
Remote Monitoring and Control of
Autonomous Underwater Vehicles

by

John H. I. Kim

B.S., General Engineering
Harvey Mudd College (1991)

Submitted to the Department of Ocean Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Ocean Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Feb 1997

© Massachusetts Institute of Technology 1997. All rights reserved.

/K? 1/

I-f

1/~ I - /

Author.....

/ Department of Ocean Engineering
January 17, 1997

4 -A(1(9 /7

Certified by ...
//

........

John J. Leonard
Assistant Professor of Ocean Engineering

Thesis Supervisor

Accepted by.......

J. Kim Vandiver
Chairman, Departmental Committee on Graduate Students

APR 2 9 1997

S ,RAE:S•

Remote Monitoring and Control of

Autonomous Underwater Vehicles

by
John H. I. Kim

Submitted to the Department of Ocean Engineering
on January 17, 1997, in partial fulfillment of the

requirements for the degree of
Master of Science in Ocean Engineering

Abstract

Oceanographic data gathering techniques are moving away from simple sensors completely
under the control of the user, towards smart systems such as autonomous underwater ve-
hicles (AUVs) that are capable of operating without user intervention. However, artificial
intelligence cannot yet match human intelligence, and the ability to remotely monitor and
control these otherwise autonomous systems throughout the data collection process is highly
desirable. Communications links to these underwater systems via acoustic modems and the
Internet are becoming increasingly viable. This thesis investigates the problems arising
from combining these developing technologies for oceanographic data-gathering purposes.

Towards the goal of remotely monitoring and controlling an AUV during a mission, this
thesis explores various methods of vehicle control, mission reconfiguration, data transmis-
sion, data robustness, interconnectivity with the Internet, and communication with and
between multiple AUVs. We have run tests using laboratory simulation and over 25 field
experiments in the Charles River and Buzzard's Bay with MIT Sea Grant's Odyssey II
AUV, using a pair of radio modems to simulate the acoustic link. Our primary research
accomplishment has been to demonstrate control of the Odyssey II during a Charles River
mission from a workstation located on the Internet back at the MIT Sea Grant computer
laboratory.

Thesis Supervisor: John J. Leonard
Title: Assistant Professor of Ocean Engineering

Acknowledgments

The author would like to thank the following people without whom this thesis would not

have been possible.

Mom and Dad for supporting my decision to go into engineering, even though they

wanted me to go into medicine.

Chrys Chryssostomidis for heading and directing the MIT Sea Grant Laboratory where

this research took place.

James Bellingham, for founding the MIT Sea Grant AUV Lab, and spearheading the

development of the Odyssey II class AUV.

Seamus Tuohy for his assistance with multicasting protocols on the Internet.

Thomas Consi for introducing me to MIT Sea Grant.

Bradley Moran for his programming assistance with the software produced in this re-

search.

James Bales and Clifford Goudey for a thorough introduction to the Odyssey II AUV,

and assistance with hardware used in this research.

Robert Grieve and Joe Ziehler for their invaluable help producing, fixing, and operating

the equipment used in this research.

Scott Willcox, Andrew Bennet, Chris Smith, and Claudia Rodriguez for their assistance

during field operations and presence as friends.

The rest of the Sea Grant staff, including Thomas Vaneck, Timothy Downes, Janice

Ahern, ReRe Quinn, Joe Curcio, Andrea Cohen, and Kathy de Zengotita for keeping the

organization running.

And John Leonard for all the reasons outlined above, but most importantly for his

guidance and steadfast support throughout the course of my research and writing.

Support for this work was provided by MIT Sea Grant under grant numbers NA90AA-

D-SG-424 and NA46-RG-0434, the Office of Naval Research under grant numbers N00014-

91-J-1014 and N00014-92-J-1287, and the Naval Undersea Warfare Center under contract

N66604-94-C-DO57.

Contents

1 Introduction

1.1 Rationale for Remote Control and Monitoring of AUVs

1.1.1 The problem of gathering oceanographic data

1.1.2 Current methods of gathering oceanographic data

1.1.3 Remote sensing via AUVs as a new way to conduct oceanography

1.2 Our Approach ..

1.3 Document Overview .

2 Background

2.1 Introduction .

2.2 Autonomous Underwater Vehicles

2.2.1 Examples of AUVs

2.2.2 The MIT Sea Grant Odyssey II AUV . . .

2.3 Underwater Acoustic Communications

2.3.1 The ocean as an acoustic channel

2.3.2 Acoustic modem technology

2.4 Networked Communications

2.4.1 The Internet as a communications channel.

2.5 Sum m ary

3 Software Design

3.1 Introduction

3.2 Vehicle Software Design

3.2.1 Layered control

3.2.2 Vehicle data structure

16

.. 16

.. 16

.. 17

.. 18

. 20

. 20

.. 25

.. 27

. 27

... 30

32

... 32

. 32

. 33

... 36

3.3 Design Criteria and Issues with Communication

3.4 Software Implementation 41

3.4.1 Vehicle software 41

3.4.2 Shore station software 42

3.4.3 Control station software 42

3.5 Summary 43

4 Experiments 45

4.1 Introduction 45

4.2 Hardware Implementation 45

4.2.1 RF M odems 46

4.2.2 M odem cable 46

4.2.3 Tow float 47

4.2.4 M odem box 47

4.2.5 Shore station modem 47

4.2.6 W orkstation 48

4.3 Charles River Experiments 48

4.3.1 31 October 1995 48

4.3.2 7 November 1995 50

4.3.3 16 November 1995 54

4.3.4 21 November 1995 54

4.4 Buzzard's Bay Experiments 59

4.5 Sum m ary . 61

5 Multiple AUV Communications Management 62

5.1 Introduction 62

5.2 The Multiple AUV Communications Problem 62

5.2.1 Criteria 63

5.2.2 Definitions 65

5.3 Related Problems 66

5.4 Communications Schemes 67

5.4.1 M ultiplexing 67

5.4.2 Slotted Aloha 71

. 39

5.4.3 Reservations 73

5.4.4 Summary of communications schemes 77

5.5 Recommendations 77

5.6 Sum m ary 79

6 Conclusions 80

6.1 Overview 80

6.2 Lessons Learned 81

6.2.1 AUV operations 81

6.2.2 Internet communications 82

6.2.3 User Interface 83

6.3 Multiple AUV Communications84

6.4 Future W ork 85

6.5 Sum mary 86

A Program listings 87

A.1 M atlab Scripts 87

A.1.1 grcontrol.m 87

A.1.2 odyview.m 87

A.1.3 expandwin.m 89

A.1.4 recvdata.c 90

A .1.5 gui.m 94

A .1.6 sendc sp.c . 96

A.2 Vehicle C Code 98

A .2.1 com m .c . 98

A.3 SGI C Code 104

A .3.1 m cast.c . 104

A.3.2 network.c 109

List of Figures

1-1 A logical progression of AUV control links

2-1 Diagram of the MIT Sea Grant Odyssey IIb

2-2 Absorption of sound in seawater due to various processes

2-3 Noise levels in the open ocean at various frequencies

2-4 Mean error-prone transmission time using retransmission

2-5 Mean error-prone transmission time for a variety of ranges and error rates.

2-6 Open Systems Interconnection network protocol hierarchy model

3-1 Levels of control in vehicle software .

3-2 A sample Odyssey II mission file..........................

3-3 The name-referenced data structure of the Odyssey II software

3-4 Internal processing loop of the Odyssey II software

3-5 Flowchart for Odyssey II missions .

3-6 An Odyssey II network/modem communications packet

3-7 The designed graphical user interface .

Charles River experiment

Charles River experiment

Charles River experiment

Charles River experiment

Charles River experiment

Charles River experiment

Charles River experiment

Charles River experiment

Charles River experiment

31 October 1995, mission 12...

31 October 1995, mission 15...

31 October 1995, mission 17...

31 October 1995, mission 20...

7 November 1995, mission 12.

7 November 1995, mission 19.

7 November 1995, mission 20.

16 November 1995, mission 14.

16 November 1995, mission 20.

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

Charles River experiment 21 November 1995, mission 3.

Charles River experiment 21 November 1995, mission 8.

Charles River experiment 21 November 1995, mission 15.

Charles River experiment 21 November 1995, mission 17.

Charles River experiment 21 November 1995, mission 18.

Charles River experiment 9 April 1996, mission 25

Charles River experiment 9 April 1996, mission 26

Transmission collision

Delays in a transmission signal

Time domain multiplexing.

Optimized time domain multiplexing. . .

Frequency domain multiplexing.......

Slotted Aloha..................

Worst-case transmission collision

A centrally managed reservation system..

5-9 Queueing delays for various multiaccess communications methods.

. 64

. 65

.. 68

. 69

.. 70

.. 72

. 73

. 74

List of Tables

2.1 Recent acoustic modem systems. 27

4.1 Charles River Experiments, 31 October 1995. 48

4.2 Charles River Experiments, 7 November 1995. 50

4.3 Charles River Experiments, 16 November 1995. 54

4.4 Charles River Experiments, 21 November 1995. 55

4.5 Buzzard's Bay Experiments, 9 April 1996. 59

5.1 Summary of multiaccess communication methods. 77

Chapter 1

Introduction

Oceanographic data gathering techniques are progressing from traditional hands-on ap-

proaches towards remote sensing capabilities requiring little or no operator presence. This

paradigm shift brings up the issue of communication with the equipment; since the oper-

ator is not physically present, the data and instructions must be transmitted between the

operator and equipment.

The ultimate in remote sensing is the autonomous underwater vehicle (AUV), which

by carrying a full instrument suite can duplicate many of the capabilities of ship-based

operations. This thesis explores the problems of controlling and communicating with AUVs

during oceanographic data-gathering missions. Such communications can take the form

of acoustic transmissions through the water, radio links, and transmissions over computer

networks such as the Internet. These channels are often unreliable and introduce time

delays, bandwidth restrictions, and distortions which cause transmission errors.

To further explore the consequences of using these communication channels, we have

investigated monitoring and controlling an AUV over slow, unreliable communication links.

We have performed experiments with an Odyssey II AUV towing a radio-frequency mo-

dem behind it, and connected to the Internet. Our results offer insights into the remote

monitoring and control problem, and make many suggestions for future avenues of research.

1.1 Rationale for Remote Control and Monitoring of AUVs

1.1.1 The problem of gathering oceanographic data

In the last two decades, communications technology and its applications have advanced

dramatically bringing us into the so called "Information Age." Innovations such as wide-

area networks, wireless data links, and robot probes sent to other planets have become

commonplace. In contrast, oceanographic data gathering techniques have lagged behind.

This is primarily due to the difficulties encountered in communicating through the oceans.

Because water is mostly opaque to electromagnetic radiation, much of the equipment and

techniques developed for use on land and through air and space are not applicable. In the

cases where this opacity is not a factor, such as with satellites and moored buoys, the nature

of these systems restrict their usefulness. Buoys are limited to point measurements, while

satellites are limited to the top layer of the oceans. Trying to understand oceanographic

phenomena solely from these measurements is akin to trying to understand atmospheric

weather based only on ground measurements. To fully measure oceanographic phenomena

requires gathering data in all three spatial dimensions.

Gathering 3D oceanographic data has always involved a tradeoff between coverage,

control, and cost. An ideal oceanographic platform would have high coverage, complete

control, and low cost. However, complete control requires the sensing apparatus and control

center be one and the same. The Navy's NR-1 research submarine [26] and the Woods Hole

Oceanographic Institution's Alvin [28] are examples of this approach, with all sensors and

control apparatus (measuring equipment, personnel, life support, etc.) combined into one

vehicle. The bulk of this additional apparatus limits the vehicle's mobility, both in the water

and between dives, reducing its potential for covering large areas and increasing operating

expense. In response, researchers have reduced instrument packages to the bare minimum

needed to do the job. Nonessentials such as people, and in some cases measuring and control

equipment, were eliminated to facilitate getting the instruments where you wanted them

as quickly and cheaply as possible. By giving up control, coverage is improved and cost

reduced.

1.1.2 Current methods of gathering oceanographic data

The simplest instruments are lowered on a line and collect a water sample at a predetermined

depth. This sample is then measured for salinity (conductivity) and temperature versus

depth (CTD). By moving the ship around and obtaining samples at many locations, the

researcher can build a rough 3D map of the ocean. While easier, quicker, and in most

cases more feasible than sending a person down, this method sacrifices much in the way of

feedback and control. No current measurements are possible, location is inexact, the sample

is vulnerable to contamination, and most importantly, measurements can't be made until

the sample is back aboard the ship. A CTD cast gains in coverage and cost by reducing

control - separating the sensing apparatus from the higher control functions responsible

for analysis and placement of the sensor. Furthermore, this separation is not complete.

The personnel and equipment needed to complement CTD casts must be aboard the ship

doing the casts. This adds to the expense and personnel requirements, and often requires

scheduling ship time far in advance of the data collection, thus reducing some of the cost

gains.

Tethered equipment such as remotely operated vehicles (ROVs) and towed instrument

sleds attempt to regain some of the control lost in the simplest sensors described above [40].

By running a communications line through the cable, the tethered vehicle can provide more

flexibility and immediacy in its sensor coverage. Such systems offer immediate reports on

measurements, and give the researcher some freedom to move the equipment around in the

water. This increase in control comes at price of increased bulk and expense. Measuring

equipment must now be housed in the vehicle, and the tether design more elaborate than a

simple wire cable. In addition, tethered equipment does not eliminate the need for a ship to

house the personnel and additional support equipment; ship time for a large research vessel

often represents a substantial portion of a budget.

1.1.3 Remote sensing via AUVs as a new way to conduct oceanography

Autonomous underwater vehicles (AUVs) have been proposed as a solution to the tether

problem [8, 7]. By eliminating the tether completely, AUVs allow complete mobility and

flexibility in sensor coverage, requiring little more hardware than ROVs to accomplish this.

Their main drawbacks to date have been power, software, and control. Because AUVs are

by definition autonomous, they must be programmed with enough artificial intelligence to

observe, react to, and in some cases learn from their environment in order to simply survive,

much less accomplish their mission. This questionable robustness and loss of control on the

researcher's behalf has long been a stumbling block to their widespread acceptance.

Recent advances in underwater acoustic modem technology and AUVs has opened up

a promising alternative. By using the ocean itself as an acoustic communications channel,

the mobility and flexibility of an AUV's coverage can be combined with the ROV's control-

lability and immediate reports of sensor measurements. While this eliminates the cost of

the tether, it does not address the cost of the support ship. Work currently being done at

the MIT Sea Grant AUV Laboratory has called for an Autonomous Ocean Sampling Net-

work (AOSN) where moorings and/or buoys take the place of the support ship [21]. These

"nodes" would act as communications relay stations, forwarding commands and AUV data

via acoustic, radio, and satellite communications links. They would also allow the AUV(s)

to recharge batteries, act as a navigational aid, and offer docks for vehicles to remain at

while unused. Information sent to and from these nodes would link up to a global infor-

mation network like the Internet to provide the researcher access to oceanographic sensors

without ever leaving the office.

1.2 Our Approach

There are several problems facing remote control and monitoring of AUVs. Foremost is the

difficulty of communicating acoustically in the ocean. While acoustic modem technology

has made great advances in the last decade, such modems are still limited in bandwidth and

reliability [18, 46]. The speed of sound in water incurs time delays, meaning an acoustic

communications channel will never be as immediate as a tether. Complex acoustic propaga-

tion effects lead to blind spots, distortions, and echos which may be impossible to filter out,

causing high error rates in data transmissions. On the land-based network, there are similar

problems. Transient network glitches can cause additional time delays, as well as corrupting

or destroying data packets. Connectivity with online oceanographic data archives, multiple

users, as well as security also become issues. And finally, the lack of a support crew on-site

means that the utmost care must be taken to assure the reliability of the system as a whole;

the Phobos 1 spacecraft sent to Mars was lost due to a single errant command [25].

Research into the low-level aspects of these problems is left to those studying acoustic

modems and network reliability. Instead, our research has investigated the effects of these

problems on the higher level issue of communicating with an AUV. That is, given slow

baud rates, large time delays, and unreliable and corrupting transmissions, how do you best

monitor and control one or more AUVs collecting data in a remote location?

Figure 1-1 shows a logical development towards this problem. Other than a physical

cable, the simplest communications link is a user connected directly to an AUV via a radio-

frequency (RF) modem. At this level, the communications protocol and vehicle response to

commands (both intended and erroneous) can be developed and evaluated. The next step

extends the connection over a local area network (LAN) or the Internet. Issues of packet

forwarding at the shore station, time delays, and additional sources of corruption must be

addressed. Next, by replacing the RF modem with an acoustic modem, the reliability of the

developed protocol can be tested in an underwater acoustic environment. The addition of

nodes introduces another packet forwarding station. Finally, the problems associated with

multiple vehicles and users can be addressed. Modems on multiple vehicles will interfere

with each other, and so a communications system or management scheme must be used to

allow the the vehicles to transmit data without conflicts.

Our research has focused on the first two of these steps. To gauge and address the

problems of AUV communications in these situations, we have performed experiments with

the Odyssey II AUV, first with a direct RF modem link to shore, and later by adding a

connection to the Internet. We have explored data protocols, error correction, and vehicle

control issues, and demonstrated remote launch, data visualization, and mission reconfig-

uration of AUV operations from a computer workstation located off-site. In addition, we

have also investigated the multiple vehicle communications problem with a mathematical

analysis of some common multi-node communications algorithms and how they apply to

underwater acoustic communications.

1.3 Document Overview

This chapter has introduced the problem and described our general direction of research.

Chapter Two will provide background material for our research. It will describe the Sea

Grant AUVs, the underwater acoustic environment, and Internet transmission protocols

a) AUV

b) AUV

C) K:AUVD

d) :AUV

RF modem
-- (user

RF modem Sh LAN orShore user
Station Internet

Acoustic Shore LAN or
Shore

modem S on Internet

Acoustic RF/Acoustic Shore LAN or
- Station user

modem or satellite Internet
Node

S0 user user user
e) _ Shore

) a0 Station
OQ LAN or Internet

Multiple Acoustic Nodes RF/Acoustic
AUVs modems or satellite

Figure 1-1: A logical progression of AUV control links. a) User in direction communication
with AUV via a radio modem. b) Shore station in contact with an AUV via radio modem,
user connection to the shore station by the Internet. c) Radio modem replaced by an acoustic
modem. d) A relaying node placed between the AUV and shore station. e) Multiple AUVs
with multiple nodes and multiple users.

in more detail. Chapter Three will describe the existing Odyssey II software and our

additions to it. The original design criteria and rationale behind it, as well as an overview

of our software implementation will be covered. Chapter Four will discuss our experiments

and their initial results. Chapter Five will describe the issue of communications in multiple

vehicle environments, and which solutions perform better under what circumstances. The

final chapter will discuss the conclusions we arrived at from our work, as well as potential

future areas of research.

Chapter 2

Background

2.1 Introduction

This chapter gives an introduction to the problem of remote monitoring and control of

AUVs. The role of AUVs in the suite of oceanographic instrument platforms is presented

along with a description of the MIT Sea Grant Odyssey II AUV. Problems facing underwater

acoustic communications are described, along with current acoustic modem technology.

Finally, networking protocols and Internet communications are introduced, and the issues

of concern are discussed.

2.2 Autonomous Underwater Vehicles

AUVs play a role unfulfilled by the common dropped or towed oceanographic instruments.

These instruments work well for large-scale surveys or investigation of a small site, but face

problems with small-scale, high granularity surveys or deep-water operations. The cable

tethering these instruments is expensive, in many cases equaling or exceeding the cost of

the instrument platform. The cable is also subject to tangling and breakage, and imposes

drag often making the platform dynamics unpredictable and difficult to control. These

instruments are also limited in turn radius by the towing vessel, making a fine survey grid

difficult or impossible to achieve. By virtue of their maneuverability, ROVs can make a

fine survey grid possible. The presence of the tether, however, makes it difficult to perform

surveys of large areas with an ROV.

Manned submersibles do away with the tether but must sustain a live crew with bulky

life-support equipment. This seriously limits their endurance and mobility. Operations

typically last less than 12 hours, most of which must be spent in descent and ascent. The

additional equipment and the need for crew safety also drives up the cost; operating the

Alvin costs from $21,000 to $28,000 per day [47]. In addition, the need to sustain a crew

in a large pressure housing means rating the vehicle for greater depths involves military

and/or civillian passenger craft certification, incurring even more expensive.

AUVs offer an unmanned platform without the limitations imposed by a tether. Because

they do not need to sustain a crew, they can be made smaller than a manned vehicle.

Without the need for a cable or life-support equipment, they are cheaper to manufacture

and operate. Operating time, while not unlimited as with a tethered instrument, is typically

greater than with a similar sized manned vehicle. However, because there is no tether and

its associated drag, power consumption is less than with a ship and towed vehicle. The

only real limitations of AUVs are their limited power supply, and their need for artificial

intelligence sufficient for self-preservation.

2.2.1 Examples of AUVs

A variety of AUVs have been developed in recent years for military, scientific, and industrial

purposes. Several notable vehicles are the Draper/DARPA UUV, the Advanced Unmanned

Search System (AUSS), the Autonomous Benthic Explorer (ABE), and the Aqua Explorer

1000. The Draper/DARPA UUV, AUSS, and Aqua Explorer 1000 all possess dedicated,

high bandwidth acoustic communication systems, and hence prior research with these vehi-

cles is most relevant to the work in this thesis. The Autonomous Benthic Explorer (ABE)

was designed with the capability for minimum acoustic command and control using simple

coding of long baseline navigation system pings.

The Draper/DARPA UUV measures 36 ft in length with a 44 in hull diameter. The

hull is watertight and is subdivided into partitions containing batteries, vehicle systems and

electronics, and payload. Its original acoustic communications link, called the Adjustable

Diversity Acoustic Telemetry System (ADATS) was typically capable of 200-400 baud at a

range of approximately 1200 ft. This system was later upgraded to ADATS II, capable of

1200 baud at 3000 ft [41]. Most recently, joint research with the Woods Hole Oceanographic

Institution produced an acoustic modem capable of approximately 5 kbps at a range of

several kilometers in shallow water [27].

The Advanced Unmanned Search System was developed at the Naval Ocean Systems

Center and measures about 4.3 m in length and 78 cm in diameter, weighing about 1 ton [50].

It was designed with a two-way acoustic link between vehicle and operator, and has the

capability to receive acoustic supervisory commands, as well as acoustically transmit vehicle

telemetry including digitized video from its cameras [49].

The Autonomous Benthic Explorer was developed at the Woods Hole Oceanographic

Institution. It consists of an instrument platform attached below two floatation hulls to

provide maximum stability. Length is about 2.2 m and displacement around 450 kg. ABE

is designed for long-term deployment (up to a year) on the ocean bottom, where it initiates

periodic bottom surveys as pre-programmed, or when receiving an acoustic signal from

the surface. Its communications capability is limited to interrogate status, abort, and

program select, but provides enough flexibility to avoid having to pre-program an entire

1-year mission in advance [53].

The Aqua Explorer 1000 was designed in Japan for inspection of underwater telecom-

munications cables. It is 2.3 m in length and 2.8 m in width by 0.7 m high, weighing about

500 kg. It uses both low-bit-rate and high-bit-rate acoustic links simultaneously, the former

being used for control signals sent to the vehicle, and the latter for transmission of video

signals from the vehicle [1].

2.2.2 The MIT Sea Grant Odyssey II AUV

MIT Sea Grant has pioneered the development of small AUVs for scientific exploration [8, 7].

The Odyssey AUVs are designed to provide a lightweight, flexible, affordable oceanographic

survey platform which can be operated by a small crew using a minimum of support equip-

ment. Instruments can be swapped in and out as they are needed, saving both weight and

power.

The second-generation MIT Sea Grant Odyssey II AUV (Figure 2-1) is roughly 2.2 me-

ters long and weighs about 120 kg. The outer hydrodynamic polyethylene fairing is flooded

and carries instruments and batteries inside two 17 inch glass sphere pressure housings. The

high density polyethylene (HDPE) has a specific gravity of 0.9, eliminating much of the need

for ballast or buoyancy to counterweight the fairing. It is almost transparent to acoustic

signals in the range of most oceanographic instruments, meaning acoustic transceivers can

be mounted inside the fairing incurring no drag penalty. HDPE is also easy to work with

Odyssey II AOSN Configuration

HDPE outer fairing

Glass pressure sphere with Battery sphere with power,computer and navigation sensors communications boards, and
video controller/recorder

Figure 2-1: Diagram of the MIT Sea Grant Odyssey IIb (courtesy Cliff Goudey).

and cheap to form, and offers enough resiliency to rebound from moderate impacts without

substantial damage to itself or its contents [7].

The glass spheres are standard Benthos pressure housings used in other oceanographic

instruments. The forward sphere contains the main vehicle computer and sensor electron-

ics. The aft sphere contains batteries, thruster controllers, and additional sensor electron-

ics. The two are connected to each other and instruments via pressure-rated wet-cabling

mounted through penetrators. The spheres are held in place by another formed sheet of

HDPE which provides additional stiffness and protection for the spheres. The spheres

provide most of the buoyancy required for the vehicle to attain neutral-buoyancy, but addi-

tional lead weights or foam are used to trim the vehicle and compensate for the instrument

packages currently installed.

Thrust comes from a custom-designed two-bladed fixed-pitched propeller powered by a

Benthos thruster. The vehicle is maneuvered by four rear-mounted control surfaces (modi-

fied sailboard fins) linked to move as two units. The fins are controlled by actuators based

on a design from the Woods Hole Oceanographic Institution. Power comes from 64 silver-

zinc batteries mounted in the aft sphere which provide approximately 1.1 kW-hr of energy

and weigh 8 kg, enough to provide 6-10 hours of use at moderate speeds. Top vehicle speed

is approximately 5 knots, while the lower speed limit is defined by a loss of maneuverability

at around 0.5 m/s (0.25 knots).

The main computer is a 40 MHz Motorola 68030 CPU with coprocessor mounted on a

·P·EIP-~-- I-l~;~-~·-~-·ari~r-F-^~.- ~-.r;-- ---ILI~-CI·---. . _ ~-irr-r·lol3L~es~J~4~~ ----~L ·I~P1 Lli"ll-~ly*r

VME-bus system supplemented by 8 MB of RAM and a 120 MB hard disk. Interfaces to

onboard instruments and to off-vehicle computers are provided by ethernet and serial ports.

The computer runs the OS-9 realtime multitasking operating system.

The Odyssey software suite is a constellation of applications which are used to prepare,

test, run, and analyze missions [9]. These include: mission configuration software, vehicle

control code, data parsing routines, mission data analysis/visualization, simulation models,

and data structures. The high-level control software is a behavior based layered control

architecture, which allows relatively complex behaviors (e.g. a vertical yo-yo concurrent

with a horizontal survey) to be easily produced [5, 9]. The vehicle software has been

proven reliable in extensive field operations with Odyssey II AUVs over the past several

years, including operations in under-ice, deep-ocean, and high-current environments. The

Odyssey software is described in more detail in Chapter 3.

2.3 Underwater Acoustic Communications

Acoustic communication in the ocean is a challenging research problem [24]. A multitude

of factors not often encountered in other communications channels, such as substantial

multipath propagation, corrupt and distort sound as it travels from source to receiver. The

long signal travel times involved make it impossible for the vehicle to instantly respond to

commands. In addition, retransmission is an impractical means of error correction, and

redundancy and error correction coding must be added to the original signal [15]. In a

multi-vehicle and/or multi-instrument environment, several modems may be competing for

the same frequency space, and a procedure for allocating acoustic bandwidth must be in

place.

Despite these difficulties, advances in digital signal processing, acoustic channel mod-

eling, and communications theory have led to much improved performance of underwater

acoustic modems. At a range of around ten of kilometers, transmission rates of 1 to 10 kb/s

have been achieved with acoustic modem technology [17].

2.3.1 The ocean as an acoustic channel

Unlike air and outer space, water acts as a low-pass filter towards electromagnetic (EM) radi-

ation, absorbing most frequencies within a few meters or less. The extremely low frequency

radio waves which do penetrate are used for military communication with submarines, but

they require very large antennas and have very slow transmission rates. This characteristic

of water precludes the use of EM signals for underwater communications for most applica-

tions, including communication with AUVs over 1-10 km distances. Communications must

instead rely on the transmission of sound. While there are few problems with direct-line,

short range communications (several hundred meters or less), a number of complications

arise at greater distances.

Sound spreads and is absorbed by various oceanic processes as it travels. Geological, bi-

ological, and man-made noises (most notably, noise from the AUV itself) are always present

and can mask incoming acoustic signals. Turbulence and other variations in temperature,

density, and water composition cause fluctuations in the local sound speed. The presence

of a surface and bottom and a gradual change in the sound speed profile with depth gives

rise to multipath. Finally, sound travels at a relatively slow 1500 m/s, which results in

round-trip signal travel times of approximately 1.3 seconds for every kilometer separating

the source and receiver.

The dissipation of sound energy due to spherical spreading and absorption can be simply

characterized as a transmission loss, H. The logarithmic sound pressure level at a point,

Lp, can be given as a combination of the sound source level, L,, and the transmission loss.

Lp = L, - H (2.1)

If the distance separating the source and measuring point of Lp is r, then H can be given

as

H = 20 log + r r (2.2)
rref

where the first term represents spherical spreading, and the ar term represents absorption

due to viscosity and relaxation processes associated with the structure of water and various

dissolved salts [23). Taking these processes into account, a can be determined by [23]

10
3

102

El1
1 0

c 10

100

10.

.C -2
CL-10

1.
4

I n
- 5

10 -2 10-1 100 101 102 10 3 10 4

frequency, kHz

Figure 2-2: Absorption of sound in seawater due to various processes (from [23]).

a = a2 + a 3 + a4

a2 = 2.94 x 10-2f31f2

a3 = 2.03 x 10- 2 S(1 - 6.54 x 10-4 P) 13 /3) 2

1 + (f/f3)2

f-1 4(f/f4)
2

a4 1.10 x 10
1 + (f /f4)2

f3 1.55 x 104Texp(-3052/T)

f4= 1.32Texp(-1700/T)

where f is the transmitted sound frequency in kHz, and S, P, and T are the salinity in ppt,

pressure in atm, and temperature in OK. This yields a for r given in dB/km. Figure 2-2

gives average a values for an open ocean environment over an average depth of 6 km and

matches well with measurements made at sea.

//:~~~~~~~ ~~~ -::: : :22:2: : ::: 22 : 2: :::222: 2 :2 • :: : : : ::: : ::::i ::: : : : : : : : :

S'::::::" /: : ::: :: : ::: :: : ::::% ,: _: -..:. : _ - Z : - - _::~~~~~~~~~ : ::: : :: ::: • :::: ::::: :: ::: ~~~~ ~: :::::: : ::::/: : i ::!

r.. / . .. : "... : / Z : :'• : "::

::::% i i i::

-4

14

C,
C!
0

'a

a

a.

0

0

'a

'a

'a

'aa

a
'a

44

FREQUENCY (HERTZ)

Figure 2-3: Noise levels in the open ocean at various frequencies (from [52]).

Absorption increases at higher frequencies and often imposes an upper limit to the

frequency chosen for an application. The presence of noise in the ocean often provides a

lower bound. Figure 2-3 shows noise levels for a typical ocean environment. Minimizing

the transmission losses due to these two factors, we obtain the frequencies commonly used

in underwater acoustic modems (and other applications for that matter) of 10-35 kHz.

The speed of sound is not uniform throughout the ocean, but is commonly stratified

by depth. This gives rise to the phenomenon of refractive multipath. Sound traveling

from a low sound-speed layer into a high sound-speed layer is bent back towards the low-

speed region. In addition, sound can be reflected off the ocean surface and bottom. The

magnitude of these reflections is dependent on the signal's arriving angle and frequency, as

well as bottom composition. This means sound spreading radially from a source does not

propagate uniformly. At any given destination point, sound rays from multiple departure

angles can meet, or be completely absent. Where multiple rays meet, they have taken

completely different paths and are almost always out of synchronization and phase. A

considerable amount of acoustics research has addressed the problem of extracting the

original version of a signal that has become spread out into multiple signals and faded

due to phase interference between these duplicate signals. On the other hand, the sound-

speed profile can contrive to create a region where no rays from a source can arrive in

certain regions. These shadow zones represent areas where communication signals cannot

reach and vehicle control would be lost. Because of the asymmetrical nature of multipath,

vehicle transmissions may still be heard while the AUV is in a shadow zone, or the opposite

situation may arise, where the AUV cannot be detected but can still receive commands.

Due to the slow speed of sound through water, traditional forms of error correction

become inefficient. In high-speed data networks, the most common error-correction scheme

is to retransmit the data. With the lengthy transmission delays in an acoustic underwater

environment, retransmission as an error correction scheme can take a significant amount of

time.

If the probability of an error is Perr, we can find the average number of times a message

must be retransmitted until it is received correctly. First we have all messages which are

correctly received on the first transmission, plus the messages which must be re-transmitted,

plus messages which must be re-re-transmitted, and so on. On average, the number of

retransmissions will be

00

(Perr + PerrPerr + PerrPerrPerr +' ".) = Penrr (2.3)
n=1

Since for x < 1

01 - (2.4)1--x
n=O

we have

00 1

Pn0 =0 = 1 (2.5)
n=1

A retransmit cycle requires three times as much time as an errorless transmit: the

original leg from source to receiver, the retransmit request from receiver to source, and

the retransmission from source to receiver. Add to this the average number of messages

that get through on the first try, Pnoerr, and substitute Pnoerr for 1 - Perr. Multiply by

the one-leg transmission time, t, to get the average error-prone transmission time if we use

16

14

12

C,

6

4

2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
probability of transmission error

Figure 2-4: Mean error-prone transmission time using retransmission as a means of error
correction, relative to errorless transmission time.

retransmission as a means of error correction.

tavg = [Pnoerr + 3(- 1)t (2.6)
Pnoerr

or

tavg Pnoerr + 3Perr]t (2.7)
Pnoerr

The results of this equation are plotted in Figure 2-4 relative to the time for an errorless

transmission, and in Figure 2-5 as a function of range and Perr.

Finally, if there is any relative motion between the source and receiver, the signal can

become doppler shifted. This usually results in a reduction in the usable frequency band-

width, as the modem hardware must compensate to eliminate any uncertainty about the

frequency of the detected signal. Strategies for accomplishing this are described in the next

section.

2.3.2 Acoustic modem technology

Acoustic modems fall into two categories - incoherent modulation systems such as frequency

shift keying (FSK), which do not rely on the phase of the received signal; and coherent

modulation systems such as phase shift keying (PSK) and quadrature amplitude modulation

(QAM), which use phase information. Because multipath typically spreads the arrival time

-i

Si i · i · i , ,
..........I -- · · ·- · l··r... · --...

.. .

..-.

.. ..-.

E

as
_f

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
probability of transmission error

Figure 2-5: Mean error-prone transmission time for a variety of ranges and error rates, in
seconds.

of a signal over several milliseconds, coherent systems work best in low-multipath, stable-

phase environments such as vertical channels and short ranges; incoherent systems are

better suited for high-multipath environments such as shallow water and moderate ranges

of 1-10 km. However, incoherent systems usually cannot match the bandwidth of coherent

systems because the possibility of inter-signal interference due to multipath spreading limits

the rate at which a frequency can be modulated [35].

Since retransmission is usually not a viable means of error correction, some form of

forward error correction coding must be used unless errors are acceptable. The performance

for several codes varies depending on environmental circumstances [17]. Generally, efficient

use of bandwidth requires greater coding complexity. Since error coding can be implemented

in the modem or on the main computer prior to transmission, this is a potential area for

bandwidth optimization by software adapatation based on the mission profile and acoustic

situation encountered.

Doppler shifts characterize themselves as uncertainties in the frequency of the arriving

signal. In the 30 kHz range, a 1 m/s doppler shift results in a frequency shift of 30 Hz.

Since the source and receiver can be moving both towards or away from each other, the

total uncertainty is actually double this. To compensate, most incoherent systems space

their transmit frequencies far enough apart that doppler shift is not a problem. Other

approaches include coding information that allows detection of doppler shift, and tracking

Table 2.1: Recent acoustic modem systems.

Developer Data rate Range Modulation Reference
Datasonics 5 kbps 1 km incoherent [16]
Datasonics 1200 bps 10 km incoherent [22]

WHOI 5 kbps 5 km incoherent [31, 32]
WHOI 5 kbps shallow, under ice coherent [27]

JAMSTEC 16 kbps 6.5 km vertical coherent [36]
IFREMER/ORCA 19.2 kbps 2 km vertical coherent [3]

Oki Elec. 500 kbps 60 m coherent [29]

the source and receiver so as to predict the doppler effect. The former reduces the available

signal bandwidth, while the latter may be impossible if both the source and receiver are

mobile [46].

Table 2.1 lists some acoustic modem systems which have been developed. For shallow-

water AUV operations in the 1-10 km range, data rates of 1-5 kbps can be expected in

optimal conditions [17, 46]. For deep water missions where a vertical channel may be

available, higher data rates are achievable.

2.4 Networked Communications

2.4.1 The Internet as a communications channel

The Internet was designed to provide reliable high speed and wide bandwidth commu-

nications, and compared to underwater acoustic communications imposes few restrictions

on communications. Network programming standards such as Sockets allow virtually un-

changed source code to work on nearly all types of UNIX computer systems [45]. A poten-

tial difficulty arises from the Internet using the Transmission Control Protocol (the TCP

in TCP/IP) - a point-to-point protocol - as its transport level protocol. However, there are

alternatives available which, while limiting the networking options available, do provide a

solution to the design faults of TCP.

Internet Protocols

The Internet is not a single network but rather a conglomeration of thousands of inde-

pendent local area networks (LANs) running a diverse variety of network hardware and

protocols. Under most circumstances, it is very difficult or impossible to interconnect two

Figure 2-6: Open Systems Interconnection network protocol hierarchy model (from [45]).

different networks. The key to joining all these networks together to form the Internet

lies in encapsulating and layering. This allows the network to appear as a simple direct

connection to the linked computers and data, hiding the specifics of the underlying proto-

cols and hardware. The commonly used open systems interconnection model (OSI) consists

of seven layers for describing any application communicating over a network, shown in

Figure 2-6 [45].

At the lowest level is the hardware - whether data is sent as electrical on-off impulses,

modulated electrical frequencies, or flashes of light. Next is the hardware data link which

determines what these flashes or impulses mean in terms of bits. Above this is the network

protocol, which determines the type of network (e.g. Novell, Internet, etc.). Above the

network layer is the transport layer which determines how data sent over the network is

broken up and reassembled.

On the Internet, the network protocol is the Internet Protocol (IP), which handles

such tasks as breaking data into packets and routing them between networks around the

world. Above the IP layer is the Transmission Control Protocol (TCP) which provides such

services as opening and maintaining a connection, and reordering packets which may arrive

out of order at the destination. Above this layer are various application protocols such as

telnet and ftp, which provide their own services such as a common format for creating and

receiving transmitted files. And finally there is the data which is sent over the network.

As data progresses through this hierarchy, each layer need not be concerned with what

layers come before or after it. A layer just treats the data protocol headers from the next

layer up as any other data stream and encapsulates it within its own headers. This continues

on through the entire chain until the hardware is finally able to transmit what it sees as

a simple data stream. When the data arrives at the final destination, it goes through the

reverse process, each layer stripping away its header until the original data is revealed.

The protocols that define the Internet are the TCP and IP layers (often referred to as

TCP/IP). Nearly all the services and applications commonly used on the Internet, such as

electronic mail, telnet sessions, the world wide web, and file transfer, use TCP/IP. If all

that is required is to send a stream of data from one computer to another, TCP/IP (or any

of the services built on top of TCP/IP such as telnet or ftp) works fine. However, if more

complex communications is desired, such as sending data from one computer to several

others, a problem arises because TCP/IP is a point-to-point protocol.

Point-to-point protocols were developed with only communications between two ma-

chines in mind, and are wasteful of network resources if many machines request the same

information. One machine establishes a connection with the other, and the two transfer

data. If a third machine wants the same data, it must open another connection and the

first machine must retransmit it. As more machines ask the first machine for the data, the

network bandwidth becomes saturated transmitting the same thing over and over. This is

normally not a problem if only a few connections or small amounts of data are required,

but otherwise the level of network traffic can quickly exceed the available bandwidth. For

example, in the Haro Strait experiment [44], the link to the Internet was nothing more than

a modem and telephone line. Had many researchers around the world wanted to view the

raw data as it came in, the bandwidth would have quickly been saturated. The problem

is even worse if several machines must all share data between each other, as the case may

be if distributed computing resources are used to analyze the incoming data. The required

network bandwidth then goes from scaling linearly to polynomially with the number of

machines.

Since the problem is inherent in the protocol that forms the basis for the Internet, there is

no simple way around it. Point-to-multipoint protocols such as the User Datagram Protocol

(UDP) exist, but their use precludes the use of TCP, meaning they will not normally prop-

agate over the Internet. UDP will propagate over a subnet, but Internet routers normally

ignore these packets. Fortunately, this is not a new problem, and the Multicast Backbone,

or MBone, was created to address it [37]. The MBone uses special routers available on a

portion of the Internet to "tunnel" UDP packets over the Internet's data lines. Data which

is multicast is sent over the entire MBone, but only once. All machines interested in the

data can listen in on the single transmission rather than the originating machine having to

send a separate copy to each machine.

A potentially useful multicast standard is Distributed Interactive Simulation (DIS),

which has been developed to allow multiple wargame simulations to interact with each

other in the same virtual environment [14]. DIS defines a common set of datagram packet

formats which independent simulators can use to communicate with each other. These

packets include a unit's identity, position, velocity, projectiles fired, etc. To further re-

duce network bandwidth, dead-reckoning is used - every participating simulator uses the

received position and velocity of units it is not simulating to dead-reckon their position.

When a machine simulating a unit detect that the simulated position (or actual position

in the case of a real vehicle) differs from the dead-reckoned position by a predetermined

about, only then is a new packet sent out.

While initially we considered making our system DIS-compatible, we decided that the

extraneous data fields in a DIS packet (e.g. logistics data units) were unnecessary for these

initial experiments. We chose instead to develop our own packets which contained only the

information we needed, but were easily reconfigurable. However, because there is a large

amount of DIS source code freely available, we believe DIS may be a useful standard to

investigate in the future.

2.5 Summary

This chapter has introduced AUVs and their role in oceanography. Problems with under-

water acoustic communications, networking protocols, and Internet communications were

discussed. The next chapter will describe our modifications to the MIT Sea Grant Odyssey

II AUV software to account for these problems and incorporate the networking technologies.

Chapter 3

Software Design

3.1 Introduction

This chapter describes the Odyssey II software developed at the MIT Sea Grant AUV Lab.

It begins with an overview of the Odyssey II software design and philosophy, detailing the

software's control and data structure already in place. Differences in a simulated mission,

real mission, and real mission with communications are highlighted, along with changes

made to the vehicle software in the course of this thesis to allow communications. The

shore station relays messages between the user and vehicle, and its software is described.

Finally, the data display and control interfaces running on the user's computer are described.

3.2 Vehicle Software Design

The Odyssey control software was designed and implemented by Bellingham and Leonard [4,

5, 9] with two major goals in mind - ease of use and reconfigurability. The vehicle consists

of many separate subsystems, most of which require a considerable amount of programming

in order to function properly. Fin actuators must be controlled according to a well-tested

dynamic model in order to move the vehicle around properly. Navigation signals received

must be processed to filter out spurious signals and accurately fix the vehicle's location

according to a variety of different navigation schemes. It would be an exercise in frustration

for the vehicle operator to attempt to control the vehicle based only on raw inputs and

outputs with the sensors and actuators. To address this problem, the Odyssey software

implements behavior based layered control [9].

Since the vehicle is designed to be small, and instrument platforms swapped in and

out as needed, the software must be easy to reconfigure. To achieve this, a central data

structure (sometimes called a blackboard) is used. The vehicle's data structure contains all

the variables used by the sensors and actuators during a mission. When a new instrument

or modified actuator is installed, the data structure must be modified or lengthened to

reflect this change. Since the data structure is key not only to vehicle operation, but also to

mission configuration and later data analysis, these changes tend to propagate throughout

the vehicle code and can result in these dependent functions failing in unpredictable ways.

To solve this dilemma, the Odyssey II uses a name-referenced data structure. The code is

written so as to expect a data structure of arbitrary length. Each component of the data

structure is indexed, and the name of each variable is assigned an index number. In this

way all changes can be propagated throughout the code by simply recompiling.

3.2.1 Layered control

Layered control represents a departure from many of the high-level artificial intelligence

(AI) schemes developed to control robots. In most AI systems, the software attempts to

analyze and comprehend the environment and situation the robot is currently in, then selects

the most appropriate action for achieving the desired goals. The primary faults of these

systems are that data about the environment is rarely complete and accurate, and even

with comprehensive data, fully analyzing the situation is computationally intensive and a

difficult programming task [39]. In layered control, rather than attempting to understand

the environment and develop a response, the software consists of many simple, individual

responses to various commands and stimuli in the environment. Each of these responses

form a behavior, all or some of which may be active at any time. When behaviors conflict,

an arbitration scheme determines which behavior should be given priority. In this way,

many complex robot interactions with the environment can be created using just a few

simple-to-program behaviors [12, 13].

For example, suppose one wished to program a robot to follow a zig-zagging wall. In

traditional AI, the robot would use its sensors to determine where the wall is and build a map

of its immediate vicinity. It would then analyze this map to determine a likely continuation

of the wall and move in that direction. When a new section of wall was encountered, it

would repeat this process. Resources must be devoted to build and maintain this map,

Figure 3-1: Levels of control in vehicle software

which may become inaccurate through simple sensor failures.

With layered control, no real attempt need be made to create an internal map. The

robot could consist of several simple behaviors. One could prevent it from hitting a wall

(maintain a minimum distance from all known walls). Another behavior, operating at a

lower priority, could keep the wall off to the side as the robot moved forward. Yet another

behavior could check for an infinite circling pattern, and direct the robot to continue straight

in a random direction for a time to get away from the obstacle. In this way, by merging

several simple behaviors, the complex behavior of following a wall emerges.

The Odyssey II software uses a three-tiered layered control architecture, of which two

levels are fully implemented [9]. These levels are shown in Figure 3-1. At the top level,

which has not been fully implemented on the Odyssey II, are user-generated commands.

These commands, along with sensor information, are passed on to layered control, which

consists of various behaviors. Outputs from these behaviors are combined to generate a

single set of commands sent to the lowest level, dynamic control. The dynamic control level

communicates directly to the vehicle hardware - moving fins, varying propeller speed, and

turning equipment on and off.

The command level on the Odyssey II currently consists of specifying the layered control

behaviors and their priorities for each mission. A mission is created by varying the priority

Figure 3-2: A sample Odyssey II mission file. On the left, various flags, sensors, and
actuators are activated and initialized. On the right is the actual mission, based on behaviors
in the vehicle's behavior library. In this example, the vehicle would start a dead reckoned
survey for 4 cycles, then enter a circling pattern. After 900 seconds, the mission times out
and the vehicle shuts down and surfaces.

and timeouts for each behavior. When the time on a certain behavior expires, the vehicle

moves on to the next behavior on the command stack. This list of behaviors and priorities

is placed in a Mission file which is read into the command stack by the vehicle computer at

the start of the mission. Figure 3-2 shows a typical Odyssey II mission file.

Ideally, the command level would be an abstraction of vehicle actions, such as collecting

data from a specified location with a specified resolution. The command level would then

convert this command into suitable layered control behaviors to get the vehicle to the site,

collect the data, and return home.

The middle level is layered control, consisting of the behaviors themselves. These be-

haviors can receive sensor inputs and generate commands sent to (or through) the dynamic

control layer. Behaviors range from simple to complex. For example, in the mission shown

in Figure 3-2, mission_timer shuts the vehicle down after a user-selectable amount of time,

900 seconds in this case, ensuring that a mission will end even if an infinite loop has ac-

cidentally been programmed in. The behavior setrudder sets the rudder at 20 degrees,

putting the vehicle in a tight circling pattern. On the other hand, surveydeadreckon

is a complex behavior which moves the vehicle away from its launch point in a specified

direction, then does a lawnmower-type rectangular survey using dead reckoning for naviga-

tion. It is composed of several steps, including calling other behaviors in the course of its

state: nrad survey test mission behavior: mission_timer 1
sensor: u_debug_var(int) 1 b_arg: time(s) 900
sensor: c_modem_active(bool) 1 behavior: set_rudder 2
sensor: c_weightl_drop(bool) 0 b_arg: rudder(deg) 20.0
sensor: c_weight2_drop(bool) 0 b_arg: depth(m) 2.0
sensor: real_wdwl (N) 0 b_arg: speed(m/s) 0.6
sensor: real_wdw2(N) 0 b_arg: time(s) 900
sensor: real_veh_w(N) 1173 behavior: survey_dead_reckon 3
sensor: real_veh_b(N) 1173 barg: trans_heading(rad) 0
sensor: uo_control_kpp 1 b_arg: trans_time(s) 30
sensor: uo_control_kdp 5 b_arg: heading_legl(rad) 0
sensor: uo_controlkip 0 b_arg: time_legl(s) 60
sensor: uo_control_pitch_lim(deg) 30 b_arg: heading_leg2(rad) 1.57
sensor: uo_control_depth_lim(deg) 0.3 b_arg: time_leg2(s) 15
sensor: uo_control_kph 1 b_arg: cycles(#) 4
sensor: uo control kdh 1 b_arg: depth(m) 2.0
sensor: uo_control_kih 0 b_arg: transit_speed(m/s) 1.05

b_arg: survey_speed(m/s) 1.05

operation.

Most layered control implementations use some sort of arbitration scheme to merge

conflicting commands from multiple behaviors into one output command. The Odyssey II

uses a simpler implementation in which a behavior passes its command down to the next

higher priority behavior, which passes its command down, and so on.

At the lowest level is dynamic control, which converts simple instructions such as head-

ing, pitch, and depth into actuator commands required to fulfill these instructions. In this

way, control laws governing the fins and thruster are handled separately from higher be-

haviors, and programmers of these behaviors need not concern themselves with actuator

operation. This level can, of course, be bypassed if needed, as is the case when developing

these control laws.

3.2.2 Vehicle data structure

The Odyssey II is designed to be a flexible, reconfigurable instrument platform. Carrying

all instruments and sensors designed for use aboard the vehicle is impractical. In addition,

packages for the vehicle are being developed at several companies around the country. The

vehicle software must be robust and flexible enough to accommodate all these different

configurations without requiring a complete rewrite of the code every time a new package

is added [9].

The Odyssey II data structure has three components - sensor data, behaviors, and

the command stack (Figure 3-3). Sensor data are all the variables used by the sensors

and actuators during a mission. Examples include the time, yaw, pitch, roll, fin measured

and commanded positions, and universal coordinates based on dead reckoning and the long

baseline (LBL) navigation array. Each sensor data type has a name (an index) and a value

as well as several flags. Behaviors begin with the name of the behavior and contain more

sensor data - variables used within the operation of the behavior. Values for sensor data

and behavior sensor data are set to the variable's default value. The command stack is

made of a list of behavior names, their priority, and sensor data name and initial value.

In completely autonomous operations, the command stack is static throughout a mission,

having been specified in the mission file.

This data structure is central to the vehicle's operation. The software aboard the vehicle

runs in a 5 Hz cycle, executing a loop every 0.2 sec. This loop begins with data input and

Name-Referenced Data Structure

Sensors Behaviors Commands

Name Value

Present Time(s) 0
Measured Yaw(rad) 0
Measured Pitch(rad) 0
Measured Roll(rad) 0
Measured Depth(m) 0
Cmd Yaw(rad) 0
Cmd Pitch(rad) 0
Cmd Depth(rad) 0
Measured Temp(degC) 0
Measured Cond(mS) 0
Meas. Rudder Ang(rad) 0
Cmd Rudder Ang(rad) 0
Meas. Elev. Ang(rad) 0
Cmd Elev. Ang(rad) 0
DR North(m) 0
DR East(m) 0
LBL DR North(m) 0
LBL DR East(m) 0

Behavior Name Behavior Name, Priority
Arg Name Arg Value Arg Name Arg Value

Mission Timer Mission Timer 1
time(s) 0 time(s) 1200

Acquire Heading Survey DR 2
heading(rad) 0 transit heading(rad) 0.78
acceptable error(rad) 0 transit time(s) 120

transit speed(m/s) 1.3
Survey Dead Reckon leg #1 heading(rad) 1.57

transit heading(rad) 0 leg #1 time(s) 100
transit time(s) 0 leg #2 heading(rad) 3.14
transit speed(m/s) 0 leg #2 time(s) 25
leg #1 heading(rad) 0 cycles(#) 10
leg #1 time(s) 0 depth(m) 2.5
leg #2 heading(rad) 0 survey speed(m/s) 1.05
leg #2 time(s) 0
cycles(#) 1
depth (m) 0
survey speed(m/s) 0

Figure 3-3: A subset of the name-referenced data structure of the Odyssey II software

output as shown in Figure 3-4. Data from the instrument platforms and actuators are

read into their appropriate variables in the data structure. In the next step, this data

is processed. e.g. time-of-reception values from the LBL transducer are converted into

navigation position. This step generates more data saved as additional variables in the

data structure. Next the behaviors currently in effect use the current data to determine

what the vehicle should do next. Their commands are saved in the data structure, where

the dynamic control routine converts them into appropriate actuator signals. Finally, the

data structure is logged to disk. To reduce disk space usage, only variables which have

changed are logged.

In addition to being the heart of the vehicle's operational software, the data structure

is central to pre- and post-operation routines. The Mission file which will be read into the

command stack must be based on the data structure compiled into the code. The parse

routine, which processes data logged during a mission, must know what the data structure is

in order to extract the variables the user wishes to plot or process further. This information

is contained in a header in the data file. The simple act of adding a new sensor data type

to the data structure has far-reaching effects throughout all the code used with the vehicle.

By using a name-referenced data structure, all the code can be written to expect changes

in the data structure. Rather than making the data structure a fixed size, it is coded as

L

a.)

Figure 3-4: Internal processing loop of the Odyssey II software. a) In autonomous opera-
tions. b) With communications.

an indexed array whose length will be determined at compile time. Each variable is given

an index number which is assigned to that variable's name. When adding new equipment

to the vehicle, any new sensor variables are added to the code. Sections of code that

can safely ignore the new sensor variables can look up the variables they need via the

name, even though the actual position in the data structure may have changed. Routines

that must handle the entire data structure (e.g. logging) integrate the new variables upon

recompilation. The same procedure applies to new or modified behaviors. In this way,

equipment can be added and vehicle configuration changed with no or minimal modifications

to the base vehicle code.

I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.3 Design Criteria and Issues with Communication

In completely autonomous operations, the MIT Sea Grant Odyssey II AUV is programmed

with a complete mission prior to launch (Figure 3-5b). The vehicle is hooked up to a

shore computer via ethernet wet cabling, and the mission configuration files are written or

modified. An init file, which tells the vehicle software which instruments to activate during

the mission, is also created. During launch, the vehicle runs a countdown which defaults

to 60 seconds. The ethernet cable is disconnected, and the vehicle is manually submerged.

At the end of the countdown, the mission begins and the vehicle departs under its own

power. At the end of the mission, the vehicle powers itself to the surface and ends the

mission, cutting off power to the fin actuators and propeller. The vehicle is retrieved and

reconnected to the shore computer, and the data logfile of the mission is downloaded to the

shore computer. This logfile is parsed with a program called parse to convert the variables

the user wishes to view into a Matlab-readable form. The program parse also generates

a Matlab script, called review, which displays the graphs and plots most commonly used.

The user then runs review to view the data from the logfile.

The Odyssey II software is also designed to run on Unix workstations as a simulator -

running the original software but without the vehicle hardware. As shown in Figure 3-5a,

in the simulator, there is no need to modify an init file, launch or recover the vehicle, or

download the data.

Remotely controlled operations required or allowed several changes to this procedure.

First, in the vehicle software, a communicate routine was added immediately after the

dynamic control routine (Figure 3-4). This communicate routine selects and sends data from

the data structure to the modem for transmission to shore. It also receives new commands

and inserts them into the data structure. For actual vehicle operations, a communication

routine running as a separate process was used instead of inserting the routine directly

into the vehicle code (Figure 3-5c). This ability to exchange data and commands before

completion of the mission creates a new flowchart for vehicle operations. Whereas previously

the user would sit and wait between the AUV launch and recovery phases, the user could

now receive data as the vehicle collected it, and interactively modify the mission in progress.

Because of bandwidth limitations, the data sent back to the user contains only a por-

tion of the entire data logfile. For our software implementation, we had to decide which

b.) c.)

Figure 3-5: Flowchart for Odyssey II missions. a) Simulated mission. b) Real mission. c)
Real mission with communications.

variables to send, what format to send it in, and implement error checking and possibly

error correction. Also, because the parse and Matlab review routines were designed to

work with unchanging data, new routines were developed which could accommodate data

continuously streaming in. The possibility of sending vehicle data over a network led to

another question: What if more than one person wished to observe the data as it came

in? Because of the bandwidth problems of multi-node Internet communications described

earlier, our software utilized the MBone to multicast data so all interested parties could

observe it.

The ability to modify the mission file also presented challenges. Because of bandwidth

limitations, uploading an entirely new mission file, while possible, was considered unnec-

I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

ID Valuel IValue2 I... I Checksum

Figure 3-6: An Odyssey II network/modem communications packet. Sections variable in
content and length are in white, static portions are in grey. The packet begins with an
ID string followed by a ">" which identifies the type of information it contains. This is
followed by data, with each value separated by a space. After the data, a ":" followed by
a checksum string follows. The packet is terminated with a newline character.

essary for minor modifications to the mission. Instead, we decided on short control codes

containing the important information describing the changes to the mission. Control com-

mands were also checked. Again, because several observers could be controlling the vehicle,

these commands were multicast over the network.

3.4 Software Implementation

3.4.1 Vehicle software

The vehicle software was updated with a routine called comm which ran as a separate process

from the main vehicle code. The program comm could be started via the modems once the

vehicle was in the water. It would then dynamically link to the vehicle data structure,

giving it full access to the information contained within. Another file aboard the vehicle

would specify which variables comm should send over the modem. These variables were

typically heading, depth, altitude, and dead-reckoned position, although the software was

written so the elements of the data structure to be sent were specified in a file.

Variables to be transmitted were incorporated into a packet as shown in Figure 3-6. An

identifier string, followed by a ">", identified the contents of the packet. The names of the

variables were prepended by a "NAMES>" string, while the variables themselves began with

a "VALUES>" string. The variables were appended to this string, with a space between each

variable. Finally, a ":" followed by a checksum generated from the string was appended

to generate the final packet. A newline character would denote the end of the data packet.

This entire packet was then sent through the modem at preprogrammed intervals, typically

1 Hz, although as can be seen in Figure 3-7, a lower refresh rate would have sufficed.

The commands coming over the modem had a similar arrangement. The program comm

(running aboard the AUV) would receive the string and strip the checksum. It generated

a checksum from the remaining string and compared it to the received checksum. If they

_ _ m1

did not match, an error message was sent over the modem. If the checksums matched, the

received command was compared to a list of possible commands and appropriate action

taken. For most of our experiments these commands were kept relatively simple, such as

"abort" and "new setpoint." However, because comm had full access to the entire data

structure, more complex modifications to the command stack could be made.

3.4.2 Shore station software

The modem receiving the signals from the vehicle modem was connected to the shore station

computer - in our case a Silicon Graphics (SGI) Indy workstation. The shore station acted

as a relay station, passing vehicle data from the modem to the network, and user commands

from the network to the modem. A routine named sgicomm checked the serial port for

incoming data from the modem. Received data was tested for errors, and if error-free,

was multicast over a free MBone IP address. Similarly, command signals coming over the

MBone (same or different IP address) were checked for errors, and passed on to the modem

if error free.

3.4.3 Control station software

The control station is where the user sits. For most of our tests this was also the shore

station. However, from the software's point of view, the control station and shore station

always look like different computers whether or not they are the same. The user ran Matlab

on the control station, and a Matlab graphical user interface (GUI) script for monitoring and

controlling the vehicle (Figure 3-7). This GUI script linked to an external C program which

monitored the appropriate MBone IP address for data coming from the vehicle (via the

shore station). The first packet sent from the vehicle contained initialization information,

telling the Matlab script what variables would be sent and in what order. Subsequent

packets were displayed on a north/east plot and a depth/altitude plot. These plots were

dynamically updated as new data flowed in over the network. The script was simple and

flexible enough that other variables could be shown in similar plots with a little modification

to the code.

Another routine in the Matlab script accepted user input to abort the mission or re-

configure the current setpoint. These vehicle commands were encoded with a checksum

and multicast over the network, where the sgicomm program would receive and forward

them to the vehicle. Because all the data transmission between the comm program and the

user-end machine were multicast, it did not matter where the two machines were on the

Internet, or even how many user-end machines there were. All user-end machines received

and displayed data, and all could issue commands to the vehicle. For research purposes, the

logistical and security problems this caused were not deemed important, but this area will

need work in the future. In particular, care must be take to avoid conflicting commands

sent by different users.

3.5 Summary

The Odyssey II software design was made flexible to allow easy incorporation of new sensors

and instrument packages. This flexibility lent itself well to the addition of communications

routines for monitoring and controlling AUV operations. A communications routine running

aboard the vehicle was able to patch directly into the vehicle's data structure, giving it access

to all the variables and commands used by the vehicle. In addition, the vehicle's layered

control software design allowed communication of short, high level command codes to alter

the vehicle's mission. Transmissions to and from the vehicle were relayed through a shore

station computer to the Internet. In order to allow multiple users to observe and control

the vehicle, these transmissions were multicast over the MBone. On the user's computer, a

set of Matlab routines dynamically displayed data received from the vehicle, while allowing

simple commands to be sent. Results of our experiments using this software are discussed

in the next chapter.

Figure 3-7: The Matlab graphical user interface designed for monitoring and controlling
the Odyssey II. While the plots used in the course of this research was limited to overhead
dead reckoned and depth plots, any received data could be plotted using simple Matlab
commands.

44

Chapter 4

Experiments

4.1 Introduction

This chapter describes our experiments controlling and monitoring an AUV with radio

modems. It begins with a description of the additions and modifications to the vehicle

hardware, as well as computers and network configurations. Next, the two major experi-

ments are described, along with their goals, setup procedures specific to each experiment,

and results. First our experiments on the Charles River, then our tests in an ocean envi-

ronment at Buzzard's Bay are detailed. Vehicle position plots of several experiments are

included to clarify the intent or finding of these experiments.

4.2 Hardware Implementation

Central to our communications experiments was an MIT Sea Grant Odyssey II AUV (de-

scribed in Chapter 2). In addition to the software modifications described in Chapter 3,

several new pieces of hardware were added or modified to the AUV. These included the

modems, a box to protect the modem and battery from water, the tow float upon which

the box was mounted, and a cable to connect the modem to the AUV. In addition to the

AUV, we used one or two Silicon Graphics Indy workstations to act as the shore station and

control user's workstation. For the Internet portion of these experiments, the computers

were connected to MIT's local area network (and hence the Internet).

4.2.1 RF Modems

We used a pair of Proxim radio frequency (RF) modems capable of 121 kbps emulating

either a serial modem (point-to-point) or a LAN (broadcast point-to-multipoint) [42]. For

our operations we kept the modems in serial mode with a 19.2 kbps transmission rate. The

omnidirectional antenna for the modem measured about 4 inches in length and mounted on

one end of the modem. We added a penetrator to allow us to mount the antenna outside

the watertight box. For the Charles River experiments the antenna was mounted outside

with satisfactory results. During the Buzzard's Bay experiments, after complete failure to

receive any signals from the modems, we moved the antenna inside the box with excellent

results. To assess the effects of dropouts in modem transmissions, we turned off buffering in

the modems during modem setup. However, the modems continued to buffer transmissions

requiring us to send deliberately corrupt data to test our software error-checking.

4.2.2 Modem cable

The AUV's RF modem was mounted on a float towed behind the vehicle. A serial cable

approximately 8 m long and 3 mm in diameter ran between the float and the vehicle. One

end of this cable was wired to fit an extra Impulse wet-connector which in turn plugged

into a sphere penetrator leading to a serial port on board the vehicle computer. The other

end was a simple DB9 serial plug which went to the RF modem.

To remove the towing load from the serial cable, a tether made of low-stretch cord was

connected in parallel and acted as the main load-bearing member. One end was tied to

the lift point on the vehicle, while the other was attached to the float carrying the modem.

The cord and serial cable were joined with tape and cable ties, with some slack in the serial

cable to assure the cord took most if not all of the load. To prevent this tether from fouling

the propeller, a small hole was drilled into the top of the rudder, and the tether was cable

tied to the rudder. Small pieces of floatation were attached along the remaining tether to

assure it wouldn't sink into the propeller while slack. For the experiments at Buzzard's Bay,

the serial cable was replaced by a length of 3 inch Impulse 8-conductor wet cable. This

resulted in serious vehicle performance degradation which will be discussed in the following

sections, but did not affect the outcome of our experiments.

4.2.3 Tow float

The tether was tied to the front of a 3 ft boogie board used as a float for the RF modem.

The usual tow float used during shallow-water Odyssey operations on the Charles River had

insufficient buoyancy and stability to hold the modem box upright. For our operations on

the Charles River, the boogie board proved adequate as a tow float. During the Buzzard's

Bay operations, due to the higher seas and additional weight of the Impulse wet cable, we

had to tape the original tow float to the bottom of the boogie board for additional buoyancy

and a stabilizing fin.

4.2.4 Modem box

Strapped and taped to the float was a watertight box measuring approximately 12 in by

9 in by 5 in high. While not pressure rated, it was sealed with a rubber O-ring at the seams.

An additional layer of environmental tape (the same tape used to seal the vehicle spheres)

helped to assure the watertightness of this seal. The top of the box screwed down into the 0-

ring with six long screws. In addition to the straps and tapes, this made opening and closing

the box a laborious process taking several minutes. The box contained two penetrators -

one for the serial cable and one for the antenna. The serial cable penetrator was originally a

hollow plastic tube running through a hole in the box. A large amount of silicone, monkey

gum, silicone grease, and tape was needed to make this penetrator watertight (splash-

proof). For the Buzzard's Bay operations, we were able to replace this with a spare sphere

penetrator with rubber O-ring. The antenna penetrator was a permanently mounted L-joint

and sealed around the outside with silicone.

Mounted inside the box with velcro and cable ties were the RF modem and a sealed lead-

acid battery ("Gel-Cell") for power. The power cable was wired with a switch mounted near

the top of the box so that modem could be turned on or off without having to completely

open the box. This allowed us to quickly reset the modem when something went wrong. It

also let us reduce drain on the battery when the modem was not in use.

4.2.5 Shore station modem

An identical Proxim RF modem acted as the shore station modem, using either omnidi-

rectional or directional (Yagi) antennas. As expected, the directional antenna provided

Table 4.1: Charles River Experiments, 31 October 1995.
Run Mission Antenna Depth Duration Description

08 straight out omni 2m 50s Telemetry reception test
12 straight out omni 2m 90s Telemetry reception test
14 box omni 2m 330s Range test for omnidirectional antenna
15 box omni 2m 450s Range test for omnidirectional antenna
17 survey yagi 2m 1700s Range test for directional antenna
20 survey yagi 2m 1750s Range test for directional antenna

more range at the cost of directionality. However, for most of our operations we found the

omnidirectional antenna to be sufficient.

4.2.6 Workstation

The shore station modem plugged into a Silicon Graphics Indy (SGI) R4000 running IRIX

5.3. In theory, any computer with a serial port capable of generating and receive messages

compatible with the command set and vehicle telemetry would have sufficed. However,

since we planned to control and monitor the vehicle over a network and the Internet, we

picked a Unix workstation as the best development platform for generating portable code

utilizing both the network and serial ports.

4.3 Charles River Experiments

For the Charles River experiments in October and November of 1995, we placed the Unix

workstation and the second modem with directional antenna at the dock of the MIT sailing

pavilion. An ethernet drop at the dock provided the connection to the Internet. The user

interface package usually ran on this workstation, but data was always multicast over the

MBone (deliberately limited to only MIT's network for these experiments), so anyone on

MIT's network could have observed the incoming data at any time.

4.3.1 31 October 1995

An initial series of trials on October 31 (Table 4.1) only received telemetry from the

vehicle without attempts at control. Omitted run numbers indicate unpowered tests of the

vehicle near the surface, simulated missions, and missions which were aborted soon after

launch for a variety of reasons. Because a navigational array was not deployed in the water

E•0C

east (meters)

Figure 4-1: Dead-reckoned vehicle trajectory for Charles River experiment 31 October 1995,
mission 12.

at the time of these experiments, all positions are dead-reckoned assuming a constant vehicle

velocity of 1.35 m/s.

We had extensively tested our software in the lab with a vehicle simulator so missions 8

and 12 (Figure 4-1) were simply to test that the software was working correctly with a real

vehicle. After determining that we were receiving vehicle data telemetry, missions 14 and

15 tested the range of the modems using the omnidirectional antenna (Figure 4-2). The

modem's range seemed to extend well past 200 m, but there were periods of 5 to 20 seconds

during which we received no telemetry.

We repeated these experiments with the directional (Yagi) antenna using a survey pat-

tern to determine both range and directionality of coverage, shown in missions 17 (Figure 4-

3) and 20 (Figure 4-4). As expected, coverage extended further than the omnidirectional

antenna, with dropoffs towards the sides. However, we still experienced periods of 5 to

20 seconds during which we received no telemetry.

Although we had explicitly turned off data buffering in the modems, it became apparent

the modems were still buffering and resending any erroneous data. This had the effect of

making the plots in Matlab useless for analyzing these dropouts because the missing data

were eventually sent, making the Matlab plots appear error-free upon later analysis. Thus

we had to manually record the times the dropouts occurred. Analysis failed to yield a

pattern, but our primary suspect at the time was a faulty modem cable which may not have

east (meters)

Figure 4-2: Dead-reckoned vehicle trajectory for Charles River experiment 31 October 1995,
mission 15.

Table 4.2: Charles River Experiments, 7 November 1995.

Run Mission Antenna Depth Duration Description
02 survey yagi 2m 665s Test of equipment
08 straight out yagi lm-3m 110s Abort command test, depth change test
10 box yagi 1m-3m 450s Abort command test, depth change test
12 box yagi lm-3m 421s Abort command test, depth change test
14 box yagi lm-3m 421s Abort command test, depth change test
15 straight out yagi lm-3m 107s Depth change test, propeller fouled
17 straight out yagi 2m 107s Mission aborted
18 straight out yagi lm-2m 205s Commanded depth change, mission aborted
19 commanded yagi 2m 391s Commanded heading changes
20 survey yagi 2m 979s Range test

been entirely waterproof. This theory was rejected after the Buzzard's Bay experiments,

but because the communications link was so unreliable, we decided to use the directional

antenna for future experiments, in the hope that the additional gain would help prevent

some of these dropouts.

4.3.2 7 November 1995

Our experiments on 7 November 1995 represented our first attempts to send commands

to the AUV during a mission. Mission 2 was a short survey to determine that all equipment

and software was functioning properly, and to test if the dropouts we had had previously

encountered were still present. They were, and without any real pattern, we decided to

)

-50 0 50 100 150 200 250
east (meters)

Figure 4-3: Dead-reckoned vehicle trajectory for Charles River experiment 31 October 1995,
mission 17. Broad portions indicate times in which we observed RF modem dropouts.

east (meters)

Figure 4-4: Dead-reckoned vehicle trajectory for Charles River experiment 31 October 1995,
mission 20. Broad portions indicate times in which we observed RF modem dropouts. Note
the reduced range compared to mission 17, especially near the end. This was probably due
to the batteries being nearly drained.

-150 -100 -50 0 50 100 150
east (meters)

Figure 4-5: Dead-reckoned vehicle trajectory for Charles River experiment 7 November
1995, mission 12.

ignore them for the time being. Missions 8, 10, 12 (Figure 4-5), and 14 represented tests of

our abort command, which immediately ends the mission aboard the vehicle computer.

Satisfied that the abort command was working, we tried changing the depth of the

vehicle during missions 15 and 18. The modem cable ended up being fouled by the propeller,

so we redistributed the floatation foam to allow greater clearance. Mission 19 (Figure 4-

6) represents the first time the vehicle was steered during a mission by sending a new

commanded heading. We were able to steer the vehicle in a rough rectangle, send it back

towards the dock (reducing the time needed to retrieve the vehicle), then abort the mission.

With daylight running out and the modem battery voltage running low, we decided to

investigate the possibility that the dropouts were somehow related to battery voltage. We

sent the vehicle on another survey mission (Figure 4-7) far out into the river. Due to the

drop in battery voltage, we lost contact with the modems at a shorter range than on the

previous missions, and being unable to send an abort command, were forced to manually

abort the mission by taking a boat out and grabbing the tow float (hence the erratic dead-

reckoned path in the figure). Since a drop in battery voltage seemed to cause an overall

reduction in modem range instead of an increased number of dropouts at close range, we

dismissed it as the cause of the dropout problem.

Ba
a)

0r_

east (meters)

Figure 4-6: Dead-reckoned vehicle trajectory for Charles River experiment 7 November
1995, mission 19.

-200 -100 0 100 200
east (meters)

Figure 4-7: Dead-reckoned vehicle trajectory for Charles River experiment 7 November
1995, mission 20. The erratic path at the end was due to aborting the mission by grabbing
the tow float.

Table 4.3: Charles River Experiments, 16 November 1995.

Run Mission Antenna Depth Duration Description
10 commanded yagi 2m 30s Propeller fouled, mission aborted
14 commanded yagi lm-3m 330s Commanded heading changes to form box
16 commanded yagi lm-3m 330s Commanded heading changes to form box
20 1 commanded yagi 2m 361s Commanded heading changes to form box

-100 -50 0
east (meters)

50 100

Figure 4-8: Dead-reckoned vehicle trajectory for Charles River experiment 16 November
1995, mission 14.

4.3.3 16 November 1995

The experiments on 16 November 1995 were further tests sending the vehicle new com-

manded headings over the modems. Also implemented for these missions was rudimentary

error-checking of the commands and data sent over the modem using a checksum. However,

since the modems seemed be error-checking and buffering data on their own, this improve-

ment had no noticeable effects other than peace of mind. Missions 14 and 20 (Figures 4-8

and 4-9) demonstrate some of the simple boxes made by steering the vehicle.

4.3.4 21 November 1995

On 21 November 1995, due to a near-disaster, we implemented another safety feature

in the vehicle control software. We were also able to control and monitor the vehicle from

the MIT Sea Grant AUV Lab over the Internet for the first time.

Figure 4-10 shows mission 3 in which we were commanding the vehicle in patterns other

than simple boxes. Towards the end of the mission, we noticed a crew boat approaching.

,vv

................:

-100 -50 0 50 100
east (meters)

Figure 4-9: Dead-reckoned vehicle
1995, mission 20.

trajectory for Charles River experiment 16 November

Table 4.4: Charles River Experiments, 21 November 1995.

Run Mission Antenna Depth Duration Description

03 commanded yagi 2m 819s Nearly steered into crew boats
08 circling test yagi 2m 300s Test of circling routine
12 commanded yagi 2m 600s Commanded heading changes with circling
15 Internet control yagi 2m 817s Commanded heading changes via Internet
17 Internet control yagi 1.5m-2m 895s Commanded heading changes via Internet
18 Internet control yagi 1.5m-2m 835s Commanded heading changes via Internet

E

0Z

East (meters)

Figure 4-10: Dead-reckoned vehicle trajectory for Charles River experiment 21 November
1995, mission 3.

Judging the crew boat to pass between us and the vehicle, we commanded the AUV to

head away from us. Shortly afterwards, we realized we had -erred and the vehicle was now

headed into the path of the crew boat. We sent another command to the vehicle to head

back towards us. Unfortunately, a communications dropout occurred at this time and the

vehicle continued towards the crew boat. It passed well in front of the crew boat, only to

turn back around as the modems had buffered the turn command during the dropout and

had finally managed to send the command through. At this point we got in our boat and

grabbed the float by hand, stopping the vehicle. Since the vehicle was still powered, the

dead-reckoned position, which assumes a constant 1.35 m/sec velocity, shows the vehicle

running straight into the wall at full speed. If we had not grabbed the vehicle by hand, and

if a dropout had blocked our abort command, the vehicle would have run into the wall as

its dead-reckoned trajectory indicates.

This experience taught us that any command sent to an autonomous vehicle should

always be assumed to be the last command it will ever receive, and a routine command right

now may be a disastrous command a short time later. In response, we implemented a circling

routine. A fixed amount of time (60 seconds in these runs) after receiving a new command,

the vehicle loiters in a tight circle to await a new command. In the future, the vehicle could

default to some other preprogrammed behavior. In the presence of navigation equipment

capable of locating the vehicle's position, one approach is to use a preprogrammed boundary

U

-50

-100

o -150

-200

-100 -50 0 50 100 150
east (meters)

Figure 4-11: Dead-reckoned vehicle trajectory for Charles River experiment 21 November
1995, mission 8.

which the vehicle is not to cross. Figure 4-11 shows our first test of the circling routine.

With the circling routine in place, we attempted to operate the vehicle from a remote

location. One person monitored the vehicle from the dock, while another commanded the

vehicle over the Internet from the Sea Grant laboratory several blocks from the river. Our

only major problem was that MIT Network Services had shut down the MBone repeater for

the sailing pavilion because it had not been used for a month since we had first requested

it be activated. Since our multicast code sends all data and commands over the MBone,

without the repeater, no multicast communications between the dock and lab were possible.

Because we did not know the repeater had been shut down, we spent several hours stepping

through our code trying to locate the problem.

Once the multicasting repeater was reactivated, both the dock computer and laboratory

computer were able to simultaneously monitor and control the vehicle during a mission

(Figures 4-12, 4-13, and 4-14). All the commands were sent from the laboratory computer

except for the abort command to end each mission. However, because the laboratory was

out of sight of the actual vehicle and the river, we had to rely extensively on telephone

communications with the person at the dock to verify the vehicle was doing what our display

said it was doing. Because of this lack of feedback, we limited most of our commands to

the East-West direction, minimizing the risk of sending the vehicle into the dock or a wall.

This problem should disappear with time as users gain confidence in the software and the

correspondence between the vehicle's actual position and that shown on the GUI.

......

.I..I.il ,

S. . ..

0

-50

E 100

0•oz
-150

-200

-250

-150 -100 -50 0 50 100 150 200
East (meters)

Figure 4-12: Dead-reckoned vehicle trajectory for Charles River experiment 21 November
1995, mission 15.

-50 0 50 100
east (meters)

Figure 4-13: Dead-reckoned vehicle trajectory for Charles River experiment 21 November
1995, mission 17.

58

MIT Sailing
Pavillion

.........

-- · · · · ·

..

...:.
.....

...

-50 0 50 100
east (meters)

Figure 4-14: Dead-reckoned vehicle trajectory for Charles River experiment 21 November
1995, mission 18.

Table 4.5: Buzzard's Bay Experiments, 9 April 1996.
Run Mission Antenna Depth Duration Description
25 commanded omni 2m 1200s Test with antenna inside box
26 commanded yagi 2m 1001s Tried to spell MIT

4.4 Buzzard's Bay Experiments

During the Buzzard's Bay experiment in March-April 1996, we tested telemetry and

control of the vehicle in salt water at an actual experiment site. Operations were based

from the R/V Diane G, with an SGI workstation acting as a node and shore station as with

the Charles River experiments. Because the acoustic moderns were not integrated yet, we

continued to use the radio modems. After initial trials resulted in no telemetry whatsoever,

we ordered a waterproof cable to replace our handmade cable. When this failed to correct

the problem, we tried placing the float mounted antenna inside the watertight box, as

it was the only remaining hardware still exposed to water. We received strong telemetry

afterwards, and even the dropout problem we experienced on the Charles River disappeared.

Unfortunately, the replacement cable was much thicker and heavier than our handmade

cable, and combined with the heavier seas on the bay, caused the tow float to become

unstable, flipping it over several times. The normal Odyssey II tow float has a stabilizing

fin, and we were able to tape this float onto the radio modem float. While this combined

with the additional modem cable thickness drastically increased the drag on the vehicle,

150

0

50

0

-50 0 50 100 1.50 200
East (meters)

Figure 4-15: Dead-reckoned vehicle trajectory for Charles River experiment 9 April 1996,
mission 25.

the vehicle was still able to maintain depth and operate normally albeit slowly.

Improvements to the software included full cyclic redundancy check (CRC) error check-

ing, and the ability to request and modify any variable in the vehicle computer's data stack.

Although the R/V Diane G had no connection to the Internet, the software was still config-

ured to multicast, and had there been an Internet connection or another computer listening

on the ship's local area network, it would have been able to simultaneously observe the

experiment with us.

Figure 4-15 shows our first mission with the antenna mounted inside the watertight box.

After verifying that we were getting good telemetry, we decided to test the range of the

omnidirectional antennas now that we had a dropout-free link. The further boxes represent

our steering the vehicle further and further away from the ship. No dropouts or loss of

signal due to range was detected, and we decided to do something more productive.

Figure 4-16 shows the vehicle steered from the R/V Diane G to spell most of the

initials of MIT. Due to the range this feat required, we switched to the directional antenna,

which also functioned without any dropouts. Unfortunately, an operator error and rapidly

approaching Nor'easter forced us to abort before completion.

'

200

150

Q

too

0

50

0

-50 0 50 100 150 200 250 300
East (meters)

Figure 4-16: Dead-reckoned vehicle trajectory for Charles River experiment 9 April 1996,
mission 26.

4.5 Summary

This chapter has described our remote control and monitoring experiments of an AUV on

the Charles River and in Buzzard's Bay. From these experiments, we have determined

several issues to deal with in future experiments. Communications with the vehicle are

unreliable, and time delays can cause commands to have unintended effects. The vehicle

must have enough onboard intelligence to extract itself from dangerous situations caused by

partial or erroneous commands. While the dropouts we encountered were random, shadow

zones producing similar effects can be expected with acoustic communications. Because

multicasting is not yet widely used throughout the Internet, certain problems can arise

which are difficult to diagnose unless one is well versed in the low-level network operations

of multicasting. Confidence in a new system with no direct visual feedback is low and

users will need time to acclimate. Problems associated with communications in a multiple

vehicle environment are discussed in the next chapter. And further exploration of all these

problems and possible solutions are covered in Chapter 6.

20

--I

Chapter 5

Multiple AUV Communications

Management

5.1 Introduction

The previous chapters have explored the issue of communicating with a single AUV during

a mission. As mentioned in Chapter 1, one type of application involves the deployment of

multiple AUVs in an experiment site. Communicating with multiple moving vehicles is a

complex problem due to the signal propagation delays and possibility of signals interfering

with each other. Some of these issues are identical to those -encountered in radio and elec-

tronic network based multi-node communications, and various solutions to those problems

are presented and discussed. However, the properties of the ocean as an acoustic commu-

nications channel are rather unique, and the radio and network solutions are not entirely

applicable. Strategies to address problems specific to the ocean are discussed along with

their potential benefits and drawbacks.

5.2 The Multiple AUV Communications Problem

In communications with a single AUV in the operational area,, several implicit assumptions

were made. The AUV and shore station (or node) were assumed to be the only high-power

acoustic sources in the immediate location and in the frequency bandwidth assigned for

acoustic communications. Because the bandwidth required to transmit the AUV's position

was so small, the shore station had the luxury of receiving regular position updates from the

AUV as it moved through the water. The AUV always had the most complete information

about its surroundings because it was the only source of new information. With a single

vehicle, position fixes relative to a global coordinate system can be made using methods

more accurate than traditional triangulation. [6]. However, many important missions for

AUVs will require the use of multiple vehicles. Hence, we decided to continue our work by

addressing the issue of communications between multiple vehicles.

If multiple vehicles are to operate together during a mission, the above assumptions

cannot be made. Multiple acoustic sources are in the water, and two or more transmissions

may arrive at a receiver simultaneously (collide), thus garbling their contents (Figure 5-1).

Preventing these collisions involves some reduction in the bandwidth available for any one

AUV to transmit information. This has several implications for monitoring AUVs (by the

user or by the vehicles themselves). The navigation problem increases in complexity [2] due

to potential collisions of navigation signals, and all vehicles may not know their current

position relative to a global coordinate system at a given time. For the vehicles to operate

together on a common goal, they must share the information they gather. Because of

the bandwidth limitations, this information may not be distributed in a timely manner.

In particular, the position may be inaccurate or unimportant enough to be impractical to

transmit. This may further reduce the available bandwidth, thus compounding the problem

even more.

5.2.1 Criteria

In light of these difficulties, several criteria can be used to appraise the effectiveness of a

multi-vehicle communications scheme:

* Utilization of the communications channel

* Maximum bandwidth available to one vehicle

* Collision rate

* Message queueing delay

* Scaling with number of vehicles

Utilization of the communications channel is the most obvious measure. As more and

more information needs to be exchanged, transmissions should be occurring more frequently.

bcd

V5-

V4 -

V3-

V2 -

V1 -

I_ý a 44No!I I time
ab c d

Figure 5-1: Transmission collision, a) Vehicle sends message to its modem. b) Modem
begins transmitting. c) Collision with message from another modem occurs. d) Modem
stops transmitting. In time sequence, vehicle 1 sends a message to its modem for trans-
mission. After a processing delay, a, the modem begins transmitting message M1, which
will take time f to propagate to the furthest vehicle. While vehicle 1 is transmitting, vehi-
cle 4's modem begins sending a message M4. Shortly after, vehicle 4 detects a collision and
stops transmitting. However, vehicle 1 does not yet know there is a collision and continues
to transmit. Finally, M4 reaches vehicle 1, which realizes there is a collision and stops
transmitting.

In a perfect scheme, the channel would be saturated with transmissions 100% of the time.

The portion of the channel utilized can be viewed overall, or on a per vehicle basis. Another

criteria is the maximum bandwidth available per vehicle. Due to buffering or collision-

preventing requirements, some communications schemes must devote portions of the avail-

able bandwidth to non-data transmissions. Yet another criteria is the number of collisions

relative to channel utilization. Collisions garble transmissions, forcing the information to be

rebroadcast, thus wasting bandwidth. 100% utilization of a channel is useless if none of the

information being transmitted is correctly received by the other vehicles. Because the chan-

nel must be shared, some vehicles will have to wait to transmit their information. While

waiting or transmitting, the vehicle may collect more data which must be queued. The

expected duration of these delays can help us assess whether the communications scheme

is quick enough to be useful. Finally, measurements for each of these criteria will change as

the number of communicating vehicles increases. Thus how a particular communications

scheme scales with the number of vehicles is an important criteria.

" ~" L

\re

V1

V-

V4

V3

V2 -

VI -
ne

ab d

Figure 5-2: Delays in a transmission signal. a) Vehicle queues data. b) After a processing

delay, a, the vehicle's modem begins to transmit the data, M1. c) After a time, T, called

the transmission delay, the modem finishes transmitting. d) The data reaches the furthest

vehicle or the edge of the deployment area after a propagation delay, 3.

5.2.2 Definitions

In order to measure these criteria, several definitions and assumptions must be made to

state the problem mathematically. Figure 5-2 shows a generic transmission from a vehicle

into the communications channel. The parameter a represents a processing delay plus a

queuing delay. The processing delay is the amount of time it takes for the onboard computer

and modem to convert information into acoustic signals. The queuing delay is the time the

vehicle must wait for the channel to become free. After that is T, the transmission delay -

the time needed to transmit the information. Following completion of the transmission is

,3, the propagation delay, which is the time required for the signal to propagate from the

vehicle's current position to all other vehicles (if their positions are known), or throughout

the entire operating area. For acoustic transmissions, it is directly tied to the speed of

sound. For each vehicle receiving a transmission, there is also a processing delay, 'y, which

is the time needed for the modem to extract the original information from the received

acoustic signal.

For simplicity, n vehicles are assumed to be operating in two dimensions in the same

horizontal plane, within a circular region of diameter R. For clarity, figures will assume the

vehicles are operating in a line with each other. On occasion, subscripts will be used to

denote values for a particular vehicle. Sound speed, c, is assumed to be constant, and the

effects of multipath are not considered except implicitly as a contribution to -y, the received

__ _·~

_ __liE:

V1 -

signal processing delay. Furthermore, because a and y are hardware-dependent, none of

our calculations explore their ramifications in detail. For brevity, we will use a to denote

all delays other than transmission and propagation. We will also assume that all signals are

received (although they may be garbled) and all collisions are detected.

The total bandwidth of a channel will be denoted by B. For slotted communications,

in which time is divided into regular slots defining when a transmission can begin, S is

the duration of a time slot. Data packets needing to be transmitted are assumed to arrive

according to independent Poisson processes where A is the overall arrival rate, and A/n is

the arrival rate at one vehicle.

Our evaluation criteria are U, the fraction of the transmission channel utilized for trans-

mitting data; Ui, the fraction of the transmission channel utilized by a single vehicle; Bi, the

bandwidth available to a single vehicle; C the fraction of transmitted packets that collide

with other packets; and W, the queueing delay before a packet is transmitted.

5.3 Related Problems

The problem of multiple nodes communicating over a shared channel is not unique to

ocean acoustics. These systems are referred to as multiaccess channels, and a variety of

schemes have been developed to classify and address their differences. Examples of other

multiaccess channels include satellite channels and multitapped buses such as computer

networks. Satellites often receive data simultaneously from multiple sources over a single

antenna. The bandwidth of the antenna must be allocated among the transmitters for

the satellite to receive all the incoming information. Computer networks allow multiple

computers to communicate with each other. However, should several computers attempt to

communicate at once, their signals will interfere, causing a collision resulting in a failure of

any computer to receive the signal.

Solutions to the multiaccess problem fall roughly into two categories [10]. One is the

scheduled approach, in which transmissions are ordered in such a way that they do not in-

terfere with each other. Multiplexing, whether in the time or frequency domains, falls under

this category. Each node (vehicle) transmits in its assigned time or frequency. Since the

other nodes are aware of when or how the other nodes will transmit, there is no interference

between nodes.

The other approach is a "free-for-all" method in which nodes transmit their information

as soon as they can. This invariably leads to collisions, requiring that the information

be retransmitted. Statistical modeling methods can be used to analyze how often these

collisions occur and how they affect the system. This allows a particular system to be

tuned to provide optimal performance.

A variety of additional strategies have been developed to address shortcomings of these

two methods. For example, carrier sensing is often used to reduce collisions in a "free-for-

all" system by suppressing nodes from transmitting while one node is using the channel.

Unfortunately, carrier sensing is primarily useful when the propagation delay is very small,

and hence is inapplicable to our problem. On the other hand, reservations are useful for

systems with large propagation delays like ocean acoustic channels. In a reservation system,

each node preallocates as much channel bandwidth as it needs to transmit its information.

Since the reservations are smaller in size than the actual data, they can be sent more quickly

and with less risk of collisions.

5.4 Communications Schemes

5.4.1 Multiplexing

Multiplexing splits up the available bandwidth so that each vehicle can transmit for a set

amount of time during which its signal is guaranteed not to collide with another vehicle's

transmissions. For multiplexing with n vehicles and available bandwidth, B, in an optimum

case each vehicle has B/in fraction of the bandwidth available for its transmissions. In reality,

some bandwidth must be sacrificed as a buffer to clearly separate the sections allocated to

each vehicle. The two most prevalent forms of multiplexing are time domain and frequency

domain multiplexing, which are described below. A third scheme, code domain multiplexing,

exists in which orthogonal code sequences are assigned to each node. We did not investigate

code domain multiplexing at this time. Multiplexing communications schemes do not suffer

from collisions.

Time domain multiplexing

Time domain multiplexing (TDM) divides the available bandwidth into time slots (Figure 5-

3). Each vehicle is assigned a slot during which it can transmit. A short time buffer should

time

Figure 5-3: Time domain multiplexing. Time is divided into regular slots of duration
a + T + 3, the sum of the processing, transmission, and propagation delays. Each vehicle
is assigned a different slot in which it is allowed to transmit messages. In the first slot,
vehicle 1 transmits. Vehicle 2 transmits next, vehicle 3 transmits third, and so on. When
all vehicles have transmitted, the time slots repeat.

be added to insure separation of slots, but we will assume the buffer time is shorter than

the processing delays in a. When all vehicles have transmitted, the cycle repeats. In this

simplest implementation the length of a time slot, S, is

S=a + T + (5.1)

of which only T represents utilization of the communications channel. In order to base our

time slots on a clock synchronized between all vehicles, we have assumed / to be based on

the largest possible distance between any two vehicles. That is,

RP R= (5.2)
c

Hence,

T T
U S a+TT+ (5.3)

Because time slices are divided evenly between vehicles, the utilization per vehicle, Ui,

is just U

T
UT= R (5.4)i n(a + T +)

While a vehicle is transmitting, the maximum bandwidth available to it is the entire

bandwidth of the channel. Bi = B.

V4 -

V3

V2 -

II1 -

L S time

Figure 5-4: Optimized time domain multiplexing. Vehicles transmit in succession as with
normal TDM, but instead of waiting for the full propagation delay, /, each vehicle begins
transmitting when it detects the previous vehicle has finished. This eliminates wasted idle
time while still avoiding collisions. The third vehicle has already begun its transmission by
the time a normal TDM time slot, S, has passed.

Because vehicles must wait their turn before transmitting, a substantial queueing delay

can develop. For TDM, the queueing delay is

W = (5.5)
2(1- A)

time slots [10]. The delay increases linearly with n while the bandwidth utilized by a vehicle

has an inverse relationship with n.

For large propagation delays, most of the time is spent waiting for the channel to become

clear from propagation. Because / is large for most underwater acoustic transmissions, a

more complex scheme could reduce this delay by having the next vehicle transmit as soon as

it detects that the previous vehicle has finished (Figure 5-4). This method assures there are

no collisions in much the same way paper cones will stack even their points do not line up.

The location of the vehicles then comes into play, as the propagation delay then becomes

the time for the signal to travel from vehicle Vi to Vi+ 1 . Then

Ri,i+± R<= < - (5.6)
c c

where Ri,i+l is the distance between vehicles Vi and Vi'+ The other criteria are identical to

V | y

V5Iv

V4-

i
I I h

V3 -

N

tL
XI I

V2- T
I.

I I h

V1 -

time

Figure 5-5: Frequency domain multiplexing. Each vehicle is assigned a different frequency
band. The different bands are separated by a buffer, b to prevent interference due to doppler
or other frequency shifts. Each vehicle owns its band entirely, and can transmit at any time
without fear of collisions. However, the bandwidth available to a single vehicle is greatly
reduced.

regularly spaced TDM. The duration of a time slot is then S = a + T + ±
C

An obvious way to further refine this method would be to minimize the total time wait-

ing for propagation between vehicles by minimizing n-1 Ri,i, the sum of the distances

between consecutive vehicles. Unfortunately, this is the classic traveling salesman problem

of minimizing distance traveled, which rapidly becomes computationally intensive for large

n even if we were to assume we knew each vehicle's position at all times. Another potential

problem with this method is maintaining synchronization or reinitializing the system should

a vehicle become disabled or enter a shadow region.

Frequency domain multiplexing

Frequency domain multiplexing (FDM) divides the available bandwidth into frequency slots,

each assigned to a vehicle (Figure 5-5). It has an advantage over TDM in that vehicles do

not have to wait their turn before transmitting, thus eliminating P. However, unlike TDM,

each vehicle does not get exclusive use of the entire channel. The bandwidth must be

divided into n slots, and to compensate for effects such as doppler shifts, a buffer, b, must

be added between slots. So the bandwidth available to each vehicle is actually

B - b(n - 1)Bn (5.7)

11 - -- ~--""-~~-~~----
I I

T

As explained in Chapter 2, the size of b is determined primarily by doppler shifts. A typical

size for b is 80 Hz [22].

The maximum utilization is then

EU 1 Bi T B-b(n-1) TU -Z= - (5.8)B S B S

The queueing delay is
AnW = (5.9)

2(1 - A)

time slots [10]. However, since each vehicle has a dedicated frequency channel, propagation

delay is not a factor and the duration of a time slot is S = a + Ti. The price for a dedicated

channel is increased transmission time because the maximum bandwidth available to each

vehicle is only Bi. So

TB
Ti= (5.10)

Bi

and
TBn

S =a+ (5.11)
B-b(n- 1)

As with TDM, the delay increases approximately linearly with n, while the bandwidth

per vehicle has an inverse relationship. Further analysis [10] shows that the queueing delay

for TDM is WTDM = WFDM + a, meaning the average wait to transmit data with TDM is

longer, especially if n is small or A is small (sparse data). However if A approaches 1 and

n is large, the transmission time for FDM becomes longer and messages actually get sent

with more total delay than with TDM.

5.4.2 Slotted Aloha

Slotted Aloha was developed as an alternative to the multiplexing methods described above.

Multiplexing guarantees that there will be no collisions between vehicle transmissions at

the cost of bandwidth. For large numbers of vehicles, this cost can be quite high and

so multiplexing does not scale well with n. In slotted Aloha, each vehicle transmits its

information as soon as it is available. If there is a collision, the involved vehicles wait a

random amount of time before retransmitting (Figure 5-6). Because the vehicles do not

have to wait for their slot to come up or transmit within a limited frequency space, Aloha

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 time

Figure 5-6: Slotted Aloha. Time is broken into slots as with TDM. There is no management
and vehicles transmit whenever they have data. In the first slot, vehicle 1 and vehicle 5
transmit, resulting in a collision. Both wait a random number of slots before transmitting
again. In the second slot, vehicle 2 is the only one to transmit and all vehicles receive
its data. In the fourth slot, vehicle 1 has randomly waited two slots and retransmits its
previous message, this time without a collision. In the sixth slot, vehicle 5 retransmits its
message.

allows information to be transmitted sooner and more quickly at the cost of a few collisions.

For an ideal case, Aloha has a throughput of 1 - 0.368 timeslots. That is, at its optimum

transmission point, approximately 36.8% of Aloha's timeslots contain data. Another 36.8%

are empty, while the remainder contain collisions. This optimum point occurs when A, the

rate at which data is queued, equals the rate it is transmitted. If A increases beyond this

point, the frequency of collisions becomes high enough that packets backlog faster than they

can be sent out.

By sending data only at the beginning of time slots (hence slotted), we reduce the

probability of a collision. Figure 5-6 shows that for slotted Aloha, a time slot only need

extend slightly past the propagation delay. Without the slots, we would have to account

for a worst-case collision (Figure 5-7) where twice the propagation delay must pass before

we detect a collision. So for slotted Aloha, a typical slot length is

S=za+T+/¾= a+T+ (5.12)c

Slotted Aloha is useful because this transmission rate of 1 is attained for large n. As

shown in Figure 5-9, below the , point, Aloha operates much more efficiently than ei-

ther TDM or FDM with even moderately sized n. At its peak transmission rate, Aloha's

utilization is

V4 -

V3

V2 -

V1 -

bcd

I I I

-*Ia h -1 P3 0-1.- - P ! N ! 14 - P3 -

S.

time
ab c d

Figure 5-7: Worst-case transmission collision. In this unslotted example, the two furthest
vehicles transmit messages resulting in a collision. Because the transmissions are unslotted,
vehicle 1 is not aware of the collision until 23, two propagation delay periods, after it begins
transmitting. Compare to slotted transmissions (Figure 5-6) where one propagation delay
suffices.

T 1 T 1
U = T -1 (5.13)

S e a+T+ e

of which is 1 of fully saturated TDM. The price for this high utilization for any n is in

collisions. Garbled data packets make up 1 - ý of Aloha's transmissions. These packets

must be retransmitted, making the queueing delay more difficult to analyze. For an idealized

model such as ours, the queueing delay is

e - 1/2 (eA - 1)(e - 1)
1 - Ae A[l -(e- 1)(eA - 1)]

time slots [10].

5.4.3 Reservations

The previous communications management systems were wasteful at very low and very

high data rates. Entire time slots were spent idle or transmitting data which was corrupted

upon collision. This can be especially costly if there are large propagation delays as with

underwater acoustic communications. A simple solution is for the vehicles to reserve large

time slots during which they have exclusive rights to transmit. Because these reservation

messages are short, they do not take much time or bandwidth, and there is a lower prob-

i "- - -- --

11C

V i I r

Reql -qn 'W -

Data

T

b

time
p, P, w+P,

Figure 5-8: A centrally managed reservation system. Frequency space is dived into three
regions, one for nodes to make transmission reservation requests, one for the master node
to acknowledge reservations, and one for transmitting data. These regions are separated
by a buffer, b. Proceeding through time, node 1 requests to send its data (R1). After a
propagation delay, the master node gives permission to node 1 (Al). Meanwhile, nodes 2
and 3 send requests (R2 and R3), resulting in a collision. Node 1 has begin transmitting its
data (D1). Because of the collision, the master node does not acknowledge either R2 or R3,
and the next acknowledgement it sends is for R4. After waiting a random amount of time
without an acknowledgement, node 3 retransmits its request. Node 4 begins transmitting
its data (D4), during which the master node receives and acknowledges node 3's request,
timing its acknowledgement so node 3 will begin transmitting as soon as D4 finishes. Node 2
has also waited a random amount of time and retransmits its request. The master node
gives permission for node 2 to transmit its data while D3 is in progress [11].

ability of collision (no chance of collision if using multiplexing). The cost is an increased

delay between when the vehicle queues the data and when it is actually sent. The data must

wait in the queue while the reservations messages are sent and processed. Two strategies

for reservation are presented.

Centralized management

In a centrally managed reservation system, one vehicle or an independent node acts as

a master node which processes the reservation requests and assigns transmission times

(Figure 5-8). This scheme was proposed by Brady and Catipovic for acoustic modem

transmissions in the Monterey Acoustic Local Area Network (ALAN) [11].

In the Brady-Catipovic management scheme, available bandwidth is divided into three

frequency spaces, one for requesting reservations, one for acknowledging requests, and an-

other for transmitting data. When a node needs to transmit data, it sends a reservation

- --'- ------ -· --"ii

1 ~81111 ~g~j~ ~I~bd~E~ emaaa ~i~Ll~d~ I

request to the master node. The master node processes the incoming requests and gives

permission to one node at a time to transmit its data. If a collision occurs during a re-

quest, the master node does nothing. The nodes sending the request would resend after a

random interval if they do not receive an acknowledgement. Their proposal is for acoustic

modems fixed on the ocean bottom and a master node at the surface, so the master node

can estimate the travel times for acknowledgements to the modems. In this way, incoming

data streams from different modems can be timed to arrive almost immediately after the

previous transmission ends.

In this centralized management scheme, the request channel operates as unslotted Aloha

(Aloha without regular time intervals to denote when transmissions can begin). In ideal

unslotted Aloha, 1 of the transmitted packets contain ungarbled data. Because the request

packets are short and infrequent, this limit is usually not reached and collisions are much

rarer than if the modems had been transmitting data instead of requests. The reservations

allow data transmissions to follow immediately after one another with no collisions; the

data channel is almost fully utilized. On the downside, the need for a separate request and

acknowledgement channel reduces the amount of bandwidth available to the data channel.

It also results in larger delays between when data is ready and when it is finally received.

At a minimum, it adds at least the time for signals to reach from the modem, to the master,

and back to the modem before data is transmitted.

Decentralized management

The Monterey ALAN is a multipoint-to-point multiaccess channel - the master node is

the intended recipient of all data. Hence it makes sense for the master node to arbitrate

reservations even though it is on the surface and the nodes are on the ocean floor. In a

multiple AUV environment, where the AUVs wish to exchange information among each

other, a centralized management scheme would require one vehicle to act as a master. This

is undesirable from a robustness standpoint. Should the master vehicle become disabled, the

remaining vehicles would be unable to communicate to even decide among themselves which

vehicle should become the new master. Also, because the vehicles need to communicate

among each other and not only to a master node, much of the advantage of having the

master schedule transmissions consecutively is lost. Certainly, a centralized management

scheme using a master vehicle could be used. However, for the reasons outlined above

and because AUVs will operate in a multipoint-to-multipoint environment, a decentralized

reservation management scheme is desirable.

In a decentralized system, reservations are made just as with centralized management.

However, the reservations must contain enough information for every vehicle to determine

the order of transmission. Whether the reservations are made using TDM, FDM, or Aloha

should depend on the circumstances of the deployment. Using the results presented in this

chapter and based on number of vehicles, frequency and size of messages, size of operating

area, vehicle spacing, etc., the most effective scheme should be selected. The management

method for the data channel should also be determined using similar considerations.

In practicality, the simplest method may be FDM for requests and TDM for data.

Acoustic modems are usually not able to receive data at the same time they are transmit-

ting, and outfitting a vehicle with more than one modem can be expensive. This would

seem to make scheduling reservations independently of data impossible. However, another

acoustic source aboard the Odyssey II is the long baseline (LBL) navigation beacon. If

vehicles were assigned different LBL frequencies as in FDM, they could use these for the

reservation requests. During the reservation period, vehicles with data to transmit would

ping, several times to reduce the likelihood of erroneous reception by other vehicles. The

order of transmission could be predetermined, perhaps based on vehicle ID number. Then

data transmission would then occur using optimized TDM, where a vehicle begins trans-

mitting as soon as it detects the previous vehicle has finished. While the data is being

transmitted, a second reservation cycle would be proceeding.

In such a system, our measurement criteria are identical to optimized TDM except for

the queueing delay which is shorter because there are no idle transmit cycles. Once a data

packet becomes available, it makes a request during the reservation period which occurs

concurrently with a data transmit cycle. The data is sent during the next transmit period

resulting in a queuing delay of

AX 2

W = 1A (5.15)
2(1) +3 whichever is larger

where X 2 is the mean square of the optimized "time slot" duration [10].

Table 5.1: Summary of multiaccess communication methods.
Method Time slot (S) Utilization Collision Queueing delay (W) in S
TDM a + T + 0

Optimized TDM a + T+ Hi+1 T n

FDM a + TBn B-b(n-1) T AnB-b(n-1) B S 2(1-X)
Slotted Aloha a +T + T e-1/2 (e)(e-1)c Se e 1---A A[1-(e--l A--l)

Proposed Res. a + T + T 0 2 + X 2
I c S c 2(1A)

5.4.4 Summary of communications schemes

Table 5.1 summarizes our evaluation criteria for the different communications schemes.

Of particular interest is Figure 5-9 which shows the expect queueing delay for the three

major schemes discussed, with various numbers of vehicles. As can be seen, slotted Aloha

provides the quickest response for low message arrival rates. TDM performs better for

moderate to higher arrival rates, but scales linearly with n, making for abyssmal low arrival

rate performance. FDM appears to perform best but we should note that this figure gives

W based on slot length S. For FDM, the slot length is just the time needed to transmit

a message; but because the bandwidth is split among vehicles, this can take much longer

than with the TDM or Aloha.

5.5 Recommendations

When designing a multiple-AUV communications system, we should look carefully at the

vehicles and the type of deployment. Factors such on the number of vehicles, size of the

deployment area, expected average distance between vehicles, and frequency and size of

messages are crucial to selecting an optimal communications scheme. For short range op-

erations with few vehicles, or infrequent or short messages, one of the simpler systems such

as TDM or FDM may well be the best choice. However, with a large number of vehicles,

reservations may be required and collisions may need to be accepted and designed for.

The centralized reservation system developed by Catipovic and Brady works well in a

multipoint-to-point environment, where there is a master node to direct all communications.

Its distinguishing feature is that the master node is the only node which needs to receive

transmissions. If the environment is multipoint-to-multipoint, and all nodes are to receive all

signals as in a multi-vehicle environment, and robustness is a concern, then a decentralized

Ilb

10

5a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Arrival rate, lambda

Figure 5-9: Queueing delays for various multiaccess communications methods. W is given in
time slots, or the time needed to prepare a signal, transmit it, and wait for it to propagate.
With the addition of more vehicles (n), W increases linearly for FDM and TDM. For slotted
Aloha, the curve remains the same for all n, but reaches a limit at A = 1. Note that although
FDM appears to do the best, the length of TDM and Aloha slots are constant, while FDM
slots increase roughly linearly with n. This is due to the FDM bandwidth being divided up
between vehicles, causing transmission times to correspondingly be longer (see Table 5.1).
In extreme cases with low A, and short message lengths T or few vehicles n, FDM will
perform better than the other methods.

reservation management system is called for.

The main problem with a decentralized system is coding into the request packets what

order the vehicles transmit in, and assuring the packet is receive by all vehicles. Up to this

point, we had not considered a factor which is mostly inconsequential with the previously

described communications schemes. A transmission may not reach all the vehicles. Any

time two or more vehicles must communicate, loss of transmission is an unavoidable risk

without no guaranteed solution [10]. The only safeguards are to reduce the probability of

loss to extremely low levels, and to make the vehicle software robust enough to work with

missing data. This usually involves coding error detection and forward error correction into

the data at the cost of bandwidth. Also, transmissions can occur more frequently that

needed, or vehicles can be programmed to interpolate between missing data.

However, if such a reception error were to occur during a reservation packet, then the

affected vehicle would have an incorrect schedule in which data is to be sent. In some cases,

if the schedule is garbled just prior to the vehicle's requested transmission time, it may

-TDM=16

: Slotted Aloha!

-' OD M ;,. 8:. ' ' ..' • •

TDM, n=4

.. FDM, n •4

begin transmitting during another vehicle's transmit period.

Another concern is the additional time needed to make a reservation. While reservations

can significantly improve transmission rates, their large time delays may cause problems if

the information to be transmitted is of critical importance. In addition, one of the simpler

communications schemes may be more efficient under a specific set of conditions.

The use of slotted communications brings up the problem of synchronization. For slots to

work correctly, all vehicles must know when the slots begin. Keeping the clocks of all these

vehicles synchronized is a problem unto itself. For short duration missions, the onboard

clock may be sufficient to maintain synchronization. For long deployments, a substantial

clock drift may develop, requiring all vehicles be resynchronized.

Finally, the behavior of the acoustic channel was idealized in this analysis. As previously

detailed, multipath and other distortions may create shadow zones where transmissions from

certain areas will not reach. To further compound the problem, these areas are usually not

symmetric - the vehicle which cannot be heard from can hear other vehicles' transmissions

just fine. The solution may well lie in modeling the acoustic channel so as to steer vehicles

away from these regions, or supress transmissions while traveling in these regions.

5.6 Summary

Unlike communications with a single vehicle, multiple AUV communications is a complex

problem of allocating and assigning bandwidth to prevent transmission collisions. TDM

and FDM, two methods which eliminate the possibility of collisions, suffer from reduced

bandwidth and poor scaling as n, the number of vehicles, increases. Slotted Aloha scales

better with n, but at the cost of some collisions. By allowing the vehicles to use some of

the available bandwidth for reservations, TDM can be made to scale better with n at the

cost of increased complexity. However, the problem is not insurmountable, and the com-

munications method should be chosen after careful consideration of the parameters of the

vehicle deployment. Within certain limits, a properly designed multiple AUV communica-

tions system will allow vehicles to send telemetry and receive commands with only modest

delays and chance of error. In this way, users (and vehicles) can monitor and control each

AUV in a multi-vehicle deployment.

Chapter 6

Conclusions

6.1 Overview

Our experiments in the Charles River and Buzzard's Bay have led us to several observations

about monitoring and controlling AUVs over serial and network links. We have seen that

an unreliable communications channel can cause commands to have the opposite of the

intended effect simply due to time delays. Non-uniformity of the modems' coverage area led

to additional difficulties obtaining reliable data to base command decisions on, and problems

transmitting commands in a timely fashion. A great deal of vehicle functionality can be

attained via relatively simple commands, especially with a highly abstracted command

behavior list like that on the Odyssey II. The RF modems proved difficult to configure and

work with, but ended up unintentionally duplicating some of the reliability problems we

expect to encounter with acoustic modems.

The main concern with Internet communications was to reduce bandwidth for multi-

vehicle, multi-user communications. To address this issue, we developed our software around

the MBone, which introduced other difficulties. Because the MBone is not available with

most default network configurations, additional work and networking knowledge is required

to set it up properly and track down problems. Because of our findings regarding con-

trol signal bandwidth, the need for multicasting is questionable, especially in light of the

bandwidth limitations of multi-vehicle communications. The ramifications of multi-vehicle

communications on multi-user Internet access need to be futher evaluated.

We chose Matlab for our user interface to maintain compatibility across different com-

puter platforms. However, we experienced several problems with the display portion of the

GUI using all available computer resources and making the control portion unresponsive.

In addition, because the user lacked visual feedback of the actual vehicle and the commu-

nications channel was known to be unreliable, confidence in the GUI's display was low and

commands to the vehicle were conservative. This was aggravated by the GUI relying on the

vehicle's dead-reckoned track, rather than positioning based on a fixed navigational array.

6.2 Lessons Learned

From our experiments, we have determined several key issues which must be addressed for

a control and monitoring communications link to work successfully.

6.2.1 AUV operations

Foremost, the AUV must assume that each command given to it may be the last it receives.

Since the communications channel is unreliable, the data stream may become corrupted,

truncated, or lost entirely. In each of these situations, the AUV must be able to recover

to a state in which it is still functional and commandable. Corrupted and truncated data

can be screened out or recovered through error checking and correcting schemes. In the

case of lost commands, the vehicle's onboard intelligence must be able to recognize when

it may be entering an unrecoverable state (leaving the communications area of coverage or

destruction of the vehicle), and autonomously override its current command.

The area of communications coverage is non-uniform. In our experiments with an RF

modem, we used a directional antenna which offered greater range when directly in line with

the vehicle. This resulted in a lobe-shaped area of coverage whose borders were difficult to

determine and define geometrically. With acoustic communications, there may be shadow

zones where control signals cannot reach the vehicle, and the signal strength will vary

depending on the sound speed profile and other acoustic factors. To prevent the vehicle

from drifting outside communications range, a behavior such as a bounding box limiting the

vehicle's area of operation should be used. Defining the limits of this "box" is an involving

problem in itself, requiring modeling of the acoustic channel.

Time delays in transmitting, processing, and implementing commands may cause unex-

pected or undesired behaviors. While not as critical as keeping the vehicle out of unrecov-

erable states, a control interface which allows the operator to look ahead into the vehicle's

projected path at the time the command is implemented is desirable, and would prevent

nasty surprises.

When controlling the vehicle, reliability is more important than bandwidth. Short, sim-

ple commands are capable of controlling the vehicle heading and depth, providing a "lowest

common denominator" set of commands which require very little bandwidth. However, if

these short commands cannot reach the vehicle reliably, all control is lost.

The RF link proved tempermental with reliability problems which were unreproducible.

Packets would be dropped without any discernible pattern, the modems would buffer and try

to resend these dropped packets even when commanded not to do so, and every few runs the

modems would lose contact with each other, requiring us to power cycle them to reinitialize

the link. Near one of our final experiments we determined that water getting into the

antenna was likely the cause of most of these failures. The final two runs with the antenna

mounted inside the box produced constant data without any dropouts. However, without

further testing we cannot state conclusively that the antenna caused all our problems. We

experienced more problems than we would be comfortable with in a critical application in

which daily use was vital for success of the experiment.

6.2.2 Internet communications

In general, the Internet communications portion of our experiments worked well - more

reliably than the RF portion. We had no problems with dropouts or buffering delays as

we did with the RF communications. However, there were several Internet-related issues

which arose during our experiments.

Because the Internet is based on point-to-point communications, it is not well designed

for multi-node problems. For n nodes to communicate with each other, the number of

required point-to-point links increases polynomially in n. For one or a few nodes, this

may be acceptable. However, as the number of nodes increases, multicasting (point-to-

multipoint communication) becomes more desirable. However, we have found that very little

bandwidth is required to control a single vehicle, and the multi-vehicle problem calls for

few, short messages, and so the need to multicast all communications becomes questionable.

Work should be done to investigate how the communications problem scales with additional

vehicles and users.

The ability to multicast over the Internet is a work-around to the design of the Internet.

It works by overlaying multicast features on top of existing Internet links. Because of

this and its lack of wide availability, it is not as robust as standard Internet links and

requires more maintenance work by the user. For example, MIT network services shut

down our multicast repeater before an experiment, and it took us several hours to diagnose

the problem because other Internet services were working properly. In the case of a remote

deployment where the only Internet link may be through a generic Internet service provider,

considerable work may be required to establish a connection to the multicast backbone.

One of our design criteria was that any Internet communications software developed

should be platform independent. Unfortunately, at the onset of this research, it was dif-

ficult to produce and maintain network code that would work with Unix, Macintosh, and

PC compatible computers. The recent growth of the World Wide Web (WWW) and in-

troduction of Java has changed this. The Virtual Reality Modeling Language (VRML), a

3-D extension to the WWW, shows promise as a means of displaying AOSN data via a web

browser on any platform, using the WWW as the medium for network data transmission.

The wide acceptance of Java as a web browser extension on nearly all computer platforms

means the same network source code could run on all these systems without modification.

However, since the WWW is based on TCP/IP, both VRML and Java suffer from the same

bandwidth problems mentioned previously. Future work will have to consider the bene-

fits of cross-platform compatibility offered by the WWW against the improved network

performance of the MBone and multicast routines.

6.2.3 User Interface

There is a psychological feedback factor involved with control over the internet. Without a

history of successful operation, and without being able to watch the vehicle as it moves, the

remote user's confidence in the vehicle's location is low. For our experiments, we always

had a person (with override control) monitoring the mission from the river, which defeats

the purpose the controlling the vehicle remotely. This problem should lessen as we gain

more experience and build up a history of successful operation.

Dead reckoning the vehicle's position is insufficient for all but the simplest of missions

and tests, especially in light of the previous problem. Accumulated drift and uncertainty in

the vehicle's velocity reduce confidence in the vehicle's position, which reduces the effective-

ness of control, and renders some of the previously mentioned self-preservation behaviors

useless. A more robust, verifiable navigation scheme is desirable.

On occasion, our control software would freeze or lock up for several seconds. While

these incidents were annoying, and in some critical instances heart-stopping, they were

attributable to our software implementation, not to our communications links. Furthermore,

with the proper safeguards described above in place, such freezes should appear no different

to the vehicle than a communications dropout, and the vehicle would not be jeopardized.

The original intent was to use Matlab as a cross-platform display and control interface,

with a different external interface routine for each computer platform containing platform-

specific network code. However, because the display portion of Matlab scripts interfered

with the control portion, the interface seemed unresponsive to the user. Future implementa-

tions can address these concerns with a dedicated graphics interface utilizing cross-platform

application libraries, such as OpenGL, X, or Tcl.

6.3 Multiple AUV Communications

The characteristics of several multiaccess communications methods can be compared quan-

titatively to decide which method is best suited for a particular mission. For very short,

infrequent messages and few vehicles, frequency domain multiplexing provides collision-free

communications. For short messages in a small operating area, time domain multiplexing

allows messages to be sent more quickly than FDM, at the cost of longer waits before a

message is actually sent. If messages occur very frequently, the queueing delay for both

FDM and TDM approach the same value.

The queueing delay for FDM and TDM increase linearly with the number of vehicles, n,

making these methods impractical for large numbers of vehicles. One way to overcome this

problem is with slotted Aloha, where vehicles transmit their data as it becomes available.

Aloha has cannot handle as many messages as FDM or TDM, but for low message rates,

it does not degrade as n increases. Theoretically, almost an infinite number of vehicles can

use Aloha as long as the overal message rate does not exceed 1 of the available time slots.

Reservations work well in enhancing multiaccess communications for environments with

large propagation delays. Using a reservation system, TDM can continue to work well for

large numbers of vehicles without scaling linearly in n. However, deciding how to make

reservations and guaranteeing all vehicles simultaneously decide upon the same reservation

order is a difficult problem.

6.4 Future Work

Our research suggests several avenues of future research. These range from addressing the

problems discussed above, to extending the research into other areas not touched on by this

work.

Behaviors need to be designed to prevent the vehicle from entering an unrecoverable

state due to unreliable communications or a catastrophic event such as hitting a wall. Our

circling behavior represents only a simple, partial solution to this problem. These behaviors

could incorporate boundaries based on the communications coverage area, and known or

newly discovered obstacles in the vehicle's path. Or a behavior could cause the vehicle to

return towards its launch point if a command has not been received in a set amount of time.

Towards this end, modeling of the acoustic channel in which the vehicle will operate is

of major importance. The bending of acoustic signals can lead to asymmetric shadow zones

in which commands cannot reach the vehicle, telemetry cannot reach the user, or both.

Multipath can cause acoustic signals to add or cancel at certain locations. By modeling

these types of phenomena prior to a mission, the vehicle can be programmed (or guided)

around or through these points with minimal inconvenience and surprise to the user.

Behaviors based on fixed boundaries become increasingly inaccurate with time if the

vehicle position is not based on a fixed navigational array. Because our results are based

on dead-reckoned position, the lack of user confidence in the GUI display may not be a

problem with a navigational array. On the other hand, inaccurate navigation fixes due to

echoes and garbled navigation beacon signals may cause this problem to become even worse.

The interaction of different positioning system with the usability of vehicle telemetry data

needs to be further studied.

Regrettably, an acoustic modem pair was unavailable for these experiments. Since the

bandwidth limitations and expected reliability were based on real acoustic modems, the

results of these radio modem experiments should be transferable to acoustic modems. How-

ever, experiments with real acoustic modems may reveal problems or solutions not readily

apparent from these experiments.

A rudimentary control language based on the Odyssey II's data structure was developed

in this work. This language should be further expanded, and possibly genericized for use

with any AUV and not just the Odyssey II. This would open up the possibility of using

the same monitoring and control software with any AUV connected to a network such as

AOSN. This language could also be modified or merged with other simulation protocols

such as DIS [34], so monitoring and control software developed for those applications could

be used with AUVs.

This thesis only experimented with communications between one vehicle and one user.

While provisions were made for incorporation of multiple users and vehicles in the fu-

ture, and theoretical work was done towards this goal, no multiple AUV experiments were

conducted. Conclusions regarding the best way to incorporate multi-user capability remain

vague, especially with the rapid development of Internet technologies. The problem of band-

width reduction due to multiple vehicles sharing the communications channel has solutions,

but it remains to be seen whether these solutions are practical for real world applications.

Finally, the tradeoff between communications reliability and bandwidth should be fur-

ther investigated. Recent experiments at Haro Strait [44] indicate that a bare minimum

of communications bandwidth is sufficient to usefully control the vehicle, so long as the

communications channel is reliable. Whether this is also true for data telemetry remains to

be seen and should be researched further.

6.5 Summary

Several conclusions can be drawn from our experiments about monitoring and controlling

AUVs remotely. A great deal of control of the vehicle can be attained with relatively short

and simple commands. But an unreliable communications channel can lead to all sorts

of problems. Perhaps AI behaviors can be implemented to work around the problems.

Because the coverage by the modems is neither infinite nor uniform, AUV operations can

be facilitated if weak spots in coverage can be pinpointed beforehand. Use of multicasting

routines solve the problem of scaling to multiple users, but introduce other problems with the

usability of the system as a whole. While Matlab seemed a good choice for a cross-platform

user interface, there were problems inherent in Matlab's sharing of computer resources, and

other cross-platform user interfaces should be investigated. In time, it should be possible

to monitor and control several AUVs from an ordinary WWW browser such as Netscape.

Appendix A

Program listings

This appendix lists the key computer programs developed in the course of this research.

The routines are divided into three categories: Matlab scripts and CMEX code used for

monitoring and controlling the vehicle, C code additions and modifications to the software

aboard the vehicle, and C code written to run on the SGI workstations.

A.1 Matlab Scripts

A.1.1 gr_control.m

% gr_control.m
% clears all variables and calls the two components of the control software:
% gui.m for controlling the vehicle
X odyview.m for monitoring the vehicle

clear
gui
ody_view

A.1.2 ody_view.m

% ody-view.m
% generates dead reckoned position and depth plots which are updated in
% real time using the expandwin.m routine

if (exist('xyplot') ~= 1)
xyplot = figure;

set(xyplot, 'position',[12 349 564 409]);
set(xyplot, 'Name', 'Vehicle Trajectory');

end

if (exist('zplot') ~= 1)
zplot = figure;
set(zplot, 'position',[12 13 564 300]);
set(zplot, 'Name', 'Depth and calculated bottom');

end

if (exist('duration') ~= 1), duration = 1800; end

time = 0;
east = 0;
nrth = 0;

dreast = 0;

dr_nrth = 0;
dpth = nan;
botm = nan;
odydat=recvdata(O); % initialize recv_data multicast routines

while isempty(odydat)
odydat=recv_data(1); % receive multicast data

end
time = odydat(l); % time
sttime = time;

drnrth = odydat(6);

dreast = odydat(7);
east = dr_east;
nrth = dr_nrth;

figure(xyplot); clf;
htrack = plot(dreast, drnrth, 'r+');
title('Odyssey Track by Dead Reckoning', 'erasemode', 'none');
xlabel('East (m)', 'erasemode', 'none');
ylabel('North (m)');
set(htrack, 'erasemode', 'none');

set(gca, 'aspectratio', [1 1], 'drawmode', 'fast', ...
'xgrid', 'on', 'ygrid', 'on');

clickheading % mouse_click for new heading

figure(zplot); clf;
hdepth = plot(time, dpth, 'r');
title('Measured Depth and Calculated Bottom', 'erasemode', 'none');
xlabel('time (s)', 'erasemode', 'none');
ylabel('depth (m)');
set(hdepth, 'erasemode', 'none');
hfloor = line(time, botm);
set(hfloor, 'erasemode', 'none', 'color', 'b');

set(gca, 'aspectratio', [2 nan], 'drawmode', 'fast', 'ydir', 'reverse', ...
'xgrid', 'on', 'ygrid', 'on');

set(xyplot, 'position',[12 349 564 409]);
set(zplot, 'position',[12 13 564 300]);

j = 2;

begin = clock;

while etime(clock, begin) < duration
cyclebegin = clock;

odydat=recvdata(1); % receive multicast data
if (~isempty(odydat))

cp = cos(odydat(3)*pi/180);% cosine of pitch
ds_hor = 1.4*(odydat(1) - time(j-1))*cp; % fudge this to chg speed
time(j) = odydat(1);% time
east(j) = east(j-1) + dshor*sin(odydat(2));
nrth(j) = nrth(j-1) + dshor*cos(odydat(2));
dpth(j) = odydat(4);7. depth
botm(j) = odydat(4) + odydat(5)*cp;% bottom
dr-nrth(j) = odydat(6);
dreast(j) = odydat(7);
figure(xyplot);
set(htrack, 'xdata', dreast, 'ydata', drnrth);
expandwin(dreast(j), dr_nrth(j), j);
figure(zplot);
set(hdepth, 'xdata', time, 'ydata', dpth);
set(hfloor, 'xdata', time, 'ydata', botm);
expandwin(time(j), botm(j), j);

j = j + 1;
end

end
duration
figure(xyplot);
set(gca, 'xlimmode', 'auto', 'ylimmode', 'auto');
figure(zplot);
set(gca, 'xlimmode', 'auto', 'ylimmode', 'auto');

A.1.3 expandwin.m

% expandwin.m
% dynamically rescales and redraws a Matlab plot.
% unknown origin. Matlab homepage?

function limits = expandwin(x, y, flag)

if nargin < 3, flag = 1; end

if (flag == 1)

tick = get(gca, 'xtick');
limits(1:2) = [tick(1) max(tick)];
tick = get(gca, 'ytick');
limits(3:4) = [tick(1) max(tick)];
else
limits = axis;

end

change = 0;

if (x > limits(2))
wid = ceil(1.1*(x - limits(1)));

set(gca, 'xlim', [limits(1) limits(1)+wid]);
change = 1;
end
if (x < limits(i))
wid = ceil(1.1*(limits(2) - x));

set(gca, 'xlim', [limits(2)-wid limits(2)]);
change = 1;
end
if (y > limits(4))
hgt = ceil(1.1*(y - limits(3)));

set(gca, 'ylim', [limits(3) limits(3)+hgt]);
change = 1;
end
if (y < limits(3))
hgt = ceil(1.1*(limits(4) - y));

set(gca, 'ylim', [limits(4)-hgt limits(4)]);
change = 1;
end

drawnow;
if (change == 1)
xlim = get(gca, 'xlim');
ylim = get(gca, 'ylim');
end

A.1.4 recv_data.c

/* recvdata.c
* Opens multicast port, reads incoming data, and converts format to
* something ody_view will understand.

#include <stdio.h>
#include <stdlib.h>

#include <string.h>

#include "../../multicast/mcast.h"
#include "/usr2/auvlab/matlab/extern/include/mex.h"

#define MAXX 20
char colon[2] = ":\0";

struct value {
char name[30];
int index;

};

void mexFunction(
int nlhs, Matrix *plhs[],
int nrhs, Matrix *prhs[])

double *init;
double time, pitch, yaw, depth, altitude, drnorth, dr_east;
int cnt, msglen, cmp;
int i, j, jcount;
char message[1500];
char netaddr[50];
char *tmp_chr;
unsigned int chksum;
char name [MAXX] [50];
double x[MAXX] ;
static struct value n[MAX_X];

if (nrhs != 1) {
mexErrMsgTxt("One input arguments required.");

} /* eise if (nlhs > 0) {
mexErrMsgTxt("No ouput arguments required.");
} */

/* printf("inside recv_data routine\n"); */

init = mxGetPr(prhs[0]);

if (*init == 0) {
Mcast_init(1); /* Read in multicast configuration and initialize */
Mcastset_nonblock(1);
strcpy(n[O] .name, "dummy\O");
n[Ol.index = 0;
x[0] = 0; /* dummy value */
for (j=1; j<MAX_X; j++) {

n[j].index = -1;
strcpy(n[j] .name, "dummy\0");

}
strcpy(n[] .name, "mpresenttime\0");/* Are in the order odyview

strcpy(n[2] .name, "mpitch\O"); /* expects them. Incoming data */
strcpy(n[31.name, "mheading\O"); /* stream can be in any order */
strcpy(n[4] .name, "mdepth\O");
strcpy(n[5] .name, "msonar_alt\O");
strcpy(n[6].name, "mdrnorth\O");
strcpy(n[7].name, "mdr-east\O");

} else if (*init > 0) {
cnt = Mcast_receive(message, sizeof(message), netaddr);
if (cnt < -1) {

perror(C"recvfrom");
exit(1);

} else if (cnt > 0) {
/* message[cnt]='\0'; */
fprintf(stderr, "recv_data> .s: message = \"%s\", size:%d\n",

netaddr, message, cnt);

* Look for the string "VALUES>" or "NAMES>" in "message"

if ((strncmp(message, "VALUES>", 7))==0) {

tmp_chr = strtok(message, " "); /* gobble VALUES> */
tmp_chr = strtok(NULL, " ");
jcount = -1;
while ((tmp_chr != NULL) && (j_count < (MAX_X-1))) {
if (tmpchr[0] == colon[O]) { /* colon found, checksum coming up */
tmpchr = strtok(NULL, " ");
sscanf (tmpchr, "%02X", &chksum);

} else { /* normal value */
jcount++;
sscanf (tmpchr, ".lf", &(x[j_count]));
tmp_chr = strtok(NULL, " ");

} /* else */
} /* while */

if ((jcount == (MAXX-1)) && (tmpchr != NULL)) {
fprintf (stderr, "sgi_comm> Got more than MAX_X values,");
fprintf(stderr, "ignoring all but first %d.\n", j);

}

fprintf(stderr, "recv_data parse> %d values: ", j_count);
for (j=0; j<(jcount); j++)
fprintf(stderr, "%5.31f ", x[j]);

fprintf(stderr, ": %02X", chksum);
fprintf(stderr, "\n");

if (jcount == 7) { */
if (jcount>1) {
double *out;
plhs[O] = mxCreateFull(1, 7, REAL);
out = mxGetPr(plhs[O]);
out[O] = x[n[l .index]; /* time */
out[1] = x[n[2].index]; /* pitch */
out[2] = x[n[3].index]; /* yaw */
out[3] = x[n[4].index]; /* depth */
out[4] = x[n[5].index]; /* altitude */
out[5] = x[n[6].index]; /* dr_north */
out[6] = x[n[7].index]; /* dreast */
fprintf(stderr,

"recv_data matlab> t:Xg p:%g y:%g d:%g a:%g dn:%g de:%g\n",
out[O], out[l], out[2], out[3], out[4], out[5], out[6]);

}
return;

} else if ((strncmp(message, "NAMES>", 6))==0) {
/* process list of names */

tmp_chr = strtok(message, " "); /* gobble NAMES> */
tmp_chr = strtok(NULL, " ");
jcount = -1;
while ((tmpchr != NULL) && (j_count < (MAXX-1))) {
if (tmpchr[Ol == colon[01) { /* colon found, checksum coming up */
fprintf(stderr, "looking for checksum\n");
tmp_chr = strtok(NULL, " ");
sscanf (tmpchr, "%02X", &chksum);

} else { /* normal value */
jcount++;
/* sscanf (tmpchr, "os", name[jcount]); */
strcpy(name[jcount], tmpchr);
fprintf(stderr, "name %d is %s\n", jcount, name[jcount]);
tmpchr = strtok(NULL, " ");

} /* else */
} /* while */

if ((jcount == (MAXX-1)) && (tmp_chr != NULL)) {
fprintf (stderr, "sgi.comm> Got more than MAX_X names,");
fprintf(stderr, "ignoring all but first %d.\n", j);

}

fprintf(stderr, "recvdata parse> %d values: ", j_count);
for (j=0; j<(jcount); j++)
fprintf(stderr, "%s ", name[j]);

fprintf(stderr, ": %02X", chksum);
fprintf(stderr, "\n");

for (i=O; i<MAXX; i++) {
msglen = strlen(n[il .name);
for (j=0;j<=j_count;j++) {

cmp = strncmp(n[il .name, name[j], msglen);
if (cmp==O) {
fprintf(stderr, "match: name %d %s %d ,s\n",

i, n[i] .name, j, name[j]);
n[i].index = j;
j=jcount;

} /* if (cmp==O) */
} /* for j */
if (cmp)
fprintf(stderr, "unable to match name Yd \"%s\"\n",

i, n[il .name);
} /* for i */

} /* else if NAMES */
} /* else if cnt */

} /* else if *init */

A.1.5 gui.m

% gui.m
% Sets up a dialog box for sending new commands to the vehicle

sendsp(-1,0,0,0) % init multicast send

if (exist('gui') ~= 1)
gui = figure;

end

figure(gui); clf;
set(gui, 'position', [12 795 290 195]);
set(gui, 'Name', 'User control panel');

send.setpoint = uicontrol(gcf,...
'Style','push',...
'String','Send Setpoint',...
'Position', [10 10 120 25],...
'CallBack', [...
'sperror = 0;,',...
'sptime = str2num(get(entime,"String")),',...
'if sp_time <= 0,',...
'disp("ERROR - Value of time must be positive"),',...
'sperror = ;,',...

'elseif size(sptime) == 0,',...
'disp("'ERROR - Time must be a numerical value"),',...

'sp-error = ;,'

'end,',...

'sp_speed = str2num(get(enspeed,"String")),',...

'if spspeed <= 0,',...

'disp("ERROR - Value of speed must be positive"),',...

'sperror = ;,'

'elseif size(sp_speed) == 0,',...
'disp("ERROR - Speed must be a numerical value"),',...

'sp-error = ;,'

'end,',...

'spdepth = str2num(get(en_depth,"String")),',...
'if spdepth <= 0,',...

'disp("ERROR - Value of depth must be positive"),',...

'sp-error = ;,'

'elseif size(spdepth) == 0,',...

'disp("ERROR - Depth must be a numerical value"),',...

'sp-error = ;,'

'end,',...

'sp_heading = pi*str2num(get(en_heading,"String"))/180,',...
'if spheading < 0,',...
'disp("ERROR - Value of heading must be positive"),',...

'sp-error = ;,'

'elseif spheading >= 2*pi,',...

'disp("'ERROR - Heading must be less than 360 degrees'),',...

'sperror = ;,'

'elseif size(spheading) == 0,',...

'disp("'ERROR - Heading must be a numerical value''),',...

'sp-error = ;,'

'end,',...

'if sp_error == 1,',...

'disp("Error occurred - unable to send setpoint"),',...

'else,',...

'send_sp(sp_heading, sp_depth, sp_speed, sp_time),',...

'end,',...

'end']);

cancel_setpoint = uicontrol(gcf,...

'Style','push',...

'String','Cancel Setpoint',...

'Position', [160 10 120 251,...

'CallBack','close(gcf)');

frame_vars = uicontrol(gcf,...

'Style','frame',...

'Position',[10 55 150 130]);

txt_vars = uicontrol(gcf,...

'Style','text',...

'String','Variables',...

'Position',[10 160 150 25]);

txt_heading = uicontrol(gcf,...

'Style','text',...

'String','Heading (deg)',...

'Position',[10 135 105 25]);

txt_depth = uicontrol(gcf,...

'Style','text',...

'String','Depth (m)',...

'Position',[10 110 75 25]);

txt_speed = uicontrol(gcf,...

'Style','text',...

'String','Speed (m/s)',...

'Position',[10 85 85 25]);

txt_time = uicontrol(gcf,...

'Style','text',...

'String','Time (s)',...

'Position',[10 60 65 25]);

en heading = uicontrol(gcf,...

'String', '170',...

'Style','edit',...

'Position',[115 135 40 25]);

en_depth = uicontrol(gcf,...
'String', '2',...

'Style','edit',...

'Position',[115 110 40 25]);

en_speed = uicontrol(gcf,...
'String', '1',...

'Style','edit',...

'Position',[115 85 40 25]);

en_time = uicontrol(gcf,...

'String', '60',...

'Style','edit',...

'Position',[115 60 40 25]);

A.1.6 send_sp.c

/* send_sp.c

* Routine for multicasting messages given to it by Matlab

* icrc is the CRC routine from Numerical Recipes in in C

#include <stdio.h>

#include "../multicast/mcast.h"

#include "/usr2/auvlab/matlab/extern/include/mex.h"

/* #define CRC */

unsigned short icrc(unsigned short crc, unsigned char *bufptr,
unsigned long len, short jinit, int jrev);

void send_sp(double *heading, double *depth, double *speed, double *time)

{
char message[1500];

char tempstr[1500];

char netaddr[50];

int msgsz, cnt;
unsigned short crc;

if (*heading == -1) {
Mcast_init(2); /* Read in multicast configuration and initialize */

} else {
sprintf(message, "CMD> setpoint %f .f %f %f",

*heading, *depth, *speed, *time);

#ifdef CRC

crc = icrc(0, message, strlen(message), 0, 1);

fprintf(tempstr, ".s : %d", message, crc);
strcpy(message, tempstr);

#endif

fprintf(stderr, "message = %s\n", message);

msgsz=strlen(message);

cnt = Mcast_send2(message, msgsz);

if (cnt < 0) {
perror("sendto");
exit ();

}

/* Gateway Routine */

void mexFunction(

int nlhs, Matrix *plhs[],
int nrhs, Matrix *prhs[])

{
double *heading, *depth, *speed, *time;

if (nrhs != 4) {
mexErrMsgTxt("Four input arguments required.");

} /* eise if (nlhs > 0) {
mexErrMsgTxt("No ouput arguments required.");

} */

printf("inside gateway routine\n");

heading = mxGetPr(prhs[O]);

depth = mxGetPr(prhs[1]);
speed = mxGetPr(prhs[2]);

time = mxGetPr(prhs[3]);

sendsp(heading,depth,speed,time);

}

A.2 Vehicle C Code

A.2.1 comm.c

This routine runs on the vehicle, independent of the main vehicle code. It links directly

with the main code's data structure, relaying commands and data between the modem and

main code.

main(argc, argv)
int argc;
char *argv[];

{

/* Reads in sensor_names to transmit from file out_array.name*/

/* for each sensor_name in out_array.name, check the entire
list of sensor values to find a match */

/* link to vehicle structure date module */

while (!mission_finished) { /* main loop */

/* set alarm to send signal 259 after n_ticks_to_sleep ticks

(10ms/tick) */

if((alarm_id = alm_set(259, n_ticks_to_sleep)) == -1)

fprintf(stderr, "Can't set the alarm in modem\n");

tl = t2;

t2 = millisec();

cycle_count++;

if (vvp->abort_mission) {
fprintf(term,

"*** comm: exiting because vvp->abort_mission=%d ***\n",
vvp->abort_mission);

fprintf(syslog,

"*** comm: exiting because vvp->abort_mission=%d ***\n",

vvp->abort_mission);

exitgracefully(vvp->abort_mission);

/* fprintf(stderr, "comm> %d time %d\n", cycle_count, millisec()); */
fprintf(syslog, "comm %7d>\n", cyclecount, millisec());

/* use a routine called report to write the value and name of

selected variables that we are interested in. For now,
each will have its own line, but maybe in the future we

can do some nifty formatting or a non-scrolling screen */

/* get input from the user */

cmd[O] = '\0';

n_to_read = _gs_rdy(stdin_port);

if (n_to_read > 0) {
conf = read(stdinport, cmd, n_to_read);

if (conf != n_to_read) {
fprintf(term, "**** Error: attempted to read %d chars"

"read returns %d\n", nto_read, conf);

} else {
cmd[n_to_read] = '\0';

chksum = calc_check_sum(cmd);

}

/* if we received a command, parse it and try to follow it */

if (cmd[O] != '\0') {
conf = parse_command(cmd);

if (conf==-l) {
fprintf(term, "\nbad cmd> %s\n", cmd);
fprintf(syslog, "\nbad cmd> %s\n", cmd);

}

/* simply write the command into the "modem_rec" array

of the vehicle data structure */

if (strlen(cmd) < 500) {

conf_ptr = strcpy(vvp->modem_rec, cmd);
if (conf_ptr==NULL) {
fprintf(term, "\nerror writing cmd to vvp->modem_rec\n");

fprintf(syslog, "\nerror writing cmd to vvp->modem_rec\n");
}

report(out_index, num_outputs);

/* fprintf(syslog,
"comm> going to sleep, elapsed time for cycle: 7d\n",
millisec() - t2); */

j = sleep(1); /* this sleep should never finish */

alm_delete(alarm_id); /* delete alarm */

if (num_cycles)

if (cycle_count==num_cycles) mission_finished=1;

if (vvp->comm_synchro==-l) {
mission_finished=1;

fprintf(stderr, "comm> comm_synchro=-1, exiting\n");

}

exitgracefully(0);

}

int report(int *out_ind, int num_out)
{

int i, msg_len=0;
int uniform_format = 1;

static int print_names = 1;
char msg[500] = "", buf[50];

unsigned char chksum=0;

/* the check sum is everything up to but not including the colon */

if (print_names) {
print_names=0;

sprintf(msg, "NAMES> ");

for (i=O;i<num_out;i++) {

strcat(msg, vvp->s[out_ind[i]].name);

strcat(msg, space);

100

}
/* attach checksum and then cr_lf */
chksum = calc_checksum(msg);
strcat(msg, colon);

strcat(msg, space);

sprintf(buf, ".02X", chksum);

strcat(msg, buf);

strcat(msg, crlf);

strcat(msg, space);

fprintf(term, "%s", msg);

sprintf(msg, "VALUES> ");
for (i=O;i<num_out;i++) {

if (uniform_format)

sprintf(buf, "%6.31f ", vvp->s[out_ind[i] .x);
else

sprintf(buf, "%.5g ", vvp->s[out_ind[i]].x);
strcat(msg, buf);

}
chksum = calc_check_sum(msg);
strcat(msg, colon);

strcat(msg, space);

sprintf(buf, "%02X", chksum);
strcat(msg, buf);
strcat(msg, crlf);

fprintf(term, "%s", msg);

unsigned char calc_check_sum(char *buf)
{

int buf_len, i;
unsigned char chk_sum;

buf_len = strlen(buf);

chk_sum = 0;

for (i=0;i<buf_len;i++) {

chk_sum += buf [i];
}
return chk_sum;

int parse_command(char *cmd)

{
int count=0, conf, i, setpointpriority=-1, debug=0;

101

char *tmp_chr; /* not sure why needs to be ** */
float arg[lO];

if (debug)

fprintf(term, "\nCalling parse_command()\n");

/* use strtok to parse the command, which is a sequence of

words separated by spaces */

/* first, gobble up the CMD> */

tmpchr = strtok(cmd, " ");

if (debug) fprintf(term, "parsecommand() ... called strtok\n");

if (tmpchr==NULL) return -1;

conf=strcmp(tmpchr, "CMD>");

if (debug)

fprintf(term, "strcmp(tmp_chr, \"CMD>\") returns .d\n", conf);

if (conf) return -1;

/* get next word and see if it is "abort" */

tmpchr = strtok(NULL, " ");

if (tmp-chr==NULL) return count;

fprintf(syslog, "command word .d I%.s\n", count, tmp_chr);

if (debug) fprintf(term, "command word %d I•sl\n", count, tmpchr);

conf=strcmp(tmpchr, "abort");

if (conf==O) {
if (debug) fprintf(term, "*** command match: ABORT\n");
fprintf(syslog, "*** command match: ABORT\n");

vvp->abort_mission = 1;

}

/* setpoint assumes you give four arguments: heading, depth, speed, time */
conf = strcmp(tmpchr, "setpoint");

if (conf==O) {
if (debug) fprintf(term, "*** command match: setpoint\n");

fprintf(syslog, "*** command match: setpoint\n");

for (i=0;i<4;i++) {

tmp_chr = strtok(NULL, " ");

if (tmp_chr==NULL) {

fprintf(term, "cmd setpoint ignored: only .d args\n", count);

return count;

}
count++;

if (debug)

fprintf(term, "command word .d I%sl\n", count, tmp_chr);

conf = sscanf(tmpchr, "%f", &(arg[i]));

102

if (conf!=1) {
fprintf(term, "error parsing setpoint argument %s, sscanf "

"returns %d\n", tmp_chr, conf);

}
}
/* assuming all four arguments were given, write the values

to the setpoint behavior with the highest priority

(lowest on stack) */

for (i=O;i<MAX_COMMAND;i++) {
fprintf(stderr, "testing match with beh[%dl = %s ptr Ox%X\n",i,

vvp->sta[vvp->cstate] .c[i] .b.name,
(int) vvp->sta[vvp->cstate].c[il.b.fcn);

if (strncmp(vvp->sta[vvp->cstate] .c[i] .b.name, "setpoint", 8)
==o) {

fprintf(stderr, "match for behavior Xd %s\n", i,

vvp->sta[vvp->cstate] .c[i] .b.name);

setpoint_priority = i;

i = MAX_COMMAND;

}
}
if (setpoint_priority==-l) {
fprintf(term, "couldn't find behavior setpoint on stack\n");

return -1;

}
vvp->sta[vvp->cstate].c[setpointpriority] .b.arg [.x = arg[0];
vvp->sta[vvp->cstate].c[setpointpriori ty] .b.arg[1].x = arg[1];

vvp->sta[vvp->cstate].c[setpointpriority] .b.arg[2].x = arg[2];
vvp->sta[vvp->cstatel.c[setpointpriori ty] .b.arg[3].x = arg[31;

/* in case beh timed out */

vvp->sta[vvp->cstate].c[setpoint_priority].b.arg[6].x = 0;

fprintf(term, "\nnew setpoint; %6g (rad) %6g (m) %g (m/sec) "
"1%6g (s)\n",
vvp->sta[vvp->cstate].c[setpoint_priority].b.arg[0].x,
vvp->sta[vvp->cstate].c[setpoint_priori ty] .b.arg[1] .x,
vvp->sta[vvp->cstate].c[setpoint_priori ty].b.arg[2].x,

vvp->sta[vvp->cstate].c[setpoint_priori ty].b.arg[3].x

fprintf(syslog, "\nnew setpoint; 76g (rad) %6g (m) %g (m/sec) "

"'16g (s)\n",

vvp->sta[vvp->cstate].c[setpoint_priori ty].b.arg[0].x,
vvp->sta[vvp->cstate].c[setpoint_priori ty] .b.arg[1].x,
vvp->sta[vvp->cstate].c[setpoint_priori ty].b.arg[2].x,
vvp->sta[vvp->cstate].c[setpoint_priority].b.arg[3].x

}

103

return count;
}

A.3 SGI C Code

A.3.1 mcast.c

/ ***

* mcast.c

* Multicast code for E-Z multicast programs.
* John H. Kim, 28 August, 1995.

* HOW TO INCLUDE MULTICAST IN YOUR PROGRAM

Step 1: Include the header in your program (optional on SGI)
* Step 2: Use the function calls as described below
* Step 3: Compile mcast.c and link in mcast.o

* HOW TO CALL MULTICAST ROUTINES IN YOUR PROGRAM

1*) Mcast_init(port); - initializes the multicast routine for your program.
You can have more than one process receive on the same machine.
Port can be 1 or 2. Default values (change via .multicastrc file):

portl = 6000
ip addressl = 224.0.0.250
ttll = 0

port2 = 6002
* ip address2 = 224.0.0.252

ttl2 = 0

* 2) Mcastset_nonblock(port); - sets up port for nonblocking read.

* If you don't use this, the Mcast_receive routine will wait for
input before returning control to your program.

* 3) Mcast_send(char *msg, int msgsize); - multicasts a string. String
is contained in msg, it's length is msgsize (so you can transmit
'\n' as well). Use Mcast_send2 for port 2.

* or

* 3) Mcast_receive(char *msg, int msgsize, char *netaddress); - receives
a multicast string into msg, max length msgsize. netaddress returns

* the IP address of the sending machine. Use Mcast_receive2 for port 2.

#include <stdio.h>

#include <string.h>

104

<sys/types.h>

<sys/socket.h>

<netinet/in.h>

<arpa/inet.h>

<fcntl.h>

"mcast .h"

struct mcast_struct {
unsigned short port;
char ip_group[16];
u_char ttl;

/* Port number,
/* IP address,
/* Time to live,

read in */
read in */
read in */

struct sockaddr_in addr;

int addrlen, fd;
int on;
struct ip_mreq mreq;

} mcast, mcast2;

/* socket address */

/* address length, socket handle */

/* multicast or not?

/* not sure */

/* Reads in multicast configuration from
void Read_mcast_config(void)

char buffer[256];

char *value;

char *defaultname = "./.multicastrc";
char *homepath;

char backupname[256];

FILE *mcastfile;

.multicastrc file */

/* readin buffer */
/* pointer to middle of buffer */
/* rc file in current directory */
/* rc file in home directory */

/* file pointer for above */

homepath = getenv("HOME");
strcpy(backupname, homepath);

sprintf(backupname, "%s", homepath);

strcat(backupname,"/.multicastrc");
fprintf(stderr,"backupname = %s\n", backupname);

/* Set defaults */
mcast.port = 6000;
mcast2.port = 6002;
strcpy(mcast.ip_group, "224.0.0.250");

strcpy(mcast2.ip_group, "224.0.0.252");

mcast.ttl = 0;

mcast2.ttl = 0;

mcastfile = NULL;

/* Find .multicastrc file and prep it for

if (mcastfile=fopen(defaultname, "r")) {
fprintf(stderr,"Using .multicastrc file

} else {
if (mcastfile=fopen(backupname, "r")) {

/* set default

/* set default

/* ip address,

/* ip address,

/* ttl.

port,
port,

and

and

/* ttl.

/* clear pointer */

reading */

in current directory.\n");

105

#include
#include
#include
#include
#include
#include

fprintf(stderr,"Using .multicastrc file in home directory.\n");
} else {
fprintf(stderr,"Couldn't find .multicastrc file. Using defaults.\n");

}

/* Read in settings found in .multicastrc file */

if (mcastfile)

while (fgets(buffer, 255, mcastfile) != NULL) { /* While there are lines */
if (buffer[O] != '#') { /* Ignore if comment

if (strncmp(buffer, "port=", 5) == 0) { /* If it's a port number */

value = &buffer[5];

mcast.port = (unsigned short) atoi(value);/* set the port to value */

} else if (strncmp(buffer, "address=", 8) == 0) {/* If it's an addr */

value = &buffer[8];

value[strlen(value)-l] = NULL; /* get rid of \n /
strcpy(mcast.ip_group, value); /* set address to value */

} else if (strncmp(buffer, "ttl=", 4) == 0) {/* If it's a ttl

value = &buffer[41];
mcast.ttl = (u_char) atoi(value); /* set the ttl value

} else if (strncmp(buffer, "port2=", 6) == 0) {/* If it's a port # */

value = &buffer[6];

mcast2.port = (unsigned short) atoi(value);/* set the port to value*/

} else if (strncmp(buffer, "address2=", 9) == 0) {/* If it's an addr */

value = &buffer[91;

value[strlen(value)-1] = NULL; /* get rid of \n

strcpy(mcast2.ip_group, value); /* set address to value */

} else if (strncmp(buffer, "ttl2=", 5) == 0) {/* If it's a ttl

value = &buffer[51;

mcast2.ttl = (uchar) atoi(value); /* set the ttl value
} /* else */

} /* if */
} /* while */

fprintf(stderr,"Port = %d, Address = %s, ttl = %d\n",

mcast.port, mcast.ip_group, mcast.ttl);

fprintf(stderr,"Port2 = %d, Address2 = %s, ttl2 = %d\n",

mcast2.port, mcast2.ip_group, mcast2.ttl);

/* Initializes multicast networking stuff you don't want to worry about */

void Mcast_init(int portnum)

{
Read_mcast_config(); /* Read in multicast configuration */

/* printf("%d,%s,%d\n", mcast.port, mcast.ip_group, mcast.ttl); */

if (portnum == 1) {

106

mcast.on=1;
mcast.fd = socket(AFINET, SOCK_DGRAM, 0);
if (mcast.fd < 0) {
perror("socket");
exit(1);

}
bzero(&mcast.addr, sizeof(mcast.addr));
mcast.addr.sin_family = AFINET;
mcast.addr.sin_addr.s-addr = htonl(INADDR_ANY);
mcast.addr.sin-port = htons(mcast.port);
mcast.addrlen = sizeof(mcast.addr);

/* Receive */
setsockopt(mcast.fd, SOLSOCKET, SOREUSEPORT, &mcast.on,

sizeof(mcast.on));
if (bind(mcast.fd, &mcast.addr, sizeof(mcast.addr)) < 0) {
perror("bind");
exit (1);

}
mcast.mreq.imrmultiaddr.s_addr = inet_addr(mcast.ip_group);
mcast.mreq.imrinterface.saddr = htonl(INADDR_ANY);
if (setsockopt(mcast.fd, IPPROTO_IP, IPADDMEMBERSHIP,

&mcast.mreq, sizeof(mcast.mreq)) < 0) {
perror("setsockopt mcast.mreq");
exit ();

}
setsockopt(mcast.fd, IPPROTO_IP, IP_MULTICAST_TTL, &mcast.ttl,

sizeof(mcast.ttl));
/* Send, must come after socket options */
mcast.addr.sinaddr.s_addr = inet_addr(mcast.ip_group);

} else if (portnum == 2) {
/* port 2 */
mcast2.on=1;
mcast2.fd = socket(AFINET, SOCKDGRAM, 0);
if (mcast2.fd < 0) {
perror("socket");
exit ();

}
bzero(&mcast2.addr, sizeof(mcast2.addr));
mcast2.addr.sin_family = AFINET;
mcast2.addr.sinaddr.s_addr = htonl(INADDRANY);
mcast2.addr.sin_port = htons(mcast2.port);
mcast2.addrlen = sizeof(mcast2.addr);

/* Receive */
setsockopt(mcast2.fd, SOLSOCKET, SO_REUSEPORT, &mcast2.on,

sizeof(mcast2.on));
if (bind(mcast2.fd, &mcast2.addr, sizeof(mcast2.addr)) < 0) {

107

perror("bind");
exit (1);

}
mcast2.mreq.imr_multiaddr.s_addr = inet_addr(mcast2.ip_group);
mcast2.mreq.imrinterface.s_addr = htonl(INADDR_ANY);
if (setsockopt(mcast2.fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,

&mcast2.mreq, sizeof(mcast2.mreq)) < 0) {
perror("setsockopt mcast2.mreq");
exit (1);

}
setsockopt(mcast2.fd, IPPROTO_IP, IP_MULTICAST_TTL, &mcast2.ttl,

sizeof(mcast2.ttl));
/* Send, must come after socket options */
mcast2.addr.sin_addr.s_addr = inet_addr(mcast2.ip_group);

} /* else */

void Mcast_set_nonblock(int portnum)
{
/* nonblocking socket */
if (portnum == 1) {
if (fcntl(mcast.fd, F_SETFL, FNDELAY) < 0) {
perror("fcntl F_SETFL, FNDELAY");
exit ();

}
} else if (portnum == 2) {
if (fcntl(mcast2.fd, F_SETFL, FNDELAY) < 0) {
perror("fcntl F_SETFL, FNDELAY");
exit (1);

}
} /* else if */

int Mcast_send(char *msg, int msgsize)
{
return (sendto(mcast.fd, msg, msgsize, 0, &mcast.addr, mcast.addrlen));

}

int Mcast_receive(char *msg, int msgsize, char *netaddress)

{
int result;
result = recvfrom(mcast.fd, msg, msgsize, 0, &mcast.addr, &mcast.addrlen);

strcpy(netaddress, inet_ntoa(mcast.addr.sinaddr));

return (result);

}

int Mcastsend2(char *msg, int msgsize)

{

108

return (sendto(mcast2.fd, msg, msgsize, 0, &mcast2.addr, mcast2.addrlen));

}

int Mcast_receive2(char *msg, int msgsize, char *netaddress)

{
int result;
result = recvfrom(mcast2.fd, msg, msgsize, 0, &mcast2.addr, &mcast2.addrlen);

strcpy(netaddress, inet_ntoa(mcast2.addr.sinaddr));

return (result);

}

A.3.2 network.c

This routine is essentially identical to comm. c except it works with the vehicle simulator.

In order to maintain future cross-platform compatibility, it compiles into the main simu-

lator, rather than linking to the data structure like comm. c. Instead of relaying data and

commands between the modem and data structure, it listens and transmits directly to the

network, using the previous multicasting routines. The report routine demonstrates the

differences with comm. c

int report(int *out_ind, int num_out)
{

int i, cnt, msgsz=0;
int uniform_format = 1;

static int print_names = 1;

char msg[500] = "", buf[50];

unsigned char chksum=0;

/* the check sum is everything up to but not including the colon */

if (print_names) {
printnames=0;

sprintf(msg, "NAMES> ");
for (i=O;i<num_out;i++) {
strcat(msg, vvp->s[out_ind[i]] .name);

strcat(msg, space);

}
/* attach checksum and then cr_lf */

chksum = calc_checksum(msg);
strcat(msg, colon);

109

strcat(msg, space);

sprintf(buf, "%02X", chksum);
strcat(msg, buf);

strcat(msg, crlf);

strcat(msg, space);

msgsz = strlen(msg);

cnt = Mcastsend(msg, msgsz);

if (cnt < 0) {
fprintf(stderr, "Error sending message, Mcastsend "

"returns %d, errno Yd\n", cnt, errno);

} /* if cnt < 0 */

sprintf(msg, "VALUES> ");
for (i=O;i<num_out;i++) {

if (uniform_format)

sprintf(buf, "%6.31f ", vvp->s[outind[i]] .x);
else

sprintf(buf, "X.5g ", vvp->s[out_ind[i] .x);
strcat(msg, buf);

}
chksum = calc_checksum(msg);
strcat(msg, colon);

strcat(msg, space);

sprintf(buf, ".02X", chksum);
strcat(msg, buf);

strcat(msg, crlf);

fprintf(stderr, "network_report: %s", msg);

msgsz = strlen(msg);

cnt = Mcastsend(msg, msgsz);

if (cnt < 0) {
fprintf(stderr, "Error sending message, Mcast_send "

"returns %d, errno hd\n", cnt, errno);

} /* if cnt < 0 */

}

110

Bibliography

[1] K. Asakawa, J. Kojima, Y. Ito, S. Takagi, Y. Shirasaki, and N. Kato. Autonomous underwater
vehicle Aqua Explorer 1000 for inspection of underwater cables. In IEEE Oceans, pages 10-17,
1996.

[2] D. K. Atwood, J. J. Leonard, J. G. Bellingham, and B. A. Moran. An acoustic navigation system
for multiple vehicles. In Proc. Int. Symp. on Unmanned Untethered Submersible Technology,
pages 202-208, September 1995.

[3] G. Ayela and J. M. Coudeville. TIVA: A long range, high baud rate image/data acoustic
transmission system for underwater applications. In Underwater Defence Technolgy Conf.,
1991.

[4] J. G. Bellingham and T. R. Consi. State configured layered control. In Proceedings of the IARP
1st Workshop on Mobile Robots for Subsea Environments, pages 75-80, Monterey, CA, USA,
October 1990.

[5] J. G. Bellingham, T. R. Consi, R. Beaton, and W. Hall. Keeping layered control simple. In
Proceedings A UV '90, 1990.

[6] J. G. Bellingham, T. R. Consi, U. Tedrow, and D. Di Massa. Hyperbolic acoustic navigation
for underwater vehicles: Implementation and demonstration. In Proceedings A UV '92, pages
304-309, 1992.

[7] J. G. Bellingham, C. A. Goudey, T. R. Consi, J. W. Bales, D. K. Atwood, J. J. Leonard, and
C. Chryssostomidis. A second generation survey AUV. In IEEE Conference on Autonomous
Underwater Vehicles, Cambridge, MA, 1994.

[8] J. G. Bellingham, C. A. Goudey, T. R. Consi, and C. Chryssostomidis. A small, long-range
autonomous underwater vehicle for deep ocean exploration. In Proc. International Society of
Off-shore and Polar Engineers, 1992.

[9] J. G. Bellingham and J. J. Leonard. Task configuration with layered control. In Proceedings of
the IARP 2nd Workshop on Mobile Robots for Subsea Environments, pages 193-302, Monterey,
CA, USA, May 1994.

[10] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1992.

[11] D. Brady and J. Catipovic. Adaptive multiuser detection for underwater acoustic channels.
IEEE J. Ocean Engineering, 19(2):158-165, April 1994.

[12] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics
and Automation, RA-2(1):14-23, March 1986.

[13] R. A. Brooks. Elephants don't play chess. Robotics and Autonomous Systems, pages 3-15, June
1990.

[14] D. P. Brutzman. A Virtual World for an Autonomous Underwater Vehicle. PhD thesis, Naval
Postgraduate School, Monterey, CA, December 1994.

111

[15] D. P. Brutzman. Internet Protocol over seawater (IP/SW): Towards interoperable underwater
networks. In Proc. Int. Symp. on Unmanned Untethered Submersible Technology, pages 444-457,
1995.

[16] C. Fang C. Eck, D. Porta. High speed digital acoustic telemetry system. In Proc. Int. Symp.
on Unmanned Untethered Submersible Technology, pages 348-362, 1987.

[17] J. Catipovic. Performance limitations in underwater acoustic telemetry. IEEE J. Ocean Engi-
neering, 15(3):205-216, July 1990.

[18] J. Catipovic, D. Brady, and S. Etchemendy. Development of underwater acoustic modems and
networks. Oceanography, 6(3):112, April 1994.

[19] S. G. Chappell, J. C. Jalbert, P. Pietryka, and J. Duchesny. Acoustic communications between
two autonomous underwater vehicles. In IEEE Oceans, pages 462-469, 1994.

[20] DIS Steering Committee. The DIS Vision- a map to the future of distributed simulation, 1994.
http://ftp.sc.ist.ucf.edu/STDS/docs/.

[21] T. B. Curtin, J. G. Bellingham, J. Catipovic, and D. Webb. Autonomous ocean sampling
networks. Oceanography, 6(3):86-94, 1993.

[22] Datasonics Inc., Cataumet, MA. Datasonics ATM-800 series modem user's manual.

[23] I. Dyer. Fundamentals and applications of underwater sound, 1995. Course notes for MIT Dept.
of Ocean Engineering class 13.851.

[24] J. Catipovic (editor). Special issue on acoustic communications. IEEE J. Ocean Engineering,
21(2):125-192, April 1996.

[25] M. Evans. Phobos mars probe, http://leonardo.jpl.nasa.gov/msl/QuickLooks/phobosQL.html.

[26] G. C. Feldman and T. C. Viola. The Jason Project: The NR-1 Submarine Revealed.
http://www.popsci.com/content/science/features/jason/jason.2.html.

[27] M. Johnson, D. Herold, and J. Catipovic. The design and performance of a compact underwater
acoustic network node. In IEEE Oceans, volume 3, pages 467-471, September 1994.

[28] V. A. Kaharl. Water Baby - The Story of Alvin. Oxford University Press, 1990.

[29] A. Kaya and S. Yauchi. An acoustic communication system for subsea robot. In IEEE Oceans,
pages 765-770, Oct. 1989.

[30] J. H. Kim, B. A. Moran, J. J. Leonard, and J. G. Bellingham. Experiments in remote monitoring
and control of autonomous underwater vehicles. In IEEE Oceans, page ????, 1996.

[31] J. S. Merriam L. E. Freitag. Robust 5000 bit per second underwater communication system for
remote applications. In MTS'90 Conf., Feb. 1990.

[32] R. L. Eastwood L. E. Freitag, J. A. Catipovic. Acoustic communications system for the AMMT
program. In IEEE Oceans, volume Supplement, pages 87-92, 1996.

[33] J. J. Leonard, S. T. Tuohy, J. G. Bellingham, B. A. Moran, J. H. Kim, H. Schmidt, N. M.
Patrikalakis, and C. Chryssostomidis. Virtual environments for AUV development and ocean
exploration. In Proc. Int. Symp. on Unmanned Untethered Submersible Technology, pages 436-
443, September 1995.

[34] J. Locke. An introduction to the internet networking environment and SIMNET/DIS.
http://www-npsnet.cs.nps.navy.mil/npsnet/publications.html, 1993.

[35] J. G. Proakis M. Stojanovic, J. A. Catipovic. Phase-coherent digital communications for un-
derwater acoustic channels. IEEE J. Ocean Engineering, 19:100-112, 1994.

[36] T. Sasaki M. Suzuki. Digital acoustic image transport system for deep sea research submersible.
In IEEE Oceans, volume III, pages 567-570, Oct 1992.

112

[37] M. R. Macedonia and D. P. Brutzman. MBone provides audio and video across the internet.
IEEE Computer, 27(4):30-36, 1994.

[38] G. R. Mackelburg. Acoustic data links for UUVs. In IEEE Oceans, pages 1400-1406, 1991.

[39] P. Maes. Modeling autonomous agents, 1996. Course notes for MIT Dept. of Media Arts and
Sciences class MAS738.

[40] J. B. Newman. Fiber-optic data network for the ARGO/JASON vehicle system. IEEE J. Ocean
Engineering, 15(2), April 1990.

[41] G. Pappas, W. Shotts, M. O'Brien, and W. Wyman. The DARPA/Navy unmanned undersea
vehicle program. Unmanned Systems, 9(2):24-30, 1991.

[42] Proxim Inc., Mountain View, CA. ProximLink PL and PL2 Radio Modem Family User's
Manual, June 1994. (415)-960-1630.

[43] J. A. Catipovic R. L. Eastwood, L. E. Freitag. Compression techniques for improving underwater
acoustic transmission of images and data. In IEEE Oceans, volume Supplement, pages 63-68,
1996.

[44] H. Schmidt and J. G. Bellingham. Real-time frontal mapping with AUVs in a coastal environ-
ment. In IEEE Oceans, pages 1094-1098, 1996.

[45] Richard W. Stevens. Unix Network Programming. Prentice Hall, 1990.

[46] M. Stojanovic. Recent advances in high-speed underwater acoustic communications. IEEE J.
Ocean Engineering, 21:125-136, 1996.

[47] J. Travis. Deep-sea debate pits Alvin against Jason. Science, 259:1534-1536, 1993.

[48] R. Uhrich and J. M. Walton. AUSS - Navy Advanced Unmanned Search System. Sea Technology,
pages 29-35, February 1993.

[49] R. Uhrich and J. M. Walton. Supervisory control of unthethered undersea systems: A new
paradigm verified. In Proc. Int. Symp. on Unmanned Untethered Submersible Technology, pages
1-5, 1995.

[50] J. M. Walton. Advanced unmanned search system. In IEEE Oceans, pages 1392-1399, 1991.

[51] S. J. Watson and R. W. Uhrich. Advanced unmanned search system image compression and
data format. In IEEE Oceans, pages 1407-1413, 1991.

[52] G. M. Wenz. Acoustic ambient noise in the ocean: Spectra and sources. J. Acoustic Sociecty
of America, 34:1936-1956, 1962.

[53] D. R. Yoerger, A. M. Bradley, and B. B. Walden. The Autonomous Benthic Explorer (ABE):
An AUV optimized for deep seafloor studies. In Proc. Int. Symp. on Unmanned Untethered
Submersible Technology, pages 60-69, 1991.

113

