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Abstract

The problem of recovering a three-dimensional image from samples of the Fourier
magnitude and a priori knowledge of the object structure is addressed. It is shown
that this mathematical problem relates to a method for remotely imaging opaque
surfaces. Two broad approaches to finding an iterative solution are presented. One
manipulates the support of the autocorrelation function, which can be estimated from
the Fourier magnitude samples. The other is an FFT-based method which attempts
to iteratively improve estimates of the complex scattering function of the object. The
two approaches are shown to combine with some success. Simulations demonstrate
the potential of the method, while the algorithms performance on actual measured
data have limited success.
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Chapter 1

Introduction

1.1 Background of the Speckle Lab

This thesis represents work done in the Laser Speckle Lab of Lincoln Laboratory's

Group 35. The Laser Speckle Lab develops novel measurement techniques for a range

of applications using interference patterns of coherent light. A family of techniques

has been developed to quickly and remotely form 3D height maps of opaque surfaces,

and these are now the main thrust of the Speckle Lab's work [1, 2]. The problem

of recovering Fourier phase information from magnitude measurements alone arises

in one particular technique used for measuring heights. This thesis develops "phase

retrieval," or Fourier phase recovery, algorithms in order to enable this technique.

The Laser Speckle Lab's earliest work was directed towards target identification

in missile defense [3, 4, 5]. More recently, it has become clear that the same principles

used for generating signatures of target objects in defense applications could also be

used to generate 3D images of many opaque objects. Attempts to find off-the-shelf

components to replace extremely expensive equipment were successful, and communi-

cation with industry revealed a true need for novel imaging techniques that overcome

the difficulties of current methods.
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Figure 1-1: Image of a stamped aluminum object using speckle pattern sampling with
a phase reference

1.2 Motivation for Phase-Retrieval Processing

Currently, the most successful of the Speckle Lab's methods do not rely on phase-

retrieval. Some of these operate on simple principles and have been shown to readily

produce detailed images; for example, the height map in Figure 1-1 was obtained with

the speckle-pattern-sampling method with a reference point, which will be described

in the next chapter. While little work has been done on the phase retrieval problem

applied to complex-valued scattering functions in three dimensions, it is apparent

that the problem becomes very difficult for objects of considerable detail.

As compared with measurements already done using other techniques at the

Speckle Lab, phase retrieval may be extremely computationally intensive and far

less robust. Despite the decreasing cost of computation, in many situations there will

simply be no payoff for using this method in favor of others. However, situations arise

where other methods cannot be used due to physical limitations, such as the need to

put a reference mirror near the object or the failure of some methods as the angle

between source, object, and detector approaches zero. The method I will discuss

is monostatic (meaning that it does not require an angle between the illuminating



source and detector'), has range resolution which is independent of the total distance

to the object, and does not require that the object be physically accessible. For ap-

plications such as imaging a distant satellite, all of these properties are desirable if

not essential. Other applications, such as forensic imaging of the back of a gun barrel

(or any long tube or deep crevice), call for monostatic imaging even if the object is

small and accessible.

Development of effective algorithms for reconstructing objects from their Fourier

magnitude thus extends the applicability of the Speckle Lab's family of methods.

Furthermore, there is great promise that further algorithm development will yield

improved robustness and images with more interesting detail.

1.3 Previous Work

Shirley, [1], and Paxman, [6], have each presented work on the problem of extracting

Fourier phase related to Speckle Pattern Sampling. The work discussed in this thesis

is a continuation of work done at the Speckle Lab by Shirley, Rahn, and Hallerman.

Shirley's work presents an entirely support based approach, which allows a great deal

of data reduction to be done before iterations begin. Paxman uses a very different

method, much more akin to iterative transform techniques which will be discussed in

Chapter 4. He performs a minimization of errors in the observed intensities over a

parameterized space of allowable objects.

In both cases, results are presented that are encouraging, but fall short of enabling

a general surface-imaging technique. Shirley presents a reconstruction from actual

measurements of a 25- point array, obtained using somewhat specialized software to

utilize knowledge of the 2D structure of the object. Paxman presents only simulations

of a 6-point and an 18-point discrete object on a regular grid. It is desirable to build

on these results so that interestingly fine samples of continuous scattering objects can

'triangulation methods, for example, do require such an angle



be obtained. Such improved performance would make the imaging concept described

in the next chapter a very flexible technique for obtaining remote measurements.

1.4 Currently Implemented System

In this thesis, I begin to bridge the gap between previous results obtained and a

realistic imaging system. My work consists of

1. algorithmic extensions of previous phase retrieval work

2. further application of convenient notation and theory which will allow support-

based methods to be more carefully improved

3. the first simulations at the Speckle Lab with non-ideal Fourier magnitude esti-

mates for both support and Transform methods

4. engineering of code which is capable of producing images and offers ease of

continued development and experimentation.

Several features not contained in older programs have been included in a C imple-

mentation. Strategies for support algorithms have been explored further with some

success but no definitive optimal strategy. I implemented a non-parametric Itera-

tive Transform algorithm using an opaqueness constraint, which has not been done

before to my knowledge. The implementation was successful: within a limited but

interesting class of simulated objects, reconstructions had essentially no error. Most

importantly, the two types of methods have been shown to have an interaction: their

combination is shown to give better simulated reconstructions than either one alone.

The real data reconstructions presented here are not of high quality, but provide a

proof of concept. This work may also provide a basis for deciding whether future work

is worth while; especially given the success of the Speckle Lab's other techniques, re-

sources should only be allocated towards further development if the method shows

sufficient potential.



Chapter 2

Background and Models

2.1 Speckle-Pattern Sampling

In the speckle-pattern-sampling (SPS) technique, developed by Shirley and also pre-

sented in [7], a coherently illuminated object surface can be reconstructed from the

intensity pattern of light scattered as the illuminating laser frequency is tuned. Us-

ing the simplest possible models, we illustrate the mathematical results behind this

imaging concept. The first result to derive is that scattered light in the far-field has a

3D Fourier transform relationship with the complex scattering function. Knowing the

complex scattering function of an object surface gives us the shape and brightness of

the surface-everything which we would like to measure. The second result is that we

can easily obtain a grid of samples of this Fourier Transform magnitude which allow

for rapid inverse-transformation using the FFT. For a much more complete treatment

of Speckle-Pattern Sampling, including analysis of various sources of error, see [1].

Figure 2-1 schematically shows the essential geometry of the system: light comes

from a source point r, and illuminates a collection of object points with complex

scattering function g(ro). The scattered light is detected at point rd. If we have an

approximately ideal point source of light, we can use a simple complex-exponential

wave representation of the illumination at frequency v, and can easily express the

optical field at an object point. The contribution to the field at rd made by light

scattered from ro then follows directly from knowledge of the scattering function at
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Figure 2-1: Geometry of the Speckle-Pattern Sampling technique for 3D imaging

that point. I will simplify things from the beginning by assuming that r,. - ro] is

approximately the same for all object points in the surface. This means that the

magnitude of the optical field is uniform across the object, and we need to keep track

only of the dependence of phase on position ro. This assumption reflects a simple

far-field design, that Ir1s > Irol, so that Ir, - rol r Jr,8 for all object positions of

interest. Assuming a uniform magnitude, IVoI, the field at the object is

i2-r - *I

V(ro)= IVole~ro-r, (2.1)

which makes the contribution from ro at rd

V(rd; To) = IVoeCro-r g(ro)e~ Iro-rd. (2.2)

The sum of contributions from all ro is

V(rd) = IVoI Jg(ro)er (Iro-rl+Io-rdI)dro. (2.3)



Expressing r, as R,i',, and rd as Rdid with r, and rd unit vectors, we design the

system so that R8, Rd > o Irl, and i, and id are almost entirely in the z direction.

Since R, and Rd are large, we can approximate Iro - r8 j as R, +i, -ro, and Iro - rdl

as Rd + id' To. This allows us to write Eq. (2.3) in a form which extends the familiar

2D Fourier optics result. That is,

V(rd) = IVo le - Ci I -) J g(ro)ei(-r,+rd).rodro. (2.4)

We have now obtained the first result: the integral has the form of a Fourier

transform, and is multiplied by an overall scaling factor and a phase (the phase will

not be detected at all, since we take only intensity measurements). It remains to

find a convenient sampling of the Fourier domain. First rewrite Eq. (2.4) with j(f)

defined as F{g(ro)} f g(ro)e-i2rf-'rodro:

V(rd)= IVole -- (R'+Rd)g(f). (2.5)

And so the frequency vector is,

f = 2 --+ (2.6)
Zo + dd

For a fixed optical frequency and source position, we can place an array of detectors to

sample a surface of values f. For example, placing a CCD array perpendicular to the

z axis allows us to sample at a grid of Xd and Yd values with approximately the same

Rd. Now remember that f has a dominant z component-to first order, fz = -2v/c.

The fact that I& + 1ý is so much larger than the corresponding x and y components

allows us to sample a volume of f-points on a rectangular grid with a single, fixed 2D

detector array using the following trick: tune v by an incremental amount Av such

that the change in f, and f, is negligible. The change in fz is then 2Av/c, which is

much larger-it can be large enough to sample a reasonable band of frequency space,



assuming the system is designed with appropriate ratios Av/v, fylf,, and fl/f . In

this way, we have approximately independent variation of f, fy, and fz through Xd,

Yd, and Av, respectively. Capturing a rectangular volume of samples appropriate to

the FFT is very natural. Further analysis of the above assumptions, conditions for

their validity, and compensation can be found in [1].

2.2 Optically Rough Objects

Most objects of interest are rough on an optical scale; optical wavelengths are less

than one micron, and so many object surfaces have fine-grained variations in height

on the order of a wavelength or greater. This roughness gives rise to scattered light

which seems to form a random pattern. If we have no interest in resolving the grain

of the object, but only of imaging the macroscopic structure, a natural approach is

that found in in Dainty [8], where local variations in height are modeled as a random

phase function. Shirley adapts this type of model to write

g(r) = a(x, y)6[z - h(x, y)], (2.7)

where a is a delta-correlated, circular, complex random process, representing the

limit of infinitely fine grain of surface texture. So although the scattering function

is a random process, the height function, h, represents only the macroscopic or de-

terministic part of the surface height. The observed Fourier Transform will naturally

be a realization of a random process. While tiny changes in the surface texture of

an object may cause the intensity patterns to change considerably, the second-order

statistics, or the "average" shape of speckles, will be the same. In practice, we find

that even the periodogram, a simple FFT-based estimate of second-order statistics

with no averaging of data, gives high-quality height maps of objects.



2.3 Magnitude Measurements

It is well known that only optical intensity can be directly measured electronically.

For our technique, this means that samples of g(f) are not obtained by our detector,

but rather samples of its squared-magnitude. When we take the FFT, we get an

estimate not of g(ro), but of it's autocorrelation.

This issue can be dealt with by designing a more clever geometry which allows

phase to be measured indirectly through intensity. Often a phase reference of some

kind is used. Several schemes have been used at the Speckle Lab and elsewhere.

One method which has produced successful measurements fits very easily into the

framework developed above. This is to use exactly the same Speckle-Pattern Sampling

method described, but place a curved mirror near the object during measurement.

The mirror focuses the incoming illumination down to a point, which is now a small,

bright point in g(ro). We can now write the effective scattering function by adding

an impulse to the original function: g(r) = gi(r) + 6(r - rref). It is easy to show

that the autocorrelation function of g now contains four parts: a bright point at the

origin, the autocorrelation of gi (also centered on the origin), and two copies of gl:

gl(r + rref) and g* (rref - r). Since copies are offset from the origin by ±rref, we

can place this reference point so that the copies do not overlap with the other parts

of the autocorrelation, assuming the object is of finite extent. An estimate of gl is

trivially extracted from the autocorrelation, since copies are physically offset from

other supported points.

SPS with a reference point is a good solution to imaging problems where it is

physically reasonable to put a reference mirror near the object. If we cannot, one of

many other ways to obtain a reference phase involves building another leg of beam

path and interfering with a reference mirror, thus creating a virtual point near the

object. Here too, there is the question of whether it is physically desirable to build

a second leg and reference point. For applications where a phase reference is not

desirable, the question is how do we obtain g from samples of [I. Equivalently, how

do we obtain g from an estimate of its autocorrelation?



The general problem of uniquely obtaining g from 1[1 is of course impossible:

any phase function, 0(f), can be combined with 1g1 to generate a function g' -

FT-l{[§(f)[ei'(f)}. If we have some a priori knowledge of the structure of g, then

certain of the phase functions, q, can be deemed less valid, and we can hope to

reconstruct the correct scattering function uniquely. Accomplishing the stated recon-

struction is the subject of this thesis.

The question of uniqueness is discussed in some of the basic literature, for exam-

ple [9], including the important difference between problems of one dimension and

those of higher dimensions. In a number of 2D applications, phase-retrieval has been

successfully used to uniquely determine g. Note that, for any g(r), all shifted ver-

sions of both g(r) and g*(-r) give the same Fourier magnitudes. We will consider

these all to be in an equivalence class, and regard uniqueness accordingly. Previous

applications typically assume that a sufficiently tight support of g is known a priori.

The support constraints available in our problem are somewhat non-standard, but

seem tight enough in comparison with common 2D supports used, for example, in [9].
Uniqueness is actually thought to be more easily achieved for higher dimensions [10].



Chapter 3

Support Methods

We have seen that our problem can be posed as extracting the support of a scattering

function from an estimate of its autocorrelation. If we argue that much of the useful

information in the autocorrelation function is contained in its support alone, we can

take an entirely support-based approach towards reconstruction, with this support

function as our starting point. Work done by Shirley along these lines is presented

in [1, 11]. The basic observation is most simply explained assuming a scattering

function, g(r), composed of a finite number of scatterers. If

g(r) = giJ(r - r,), (3.1)

the autocorrelation takes the form,

a(r) - (g * g)(r) = g* (g(r) *5 (r + r,)), (3.2)

where * denotes convolution (or complex conjugation, when it appears as a super-

script), and * denotes correlation: v*w is defined as convolution of w(r) with v*(-r).

We read (3.2) to say that a is a weighted sum of shifted copies of g. Then the autocor-

relation function is nonzero wherever any of the copies in (3.2) are nonzero, except at

points where the contributions from different copies cancel. The issue of cancellation

is important, and will be discussed in Section 3.3. For the moment, we note that by



taking a larger record of speckle pattern samples, we can estimate the statistics of ]g|

more accurately, and reduce the problem of cancellations. We have the (approximate)

result that the support of the autocorrelation is determined in a straightforward way

from the support of g. When this relationship can be inverted, then the assumption

made at the beginning of this chapter, that much of the useful information of a is

contained in its support, is justified.

This problem has been investigated in [12], where a convenient mathematical

framework is developed. Fienup uses set notation and manipulations; for example, S

and A are the sets of points in the supports of g and a respectively. His results are

interesting but of limited use, as they treat the problem of finding exact, guaranteed

locator sets, or sets including an acceptable solution S. Not much can be done in the

general case, and those special cases which he treats do not apply to our problem.

Shirley, in [1], takes this approach further, exploiting the specific structure of S

which results from assuming an opaque object. At least for perfect measurements, he

has shown that acceptable reconstructions can be obtained. He has also accomplished

reconstruction from real data for an object with known 2D structure.

3.1 The Shift-and-Intersect Method

3.1.1 Basic Algorithm

In this section, I describe an iterative method for improving estimates of S developed

by Shirley, [1]. I start with some notation. The following intuitive definitions of set

addition, subtraction, and negation are taken from [12]: For arbitrary sets B and C,

B + C = {dd = b + c, b E B, c E C}, (3.3)

- B (-bjb E B}, (3.4)

C - B {dd = c- b, c E C, b E B}, (3.5)

C - b {dJd = c - b, c E C}, (3.6)



and

c - B - -(B - c). (3.7)

Note that these definitions are very different from the algebra of sets given, for ex-

ample, in [13]. Some further explanation of set operations is given in Appendix A.

We will see that many of the manipulations of support functions can be elegantly

expressed using these definitions. As a first example, we recognize from Eq. (3.2),

and by neglecting cancellations, that the support of the autocorrelation function, A,

is the set of all differences of points in S, that is S - S.

We proceed by rewriting Eq. (3.2) as

A = S- S = U (S- s)= U (s- S). (3.8)
sES sES

So we already have a set which contains many shifted copies of S, some of which

are flipped about the origin. Keep in mind that any shifted or inverted copies of

the actual S are acceptable solutions to our problem.' We think of A as our first

estimate of S, and call it S1 . Without making any special assumptions about S, we

can also obtain a smaller locator set by taking A n (A - a) for any a E A . As it is

an improved guess at S (containing fewer unwanted points), call this S2. To see that

it does contain a solution, define si E S and s2 E S such that a = s, - 82, and

An (A -a) = (U(-s)) n ((s-s-s,+s 2)). (3.9)

Each union has a term with s = sl and one with s = s2, so S - sl lies within

A n (A - a). By the same argument, using the second form in Eq. (3.8), s2 - S lies

in A n (A - a) as well. Each of these is a shifted (possibly flipped) copy of S, and

is an acceptable solution to our problem. So this locator set actually contains two

solutions. In general, there is no simple way of separating one of these copies from

unwanted points in S2. If additional shift and intersect operations can be made, they

1Furthermore, the ambiguity in the solution is both unavoidable and of little consequence to the
utility of the method



will likely eliminate unwanted points rapidly, but how do we choose those shifts which

will not also eliminate points of the desired copy?

We know that many shifts do exist, since any A - ak, ak = 81 - Sk contains S - sl

by the same argument given for A - a. We can make an entirely parallel argument

for 82 - S, but this becomes repetitive, and will be omitted from the remainder of

this thesis. If we could determine some of these ak's, or equivalently, if we could find

any b E S - sl (and set b = -ak), we could proceed with more shifts. That is, if even

one additional point of Sk D S - sl can be determined to lie in S - Sl, we can obtain

Sk+1 through,

Sk+1 = Sk n (A - ak+1), (3.10)

or more explicitly,
k

Sk= A(A - ak). (3.11)
i=1

These expressions are consistent with the above definitions of S1, S2, and ak. 2 The

key, then, is to use some a priori knowledge of the structure of S to identify desired

points within Sk. In particular, if we can assume that certain vertical columns of Sk

must contain some ak, then we can hope to find one such a column which only has

one point left. If so, this point is a guaranteed "true" point. For general objects, we

would hope to no avail-there is no reason to think that singly-populated columns

would arise. The specific objects we are imaging, on the other hand, are opaque, so

each copy of S has at most one point per column, and it is plausible if not likely that

singly-populated columns would arise at each iteration of the reconstruction. While

I have done no analysis of the probability of these arising, my own and previous

simulations have shown that shifting using singly-populated columns is very effective.

If no guaranteed points can be found, it is still possible that these or any other a

priori constraints might provide a list of likely shifts and some criteria for determining

whether incorrect shifts have been made, allowing us to traverse a tree of candidate

2We can think of the base case in the recursion as S1 - A, or define So to be the set of all
permissible points in our space.



shifts. Other strategies for making shifts which seem promising will be discussed in

the following sections.

3.1.2 Choosing Shifts and Converging

The shift-and-intersect method described above raises two questions: how can we

choose the "best" shifts, and how do we decide that we've converged? Clearly the

best shifts are those that are very likely to lie in S - si, but keep in mind that correct

shifts which do not eliminate extraneous points are of no use. We could regard the

algorithm "converged" when enough points have been eliminated so that we can find

the surface heights, but on the other hand, as soon as there are few enough points

that we can systematically check the consistency of remaining points, no more shifts

are needed. I will discuss the final stage of the reconstruction before strategies for

choosing shifts.

Convergence Through Consistency Check

Shirley has previously developed a reasonable algorithm for testing and sorting a set

of points to find a large subset which is consistent. Consistency is defined here to

mean that any pair of points, Pi, P2, in the set correspond to a vector difference p 2 -p 1

which is in the support, A. This may be the most that the support can give us: if

there are still spurious points, there is no straightforward way to remove them using

the autocorrelation support alone. In practice, there are few if any spurious points

in this solution, although for imperfect A estimates it is common for points to be

missing from the reconstruction.

Ideally, we would like an algorithm which extracts the largest possible set of

consistent points from Sk. One very impractical way to do this is to enumerate

all possible subsets of Sk, and choose the largest one which does not contain an

inconsistent pair. This method is useful only in pointing out that it is possible to find

an optimal, if not unique, solution in finite time. Sk with M points has a number of

subsets which increases exponentially in M, and so the impracticality of the method.



Shirley's consistency matrix reduction algorithm (CMR), on the other hand, can be

implemented to run in N 2 time, but does not entirely guarantee that the consistent

set is the largest which can be extracted. This may only be a small drawback, since

we can take the set of consistent points to be a series of shifts to be executed, which

will eliminate the bulk of the unwanted points and leave points missed by the CMR

algorithm. I have not studied the behavior of this modified version in detail, but an

example is presented below.

The CMR algorithm conceptually starts by forming a consistency matrix, or a

2D table of ones and zeros representing the pairwise consistency of remaining points

Pi in the locator set. The matrix is M x M and the i, jth entry is 1 exactly when

pj - pi is in the autocorrelation support. The matrix is then reduced in (at most) M

iterations. At each iteration, we find the point which is inconsistent with the fewest

other points, and eliminate this point from the set, crossing out the corresponding

row and column of the matrix. If all points are consistent, we return the set without

further reduction. Versions of the algorithm existing before were implemented in

Mathematica, and were not written with efficiency in mind. I have so far found and

tested the version presented as C code in Appendix B, which is equivalent and achieves

the claimed M 2 performance in time while avoiding the M 2 memory overhead of the

original Mathematica implementation. Further improvements may be possible.

Table 3.1 shows a consistency matrix which I have found which will not necessarily

be reduced to give the maximum consistent set. A table of the algorithm's progression

is shown in Table 3.2. Note that the columns are already ranked in order of highest

consistency at all iterations, although several "ties" in consistency occur during the

reduction. The algorithm gives points pi and P2 as output, although P5 is consistent

with both, and so is "overlooked" by the algorithm. This is a case where shifts for

all consistent points (P1 and P2) and retrying the consistency matrix trivially gives

the correct answer. There may be cases in which this method breaks down as well,

and future study can be given to this issue, to the breaking ties, and to whether

alternative algorithms obtain the optimum set in polynomial time.



Choosing Shifts

Prior to this thesis, shifts have been chosen randomly among those points in singly

populated columns. If each of these is likely to be a good shift, this method may be

good enough; simulation results obtained prior to this thesis gave perfect reconstruc-

tions for ideal autocorrelation estimates. In fact, even the results of just a few shifts

were already recognizable.

As false singly-populated columns come up (due to thresholding difficulties, noise,

etc.) we may want to choose shifts more carefully. To motivate this, we look at a

simulation of how the random-choice strategy does starting with imperfect A. An

estimate which is a noiseless lal thresholded at one thousandth its peak value was

used. The original 2D object support of a triconic target is shown in Figure 3-1, and

Figures 3-2 and 3-3 show the results after 2 and 6 shifts in a series, respectively. The

shadings in the latter two figures represent the status of columns: black indicates an

empty column, dark grey a singly-populated column, and light grey a column with

multiple points. The resulting sets are small enough to perform CMR, which leaves us

with Figures 3-4 and 3-5, respectively. If we consider these results unacceptable, they

demonstrate that, even without noise, thresholding can cause the original algorithm

to fail. If we start over and make different random choices, we can obtain acceptable,

although imperfect reconstructions. One is represented in Figure 3-6 after only two

shifts, and in Figure 3-7 after CMR. The true object is represented analogously to

Figure 3-7 in Figure 3-8. After trying with several random seeds, I concluded that

neither successes nor failures were rare for this object and threshold.

Pl P2 I 3 P4 1P5
Pi 1 1 1 0 1
P2 1 0 1 1
P3 1 0 1 1 0
P4 0 1 1 1 0
P5 1 1 0 0 1

Table 3.1: Consistency matrix reduced unsuccessfully.



Iteration Points Consistent With Result

Pl P2 P3 P4 P5
1 4 4 3 3 3 Drop p5
2 3 3 3 3 - Drop p4

3 3 2 2 - - Drop p3
4 2 2 - - - Converged: pi, P2

Table 3.2: Progression of unsuccessful CMR iterations.
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Figure 3-1: 2D support of true object.

(259 Voxels, 170 Columns, 81 Singles)
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Figure 3-2: Result of two unlucky shifts, randomly chosen in singly populated
columns. Object Shape is generally intact, but not yet separated.
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Figure 3-3: Result of six unlucky shifts. Significant loss of information has resulted
from the chosen shifts.

Figure 3-4: Result of CMR after two unlucky shifts. The shape of the object is not
intact.

Figure 3-5: Result of CMR after six unlucky shifts. Again, the shape is not intact.
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Figure 3-6: Result of two lucky shifts. Most columns seem already to have converge
to a singly-populated state.

Figure 3-7: Representation of an acceptably converged object obtained from CMR
after two lucky shifts. While some points are missing, image quality is fairly good.
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Figure 3-8: Representation of true object.
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The CMR algorithm actually has relevance to choosing early shifts as well as for

putting the finishing touches on the reconstruction. Although the original CMR was

intended to be done on the entire set Sk, I observed that there is nothing preventing us

from reducing a much smaller set of points on the basis of consistency. In particular

we can use CMR on the set of all points in singly populated columns. If these are

in short supply, we can throw in doubly or triply-populated columns, or any other

points that we think are likely to be in S - sl. The advantage of columns with few

points is that they should guarantee that even a reasonably sized consistency matrix

contains several points in the true support. Even with noisy estimates, then, many of

these points should be determined as consistent by CMR, and thus good candidate

shifts. Among these, we can choose all of them as shifts, or any which seem better than

others. For example, if we don't mind deviating slightly from our exclusively support-

based approach, we can pick those of the consistent points pi with greatest la(pi)l.

This is unattractive because of the asymmetrical importance of la(r - al)l = la(r)l

over all of the other la(r - ak) I. (Since ak are defined to correspond to ak, the support

of la(r - ak)l is A - ak. While juggling set and functional notation is a bit clumsy,

the correspondence is just the obvious one). The point with the highest "combined"

la(p - ak) 's seems the best bet, but this begs the question of how to combine them.

Proceeding in this direction seems to call for a more thorough generalization of the

CMR idea.

Finally, we may want a method for choosing first shifts so that a bright "copy" of

g in the sum (3.2) is chosen among the many possible copies. Clearly, there will be

brighter and darker copies which correspond directly to the larger and smaller values

of gi in that sum. By setting the threshold high enough that even most true points

in A are undetected, we obtain an estimate A much smaller than the true support

which tends to contain points corresponding to pairs of bright points. If we then do a

complete consistency reduction on this small set, we may obtain a handful of points

in a bright "copy" of S. We can then remember these points, start over again with a

lower threshold and new A and S1. The points which we remembered still lie in S1,

but this time we have regained points in that bright copy which fell below the earlier



threshold. If we choose these consistent points from the previous stage as our first

few shifts now, we should have an excellent start in this stage. In future sections, we

will refer to this strategy as the variable-threshold approach.

3.1.3 Two-Dimensional Support Considerations

The singly-populated column strategy is simple and has been effective. It does assume

that certain columns must contain supported points, and so some care should be taken

in making this assumption and in deciding for which columns it is valid. I will put

forward some guidelines which may improve existing methods of choosing shifts.

Before proceeding, it is important to note that those algorithms which simply

assumed that all populated columns in Sk would be supported columns worked fairly

well. In simulations done prior to this thesis, when random choices were made of the

singly-populated columns, correct shifts were often chosen, and entire reconstructions

could be made with no shortage of singles. However, simulations confirm that after

one or two iterations, it is possible to identify singly-populated columns that actually

lie outside of the 2D projection of the desired copy of S. That is, these columns do

not fall within the 2D support of the object, and so we cannot conclude that the point

in each is a guaranteed true point. In fact, shifts corresponding to these points are

bad shifts, and cause loss of desired points from the reconstruction. This differs from

results previously mentioned because it involves a perfect A estimate. Bad shifts are

obtained for unsupported columns lying both on the edge and in the center of Sk, for

an object derived from that of Figure 3-8, but with several points removed. Points

were removed so that the object had a "hole" in its 2D support.

One way of obtaining a guideline of which columns are guaranteed assumes that

we already know the 2D support of S. Call the 2D support P. In practice this may

be obtained from a conventional 2D imaging system, or estimated from [§I. Given a

locator set, Sk, we can take its 2D projection. Call this projection Pk. The thing to

notice now is that for any Sk tighter than A, there are columns which fall within all

of the shifted copies of P that are contained within Pk. This must be true since even

Pk = P1, equal to the 2D projection of A, has one such column--the origin. So by



Figure 3-9: Conceptual sketch of a method for finding safe columns.

taking the intersection visualized in Figure 3-9 of all of the copies of P which do not

conflict with Pk, we can obtain a set of "safe" columns. A looser estimate of P will

mean a smaller intersection, but not necessarily no intersection, and so the method

may even be effective when P is known imprecisely.

We would prefer not to need a measurement of P. In some sense, we can define

safer columns as those which are not inconsistent with any other columns. Inter-

preting consistency of columns as the presence of their vector difference in the 2D

support (analogously to our definition for points), we need only the projection of A

to judge consistency. We might then restrict ourselves to shifts in the set of columns

consistent with all other columns in Pk. As depicted in Figure 3-10, this is the set of

columns v such that P1 - v contains Pk. If the correct, partially reconstructed copy

of P is called Pr, then the above v are guaranteed to be within the intersection,

n PI -p.
pE Pr
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Figure 3-10: Conceptual sketch of another method for finding safe columns.
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This gives us some assurance that the set is tight enough to provide some safety. It

may be worth exploring whether any reasonable assumptions about S imply that the

resulting columns, p are guaranteed to be in Pr.

We should keep in mind that safety is not our only criterion for good shifts; there

may be some trade-off between safe shifts and ones which rapidly generate tight

locator sets. While the above methods may be helpful, the partial consistency matrix

method which has been discussed seems more powerful and as easy to implement.

They can be used together, if desired.

3.2 A New Interpretation-Deconvolution

In this section, I would like to show an interpretation of, or alternate way of arriving

at, the shift-and-intersect method. The interpretation comes with natural potential

generalizations. Here we assume that at the kth iteration, we have obtained an im-

perfect guess, Vk, and would like to find an improved guess, Vk+1. So far this is a very

common and general approach. Of course there are many types of imperfect guesses

that one might have. Assume that Vk is a subset of a correct solution S: Vk C S,

S - S = A. This implies that

(Vk- S) c (S - S) = A. (3.12)

It is then reasonable to use Eq. (3.12) to obtain an approximation to S associated

with Vk. In particular, it makes sense to find the largest set Wk such that

Vk- WkC A. (3.13)

To interpret the meaning of Wk, notice that Eqs. (3.12) and (3.13) imply S C Wk

as long as Vk C S. Then Wk is a locator set in which we can search for additional

points to include in Vk+1. We have chosen the smallest set guaranteed to contain a

solution for S to Eq. (3.12) and so in some sense have fully utilized Vk. What we

will see next is that the set Wk can be generated easily from Vk, and furthermore is



equivalent to the intersection of shifted copies of A already described. This provides

some additional assurance that intersecting copies of A is a reasonable way to proceed

at each iteration. It is not intended as a proof that we have used all of the information

available in A and Vk. In fact, we tend to assume that all of the information needed

to generate S or -S uniquely (to within a shift and flip) is contained in A and a

priori assumptions alone, so if all of the information were utilized, we would converge

to V1 = S on the first iteration.

We can refer to this method of obtaining Wk from Vk as deconvolution since,

in functional notation, our definition (3.13) becomes: wk(r) is the largest support

function such that

(vk * wk)(r) • Sa(r), (3.14)

where * is again used for correlation and sa is the support of a. Here is the demon-

stration that Wk, the "deconvolution" of A and Vk is equivalent to the result of the

shift and intersect method with shifts obtained directly from Vk.

Without loss of generality, assume that the origin is one of the points of Vk (other-

wise just translate all points so that one lands on the origin). Then, we also have, from

(3.13), that 0 - Wk = -Wk c A. That is, we only have to check points within A to

see whether they satisfy (3.13). But this already suggests the whole shift-and-overlap

method. By the same reasoning, for each point xkj in Vk,

kj - Wk C A == Wk C -A+ kj = A+ Xkj, (3.15)

and furthermore, all of these equations taken simultaneously imply (3.13). But the

largest set satisfying Wk C A + Xkj for all j is of course

Wk = U(A + xkj) (3.16)

This is precisely the shift-and-intersect formula. The question remains: how do we

obtain further shifts, or an improved Vk+1 D Vk, from Wk? Exactly as in the shift-



and-intersect method, a priori object constraints can be used to choose guaranteed,

or at least the most likely shifts.

Note also that the deconvolution can be interpreted as a standard matched filter

with a threshold at the output. Eq. (3.14) dictates that wk(ri) = 1 only if the

support function v(r + ri) lies entirely inside of the support Sa. This means that with

threshold, t, equal to the number of points in Vk, w can be defined as

w(r) = ' (V )() > t (3.17)
0 , (v * sa)(r) < t

It may be useful to generalize the above matched filter in the case of noisy autocorre-

lation measurements. If the threshold is set some number below the size of Vk, then

the shift-and-intersect procedure will "forgive" each point of that number of "bad"

shifts which may disagree with it. While this will allow more unwanted points to

persist, the true points will have a statistical advantage, and so highly forgiving al-

gorithms may have good asymptotic performance. Going further along the lines of a

matched-filter, we can think of a shift and add method as a matched filter searching

for high return, or "brightness," at particular points, which we have determined are

supported. We define the real valued WI as,

Wk(r) = (A, Vk)(r). (3.18)

A is the "brightness," not just the support, of the autocorrelation, and Vk can be

taken as the fragment of the desired support obtained so far. If we do restrict Vk to

be a support function, then we can still expect fairly speedy computation.

3.2.1 Other Generalizations

Part of the power of the shift-and-intersect and the consistency matrix methods is that

it is fairly easy to generalize their forms. Looking at a broader class of methods, we

can decide if improvements on the original method are possible and at what expense.

We have just seen one path for generalization. Now, we can attempt a more inclusive



description of reasonable solutions to our problem: at each iteration, we have a set of

points, {ai}, likely to be in the support we are trying to reconstruct, and a function

of p related to the likelihood that there exist supported ri, rj with p = rj - ri.

We ultimately make a binary decision at each point-whether that point is to be

considered supported based on its consistency with the trusted points. In accordance

with this description, we can think of b(p) = B(la(p)l) as the brightness measure of

a point in the autocorrelation; any monotonic function of lal is reasonable. A binary

decision at r based on the consistency of points with the assumed set is then

F(b(r - a,), b(r - a 2 ), ...)

For the shift-and-intersect, we can think of B as a simple thresholding operation and

of F as a logical AND. One simple variant of this is to threshold with B, and require

that at most I of the thresholds failed. This reduces to shift-and-intersect for 1 = 0,

and is the same as the "forgiving" filter described in the previous section. With the

same threshold, higher 1 it will reduce the number of unwanted points in Sk more

slowly than a less forgiving F, but it may still be useful if noisy measurements make

it likely that even true points need forgiveness.

One may want to go further and retain the information normally thrown away

with a thresholding B. In other words, should a thresholding operation be performed

on some combined measure of a point's consistency with all assumed ai? This suggests

we choose B(Jaj) to be some non-decreasing function of lal such as lal or log(lal), and

F to be some accumulating operation which is symmetric and non-decreasing in its

arguments like summing, maximum, minimum, etc., and then thresholding. Shift-

and-intersect then gives rise to variations like shift-and-add, or shift-and-multiply. In

the next section, we discuss generalizations in the context of performance metrics for

support methods.

We could proceed along the same lines in generalizing the consistency matrix-

using real numbers instead of ones an zeros would parallel the generalization of B.

But without further understanding the failures in performance of the CMR algorithm,



and outlining performance metrics for generalizations, they would be very ad hoc and

arbitrarily chosen.

3.2.2 Performance Metrics

Although some intuition can be built by simply playing with variations on the shift-

and-intersect method, it is appropriate to carefully define performance metrics. These

serve as a basis for precise empirical comparison and a starting point in a search for

theoretically better or optimal methods. Ultimately of interest is whether we can

get an acceptable reconstruction using a particular method or strategy, but this does

not help us decide how well we are doing at each iteration. If we think of finding all

supported points at a given iteration as a set of stochastic detection problems, there

is no need to reinvent any terminology. At each point in autocorrelation space we

either detect a point or not. Natural performance metrics are then the probability of

detection (given there is a true point to detect), PD, and probability of false alarm,

or probability that a false detection is made given there is no true supported point,

PFA-

Extensive modeling of object surface characteristics which will effect the above

probabilities is beyond the scope of this thesis. Clearly, the detection problems at

different points are interrelated, but we can obtain understanding without exploring

these dependencies. Assume only that a is random, h is deterministic but unknown,

and that there is an unknown set of true supported points of a determined by h. We

imagine that there are functions representing the conditional probability distribu-

tions of b(r) given that r does represent some true pair in the autocorrelation. Then

a familiar and fairly general graphic of a single point's detection problem is shown

in Figure 3-11, and the hypothesis, T, is that r is a true point in the autocorrela-

tion support. Although specific density functions can give rise to arbitrary decision

regions, we often end up comparing b to some threshold c. The shaded regions in the

graph correspond to the conditional probabilities of error, 1- PD and PFA. There is a

trade-off involved since reducing one tends to increase the other. Unless we derive the

forms of Pb(r)lT and Pb(r)IP, we do not actually use use this graph to choose an optimal
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Figure 3-11: Decision based on a single value of the autocorrelation.

threshold, but it does give understanding which is useful as we extend to multiple

measurements. In practice me may use empirical receiver operating characteristics,

which simply plot the PD,PFA relation.

After several shifts, we would like to simultaneously decide whether all of the

points r - ai corresponding to shifts, ai, are supported. For only two ai, it is easy

to extend the graphic of Figure 3-11 to the contour plots shown in Figure 3-12. The

decision rule will now be based on 2D regions of this space, not 1D intervals, and our

task is to pick a boundary which discriminates the TT case from the other three cases.

Again, we can assume a form for the four density functions and solve the problem

exactly. Even less specific information such as correlations between points in b could

help, but I have avoided this type of solution because it is sensitive to the noise model

and lacks simplicity and generality.3

It is most obvious to think of the shift-and-intersect as thresholding based on

the marginal, as opposed to the joint, probabilities. Another way of looking at it is

to draw the curves min(b(r), b(r - a 2 )) = c onto the contour plot as in Fig (3-13).

Asking if both brightnesses are above the threshold is equivalent to asking whether

their minimum is, so each contour represents the boundary between the two decision

3In the future, it may be worth it, for example, to at least correct for pronounced systematic
errors such as sidelobes coming from a bright point.



regions corresponding to the shift-and-intersect method for a particular threshold, c.

We can compare to shift-and-add (which actually becomes shift-and-multiply if the

function b is chosen as the log-magnitude instead of just the magnitude); now each

diagonal bsum - b(r) + b(r - a 2 ) = c will bound the decision regions arising from

threshold c. If we imagine taking the conditional derived distributions of bsum, that is

the diagonal marginal of the joint distribution, we see that discrimination of the TT

and TT cases from the TT case will generally be expected to get worse than for the

the standard marginals: the probability "blobs" will be equally broad in either case

assuming there is no correlation between points, but the distance between the centers

of the blobs drops by a factor v2. On the other hand, the TT is expected for the same

reason to be better discriminated by bsum. We might expect the ideal boundary to

have a softer corner in its boundary curve than the shift-and-intersect, but in general

the original method holds up very well considering it has the advantage of greater

simplicity and efficiency over almost any variant. A set of contours corresponding

to the optimum Bayesian decision for a particular fabricated set of jointly gaussian

distributions is given in Figure 3-14. Note that we can get quite different looking

"ideal" decision boundaries by changing the assumed parameters, such as a priori

probabilities of the four cases.

Some preliminary simulations have been done using shift-and-multiply, but this is

not a promising generalization since it sacrifices the ability to discriminate the more

difficult cases (TT and TT in the above example, and generally the cases with mostly

T's and only a few T's) in favor of better performance on the easy cases.

Observing the performance metrics described above for simulated or otherwise ac-

curately known objects is straightforward. Once we have obtained an ideal support of

a to compare against, the probabilities are just estimated as ratios of points correctly

and incorrectly detected. We can look at a particular true point r over a number of

different pseudo-random a(x, y) to observe its PD, or use a less careful estimate by

taking as our ratio, PD, the fraction of all true points in A which are detected for a

single a. In the latter case, we are assuming that different points are independent

even though they are not. This method judges our thresholding scheme relative to the
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Figure 3-13: Decision boundaries corresponding to shift-and-intersect method.
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same shift-and-intersect iterations performed on ideal A, and says nothing about how

good our strategy for choosing shifts is. We can define analogous ratios which are per-

formance metrics for the shifts, although it is somewhat less natural to think of these

ratios as probabilities. The fraction of points in the copy of S to be reconstructed

which are correctly detected by the shifts {ai} is analogous to PD, and the fraction

of points not in this copy falsely detected is analogous to PFA. To interpret this as

a probability, we think of the the macroscopic height h is one of many possibilities

each with a certain likelihood, or probability. To get a good idea of performance of

shift strategies, we should simulate many different height functions and average the

above ratios on this sample space.

Other ratios of practical interest are the fraction of points in the best remaining

copy of S which are detected at an iteration, and the fraction of unwanted points not

yet eliminated, both resulting from the combined shift strategy and threshold.

3.3 Implementation of Autocorrelation Support

We have until now assumed that an estimate of A is available. Obtaining this estimate

from measured speckle intensity is in fact a non-trivial part of engineering a useful

technique. From noisy measurements of the sampled Fourier intensity, we would like

to decide which voxels in the autocorrelation function represent true pairs of scatterers

in the sum (3.2). The sum can be expanded further:

a(r) = gi*gj6(r + ri - rj), (3.19)
i j

and so the autocorrelation brightness at point p is

Sgigj, (3.20)

where the sum is taken over all pairs (i, j) such that p = rj - ri. Typically, estimat-

ing the support consists of two parts: estimating the "brightness" of a at each voxel,



and then finding a suitable threshold to determine whether this brightness is approx-

imately zero. The first of these turns out to be a spectral estimation problem: given

measurements of the stationary process, s(r) - I (r) 2, we would like to estimate

IF{s(r)}J2 . Cancellations occur whenever the above sum falls below the threshold

used. As our threshold approaches zero the number of cancellations will fall to zero

except in very special cases. However, noise prevents us from lowering our threshold

too much, since any noise causes A to become hopelessly cluttered as the threshold

drops to zero.

3.3.1 Autocorrelation Brightness Estimate

Spectral estimation is a very well-studied problem, and many of the common 1D

results have straightforward extensions to our 3D problem. The periodogram or

averaged periodogram are natural choices for speed and ease of implementation. The

latter allows us to measure and utilize more data than for the simple periodogram

and thus reduce some types of noise.4 If noise in the support estimate becomes a

significant obstacle to the imaging technique, it is worth considering estimates which

show lower bias and variance. The minimum variance method has proven useful in

some two dimensional scenarios as reported in [14], where we also find extensions

of AR estimates and the Levinson algorithm to 2D. I expect no trouble finding or

deriving 3D results, and expect that performance of these estimates will be as good

in 3D as they have been in 1D and 2D.

Interesting 3D objects typically lie in large spaces, and estimating the correlation

matrix, R,,, of our data will be somewhat expensive in time. Using the simple

estimate R,,(r) = Er' s(r')s(r' - r) it is clear that the computation takes time

on the order of the number of resolution cells in the autocorrelation space squared.

Objects of the very modest size 16 x 16 x 16 will have an autocorrelation space 8

times this size and so require around one billion multiplications, while each additional

4Systematic sources of noise may persist despite averaging. For example, stray light scattered off
of unwanted background points will create virtual scatterers and alias them into our object space.
Periodogram averaging will not remove this source of error.



doubling in all dimensions represents a 64-fold increase in computation. I have found

this to be prohibitive for the quick reconstructions which I did, although performing

billions of operations in a reasonable amount of time is well within the capabilities of

today's workstations. I feel correlation-based methods may have a place in the future

development of 3D Phase-Retrieval problems.

3.3.2 Thresholding

Ideally, in choosing a threshold, we would have some knowledge of the brightnesses of

supported points, the brightnesses of unsupported points, the a priori probabilities of

each outcome, and the consequences for making each of the two incorrect decisions.

In practice, accurate knowledge of these quantities is difficult to obtain. Unsupported

points will have brightnesses corresponding to any noise present. Noise due to the

finite precision of the detector can be thought of as uncorrelated from pixel to pixel,

and so will lead to white noise in the autocorrelation domain. On the other hand,

noise due to the discrete grid and bias of the spectral estimates, such as sidelobes of

a brightly lit point, will have systematic structure linked to the true signal. Another

source of error is the failure of the sampled object to meet the opacity constraint.

That is, even a perfectly opaque continuous surface will pass through multiple voxels

in the same column often, except in very special cases.5

Similarly, depending on the shape of the object, there may be more or fewer

terms in the sum (3.20) at a typical point in the autocorrelation support. 6 This in

turn effects the range of brightnesses seen among supported points. My approach for

real data has been similar to Shirley's in not trying to choose a thresholding scheme

which corresponds to any particular model of the noise sources or of the object shape.

Instead, I chose thresholds which visually seemed to leave the 2D support neither full

of holes nor flared well beyond the dimensions of the object.

5 Arguably, multiple voxels in a column should not even be considered an error at the thresholding
stage, since each voxel represents true scattering pairs. A flexible algorithm for processing the
autocorrelation support with some tolerance for non-opaqueness is called for.

6 Think, for example of a planar object, where a typical supported autocorrelation point ri - rj
actually corresponds to many different (i, j) pairs.



Intuitively, points falsely placed in the support should be less harmful than missed

points in the support: Any point missing from the copy which we are trying to

reconstruct will not be recovered, and missing points are a cause of incorrect shifts

when searching within singly populated columns. (Spurious points only cause false

shifts in combination with an error in the 2D support estimate or with a missing

correct point). False points will tend to slow convergence of the algorithm, which

is generally less damaging to the overall result than incorrect shifts. Of course, too

many false points will almost surely to cripple the algorithm. I feel these reasons

confirm Shirley's intuition that overly high thresholds should be avoided.

One theoretical result that does merit attention here is the scaling of the brightness

distributions for supported points with the number of scatterers, or resolved scattering

cells, in the object. As we move from an object with a single scatterer to one with

some large number, N, of scatterers, the expected "histogram" of the brightnesses of

the supported points becomes more and more spread. Some points will represent a

single pair of weak scatterers and some will represent many pairs summing through

Eq. (3.20). Intuitively, any broadening of the range of brightnesses means that it is

harder to choose a threshold which enough of the points are above.

The following simulations support this concern. In two simulations, lal is derived

from the simulated observable of I§12 which suffers from quantization error. I con-

verted the 1§12 samples (generated by performing the FFT on randomly generated

opaque objects) into integers with peak value normalized to 50, so that each mea-

surement represents about 6 bits of data. In one simulation, the discrete space was

kept a fixed size while N increased, so that scatterers filled up the space. In the other,

the number of scatterers and total number of x, y pairs in the space were scaled up

together, so that scatterers occupied one point in every column. Histograms for the

first and second simulation are given in Figures 3-15 and 3-16, respectively, each for

four different values of N.
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The points which are supported only because of quantization error are clearly

discernible for small N, but as N becomes moderately large, it becomes impossible

to cleanly separate supported points from errors on the basis of lal alone. For many

applications, I feel the desirable resolutions will cause us to push for larger N, making

thresholding an important issue.' Measurements using other techniques often involve

tens or hundreds of thousands of x, y pixels. This is one reason to think that thresh-

olding a may involve too great a loss of information. Approaches to phase retrieval

which are not support based may be appropriate. Some have been mentioned already

and others will be discussed in the next chapter.

3.4 Scaled Approach

When imaging a continuous object using some arbitrary sampling pitch in the auto-

correlation domain, it is natural to consider how the solutions at different resolutions

relate to one another. That is, if the shift-and-intersect method gives a reconstruction

at one resolution, how does this predict the results which would be obtained at a lower

resolution, starting with a more coarsely sampled A? A more interesting question is,

can we gain anything by attempting to reconstruct a surface at some resolution while

already having estimated the surface at some coarser resolution? This is the type of

thinking which has been so successful in the FFT and many other algorithms. They

generally improve speed, which is not an issue right now for the support methods

(shifts can be computed essentially instantaneously within a program that involves

printing and interacting with the user). In our case, a more important advantage

would be that the lower resolution image's autocorrelation estimates may provide

further noise immunity. There will be a trade-off of speed for noise suppression, since

even performing autocorrelation estimates at one resolution can be time consuming.

This type of staged algorithm represents an important direction for future re-

search. Looking strictly within a low-resolution solution after rescaling seems likely

7 Although, I have not proven here that increasing the number of resolution cells in a continuous
object will give behavior following the simulation.



to run into problems for objects that are not sufficiently smooth. In general, images

taken at a resolution coarser than the features of the imaged object will tend to violate

opacity, and I would expect the complexity of the program will increase substantially.

Some of the reasons for trying this out are shared by the varying-threshold staged

shift method already described, and comparisons of the two should prove interesting.

3.5 Simulation Results

Simulations using the object in Figure 3-17 were used to test the methods put forward

in this chapter. The object consists of 256 points in a 32 x 32 x 128-point autocorre-

lation space, with points lying in two continuous sheets.s The "observable" 1j1 2 were

obtained by taking the magnitude squared of the result of the n-dimensional FFT

function found in [15]. The autocorrelation magnitude squared was obtained using

the inverse transform, and the resulting data was processed exactly as estimates of

a 12 derived from real measurements would be. Several threshold and shift-strategy

combinations failed to produce results. Notably, the random choice of singly popu-

lated columns failed for some thresholds because no singly populated columns were

found after the first shift. The variable-threshold approach was tried, finding fully

consistent sets before moving on to a lower threshold. These preliminary attempts

were not successful, although with no noise in the 1§12 estimate, some of advantage of

setting the threshold high is lost; the strategy should not be discarded on the basis

of these simulations.

The results of a particular strategy which could very easily be automated is in Fig-

ure 3-18.' The strategy was basically the same at each iteration: form a consistency

matrix of all points in columns with at most three points (up to a maximum of 200

points, in my implementation), perform CMR, and then perform a shift-and-intersect

using that point of those returned by the CMR which has the highest Ia(r) . The

final reconstruction had 203 of 256 points, and involved at least one bad shift. Of

8 The autocorrelation space is double the extent of the object in each dimension. It determines
the size of the FFTs which we will perform.

9 Some points plotted with height 0 actually represent empty columns, and thus lost points of S.



Figure 3-17: True simulated object to be reconstructed, and also the reconstruction
of Section 4.5.

the remaining points, only 185 are in a single copy of S-the others could perhaps

be eliminated with further shifts. After starting over only a handful of times, I was

able to converge to a solution with 232 of 256 points, all in the same copy, with no

bad shifts performed (missing points resulted from thresholding). No consistent strat-

egy was used in this reconstruction, so the method may not be easily and effectively

automated.

Some quick results on performance metrics may give an idea of their utility. In all

cases, PFA relative to the ideal-A shifts was zero; this would not be the case if noise

were added to our simulated speckle measurements.

We can get a rough idea of our PD, and of the difficulty in thresholding an object

of this size by looking at Figure 3-19. The fraction of points detected in A before shifts

are performed is plotted as a function of threshold, t, defined by the comparison la12 >

t with the peak value of Jla2 normalized to 1. For the above successful reconstructions,

t = 10-6 was used. This corresponds to the same peak-to-threshold ratio used in the

simulations of section 3.1.2. Of several attempts made with t = 10- 5, all failed.

Future work should relate the threshold needed for reconstruction to the required

noise limit on speckle measurements. Curves such as in Figure 3-20 can tell us the



Figure 3-18: Reconstructed object resulting from shift-and-intersect operations.
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desired points remaining

Figure 3-20: Progress of reconstruction for an automated shift strategy.

overall performance of our shifts and thresholding as the algorithm progresses. It is

simply the number of desired points plotted against the number of unwanted points

left in our estimate of S. Clearly, we would like to move towards the bottom without

slipping too far to the left.

While more simulations can be done, the general result is that objects with only

256 scatterers are already non-trivial to reconstruct. Objects several times larger than

this cause all of my first-cut extensions to fail. Although there are many avenues for

improvement within support methods, the difficulties motivate looking into other

alternatives as well.



Chapter 4

Transform Methods

So far, we have approached the extraction of height information by discarding most

of the measured Fourier intensity data and keeping only the autocorrelation support.

An iterative extraction scheme then depends on the ability to choose good shifts,

and may involve processing and sorting lists of next likely candidates for a shift. If

enough good shifts cannot be found to reconstruct a surface without losing many

of the desired points, or if strategies for choosing shifts become sufficiently time

consuming, we would like to explore other avenues of processing. In addition, if the

values of g, and not only its support, are desired, we will need non-support based

methods-hopefully ones which utilize results of the (partial) support reconstruction.

Since the support approach discards a good deal of the data-and perhaps the

information-present in the autocorrelation function, we can be hopeful that non-

support methods can show improvement over or compliment these methods. One

alternative is to take small steps away from this drastic data reduction-through

more elaborate weighting and thresholding schemes, for example. But to utilize the

data fully, we would at least like to consider directly estimating the complex scattering

function which gives rise to the autocorrelation through Eq. (3.2). There may also

be advantages in having the flexibility to use both kinds of methods, for example

to impose approximate or imperfect constraints. Further, the methods I discuss

here involve typical DSP operations like convolution and FFT, thereby utilizing the

efficiency of available hardware for performing these tasks.



It turns out that a framework exists for approaching this problem numerically.

The problem of 2D image reconstruction with fixed support has been successfully

posed and well-studied in the context of successive approximations and global mini-

mization. There are several approaches that can be generalized to suit our problem.

Further, there is one example of a 3D complex object reconstruction using the same

opacity constraint that concerns us here [6]. This paper used a conjugate-gradients

minimization of the deviation in frequency magnitude to solve the problem; it encour-

ages speculation that many of the methods can be successfully extended, but does not

use real data or objects of sufficiently complex shape to be of use in our applications.

We would like, then, to demonstrate extensions of their results to realistically com-

plex and corrupt data. There is, of course, a huge amount of literature on successive

approximations, minimization, and operator equations in general. It may be possible

to draw ideas from this literature which can be applied to our particular problem,

although the time-frame of this thesis did not permit any attempt to generalize exist-

ing methods. We will see that although extensions of the iterative-transform methods

are successful for simple objects, achieving rapid convergence becomes very difficult

when the number of scatterers becomes large.

4.1 Building on Two-Dimensional Results

The existing literature on the phase retrieval problem for two dimensions is fairly

extensive. It addresses the question of obtaining g from |g| using a priori knowledge

of the object-domain structure, as with our problem. The previous knowledge is

also, as in our case, knowledge of the support of the finite-extent function, g. Unlike

our case, the supports most commonly assumed have fixed shape, not our "opaque"

support, which means any support function with at most one cell per vertical column.

The basic literature, for example [9], is very useful in developing intuition for how our

specialized case will work. Some results which I have already observed are analogous

to results reported for 2D reconstruction problems. Experimenting with any of the

methods of speeding up convergence is potentially worthwhile.



On the other hand, much of the literature consists of detailed studies of special

cases and of methods which speed convergence sometimes and slow it down others.

We must then be cautious not to expect clear and rapid understanding of the many

variations of the algorithm, or of the dependence upon parameters. Instead, I have

tried to develop some understanding of the most common variations of the iterative-

transform method, and make some reasonable guesses at how to write simple but

effective versions which apply to our problem.

4.2 Fixed Point and Optimization Forms

It is helpful to restate the problem: estimate a scattering function g(r) which agrees

with the observed speckle pattern samples, obs (fi) 12 through,

I =(fi)12 = Igobs(f i) 2, (4.1)

and is consistent with the opacity constraint,

g(r) = a(x, y)6(z - h(x, y)), (4.2)

and any other a priori support assumptions. Here the fi represent the discrete

sampled frequencies corresponding to measured intensities. In some cases, we may

reasonably impose additional object-domain constraints. In particular, I will use a

three-part constraint:

1. The scattering object is at least approximately opaque; Eq. (4.2) holds at least

approximately.

2. a(x, y) has support known within a shift and an inversion. We can imagine that

this information can be approximately obtained with a conventional 2D image,

but at the least we have an upper bound on the total horizontal extent of the

object.



3. The support of the autocorrelation function measured will be regarded as ap-

proximately the autocorrelation of the support of the scattering function to be

reconstructed. This has been discussed in the previous chapter. If we arrive

at a locator set using methods of the previous chapter, we can require that all

nonzero values of g occur within this locator set.

We can trivially satisfy either the object or frequency-domain constraint; then a

sensible approach is to regard one equation as a hard constraint and minimize some

measure of the the error in the other equation. This approach is taken in [6], where

the hard constraint is (4.2) and the error measure is the sum of squared errors at

each frequency sample. We could also minimize any measure of the combined errors

of the object and frequency-domain constraints. A third approach is to combine the

two equations into a fixed-point condition, and then apply successive approximation

methods. The error-reduction algorithm is the simplest example of this approach. To

obtain the fixed point form, x = Tx, with operator T and unknown x, we combine

(4.1) and (4.2) to give,

g(r) = Tg(r) = Ro0 -'RFF{g(r)}, (4.3)

where the Ro and RF are operators which in some sense "impose" the object-domain

and frequency-domain restrictions respectively. There is some freedom in choosing

these operators, and the choice has an impact on the success of the method. The

choice corresponding to the error-reduction algorithm is Ro{g} = = minimizing g - g

among those § which obey the support (and any other) constraint(s), and similarly

RF§ = j minimizing Ig --I among all j obeying (4.1). It is easily shown that for this

choice of T, iterating according to

gk+l(r) = Tgk(r), (4.4)

guarantees that neither error will grow from one iteration to the next [9]. While

this does not quite prove that the transformation is a contraction (the error could



simply stay the same), it gives us some assurance that the method is sound. In a

preliminary look at the literature, I found no similar proofs for other T, but did

find that particular T empirically show faster convergence. The input-output family

of algorithms result from choosing Ro differently, but in all cases Ro and RF leave

unchanged any solution to both constraints, thus maintaining the fixed-point form.

The optimization and fixed-point approaches are closely related, and lend them-

selves to almost identical implementations (see [9]). I have coded the error-reduction

algorithm as a C program, and built output-output, hybrid-input-output, and the

conjugate-gradients method on top of the original structure. Using randomly gener-

ated heights for points on a regular grid, I simulated Fourier samples in the absence

of noise and observed the performance of the algorithms. For "small" objects, that is

sixteen points within a 4 x 4 x 4 unit cube, the programs could often compute solutions

in seconds, although times varied greatly according to (randomly-generated) initial

guesses, the particular method used, a priori support assumptions, and parameters of

the methods. All methods were prone to either stagnation or instability (conjugate-

gradients); a truly robust implementation would have a large degree of adaptation or

perhaps a more creative choice of operator T.

4.3 Customizing the Algorithms

The 3D support, or locator set, is crucial to rapid reconstruction, and care should

be taken in finding and using a locator set. I described a three-part object-domain

constraint earlier. The second condition is very familiar from other phase retrieval

problems, but the first and third have not been fully explored. Opacity does not

present us with a rigid support to impose (within a shift) like typical phase-retrieval

problems; one cannot ask on a point-by-point basis whether or not the condition is

met. Instead one point is chosen in a vertical column in favor of the others. Making

this choice is the first major modification of the algorithm which I made. Choosing the

brightest point seems like a very natural choice-more importantly, it corresponds to

the error-reduction choice. If this is not obvious, recall the error-reduction condition:



search among all "opaque" 9 for that with smallest least-square distance from g. If

we choose 9 column-by-column, we are restricted to placing any nonzero value in at

most one point in each column. Whichever point we place a value at, it is best to

make our g agree with g exactly there. The total error of that column is then the

sum of squares of all values of g except our chosen point, and so we pick the point

with largest magnitude. An important observation is that, if any other assumption

further restricts the support of g within this column, the above reasoning still holds

almost unchanged. Given that we can choose only among certain points, we still

choose the allowed point with largest magnitude. This will allow support methods of

the previous chapter to plug in to this transform method very easily.

Incorporation of support methods is well motivated since even an incomplete

support-based solution, for example performing only a few shift and intersect op-

erations, should improve convergence of the iterative transforms. It is well known

that tighter supports, or locator sets, lead to rapid reduction of errors. The points

eliminated in even the first few shifts may make a difference between rapid conver-

gence and stagnation. Further, a constraint that is too tight in some places and too

loose in others can still steer the iterations near a solution. Both the literature and

my own results show that once near a solution, much looser constraints will bring us

quickly to convergence. A thorough study of the interactions between the algorithms

is not intended here, but I have obtained sufficiently good results in simulation to

demonstrate that a combination the two methods can perform better than either

method alone. This leaves much to be done, but is encouraging in itself.

4.3.1 Parametric and Sampled Objects

The approach of [6], of optimizing only within the space of opaque objects is an inter-

esting alternative to the direction I have taken here. In some senses, a framework of

samples may be more general or flexible, allowing different constraints to be used with-

out any structural changes of the data or the program, although this is not yet clear.

Another difference is the possibility of super-resolution achieved in the parametric

case, although again, one can devise schemes for using high-resolution transforms in



the later stages of the program I am presenting as well. Further, talking about high

resolution before robustness issues have been resolved may be premature. A clearer

difference which I see is that the use of locator-sets in a parametric optimization will

be much less natural. Whether it will be less effective is not clear.

4.3.2 Other Possibilities-Magnitude Constraint, etc.

The modifications which I have made were those which seemed most appropriate

to the specifics of our problem: implementing an opacity constraint for example.

Naturally, once you look at the iterative-transform method in the context of fixed-

point problems, there are many modifications which one can dream up. For example,

I have seen no mention at all of using an alternative operator RF, of Eq. (4.3). It is

easy to show that the error-reduction choice previously defined amounts to RF

J ob,s eiL(), where L simple returns the phase angle of its complex argument. One can

think up any number of generalizations, perhaps

TF - + y(lobsei L( -),

or

TF§

While these possibilities are somewhat interesting, it is difficult to justify spending

time to experiment with them. If future work is to be done here, it may help to back

up and develop a broader theory to direct our numerical experiments.

4.4 Multi-Staged Algorithm

While building a truly robust algorithm is not within the scope of this thesis, I did

experiment with several types of flexibility or adaptation so that convergence could

reasonably be expected for simple problems. A major motivation for adaptation

was the unavoidable result that any tight support was bound to be missing some

of the desired points. If this support is rigidly enforced, the iterations will never



be able to converge completely. I have already mentioned that a tight support is

more important at earlier iterations. The best situation then might be to loosen the

support as the iterations progress. This is both straightforward to implement and

effective in simulations. I have done this both by lowering the threshold for lal and

by undoing some of the shifts in the shift and intersect method.

Further motivation to adapt comes from various results in the literature', and also

from the simple fact that failure of the algorithm can result simply from starting with

a bad initial guess for g. The latter result suggests that we may want to give up on

helplessly stagnated guesses and restart with a new random g. This too was easily

and effectively implemented once an arbitrary criterion for stagnation was decided

upon.

Proceeding in the direction of adaptation clearly can complicate a program and

leave us with many parameters to set arbitrarily or explore empirically. I leave the

question of which adaptations are most desirable open-ended, but also comment that

the need for many variations and parameters is a serious drawback of the method

in itself. For many industrial applications, keeping tight control of the measuring

environment, even if costly, may seem much more attractive than a method tied

together by elaborate software patches.

In the short time I have developed my programs, I have built in a fair amount of

flexibility without allowing the number of parameters to explode. Both loosening the

support and restarting have made the difference between stagnation and convergence

for many cases. While I could generate statistics on the increased probability of

convergence given these parameters, it is more interesting to know that there are

cases in which adapting is necessary.

4.4.1 Rescaling Between Iterations

A particularly interesting adaptation in a 2D iterative-transform problem is described

in [16]. The sampling pitch in the object domain is initially very coarse and is made

1For example, mixing cycles of hybrid-input-output with error-reduction improves performance.



finer at later iterations, so that (we hope) high frequency information is only utilized

once coarser structure has already been resolved. While I have not implemented

anything similar, I feel this method is worth looking into, and in fact that the reported

speedup of up to three times is overly conservative. Though I have not studied the

method careful, I see no evidence that the algorithm could not dramatically improve

computation time for large problems; 3D problems do tend to be large.

4.5 Simulation Results

Early simulations were done using height functions of independent, pseudorandom

heights at every point-that is, at the limit of jagged, discontinuous objects. Several

variants of the iterative-transform method were used; after some ad hoc controls were

put in to prevent instability, the conjugate-gradients method as described in [9] would

converge completely and in a matter of minutes for objects of interesting detail. This

was the most successful variant. The problem became difficult for autocorrelation

space sizes approaching 64 samples in each dimension. Since these jagged objects

may not be representative of targets one would actually image, I moved to smoother

simulated objects, which actually hurt performance considerably. Even with the few

variations I implemented, it was impossible to test all versions over an interesting

range of object surface types, space sizes, threshold values, etc., and I will present

only the most relevant results here.

The motivation presented at the beginning of this chapter was that iterative-

transform methods may recover information lost in support-based reconstructions.

Recall the reconstruction of 203 points in Figure 3-18 reconstructed from the true

object of Figure 3-17. An error-reduction algorithm was done using the result of

the first 5 shifts only and recovered all 256 of the 256 points correctly, with no spu-

rious points. The algorithm was implemented in two stages. Only the first stage,

with 45 iterations, used the shift and intersect's output support. The second stage

automatically began once the frequency-domain "error," that is the deviation from

the frequency domain constraint (4.1), drops to some predefined level. Convergence,



similarly defined in terms of object-domain error levels, is achieved after twelve addi-

tional iterations. The algorithm is thus very crudely adaptive, although none of the

parameters were optimized for this object. Adjusting the adaption parameters and

switching over to conjugate gradients would likely improve speed considerably. Since

even this version took only several minutes on a multitasking workstation with the

gcc compiler, there may be real-time potential for this method, although getting the

algorithm to work for less perfect data is a higher priority.

We have seen that the iterative-transform algorithm has given us something that

the support methods alone did not. The natural question is what the support meth-

ods add which iterative transforms alone do not have. The result which we might

expect is that, without a tight enough support constraint, the error-reduction algo-

rithm will stagnate. Once stagnated, iterations of 2D transform algorithms have been

observed to barely progress for tens or hundreds of thousands of iterations [9]. This

is sufficiently slow to be considered a failure of the method (remember that each it-

eration includes two 3D-FFTs). To compare with the previous simulation, I started

the iterative-transform method using a conventional support constraint. Specifically

I did only a single shift and intersect operation using the first of the five shifts used in

the previous simulation.2 The program is designed to restart with a new initial guess

whenever stagnation is detected, which has been helpful in previous simulations. In

this case, after restarting four times and a total of 400 iterations, the algorithm fails.

To the extent that frequency-domain errors reflect how well the current guess gk fits,

the iterations hardly show any progress at all.

2 The locator set resulting from a single shift and intersect operation has been used in the past,
and is one of the favored supports, for example, in [12]. It makes a fair "control"-it tells us how
well transform methods do without the specific locator sets obtained by assuming opacity.



Chapter 5

Measurements

Previous chapters have helped bridge the gap between prior work on this problem

and an effective measurement system. Before making any conclusions about the

effectiveness of the techniques developed or the challenges to overcome in future work,

we should look at how the techniques perform on real data. I describe a system used

for acquiring raw data and present the first reconstructions which have been obtained

using general-purpose imaging software.

5.1 Basic Measurement Setup

A schematic for the optical path in a setup used for measurements prior to this thesis

is shown in Figure 5-1. If this looks much more complicated than Figure 2-1, that is

because it folds a long path into a space which fits on an optical table, and allows

the flexibility to magnify the speckle patterns. Magnifying the speckle allows us to

achieve spacings AXzd which do not correspond to the spacing of pixels on our CCD

array. Simulating a long path is appropriate since long-distance imaging, for example

of a satellite, is one of our motivating applications. The setup I used was essentially

the same, and so minimal design was necessary. I selected a new lens to accomplish

the desired magnification, brought in a beam from a NuFocus external cavity tunable

diode laser at wavelength around 780 nm, and set up a Burleigh Wavemeter and

UDT power meter. The laser was tuned using a Newport linear actuator and PM500
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Figure 5-1: Schematic of optical system

controller with a LabView interface. The LabView software was previously developed

by Greg Hallerman for similar measurements, and provided semi-automated stepping

of the frequency, with manual fine adjustments made at each step. Intensity data was

recorded by a Photometrics camera in 512x 512 frames (the full field of the camera),

which, along with power meter readings, were saved for processing. For all objects, 256

frames of data were taken and used to estimate the autocorrelations. In accordance

with the method used in the past, intensity frames were scaled down by the power,

which does vary appreciably as the laser is tuned. I find this a very reasonable way to

compensate for these variations, since intensity should vary directly with input laser

power.

There was some distortion in the optics, which I believe had only a minor effect on

final results. Taking the 2D transform of a single frame revealed a pincushion effect

on the expected 2D autocorrelation function. Compare Figure 5-2 with an analogous,

but lower resolution, measurement taken in a previous optical setup, Figure 5-3, to

see this effect. I used data sets previously acquired for the first target as well as new

measurements in testing my algorithm.



Figure 5-2: 2D autocorrelation with visible distortion



Figure 5-3: 2D autocorrelation with no distortion
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Targets were chosen to test the system with different levels of difficulty. The

first target, referred to as the pin array, is a a 5x5 array of curved, polished tips

which create virtual points at different heights. The space of the autocorrelation

estimate I used was 32 x 32 x 128 samples. The object was designed for testing

the imaging system of Shirley, Hallerman, and Rahn [11]. A photograph is shown

in Figure 5-4. I chose this as an easy target, since it only has twenty five virtual

points scattering light. There was no attempt to align these points with the natural

grid of the autocorrelation function (in fact, the points are not spaced by an integer

number of samples), so that this easy target is not trivially easy. I also did not

take advantage of known 2D structure. The discrete points are either blurred out

into more than one voxel, in which case they may as well be multiple scatterers, or

will be imaged as discrete points. In the latter case the algorithm still has the task

of deciding that some columns are dark, or unsupported; it does not assume this.

Naturally, the bottom line is that fewer points present fewer sidelobes and generally

simpler thresholding problems, but the measurement is not fundamentally different

from that of general object surfaces.

The second target chosen was a model satellite with very simple structure. A

photograph is shown in Figure 5-5. This object shape has no special advantage for

imaging except that its coarse shape is visually recognizable at low resolution. I

used an autocorrelation space of 32 x 32 x 128 samples. It is painted with a special

reflective paint which boosts the signal returned with respect to stray light. This

is a fair advantage which could be engineered some other way in real applications

(by using a stronger laser, for example). Naturally, its opaqueness makes the object

desirable, but many real objects also have this quality. The satellite target is then

not a special case.

5.2 Averaging

Even a quick look at the autocorrelation magnitude estimated using the straight FFT

showed an obvious need to do better. Plots of single z-slices of the log-magnitude



Figure 5-4: Photograph of pin array

Figure 5-5: Photograph of model satellite



Figure 5-6: Several z-slices of the autocorrelation log-magnitude without averaging

Figure 5-7: Several z-slices of the autocorrelation log-magnitude with averaging

of the autocorrelation function such as for the pin array shown in Figure 5-6 show

that sidelobes and noise are a significant problem. We can look at these pictures and

see that the thresholding problem-of deciding which points are true solely on the

basis of brightness-is difficult. For this reason, better spectral estimates are key in

making successful real measurements, though they were unimportant in simulations.

I have already mentioned that periodogram averaging was my preferred method,

although slower correlation-based estimates may have more promise in the long-term.

A series of frames analogous to Figure 5-6 is shown in Figure 5-7. To obtain the

latter estimate, periodograms of 32 non-overlapping, windowed blocks of speckle data



have been averaged. Here it is much easier to discern the regular grid arising from

the 2D structure of the target, and to discriminate bright true points from generally

dim artifacts. Sidelobes are still an issue, and probably more of a problem than other

noise sources. For this reason, later estimates used in the final reconstructions used

larger block sizes with (spherical kaiser window) windowing. Since the windowing

reduces the effective resolution, the larger blocks were then subsampled down to the

desired size. The net result is to reduce the bias of the estimates due to sidelobes

at the cost of having fewer blocks to average (and thus higher variance estimates). I

coded the program into PVWave with enough generality that block sizes and kaiser

window 6-parameters can be changed at will to trade-off bias and variance. For the

final measurements of the satellite, sixteen blocks were averaged, each were double

the autocorrelation size in each dimension, and #-parameters were in the range of 5

to 7. For a discussion of spectral estimates and the relevant trade-offs, see [17, 18, 14].

The sidelobes of the large central peak in the autocorrelation function are par-

ticularly problematic. It is important while we are doing shifts that points in the

same column not be considered consistent with each other. After all, for an opaque

S, A will always have exactly one point in the central column, at the origin. For

only approximately opaque objects, the center column of a might have a small cluster

of supported points, all near the origin. If our estimate of A does not even reflect

approximate opacity, multiple points within a column can be deemed consistent. We

may end up performing shifts corresponding to multiple points in the same column.

These are guaranteed to include bad shifts, and will damage performance. Bright

sidelobes can cause this situation-they tend to make a large number of points in

the center column appear in A. While there are more careful ways of dealing with

this problem, I simply set all values in the center column of lal to 0 except the peak

at the origin. This pre-processing does not represent any new assumption-we have

already been using an opacity assumption throughout this thesis. Performance was

immediately improved by this for the pin array. Moving to a more forgiving opacity

constraint (with fewer points in the center column suppressed) may be desirable.



10.5 18.5 20.5 38.0 25.5
28.0 27.5 39.0 31.5 -
7.5 8.5 0.0 41.5 -

10.5 20.5 33.5 21.5 -
31.5 - 18.5 43.5 -

Table 5.1: Pin heights measured after two stages of shifts

5.3 Results

I have mentioned that looking at real data immediately necessitated improved spectral

estimates. The situation was similar with shift strategies and other aspects of the

reconstruction. The basic ideas presented in Section 3.5 were experimented with in a

number of ways to try to overcome the many potential causes of failure associated with

real data. Results focus on support-based methods; an assessment of the effectiveness

of transform methods for the measured objects is left for future work. However,

moving to real data did motivate some of the adaptation and flexibility which has

been built into the transform part of the algorithm.

5.3.1 Quantitative Comparison of Pin Array

The discrete points in the pin array have been adjusted to known heights. This allows

us to easily make quantitative comparisons. The reconstructions which I present have

not squeezed every bit of information out of the data, but they do use a method of

choosing shifts which would be easy to automate and is quite similar to that used

to obtain the 203-point reconstruction of Figure 3-18. The heights in Table 5.1 were

obtained in two stages of shifts, the stages having different thresholds. The horizontal

spacing of pins was between 2 and 3 samples. A fractional height h + 1 was assigned

whenever a cluster of points with heights h and h + 1 appeared at the expected

location of the pin. The 2D structure of the array could be easily discerned in the

image. Since several points were still missing, I lowered the threshold and recovered a

few more, which gives heights in Table 5.2. (Lowering the threshold causes additional



10.5 18.5 20.5 38.0 25.5
28.0 27.5 39.0 31.5 25.5
7.5 8.5 0.0 41.5 4.5

10.5 20.5 33.5 21.5 -
31.5 24.0 18.5 43.5 1.5

Table 5.2: Pin heights measured after a special stage

-1.5 -0.9 -0.4 -0.4 -0.4
-1.4 -0.9 -0.8 0.2 1.8
-1.0 -0.7 0.0 0.0 -36.
-1.3 -0.9 -0.4 0.5 -
-2.2 -0.8 -0.5 0.0 -5.1

Table 5.3: Errors in pin heights

points to arise in previously converged columns. These points were ignored.) This

left only one point absent, and I proceeded to compare this measurement with the

known height settings.

Rather than do additional measurements to calibrate the system, I took the heights

relative to the center height, and scaled the maximum of the true heights to 43.5, so

that the units are resolution cells. Table 5.3 shows the errors in the measured heights.

Although the measurement includes bad points, the validity of the method has been

clearly confirmed. Of the four points added between Tables 5.1 and 5.2, only one

would appear to have been a correct point.

Similar measurements were done for different resolution sizes-if we accept poorer

range resolution, we can get better convergence through windowing and averaging.

5.3.2 Qualitative Satellite Results

I will give only a very qualitative idea of the performance of the satellite reconstruc-

tion. Several shift strategies were tried. In all cases the image quality was very poor,

but some did contain the coarsest structure of the satellite: a large body with two

smaller, parallel panels. One such image is shown in Figure 5-8. Keeping in mind
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Figure 5-8: Reconstruction of the satellite model

that one of the simulations showed very persistent unwanted points, we can say that

the satellite image is very likely to have spurious points as well as the obvious missing

points.



Chapter 6

Conclusions

The motivation for exploring the phase retrieval problem in this thesis has been to

enable an imaging technique, and help determine its practicality. The very positive

results of simulations and general success of the pin-array measurement show that

the method has potential. On the other hand, the very rough satellite image could

be taken as either encouragement or discouragement. Clearly, some first attempts

at improving and combining algorithms have not been sufficient to make an image

which will resolve detail on continuous objects. This is not to say that there could

not be an application for which the imaging system presented here presents useful

information, but the results prented in the previous chapter do not yet compels us to

find applications for this technology.

Both simulated and real results suggest that achieving the desired performance

from phase retrieval methods will involve a good deal more algorithm development.

While many directions have been proposed in previous chapters, it is difficult to

say which will lead to significant improvements. Choosing shifts and converging

through CMR-like algorithms are possible areas for improvement. Using information

throughout the dynamic range of lal is difficult, and may involve major structural

changes. Transform methods present many possible variations. In all cases, there is

no clear way to proceed and no guarantee that improvements will be forthcoming.

One result not yet presented is that as modifications of the algorithm were made,

noticeable increases in performance were observed. So while we cannot predict which



modifications will give the greatest improvements, we can have some confidence that

we have not yet reached the limits of what can be done, and that some understanding

of where the method fails is being developed. Using the satellite as a benchmark, I

expect a clean image at the resolution shown in the previous chapter could be obtained

within several weeks of experimenting with the various algorithmic modifications

already mentioned. The fact remains that simple and elegant versions tried so far

have not been sufficient. Moving towards a version which is empirically optimized

or based on poorly justified models is something we do reluctantly, and only where

simpler methods cannot be used. On the other hand, there are many examples in

technology where elaborate modeling and programming are done to produce results

which, whether or not we consider them "elegant", are very impressive.

Part of the answer to whether we have arrived at an acceptable solution to the

proposed imaging problem is that it depends on the application. The methods pre-

sented, of course, will not constitute a cheap alternative to more traditional surface

imaging techniques. If applications truly out of the regimes of other methods provide

sufficient motivation to solve the problem, however, we have reason to think it can

be solved. In addition to cumbersome algorithmic details, there are ways in which

we can obtain assured improvements. For example, a data set of 512 x 512 x 256

speckle pattern samples seemed quite large for the purpose of this thesis, but we can

certainly imagine using thousands of frames with millions of pixels each. Dedicated

hardware or carefully streamlined software for performing correlation and spectral

estimates would yield very clean autocorrelation magnitude functions. As another

example, proper development of a thresholding scheme which varies from one point

to the next would not have been appropriate for this thesis, but we can easily imag-

ine that special-purpose software could be developed to deal with specific artifacts in

the spectral estimates while taking the support. Again, there is little question that

this would improve performance, only of how much effort would be required. The

algorithms have not at all been pushed to their limits.



Appendix A

Sets Operations

We assume that capital letters are used for sets and lowercase letters denote points.

Generally, in this paper, point pi in set notation corresponds directly to vector pi in

the space on which our scattering function and autocorrelation function are defined.

It is natural then to refer the point corresponding to pi + Pj as pi + pj, and refer

to the point corresponding to -pi as -pi. Once addition has been defined on points,

the definition which we have given for sets,

A + B - {clc = a + b,a E A,b E B}, (A.1)

is very natural. For example, if A = {al, a2, a3 } and B = {bl, b2 }, the set A + B

contains the six points:

al + bi, a2 + bi, a3 + bl,

al + b2, a2 + b2, a3 + b2 .

Note that the definitions given for A - b and a - B are consistent with thinking of a

as a set containing only one point.

The binary union and intersection operators are denoted by U and n, respectively.

That is, A U B denotes the set of all elements contained in either A or B or both,

while A n B is the set of elements contained in both A and B. These symbols are



used also in a way analogous to E for addition or II for multiplication, that is:

Ai = A U A2 U ..., (A.2)

and,

(A.3)SA = A n An ... ,
i

The expression A C B signifies that every element of A is also an element of B, and

B D A is defined as being equivalent to A C B.



Appendix B

Modified CMR Algorithm

FormConsistency_New(int **points, int points-length, float *autocor)

int this.point, otherpoint;

cm_newlength = pointslength;

/ * the structure cm_new_consistence is a list of consistency values

for each of the points. The ith entry contains an integer which

is the number of points the ith point is consistent with.

The trick is that as points are removed from the matrix, we can

update this list without ever having formed the matrix itself as

a data structure*/ 10

for(this_point=O;thispoint<points_length;thispoint++){

cm_new_consistence[this-point] = 0; /* zero the entry */

cmlookup_new[thispoint] = this_point;

for(otherpoint=0O;otherpoint<points length;otherpoint++) {

if(PairConsistence(points[thispoint], points[other point], autocor))

cmnew_consistence[thispoint]++; /*count the consistent points*/

}

20

Reduce_Consistency_MatrixNew(int **points, float *autocor) {
int swap_slave;



int worst_col=0, last_col, col;

int fewest;

/ *here is the reduction algorithm. Note that swapping two points

simply means swapping two integers in the lookup table, not

reordering any lists*/

30

for(last_col=cm_newlength-1;last_col>=O;lastcol- -) {

/ *each iteration finds the worst column up through last_col and makes it the last*/

fewest = cm_newlength+2; /*bigger than max possible*/

for(col=0O;col< =last col;col++){

if(cm_new consistence[cmlookup_new[col]] <= fewest){

fewest = cmnewconsistence[cmlookup_new[col]];

worst col = col;

}
}
/ *swap worst with last, unless perfectly consistent*/ 40

if(fewest == last_col+1){

printf("\nNew method got %d consistent\n", last_col+l);

Compare_CM_Methods();

return(last_col+1);

}
swap_slave = cmlookup_new[worstcol];

cm lookup_new[worst_col] = cmlookupnew[last_col];

cmlookup_new[lastcol]= swapslave;

for(col=O;col<cm new_length;col++){

cm_new_consistence[col] -= 50

PairConsistence(points[col],

points[cmlookup new[last_col]],

autocor);

}
/ *continue with next-to-last column*/

return(O);

}
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