-A, we must consider Appendices A, B, and C to Section 7.1.

SRP Appendix 7.1-A, "Acceptance Criteria and Guidelines for Instrumentation and Control Systems

Important to Safety," gives a more detailed description of the acceptance criteria and guidelines mentioned

above, which are divided into four major categories: (1) regulations from 10 CFR 50 & 52 (including

ANSI/IEEE Std 279, which is paragraph 50.55a(h) of 10 CFR 50), (2) the General Design Criteria (GDC)

of 10 CFR 50 Appendix A ("General Design Criteria for Nuclear Power Plants"), (3) regulatory guides

('Reg. Guides') and their accompanying endorsed industry codes and standards, and (4) branch technical

positions (BTPs). The first two of these categories provide mandatory requirements, while the second two

provide non-mandatory suggestions of how to meet the requirements. (See Appendix H for some detailed

examples of guidance from SRP 7.1-A.)

2.1.6 SRP Appendix 7.1-B

SRP Appendix 7.1-B, "Guidance for Evaluation of Conformance to ANSI/IEEE Std 279,"

provides discussion of the requirements for reactor protection systems, specifically in regard to the Reactor

Trip System and the Emergency Safety Feature Actuation System. (Appendix 7.1-C extends application of

this section to systems that are important to safety but are not so crucial as to be called "safety systems.")

The appendix begins with a large section based on Section 3 of IEEE 279, which concerns the constituents

of the " design basis" for protection systems. This is followed by a variety of more detailed sections based

on Section 4 of IEEE 279, which covers particular topics of concern for reactor protection systems. (See

Appendix I for some specific examples of guidance from SRP 7.1-B.)

2.1.7 SRP Appendix 7.1-C

SRP Appendix 7.1-C is summed up by its title: "Guidance for Evaluation of Conformance to

IEEE Std 603." IEEE 603, as endorsed by Reg. Guide 1.153, "Criteria for Power, Instrumentation, and

Control Portions of Safety Systems," has superseded IEEE 279. It is supplemented by IEEE 7-4.3.2 (and

its Reg. Guide, 1.152) for application to digital topics. References to IEEE 603 are automatically intended

to include IEEE 7-4.3.2 and Reg. Guides 1.152 and 1.153. This appendix applies to the safety systems

covered in SRP Sections 7.2 through 7.6 as well as to any system requiring high functional reliability and it

includes an accompanying chart to show specific matching of guidance sections with appropriate systems.

The guidance in this appendix is practically the same as that of Appendix 7.1-B.

2 Software Review

At this point, depending on the particular item being reviewed, the reviewer would probably also

need to consult numerous Reg. Guides and other standards. The most pertinent ones to the software review

process are Reg. Guide 1.152 (which endorses IEEE 7-4.3.2) and Reg. Guides 1. luu through 1. lzz (which

endorse various IEEE standards and are designed specifically for use with Section 7 of the SRP). A

description of the place of these documents in the software review process will be given in Sections 2.3.5

and 2.3.6.

2.1.8 Back to SRP Appendix 7.0-A

Now we are ready to return to SRP Appendix 7.0-A. The previous point of departure from this

document was in the introductory paragraph, which explains the purpose of this appendix. Appendix 7.0-

A is used to supplement the description of the review processes for the overall I&C system (SRP 7.0), for

its design criteria and commitments (SRP 7.1), and for the individual digital I&C systems (SRP 7.2-7.9).

After a list of important definitions and the regulatory source documents for this appendix are

listed, the aspects of digital I&C systems that warrant special attention in determining compliance with 10

CFR 50 are described, including "(1) design qualification of digital systems, (2) protection against

common-mode failure, and (3) selected functional requirements of IEEE Std 603 and the General Design

Criteria that pose new assurance challenges when implemented using computers."

In relation to the first of these issues -- qualification of digital I&C systems -- emphasis is placed

on supplementing the typical analog qualification process (e.g., inspections, acceptance testing) with

assurance of a "high-quality development process that [incorporates] disciplined specification and

implementation design requirements" [emphasis added]. This is to account for the difference in behavior

(i.e., discontinuity and point failures) between digital systems and analog systems. In regard to the second

issue, emphasis is placed on 'quality' and 'defense-in-depth and diversity' ('D-in-D&D') to combat the

propagation of common-mode failures that can result from the high degree of sharing of data, code, and

process equipment in digital I&C systems. Concerning the final issue, it says that the review process for

such system aspects as real-time performance, independence, and on-line testing "must recognize the

special characteristics of digital systems."

Next a brief summary of the overall review of digital I&C systems is given (see Figure 2). Seven

key topics that are said to be necessary for any digital I&C system review are discussed. These issues

(with a summary of the guidance given about them) are:

1. Adequacy of design criteria -- requires a commitment to the following standards:
Reg. Guide 1.152 (and IEEE 7-4.3.2, which it endorses) and Reg. Guides 1.luu
through 1.1 zz

2 Software Review

Figure 2 Overview of the Process for Reviewing the Unique Aspects of Digital Instrumentation and
Control Systems

(From SRP Appendix 7.0-A, p. 7.0-A-11)

2 Software Review

2. Identification of review criteria -- based on the system's safety significance

3. D-in-D&D -- requires compliance with the corresponding BTP (19) and the Staff
Requirements Memorandum to SECY-93-087

4. Life cycle process planning -- requires compliance with BTP-14 Section B.2.1
(essentially, to make sure that the system is planned, specified, and implemented
appropriately and that there is sufficient testing or other verification of this fact)

5. Adequacy of software functional requirements -- in regard to the difficulties that
arise as a result of using digital technology (e.g., in real-time performance,
communications independence, etc.)

6. Adequacy of software life cycle process implementation -- per BTP-14, Section
B.2.2

7. Software life cycle process design outputs -- per BTP-14, Section B.2.3 (involves
assuring their adequacy by assuring the presence of adequate functional and
software development process characteristics)

(For a more complete description of these review topics, see Appendix J at the end of this work.)

The last four topics in this list pertain specifically to software; their interaction is depicted in

Figure 3. A description is given of how this illustration depicts the coming together of the I&C system-

level functional requirements and the software development process requirements into software functional

and development process characteristics.

2.1.9 Back to BTP-14

Finally, we return to BTP-14, which proposes a review of the planning, implementation, and

design outputs of the software life cycle. In fact, the three stated purposes of BTP-14 are:

1) (For the planning phase): "to confirm that plans exist that will provide a high-
quality software life cycle process , and that these plans commit to documentation
of life cycle activities that permit the USNRC staff to evaluate the quality of the
design features upon which the safety determination is based,"

2) (For the implementation phase): "to verify that implementation of the software life
cycle process meets the criteria expected for high-quality software," and

3) (For the design output phase): "to assess the adequacy of the design outputs."

The introductory paragraphs of this branch technical position describe some basic concepts

applicable to the subject of the document (e.g., the need for a system design commensurate with the

system's safety importance, common-mode failure concerns and ways to avoid them, etc.). The need for a

well-defined life cycle, with the activities listed in Reg. Guide 1. lzz (which endorses IEEE 1074) as a

minimum, is described. Life cycle activities are grouped into various 'activity groups,' each of which

requires certain input documents and produces required outputs. These outputs are grouped into 'design

2 Software Review

Review sarrple of system uncdional

requirements to confrm cocpliance with

CFR. RG. SRP. standards

I&C system functional
requirements

·--=

Audit design outputs to conlinn software

embodies characteristics that are evidence

of an effectrve development process

Design outputs--
system software

Audt design outputs to confirm sample

functional requirements are property
inmlepmerted in software

"BItbBo flu'
Audit development process irplementation

at various stages to confirm compliance with

plans and accepted practice

Software development
process requirements

Review software development plans to confirm

compliance with accepted practice as
descrbed in SRP. RG, standards

Figure 3 Software Review Process

(From SRP Appendix 7.0-A, p. 7.0-A-13)

_~ ~ ~~T 17........ PU
Development

process

What

IB

2 Sofiwere Review

outputs,' which are unique to each activity group, and 'process documents' (safety analyses, V&V reports,

and configuration management reports) which are produced for all activity groups. (Consult Appendix E

to see some direct examples of BTP-14 review guidance for some pertinent sample documents from each

of the three review areas.)

BTP-14 defines two basic sets of 'functional characteristics' and 'development process

characteristics,' which are then used as the basic acceptance criteria to show that each section of the life

cycle has been implemented effectively. The functional characteristics are accuracy, functionality,

reliability, robustness, safety, security, and timing. The software development process characteristics are

completeness, consistency, correctness, style, traceability, unambiguity, and verifiability. Some of these

terms are rather vaguely defined (for example, accuracy is simply defined as the "degree of freedom from

error in input, calculations, and output"). (See Appendix K for the definitions of all of these qualities.)

The functional characteristics are concerned only with the ability of the software product to

accomplish the functions for which it is intended. The software development process characteristics, which

are supposed to be a natural by-product of a well-implemented software design process, build confidence

that the functional characteristics were successfully implemented.

For the planning phase, BTP-14 lists all of the required output documents (as seen in the

'Planning Activities' column of Figure 4) and a qualitative list of the contents to be included in each one.

The information to be reviewed for the software life cycle planning review is found throughout all of the

planning documents listed in the 'Planning Activities' activity group (the first column of the software life

cycle diagram in Figure 4). Examples of these documents include the Software Quality Assurance Plan,

the Software Safety Plan, and the Software Verification and Validation Plan (SVVP). The reviewer is

referred to NUREG/CR-6 101 for supplementary guidance on evaluating each of these documents.

The implementation phase analysis lists the activities to be required as part of safety analysis,

V&V, and configuration management. The information to be reviewed for this phase is found in the safety

analyses, V&V analyses and test reports, and configuration management reports for each life cycle activity

group. Again, supplementary information "relevant to each subject" can be found in NUREG/CR-6101.

The reviewer is never referred to any particular part of NUREG/CR-6101, and it is not always obvious

what the appropriate part would be.

For the design output phase, there is a list of all of the design outputs, the characteristics they

should exhibit, and a brief description of how those characteristics relate to that particular document. The

information to be reviewed for the software life cycle design output review is found in the documents listed

in the 'design outputs' section of each life cycle activity group. It is during this review that the software is

evaluated (by way of the design output documents) for each of the previously described functional and

software development process characteristics. For example, the SRS, listed under the 'Requirements

Activities' column in Figure 4 should exhibit all of the characteristics -- that is: accuracy, functionality,

2 Software Review

Software Developer Activities Software Developer Activities

- IIngt IVla II IIntlaio Planning Requirements Design Implementation ntegration Validation nstallation Operation &
Activities Activities Acti v it iti Activities Activities Activities Activities

Requirements
Specification

Requirements
Safety Analysis

V&V Require.
ments Analysis
Report

CM Require-
ments Report

Design
Specification

Hardware &
Software
Architecture

Design Safety
Analysis

V&V Design
Analysis
Report

CM Design
Report

Code
Ustings

Code Safety
Analysis

V&V Implemen-
tation Analysis
& Test Report

CM Implemen-
tation Report

C

\J

Software Audit Activities

System Build
Documents

Integration
Safety
Analysis

V&V Integration
Analysis & Test
Report

CM Integration
Report

Validation
Safety
Analysis

V&V Validation
Analysis Test
& Report

CM Validation
Report

Operations
Manuals

Installation
Configuration
Tables

Maintenance
Manuals

Training
Manuals

installation
Safety
Analysis

V&V Installation
Analysis & Test
Report

CM Installation
Report

> c .2c

S A i

Software Audit Activities

Figure 4 Documents Produced During Each Life Cycle Stage

(From NUREG-CR/6101, pp. 8-9)

Software
Management Plan

Software
Development Plan

Software QA
Plan

Integration Plan

Installation Plan

Maintenance Plan

Training Plan

Operations Plan

Software
Safety Plan

Software V&V
Plan

Software CM Plan

ELV

Change
Safety
Analysis

V&V Change
Report

CM Change
Report

r r

,..1-- - c
Vo

2 Software Review

reliability, robustness, safety, security, timing, completeness, consistency, correctness, style, traceability,

unambiguity, and verifiability.

This concludes the description of the contents of the BTP-14 software review process. Now the

process will be evaluated.

2.2 Evaluation of the BTP-14 Review Process

This section begins with background information on defining a software development process

model. Then an evaluation of BTP-14 (and the greater regulatory structure of which it is a part) will be

given by stepping through the review (and design) process it prescribes in the same order that was followed

in Section 2.1. This evaluation will be used to point out both large scale problems with the process in

general and small scale problems that help to illustrate some of the larger problems. Next the issue of

V&V within the process will be analyzed more closely; this will serve as a specific example to illustrate the

problems already noted. Finally, after looking both at the big picture of the process and at this detailed part

of it, a summary of conclusions and recommendations for the entire process will be given.

2.2.1 Background

Like any evolutionary process, software development is something that for many years defied

attempts to be clearly defined or arranged into an orderly process. Thus it has tended to be a somewhat

haphazard, if not chaotic, process which is different from case to case, depending on the particular

application involved. Attempts have since been made to clearly define the software development process

in order to make it more manageable. One of the best known and often-used models comes from efforts at

the Software Engineering Institute (SEI). The SEI uses a five-level Capability Maturity Model (CMM) to

determine the maturity and success of a software development process. The levels, from lowest (Level 1)

to highest (Level 5), are: initial, repeatable, defined, managed, and optimizing.24 It must be said that even

the value of this model is questioned by many. Since it is currently the most commonly referenced model,

however, it can serve as a benchmark for BTP-14.

The basic characteristics and challenges of each level in the CMM are described as follows: 24

1. Level 1 -- Initial -- 'ad hoc/chaotic process'

a. Characteristics -- no formal procedures, cost estimates, or project plans; no
management mechanism to ensure procedures are followed; tools not well
integrated; change control is lax; senior management does not understand key
issues

b. Challenges -- project management and planning, configuration management,
and software quality assurance

2 Software Review

2. Level 2 -- Repeatable -- 'intuitive'

a. Characteristics -- process dependent on individuals; established basic
process controls; strength in doing similar work, but faces major risk when
presented with new challenges; lacks orderly framework for improvement

b. Challenges -- training, technical practices (reviews, testing), and process
focus (standards, process groups)

3. Level 3 -- Defined -- 'qualitative'

a. Characteristics -- process defined and institutionalized; Software
Engineering Process Group established to lead process improvement

b. Challenges -- process measurement and analysis, quantitative quality plans

4. Level 4 -- Managed -- 'quantitative'

a. Characteristics -- measured process; minimum set of quality and
productivity measurements established; process database established with
resources to analyze its data and maintain it

b. Challenges -- changing technology, problem analysis, and problem
prevention

5. Level 5 -- Optimizing

a. Characteristics -- improvement fed back into process; data gathering is
automated and used to identify weakest process elements; numerical evidence
used to justify application of technology to critical tasks; rigorous defect-cause
analysis and defect prevention

b. Challenges -- still human-intensive process; maintain organization at
optimizing level

It will be shown that the software development procedure that stems from the BTP-14 review

process seems to be strong only through Level 3. It can be argued that it has some of the necessary traits of

Levels 4 & 5 too, but this is debatable. That BTP-14 has the qualities of Levels 1 & 2 is fairly obvious,

and the process is also "defined" as required in Level 3. However, the existence of "quantitative quality

plans" in BTP-14 is minimal at best. This is in keeping with such plans being a "challenge" at Level 3.

Though BTP-14 is not necessarily devoid of the characteristics listed under Level 4, it is deficient in one of

the "challenge" areas listed -- namely, problem prevention. Likewise, it is deficient in the Level 5

characteristics of defect prevention and use of numerical evidence to justify application of technology.

The BTP should strive to be at these higher levels.

2 Software Review

2.2.2 Evaluation

As mentioned, the original purpose of Section 2.1 was to develop an orderly summary of the

software development review process. This was difficult to do, however, due to the number of interwoven

references to other documents that are such a pervasive part of the BTP-14 process. It is apparent that, if

branch technical positions are supposed to serve as stand-alone documents to guide someone through a

process (in this case to guide a reviewer through the development process for high-reliability software),

then this BTP does not meet the goal.

It must be stated at this point that in comparison to the other BTPs that are part of the overall

instrumentation and controls regulatory process for NPPs (that is, BTPs 1 through 21, excluding 7, 15, and

20), this one is quite thorough. While there are examples in the other BTPs of guidance written similarly to

that of BTP-14, there are also examples of more precise, detailed, practical guidance.

An example of guidance similar to that found in BTP-14 would be the following quote from

Branch Technical Position HICB-8 (which provides guidance for applying Reg. Guide 1.22 with respect to

periodic testing of protection system actuation functions).

"All portions of the protection systems should be designed in accordance with
ANSI/IEEE Std 279, as required by 10 CFR Part 50, 50.55a(h). All actuated
equipment that is not tested during reactor operation should be identified, and a
discussion of how each conforms to the provisions of paragraph D.4 of Reg. Guide
1.22 should be submitted." [emphasis added]

This guidance is similar to that found throughout BTP-14 and the SRP in that it is vague and relies on

sending the reader to numerous other documents.

An example of more detailed and useful guidance would be the following recommendations from

Branch Technical Position HICB-2, concerning features that should be "incorporated in the design of

[motor-operated isolation valve] systems for safety injection tanks to meet the intent of ANSI/IEEE Std

279". (Notice the guidance terms used below, which are more specific than the italicized guidance words

in the paragraph above.)

"Automatic opening of the valves when either primary coolant system pressure
exceeds a preselected value (to be specified in the technical specifications), or a
safety signal injection signal is present. Both primary coolant system pressure and
safety injection signals should be provided to the valve operator.....Visual indication
in the control room of the open or closed status of the valve.....Bypassed and
inoperable status indication in accordance to Regulatory Guide 1.47.....Utilization
of a safety injection signal to remove automatically (override) any bypass feature
that may be provided to allow an isolation valve to be closed for short periods of
time when the reactor coolant system is at pressure (in accordance with provisions
of the technical specifications)."

It is true that the subject of BTP-14 (the software review process for digital I&C safety systems) is

one that is generally less clearly and less tangibly understood than the subjects of many of the other BTPs

2 Software Review

mentioned above (e.g., motor-operated valves). This does not, however, mean that the guidance of BTP-14

cannot be improved. For example, the BTP says that in order for the SRS to exhibit completeness, it must,

among other things, specify "all actions required of the computer system" (and all "actions that the

software is prohibited from executing") under "all operating modes and all possible values of input

variables (including anomalous values)" and that it must describe " [the] operational environment." This

is a very broad and ill-defined set of requirements. How does one specify actions (and modes and input

variables) of the computer system -- in plain English, in some type of formal notation, or some other

method? In the same vein, how does one "describe" the "operational environment"? What specific

factors should be considered as relevant to the operational environment? How should the environment be

described -- in normal language, with a mathematical representation, or in some other manner?

In the passage from BTP-2 above, the instruction to use a "safety injection signal" to

"automatically [override] any bypass feature" that allows "an isolation valve to be closed for short periods

of time when the [Reactor Containment System] is at pressure" is much clearer and less ambiguous than

the regulation just cited from BTP-14. This BTP-2 guidance is not flawless either (e.g., how exactly is a

"short period of time " defined?), but it certainly has less ambiguity than that of BTP-14.

The goal of BTP-14, however, should not be simply to be adequate in comparison with other

BTPs, but rather to be as good as possible (i.e., as good as the limits of our current knowledge) at guiding a

reviewer through the review of digital I&C safety system software. If it exceeds the quality of other BTPs,

then maybe the other BTPs can also be improved.

Attention will now be turned away from a comparison of BTP-14 with other BTPs to an

evaluation of it on its own merits. The crudest ordered outline of the BTP-14 review is described below.

The order of some of these steps is debatable. (Since BTP-14 is a guidance document that fits into a larger

scheme of review documents, it cannot meaningfully be separated from the larger picture, as seen in this

list.):

> Step I-- Determine application type (1't step of SRP 7.0).

> Ste2 -- Review application scope and contents (2 nd step of SRP 7.0).

>> Step 2.a -- Ensure that all safety-related I&C systems necessary to comply
with 10 CFR 50 are addressed and that their acceptance criteria and guidelines
are identified (1" step of SRP 7.1). -- [This step and steps 4 through 6 will
require reference to the criteria and procedures described in Appendices 7.1-
A, B, and C.]

>> Step 2.b -- Review exceptions taken to non-mandatory guidelines for
acceptability (2

"
d step of SRP 7.1).

>> Step 2.c -- Items previously approved by the USNRC and completely new
technologies should be identified separately (3rd step of SRP 7.1).

2 Software Review

>> Step 2.d -- Reference Appendix 7.0-A for guidance on the seven digital
issues that it says are mandatory for any review of digital I&C systems. This
is the section of the review where the guidance in BTP-14 is most directly
applicable, since all seven of the important digital issues it describes are
critical to the software design life cycle. (The BTP-14 review can be executed
in the order in which it is described: software life cycle process planning; then
implementation; then design outputs.)

>> Step 2.e -- Review proposed solutions to unresolved safety concerns from
(prior) design certification (4" step of SRP 7.1).

> Ste 3 -- Create an application-specific review plan (3 d step of SRP 7.0).

> Ste 4 -- Carry out the review "using the acceptance criteria and review processes
of the SRP" (4t step of SRP 7.0).

The reason this sequence is somewhat illusory is that many of the steps and procedures in it are

not restricted to one point in the process. For instance, many of the documents that must be used are used

as references at many points throughout the review. At any rate, there is no clear entry point into and exit

point out of this series of steps. It is iterative at best and confusing at worst.

In stepping through the detailed BTP-14 description given above, numerous points warrant further

comment. To use BTP-14, we first detoured to several other related documents and reference documents.

First we referred to SRP Appendix 7.0-A, from which we went to SRP Section 7.0.

2.2.2.1 SRP Section 7.0

As already explained, the SRP describes the most fundamental steps in the I&C review. Much of

the detail on specific sub-topics of this process (e.g., digital- and software-related topics) is provided by

other documents (e.g., BTP-14). However, the level of detail in SRP 7.0 is too minimal even for a higher-

level document. For instance, the descriptions of the scope and content points to consider for each type of

I&C license or application are not very helpful at all (see Appendix 3). In essence, all it says is to review

the I&C system application's adherence to functional requirements (such as those of 10 CFR 50), its

resolutions or proposed research and development to solve any problems or questions, its principal design

criteria and their relationship to the design bases, its technical specifications and safety margins (to assure

performance requirements can be met), and its demonstration of requirement satisfaction and design

process characteristics (as evidenced by its implementation, testing, and design outputs). These are very

broad, high level instructions.

The final guidance statement in SRP 7.0 says to execute the I&C review "using the acceptance

criteria and review processes of the SRP." This is a very open-ended statement. The SRP is a large

document covering a lot of material. Guidance should narrow in on something a bit easier to handle than

the entire SRP.

2 Software Review 51

2.2.2.2 SRP Section 7.1

Continuing on with the review process, the user must consult the information in SRP Section 7.1

as well. The purpose of searching through many levels of references is, presumably, to find a final, source-

level answer on a particular topic. This is not often the case with these documents, however. For instance,

in talking about V&V requirements for computer system quality, SRP 7.1 refers the reviewer to "the

software engineering process as described by BTP HICB-14," among other documents. This reference is

not particularly helpful, since it refers the user to BTP-14 as a whole rather than to any specific subsection.

Even after consulting all of these references, the reviewer still comes back to the question of how to

implement the suggestions that are found all along this path.

2.2.2.3 SRP Appendix 7.1-A

SRP Appendix 7.1-A provides general guidance on the basic assessment criteria and guidance for

the digital I&C and safety software review process. Most of this guidance is just as unclear as that already

discussed. For example:

* The basic requirement on safety system quality standards (10 CFR 50.55a(a)(1))
says that all parts of the safety system should be designed and built "to quality
standards commensurate with the importance of the safety function to be
performed." Review guidance for this requirement simply refers the user to the
regulatory guides and standards referenced in Sections 7.1 through 7.9 and Chapter
7 Appendix A. This is not a very helpful reference; it refers the reviewer to a
substantial portion of the entire review process rather than to any particularly useful
sections of it.

* The basic requirement on the required level of detail for reactor license applications
(10 CFR 52.47(a)(2)) mandates "detail sufficient to.....judge the.....licensee's
[conformance to the design] and to reach a final conclusion on all safety
questions.....[and] to permit the preparation of acceptance and inspection
requirements by the NRC." Also, "sufficient information for an NRC safety
determination should be provided for each I&C system."
> The reviewer is referred to BTP-16 for guidance on determining what level of

detail is sufficient. To determine what is sufficient in reference to SRP 7.1,
BTP-16 provides more vague advice: It reiterates guidance from other SRP
sections (e.g., 7.0) and says that applications "should describe the computer
system development process [and, where applicable,] the design of the overall
I&C systems with respect to D-in-D&D requirements." It also says that the
"discussion should include a commitment to a design process compatible with
that described in Reg. Guide 1.152 and BTP HICB-14."

* The GDC on quality standards and records (GDC 1) gives the following guidance:
"A quality assurance program shall be.....implemented in order to provide adequate
assurance that these.....systems.....will satisfactorily perform their safety
functions....." The review guidance for doing this is not any more useful; it says to
consult "the applicable regulatory guides and endorsed codes and standards"
[emphasis added]

2 Software Review

* The review methods guidance for all of the Reg. Guides is fairly similar, and for the
most part it simply refers the reviewer to multiple other documents that support the
corresponding Reg. Guides.

* The review methods guidance for the BTPs is particularly useless, because it says
only that "the BTPs provide bases for evaluating specific review areas."

2.2.2.4 SRP Appendices 7.1-B and 7.1-C

SRP Appendices 7.1-B and 7.1-C are very similar. Appendix 7.1-B begins by listing and briefly

describing the elements of the "design basis" for protection systems. This brings out another trend in this

regulatory process. The driving principles and important points are not unified into an overarching theme

at any one point. There are numerous key topics of concern that guide the review process, but they seem to

be mentioned haphazardly at random locations throughout the review documents. Consider the following:

* The BTP says that the " [USNRC] Staff's acceptance of software for safety system
functions is based upon" (1) confirmation of acceptable software development
plans, (2) evidence that the life cycle followed the plans, and (3) acceptable design
outputs. However, the BTP also mentions the USNRC Staff's emphasis on quality
and D-in-D&D "as protection against common-mode failures within and between
channels" as well as the importance of" software quality [as] an important element
in preventing the propagation of common-mode failures."

* SRP Appendix 7.0-A emphasizes the following three major topics: (1) qualification
of digital I&C systems and components, (2) defense against common-mode failure,
and (3) system aspects of digital I&C, in addition to the seven digital-specific topics
mentioned in the discussion of SRP 7.0-A in Section 2.1

* SRP Section 7.1 provides yet another list of important point of "supplemental
guidance for digital computer-based safety systems, similar to but slightly different
from those in 7.0-A

Some unification of all of these different important points would be helpful in clarifying the driving forces

behind the BTP/SRP software review process.

After this introductory information, Appendix 7.1-B offers advice on such topics as the following,

which further illustrates the problems of vagueness and constant referencing mentioned so many times

already:

* In discussing general functional requirements, it says that the "degree of
redundancy, diversity, testability, and quality.....[must be] adequate to achieve
functional reliability commensurate with the safety functions to be performed."
[emphasis added] How should these qualities be shown to be adequate? The
reviewer is referred back to BTP-14 and to Reg. Guide 1.152 for guidance on
designing for and determining software reliability.

2 Software Review

2.2.2.5 SRP Appendix 7.0-A

One of the issues addressed by SRP Appendix 7.0-A is supplementing the normal analog system

qualification process with steps to assure a "high-quality development process that [incorporates]

disciplined specification and implementation design requirements" when dealing with digital systems. It

also says the review process for systems aspects of digital systems "must recognize the special

characteristics of digital systems," another vague guidance statement that could be clarified to be more

helpful.

The following specific comments are made regarding the digital I&C system software review:

* ".....This review should confirm that the special design considerations of digital
systems are appropriately considered." [emphasis added]

* "Review of planning activities confirms that.....development process requirements
establish a commitment to an effective and disciplined software development
process."

* "Inspection of the development process confirms that the planned process is
actually used, and that appropriate safety analysis, verification and validation, and
configuration control activities are conducted."

* "Audits of design outputs confirm that functional requirements are traceable
through all intermediate design products to the final product [and] that they exhibit
the required software development process characteristics."

These statements are very vague (notice especially the italicized words above) and offer no new insights on

how to accomplish the task of software design and review effectively.

This appendix also lists seven issues that should be part of any digital I&C system review. The

interaction of four of these issues (life cycle process planning, adequacy of software functional

requirements for individual I&C systems, adequacy of software life cycle process implementation, and

software life cycle process design outputs) is illustrated in Figure 3. This diagram is a particularly

unhelpful addition to the SRP/BTP review process. Although it may make perfect sense to those intimately

involved with defining this software development process, it does not carry much intuitive meaning. None

of the illustrations at the end of Appendix 7.0-A are of much benefit (see Figures 2, 3, and 5 through 9).

They offer no clear insights into their respective topics.

The exact relationship between the different parts of this review process and documentation (i.e.,

BTP-14, SRP Section 7.0, SRP Appendix 7.0-A, SRP Section 7.1 and its appendices) is sometimes hazy

and quite difficult to summarize. Consider SRP Appendix 7.0-A and SRP Section 7.1. Appendix 7.0-A is

concerned primarily with clarifying the I&C system review process so it will work better for digital

systems. Three general digital issues and seven specific subissues within the review process that warrant

special attention are described. Section 7.1 gives an overview of many aspects of the review process (e.g.,

what I&C systems are important to safety; who has review authority; the background of, and relationship

2 Software Review

made by review
Defense-in-Depth
aJysis or
nalysis by NRC.
d to functions
igstal systems.

Figure 5 Defense-in-Depth and Diversity Review

(From SRP Appendix 7.0-A, p. 7.0-A-14)

2 Software Review

Figure 6 Review of Software Lifecycle Process Planning

(From SRP Appendix 7.0-A, p. 7.0-A-16)

2 Software Review

I by review o audt design
mirments. and design
eort required depends
dlety-related requirements
sim under revew.

Figure 7 Special Considerations in the Review of Functional Requirements for Digital Instrumentation
and Control Systems

(From SRP Appendix 7.0-A, p. 7.0-A-17)

2 Software Review

Figure 8 Review of Software Development Process Implementation

(From SRP Appendix 7.0-A, p. 7.0-A-18)

2 Software Review

audit of software
n. software design
chilecture. code.
installation

w effort required depends
the extent of safety-rlated
ements appicable to the
n under review.

Figure 9 Review of Design Outputs

(From SRP Appendix 7.0-A, p. 7.0-A-19)

' " ' '

2 Software Review

between, acceptance criteria and guidelines), but it also devotes a large section to "supplemental guidance

for digital computer-based safety systems" (and how to apply it). It is not clear what the relationship is

between the digital issues discussed in Appendix 7.0-A and the digital issues discussed in Section 7.1.

They are all important to the overall I&C system review, but why are they discussed in separate locations?

It seems that it would make more sense to list all of these issues together in one location. Again,

there needs to be some type of all-encompassing structure of principles and rules that unites these

disjointed pieces of the puzzle.

2.2.2.6 BTP-14

Finally we come back to BTP-14, which, as is now apparent, is just one part of a rather

interdependent mass of support documents for this I&C regulatory process. The problems with BTP-14

itself are the same types of problems as are evident in the SRP and the other documents evaluated up to this

point.

One major problem with BTP-14 and the accompanying standards is that they are confusing.

Though these documents are certainly thorough in their total breadth of coverage, one needs a roadmap to

determine how to get started, where to go from there, and how to know when to move to the next step of

the process. It also does not emphasize clearly what its main points are, or, at the very least,

underemphasizes some very important points. The closest thing to a summary statement of the BTP-14

guiding principles that can be found is the following statement from page 4 of the BTP:

" Because of these concerns [relating to common-mode failures], the Staff review of
digital I&C systems emphasizes quality, defense-in-depth, and diversity as
protection against common-mode failures within and between channels. Software
quality is an important element in preventing the propagation of common-mode
failures." [emphasis added]

This statement, however, is buried in among many other lengthier paragraphs describing various

issues of importance in BTP-14. It is easily overlooked, because none of these paragraphs stand out as

being particularly more important than the others.

Another problem with BTP-14 is that it does not make clear what exactly should be done to

accomplish many of its goals. While the ultimate goal of the NRC is to be less prescriptive in its

regulations, this proposed process seems to leave too many gray areas. For example, the BTP says that one

of the characteristics the SRS should exhibit is completeness. As mentioned, to fulfill this criterion, all

actions the system must [or must not] perform should be fully described in terms of all monitored or

controlled variables for all modes and all possible inputs. Although this requirement is theoretically ideal,

it is rather broad and impractical to implement, and it provides no quantitative goals by which to gauge

whether the software meets some minimum standard.

There are many guidance documents on other subjects that offer a better standard for which to

strive. Take, for example, Reg. Guide 1.52, "Design, Testing, and Maintenance Criteria for Post-Accident

2 Software Review

Engineered Safety Feature Atmosphere Cleanup System Air Filtration and Adsorption Units of Light-

Water-Cooled Nuclear Power Plants." It offers guidance such as the following: "The design of an

[Engineered Safety Feature] atmosphere cleanup system should be based on the maximum pressure

differential, radiation dose rate, relative humidity, maximum and minimum temperature, and other

conditions resulting from the postulated [design basis accident] and on the duration of such conditions."

This statement is not prescriptive (i.e., "should be based on" leaves some room for interpretation), but it

spells out what must be accounted for (maximum pressure differential, radiation dose rate, etc.) in order to

satisfy its requirements and leaves less room for interpretation.

While it may be good to be less prescriptive, another goal of the USNRC is to get away from a

costly and time-consuming case-by-case licensing process. The proposed review process, because it is so

often vague and open-ended, makes it relatively easy for designers to stray from the guidance (as long as

they can explain their rationale). For this reason, too little standardization may ultimately detract from the

goal of saving time and money.

Both the planning review and the design output review focus on heavily qualitative evaluations of

documents. The many acceptance criteria that BTP-14 offers are almost entirely qualitative too. This may

be due to the attempt to make this review process less prescriptive than that currently in use. It may also

stem from the fact that software behavior is not as tangible and easy to work with as a hardware component

or system. Nevertheless, it would be helpful to have more clear, physically or quantitatively meaningful

advice on how to achieve certain requirements.

BTP-14 fits into the broader category of review of digital instrumentation and controls (covered

by SRP Appendix 7.0-A), which in turns fits into the even broader category of review of instrumentation

and controls in general (covered by SRP Section 7.0). Both of these areas are explained in further detail in

SRP Section 7.1. As described already, the main points of BTP-14 and these pertinent SRP sections do not

always seem to mesh, and the flow between them lacks continuity.

An example of the meandering path one needs to follow through these documents will provide

some insight into their complex organization and into how difficult the use of BTP-14 can be. (This will

be expanded upon in Sections 2.3.3 through 2.3.6.) In going through BTP-14, Section B.2.1.2.j (a bulleted

list of acceptance criteria for the Software Verification and Validation Plan), it says that "appropriate

organization" for the SVVP is shown in (proposed) Reg. Guide 1.1yy, which endorses ANSI/IEEE Std

1012 (and 1028).

Upon consulting Reg. Guide 1.1yy, one finds, essentially, a rehash and endorsement of many

other related documents and standards (10 CFR 50, IEEE 1012 & 1028, etc.). Reg. Guide 1.lyy does not,

in and of itself, provide an "appropriate organization" for the SVVP; it simply endorses (with a few

exceptions and additions) the organization described in IEEE 1012.

The IEEE standards are usually the lowest-level documents in this hierarchy of references).

However, even IEEE 1012-1986, which is devoted entirely to SVVPs and hence is essentially the lowest-

2 Software Review 61

level document on V&V, does not offer a lot of clear insight into the topic. It simply goes through the

V&V process phase-by-phase, qualitatively describing what minimum tasks must be accomplished (e.g.,

trace software requirements to system requirements and analyze the relationships between them for such

qualities as correctness, consistency, completeness, and accuracy) and what inputs and outputs (in the form

of documents) are required for those tasks. It is basically just a 'laundry list' of items to include in the

SVVP; it does not offer any useful suggestions as to how to execute any of the tasks that it requires. In

addition, while IEEE 1012 does not specifically rely on other standards for its use, it is to be "used in

conjunction with" IEEE 729, IEEE 730, IEEE 828, IEEE 829.

This leads back to a problem with much of BTP-14 that has been pointed out many times already:

it is very vague. Following are some examples of particularly vague statements from BTP-14 (with their

location in the BTP in parentheses):

1. The software integration plan should contain a "description of the hardware and
software integration process." (B.2.1.2.d)

> What exactly should be described about the integration process?

2. The operations plan should contain a " description of the procedures for executing
the software in all operating modes, and procedures for ensuring that the software
state is consistent with the plant operating mode at all times." (B.2.1.2.h)

> This implies a lot in a very short sentence. However, it does not specify what
should be included in these descriptions. What are the important elements of
the operating modes and the corresponding software states?

3. The software V&V plan should contain a "description of the V&V activities,
including the methods and procedures, the acceptance criteria for each activity, risk
management procedures, relationships with the product development life cycle
tasks, and coordination with [Software Configuration Management] activities," and
a "description of all required testing plans, specifications, procedures and cases,
[including] unit testing, integration (subsystem) testing, system testing, and
acceptance testing, [which should also include] test documentation requirements,
evaluation criteria, error reporting, and anomaly resolution procedures." (B.2.1.2.j)

> Again there are a lot of high-level terms here (e.g., description, methods,
procedures, relationships) whose specific meanings are not described

4. Software V&V documentation should confirm that "the requirements, design
elements, and code elements satisfy the appropriate functional characteristics of
accuracy, functionality, reliability, robustness, safety, security, and timing [and the
software development process] characteristics of completeness, consistency,
correctness, style, traceability, and unambiguity." (B.2.2.2.b)

> How do we determine which qualities are appropriate for which elements, and
how exactly do we satisfy them (for instance, exactly what conditions are
required for requirements to be "complete")?

2 Snflw~rn Thvi~w

5. "An [installation or] acceptance test report should be produced describing the
execution of the [test] plan and summarizing the results. This report should contain
a statement that the plan was successfully executed, and the system is ready for
operation." (B.2.2.2.b)

> These are rather uninformative statements. In addition, it sounds as if the
designer simply needs to create a test plan that is executable rather than one
that is conclusive.

6. System build documents should exhibit completeness, which "requires that all build
procedures be fully specified..." (B.2.3.2.e)

> What exactly is entailed by the phrase 'fully specified'?

2.3 The Place of V&V and Testing in the BTP-14 Review Process

This section will begin by giving some basic definitions important to V&V and pointing out the

confusion involved in defining these terms. This will be followed by a brief discussion of some of the

theory behind V&V. Several sections will then describe the position of V&V in various standards and

documents that provide guidance for conducting a V&V effort. Then there will be a discussion of various

methods and types of testing (which is just one part of V&V) and of how they might be used effectively in

combination with each other. A final section is included on problems with testing.

2.3.1 V&V Definitions

The issue of V&V is at the center of much of the debate over how to improve software and the

software development process. Some very basic definitions of essential V&V terminology (taken from

IEEE Std 610.12-1990, "IEEE Standard Glossary of Software Engineering Terminology") are appropriate,

since much confusion in this field stems simply from improper use of terminology. 25

This confusion in definitions is a particular problem with the BTP/SRP software review process.

Verification and validation are particularly important elements of this process, and the definitions that they

are based on (from IEEE Std 610.12, the standard IEEE software engineering glossary) are not well

written. Verification is defined as " the process of evaluating a system or component to determine whether

the products of a given development phase satisfy the conditions imposed at the start of that phase"

(definition 1 from the glossary). One way to implement this is with a "formal proof of program

correctness" (definition 2 from the glossary). Proof of correctness is a " formal technique used to prove

mathematically that a computer program satisfies its specified requirements." Validation is defined as

"the process of evaluating a system or component during or at the end of the development process to

determine whether it satisfies specified requirements." Verification and validation (V& V) is defined

(separately) as "the process of determining whether requirements for a system or component are complete

and correct, whether the products of each development phase fulfill the requirements or conditions

2 Software Review

imposed by the previous phase, and whether the final system or component complies with specified

requirements." 25

There appears to be inconsistency among these standard definitions, as the definition of

'verification & validation' contains more than the sum of the (separate) definitions of 'verification' and

'validation' (i.e., determining whether system requirements are complete and correct is not included in the

definition of either single term, but it is part of the combined term). This may just be an issue of semantics,

but it is confusing nonetheless.

In the above definitions, 'validation' seems to be little more than a repetition of 'verification' (i.e.,

it involves doing the same tasks at the end of the software development process as are done in between

each phase of the process). Rushby better clarifies the distinction between these two terms. 26 He says that

formal verification is "the process of showing, by means of formal deduction, that a formal design

specification satisfies its formal requirements specification.....Assumptions and designs at one level

become requirements at another," allowing for an iterative verification process. Formal validation, on the

other hand, is " a process for gaining confidence that top-level formal specifications of requirements and

assumptions are correct." Since "there are no higher-level requirements or more basic assumptions against

which to verify" the top-level specifications, formal validation consists of "challenging the formal

specifications by proposing and attempting to prove theorems that ought to follow from them."

Validation, then, involves determining not only that requirements are fulfilled (as verification determines)

but also that the requirements are the right requirements in the first place.

The field of computer simulation also has a more well defined difference between the terms (note

that these definitions apply specifically to computer modeling rather than to software). Model verification

is defined as "substantiation that a computerized model represents a conceptual model within specified

limits of accuracy." Model validation is defined as " substantiation that a computerized model within its

domain of applicability possesses a satisfactory range of accuracy consistent with the intended application

of the model." 27 Here verification deals with how well a model is implemented by a computer program,

while validation deals with whether or not the model is, in fact, an accurate reflection of the real world.

2.3.2 V&V Theory

There is often a great deal of confusion between the terms verification and validation. Much

effort is focused on verification (i.e., by testing), but little effort has been dedicated to validation to

determine if the requirements are realistic, necessary, and sufficient in the first place. Sheng et al. have

identified several major types of impediments in the way of an organized methodology for model

validation, including definitional impediments and theoretical impediments.27

Definitionally, validation is still quite ambiguous, as illustrated above. Many organizations, such

as the USNRC, the U.S. Department of Energy, and the International Atomic Energy Agency, offer

definitions of validation similar to the definition of 'model validation' given above, but the model

2 Software Review

validation definition captures all of the concepts included in the other definitions more succinctly.

However, even in this definition there is some confusion as to what exactly is meant by 'domain of

applicability,' 'satisfactory range of accuracy,' and 'intended application.' What these phrases entail can

be largely determined by the purpose of the model. For example, if the purpose of the model is prediction

of a system's behavior, accuracy is important; if the purpose of the model is simply to gain insight into

how the system works, accuracy is not so important.27

Theoretically, the basis of validation (using modeling and simulation) as a well-defined 'science'

rather than as a subjective 'art' is young and not very strong. Sheng et al. say that this changeover has

occurred only in the last fifteen to twenty years.2

2.3.3 V&V in BTP-14

In one sense, while V&V is just one aspect of BTP-14, execution of the review process described

by BTP-14 is V&V on a large scale, not just of software but of a whole system. The overall purpose of

BTP-14 is to guide the review of digital computer-based I&C systems in order to help ensure their reliable

performance. This involves the validation and verification of the software and all other parts of the I&C

system.

Specific places where V&V activities are mentioned within BTP-14 are (1) in the description of

what should be contained in the SVVP (see Appendix E) and (2) in the description of what tasks are part of

Software V&V Activities (see Figure 10). Analysis of these descriptions reveals many of the weaknesses

of this process that have been discussed.

The guidance on the SVVP lists many general, high-level items that should be included, such as

"descriptions" of the organization of the software V&V effort, responsibilities within the organization, the

V&V schedule and required resources, V&V activities, V&V reporting requirements, tools and methods

used for V&V tasks, and "how the V&V effort will be managed." There must also be a "description of all

required testing plans, specifications, procedures and cases.....[including unit, integration, system, and

acceptance testing]" and a description of "test documentation requirements, evaluation criteria, error

reporting, and anomaly resolution procedures." For more information, the designer/reviewer is referred to

the corresponding Reg. Guides and the standards they endorse: 1.1yy (and IEEE Std 1012) on V&V plans,

1.1xx (and IEEE Std 1008) on software unit testing, and 1.1vv (and IEEE Std 829) on test documentation.

This provides a good example of the vague and unspecific nature of BTP-14 (and its associated Reg.

Guides and standards).

The guidance on software V&V activities requires, among other things, that the different software

development entities display the appropriate functional and development process characteristics; that

problems be documented and actions be suggested and/or taken to fix them; that tests be described,

executed, and documented in accordance with testing plans; and that the "result of each test should clearly

show that the associated requirement has been met." What is meant by the term 'clearly show'?. Once

2 Software Review 65

again, this guidance states the obvious of what needs to be done but offers no specific suggestions on how

to do it. For any additional clarification the reader is again referred only to the guidance in NUREG/CR-

6101.

2 Software Review

Cevel
Required * e

V&V Inputs * Conc
docur

SConcept
opment docuwntation

14. *SRS
ePt Interface
mnentatlon requirements

documentation
* User

documentation

.Standards
.SRS

.Interface
requirements
documentation

*Interface
design

K2f Cc)

* Standards
* SOD
* Source code listing(s)
- Executable code
* Interface design

document
* User

documentation

_a1~
* Source code rsting(s)

Executable code
*User documentation

* Development schedules
* Concept documentation
* SRS
* Interface requirements

documentation
" SOO
" Interfac design docunmentation
SSource code listing(s)

*Fumk rniiha nda

*Concept phase
task reporting

*Anomaly
reports

*V&Vphase
ummary report

- rwullmrnia eu uon
SRequments interface

* Test plan
generation

* Requirements
phase task

* Test plan
- System
- Acceptance

* Anomaly
report(s)

* V&V phase
summry
report

*Design tracsabilty analysis
ODesign evaluaton

* Interface analysis
STest plan generstion

*Test design generation

* Design phase task
reportng

" Tes plan
- Component
- Integraton

* Test design
- Component
- Integratian
- System
-Acceptance

* Anomaly reports
* V&V phase

summary report

Ii.Management of V&V I

SSVVP generation * Management review
* Baseline change assessment * Review support

execution generation

* Irplementation phase
task reporting

* Test cases Teast phase task * Installation and
- Component repordng checkout phase task
- Integration * Test procedures reporting
- System - Acceptance Anroaly report(s)
- Acceptance * Anomaly report(s) * V&V phase summary

* Tat procedures V&V phase summary report
- Component report V&V final report
-- Integration
- System

* Anomaly report(s)
* V&V phase summary

report

* SVVP revision
* Anomaly

evaluation
" Proposed change

assessment
. Phase task

reteration

* Updated SVVP
* O&M task reporting
* Required phase outputs

reiterated
* Anomaly report(s)

Management of V&V

* SVVP and updates
* Task reporting
* Phase V&V summary reports
* Anomaly reports

Figure 10 Verification and Validation Activities

(From NUREG-CR/6101, pp. 28-29)

nges

ANSIIEEE 1012

;ý_ a
SImsalltion
pecksr

_10

rGýý)im

2 Software Review

2.3.4 V&V in the SRP

In SRP 7.0's big picture description of the steps in the overall I&C review process, V&V comes

into play in the 'System Validation Evaluation' section of the guidelines for operating license and

combined license applications. This evaluation is to be based on testing, analysis, and technical

justification that the I&C system can perform its required safety functions, and on compliance with

interface requirements and the design certification.

Appendix 7.0-A, which lists review topics specifically for digital I&C systems, directly mentions

V&V in describing the review of the adequacy of the software life cycle process implementation, and it

indirectly mentions it in describing the review of both the life cycle process planning and design outputs.

Again, the guidance is very high level and does not give the developer or reviewer any idea of how to do

what he is supposed to do. For instance, it is stipulated that the process planning should be done such that

"the specified process and products, including design outputs, are designed to be inspected." It also says

that the implementation "should be audited to confirm that the planned process is being implemented. "

SRP Section 7.1 mentions V&V when describing its clarifications for review of digital I&C

systems. It reiterates the need for verification and validation of requirements both at a system level and at

each specific development stage. The user is told only that " implementation of a software engineering

process as described by BTP HICB-14 will ensure adequate verification and validation" and that other

guidance can be found in Reg. Guides 1.1xx, 1.1vv, and 1.1yy. As has been evident so many times before,

this 'guidance' seems to consist only of references to other documents without ever resulting in a final

answer.

2.3.5 V&V Standards: Reg. Guide 1.152 and IEEE 7-4.3.2

It was mentioned in Section 2.1 that, depending on the particular subject being analyzed, the

reviewer would probably need to consult other forms of documentation besides the BTP and the SRP. For

the subject of V&V, the other documents referred to include Reg. Guide 1.152, IEEE-7-4.3.2, Reg. Guide

1.1yy, IEEE 1012, and IEEE 1028.

The first document to consider in this series is Reg. Guide 1.152, an endorsement (with one

exception) of IEEE 7-4.3.2, which was written to provide guidelines for satisfying the USNRC's

requirements on "high functional reliability" and "design quality" for digital computers in safety systems

of NPPs. Unfortunately, Reg. Guide 1.152 does not do much to clarify the stance on these topics; it

primarily just restates a few important principles about them. For instance, Criterion III of 10 CFR 50

Appendix B, one of the basic requirements on which Reg. Guide 1.152 is based, gives the vague guidance

that "quality standards be specified and that design control measures be provided for verifying or checking

the adequacy of design." Reg. Guide 1.152 does little to expand on what exactly this entails.

The next document to consider after Reg. Guide 1.152 is IEEE 7-4.3.2, which clarifies the use of

IEEE 603 for digital applications. One of the statements in this regulatory guide, as described earlier, says

2
Soilware

Review

that V&V "shall provide adequate confidence that the safety system requirements.....at each stage of

development.....have been implemented [with respect to] computer software and hardware, noncomputer

hardware, and the integration of these items." Though the term 'adequate confidence' is standard

regulatory jargon, what exactly does it mean here? Is it reflected in a certain number of correct test runs,

by a completed check-off list of safety system requirement implementation methods, by whatever the

software developer deems appropriate, or by some other method?

This standard goes on to say that V&V plans shall "confirm the correctness and completeness of

the design [and] shall specify activities and tests that shall be [executed] by competent [authorities]....."

How do they confirm the correctness and completeness of the design? Perhaps some specific types of

activities and tests should be described rather than letting the developer pick and choose any method he

wants. In this way the reviewer would know exactly what to look for rather than have to try to figure out

the developer's thought process and methodology.

Most of the detail on V&V in IEEE 7-4.3.2-1993 is found in Annex E, which is not officially part

of the standard, but is rather a list of suggestions deemed acceptable by those who developed the standard.

Annex E stresses functional diversity, D-in-D&D, and design diversity.

One of the topics discussed by this annex is the use of " black box" testing to test program module

input/output correctness and "white box" testing to examine more closely the internal program details (the

annex defines white box testing in essentially the same way that branch- or path-coverage testing is usually

defined). The use of Failure Modes and Effects Analyses (FMEAs) to detect failure modes, design-basis

events, and abnormal conditions & events, from which lower level hardware and software requirements

can be derived, is also discussed. Some guidance on what issues to consider when carrying out these

analyses is offered in other references as well, but again there is little advice on how to do the analyses.

While this annex is more detailed than much of the other guidance used in this process, it still leaves the

user in search of more detail and in need of other documents.

2.3.6 V&V Standards: IEEE 1012, IEEE 1028, and Reg. Guide 1.1yy

Reg. Guide 1.1yy (on V&V, reviews, and audits) serves as an example of Reg. Guides 1.1uu

through 1. lzz, since they are all quite similar (and generally not of much benefit for the review). The basic

purpose of these Reg. Guides is to offer endorsements of various standards pertinent to their particular

topics. For Reg. Guide 1. lyy, the topic is V&V, reviews, and audits, and the corresponding standards are

IEEE 1012 and 1028. There are some exceptions taken and some modifications made, but many of these

changes deal with surface details rather than substance.

It is interesting to note, however, that hidden inconspicuously in the midst of the guidance of Reg.

Guide 1.1yy is an important addition to the configuration management stipulations of IEEE 1012-1986

(paragraph 3.7.4). It says that "any V&V materials necessary for the verification of the effectiveness of

the V&V programs or to furnish evidence of activities affecting quality must be maintained as quality

2 Software Review

assurance records. Those materials necessary for the re-verification of changes must be maintained under

configuration management." In other words, any materials necessary to properly make modifications to

safety-related software must be maintained very carefully under configuration management (in addition to

all of the configuration management contents required by IEEE 1012).

This is an important point that should be highlighted more prominently than it is. Not heeding

this requirement can have disastrous consequences, as demonstrated by the Therac-25 debacle discussed in

Appendix P. (In the Therac-25 case, an improper implementation of 'improved' software technology to

replace a hardware safety mechanism in the previous model of the Therac radiation administration device

led to a new, "upgraded" machine that was, in fact, faulty and led to many injuries and even death. The

software as originally modified was incapable of performing the same safety function that the hardware

had performed on the previous Therac machine. Better configuration management -- in this case, more

careful management of changes to the software -- could have prevented this problem from ever happening.

As stated by Leveson and Turner, "...not only must safety be considered in the initial design of the

software and its operator interface, but the reasons for design decisions should be recorded so that

decisions are not inadvertently undone in future modifications." 28)

IEEE 1012 and IEEE 1028, both endorsed by Reg. Guide 1.1yy, come next in the analysis. IEEE

1012, which is referenced by almost every document that deals with V&V topics, is the closest thing to an

authoritative standard on V&V that can be found. Yet even it avoids the issue of offering advice on how to

do the things that it recommends software developers should do, and even it does not stand alone (it is to be

used in conjunction with four other IEEE standards). For example, in explaining what to look for in a

Software Requirements Evaluation, it says the requirements should demonstrate "correctness, consistency,

completeness, accuracy, readability and testability." This is very similar to the stipulations of BTP-14, but

no more explanation of what is meant by these terms or how to demonstrate them is given here than is

given in the BTP. In fact, though it is not much more helpful, there is actually more clarification in the

BTP!

IEEE 1028 is equally unhelpful. It provides common-sense criteria on the different reviews and

audits that it discusses but little else. For instance, it says that a software walkthrough is complete is when

all parts of the software have been "walked through" in detail, all problems and suggested improvements

have been noted, and the walkthrough report has been issued.

2.3.7 Testing and V&V in NUREG/CR-6101

NUREG/CR-6101, which forms the basis for most of BTP-14, lists activities, documents, and

recommendations for each of the eight life cycle phases. For a listing of those dealing with testing and

V&V, see Figure 10. As described about much of the other guidance so far, this information amounts to

little more than a laundry list of items to do, with little or no advice on how to go about doing them.

2 Software Review

NUREG/CR-6101 also contains appendices with "information on certain technical issues that are

pertinent" to it, including various "techniques that may be used to model reliability in general, and

software reliability in particular" and several software reliability growth models. The reliability analysis

and modeling techniques discussed include reliability block diagrams, fault tree analyses (FTA), event tree

analyses, failure modes and effects analyses (FMEA), Markov models, and Petri net models. The

reliability growth models discussed include the Duane model, the Musa model, the Littlewood model, and

the Musa-Okumoto model.

Basic equations for these methods are discussed along with certain assumptions, strengths and

limitations. For example, the Musa reliability growth model makes the unrealistic assumption that all

program 'bugs' are equally likely to occur, while the other reliability growth models give a heavier

weighting to errors found early on (since they tend to be the more common and frequent errors). In

general, less confidence is expressed in the reliability growth models than in the reliability analysis models.

Such methods (especially the reliability growth methods) are not endorsed for determining failure rates

lower than 104 due to the amount of time necessary to demonstrate such high reliability. The particular

examples discussed seem to form a rather hit-or-miss selection, and the usefulness of many of them

(especially the reliability growth models) is, at best, debatable.

2.3.8 Methods and Types of Testing

There are two broad categories of software testing referred to as "black box" (functional) and

"white box" (structural) testing. These were touched on in Section 2.3.5. Black box testing implies

looking only at the output of a program in order to determine if it is correct based on the input. This

determines the correctness of the program from the end-user's viewpoint. What goes on in the internal

parts of the program is not of interest. In white box testing, the concern is with what goes on internally in

the program. This determines the correctness of the program from the developer's viewpoint.29 In other

words, if the program comes up with a correct output, but the output is a result of some faulty sequence of

logic through the program, then the result is unsatisfactory. (For example, a program with a binary output

could very easily show the correct output based on incorrect computations, because there are only two

possible outputs.) White box testing requires much more in-depth knowledge of how the program works

than black box testing does.

NUREG/CR-6421, "A Proposed Acceptance Process for Commercial-Off-the-Shelf Software in

Reactor Applications," provides examples of six major types of testing along with some of their

advantages and disadvantages. The types described (with some examples) are:30

1. Static source code analysis
a. Inspections -- including code inspection, peer reviews, and walkthroughs
b. Desk checking -- stepping through code (usually by one programmer) to

double check computations for faults

2 Software Review

c. Automated structural analysis -- use of an automated checker to find to find
data and logic structure faults

d. Other methods deemed impractical at this point -- e.g., proof of correctness
and similar (formal) methods

2. Structural (or "white box" or "glass box ") testing -- of the software internal code
a. Controlflowgraphs
b. Control flow (path) testing
c. Loop testing
d. Data-flow testing

3. Functional testing
a. Transaction testing -- similar to control flow testing, but at a higher than

modular level
b. Domain testing -- of input values
c. Syntax testing -- of operators, etc.
d. Logic-based testing -- somewhat similar to the tabular representations of

requirements endorsed by Ontario Hydro [OH] and Atomic Energy Canada,
Ltd. [AECL] in their software development process (see Section 3.2.3)

e. State testing -- based on expected state-transitions

4. Statistical testing -- to predict reliability rather than to discover faults
* This testing must be done based on a realistic operational profile, again as

emphasized by OH and AECL in their software development process.
** Ontario Hydro decides the number of statistical (random) test cases n to use

based on the formula n = [log(1-c)/log(1-f)], where f is the maximum failure
rate allowed and c is the confidence level required. It must be pointed out
that the validity of using this formula for non-Bernoulli trials [i.e., trials that
are not all identical] is questionable. The trials OH uses each model one of
six possible accident sequences that their shutdown systems are designed to
protect against, so each trial is not exactly the same as in Bernoulli trials.

5. Stress testing -- to test the system at loads outside of normal expected limits (i.e., if
the system performs well outside of normal limits, confidence is increased in its
performance within normal limits)

6. Regression testing -- rerunning of original tests after a change is made to the
program or system to ensure that no new errors or unexpected effects have been
introduced

Because these types vary so much among their prerequisites and their applications, some mix of

them would most likely be the ideal composition for a testing regimen. (These testing types are described

for application to pre-existing software products and do not take into account the quality of the software

developer or the development process used.)

This document also provides tables listing many different software qualities, their impact on

safety from a regulator's viewpoint, the appropriate types of testing to use to evaluate them, prerequisites

for and recommended extent of testing types, and typical testing strategies. (See Appendices L, M, N, and

O). It is odd that this document, with much more detailed information than many of the others used in the

BTP-14/SRP Chapter 7, is mentioned only in passing in Appendices B & C of SRP Section 7.1. Though its

2 Software Review

guidance is specifically for COTS software, it could certainly provide some worthwhile momentum to an

overall software development process review and V&V effort.

2.3.9 What is the Right Mix of Testing Methods?

NUREG/CR-6263 discusses what mix of testing is ideal. There are advocates for many different

combinations. IEEE 7-4.3.2 says only that there should be some mix of functional and structural testing,

although most recommendations include some mix of functional testing (with respect to requirements

compliance), structural testing (with respect to path or state coverage), and statistical testing. Statistical (or

'operational profile,' or 'random') testing with many different combinations of input variables can be used

as an aid in functional testing. NUREG/CR-6263 adds that test cases should be based mostly on

requirements and should aim to verify the program's functionality. After testing, it says it should also be

determined which requirements were not tested.

2.3.10 Problems with Testing

A major problem associated with testing is knowing how much is necessary. Various methods

have been proposed, such as choosing test cases based on the software's input profile and then recording

the execution time between failures until the desired failure-intensity level is reached.3 Some suggest that

testing is ineffective because faults will continue to show up throughout the software's life, and that, since

an absence of faults cannot be guaranteed, an acceptable risk level must be determined.32

Another testing problem is the tendency to concentrate on testing only near the end of the life

cycle. One reason for this problem is that testing cannot be performed until the code has been written. A

major goal of V&V is to examine software from a systems viewpoint to find 'high-risk errors' (i.e., errors

that would lead to safety or security hazards or large financial or social losses) early in the design process,

allowing for incremental changes throughout the process.33'34 Something other than standard testing needs

to be done to achieve this, however.

2 Software Review 73

2 Software Review

I- * . .- -
4
101)

8. Various Reg. Guides,S8. Various Reg. Guides,
-I I

Figure 11 Illustration of BTP-14 Review Path Discussed in Chapters 2 & 3

(continued on next page)

S 1 .1 5 28a. RG 1.152

FOR EXAMPLE:
Ib. IEEE 7-4.3.21

~'~ d. RG 8. yy

8c. IEEE 1012,'•' . '- ... e. IEEE 1028, :

""

0. (6101 mentions such basic questions as: (1) Is each requirement for
each mode identified, traceable to an identified hazard, consistent, stated
numerically, and verifiable? (2) Are the functional requirements complete,
consistent, unambiguous, verifiable, and traceable? (3) Do the software
requirements specify what the software must and must not do?)

I. BTP-14: discusses its 3 purposes (evaluate software lifecycle process
planning, implementation, and documentation) and basic software qualities

2. SRP 7.0: discusses review points for digital (reactor) I&C designs and
construction/operation permits (functional and technical compliance with
design criteria and bases of 10 CFR 50, tech specs and proper safety margin,
evidence of design process characteristics in outputs)

-- "...Review of computer-based systems should
focus on confirming the acceptability and correct
implementation of the life-cycle activities." (p. 7.0-2)

3. SRP 7.0-A: supplements 7.0 fordigital systems on the topics of design
qualification, common-mode failure, and functional requirements that are
particularly challenging for digital systems

4. SRP 7.1: provides the regulatory basis (in IEEE 603, Reg. Guide [RG]
1.153, USNRC General Design Criteria [GDC], & 10 CFR 50) of certain rules
for I&C systems important to safety and provides clarifications to 7 topics
important in digital systems (electromagnetic capability, computer system
quality [software/hardware development and integration, software tools,
V&V, configuration management, qualification of existing computers, equip-
ment qualification, system integrity and design for test and calibration, com-
munications independence, reliability, and defense against common-mode
failure) -- There should be a "well-structured and well-executed

software engineering process" (p. 7.1-4)

5. SRP 7.1-A: descriptions of the acceptance criteria and guidelines
-- "...systems...must be [designed, constructed, tested, and

inspected] to quality standards commensurate with the impor-
tance of the safety function to be performed." (p. 7.1-A-1)

-- "[reactor license applications must have] detail sufficient to ...
judge the...[means of conforming to the design] and to reach a
final conclusion on all safety questions]. ... [must be] suffic-
iently detailed [for the NRC to prepare] acceptance require-
ments." (p. 7. 1-A-8)

-- many references to other documents

6,7. SRP 7.1-B,C: digital clarifications for IEEE 279 & 603 -- e.g., identifica-
tion of safety margins and conditions requiring protective actions

-- "...degr ee of redundancy, diversity, testability, and quality
[should be] adequate [for] reliability commensurate with
the safety functions to be performed."

8a. RG 1.152: supplements various GDC and reiterates the need for "high func-
tional reliability" and "design quality"

8b. IEEE 7-4.3.2: endorsed by RG 1.152 -- adds more clarifications for digital top-
ics -- e.g., "[V&V] shall provide adequate confidence that ...requirements...have
been implemented...[and] a V&V plan be prepared to confirm the correctness and
completeness of the design[via activities and tests done by independent reviewers.]"

8c. IEEE 1012: endorsed by RG I.lyy -- describes required & optional V&V
tasks -- e.g., the SRS should: evaluate requirements for "correctness, consistency,
completeness, accuracy, readability, and testability" and assess "how well SRS sat-
isfies software system objectives" and "the criticality of requirements to identify
key performance or critical areas of software" -- required inputs & outputs to the
software requirements are also listed

8d. RG l.Iyy: endorses IEEE 1012 & 1028, but adds little to them; explains
(again) the bases for the policies in these documents (from 10 CFR 50, GDC, etc.)

8e. IEEE 1028: general definitions and requirements for reviews and audits

9. SRP 7.0-A (again): specific digital topics elaborated on are: adequacy of de-
sign criteria, identification of review topics, defense-in-depth & diversity, life
cycle process planning, adequacy of system functional requirements, and ade-
quacy of life cycle process implementation & design outputs

10. BTP-14 (again): the software life cycle and its activity groups are described;
required contents and software development charactistics are described for various
documents and activities, including the Software Quality Assurance Plan, Soft-
ware Safety Plan, Software V&V Plan (and related V&V activities), the SRS,
Code Listings, System Build Documents, etc.

3 Improving Software Design and the BTP-14
Review Process

3.1 General Observations on BTP-14 and the Ontario Hydro Software
Development Standard

First it should be said that, as was explained earlier, BTP-14 is as good as or better than the other

BTPs used in this I&C review process. It does, however, have aspects that could be improved (each of

which will be discussed in Sections 3.2.1 through 3.2.5):

1. Its main points and guiding principles are not expressed clearly and concisely.
They are mentioned piecemeal throughout the body of the BTP (and its many
associated regulatory and supporting documents).

2. The organization of the regulatory documents and the guidance provided in the
documents is complex and more tedious than necessary.

3. Most of the guidance provided is very vague.

4. While various methods of hazard identification are discussed, system-level hazard
identification and system safety principles in general should be stressed more
heavily (because many problems arise as a result of integration of system parts).

5. There are various problems with testing in the software development and review
process as they are described now. Much of the testing is done rather late in the
process, and the guidance on the types of testing (and mix of types) that should be
used is not very helpful.

Many of the deficiencies with BTP-14 are not of content but rather of form and organization. By

comparison of BTP-14 with some of the existing software development methodologies already discussed

and with an actual implemented software development standard (" CE- 1001-STD Rev. 1," used by Ontario

Hydro [OH] and Atomic Energy Canada, Ltd. [AECL] in licensing the digital safety shutdown systems of

the CANDU reactors at Darlington Nuclear Generating Station), it will be possible to suggest some

worthwhile refinements to the process proposed in BTP-14. 35

As mentioned earlier, OH and AECL have already implemented a successful software

development standard via licensing of the Darlington safety shutdown systems. Many of this

methodology's major concepts are the same as those of BTP-14 (and SRP Chapter 7) but are implemented

in a simpler and more organized fashion. This software review standard was created by collating many

existing standards into a single standard to be used throughout the entire software life cycle. Different

3 Improving Software Design and the BTP-14 Review Process

safety categories are assigned to software products of different safety importance (a graded approach).36

The entire process is based on minimum required activities and documentation, just as BTP-14 is.

OH says in its standard that a "software product is considered acceptable if it is shown to satisfy a

set of quality objectives," which are "represented by a longer set of quality attributes" that are "built into

the product by adhering to a software engineering process governed by a set of fundamental principles." 35

These "quality attributes" are in many cases the same as the characteristic qualities used in BTP-14 --

completeness, correctness, etc. And the fact that these quality attributes are a result of "adhering to a

software engineering process governed by a set of fundamental principles" is reminiscent of the

description of the "software development process characteristics" of BTP-14, which are said to be an

"artifact" of a "disciplined design process." The OH standard goes on to say that "measurable

requirements are derived from the quality attributes and the fundamental principles..." Some of the

fundamental principles in the OH standard are very similar to some of the basic BTP-14 concepts. Take

the following OH principles, for instance:"

1. A planned and systematic Software Engineering Process must be followed over the
entire life cycle of the software (i.e., same degree of rigor applied to software
revisions as to the original software development).

2. Verification of the software must be carried out throughout its entire life. All
changes to an output must be verified in the same way as the original output.

3. Independence of design and verification personnel must be maintained to help
ensure an unbiased verification process.

4. Analyses must be performed to identify and evaluate safety hazards associated with
the computer system with the aim of either eliminating them or assisting in the
reduction of any associated risks to an acceptable level.

5. Configuration management must be maintained throughout the entire life of the
software to ensure up-to-date and consistent software and documentation.

6. Audits must be performed periodically to ensure that the software and all
development-related processes conform to standards and procedures.

7. Ongoing training must be undertaken to ensure that personnel have the skills
required to perform their jobs.

More importantly, however, are some of the other principles which are better, or more clearly defined. For

instance:3 5

1. Documentation must be prepared to clearly describe the required behavior of the
software using mathematical functions written in a notation which has a well
defined syntax and semantics. (emphasis added)

2. Outputs of each development process must be verified against the requirement
inputs. In particular, outputs written using mathematical functions must be

3 Improving Software Design and the BTP-14 Review Process

systematically verified against the inputs using mathematical verification
techniques or rigorous arguments of correctness. (emphasis added)

3. The structure of the software must be based on 'Information Hiding' concepts.
[Identifying requirements likely to change in the future, which provides a basis for
information hiding, is another aspect of completeness -- again a clearer
explanation than that in BTP-14.]

4. Both systematic and random testing must be performed to ensure adequate test
coverage. (emphasis added)

5. Reliability of the safety critical software must be demonstrated using statistically
valid, trajectory-based, random testing.

3.1.1 Mathematical Notation

The way that OH implemented a mathematical notation to describe software behavior is with a

'tabular representation' using tables composed of condition statements, action statements, and rule

columns. (See the example in Figure 12.) These tables have several advantages: they can cover all ranges

of the input domain; they imply what to do but not how to do it; they can be derived from requirements or

reconstructed from code (good for traceability); they facilitate mathematical comparison with the

requirements; and they can be understood by (nuclear) domain experts, not just software or mathematics

experts. This last advantage contributes to 'understandability' more concretely than any connection drawn

in BTP-14. The overall requirement for a mathematical notation facilitates verifiability and completeness,

again more clearly than any suggestions given in BTP-14.37

3.1.2 Mathematical Verification

Mathematical verification techniques imply that the requirements, design description, and code

must all express their behavior (at either a system or program level) as a mathematical function relating the

inputs and outputs.37 This allows for a 'step-wise refinement' process of evaluation, first from

requirements to design and then from design to code.

3.1.3 Information Hiding

'Information hiding' is a software design methodology based on data handling needs rather than

on program functionality. Modules are designed around the data that they require rather than around the

functions that the program is to perform. Data access is restricted only to what is absolutely necessary, and

modules are only loosely coupled (i.e., there is restricted information sharing between them). This

methodology was developed to prevent the problems that arise when information is shared -- for example,

when the basic data structures of a subprogram are inadvertently changed because they are accessed by a

different subprogram. 38

Using information hiding, a developer can change one module without worrying about how the

change will affect all the others.3 6 This results in lower costs not only for development but also for

3 Improving Software Design and the BTP-14 Review Process

Figure 12 Sample of Tabular Representation

(From "Tabular Representation of Mathematical Functions for the Specification and Verification of Safety
Critical Software" by J. McDougall, M. Viola, and G. Moum)

CONDITION STATEMENTS 1 2 3 4 5 6 7 8 9 10 11
m_up_pb = pressed F T F F F T T T - -

m_down_pb = pressed F F T F F T - -T T -

m_setpb = pressed F F F T F F T - T - T

m_enter_pb = pressed F F F F T F - T - T T

ACTION STATEMENTS
f_request = no_request X

f_request = up_request X

f_request = down_request X
f_request = setrequest X

f_request = enter_request X
f_request = wd_test_request X

f_request = error_request X X X X X

3 Improving Software Design and the BTP-14 Review Process

maintenance, because each software module can be designed, implemented, and revised independently(i.e.,

the software has reusability). Shumate and Keller cite a 1972 paper by Parnas in which he says that "the

[software] specification must provide to the intended user all the information that he will need to use

nothing more" part of that explanation. In another paper they cite, Parnas describes the term 'information

hiding' by saying, " One begins with a list of difficult decisions which are likely to change. Each module is

then designed to hide such a decision from the others." 37

Techniques such as information hiding help to promote simplicity of design. The issue of

complexity versus simplicity is important not only in the regulation of software development but also

during the software development process. Much time and effort is devoted to this topic. Leveson

discusses the issues of complexity and coupling as the two principal causes of serious accidents in software

safety systems. Unfortunately, the ease of making changes to software (as opposed to hardware)

introduces too much change, from which follows more complexity and error.20 Indeed, unforeseen

complex interactions are a primary concern of people involved with creating and certifying ultra-high

reliability software. Even in relatively simple programs, state-space explosion can quickly become

burdensome; in complex programs it can far exceed any current capabilities to handle it.

What is often forgotten when considering potential complexity problems, however, is that, as

stated in the May 2, 1996, ACRS memo previously mentioned, we need to "emphasize more strongly that

safety systems in nuclear power plants, whether they are digital or analog, should be simple and separated

from all other control systems which may be significantly more complex." 16 Parnas et al. say that "[if]

software is to play a role critical to safety, it is essential to restrict the complexity to allow complete

understanding and thorough analysis." 39 Many of the methods currently used to make digital I&C systems

safer are somewhat counterproductive. For instance, adding redundancy and/or diversity to a program also

adds complexity to it by definition. Perhaps software developers need to concentrate more on making their

designs as simple as possible in the first place to avoid the need for such measures.

3.1.4 Testing

Testing in the OH process requires a mix of systematic and random testing. The systematic

testing (both black box and white box) is used to find many common errors. Since testing is typically not

complete, an adequate set of systematic tests is then reinforced with random tests to acquire some level of

confidence that the software will not encounter some unforeseen set of inputs that will cause it to fail. The

random tests must be based on expected input distributions, expected accident scenarios within an expected

time frame, and expected output distributions. 16

3 Improving Software Design and the BTP-14 Review Process

3.2 Recommended Actions to Improve the BTP-14 Review Process

3.2.1 Recommendation #1

The major guiding principles of BTP-14 should be assembled and clearly specified in one location

at the beginning of any and all of the documents used in this regulatory process. This is done in the

standard used by OH and AECL in their software development regulatory process.

3.2.2 Recommendation #2

BTP-14 (and its associated documents) should be written in such a way that they can stand alone.

The documents in this regulatory process are plagued by references and cross-references from one

document to another. The user is hard-pressed to find a single source-level document on most topics.

Perhaps there should first be a brief listing of the steps involved in the review process without explanation,

and then a detailed summary of the steps including explanations and references to needed source

documents. The OH/AECL standard is also based on many other documents, but it says what it needs to

say without making the reviewer search through all of them.

If it is not possible to write the document(s) in such a way, then there should at least be some type

of detailed guidance provided to map the path that the user must follow through all the documents. There

should also be a description of exactly which parts of which documents are needed as references at each

place in the regulatory process where such references occur.

3.2.3 Recommendation #3

Specific and, preferably, measurable requirements should be placed on software qualities and

properties in order to avoid being vague. OH/AECL accomplish this by mandating that requirements be

expressed in a mathematical notation with a well-defined syntax and semantics. This allows for

mathematical verification of the requirements. They implement such a requirements notation by way of

the 'tabular representation' advocated by Parnas (illustrated in Figure 12). Parnas describes the advantages

of a tabular representation, the primary one being that it "parses the expression for the reader; many nested

pairs of parentheses are eliminated."39 Though some desirable software traits may not yet be understood

well enough for such a well-defined description, thinking about each of the software requirements from a

tabular framework may at least elucidate to the designer what aspects of the requirements are most

important to consider. If nothing else, the designer is forced to consider the program more deeply than he

might otherwise.

It is not expected that a regulatory authority can develop an exhaustive list of specific guidelines;

there is too much variability from one designer to another and from one software firm to another to cover

3 Improving Software Design and the BTP-14 Review Process

every possible detail. At the same time, however, in the various review process documents considered in

this work, there were numerous examples of guidance that gives designers no direction. This can

ultimately make the reviewer's job a slower, case-by-case process, which is what the USNRC wants to

avoid. Use of a well-defined mathematical representation removes ambiguity from requirements, and use

of a straightforward expression of requirements (such as the tabular representation described above) makes

them understandable to all parties involved with the software development, regardless of their particular

application domain knowledge (in this case, of the reactor engineering field).

3.2.4 Recommendation #4

System safety approaches in the software development process must be emphasized more

strongly. This should include the use of any or all of the methods for this purpose that are addressed in this

work. For instance, the use of checklists and/or HAZOP can be helpful in identifying and accounting for

system-level hazards. HAZOP can also be used effectively in combination with FMEAs. DFM could also

be very useful in the area of system safety, because it is intended to provide structural models of the

software (from a system level) from which the existence of failure modes, ACEs, and other such system

problems can be determined. Use of a programming technique such as information hiding (see the

discussion in Section 3.1.3) could also be beneficial in focusing on the software project from a system-

level perspective.

3.2.5 Recommendation #5

A complementary mix of all three major types of testing -- functional, structural, and random -

must be used in order to capitalize on the advantages of each of the different methods. In addition, testing

must be employed as early in the software development process as possible (a Cleanroom software

engineering approach) to minimize the costs of fixes for problems uncovered.

Numerous problems were discussed with the testing methodology currently in place in the BTP-

14 software development review process. Various testing strategies are mentioned and briefly described in

the BTP and its associated documents, but little detail is given about how to execute any of them. The

OH/AECL standard gives much clearer guidance by requiring a mix of systematic testing (both black box

[functional] and white box [structural]) with statistically-valid, trajectory-based random testing. Though

the applicability of the formula OH uses to find the required number of random tests for a particular

confidence level is questionable, OH does not rely solely on these tests. The random tests are used to

"[compensate] for false assumptions and biases of the tester" which influence the design of the systematic

tests.36 These tests are used to quantify the uncertainty of the systematic test results so that compliance

with a specific reliability value may be demonstrated. This combination of testing methods increases

overall confidence in the testing results.

In addition, most testing currently done occurs late in the life cycle. It is important to build testing

into the entire life cycle from the very beginning. Hardware manufacturers use such a strategy; they test

3 Improving Software Design and the BTP-14 Review Process

products at critical points throughout the development process in order to catch problems early. Such

testing serves the purpose of 'statistical quality control,' which will be explained below. In software, this

allows for functional verification at each step of the design process (i.e., requirements to design, design to

coding, etc.) Compare this concept of functional verification to the definition of 'formal verification' in

Section 2.3.1.22 These concepts are part of the Cleanroom engineering process described in Section 1.3.4.

This methodology, used by many industries today, is based on numerous principles which could be of

benefit to the software development process. Another option which can be useful in heading off software

errors before they ever happen is the Computer Aided Software Engineering (CASE) technology discussed

in Section 1.3.4.2, which allows the software designer to work through the requirements and design phases

graphically and sometimes even takes care of the implementation (coding) details automatically.

It is interesting to look back at the SEI's Capability Maturity Model with the benefits of

Cleanroom software engineering in mind. By requiring some of the Cleanroom techniques, BTP-14 could

add some of the elusive Level 4 and Level 5 characteristics to the software development process, such as

the following:24

* A measured process,

* Improvement fed back into the process,

* Data gathering used to identify the weakest process elements,

* Numerical evidence used to justify application of technology to critical tasks, and

* Rigorous defect-cause analysis and defect prevention.

4 Conclusions

Five major areas for improvement of the Branch Technical Position HICB-14 ('BTP-14') software

development life cycle review process have been discussed. These five points, followed by recommended

changes or improvements (in italics), are:

1. Its main points and major guiding principles are not expressed clearly and
concisely. They are mentioned piecemeal throughout the body of the BTP (and its
many associated regulatory and supporting documents).

> The major guiding principles of BTP-14 should be assembled and clearly
specified in one location at the beginning of any and all of the documents used
in this regulatory process.

2. The organization of the regulatory documents and the guidance provided in the
documents is too complex.

> BTP-14 and related regulatory documents should be organized more clearly,
either by combining all necessary information into a single, stand-alone
document, or by providing some type ofroadmap to guide the user through the
various documents with minimum effort and confusion. The guidance itself
should emphasize techniques that minimize complexity, perhaps including
such methods as information hiding.

3. Most of the guidance provided is very vague.

> A more quantitative nature might be added to the guidance by including a
requirement like that of the Ontario Hydro / Atomic Energy Canada, Ltd.
standard, which calls for expression of all requirements in a mathematical
notation (in particular, a tabular representation).

4. While various methods of hazard identification are discussed, system-level hazard
identification and system safety principles in general should be stressed more
heavily (because many problems arise as a result of integration of system parts).

> Various techniques are proposed to address system-level safety issues,
including checklists, HAZOP, DFM (Dynamic Flowgraph Methodology), and
the use of information hiding techniques.

5. There are various problems with testing in the software development and review
processes as they are now implemented. Much of the testing is done rather late in
the process, and the guidance on the types of testing (and mix of types) that should
be used is not very helpful.

> Major recommendations made with regard to testing include the use of a mix
of testing types (functional, structural, and random), a shift to earlier testing
and testing at critical points between stages of the software development
('statistical quality [or process] control'), and a corresponding emphasis on
error prevention rather than error detection, perhaps including the use of

86 4 Conclusions

CASE tools. The Cleanroom concept stresses these methods and offers such
benefits as simplicity of design, (mathematical) functional verification, and a
distinct absence of debugging.

The changes recommended for the BTP-14 software development review process are for the most

part not changes of content, but rather changes of presentation. The BTP-14 process is based on many of

the principles that constitute the basis of the conventional wisdom on software development. However, the

presentation of the process and its requirements can be done much more clearly and efficiently than it is in

BTP-14, as illustrated by the corresponding standard developed by Ontario Hydro and AECL. Combined

with their experiences in producing a software development standard and with some of the current

successful approaches to software development discussed above, BTP-14 can be much more effective in

helping both the software developer and the reviewer.

References

1. Draft Standard Review Plan (Appendix 7.0-A -- "Review Process for Digital Instrumentation and
Control Systems," Version 7.0, August 23, 1996).

2. (Proposed) Branch Technical Position HICB-14: "Guidance on Software Reviews for Digital
Computer-Based Instrumentation and Control Systems" (Version 10.0), August 23, 1996.

3. National Academy of Sciences (Committee on Application of Digital Instrumentation and Control
Systems to Nuclear Power Plant Operations and Safety; Douglas M. Chapin, Chair). Digital
Instrumentation and Control Systems in Nuclear Power Plants, National Academy Press, Washington,
D.C., 1995.

4. Thadani, Ashok C. and Robert L. Perch. "Consideration of Important Technical Issues for Advanced
Light Water Reactors," Proceedings of the 2nd ASME-JSME Nuclear Engineering Joint Conference,
Vol. 2 (ed. Per F. Peterson), 1993: 553-558.

5. NASA-GB-1740.13-96: NASA Guidebook for Safety Analysis and Development, NASA (Washington,
D.C.), April 1996.

6. Leveson and Knight. "An Experimental Evaluation of the Assumption of Independence in
Multiversion Programming," IEEE Transactions on Software Engineering, 12(1): 96-109.

7. Littlewood, Bev. "The Impact of Diversity upon Common Mode Failures," Reliability Engineering
and System Safety, 101-115.

8. Kletz, Trevor. HAZOP and HAZAN: Identifying and Assessing Process Industry Hazards, Hemisphere
Publishing Corporation, Bristol, PA, 1992.

9. Redmill, F., M. F. Chudleigh, and J.R. Catmur. "Principles Underlying a Guideline for Applying
HAZOP to Programmable Electronic Systems," Reliability Engineering and System Safety, edition to
be published.

10. Leveson, Nancy G. Safeware: System Safety and Computers, Addison-Wesley Publishing Company
(Reading, MA), 1995.

11. Lutz, Robyn. "Targeting Safety-Related Errors During Software Requirements Analysis," Software
Engineering Notes, 18(5), December 1993: 99-105. (from SIGSOFT '93, Proceedings of the First
ACM SIGSOFT Symposium on the Foundations of Software Engineering; Los Angeles, CA,
December 7-10, 1993)

12. Seth, S. et al. NUREG/CR-6263: High Integrity Software for Nuclear Power Plants, The MITRE
Corporation, June 1995.

13. Lawrence, J.D. NUREG/CP-0145: Workshop on Developing Safe Software, Lawrence Livermore
National Laboratory, November 1994.

14. Christou, Aris. Integrating Reliability into Microelectronics Manufacturing, John Wiley & Sons, Ltd.,
New York, NY, 1994.

15. Dyer, Michael. The Cleanroom Approach to Quality Software Development, John Wiley & Sons, Ltd.,
New York, NY, 1992.

16. ACRS memorandum on SRP Chapter 7 (I&C) Update. From Dr. Don W. Miller, Chairman,
Instrumentation and Control Systems and Computers Subcommittee, to all ACRS members, May 2,
1996.

17. Mills, Harlan D. "Zero Defect Software: Cleanroom Engineering," in Advances in Computers,
Volume 36 (ed. Marshall C. Yovits), Academic Press, Inc., Boston, MA, 1993.

18. Fisher, Alan S. CASE: Using Software Development Tools, John Wiley & Sons, Ltd., New York, NY,
1988.

19. Hecht, Herbert. "Rare Conditions - An Important Cause of Failures," COMPASS '93 (Proceedings of
the 8th Annual Conference on Computer Assurance, Gaithersburg, MD, June 14-17, 1993), National
Institute of Standards and Technology,

20. Leveson, Nancy G., Stephen S. Cha, and Timothy J. Shimeall. " Safety Verification of Ada Programs
Using Software Fault Trees," IEEE Software, July 1991: 48-59.

21. Garrett, C.J., S.B. Guarro, and G.E. Apostolakis. "The Dynamic Flowgraph Methodology for
Assessing the Dependability of Embedded Software Systems," IEEE Transactions on Systems, Man,
and Cybernetics, 25(5): May 1995.

22. Levendel, Ytzhak. "Improving Quality with a Manufacturing Process," IEEE Software, March 1991:
13-25.

23. Laprie, J.-C. "For a Product-in-a Process Approach to Software Reliability Evaluation," Proceedings.
Third International Symposium on Software Reliability Engineering, 134-139.

24. Humphrey, Watts S., Terry R. Snyder, and Ronald R. Willis. "Software Process Improvement at
Hughes Aircraft," IEEE Software, July 1991: 11-23.

25. IEEE 610.12-1990: IEEE Standard Glossary ofSoftware Engineering Terminology.

26. Rushby, John. "Formal Methods and their Role in the Certification of Critical Systems," Technical
Report CSL-95-1, Computer Science Laboratory, SRI International, Menlo Park, CA, March 1995.

27. Sheng, G., M.S. Elzas, T.I. Oren, and B.T. Cronhjort. "Model Validation: A Systemic and Systematic
Approach," Reliability Engineering and System Safety, 42(1993): 247-259.

28. Leveson, Nancy G. and Clark S. Turner, "An Investigation of the Therac-25 Accidents," IEEE
Transactions on Software Engineering, July 1993: 18-41.

29. Neufelder, Anne Marie. Ensuring Software Reliability, Marcel Dekker, Inc. (New York, NY), 1993.

30. Preckshot, G.G., and J.A. Scott. NUREG/CR-6421: "A Proposed Acceptance Process for Commercial
Off-the-Shelf (COTS) Software in Reactor Applications," Lawrence Livermore National Laboratory,
March 1996.

31. Musa, John D. and A. Frank Ackerman. "Quantifying Software Validation: When to Stop Testing?,"
IEEE Software, May 1989: 19-27.

32. Duke, Eugene L. "V&V of Flight and Mission-Critical Software," IEEE Software, May 1989: 39-45.

33. Wallace, Dolores R. and Roger U. Fujii. " Software Verification and Validation: An Overview," IEEE
Software, May 1989: 10-17.

34. Wallace, Dolores R. and Roger Fujii. "Verification and Validation: Techniques to Assure
Reliability," IEEE Software, May 1989: 9.

35. Atomic Energy of Canada Ltd. and Ontario Hydro. CE-1001-STD Rev. 1: Standard for Software
Engineering of Safety Critical Software, January 1995.

36. Joannou, Paul K. "Experiences from Application of Digital Systems in Nucle ar Power Plants."

37. MCDougall, J., M. Viola, and G. Moum. "Tabular Representation of Mathematical Functions for the
Specification and Verification of Safety Critical Software."

38. Keller, Marilyn and Ken Shumate. Software Specification and Design, John Wiley & Sons, Inc., New
York, NY, 1992.

39. Parnas, D.L., G.J.K. Asmis, and J. Madey. "Assessment of Safety-Critical Software in Nuclear Power
Plants," Nuclear Safety, 32(2): 189-198.

Other References (not cited with a reference number) -- in order of appearance:

* Standard Review Plan, Chapter 7 (Draft), "Instrumentation & Controls"

> Section 7.0, "Instrumentation and Controls -- Overview of Review Process " (Version 4.0), August
22, 1996.

> Appendix 7.0-A, "Review Process for Digital Instrumentation and Control Systems" (Version 7.0),
August 23, 1996.

> Section 7.1, "Instrumentation and Controls -- Introduction" (Version 8.0), August 23, 1996.
> Appendix 7. 1-A, "Acceptance Criteria and Guidelines for Instrumentation and Control Systems

Important to Safety" (Version 8.0), August 23, 1996.
> Appendix 7. 1-B, "Guidance for Evaluation of Conformance to ANSI/IEEE Std 279" (Version 8.0),

August 22, 1996.
> Appendix 7.1-C, "Guidance for Evaluation of Conformance to IEEE Std 603 " (Version 2.0),

August 22, 1996.

* 10 CFR 50 (and 52) and corresponding appendices -- sections of the Code of Federal Regulations

* NUREG/CR-6101, "Software Reliability and Safety in Nuclear Reactor Protection Systems,"
November 1993.

* IEEE Std 603-1991, "IEEE Standard Criteria for Safety Systems for Nuclear Power Generating
Stations."

* IEEE Std 279-1971, "Criteria for Protection Systems for Nuclear Power Generating Stations."

* Regulatory Guide 1.153, "Criteria for Power, Instrumentation, and Control Portions of Safety
Systems," 1985.

* Regulatory Guide 1.152, " Criteria for Digital Computers in Safety Systems of Nuclear Power Plants,"
January 1996.

* IEEE Std 7-4.3.2--1993, "IEEE Standard for Digital Computers in Safety Systems of Nuclear Power
Generating Stations."

* Regulatory Guide 1.1yy (Draft), "Verification, Validation, Reviews, and Audits for Digital Computer
Software."

* IEEE Std 1074-1991, "IEEE Standard for Developing Software Life Cycle Processes."

* IEEE Std 1012-1986, "IEEE Standard for Software Verification and Validation Plans."

* ANSI/ANS-10.4-1987, "American Standard Guidelines for the Verification and Validation of
Scientific and Engineering Computer Programs for the Nuclear Industry."

* IEEE Std 1028-1988, "IEEE Standard for Software Reviews and Audits."

* IEEE Std 830-1993, "IEEE Recommended Practice for Software Requirements Specifications."

* Regulatory Guide 1. lww, "Software Requirements Specifications for Digital Computer Software."

* CE-1001-STD Rev. 1, "Standard for Software Engineering of Safety Critical Software," January
1995.

Appendix A Comparison Between Analog and Digital
Instrumentation and Control Systems

Analog Digital

Data collection

Data transmission

Control logic
implementation

Operator interface

Reliability

In-service testing
(surveillance)

Preoperational
testing

Continuous.

Each measurement, function, or
command is continuously transmitted
over dedicated metal wire line.

Logic is implemented using fixed-
function components.

Fixed-function displays are hardwired
between control room and components
in the field.

Temperature changes, moisture, smoke,
radiation, and aging cause calibration
drift. Components exhibit "bathtub-
shaped" failure curve: high initial
number of failures due to manufacturing
flaws, and high rate of failures at end of
service life due to aging effects.

In-service testing is done manually by
-operating and maintenance personnel.

Exhaustive output versus input
functional testing and cycle-to-failure
testing are commonly done.

Either periodic or event-driven discrete data sampling.

Multiple measurements, functions, or commands are transmitted
over shared metal wire or fiber optic lines configured as data
busses or data highways, or over point-to-point data links with or
without multiplexing.

Logic is implemented using programmable function components.

Programmable interactive displays are connected to programmable
control logic components. Data are synthesized for more compact
presentation.

Temperature changes, moisture, smoke, and radiation may degrade
performance. Digital I&C circuits do not drift so overall drift
problems are greatly reduced. Hardware exhibits "bathtub-shaped"
failure curve. There is no equivalent software failure rate curve,
although initially failures tend to be higher and then decrease as
the system is debugged. There are no generally accepted methods
to quantify software reliability.

Some in-service self-testing of hardware is done automatically
with preprogrammed software. Some testing is done automatically
after manual initiation. Some testing is done manually.

Exhaustive functional testing and cycle-to-failure testing are done
on simple combinational logic systems such as trip systems.
Statistical functional testing is done on complex sequential logic
systems such as process control and regulation systems. Latent
software errors may be difficult to find.

Appendix B Development of the NRC List of Digital
Instrumentation and Control Issues

At its first meeting, the Committee identified and considered a number of
issues and facets of issues, as shown in this appendix. These initial deliberations, as
well as those of later Committee meetings, were analyzed and organized, and they
eventually led to the final list of six technical and two strategic issues. This appendix
provides an insight into some of these deliberations by listing some of the earlier,
more specific issues and topics, tied to each of the final list of eight.

SOFTWARE QUALITY ASSURANCE

How can confidence be obtained in the safety and/or reliability of software? How
should software be assessed?

What methods are appropriate and effective (e.g., verification and validation
techniques, formal methods, quantification, hazard analysis, failure mode analysis
and design)?

Do some software design techniques present special problems in assessment (e.g.
artificial intelligence techniques)?

How can it be assured that changes and fixes do not degrade reliability and safety?
What changes should require USNRC approval and which should not? What changes
should be instituted for change control? (E.g., should patching be allowed?) How can
it be assured that required changes are made?

Confidence level (quality, verification and validation, formal methods, lack of
meaningful standards).

Certification basis (process vs. product).

Fear of unintended function(s).

Configuration control (maintenance/upgrading).

Security considerations.

Appendix B Development of the NRC List of Digital l&C Issues

COMMON-MODE SOFTWARE FAILURE POTENTIAL

Are changes needed in the procedures for evaluating common-mode failures?

Reliability vs. safety. Do the enhanced capabilities of software allow new means of
protection against computer failures or failure modes?

Quality vs. diversity. How much relative attention should be paid to each?

Diversity achievement.

Progressive approach to failure (defense-in-depth).

SYSTEM ASPECTS OF DIGITAL I&C TECHNOLOGY

How can potential safety augmentation at the system level by the use of computers
(e.g., diagnosis and accident management) be balanced and evaluated against
potential safety decreases (e.g., owing to overreliance or to poor
design/implementation that does not achieve assumed benefits or makes things
worse)?

Performance during transients, anticipated transient without scram (ATWS) issues,
fail-safe design. (E.g., can failures he detected as easily as with analog devices?)
Does the use of computers make any difference in these areas?

Are there new environmental concerns (electromagnetic interference, climate control,
etc.)?

What behaviors or features are of concern and how do we provide confidence
(assessment) for them (e.g., unintended function, performance issues, capacity and
overload, fail-safe design, networking)?

Communications system distractions.

System capacity.

Time response of the system.

Network reliability especially in advanced plants.

Recognition/detection of failure modes.

Architecture performance during transients.

Integration issues with analog.

Appendix B Development of the NRC List of Digital I&C Issues

HUMAN FACTORS AND BUMAN-MACHINE INTERFACES

Should restrictions be imposed on the safety or safety-related functions that can be
allocated to computers vs. operators or analog devices?

Other operator aids such as alarm analysis, value sequencing, and decision analysis.

Task allocation (computer vs. human).

Level of automation.

Human interface (role, display, information, nuances).

Use of "intelligence" aids (neural nets, artificial intelligence, etc.).

Operations and maintenance impacts (pluses and minuses).

SAFETY AND RELIABILITY ASSESSMENT METHODS

Are there any implications for design basis accidents and the procedures for
certifying against them?

What are the implications of using computers with respect to probabilistic risk
assessment (PRA) procedures and use?

Are we taking solutions for old technology and inappropriately applying them to
new technology (e.g., emphasis on diversity and redundancy, bottom-up component
reliability approaches vs. risk-based or hazard analysis approaches)? Are there new
approaches that may be more appropriate?

Assessment technology.

Added complexity of digital technology vs. analog.

Definition of safety margin with digital technology.

Loss of margin of safety by consolidation of data.

PRA or mathematical assessment method validity with digital technology.

96 Appendix B Development of the NRC List of Digital I&C Issues

DEDICATION OF COMMERCIAL OFF-THE-SHELF
HARDWARE AND SOFTWARE

Are special procedures required for software tools (e.g., compilers, code generators)?

What assessment procedures are appropriate for COTS software? How should
dedication procedures differ from those used to certify (handle) specially constructed
software?

IEEE-STD-279 compliance.

Use of standard software tools/compilers.

CASE-BY-CASE LICENSING PROCESS

Types of software complexity: Should the assessment basis and procedures differ?

Are there fundamental differences in functionality between analog and digital
devices, e.g., between their failure modes, and do they affect certification or
licensing?

Use of computers in safety vs. nonsafety systems.

Does the use of computers change the basis for certification procedures at the system
level?

Should restrictions be imposed on the safety or safety-related functions that can be
allocated to computers vs. operators or analog devices?

What should be the limits of the USNRC regulatory activities?

How does the USNRC determine whether safety value has been added or reduced?

Should the certification basis for computers and software be different from that for
the analog devices they replace?

Does certification of product imply imposition of process?

How can the USNRC determine whether safety or reliability has been degraded
when we retrofit computers into existing designs?

How should version control be managed? Is this a USNRC concern?

Safety/control systems separation vs. analog.

Lack of understanding of design basis.

Safety vs. nonsafety systems.

Digital value added (e.g., accident diagnosis and management).

Regulatory constraints.

Short half-life of the technology.

_ ___· __· Ii

Appendix B Development of the NRC List of Digital l&C Issues 97

ADEQUACY OF TECHNICAL INFRASTRUCTURE

How should the USNRC deal with the rapid changes in technology?

Lack of strategic plan for the USNRC research program.

Other industry experience as part of the USNRC technical basis.

Appendix C Sample "Completeness Criteria" for
Requirements

(From Leveson's Safewarelo)

1. A single occurrence of a given stimulus or trigger must produce a single output, and the output must
not be produced without the trigger.

2. The system, software, interlocks, variables, and clocks must start in a safe state and must be initialized
and updated to the proper status at startup and after shutdowns or other such interruptions of normal
operation.

3. Software behavior must be specified for similar off-normal situations (e.g., inputs received before
startup or after shutdown).

4. Input responses and maximum times for input arrival must be specified for all states (including
indeterminate ones).

5. Paths from fail-safe states must be specified, and time in reduced-function states must be minimized.

6. All sensor information should be used; legal values never reached may indicate specification
incompleteness.

7. Every state must have behaviors defined for every possible input and must have a finite number of
output behaviors, and the behavior at any particular time should be deterministic.

8. Response to excessive inputs (load violations) must be specified, and if it involves performance
degradation, the degradation must be smooth and predictable.

9. Safety-critical outputs must be checked for reasonableness and hazardous values or timing.

10. Inputs which specify outputs must only be used for a specified time before they must be updated.

11. All specified states must be reachable from the initial state, and states should not prohibit production
of later required outputs.

12. There should be multiple ways to reach safe states, and multiple preventative measures to impede
reaching hazardous states.

13. All hazardous states must have one or more paths to safe (or at least minimum-risk) states.

14. There are also a variety of more specific suggestions on such topics as data, timing, the human-
computer interface, and other related issues.

100

Appendix D Lutz's "Safety Checklist"

(From Lutz." The first ten items refer to interface issues, the last six to robustness.)

1. Is the software's response to out-of-range values specified for every input?

2. Is the software's response to not receiving an expected input specified? (That is, are time-outs
provided?) Does the software specify the length of the time-out, when to start counting the time-out,
and the latency of the time-out (the point past which the receipt of new inputs cannot change the
output result, even if they arrive before the actual output)?

3. If input arrives when it shouldn't, is a response specified?

4. On a given input, will the software always follow the same path through the code (that is, is the
software's behavior deterministic)?

5. Is each input bounded in time? That is, does the specification include the earliest time at which the
input will be accepted and the latest time at which the data will be considered valid (to avoid making
control decisions based on obsolete data)?

6. Is a minimum and maximum arrival rate specified for each input (for example, a capacity limit on
interrupts signaling an input)? For each communication path? Are checks performed in the software
to avoid signal saturation?

7. If interrupts are masked or disabled, can events be lost?

8. Can any output be produced faster than it can be used (absorbed) by the interfacing module? Is
overload behavior specified?

9. Is all data output to the buses from the sensors used by the software? If not, it is likely that some
required function has been omitted from the specification.

10. Can input that is received before startup, while off-line, or after shutdown influence the software's
startup behavior? For example, are the values of any counters, timers, or signals retained in software
or hardware during shutdown? If so, is the earliest or most-recent value retained?

11. In cases where performance degradation is the chosen error response, is the degradation predictable
(for example, lower accuracy, longer response time)?

12. Are there sufficient delays incorporated into the error-recovery responses, e.g., to avoid returning to
the normal state too quickly?

13. Are feedback loops (including echoes) specified, where appropriate, to compare the actual effects of
outputs on the system with the predicted effects?

14. Are all modes and modules of the specified software reachable (used in some path through the code)?
If not, the specification may include superfluous items.

101

102 Appendix D Lutz's Safety Checklist

15. If a hazards analysis has been done, does every path from a hazardous state (a failure-mode) lead to a
low-risk state?

16. Are the inputs identified which, if not received (for example, due to sensor failure), can lead to a
hazardous state or can prevent recovery (single-point failures)?

Two questions have been suggested for addition to the checklist. One of them deals with data

consistency (" Are checks for consistent data performed before control decisions are made based on that

data?"); the other deals with generic structures ("Are generic structures used whenever appropriate to

restrict the number of possible hazardous modes and states?").

Appendix E Sample Guidance from BTP-14

This appendix provides summaries of some of the guidance given in BTP-14. There are examples

from each of the analysis phases (planning, implementation, and design outputs).

Planning phase:

* Software Quality Assurance Plan -- An appropriate outline for this document can be
found in IEEE Std 730.1, "Standard for Software Quality Assurance Plans." The
document should conform to the requirements of 10 CFR 50, Appendix B and
ASME Std NQA-1-Part 11.2.7. The SQAP should contain descriptions of the
following:

> The software quality assurance (QA) management method (including QA
tasks and responsibilities)

> Documents subject to software QA oversight

> The problem reporting, tracking, and resolving process

> Any special software tools and methods that will be used to support the
software QA effort

> The provisions used to ensure that software provided by suppliers will meet
established project requirements

> The methods used for software QA records collection, maintenance, and
retention.

> The methods and procedures used to identify, assess, monitor, and control
areas of risk (especially if safety-related)

> All required review plans, specifications, and procedures, including review
documentation requirements, evaluation criteria, error reporting, and anomaly
resolution procedures (see Reg. Guide 1.1yy and IEEE Std 1028 for guidance
on the review and audit process)

* Software Safety Plan -- An appropriate format for this plan is found in IEEE Std
1228, "Standard for Software Safety Plans." It should contain the following:

> A description of the software safety organization and a designated safety
officer with responsibility for the required software safety qualities and
authority to enforce the safety requirements in the specification, design, and
implementation of the software

> A description of software safety activity management within the development
organization, including responsibilities, resource requirements, staff
qualifications and training, life cycle software safety actions, documentation

103

requirements, software safety program records, safety requirements on
software quality assurance and configuration management, software safety
tool support, and actions for previously developed or purchased software

> A requirement that a safety analysis be performed and documented on each
major design document, requirement, design description, and source code, and
that hazards (including ACEs) and hazard reduction efforts be analyzed and
documented

> A requirement that the safety organization be authorized to reject the re-use of
existing software or tools if the tools (or use of them) cannot be shown to be
adequately safe

> A description of safety-related tests not included in the software V&V plan

* Software Verification and Validation Plan -- An appropriate format for this plan is
found in Reg. Guide l.lyy and ANSI/IEEE Std 1012. It should contain
descriptions of the following:

> The software V&V organization, including staff capabilities, reporting
channels, organizational interfaces, and training requirements

> The responsibilities for executing each V&V task, approval authority for
them, and personnel assignments to cover them

> The degree of independence between the development and V&V organizations

> The management of the V&V effort, including reporting procedures,
management reviews and audits, methods of carrying out the different V&V
activities, completion criteria for the V&V activities, and methods for
resolving discrepancies and anomalies

> The V&V activity schedule and required resources, with justifications to show
that the schedule of V&V activities is sufficient to ensure the software system
safety

> All required testing plans, specifications, procedures, and cases (including
unit, integration (subsystem), system, and acceptance testing), as well as test
documentation requirements, evaluation criteria, error reporting, and anomaly
resolution procedures (guidance on test documentation is found in Reg. Guide
1.vy and IEEE Std 829, and guidance on software unit testing is found in
Reg. Guide 1.1xx and ANSI/IEEE Std 1008)

> V&V reporting requirements, including personnel involved, procedures, and
results, evaluation criteria, error reporting, and anomaly procedures

> All tools and methods to be used in the V&V tasks

Implementation phase:

* V&V activities should be summarized for each activity group and should address
each requirement, design element, code element, review, and test.

104 Appendix E Sample Guidance from BTP-14

Appendix E Sample Guidance from BTP-14

* V&V documentation should confirm that each of the design elements above
satisfies all of the functional and software development process characteristics
(described earlier in this thesis).

* Problems identified by the verification effort should be documented along with
actions to take and actions taken in response to them.

* A traceability matrix should be created that:

> Shows the traceability between the system level requirements and one or more
SRS requirements

> Can be extended to design, implementation, and validation and updated after
each life cycle activity group

Integration V&V activities should have, in part, the following attributes:

> All required unit and subsystem tests should be completed successfully and
anomalies or errors found should be resolved and documented.

> Final integration tests should be completed and documented.

* Software validation activities should have the following attributes:

> There should be tests (with defined test setup, input data requirements, output
data expectations, completion time, and acceptance criteria) for each SRS
requirement.

> The result of each test should clearly show that the associated requirement has
been met [emphasis added].

> Correction and re-test procedures should be included to handle errors and
anomalies.

> A final report should be made summarizing problems, errors, and corrective
actions. " The report should contain a statement that the validation testing was
successful and that the software tested met all of the requirements of the
SRS."

* Installation activities should have, in part, the following attributes:

> The test configuration, required inputs, expected outputs, test execution steps,
acceptance criteria, problem identification, and required problem mitigation or
elimination actions should be documented.

> Installation problems and their resolution should be documented.

> An acceptance test report should be prepared and "should contain a statement
that the plan was successfully executed, and the system is ready for
operation." It should also demonstrate that the system "operates correctly..."

105

Design Outputs:
* Software Requirements Specification -- A proper format for this can be found in

Reg. Guide 1.1ww and IEEE Std 830. Some of the qualities the SRS should have
and what they entail are:

> Functionality -- ".....Functions should be specified in terms of inputs to the
function, transformations to be carried out by the function, and outputs
generated by the function."

> Safety -- ".....the software functions, operating procedures, input, and output
[must] be classified according to their importance to safety. Requirements
important to safety should be identified as such in the SRS. The
identification.....should include safety analysis report requirements, as well as
abnormal conditions and events as described in Reg. Guide 1.152."

> Completeness -- ".....all actions required of the computer system be fully
described for all operating modes and all possible values of input variables
(including anomalous values).....should describe any actions that the software
is prohibited from executing. The operational environment.....should be
described. All variables..... the software must monitor and control shall be
fully specified. Functional requirements should describe (1) how each
function is initiated; (2) the input and output variables required of the
function; (3) the task sequences, actions, and events required to carry out the
function; and (4) the termination conditions and system status at the
conclusion of the function. User interfaces should be fully specified for each
category of user."

> Style -- ".....requires that the contents of the SRS be understandable."

* Code Listings -- These should exhibit, in part, the following characteristics:

> Robustness -- ".....corrupted data will not cause the safety system to fail. Data
corruption should be avoided."

> Consistency -- (of variable names, types, locations, array sizes, etc.) -- "The
code should use mathematical models, algorithms, and numerical techniques
described in or derived from the SDS [Software Design Description]."

System Build Documents -- Among other characteristics, they should exhibit
completeness, which "requires that all build procedures be fully specified' and that
the "documents should include all required software units, including code and data,
that are part of the build."

106 Appendix E Sample Guidance from BTP-14

Appendix F Sample Guidance from SRP Section 7.0

Section 7.0 of the Standard Review Plan (SRP), an overview of the review process for digital I&C

systems, briefly discusses guidelines for evaluating design certifications, construction permit applications,

operating or combined license applications, and license amendments or topical reports. For design

certifications and construction permit applications, these guidelines include evaluations of the following

review points:

* For the system concept:

> "The overall I&C system design's relationship to both the functions required
[by] 10 CFR 50 and the functions required to support the assumptions of the
plant accident analysis. (See Section 7.1)"

> "The adequacy of any research and development plan necessary to resolve
any outstanding questions concerning the design of systems or components."

> "Compliance with the technically relevant portions of 10 CFR 50. (See
Section 7.1)"

> "Proposed resolution of technically relevant unresolved safety issues [USIs]
and medium- and high-priority generic safety issues [GSIs] identified more
than six months prior to the application. (See SRP Chapter 20)."

* For system requirements:

> "Principal design criteria with respect to the guidance of 10 CFR 50.55a(h)
(ANSI/IEEE Std 279-1971) and 10 CFR 50, Appendix A. (See Section 7.1.)

> "The design bases and the relationship of the design bases to the principle
design criteria. (See Sections 7.2 through 7.9.)"

> (There is additional guidance for applications under 10 CFR 52)

* For system design:

> "The key characteristics, performance requirements, general arrangements,
and materials of construction of the systems to confirm that there is reasonable
assurance the final design will conform to the design bases with adequate
margin for safety. (See Sections 7.2 through 7.9)"

> "The identification of instrumentation and control functions and variables to
be probable subjects of technical specifications for the facility. (See Sections
7.2 through 7.9)"

> "Proposed technical specifications."

107

Appendix F Sample Guidance from SRP Section 7.0

> "The applicant/licensee's analysis and technical justification to show that the
instrumentation and control system design, including the underlying design
bases and performance requirements, can perform appropriate safety
functions."

For operating and combined license (CL) applications (which generally have already passed the

review criteria above), the guidelines cover the following topics:

* For hardware and software requirements, detailed design, fabrication, test, and
integration evaluation:

> "Implementation of development plans. (See Appendix 7.0-A.)"

> "Conformance of design outputs with system requirements. (See Sections
7.2-7.9 and Appendix 7.0-A.)"

> " Evidence of design process characteristics in design outputs. (See Appendix
7.0-A.)"

> "The description and evaluation of the results of the applicant/licensee's
research and development to demonstrate that any safety questions identified
at the [construction permit] stage have been resolved. (See Section 7.2
through 7.9 and Appendix 7.0-A.)"

* For the system validation evaluation

> "The applicant/licensee's testing, analysis, and technical justification to show
that I&C system design, including the underlying design bases and
performance requirements, can perform appropriate safety functions. (See
Section 7.2 through 7.9 and Appendix 7.0-A.)"

> (For combined licenses only) "The applicant/licensee's demonstration of
compliance with the interface requirements, for applications referencing a
certified standard design."

> (For combined licenses only) "ITAAC [Inspections, Tests, Analyses, and
Acceptance Criteria] proposed to provide reasonable assurance that, if the
inspections, tests, and analyses are performed, the acceptance criteria met, and
a plant is built according to the design, then the plant will operate in
accordance with the design certification. (Applications that reference a
certified standard design must apply the certified design ITAAC to those
portions of the facility covered under the DC.) (See SRP Chapter 14.)

* For the installation, operations, and maintenance evaluation

> "Site visit. (See Appendix 7-B.)"

> (For combined licenses only) "Implementation of ITAAC. (See SRP Chapter
14.)"

108

Appendix F Sample Guidance from SRP Section 7.0 109

The guidelines for license amendments and topical reports vary based on their particular content,

but any or all of the above points may be applicable.

110

Appendix G Digital Issues Discussed in SRP Section 7.1

The following is a discussion of what guidance is given in relation to the seven digital safety

issues considered to be of particular concern by SRP Section 7.1

1. In relation to electromagnetic capability, the reviewer (or designer) is referred to
EPRI TR [Topical Report] -102323, "Guidelines for Electromagnetic Interference
Testing in Power Plants" and to the guidelines concerning lightning in NFPA Std
78 and ANSI/IEEE Std 665.

2. Requirements for computer system quality and reliability come from IEEE 279,
GDC 1, GDC 21, GDC 29, and 10 CFR 50 Appendix B ("Quality Assurance
Criteria for Nuclear Power Plants and Fuel Reprocessing Plants"). This area is
broken into five categories:

a) Software development and hardware/software integration involves performing
system integration with a "well-structured and well-executed software
engineering process" -- the user is referred to the related requirements of 10
CFR Appendix B, ASME Std NQA-2a Part 2.7, Reg. Guide 1.1zz (on digital
safety system software life cycles), and the software characteristics of BTP-14
(at which point we seem to have come full circle, as we started with BTP-14,
which led us to this document, which leads us back to BTP-14!).

b) The section on qualification of existing commercial computers (including pre-
existing software products) refers the user to guidance on an acceptable way of
doing such a qualification (possibly with the aid of engineering judgment) in
IEEE Std 7-4.3.2 Section 5.3.2, EPRI TR-106439, NUREG/CR-6421, and
BTP-18.

c) Software tools requirements are referenced to IEEE Std 7-4.3.2 Section 5.3.3,
the EPRI TR-106439 qualification process, and the BTP-14 development
process.

d) Verification and validation requirements are referenced to IEEE Std 7-4.3.2
Section 5.3.4, the software engineering process described in BTP-14, and Reg.
Guides 1.1yy, 1.1vv, and 1.1xx (on V&V, test documentation, and unit
testing, respectively).

e) Software configuration management requirements are referenced to IEEE Std
7-4.3.2 Section 5.3.5, ASME NQA-2a Part 2.7, BTP-14, and Reg. Guide
1.1uu.

3. Equipment qualification involves the I&C system being able to withstand both
normal and adverse environmental conditions. Guidance to fulfill the requirements
on this topic (from 10 CFR Appendix A, GDC 4, 10 CFR 50.49, and IEEE Std 279
Sections 3.7, 4.4, and 4.5) can be found in Reg. Guide 1.89, which endorses IEEE
Std 323.

111

Appendix G Digital Issues Discussed in SRP Section 7.1

4. System integrity requirements for functional capabilities under various extremes (of
the environment, power supply, accidents, etc.) come from IEEE Std 279 Section
4.5, GDC 21, and IEEE Std 603 Section 5.5. This topic includes two subtopics:

a) Design for computer integrity requirements from IEEE Std 7-4.3.2 Section
5.5.1 (with guidance in BTP-21) involve using designs and architectures that
support predictable real-time performance within design requirements.

b) Design for test and calibration requirements that support failure detection
(when fail-safe designs are not possible) come from IEEE Std 603 Section 5.7
with guidance in BTP-17.

5. Communications independence requirements for independence among redundant
protection system channels and among safety and non-safety systems come from
IEEE Std 279 Sections 4.6 and 4.7, IEEE Std 603 Section 5.6, GDC 21, GDC 22,
and GDC 24. IEEE 7-4.3.2 (especially Annex G) offers guidance on creating such
designs.

6. Reliability requirements can address software and hardware either alone, together
but as separate entities, or combined as a system. Basic reliability criteria are found
in GDC 21, IEEE Std 279, and IEEE Std 603. Also, IEEE Std 7-4.3.2 Section 5.15
mentions specifically that proof of meeting system-level reliability requirements
must account for software reliability. Because software errors do not follow
random failure behavior like hardware errors, quantitative reliability goals and data
are not supported as a sole criterion of quality, only as supplementary information
to increase confidence (from Reg. Guide 1.152, which endorses IEEE Std 7-4.3.2).

7. Requirements for defense against common-mode failures come from the Staff
Requirements Memorandum on SECY-93-087, with guidance from BTP-19.

112

Appendix H Sample Guidance from SRP Appendix 7.1-A

The following are examples of the guidance given in Appendix 7.1-A. Brief descriptions of the

criteria are followed by applicability statements (how the criteria apply to I&C reviews) and review

methods (how to ensure the design conforms to the criteria).

Requirements from 10 CFR 50 & 52

1. 50.55a(a) (1) Quality Standards for Systems Important to Safety -- "Structures,
systems, and components must be designed, fabricated, erected, constructed, tested,
and inspected to quality standards commensurate with the importance of the safety
function to be performed." -- This applies to all I&C systems. The review methods
simply say "the licensee should commit to conformance with the regulatory guides
and standards referenced in Sections 7.1 through 7.9 and Chapter 7 Appendix A."

2. 52.47(a)(2) Level of Detail -- "The application must contain a level of detail
sufficient to.....judge the.....licensee's proposed means of assuring that construction
conforms to the design and to reach a final conclusion on all safety
questions.....[and] must include performance requirements and design information
sufficiently detailed to permit the preparation of acceptance and inspection
requirements by the NRC....." -- This applies to "all I&C systems that are part of
applications for design certification under 10 CFR 52, Subpart B, or combined
licenses under 10 CFR 52, Subpart C." The review methods information says that
"sufficient information for an NRC safety determination should be provided for
each I&C system," and that BTP-16 can aid in determining what is sufficient for
application under 10 CFR 52, Subpart B.

General Design Criteria (from 10 CFR 50 Appendix A)

1. Criterion 1 -- Quality Standards and Records -- "Structures, systems, and
components important to safety shall be designed, fabricated, erected, and tested to
quality standards commensurate with the importance of the safety functions to be
performed.....A quality assurance program shall be established and implemented in
order to provide adequate assurance that these structures, systems, and components
will satisfactorily perform their safety functions....." -- This applies to "all I&C
systems and components important to safety." The review methods information
says that the applicable regulatory guides and endorsed codes and standards (all of
which are identified in Section 3 of this appendix) should be selected as part of the
process of SRP Section 7.1.

2. Criterion 22 -- Protection System Independence -- "The protection system shall be
designed to assure that the effects of natural phenomena and of normal operating,
maintenance, testing, and postulated accident conditions on redundant channels do
not result in loss of the protection function.....Design techniques, such as functional
diversity or diversity in.....design and.....operation, shall be used to the extent
practical....." -- This applies to protection systems (RTS, ESFAS, and supporting

113

Appendix G Digital Issues Discussed in SRP Section 7.1

data communication systems). The review methods information refers the user to a
wide array of other documents (depending on the particular topic): Reg. Guide 1.75,
IEEE Standards 384 and 7-4.3.2, BTPs 11 and 19, SRP Sections 7.2, 7.3, and 7.9,
Appendix 7.1-B items 3 and 7, and Appendix 7.1-C items 6, 11, and 24.

Regulatory Guides and Branch Technical Positions

1. Regulatory Guide 1. 152 (endorses IEEE 7-4.3.2) -- This applies to all I&C safety
systems and supporting data communication systems. The review methods
information says only that this Reg. Guide allows for evaluation of conformance
with GDC 21 and that "additional guidance" to "supplement" it is provided by
BTPs 14, 17, 18, 19, and 21.

2. Regulatory Guide 1.1uu-l.lzz -- All of these apply to all I&C systems and
components important to safety. The review methods information is similar for all
of them. As an example, for Reg. Guide 1.1yy (on V&V) the user is referred to 10
CFR 50.55a(a)(1), 50.55a(h), GDC 1, and Criteria I, II, III, XI, and XVIII of 10
CFR Appendix B. The reader is also referred to ANSI/IEEE Std 1012 ("IEEE
Standard for Software Verification and Validation Plans") for guidance on planning
the V&V of safety system software and to IEEE Std 1028 ("IEEE Standard for
Software Reviews and Audits") for acceptable approaches for carrying out software
reviews, inspections, walkthroughs, and audits. In addition, the user is referred back
to BTP-14.

3. Branch Technical Positions -- Their applicability is as noted in them individually.
The only review methods information is that "the BTPs provide bases for
evaluating specific review areas."

114

Appendix I Guidance Topics from SRP Appendix 7.1-B

SRP Appendix 7.1-B summarizes guidance from IEEE 279 Sections 3 and 4. IEEE Section 3

addresses such topics as:

* Completeness in addressing GDC 20 and describing the functional requirements
and operational environment for the I&C system; also consistency, correctness,
traceability, umambiguity, and verifiability (the definitions for these terms are of
the same type as those in BTP-14)

* Identification of all conditions (and corresponding monitored variables) that require
protective action (and identifying where to measure those variables)

* Identification of operational limits, margins between them, setpoints (where unsafe
conditions begin), and limits requiring protective action

* Identification of transient and steady-state conditions for the energy supply and the
environment during normal, abnormal, and accident conditions, as well as
identification of and provisions for the initiators that could damage the protective
system or change the environment

* Identification of (digital I&C) system performance requirements (response times,
accuracy, variable monitoring rates, etc.) to allow for completion of protective
actions

IEEE 279 Section 4 addresses more specific topics, such as:

* General functional requirements -- " The.....analysis should show that the protection
system has been qualified to demonstrate that the performance requirements are
met." This includes proper software/hardware task allocation, "deterministic and
known" real-time performance, and automatic and manual initiation capability for
protective functions. "The evaluation of precision is addressed to the extent that
setpoint, margins, errors, and response times are factored into the analysis."
".....acceptance of system reliability is based on deterministic criteria for both the
hardware and software rather than on quantitative reliability goals. the
methods to be used to confirm that these deterministic criteria have been met
[should be discussed]. " The use of quantitative measures to increase confidence in
reliability but not as a sole means of reliability determination is discussed. "The
applicant.....should justify that the degree of redundancy, diversity, testability, and
quality.....is adequate to achieve functional reliability commensurate with the safety
functions to be performed." The user is referenced back to BTP- 14 and Reg. Guide
1.152 for guidance on designing for and determining software reliability. "The
assessment of reliability should evaluate the effect of possible hardware and
software failures and the design features provided to prevent or limit the effects of
these failures." Some examples of failure types to look for are given with a
reference to NUREG/CR-6101 for more information. [Emphasis added.]

115

Appendix I Guidance Topics from SRP Appendix 7.1-B

Single-failure criterion -- No single protection system failure should prevent
necessary protective actions under any circumstances (i.e., defense-in-depth).

* Quality of components and modules -- The appropriate quality standards should be
followed for the protection system (10 CFR 50 Appendix B), including original and
pre-existing or COTS software (BTP-14; EPRI TR-106439 and NUREG/CR-6421).

* Capability for test and calibration -- Testing should simulate as realistically as
possible the required performance of the protection system and should test both
automatic and manual circuitry.

* Multiple setpoints -- The more restrictive setpoint should be used automatically
when required.

* Completion ofa protective action once it is initiated -- Features should be provided
to ensure this happens.

* Manual initiation -- Design for this capability should be coordinated with the
guidance of Reg. Guide 1.62 and of the Human Factors Assessment Branch of the
review.

* Access to setpoint adjustments, calibrations, and test points -- This should be
properly restricted (for either physical or electronic access).

* System repair -- Guidance on self-diagnostics is found in BTP-17.

* Identification -- In regard to software, this involves proper configuration
management according to Reg. Guide 1. luu and IEEE Std 828.

116

Appendix J Digital Issues Discussed in SRP Appendix 7.0-A

This appendix summarizes the guidance provided by SRP Appendix 7.0-A on seven areas of

clarification for digital I&C reviews. These areas are as follows:

1. Adequacy of design criteria (as evidenced by a commitment to Regulatory (Reg.)
Guide 1.152, "Criteria for Digital Computers in Safety Systems of Nuclear Power
Plants," which endorses IEEE 7-4.3.2, "IEEE Standard for Digital Computers in
Safety Systems of Nuclear Power Generating Stations," and a set of software
engineering standards such as Reg. Guides 1.1uu-l.lzz (on configuration
management, test documentation, requirements specification, unit testing,
V&V/reviews/ audits, and life cycle processes, respectively) sufficient to describe
the software development process).

2. Identification of review topics based on the safety significance of the system being
considered.

3. Defense-in-depth & diversity (D-in-D&D) in compliance with BTP-19 and the Staff
Requirements Memorandum to SECY-93-087.

4. Life cycle process planning as addressed by BTP-14, Section B.2.1 (e.g. check that
plant I&C system requirements are correctly decomposed to the digital system
level; that the development process is specified and documented, yielding a high
degree of confidence that functional requirements are implemented; that the
development process and products can be inspected; and that the installed system
functions as designed based on validation and integration tests, acceptance tests,
and on-site pre-operational and start-up functional tests).

5. Adequacy of system functional requirements (requirements from IEEE 603, "IEEE
Standard Criteria for Safety Systems for Nuclear Power Generating Stations, and
General Design Criteria [GDC] from 10 CFR 50 are complicated by the addition of
digital computers to a system, because digital systems behave differently than
analog systems in the areas of equipment qualification, real-time performance, on-
line and periodic testing, and communications independence).

6. Adequacy of life cycle process implementation per BTP-14, Section B.2.2.

7. Adequacy of design outputs per BTP-14, Section B.2.3 (as well as Appendix 7-B
and BTPs 17 and 21). This is accomplished by inspection of a "representative
sample of the design outputs" [emphasis added] as well as V&V analyses and test
reports to confirm proper implementation of functional characteristics. An
accompanying confirmation of the development process characteristics builds
confidence that the results of the functional inspections are indicative of all parts of
the development process and products. Conclusions of these inspections are further
strengthened by positive reviews of the development plans and process audits.

117

118

Appendix K BTP-14 Software Characteristic Definitions

This appendix contains a summary of the definitions provided by BTP-14 for the two different

types of software characteristics (functional and development process).

Functional characteristics:

1. Accuracy -- degree of freedom from error in input, calculations, and output
2. Functionality -- the necessary software operations
3. Reliability -- degree of operation without failure
4. Robustness -- ability to function with incorrect inputs and/or a stressful environment
5. Safety -- degree of operation without catastrophic failure
6. Security -- ability to prevent unauthorized intrusions
7. Timing -- ability of software to meet timing goals within hardware constraints

Development process characteristics:

1. Completeness -- full implementation of required software functions
2. Consistency -- no contradictions (within or between software components or

documents)
3. Correctness -- no faults in specifications, design, or implementation
4. Style -- design output form/structure (i.e., understandability)
5. Traceability -- degree to which you can see specifications reflected in design

outputs and vice versa
6. Unambiguity -- only one interpretation
7. Verifiability -- ability to facilitate criteria and tests to see if the criteria have been

met

119

120

Appendix L Safety Impact of Software Qualities from a
Regulator Viewpoint

(From NUREG-CR/6421, p. 47)

Impact on Operational Safety

Primary Impact Secondary Impact Little Impact

External (Functional) Accuracy User Friendliness
Qualities Acceptability

Availability
Completeness
Correctness
Interface Consistency
Performance
(Efficiency, Timing)

Preciseness
Reliability
Robustness
Security
Usability

Internal (Engineering) Integrity Clarity Accountability
Qualities Internal Consistency Interoperability Adaptability

Testability Simplicity Generality
Validity Understandability Inexpensiveness

Manageability
Modularity
Self-Descriptiveness
Structuredness
Uniformity

Future Qualities Accessibility
Augmentability
Convertibility
Extendibility
Maintainability
Modifiability
Portability
Reparability
Reusability
Serviceability

Noe that qualities associated with modifications that might be made in the opertions phase have been listed in the 'Litle Impaci" category
becase an assumption is made hem that, in typical safety-related reactor applications, changes will be infrequent. To the etent that such
software might be used in an environment with regularly changing requirements, these qualities assunme momr importance. It should also be noted
that, in same cases, listed qualities have essentially the same meaning but may have slightly different interpretations depending on the contmxt
Since they all appear in the literature, no attempt has been made to group them. They are, however, categorized consistently.

122

Appendix M Testing Strategies Appropriate to Software
Qualities

(From NUREG-CR/6421, p. 48)

Software Quality Static Structural Functional Statistical Stress Testing
Analysis Testing Testing Testing

Acceptability X O
Accuracy 0 X X
Availability X X

Clarity X

Completeness X X 0

Correctness X X X X

Integrity 0 X X

Interface Consistency X X

Internal Consistency X X 0

Interoperability X X

Performance (efficiency 0 X X
& timing)
Preciseness 0 X X

Reliability X

Robustness 0 X X

Security 0 X X

Simplicity X

Testability X

Understandability X

Usability X X
User Friendliness X

Validity X X

Regression Testing O X O X

X = Strategy should be used for the specified quality
O = Strategy may be used for the specified quality

123

124

Appendix N Sample Prerequisites for and Extent of Testing

(From NUREG-CR/6421, pp. 53-54)

125

Strategy: Minimum Information Suggested Extent of
Technique Goal Required Testing/Analysis

Static:

Inspection Examine architectural design Software requirements; One or more inspections. Group
(10) with requirements as reference architectural design decision on re-inspection based on

inspection results.
Inspection Examine detailed design with Architectural & One or more inspections. Group
(I1) architectural design as detailed design decision on re-inspection based on

reference inspection results.
Inspection Examine source code with Source code & detailed One or more inspections. Group
(12) detailed design as reference design decision on re-inspection based on

inspection results.
Inspection Check code for specific Source code One or more inspections. Group
(other) qualities, properties, or decision on re-inspection based on

standards adherence (can be inspection results.
part ofI2)

Inspection Verify allocation of software System requirements & One or more inspections. Group
(other) requirements software requirements decision on re-inspection based on

inspection results.
Inspection Check application-specific System & software One or more inspections. Group
(other) safety requirements safety requirements; decision on re-inspection based on

hazard/risk analyses inspection results.
Desk Verify key algorithms & Source code One pass per revision; continue
checking constructs until no new faults are found.
Automated Produce general/descriptive Source code One pass per revision
structural information; compute metrics
analysis values
Automated Fault detection Source code One pass per revision; continue
structural until no new faults are found.
analysis
Automated Standards violations Source code One pass per revision; continue
structural until no new faults are found.
analysis

Appendix N Sample Prerequisites for and Extent of Testing

Strategy: Minimum Suggested Extent of
Technique Goal Information Required Testing/Analysis

Structural:

Path Verify internal control flow Source code; module Branch coverage
design specification

Loop Verify internal loop controls Source code; module Focus on-loop boundaries
design specification

Data flow Verify data usage Source code; module All-'definition-usage'-pairs
design specification

Domain Verify internal Source code; module Focus on boundaries
(structural) controls/computations over design specification

input domains

Logic Verify internal logic Source code; module All combinations of conditions
(structurtal) (implementation mechanisms) design specification

Functional:

Transaction Verify implementation of Executable, software All transactions
application functions requirements

Domain Verify functional Executable, software Representative domain values
controls/computations over requirements including boundary and illegal
input domains values

Syntax Verify user interface and Executable, software All input/message constructs
message/signal constructs requirements

Logic Verify implementation of the Executable, software All combinations of real-world
logic of the real-world requirements conditions
application

State Verify implementation of Executable, software All states/transitions
.states associated with the real- requirements
world application

Statistical Estimate reliability Executable, software Predetermined reliability target
requirements,
operational profiles

Stress Examine robustness; Executable, software One pass per resource per revision
characterize degradation with requirements per operating mode; sampling of
increasing loads on resources combinations of resource loads

Stress Find breaking points; check Executable, software Continue testing a resource until
recovery mechanisms requirements failure & recovery modes are well

understood

Regression Verify that changes have not Various input needed Continue until no new failures are
impacted the software in depending on test detected
unexpected ways strategies used in the

regression test suite

126

Appendix O Typical Testing Strategies for Investigating
Software Qualities

(From NUREG-CR/6421, pp. 55-57)

Software Applicable Testing
Quality Also see: Question to be Answered Strategies

Acceptability Validity Are real-world events handled properly? Functional (TDL,Se)
How does the product perform in realistic, Stress
heavy load situations?

Accuracy Preciseness Are internal calculations accurate? Structural (DF)
Are results accurate? Functional (T)
Is there confidence that important calculations Static analysis (I,DC)
are accurate?

Availability Reliability Will the software be unavailable due to poor Statistical
reliability?
Will functions be available during heavy load Stress
situations?

Clarity Understand- Is the implementation sufficiently clear to a Static analysis (IDC)
ability knowledgeable reviewer?

Completeness Are all requirements expressed in the design? Static analysis (I)
Are all design elements implemented in the Static analysis (I)
code?

Are internals complete? (no missing logic, Static analysis (ASA,J)
undefined variables, etc.)
Are all aspects of real-world transactions Functional (T)
implemented?
Are boundary values and all combinations of Functional (D,L,Se)
conditions accounted for?
Are recovery mechanisms implemented? Stress

Correctness Does the product have statically detectable Static analysis (All)
faults?
Is the implementation/modification structurally Structural (All)
correct?
Is the implementation/modification functionally Functional (All)
correct?
Does the product perform correctly in heavy Stress
load situations?
Have modifications had unintended effects on Regression
the behavior of the software?

Integrity Security Are access control schemes appropriate? Static analysis (I)
Are access controls and internal protections Structural (All)
correctly implemented?
Is end-user access management correct? Functional CT)
Are access-related boundary values, logic, Functional (D,Sx,L,Se)
states, & syntax correctly implemented?

Legend:
ASA Automated Srucural Analysis
D Domain Testing
ID Desk Checking
IF Data Flow Testing

Inspection
Logic Testing
Loop Testing 127
Path Testing

State Testing
Syntax Testing
Transaction Testing

Appendix 0 Typical Testing Strategies for Investigating Software Qualities

Software Applicable Testing
Quality Also see: Question to be Answered Strategies

Interface Internal Have interface standards & style been followed? Static analysis (ASAI)
Consistency Consistency

Is parameter & variable usage consistent across Static analysis (ASAIJ)
interfaces?
Is transaction data handled consistently among Functional (T)
modules?
Are boundary conditions treated consistently? Functional (D)
Is message syntax consistent? Functional (Sx)
Is decision logic consistent among modules? Functional (L)
Are system states consistently treated among Functional (Se)
modules?

Internal Interface Have standards & style been followed? Static analysis (ASAI)
Consistency Consistency

Is parameter & variable usage consistent? Static analysis (ASA,I)
Are conditions handled consistently with respect Structural (P, LpD,L)
to control flows?

Are there inconsistencies in data handling? Structural (DF)
(typing, mixed mode, I/O compatibilities, etc.)
Are real-world events and logic handled Functional (L, Se)
consistently?

Inter- Does the architecture facilitate interoperability? Static analysis (I)
operability

Do modules used in transactions exchange & Functional (T,D,Se)
use information properly?

Performance Is intra-module timing within specification? Structural (P,Lp)
Are transactions performed within required Functional (T)
times?

Are timing requirements met when boundary Functional (D)
values are input?
Is system performance adequate under heavy Stress
load conditions?

Preciseness Accuracy Will internal representations yield required Static analysis (DC)
precision?

Are internal calculations sufficiently exact? Structural (DF)

Are real-world transaction results sufficiently Functional (T)
exact?

Reliability Availability What is the probability of running without Statistical
failure for a given amount of time?

Legend:
ASA Automated Structural Analysis
D DomainTesting
DC Desk Checking
1CF Data Flow Testing

Inspection
Logic Testing
Loop Testing
Path Testing

Se State Testing
St Syntax Testing
T Transaction Testing

128

Appendix 0 Typical Testing Strategies for Investigating Software Qualities

Software Applicable Testing
Quality Also see: Question to be Answered Strategies

Robustness Has appropriate recovery logic been Static analysis (I)
implemented?
Are poorly specified/invalid transactions Functional (T,Sx)
handled correctly?
Are marginal/illegal inputs handled correctly? Functional (D,Sx)
Are unexpected combinations of Functional (L,Se)
conditions/states handled correctly?
Can the system continue operating outside of Stress
normal operating parameters?

Security Integrity Are access controls properly Static analysis (I)
designed/implemented?
Are access controls consistent with the operating Static analysis (I)
environment?
Are the structural aspects of access control Structural (All)
mechanisms correct?

Security Do access management functions work Functional (T)
(continued) correctly?

Do access management functions work correctly Functional (D,Sx,L,Se)
in the presence of marginal or illegal values and
constructs?

Simplicity Are implementation solutions overly complex? Static analysis (I)
Are complexity-related metric values reasonable Static analysis (ASA,I)
for a given situation?

Testability How can aspects of the software be tested? Static analysis (DC,I)
Understand- Clarity Is the designer/implementer intent clear? Static analysis (DC,I)
ability

Does information characterizing the software Static analysis (ASA,I)
make sense?

Usability User Can the user correctly form, conduct, & Functional (T,D,Sx)
friendliness interpret results of transactions?

Does the user interface design support Static analysis (I)
operational procedures?

User Usability Is the user comfortable in forming, conducting, Functional (T,Sx)
friendliness and interpreting results of transactions?
Validity Acceptability Are requirements traceable? Static analysis (I)

Are implementation solutions appropriate? Static analysis (DC,I)
Is the real world appropriately represented? Functional (All)
Is the implementation/modification structurally Structural (All)
correct?
Is the implementation/modification functionally Functional (All)
correct?

Legend:
ASA Automared Structural Analysis
D Domain Testing
DI Desk Checking
IF Data Flow Testing

Inspection
Logic Testing
Loop Testing
Path Testing

State Testing
Syntax Testing
Transaction Testing

130

Appendix P Human Factors

Human factors (HF) is an important subtopic of the greater issue of software and digital I&C

safety and reliability. The field of HF (in regard to NPP applications) is quite nebulous at this point, so

there was little pertinent literature from which to develop a focused work solely on this topic which could

lead to any substantive conclusions. However, there has certainly been enough exploration of the HF topic

that it should not be glossed over either.

HF factors issues are considered in the BTP-14 software review process, but they do not come

across as integral to the process. There is an HF organization that is separate from the HICB, the

organization that deals with the software issues we have discussed so far (as in BTP-HICB 14). The HF

branch is primarily responsible for evaluating HF issues in the overall scheme of SRP Chapter 7 (the I&C

review process). Their efforts are supposed to be coordinated with those of the HICB (and numerous other

branches), but human factors have too long been relegated to the position of an additional topic in software

design and review. They must be made integral to the process. As mentioned before, many of the

problems with BTP-14 are simply in its organization and presentation rather than in content. Likewise,

BTP-14 does not ignore HF issues, but it needs to incorporate them more directly into its guiding

principles.

Background

"At this time, there does not seem to be an agreed-upon, effective methodology for designers,

owner-operators, maintainers, and regulators to assess the overall impact of computer-based, human-

machine interfaces on human performance in nuclear power plants. What methodology and approach

should be used to assure proper consideration of HF and human-machine interfaces?" P (References for

this Appendix are listed at the end of the appendix as P1 through P12.) The preceding quote comes from a

presentation on the safety and reliability issues of digital instrumentation and control systems in nuclear

power plants by Douglas M. Chapin, Committee Chairman of the National Academy of Sciences group

that was formed to look at such issues. Unfortunately, this statement is a fair summary of the current lack

of understanding and agreement on this topic. A survey of some of the theoretical and experimental

research that has been conducted in this area will show that, at least at this point in time, there are no

"right" or "wrong" answers regarding HF design considerations. There are many different solutions, each

of which hopefully contributes something that brings us closer and closer to an ideal HF-designed system.

The importance of a proper understanding of HF issues from an engineering and design

perspective (e.g., the impact of I&C failures on human error probabilities) can be readily observed in the

relatively recent accidents involving the Therac-25. HF problems in the case of this medical radiation

administration device included the following:P2

* Error messages displayed to the users were cryptic,

* Conveniences added to make the keypunch procedure easier for the operators led
them to carelessly proceed after an error rather than to determine the cause of the
error and start over, and

* Hardware interlocks (from previous Therac designs) designed to prevent
catastrophe if the user set the system up incorrectly were removed in the false
thought that the new software design could accomplish the same task.

Theory and Research

To understand the importance of understanding HF, consider the Therac-25 case and the HF tie-

in. The Therac-25 is a medical device used for chemotherapy administrations. Over twenty separate

incidents with this machine led to a range of injuries in 172 patients (from minor injuries to, in one case,

death). A variety of causes, most revolving around poor HF design issues, were identified.P2

Sheng et al. discuss the concept of " experimental frame," one of three fundamental elements of

an experiment (the other two being the "object" -- either a system or a system model -- and the

generated/collected/ observed "data"). The experimental frame consists of five entities which are

manifested slightly differently in model simulation versus real-world experimentation. These five entities

are: observational variables, input schedules, initialization, termination conditions, and data

collection/compression specifications (see Figure Hi). Each entity has constraints imposed upon it by the

real world (or by the model), so that a model may be valid with respect to some experimental frames but

not to others.

Now, what is the connection between all of this and HF? "Experimental frame" touches on the

issue of context, which is often overlooked in creating the requirements, specifications, and designs for

software. As can be seen in the Therac-25 case, the context and conditions under which software is being

used can be an important factor in determining whether the software will operate reliably or not.

In the case of the Therac-25, it was an unforeseen combination of the following conditions which

led to the radiation overdose incidents:"2

* Poor man-machine interface (MMI) in the form of unclear error messages,

* Operator disregard for error messages,

* Operator impatience,

* Misplaced faith in previous procedures by the operator, and

132 Appendix P Human Factors

* Most importantly, improper application of software technology to replace hardware
interlocks on the Therac-25 (which would have prevented the accident from
occurring in the first place).

It is helpful to look at a cross-section of the work that has been done in the HF area to understand

its current state and to determine what work still needs to be done. There is a lot of lingo used in this field,

and even basic definitions in the HF field are not agreed upon by everyone. Error can be defined as "an

action that fails to meet some implicit or explicit standard of the actor or of an observer." In many models

of error there is either error or no error -- nothing in between. Yet many support the use of degrees of

error, as this is more reflective of real life. An error may or may not lead to an accident (defined as an

"unwanted and unwonted exchange of energy") Classes of errors and error causes are also vague areas,

where the appropriate classification may depend on the particular application. Taxonomies include (among

many others):

* Errors of omission vs. errors of commission,

* Intended errors (mistakes) vs. unintended errors (slips, lapses), and

* Forced errors (tasks greater than capabilities) vs. random errors.

Likewise, there are many different classifications of error causes. These include:

* Capture (where the operator does an unintended sequence of actions almost
automatically before he can catch himself because it is a common sequence),

* Hypothesis verification (looking only for evidence which supports one's
hypothesis), and

* Risk (error) homeostasis (i.e. take riskier actions in safer systems and vice versa so
that the overall risk level stays the same).

Some basic HF issues are addressed in an article by Sheridan entitled "Understanding Human

Error and Aiding Human Diagnostic Behavior in Nuclear Power Plants." He addresses the inherently

contradictory goals and purposes of a reactor operator which make his job so difficult: for example,

protecting the public from dangerous radiation exposure while also avoiding the economic impacts of

shutting the plant down, and following prescribed rules but also being able to think resourcefully if need

be."3 Unfortunately, most simulator training that reactor operators receive addresses situations for which

there are prescribed procedures, but not unanticipated events that call for resourcefulness. The article also

points out that, although many reliability analysts try to treat human error and machine error in the same

manner, there are significant differences between them which must be considered, including:"3

* Defining what constitutes an error (e.g. the action itself or the consequences of the
action? -- In other words, if an error is made but also caught and corrected before
there are any negative consequences, is it officially counted as an error?)

Appendix P Human Factors 133

* Explaining causes of human error

* Classifying types of errors

* Common-mode errors and related follow-on errors (e.g., more errors may be made
once discovering that a redundant system intended to backup a failed system has
also failed)

* Opportunity for error harder to define for humans than for machines (e.g., for a
machine it could just be the number of times a switch was activated)

* Correction of error (humans do correct errors; machines do not)

* Defining criteria for human takeover from automatic systems

* Error data base -- little data for humans; often not conclusive

Various methods have been attempted to model HF and human errors in accident scenarios. One

example is the "dynamic logical analytical methodology" ('DYLAM'), which treats slips and mistakes

deterministically (based on empirical data) and treats lapses stochastically (a more Bayesian probabilistic

method). It is designed more for hardware though, so its stochastic treatment of the human operators is

somewhat weak. Another system, called the "dynamic event tree analysis method" ('DETAM'), is better

at addressing human states and interactions with the rest of the system. The human-related information

that this method incorporates is "diagnosis state" (the operating crew's accident situation assessment),

"quality state" (internal state related to stress and other performance shaping factors), and "planning

state" (based on what procedure the crew is planning). P4

Many studies have been conducted to establish guidelines for properly designing systems with HF

issues in mind, the lowest (most specific) level of these studies focusing on how to create a good human-

computer interface (e.g. the screen display, the mouse, other input devices, etc.).

Sheridan summarizes some recommended strategies for prevent "bad errors." These strategies

include:P3

* Error-preventative designs (e.g., feedback on both immediate actions/errors and
longer time-scale plant state issues)

* Illustrative computer aids and system displays

* Attention to personal and cultural issues affecting operator performance (e.g., in
Europe, a switch is "on" if it is "down" and "off' if it is "up," opposite the
American convention)

* Information redundancy

* "Fail safe" or "fail soft" designs (with built-in mechanisms to prevent catastrophic
failures and to continue operation under degraded conditions)

134 Appendix P Human Factors

* Operator training that encourages self analysis of cognitive errors, coping with new
situations, and maintaining seldom-used skills, and

* Appropriate warnings and alarms.

Sheridan also provides recommendations for control panel displays. These recommendations

include:"

* Consolidating correlated components, signals, and alarms into fewer integrative
displays (with optional access to more detail) to cut down on information overload

* Easy and logical methods to find "hidden" information and bring it to the
viewscreen

* Overview portions of the display with important whole-plant-state conditions

* Adaptive display formats for changing situations, and

* Decision-aiding capabilities, which actually suggest options to the operator.

Situational Awareness, Control, and Operator Aid

There is a lot of debate over just how much automation should be used in the nuclear power plant

control process. This debate stems again from the issue of situational awareness. One experiment in this

area results showed that for low workload situations involving few and/or simple displays, control should

be manual with the operator fully 'in the loop.' However, for high workload events involving complex

displays, automatic control is preferable." A similar experiment reached a conclusion that does not

involve the issue of high or low workload (and the difficulty of defining those terms precisely). It was

found that, since manual control involves selecting and executing manual tasks, and since motor activities

interfere with such processes, heavily manually-intensive scenarios would be controlled more effectively

with automation (than with manual control). Conversely, since automatic control involves perception and

central processing, mentally taxing situations should be controlled manually.P6

A variety of research and experimental work has been done with HF issues in control panel

display design and in design of decision-aiding systems, which are often referred to as "Intelligent

Decision Support Systems" ('IDSS'). IDSS has both advantages and disadvantages. On the positive side,

IDSS can help to correct misdiagnoses and cognitive lockup by continually offering relevant alternative

hypotheses. The IDSS can also help the operator to maintain an accurate system mental model by

providing appropriate parameter information and graphical displays." Human operators tend to focus on a

few select gauges or variables and develop 'tunnel vision' around them. IDSS can help them to follow a

more logical system of display monitoring. Under normal operations, the operator should scan a wide

array of generally uncorrelated variables. As soon as an indication of a problem arises, the operator should

start to monitor variables correlated more closely to the abnormal variable in order to determine a cause or

to find a trend.PS

Appendix P Human Factors 135

These first two functions (correcting misdiagnoses; maintaining a mental model) keep the operator

in the loop so that he does not lose his situational awareness. The benefit of all of this aid is to make the

operator more efficient so that he will be effective in time-critical crises. The foremost drawback of such

diagnostic systems is their potential to do too much and thus to take the operator out of the loop, possibly

causing him to lose his own skills."7

There are many examples of such diagnostic aiding systems from the past few years which shed

some light on what functions prove to be truly useful to reactor operators. One popular option is an

" expert system" based on some type of 'library' of accident scenarios and appropriate responses. Experts

in the field create these "plan libraries" which are then used to guide a reactor operator through an

accident situation by comparing his actions to those stored in the library."'

A unique decision-support experiment relating to control panel design was performed on the MIT

Research Reactor (MITR). Researchers compared displays of various combinations of derivative, current,

and predictive plant state information. This research was based on the notion that people make control

decisions and implement control actions based on a comparison of their anticipation of the system behavior

and the desired system response. The display layouts compared were: 1) current information only (in

numeric form), and (in graphical form) 2) current and derivative [past] information, 3) current and

predictive information, 4) derivative, current, and predictive information, and 5) limited-derivative,

current, and predictive information. (Limited derivative information consists of only a set amount of the

reactor's past power profile rather than the entire profile since startup.) Experimental subjects were asked

to take the reactor from some initial power to a different final power by either moving control rods in or

out or leaving them stationary.P""

Scheme 4 with all three types of information gave the best results, followed closely by the current

and derivative combination (scheme 2). The other three schemes showed significantly worse results. Once

trained on the usage of the predictive information, all of the operators agreed that it was useful, especially

during the final stages of a transient or during a particularly unusual situation. Displays including

predictive information have been suggested for such operations as control of the water level in pressurized

water reactor steam generators and other control situations where the system behaves in a non-linear, time-

delayed, or counter-intuitive manner." °

This system and others like it can lead to a distillation of some of the major points to be

considered in determining the effectiveness of an operator-aiding or expert system. The system must

provide the operator with the necessary process information in such a way that it does not contradict his

own thought and logic process. The operator must be able to trust the expert system and believe that it has

the necessary and sufficient resources to provide competent help. At the more concrete level of the man-

machine interface, the display should be clear and understandable to all of its possible users.P"

136 Appendix P Human Factors

Recent Human Factors Developments

In the U.S., developments involve system upgrades (analog to digital) rather than construction of

entirely digital systems. All operating U.S. plants and many others worldwide have installed the Safety

Parameter Display System (SPDS), which (along with other plant safety-related instruments) helps the

control room crew to determine plant safety status during any plant condition. The SPDS presents the

status of various critical safety functions symbolically and graphically. The SPDS, since it is so important

to plant safety, is isolated from other parts of the plant's computer system to increase its reliability (i.e. so

there is less chance of some type of common-mode failure). Because the SPDS systems have been

backfitted into U.S. plants, they are not blended into the control room from the design stage, violating one

tenet of HF engineering. This, however, is the best that can be achieved under the circumstances. Many

other countries have made similar efforts in digitizing their control rooms, including Hungary, Germany,

Slovenia, the UK, France, and Italy. They have incorporated a variety of concepts, some of them already

described: color-coded graphic displays, hierarchical display screens, and a large wall display for the

common viewing of control room personnel."

Alarm processing is an area that has been being researched in many different countries. Some

common HF themes have developed in this area. These themes include intelligent filtering and logic to

prevent unneeded alarms (and to suppress those alarms that are related to previous alarms), prioritization of

related alarms, and alarm sequence recording for future analysis. A color coding system is also sometimes

used for symbolic panel displays."P

Another area of great research is task allocation between man and machine, a critical step in the

design process that, if done improperly, can ruin an otherwise good HF-based approach. In general,

humans should be allocated tasks involving " inferential knowledge" (computers cannot infer anything that

is not there), changing circumstances (requiring creativity and flexibility), or inordinately large automation

costs. Machines should be allocated tasks requiring large amounts of repeated, rapid, accurate data

processing or tasks done in high risk areas (i.e. highly radioactive areas). Italy and some other countries

have developed passive plant safety controls which can protect the plant itself and prevent radioactive

releases within the first 24 to 72 hours after an initial emergency with no operator actions. This takes the

time pressure off of the operators and allows them to function as "intelligent supervisors." P"

One of the most difficult HF issues being dealt with is how to account for human and team

interactions and interdependencies in making decisions and taking actions. One method that may be able

to do this is the Dynamic Flowgraph Methodology, or DFM. DFM is a digraph model-based technique for

expressing logical and temporal characteristics of a system (both its software and its hardware) in order to

construct fault trees that identify paths leading to potentially critical system events.P! 2

DFM has been proposed to incorporate "team process variables within a dynamic evolution" into

the human reliability analysis (HRA) portion of a probabilistic risk assessment (PRA). Most models used

previously take into account only "one operator [at a time] performing an isolated set of tasks." Team

Appendix P Human Factors 137

interdependencies (e.g., communication, coordination, and adaptability) are not often considered, but they

can be a big factor not only in team actions but also in team decisions. Such dependencies can be

considered in DFM. Dependencies between people are not the only dependencies considered; those

between people and hardware can also be evaluated." 2

Causal relationships are established between physical variables and human relationships. Classes

of operator actions with risk significance are determined (e.g., routine actions before an initiating event,

actions that can cause initiating events, recovery actions), and then various specific operator actions are

postulated. Quantitative error frequencies for these actions are determined from operator input through

such methods as the Success Likelihood Index Methodology (SLIM). Various cognitive problems (e.g.,

confirmation bias, anchoring bias, and others previously discussed) are considered due to the tendency for

operation of a system as complex as a nuclear reactor to lead to cognition errors. Ultimately, decision

tables are created which show how the values of different process variables effect the outcome of team

performance. An example is how the (a) task complexity, (b) training level, and (c) technical knowledge

of the team (all three of which are divided into only a few possible states, or values) combine to form the

"knowledge, skills, and abilities" value, which in turn has an effect on such things as the team's

"formation of intent" (i.e., intent to perform an action). P12

Conclusions

As can be seen, there has been a lot of research into both theoretical aspects of HF design and

practical implementations of it. Human factors have long been neglected in engineering design processes.

When they have been included, it has usually been as an afterthought to a design project, at which point it

is too late to properly incorporate HF principles into the design. Much more attention has been paid to

human-machine interactions in recent years, and advances have been made.

Unfortunately, most aspects of human factors are so subjective and debatable that it is difficult to

define a 'best' HF design. Nonetheless, a more detailed treatment of HF issues (such as the DFM version

just discussed) needs to be built into the SRP Chapter 7/BTP-14 review process. Human factors include

much deeper and more profound issues than just graphical user interfaces and control knob layouts.

(Because HF is just one sub-issue of the greater topic of this work and because it is still very hazy

compared to many of the other issues involved, no more conclusive recommendations will be given on this

topic in the conclusions.)

Human Factors References

P1. Chapin, Douglas M., "Digital Instrumentation and Control Systems in Nuclear Power Plant and
Safety: Safety and Reliability Issues," presentation on 10/4/95.

138 Appendix P Human Factors

P2. Leveson, Nancy G. and Clark S. Turner, "An Investigation of the Therac-25 Accidents," IEEE
Transactions on Software Engineering, July 1993: 18-41.

P3. Sheridan, Thomas B., "Understanding Human Error and Aiding Human Diagnostic Behaviour in
Nuclear Power Plants," Human Detection and Diagnosis of System Failures (Proceedings of a
NATO Symposium on Human Detection and Diagnosis of System Failures held August 4-8, 1980,
ed. by Jens Rasmussen and William B. Rouse). New York City: Plenum Press, 1981.

P4. Acosta, C. and N. Siu, "Dynamic Event Trees in Accident Sequence Analysis: Applications to
Steam Generator Tube Rupture," Reliability Engineering and System Safety, vol. 36, no. 3, 1992.

P5. Ephrath, Arye R. and Laurence R. Young, "Monitoring vs. Man-in-the-Loop Detection of Aircraft
Control Failures," Human Detection and Diagnosis of System Failures (Proceedings of a NATO
Symposium on Human Detection and Diagnosis of System Failures held August 4-8, 1980, ed. by
Jens Rasmussen and William B. Rouse). New York City: Plenum Press, 1981.

P6. Wickens, Christopher D. and Colin Kessel, "Failure Detection in Dynamic Systems," Human
Detection and Diagnosis of System Failures (Proceedings of a NATO Symposium on Human
Detection and Diagnosis of System Failures held August 4-8, 1980, ed. by Jens Rasmussen and
William B. Rouse). New York City: Plenum Press, 1981.

P7. Norman, Donald A., "New Views of Information Processing: Implications for Intelligent Decision
Support Decisions," Intelligent Decision Support in Process Environments (Proceedings of a NATO
Advanced Study Institute on Intelligent Decision Support in Process Environments held September
16-27, 1985 ed. by E. Hollnagel, G. Mancini, and D.D. Woods). New York City: Springer-Verlag,
1986.

P8. New Man-Machine Interfaces in Nuclear Power Plants. Paris: Nuclear Energy Agency Organisation
for Economic Co-operation and Development, 1994.

P9. Hollnagel, Erik, " The Design of Fault Tolerant Systems: Prevention is Better than Cure," Reliability
Engineering and System Safety, vol. 36, no. 3, 1992.

P10. Lau, Shing Hei, John A. Bernard, Kwan S. Kwok, and David D. Lanning, "Experimental Evaluation
of Predictive Information as an Operator Aid in the Control of Research Reactor Power," presented
at the 1988 American Control Conference, Atlanta, GA, June 15-17, 1988.

P11. Bernard, John A. and Takashi Washio, "The Utilization of Expert Systems within the Nuclear
Industry," presented at the 1989 American Control Conference, Pittsburgh, PA, June 21-23, 1989.

P12. Campbell, S.D., G. Apostolakis, and J.-S. Wu. "Modeling Operator Teams in Probabilistic Safety
Assessment."

Appendix P Human Factors 139

