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Abstract

Many novel interventions have been developed in the hopes of treating advanced
arteriosclerosis. Ironically these very same techniques trigger the uncontrolled growth of cells
within the artery that may re-narrow the vessel lumen and limit long term efficacy. This
phenomenon, termed restenosis, causes up to one-third of patients who undergo angioplasty
to require additional intervention within three months. The biological mediators of restenosis
are incompletely understood. Recent discoveries 1' 2' 3' 4' 5 suggesting that dynamically-changing
strain in particular may trigger smooth muscle cell hyperplasia within the intima, have spurred
interest in both the characterization of strain imposed on blood vessels by these treatment
modalities and the vascular response to applied mechanical strain.

I have investigated the dynamic, local strain field imposed in vivo by endovascular stents.
These indwelling devices are becoming increasingly important in treatment of atherosclerosis
and take issues of strain to extremes. Stents are expandable metal tubes which are threaded
inside an artery to a site of narrowing where they are plastically enlarged and left as
permanent implants to scaffold the artery open. During expansion stents induce large-scale
strains within the vascular wall which are difficult to measure dynamically in vivo. These
strains in turn may be critical determinants of stent-vessel biology.

This thesis quantifies the strain tensor imparted by the expanding stent upon the arterial wall
as both a function of space and time, and determines whether this dynamically-changing strain
field causes injury not apparent from pre-expansion/post-expansion images alone. An
understanding of the design-dependence and causative effects of strain may then contribute to
the optimal design of endovascular implants that minimizes hyperplasia. Furthermore, the
ability to measure the local distention within blood vessels in vivo may permit more basic
study of general tissue responses to strain.

Thesis supervisor: Elazer. R. Edelman, Associate Professor of Health Sciences and Technology

Thesis coadvisor: Campbell Rogers, Assistant Professor of Medicine, Harvard Medical School
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1. Introduction

1.1 Statement of the problem

Many novel interventions have been developed in the hopes of treating advanced

arteriosclerosis. Ironically these very same techniques trigger the uncontrolled growth of

cells within the artery that may re-narrow the vessel lumen and limit long term efficacy.

This phenomenon, termed restenosis, causes up to one-third of patients who undergo

angioplasty to require additional intervention within three months. The biological

mediators of restenosis are incompletely understood. Recent discoveries 1,2,3,4,5 suggesting

that dynamically-changing strain in particular may trigger smooth muscle cell hyperplasia

within the intima, have spurred interest in both the characterization of strain imposed on

blood vessels by these treatment modalities and the vascular response to applied

mechanical strain.

I have investigated the dynamic, local strain field imposed in vivo by endovascular stents.

These indwelling devices are becoming increasingly important in treatment of

atherosclerosis and take issues of strain to extremes. Stents are expandable metal tubes

which are threaded inside an artery to a site of narrowing where they are plastically



enlarged and left as permanent implants to scaffold the artery open. During expansion

stents induce large-scale strains within the vascular wall which are difficult to measure

dynamically in vivo. These strains in turn may be critical determinants of stent-vessel

biology.

This thesis quantifies the strain tensor imparted by the expanding stent upon the arterial

wall as both a function of space and time, and determines whether this dynamically-

changing strain field causes injury not apparent from pre-expansion/post-expansion

images alone. An understanding of the design-dependence and causative effects of strain

may then contribute to the optimal design of endovascular implants that minimizes

hyperplasia. Furthermore, the ability to measure the local distention within blood vessels

in vivo may permit more basic study of general tissue responses to strain.

1.2 Thesis organization

This thesis describes a coordinated set of in vitro and in vivo experiments designed to

examine endovascular stent-induced strain. Chapter 2 provides background needed to

answer the question "Why study strain in the stented blood vessel?" The reasons are

interrelated and span clinical, biological, and engineering fields of research. Chapter 3

investigates the system used to measure vascular strain induced by the stent. The

capabilities and limitations of the system are characterized ex vivo using excised bovine

coronary arteries. A Monte-Carlo simulator capable of predicting accuracy of the strain



mensuration system is developed and validated using a latex phantom. Chapter 4 applies

the system in a rabbit vascular injury model. The following questions are explored:

* How do balloon-expandable stents inflate in vivo? Do they rotate? Do they expand

nonuniformly?

* Do the stents abrade the vascular wall during expansion? Is this an important

contributor of hyperplasia?

* Can any abrasion present be reduced through catheter choice or redesign, stent choice

or redesign, or operator technique?

Chapter 5 summarizes the thesis and considers its various applications, including

suggestions for future work.



2. Background

2.1 Stenting: an important treatment of cardiac disease

2.1.1 Cardiac disease in the United States

Ischemic heart disease, the end result of reduced flow through narrowed, presumably

atherosclerotic coronary arteries (Figure 1), is the leading cause of mortality in the

Western world; it affects more than 10 million Americans and is responsible for 42.5% of

all deaths in the United States6. Although percutaneous transluminal coronary balloon

angioplasty (PTA) and coronary artery bypass grafting (CABG) have been widely used,

lack of long-term efficacy in many patients has prompted the search for new technologies,

including laser angioplasty, atherectomy, and implanted endovascular scaffolding devices

called stents. Of these, stents are rapidly gaining the lion's share of the vascular

intervention market because of their high initial success rate and improved long term

efficacy. In 1995 approximately 100,000 patients in the United States received stents

and this number is expected to double by 1997'.



Figure 1: Healthy, patent artery (A) versus diseased (B). The most prominent
structure in the normal artery is the tunica media. This darkly strained collar of
concentric elastic lamella bounds the lumen and contains smooth muscle cells.
These cells regulate local vessel tone and blood flow by contracting or relaxing
leading to constriction or dilation of the artery. The tunica intima, the innermost
lining of the artery, is barely visible, if at all, at this magnification (100x). In the
diseased artery the tunica intima is now occupied by a hyperplastic mass; in this
artery the mass is principally comprised of smooth muscle cells. These cells have
now undergone phenotypic transformation from their contractile state to a
synthetic or proliferative state. In place of tone regulation they now grow and
stimulate further growth so as to progressively occlude the lumen. Although the
exterior radii (ext) of both arteries are similar (as measured at the advential-
medial boundary), the lumenal radius (lum) of the healthy artery is three-fold that
of the diseased vessel.

2.1.2 Endovascular stents

Endovascular stents are expandable metal tubes 6 mm to 60 mm in length and 3 mm to 10

mm in diameter made from a variety of materials that include stainless steel, titanium, and

the nickel-titanium alloy nitinol. In a compressed state the stent is mounted on a catheter

and threaded through the vascular tree to a site of narrowing. The stent is next enlarged in



diameter approximately 50%: nitinol stents expand as they are freed to resume their

natural expanded shape as dictated by a thermally-triggered shape memory effect;

stainless steel stents are plastically deformed under the influence of a cylindrical balloon

inflated within the stent to 8-20 atmospheres (atm) of pressure. Once the catheter is

withdrawn the stent is left as a permanent implant within the artery (Figure 2).

Figure 2: A stainless steel stent mounted upon a balloon catheter (A)
before and (B) after balloon inflation, and (C) after balloon withdrawal



2.2 Short vs. long-term stent efficacy

2.2.1 Excellent short-term results

Before successful implantation, the endovascular stent must be delivered through more than

one meter of tortuous vasculature; moreover, emplacement often requires 1 mm accuracy.

The stent must enlarge with limited recoil under the force of the surrounding artery, which

responds to this stress with spasms of vasoconstriction. Finally, vessel patency must be

restored without complications such as vessel hemorrhage, acute thrombosis, or

obstruction by delamination of surrounding plaque. These issues formed significant

obstacles to early stenting procedures although improved clinical techniques now result in

far fewer complications; subacute thrombosis rates, for example, have declined six-fold and

are now lower than 3% 8,9

2.2.2 Long-term outlook less favorable

Despite initial success rates, the permanent addition of a stent to the arterial wall may

induce a persistent and aggressive vascular response. Unlike acute complications, these

reactions have not been greatly reduced by refinements to the implantation procedure.

Approximately 33% of the patients receiving stents require further intervention within six

months'o to restore patency after thrombosis, fibrosis, and rapidly proliferating smooth

muscle and inflammatory cells progressively occlude the lumen (Figure 3). The biological

underpinnings of vascular response to injury are complex and include platelet aggregation,



monocyte infiltration, and change in smooth muscle cell phenotype". Despite continued

investigation into the biological causes and remedies, restenosis from the combined effects

of neointimal hyperplasia, medial degeneration, and vascular remodeling remains an

unsolved problem in modem interventional cardiology.

Figure 3: The upper portion of this figure shows a cross-section of a healthy
artery. The endothelial cell (EC) monolayer rests upon basement membrane
covering the internal elastic lamina (IEL). The media is composed of smooth
muscle cells (SMC). After EC injury (bottom), platelets are adhering to the
exposed thrombogenic surface of the vessel wall and are attracting monocytes, and
SMC have begun to proliferate and migrate to form a neointima.

The progression of restenosis can be seen in the angiograms of Figure 4 of a left anterior

descending coronary artery, showing restoration of patency immediately after stenting

(A), and restenosis six months postoperatively (B). The stented region is boxed. The

stainless steel stent itself cannot be seen as it is not sufficiently radio-opaque.



Figure 4: Angiograms showing the progression of restenosis in a porcine
LAD coronary artery immediately after stenting (A) and 3 months post-
operatively (B).*

Many experimental animal models of vascular injury and repair are used to study

mechanisms underlying restenosis. One of the most common models used is injury to the

iliac arteries of the New Zealand White Rabbit. We chose this model as it allowed direct

visualization of the stented artery. Although this rabbit model lacks the atherosclerotic

plaque, fibrosis, necrosis, and lipid pools commonly found in human diseased vessels, it

does exhibit a proliferation of smooth muscle cells in the intima that restricts luminal flow

and is a characteristic of human restenosis. A cross section of a stented rabbit femoral

artery is shown in Figure 5 3 days and 28 days after stenting. Although the vessel was

healthy before stent deployment, a neointimal cap of smooth muscle cells has formed

after 28 days, appearing grossly similar to the restenosis found surrounding the stent in

the human vessel in Figure 6*.

* Angiogram and human coronary photomicrograph courtesy of Campbell Rogers, M.D.,
Brigham and Women's Hospital, Boston, MA



Figure 5: Pig coronary artery 3 days (A) and (B) 28 days after stenting. The
decrease in luminal area from intimal hyperplasia is highlighted.

Figure 6: Human saphenous vein graft after stenting with strut legs (A),
neointima (B), and lumen (C) partially occluded with postmortem thrombus.
The struts are deeply embedded in a matrix of intimal smooth muscle cells
formed after the deployment of the stent.
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2.3 Mechanical bases of injury leading to hyperplasia

A new approach to understanding why neointimal hyperplasia develops after stenting

comes from examining the mechanical events that initiate the biologic response to

vascular injury, rather than the well-studied question of how the response to injury

results in thrombosis, fibrosis, and hyperplasia. Three mechanical events have been

shown to be closely correlated with a SMC proliferative response: compressive strain',

denudation or laceration that violates the integrity of the endothelial cell barrier or deeper

layers of the vessel wall4, and changes to shear stress imparted by blood flow at the

luminal surface1

2.3.1 What is/is not known about mechanically-caused injury

Stent implantation causes focal mechanical injury to the vessel wall, ranging from

denudation of the endothelial cell monolayer covering the interior of the lumen to

progressive laceration of deeper vascular structures. Schwartz described a linear

relationship between the extent of eventual restenosis and these effects. Mechanical

trauma is also directly linked to hyperplasia. Imposed strain, without causing observable

injury, can increase DNA production in human vascular smooth muscle cells and

increased production of several potent growth factors1 . The amount of injury inflicted by

the stent, and therefore restenosis rates, is not only a function of the final vessel

enlargement ratio but also of the stent geometry. Stents of identical weights and stent-to-

vessel contact areas, etched from the same lot of stainless steel and inflated by the same
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pressure to identical post-inflation diameters and differing in only in configuration

produced varying amounts of deep laceration and restenosis. 40

These studies raise the following questions:

1) What are the mechanical components of stent-induced vascular injury? Is it a function

of stress, strain, direct cell injury, blood flow, ion diffusion, or an inflammatory response?

2) Is the injury a function of only chronic parameters (e.g. final strain distribution) or

does it arise from acute mechanical trauma inflicted during stent expansion?

We have developed a method to measure the dynamic and chronic strain tensor imposed

by the stent in vivo as a function of position along the surface of the vascular wall. These

data will not only demonstrate the impact of strain but can be used to determine whether

strain is responsible for the observation that different stent designs cause different

amounts of injury. The ability to measure vascular strain in vivo lays the foundation for

optimal design of endovascular implants that minimize restenosis and may provide a

valuable tool for further investigation of the response of any tissue to strain.

2.3.2 Direct effect of strain on arterial smooth muscle cells

Smooth muscle cells which provide the bulk of tissue in restenosis have been shown to

exhibit both mitogenic and chemotactic behavior in response to an applied strain,

providing a direct link between strain and restenosis. When subjected to a physiologic,



23

periodic stretching, cultured smooth muscle cells reorient themselves in the direction of

the applied force' 2. Recent research by Grodzinsky demonstrated that a transient strain

of 80% can also directly stimulate smooth muscle cell growth, increasing thymidine

incorporation (which indicates cell replication) four-fold, and upregulating fibroblast

growth factor-2 (FGF-2) production more than eight-fold'. FGF-2 has earlier been

demonstrated to mediate migration and proliferation of smooth muscle cells in the

intima3,13,14

2.3.3 Contact abrasion/laceration

Withdrawal of an inflated balloon catheter across the arterial surface is a well-accepted

and frequently-used model of endothelial denudation. Yet even the subtle injury that

occurs with the gentle rubbing of a nylon monofilament loop against the arterial wall can

completely deendothelize an artery. The denudation that occurs under the considerably

more forceful contact with a metal stent expanded under 8 atm of pressure will expose the

underlying basement membrane and deeper layers of the blood vessel wall to potent

growth factors circulating in the blood, and permit platelets to attach to newly-exposed

subendothelial thrombogenic sites. These events are postulated to initiate hyperplasia,

and form the most commonly cited cause of restenosis resulting from angioplasty' 5.

Direct stent-arterial contact is not the only means of vascular abrasion; the balloon

catheter that inflates the stent also may contact the arterial lining by protruding through
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the stent leg openings, or the balloon's unconstrained ends may denude if sized longer

than the stent.

2.3.4 Shear stress

Endothelial cells have long been known to be sensitive to the shear stress imparted by

surrounding blood flow. The shear stress in healthy human arteries varies from 2 to 20

dyne/cm 2 16. Dewey showed in an ex vivo experiment that although a constant 8

dynes/cm2 shear stress field did not alter endothelial cell endocytosis rates, a single

increase from 0 to 8 dynes/cm2 doubled them17 . Prostacyclin production in vivo is even

more sensitive to changes in shear, increasing from 0.004 ng/min/10 6 cells at rest to 2.0

ng/min/106 cells at the onset of a 16 dyne/cm2 shear field 18. Other aspects of endothelial

behavior influenced by shear stress include intercellular fibronectin production 9,

membrane permeability20, and cell proliferation rates21. Large-scale mockup visualization

experiments seem to demonstrate that endovascular implantation indeed induces local

disruption of blood flow22, although no quantitative information has yet been obtained

through in vivo measurements or computational modeling.

2.3.5 Of these possible mechanisms, why choose to examine strain?

While some vascular strain is clearly imposed by vasodilatation and contraction in

response to internal stimuli and the natural rhythm of the cardiac cycle, these events alone

do not cause neointimal hyperplasia. The strain field imparted to the artery by an
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expanding stent is fundamentally different than these physiologically-derived sources,

however, and we believe that it may be a significant determinant of intimal hyperplasia

through both direct and indirect mechanisms.

Direct support for the hypothesis that stent-imparted strain initiates intimal hyperplasia

comes from the recent discovery noted above that an imposed strain stimulates smooth

muscle cell replication'. In addition, using the well-established fact that hyperplasia

forms in response to vessel injury, substantial evidence exists that strain is an indirect

determinant of hyperplasia as there are several mechanisms linking excessive strain to

vascular injury. For instance, any local difference of the strain field between the artery

and the expanding stent implies slippage at that point; if this occurs at sufficient inflation

pressure, vascular abrasion, endothelial denudation, and subacute laceration will result. It

is also known that endothelial cells are anchored to the underlying basement membrane at

discrete integrin binding sites and to each other at vinculin adhesion sites23; if the

underlying matrix is stretched more than the endothelial cells can distend some of the

junctions joining the endothelial cells must break and compromise the integrity of the

endothelial barrier. Knowledge of the strain field imposed by the expanding stent could

predict through these mechanisms vascular injury and eventual hyperplasia.
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2.4 General response of living tissue to strain

2.4.1 Strain vs. stress effects

Biological responses to mechanical injury may in general be considered as either stress-

mediated or strain-mediated. Usually the material properties of the affected tissue

inextricably bind applied stress to induced strain, and yet the ability to divorce these

issues is fundamental, perhaps distinguishing the differing pathologies of diseases

including the stress-bearing bone diseases of osteoarthritis and movement-sensitive

inflammatory rheumatoid arthritis. The ability to differentiate and quantify these

mechanical origins of injury in vivo is becoming increasingly important as the use of

prosthetics and permanent implants in humans become more common. What strains are

induced by these implants? Does this strain injure the surrounding tissue? And how

can we reduce these effects? This thesis examines a system that determines the pattern

of arterial deformation as measured by the Green strain tensor induced by a chronically

indwelling vascular prosthesis, a metal stent. The knowledge of how stents

dynamically expand may assist in the development of less-injuring devices and advance

understanding of how vascular tissues react in vivo to applied strain.

2.4.2 The endovascular stent: an excellent model

The endovascular stent provides an excellent model to study the effect of strain on tissue

for three reasons:
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* Biological: The stent takes strain-related effects to extremes, as at 8 atm it imparts a

chronic force per unit area approximately 75 times physiologic blood pressure. By

design this force approaches the maximum tolerable before structures, such as the

internal elastic lamina, are observed to tear.

* Clinical: Stenting procedures are becoming increasingly common as a low-risk

minimally-invasive alternative to more complex interventions such as coronary artery

bypass grafting.

* Analytic: The regular geometry of many stent designs lends itself to analytic

modeling, often with reduction in the order of the model because of symmetry. This

makes cause-and-effect processes much more apparent than when analyzing

quantities of numerical data produced by the three-dimensional finite element models

that are used to model general three-dimensional force-displacements.



3. Strain Mensuration System

3.1 Introduction

We developed a method using a single camera to measure the dynamic, local Green

strain tensor developed along the surface of a cylindrical wall as it deforms in an

axisymmetric manner. The method was tested ex vivo on excised bovine coronary

arteries deformed by endovascular stents to show the system's feasibility to determine

in vivo strains. The system's accuracy was modeled with a Monte-Carlo simulation,

and the results validated using a large-scale inflatable latex phantom. This chapter will

focus on the strain mensuration system itself; results and implications of the in vivo

tests will be discussed in the following chapter.

To measure the surface strain tensor over the vessel wall, a section of the artery was

first marked with reference points and imaged as the luminal stent was expanded. A

three-dimensional axially-symmetric parametric model of the arterial section was

determined whose projection best matched each frame, and the image and its reference

points were then back-projected onto this adaptive model. The back-projected

reference points were then automatically grouped and analyzed to determine the



circumferential, axial, and torsional components of the strain tensor developed within

each arterial subsection.

The surface strain tensor was determined in the excised bovine artery as a compliant

balloon catheter was inflated to a maximum pressure of 8 atmospheres (atm) in 2 atm

steps. The Green strain tensor was calculated with circumferential, axial, and torsional

components ranging from 0.00 + 0.10 to 0.70 ± 0.10 and a spatial resolution of 0.75

mm. The system is capable of measuring in vivo strains of the same magnitude with

similar accuracy and spatial resolution.

3.2 Methods

3.2.1 Experimental system

The strain mensuration system is shown in Figure 7. The exterior of the bovine coronary

was cleaned of fascia in preparation for marking. An arteriotomy was performed, and a

corrugated ring stainless steel stent premounted on a 3 mm polyurethane balloon catheter

(Advanced Cardiovascular Systems/Guidant) (Figure 2) was advanced into a section of

the artery that had no anterior side-branches. A grid of reference marks was applied to

the exterior of the artery over the region to be using a modified ink -jet printer cartridge

(Cannon CJ-3A) driven by a waveform generator. Benchtop testing showed this device

could form regular 50 gm to 250 tm marks when driven by a 24 V pulse train with a

pulse-on duration from 1 to 20 jts. For arterial marking, a 10 Hz train of 5 jts pulses was



used to produce 150 gm markings. After the artery was marked the stent was expanded

to 8 atm of pressure, held at this pressure for one minute, and then released. The

procedure was recorded with an imaging system comprised of a CCD camera (Hitachi

VC-C370) and a deep-field zoom lens (Computar 18-108 mm, f2.5) with a polarizing lens

to reduce glare. A VCR (Sony SLV-920) recorded the procedure, and the data was later

digitized to 640x400 pixel resolution by a Raster-Ops 24XLTV frame grabber.

reference marks\
balloon catheter

artery

Figure 7: Strain mensuration system consists of a computer-based image
acquisition subsystem that records and analyzes a sequence of digitized video
images of an artery marked with ink reference points as a stent is expanded
inside the marked region.

3.2.2 Theoretical

Each digitized frame represented the two-dimensional projection of the curved artery. To

determine three-dimensional data from each two-dimensional frame, the artery was



assumed to be axially-symmetric; i.e. in {r, 0, z} cylindrical coordinates of equation r

f(z). The outer envelope of the vessel was digitized and a general two-dimensional

quadratic equation fit to the envelope. The general quadratic equation,

Ax2 +Bxy + Cy 2 + Dx + Ey + F = 0, was chosen because of its flexibility; with few

coefficients it can model two line segments that are parallel, converging (a section cut from

an ellipse), or diverging (a hyperbola of two sheets). The coefficients were determined

using the Nelder-Meade non-linear least-squares algorithm 24 implemented in the Matlab

programming language. Once the two-dimensional equations describing the stent envelope

were determined, their paths were swept around their longitudinal axis to create a three-

dimensional axially-symmetric quadratic surface model (Figure 8). The locations of the

reference marks from each two-dimensional frame were back-projected onto this three-

dimensional model and the three-dimensional locations stored for strain analysis.
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Figure 8: Determination of three-dimensional reference point locations given a
two-dimensional image of an axisymmetric surface.
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The surface strain components Fee, Ezz, Ez that exist within a uniformly-deformed, axially-

symmetric membrane are derived as a function of the locations of three reference points in

the undeformed and deformed states in section 3.4.1.2. To determine the strain field,

triads of reference points were automatically grouped by computer under the assumption

that the strain, although highly non-uniform over the length of the stent, varied in space

sufficiently gradually between neighboring markers so that a good local approximation

could be found using adjacent markers. The algorithm that grouped the reference points

assigned a weighted score to each potential triad. A positive weight was associated with

triads including points separated by an empirically-determined optimal distance. Points

separated too widely average-out the locally varying tensor field and so reduce the spatial

resolution of the system. Points grouped too close together suffer from a high error-to-

measurement ratio caused by additive uncertainties in position. A negative score was

associated with triads constraining points progressively closer to the envelope of the

artery model as they generate exaggerated position measurement error because of the

sensitivity of the back-projection. Once grouped, the strain tensor within each reference-

point triad was determined and associated with the corresponding area on the arterial

surface. Areas of the arterial surface that lacked suitable reference point triads were

associated with the strain tensor from the nearest reference point triad. If the earlier

assumption of axial symmetry was valid each axial slice should have the same strain

tensor, independent of 0. The strain tensor for all segments within each axial slice was



therefore replaced with the average tensor for the entire slice, and an alert was generated if

any of the values varied from the average by more than 10%.

3.2.3 Analytical

The algorithmic grouping of reference points into triads for strain mensuration is a highly

nonlinear process. Therefore we constructed a Monte Carlo simulator to determine the

accuracy of the strain mensuration system using as parameters the errors introduced by

back-projection, assumption of a quadratic surface, and limited resolution of the digitizing

device. We verified the accuracy of the simulator by conducting an expansion of a large-

scale balloon phantom, and compared the estimated error of the simulator (run with new

error parameters appropriate for the phantom) with the actual error of the imaging

system. The in vivo arterial experiment and the phantom mockup experiment were each

simulated using 10,000 independent runs. Following the experimental results of

Weizsacker, the phantom was constructed from a latex tube as a reasonable first-order

model of an artery. We hand-marked a grid upon the phantom, and recorded data as the

tube was inflated in step increments from an average diameter of 46 cm to 175 cm. After

each step the tube was allowed to stabilize for 1 minute to reduce creep or other

viscoelastic effects that could interfere with manual measurements, the image was

digitized with a comparable field-of-view to the in vivo experiments, and distances

between markings hand-measured to determine the true strain tensor.



3.3 Results

3.3.1 Marking device

The ink jet marking device was successful at laying down an even grid of fine, high-

contrast reference points in a moist environment. Results of ex vivo marking on an

excised bovine coronary artery are shown in Figure 9. Note the regular mark size of 150

gm. The artery appears light gray because the blood has been drained.

Figure 9: Bovine coronary explant, shown in the same aspect before and after
marking with the inkjet device.

3.3.2 Ex vivo artery segment

The surface strain tensor has three independent components which develop along the

artery as both a function of location and stent inflation pressure. With no distending



pressure (0 atm) all strain components are zero as there is no deformation of the artery

(upper panel of Figure 10). The lower panel is a three-dimensional reconstruction of the

arterial envelope, as given by the best-fitting quadratic surface of revolution (see section

3.2.2). Only the portion of the artery directly surrounding the stent is shown.
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Figure 10: Reconstructed view of bovine arterial segment before ex vivo expansion
(top panel). The axes represent dimensional distances in mm. The arterial
surface strain tensor components are shown in the lower panel as a function of the
longitudinal distance along the artery. At zero atmospheres of balloon catheter
inflation pressure, all components are identically zero. Raw data is presented in
Appendix A.
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At 2 atm of pressure (Figure 11) the stent has not yet begun to inflate as the balloon is

not yet distended sufficiently to contact the arterial wall. The reconstructed arterial

surface is shown with a strip from the lower surface removed to show for comparison the

original position of the artery at 0 atm. There is so little circumferential expansion at this

point that both proximal and distal ends appear slightly bowed inwards, although this is

likely measurement error since the system, as will be later derived, is not sensitive to

strains less than approximately 10%.
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Figure 11: Reconstructed view of bovine arterial segment before and after ex vivo
expansion to 2 atm (top panel). The axes represent dimensional distances in mm.
The arterial surface strain tensor components are shown in the lower panel as a
function of the longitudinal distance along the artery. Raw data is presented in
Appendix A.
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As balloon catheter pressure is increased to 4 atm the proximal (left in Figure 12) end of

the stent is inflated first. The cutaway reference in the lower panel shows relatively small

gain in luminal area at this pressure (compare with the cutaway of the arterial surface at 0

atm in the lower panel).
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Figure 12: Reconstructed view of bovine arterial segment before and after ex vivo
expansion to 4 atm (top panel). The axes represent dimensional distances in mm.
The arterial surface strain tensor components are shown in the lower panel as a
function of the longitudinal distance along the artery. Raw data is presented in
Appendix A.



At 6 atm the proximal side opens abruptly (Figure 13), expanding by approximately 25%

more than the final average circumferential strain. The axial strain has meanwhile become

clearly negative, i.e. the arterial segment shortens in length as the radius increases.

E
E

0.6

0.4

- Circumf
A... Axial

0.2 .. .... Torsion

-0.2 i "

-0.4 1 i i
-8 -6 -4 -2 0 2 4 6 8

mm

Figure 13: Reconstructed view of bovine arterial segment before and after ex vivo
expansion to 6 atm (top panel). The axes represent dimensional distances in mm.
The arterial surface strain tensor components are shown in the lower panel as a
function of the longitudinal distance along the artery. Raw data is presented in
Appendix A.



As the pressure increases to 8 atm the balloon/stent unit expands to fully contact the arterial

wall along its length and the arterial surface regains a cylindrical appearance (Figure 14). The

proximal end relaxes inwards, and is now slightly less open than the distal region. The low

torsional component of strain indicates that twisting around the longitudinal axis has remained

nearly zero throughout the expansion, although the axial component indicates a 10% to 20%

contraction in length.
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Figure 14: Reconstructed view of bovine arterial segment before and after ex vivo
expansion to 8 atm (top panel). The axes represent dimensional distances in mm.
The arterial surface strain tensor components are shown in the lower panel as a
function of the longitudinal distance along the artery. Raw data is presented in
Appendix A.



3.3.3 Latex phantom

In order to examine the errors inherent in the strain mensuration system we used a large-scale

cylindrical latex phantom. The phantom was inflated and strain was computed both by hand-

measurement (considered to be the true strain tensor for reasons given in section 3.4.3) and

with the less-accurate strain mensuration system. Because the phantom was easily inflated to

large volumes even at low pressures, six sets of measurements were taken at incremental steps

of increasing balloon radius. The mensuration system's analysis of balloon strain for the

lowest and highest pressure steps are shown below (Figure 15 and Figure 16).
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Figure 15: Reconstructed view of phantom before deformation and at early expansion
step (top panel). The axes represent dimensional distances in mm. The surface strain
tensor components are shown in the lower panel as a function of the longitudinal
distance along the phantom. Raw data is presented in Appendix A.
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The system tracked changes in strains correlating to 20 fold enlargements. Unlike the

artery expanded with a balloon catheter inside a stent, which showed negative axial strain

during circumferential enlargement, large positive increases in axial expansion occurred as

the phantom increased in circumference.
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Figure 16: Reconstructed view of phantom before deformation and at late
expansion step (top panel). The axes represent dimensional distances in mm. The
surface strain tensor components are shown in the lower panel as a function of the
longitudinal distance along the phantom. Raw data is presented in Appendix A.



3.3.4 Error simulations

Using the phantom we were able to directly measure strain on the surface and compare

these results with strain calculated using digitized two-dimensional images. To determine

the accuracy of the strain measurements we first measured the error introduced by the

assumption that the artery is axisymmetric and has a quadratic surface of revolution.

Table I shows the average r values measuring goodness-of-fit of the phantom and arterial

segments to their least-square-error quadratic surface. The r2 values are all nearly unity,

and therefore the arterial/phantom surfaces are very nearly quadratic.

Table I: r2 values measuring the validity of the
assumption that the artery is axisymmetric and has a
quadratic surface

Phantom Artery
Step number r2  Pressure (atm) r2

0 0.9997 0 0.9995
1 0.9722 2 0.9995
2 0.9842 4 0.9966
3 0.9931 6 0.9942
4 0.9945 8 0.9949

System errors, defined as the difference between the strain tensor computed by the

system investigated in this thesis and the strain tensor computed by direct hand-

measurement, were found to be in agreement with the errors predicted by the Monte-

Carlo analysis, and so validated the Monte-Carlo simulation. Figure 17 shows 25

samples of the strain-mensuration system error, as represented by filled circles. The

results of 10,000 runs of the Monte-Carlo error simulator yielded three zero-mean



Gaussian curves for each of the three components of strain. The boxed areas for each

strain component in Figure 17 span a symmetric distance that encompasses one-half of

the area of the corresponding Gaussian curve; i.e. a randomly-chosen value of the Monte-

Carlo analysis is 50% likely to be within the boxed region. A two-tailed t-test testing the

likelihood that the measured error values were samples taken from a parent distribution

with parameters given by the Monte-Carlo simulation yielded p values of 0.97, 0.96, and

0.94 for the circumferential, axial, and torsional components respectively. This close

agreement gives us confidence in the simulation's ability to predict the magnitude of the

strain-mensuration system's error.
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Figure 17: Comparison of 25 samples of strain-imaging system error magnitudes
from latex phantom experiments (shown by the circles) and the average error
from 10,000 runs of a Monte-Carlo error simulation. Raw data is presented in
Appendix A.

New Monte Carlo simulations were then run using parameters based upon typical arterial

sizes to predict the in vivo system errors (Table II). Because the sources of error are

additive (i.e. for a given specimen and camera they are fixed and not proportional to

strain), the resulting errors they cause are additive, and are therefore listed as the average

of the absolute errors rather than percent error.



Table II: Average in vivo errors predicted through the Monte-Carlo
simulator.

average I error | Typical in vivo final strains
Circumferential 0.09 0.60
Axial 0.06 -0.20
Torsional 0.06 0.00

3.4 Discussion

3.4.1 Strain

3.4.1.1 Definitions

Although there is an accepted standard measure of the scalar finite uniaxial strain E,

E = (initial length - final length)/initial length

there are several alternate definitions for multi-dimensional strain. We chose to use the

Green tensor formulation as have several other investigators of biologic strains2 5, 26, 2 7, 28, 29

Specifically, as shown in Figure 18, the vectors dai and dxi connect two points before and

after deformation respectively.

Figure 18: Biaxial Green strain tensor



The points are initially separated by length do, where do is the magnitude of dai, and

similarly after deformation by d, where d, is the magnitude of dxi. The Green strain

tensor EU is given by

d1
2-d0

2=2 Eydaidaj (1)

The general form of the Green surface strain tensor over a tube has three unique

components. As defined in cylindrical coordinates (Figure 19) these are: circumferential

Eee which will tend to make the cylinder increase in diameter, torsional Eez which will

tend to make the artery twist around its axis, and longitudinal Ezz which will tend to

make the artery lengthen.

Figure 19: The two-dimensional strain field of a tubular surface shown in
cylindrical coordinates. The components ee , Ezz, and EOz are referred to in this
thesis as circumferential, longitudinal, and torsional strains, respectively.

-j
v %ZZ [

04 z
Coo

E zz



3.4.1.2 Finding strain tensor from marker triads

The surface strain tensor may be calculated from the relative displacements of a marker

triad. Using the cylindrical coordinates defined in Figure 19, let a surface exist in three

dimensions that can be described before deformation as r=j(z) and after deformation as

r=F(z) (i.e. axisymmetric). Let any differential vector dX, exist on the surface which is

deformed into vector dxi. A deformation gradient tensor Fy then exists that maps dXK to

dxj by

dc = Foy dXj (2)

To estimate Fy, let three closely-spaced markers Xa, -1,2,3 exist on a surface with

components X rz in the undeformed state which deform into points x"with components

X a.. Let the vector yX be directed from point X"to XY, and similarly define a vector xfa

from point x" to x .

If the surface r=f(z) has the property drldz << 1 (i.e. any tapering of the cylindrical

surface is gradual) then the 0 and z components ofXf " will be much greater than the r

component and x,a andx,f may be replaced by x,. dXY and dx, may then be approximated

in local Cartesian coordinates on a plane normal to the surface, using matrix notation, as

dXBa --Xr (X '  and similarly dr ,a.X ' (3a,b)
X, -x x -x,



This reduces the problem to determining the two-dimensional strain components in the

Cartesian coordinate system. This transformed problem has been examined by several

research teams. The remainder of this derivation follows from McCullough (28):

Substituting (3) into (2) yields

-x LFoe F] x( -Xa1 (4)

Replacing the (fl, a) pairs in equation (4) with marker pairs (2, 3a) and (2, 3b) yields four

linear equations which may be solved as follows for the components of Fy:

[F, F]=aD- bC bA-aB 1 ,where
Fo F LcD- dC dA -cB AD - BC

A = X,(XO2 _ X9

c = X, - X0)

D= X - x

a= Xr(x - x0)

b =xr,(x -x)

c=x -xC= X2 -X 1

z

The strain tensor E is then found by the relation

E= (F FT-I)I/2 (5)

3.4.2 How others have measured tissue strain

The determination of surface strains in low-modulus biological materials is not a new

problem, and recent advances in imaging and computation systems have made several new



measurement methods possible. Large deformations experienced by compliant tissues

favor the use of non-contact systems that image tissue-bound markers using a variety of

media, including: visible26 27',28, infrared30, and ultraviolet light 31, ultrasound32, x-rays29,33,

and phase-contrast magnetic-resonance34

It is difficult to non-invasively measure arterial wall distention in vivo because the

material properties are similar to that of the surrounding tissue, and arteries lack suitably-

distributed reference markers. Magnetic-resonance imaging has been used to determine

the elastic deformation in tendons with promising results ex vivo34 , although its

applicability to vessel-wall measurements is limited by its requirement for two easily-

imaged end points. Ultrasonic imaging techniques can take advantage of naturally-

occurring speckles as reference points, and have been used ex vivo to find biaxial

(circumferential and longitudinal) surface strains over complex surfaces32. Because of the

large number of potential markers this method has also been used to determine the locally-

varying strain as a function of position. This technique is best used to analyze small

strains because the speckles change appearance significantly as they move. Experiments

involving latex phantoms show that the lowest measurement error of uniaxial strain occurs

only for displacements near 100I1m 35. The error grows rapidly on either side of this

boundary, rendering the method incapable of measuring displacements greater than

150pm.



The most common method used to measure strain in compliant tissues involves marking

the specimen before optically imaging the displacement. Water-insoluble ink has been

directly applied to larger specimens36. Smaller surfaces, such as arteries, have been

sprayed with ink using the bristles of a toothbrush27 to achieve the small sizes needed

(-20rpm). Others have used small, inert particles such as vanilla-bean pieces pressed into

the specimen surface37, fluorescently-labeled microspheres31 , or strips glued to the

tissue33 to achieve the high-contrast needed to accurately identify the markers amidst the

visual noise of ambient glare and irregular surface of moist tissue. A novel system that

measures strain in real time uses small steel bearings glued to the specimen38, although

visual noise limits its in vivo utility. More invasive methods may yield greater accuracy

but by their nature alter the very tissue being studied. Bogen30 was able to obtain

extremely precise ex vivo measurements, on the order of 200gtm, by piercing thin strips of

tissue with illuminated fiber-optic strands, and Waldman29 embedded radio-opaque

markers into the left ventricle wall to gain 3D displacement information.

These techniques are summarized in Table 1. The axes column refers to whether uniaxial

(e.g. longitudinal) or biaxial (e.g. longitudinal, circumferential, and torsional) information is

acquired. Theflat surface column indicates whether the method is restricted to measuring

strain developed in a planar field-of-view, or can be used over a curved surface. The

number of cameras required is listed in the cam column. Note that all optical imaging

systems require two cameras to extract strain information over non-flat surfaces.



Table III: A comparison of strain-imaging methods used in highly-compliant
materials

stior Site llumination Marker Axes Flat? Cam Note
Barbee ex vivo ultraviolet fluorescent microspheres 2D yes 1
Bogen ex vivo infrared fiber optic cable pushed 2D yes 1

through specimen

Downs latex model visible light glued steel bearings 2D yes 1 1,2

Drace ex vivo MRI tendon-bone interface 1D yes NA
Fung ex vivo visible light ink sprayed from 2D yes 1

toothbrush bristles
Hoffman in vivo ultraviolet resin chips affixed with 2D yes 1

grease

Hsu latex model visible light "markers affixed to 2D no 2 3
specimen"

Humphrey ex vivo visible light vanilla-bean fragments 2D yes 1
glued

McCulloch in vivo visible light sutured crosses 2D no 2
Ryan latex model ultrasound silica particles suspended 2D yes 1

in gel
Skovoroda latex model visible light marked ink dots 2D no 2 4
Vito ex vivo visible light lD yes 1 5

Waldman in vivo x-ray radio-opaque implants 3D no NA
Weizsacker ex vivo visible light marked ink dots 2D yes 1
Yin in vivo x-ray, vis. infused radio-opaque dye 1D yes 1

light
Notes:

Characterizing the locally-varying strain field imparted by an expanding stent to an artery

in vivo has two unique constraints not addressed by the above techniques. First, although

it is necessary to track the two-dimensional locations of arterial markers over the curved

arterial surface in vivo, the surgical incision required to expose the artery for imaging

1. System successful on rubber phantom; did not work correctly when used on ex vivo specimen
2. Automatically measured in real-time; up to 30Hz refresh rate
3. Used FEM to fit parameters for single and bilayer arterial cross-section to data
4. Measured local strain as a function of position for heterogeneous specimens.
5. Measured strain on face and width of slab cut from artery wall to determine bilayer constitutive parameters



without altering its in vivo orientation and environment is deep and narrow which makes a

multiple-camera approach impractical. Second, the strain field tensor varies along the

length of the stent, and so must be determined locally as a function of position along the

artery. The single-camera with arterial modeling approach used in this thesis is the first

reported method capable of measuring the complete three-dimensional vascular strain

tensor in vivo without damaging the vessel wall.

3.4.3 Error Analysis

The primary sources of error in the computed strain tensor (henceforth called calculated

strain) are measurement inaccuracies caused by the limited resolution of the digitized

image. Figure 11 shows that a surprisingly small component of error is derived from the

assumptions that the artery is axisymmetric and fits the quadratic envelope of a cylinder,

elliptical section, or hyperboloid. These assumptions contribute less than 10% of the

measurement error caused by the limited resolution of the digitizing camera. Quantization

error occurring during digitization is difficult to reduce. Although increasing the

magnification to make the stented region completely fill the field of view of the camera

would decrease this error, motion between the camera and stent from natural cardiac and

respiratory cycles, and movements of the catheter during inflation make this difficult in

vivo.

To validate the Monte-Carlo analysis of error we compared its simulated error

distribution with sample system errors taken from a large-scale latex mockup. We chose



to use a large-scale mockup so we could accurately hand-measure the distance between

markers, avoiding the need to back-project the points onto a mathematical three-

dimensional model to prevent the effects of axial asymmetry and a non-quadratic

envelope from influencing the strain-tensor measurement. Further, by hand-measuring the

distances between markers on the large-scale mockup we eliminated errors from the

limited resolution of the digitizing camera. Because the only source of error remaining

stems from measurement inaccuracies, and this is less than 10% of the measurement error

due to the limited resolution of the camera, we considered the strain tensor computed

from the hand-measured inter-marker distances to be the true strain tensor.

The errors predicted by the Monte-Carlo simulation were in consonance with the

differences between the hand-measured and computer-analyzed strain tensor, validating

the Monte-Carlo simulation (Figure 17). The results of Monte Carlo simulations run

using parameters based upon typical arterial sizes to predict the in vivo system errors

show that axial and torsional strains greater than 0.12 and circumferential strains greater

than 0.18 must be present to be reliably detected. Because the sources of error are

additive (i.e. for a given specimen and camera they are fixed and not proportional to

strain), the resulting errors they cause are additive, and therefore are defined as confidence

bounds rather than percent error.



3.4.4 Spatial resolution

The strain tensor computed as a function of three specific markers represents the average

strain experienced within that marker triad. The system's spatial resolution, or ability to

localize changes in strain, is therefore limited to the average distance between these

markers. We chose to examine marker triads separated by 0.75-1.0 mm which struck a

reasonable balance between spatial resolution and the effect of digitization error on strain

measurement accuracy. This spatial resolution allows us to examine macroscopically how

vascular implants expand and move, although it does make the system insensitive to large

changes in strain over a short distance such as might occur in the immediate vicinity of a

0.25 mm strut. The spatial resolution of 0.75-1.0 mm is largely limited by the choice

made to envision changing patterns of strain over the surface of the entire stented region.

Smaller reference marks would permit a proportionally finer spatial resolution, but would

also require an expensive high-resolution camera to digitize this information over the

length of the stent and custom deep-field optics to maintain focus over the curved arterial

section.

3.4.5 Luminal strain in the thick-walled artery model

Although many biological interactions take place after stenting on the interior luminal

surface, the strain mensuration system described in this thesis measures the strain on the

exterior arterial surface. These strain tensors need not be equal. Arteries, such as the

ones examined in this thesis, that are axisymmetric and do not experience torsional strain



have different circumferential components of strain on their exterior and luminal surfaces

after deformation as derived below.

If Ro and ro are designated the respective outer and inner radii of a cylindrical artery before

stent expansion, and the exterior arterial surface has two reference marks separated by

angle 0 and length 10, and after an eo, axisymmetric expansion, R1 and rl are the new

exterior and interior radii with the reference marks separated by length 11 at the same angle

0, then by the definition of strain,

•• exterior 2- I = ( )2 (Ro) =R -R- (6)
0o (RoO) Ro

and similarly,

ri -r 0
interior 2 (7)

ro

Based on the findings of Choung39 the vessel wall is assumed incompressible, and

therefore the area remains the same after expansion:

A = R2 - A 2 = ,Rz -7 (r8
(8)r 2 = R,• -R• + r2

Substituting (8) into (7) and simplifying into terms of (6) yields

hinterior e fioeri. eer j (9)

Thick-walled human coronaries may therefore be subjected to far greater luminal strain for

a given measure of external wall strain than thin-walled arteries.



3.5 Summary

This computerized system is the first described that can potentially be used to determine

in vivo how a surface strain tensor varies both as a function of distance and time. Strains

must be axisymmetric, to allow three-dimensional information to be extracted from a

single camera, and large, to overcome measurement error amplification that is inherent in

the process of back-projection. A knowledge of how local surface strain varies with time

can be used to explore and characterize the dynamics of endovascular implant expansion.

This may provide a mechanical basis of understanding for the observation that different

designs of implants impart varying degrees of injury to the vascular wall40, and assist in

the rational development of a less-injuring device.

Although applied here to measurement of stent-induced vascular strain, the method can be

used to quantify changes in external geometry for any axially-symmetric structure, such

as measuring in vivo peristaltic intestinal movements.

Using endovascular implants as devices that impart extreme levels of chronic strain, the

ability to measure in vivo strain may also help answer fundamental questions about the

causes of and responses to vascular injury.



4. In vivo vascular strain induced by the

expanding endovascular stent

4.1 Introduction

The strain mensuration system developed in the previous chapter was applied in vivo to

determine the surface strain tensor induced by the expanding endovascular stent in a

rabbit model. The following questions were explored:

* How do balloon-expandable stents inflate in vivo? Are any gross behaviors visible

such as rotation or uneven expansion? Are in vivo tests necessary or do benchtop

experiments yield the same results?

* Do the stents abrade the vascular wall during inflation through mechanical contact? Is

this an important contributor of superficial/deep injury and ultimately neointimal

hyperplasia?

* Can any abrasion present be reduced through catheter choice or redesign, stent choice

or redesign, or operator technique?



4.2 Methods

New Zealand rabbits were anesthetized with ketamine and xylazine, and their femoral

arteries were exposed and cleaned of fascia in preparation for marking. A black plastic

cradle with registration marks was placed underneath the artery to improve contrast of

the arterial envelope and provide a length scale. An arteriotomy of the femoral artery

was performed, and a multilink stent (ACS, Figure 2) was inserted on a compliant

polyurethane angioplasty catheter (ACS) to a position in the femoral artery

approximately 2 cm cranial to the incision (Figure 20).

n femoral a.

riotomy
moral a.
catheter

Figure 20: Stent placement in the rabbit femoral artery



A grid of 150 gm marks were next inscribed upon the surface of the artery over the

stented region using the ink-jet printer cartridge discussed in the previous chapter. Figure

21 shows the results of this marking technique in vivo on the rabbit femoral artery.

Figure 21: Rabbit femoral artery shown in the same aspect before (A)
and after (B) in vivo marking

After the artery was marked the stent was expanded in 2 atm increments to 8 atm of

pressure, held at maximum pressure for one minute, and released. The procedure was

recorded and digitized using the same data acquisition system described in Figure 7 of the

previous chapter with a polarizing lens added to the camera lens to reduce glare. As with

the ex vivo experiments, a frame-by-frame three-dimensional mathematical model of the

artery was then reconstructed using the assumption of axial symmetry, and the positions

of the reference marks were back-projected onto this model. These marks were then

automatically grouped and analyzed to determine the circumferential, axial, and torsional

components of the strain tensor developed within each arterial subsection for each frame

in time.



4.3 Results

4.3.1 In vivo strain components 2 to 8 atm

The strain tensor of the vessel surface as the stent was inflated to 2 atm of pressure is

shown in Figure 22. As derived in the previous chapter, the accuracy of the strain

measurements is + 0. 10, and so no readings at this pressure are significant. As in the ex

vivo case shown in Figure 11, the stent has not yet began to expand at 2 atm.
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Figure 22: Reconstructed view of rabbit femoral artery segment before and after
in vivo expansion to 2 atm (top panel). The axes represent dimensional distances
in mm. The arterial surface strain tensor components are shown in the lower
panel as a function of the longitudinal distance along the artery. Raw data is
presented in Appendix A.
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At 4 atm (Figure 23) the stent has begun to enlarge circumferentially, with the proximal

(right) side to the catheter inflating first. As with the ex vivo data, the right panel shows the

original unexpanded arterial surface in cutaway. Note that the proximal edge has inflated

approximately 50% more than the center, and that both proximal and distal ends experience

greater luminal gain than the center. The stent appears here shorter than at 0 atm because the

surface is flared outwards at each end, making a shorter projection onto the axis of symmetry.

The curved proximal-to-distal distance measured along the stent surface would reveal no

change in length, as revealed in the near-zero component of axial strain.
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Figure 23: Reconstructed view of rabbit femoral artery segment before and after in
vivo expansion to 4 atm (top panel). The axes represent dimensional distances in mm.
The arterial surface strain tensor components are shown in the lower panel as a
function of the longitudinal distance along the artery. Raw data is presented in
Appendix A.
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As the pressure continues to rise the middle of the stent continues to enlarge (Figure 24).

Note that the stent has begun to contract in the axial direction, again similar to the ex vivo

results.
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Figure 24: Reconstructed view of rabbit femoral artery segment before and after
in vivo expansion to 6 atm (top panel). The axes represent dimensional distances
in mm. The arterial surface strain tensor components are shown in the lower
panel as a function of the longitudinal distance along the artery. Raw data is
presented in Appendix A.
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At the final inflation pressure of 8 atm (Figure 25) the center of the stent has risen to

within 5% of the radius of the edges (corresponding to 10% of the circumferential strain,

since the stent approximately doubled in diameter). In clinical practice, the stent would

be further straightened with a high-pressure, low compliance balloon catheter. As the

center of the stent completed its circumferential expansion it contracted 20% axially.
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Figure 25: Reconstructed view of rabbit femoral artery segment before and after
in vivo expansion to 8 atm (top panel). The axes represent dimensional distances
in mm. The arterial surface strain tensor components are shown in the lower
panel as a function of the longitudinal distance along the artery. Raw data is
presented in Appendix A.



4.3.2 Pressure-differential strain

Another method of viewing the expansion data is to show the change in strain for a given

change of pressure. Because strain measurements have limited accuracy, this method

requires pressure steps larger than 2 atm to yields significant results; Figure 23 shows the

change in the strain tensor as pressure is increased from 0 to 4 atm (which is the same as

the absolute 4 atm strain tensor), and Figure 26 shows the change in the strain tensor as

pressure is increased from 4 to 8 atm. Notice the locations of the greatest circumferential

expansion mirror the locations of greatest axial contraction, both appearing largest at the

ends of the stent. In contrast, from 4 to 8 atm the stent experienced the largest

circumferential gains in the center, accompanied by a similar axial contraction.
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Figure 26: Change in the strain tensor within stented rabbit femoral
artery as balloon catheter pressure is increased from 4 to 8 atm,
shown as a function of the longitudinal distance along the artery. Raw
data is presented in Appendix A.



4.4 Discussion

4.4.1 The dogbone effect

The hyperboloid dogbone shape that the stent transiently exhibits as it expands may

contribute to both acute superficial and deep injury that later leads to narrowing of the

lumen through neointimal hyperplasia.

4.4.1.1 Proposed mechanism - existence depends only on stent/balloon length, not on

material properties

The stent is mounted on a slightly longer balloon catheter in order to ensure complete

circumferential expansion along the length of the stent. Benchtop experiments indicate

the following chain of events leading to a fully-deployed stent:

1. The proximal and distal ends of the balloon, unconstrained by the overlying stent,

begin to inflate first as the applied pressure reaches approximately 4 atm.

2. Likewise, the stent begins expansion at its proximal and distal regions first. The

ends begin to expand suddenly, with either end equally likely to rise first (Figure 27).

The proximal and distal ends of the stent contact the covering artery as two rings might,

while the middle region remains comparatively uninflated.



Figure 27: Both stent (dark gray) and balloon (light gray) open end-first at
approximately 4 atm of pressure (shown without artery).

3. As the pressure increases the center of the stent circumferentially expands with

concomitant axial contraction. This contraction along the axis pulls the flared stent edges

inward, mechanically scraping the arterial wall under high pressure and causing superficial

and deep vascular injury (Figure 28).

Figure 28: As the center of the stent opens under the force of the
balloon catheter, the stent and surrounding artery contracts axially.

4. The center of the stent expands to the same diameter as the distal and proximal ends.

The stent struts are fully opposed along the length of the device, and the only

evidence that the transient dogbone occurred is in the injury that the arterial wall has

sustained.

balloon catheter stent
balloon catheter stent



It is important to note that while the balloon pressure at which the stent begins to

dogbone is dependent on the material properties of the stent, balloon, and artery, the

existence of dogbone injury is not. Dogbone injury will occur whenever the ratio of

balloon length to stent length is greater than one.

4.4.1.2 Validating evidence: superficial injury

Examination of the superficial arterial wall immediately after stenting supports the

hypothesis that a scraping injury occurs at the ends of the stent. Others in our group

have studied superficial injury in stented rabbit iliac arteries41. Arteries were stained in

situ using AgNO3 15 minutes after stenting to outline the luminal lining cells and the

extent of superficial injury. The stented artery was harvested and an incision made along

its length. The stent was removed and the artery mounted en face for histologic

examination. Figure 29 shows a stented artery's proximal edge. The stent shielded the

geometrically-patterned region to the right from the AgNO3 and leaves clear tracks of the

corrugated ring design. Intact endothelial cells appear as a light silver layer carpeting the

region to the right (region C). The endothelial cells are completely denuded where the

balloon contacts the artery to the left, revealing the darker basement membrane above the

underlying smooth muscle cells (A).



Figure 29: AgNO 3 stained en face rabbit femoral artery after stenting

The center region (B) clearly shows longitudinal scraping damage in the region proximal to

the stent. Note that this damage lessens in the V-shaped valley (D). This damage is

consistent with injury induced from the dogbone effect. The flared stent ends impart the

severe scraping damage as they begin axial contraction. The outermost struts (E) support

the overlying artery, tenting it up and shielding the less-circumferentially expanded areas

(D).



4.4.1.3 Validating evidence: deep injury & hyperplasia

Unpublished data* examining the magnitude of deep arterial injury and resulting

hyperplasia in stented rabbit femoral arteries as a function of position along the stent also

support the dogbone hypothesis (Figure 30). Deep arterial injury is measured on the

scale proposed by Schwartz4, which maps increasing injury to an increasing score from

zero to four. Intimal area is measured 14 days after stenting with stainless steel

corrugated ring stents (ACS/Multi Link®). This data is compared to a metric of the

nonuniformity, measured by the circumferential component of the arterial strain tensor at

the point of greatest nonlinearity, occurring at approximately 4 atm.

50% 0.3 1.00

1.

0% 0.0 0.00 proximal middle distal

Figure 30: Arterial injury and hyperplasia levels vs. position along the stent.
Stent expansion at 4 atm is a metric of the severity of dogbone-shaped flare at
the stent ends, and it closely tracks both injury score and eventual hyperplasia.
Raw data is presented in Appendix A.

* Hyperplasia and injury score vs. position data courtesy of Sahil Parikh, Edelman
laboratory, M.I.T., Cambridge, MA



These data show a significant difference of all three metrics as measured at the ends

versus the middle: % nonuniformity (p=0.042), injury score (p=0.046), and intimal area

gain (p=0.020). Although measured at only three locations, nonuniformity shows a clear

correlation with both injury score (r=0.87) and increase in intimal area (r=0.91).

4.4.2 Other findings

Although a negligible torsional component of strain exists in the artery during and after

stent deployment, video images of the translucent artery during surgery revealed that the

stent rotates approximately 90 degrees during expansion. Similar observations were made

in ex vivo tests and indicated that the torsional force originated in the catheter and was

enhanced through the catheter's long moment arm; there was no differential rotation

measured between the ends of the stent itself. In vivo, this rotation occurred before the

ends first flared open; the unconstrained stent therefore first rotated freely as a unit to

relieve any torsional force exerted by the catheter. The torsional moment was small

compared to the tethering of the artery by surrounding vasa vasorum, and so the stent's

angle of rotation became fixed once the stent first made contact with the artery. Early

rotation of the catheter therefore could not cause vascular injury, and is unlikely to be a

contributor of neointimal hyperplasia. This hypothesis is strengthened by the absence of

a diagonal pattern of endothelial denudation in Figure 29.

Ex vivo and in vivo experiments yielded very similar results. The ex vivo testing was done

on an air-filled unpressurized muscular bovine coronary artery free at one end and



tethered at the other by a vise, as opposed to the in vivo blood-pressurized rabbit iliac

artery tethered at both ends by the surrounding vasculature. The dogbone effect was

noted in both at the same pressure; resultant strain components were similar, and early

catheter rotation was noted in both, despite several gross differences in the experiment.

This suggests further work may be first done ex vivo, and validated in vivo with fewer

animal experiments.

4.4.3 Proposed methods to reduce dogbone

The findings above are summarized in the left panel of Figure 31. Current stenting

systems use an oversize balloon catheter to ensure, with a margin of safety, that the stent

is fully expanded along its length after deployment. Yet, because of the dogbone effect,

oversizing the balloon guarantees that at some intermediate point in expansion just the

opposite will occur. We explored several ways this effect may be countered through

either changes in stent or catheter design. It is important to note that the dogbone effect

is only a function of the relative compliances and lengths of the balloon and catheter, and

therefore cannot be reduced through any technique of balloon inflation. Furthermore, not

all stents are susceptible to dogbone; self-expanding stents use the shape memory effect

of nitinol to circumferentially expand and are therefore immune to dogbone injury caused

by balloon/stent interaction.
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Figure 31: Balloon/catheter designs, present and proposed. The present design
expands at the far distal and proximal regions first, causing scraping damage as it
axially contracts. This could be reduced by either matching the lengths of the
balloon and stent or altering their material properties to cause them to expand
from the center region outwards.

4.4.2.1 Stent-based methods

The stent may be selected to have exactly the same uninflated length as the balloon,

shown in the center panel. Without having unconstrained ends, the balloon will feel equal

resistance to expansion along its length and therefore expand evenly. A margin of safety

to ensure complete stent expansion is still provided as many stents contract axially as

they expand. This method also prevents balloon-arterial contact and subsequent

deendothelialization seen previously in the histological photomicrograph of Figure 31 in

arteries that have not been predilated through angioplasty.

An alternative method, shown in the right panel, is to design a stent with thinner struts

towards the center than at the edges, causing it to circumferentially expand in the center

first, and then smoothly outwards. Any axial contraction takes place as the stent rises to

tU---·



meet the arterial surface; there is no pinching between flared ends as in the current

configuration.

4.4.2.2 Catheter-based methods

The same design goals considered above through stent modification can also be met

through catheter redesign. Equivalent to a matched length stent-catheter system is a

catheter that expands only in a marked center region of equal length to the stent. The far

distal and proximal constrained balloon ends could then provide a crimping surface to

secure the stent yet not inflate. Taken to less extremes, a catheter graded in compliance

from least in the center and increasing outwards would exhibit the same center-first

opening characteristic and benefits that could be obtained with the previously-examined

center-first stent.

4.4.23 Self-expanding stents

Self-expanding stents use the shape memory effect of nitinol to circumferentially expand

and are therefore immune to dogbone injury caused by balloon/stent interaction.

4.5 Summary

Stents dynamically open in a highly nonuniform fashion which leads to a pronounced

edge effect during initial expansion of the proximal and distal ends. The dogbone shape

that the stent temporarily assumes is caused by an interaction between the balloon
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catheter and stent, and is a function of their lengths and compliances. Because it is a

temporary condition, a cinematic sequence of images must be analyzed to examine this

effect; before/after images alone do not reveal its presence.

This dogbone characteristic asserted during inflation causes direct, acute, local mechanical

damage to the vascular wall. Such mechanical damage, measured in vivo, includes both

superficial and deep injury, and correlates well with eventual intimal thickening.



5. Conclusions

5.1 Accomplishments

The concept of buttressing collapsible structures is certainly not new; vestiges of large

wooden hoops used to scaffold walls have been found in Indian excavations that date

from the early Bronze Age42. The investigation of the mechanics of endovascular stents is

a fundamentally different type of problem, however, since vascular injury is not simply

proportional to the final strain developed but depends upon more subtle factors such as

the dynamic interaction between the stent and balloon during expansion, and demands

both an understanding of the engineering behind stent expansion and appreciation of the

underlying vascular biology.

In the United States, the FDA has currently approved two endovascular stent designs and

has four more pending; in Europe no fewer than 20 different stent designs are currently in

use. Despite this diversity and the knowledge that the degree of post-stenting intimal

hyperplasia is dependent on stent design40, there existed neither an understanding of the

mechanical initiators of hyperplasia nor tools to predict the efficacy of new geometries

prior to clinical trials.



This thesis has described and analyzed one geometry-dependent mechanism causing

arterial injury and resultant neointimal hyperplasia, and develops a tool to predict its

magnitude both in vitro and in vivo for any stent design. The immediate clinical

ramification is that injury from nonuniform stent expansion can be lessened through

choice of catheter and stent, but not through inflation technique. Several proposed stent

and balloon designs have also been explored that mitigate this mode of injury. Further,

this thesis has developed both a tool and model to explore the biological effects of large

strains on vascular tissue.

5.2 Future work

Several proposed designs were suggested that minimize the dogbone effect, and a logical

continuation of this work would be to work with catheter/stent manufacturers to examine

whether these changes do produce a less-injurious stent. More generally, identification of

the dogbone effect permits stent/balloon design concepts to be tested for this mode of

injury through finite element simulations before going to manufacturing and animal

experiments. There are clearly other potential modes of mechanical injury that can be

identified and correlated with eventual hyperplasia. Knowledge of a more complete set of

rules measuring both the mode and significance of mechanical precursors of hyperplasia

could:

1. create novel designs based upon this general set of design rules



2. shed insight on the basic biological processes causing hyperplasia

3. decrease the cost and time of the development cycle of new stent/balloon systems

through the ability to simulate new concepts quickly.

A logical extension to this end of the work presented in this thesis would be to

characterize more completely the various manners of mechanical injury that cause

different stents to evoke different responses. Three modes appear especially suspect:

1. injury from direct balloon-arterial contact between the struts

2. blood turbulence and/or nonlaminar flow around the struts and at the far

distal/proximal regions

3. mechanical integrity of vascular cells apposed to strut surfaces.

The process of identifying and measuring these characteristics to limit restenosis involves

a multidisciplinary approach, binding the disciplines of solid and fluid mechanics,

physics, vascular biology, physiology, and polymer chemistry with experiment,

mathematical modeling, and clinical judgment. I hope this thesis contributes an

understanding of the role of stent-induced vascular strain to this ongoing effort.



Appendix A: Figure data

Figure 10
distance (mm) -5.80 -4.51 -3.22 -1.93 -0.64 0.64 1.93 3.22 4.51 5.80
circumferential 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
axial 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
torsional 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Figure 11
distance (mm) -5.84 -4.54 -3.24 -1.95 -0.65 0.65 1.95 3.24 4.54 5.84
circumferential -0.019 -0.005 0.051 0.055 0.029 0.048 0.038 0.074 -0.047 -0.048
axial -0.054 -0.051 -0.008 -0.011 -0.007 -0.050 -0.083 0.046 -0.012 0.037
torsional -0.005 0.002 0.003 0.004 0.011 0.009 0.007 0.004 -0.001 -0.009

Figure 12
distance (mm) -5.20 -4.04 -2.89 -1.73 -0.58 0.58 1.73 2.89 4.04 5.20
circumferential 0.360 0.344 0.311 0.292 0.265 0.262 0.231 0.229 0.204 0.195
axial -0.200 -0.262 -0.155 -0.143 -0.077 -0.151 -0.175 -0.068 -0.048 0.002
torsional 0.113 0.002 0.129 0.109 -0.011 0.101 0.070 0.096 -0.015 0.039

Figure 13
distance (mm) -4.42 -3.44 -2.46 -1.47 -0.49 0.49 1.47 2.46 3.44 4.42
circumferential 0.690 0.619 0.574 0.541 0.516 0.500 0.457 0.437 0.433 0.433
axial -0.188 -0.148 -0.177 -0.230 -0.210 -0.193 -0.155 -0.123 -0.151 -0.095
torsional 0.046 -0.173 -0.107 -0.037 -0.132 -0.109 -0.090 0.033 -0.029 -0.037

Figure 14
distance (mm) -4.40 -3.42 -2.24 -1.47 -0.49 0.49 1.47 2.24 3.42 4.40
circumferential 0.394 0.417 0.466 0.486 0.482 0.511 0.527 0.511 0.499 0.474
axial -0.260 -0.321 -0.132 -0.276 -0.144 -0.231 -0.400 -0.157 -0.169 -0.107
torsional 0.054 0.055 0.111 0.018 -0.091 -0.045 0.070 0.021 0.049 0.074



Figure 15
distance (mm) -77.3 -60.1 -42.9 -25.8 -8.59 8.59 25.8 42.9 60.1 77.3

circumferential 3.072 3.304 3.362 3.420 3.339 3.072 2.783 2.203 1.391 0.638

axial 5.159 5.043 4.522 3.942 2.609 1.217 0.725 0.696 0.522 0.035

torsional 0.464 0.470 -0.203 -0.336 -0.284 0.014 0.093 0.004 0.023 0.064

Figure 16

distance (mm) -171.5 -133.4 -95.3 -57.2 -19.1 19.1 57.2 95.3 133.4 171.5

circumferential 8.116 9.333 10.20 10.84 11.18 11.24 11.07 10.60 9.623 8.174
axial 8.754 8.870 10.08 10.17 10.09 9.275 7.130 7.652 7.072 4.232
torsional 0.362 0.336 -0.145 -0.122 -0.272 -0.609 0.701 -0.197 -0.128 0.099

Figure 17 - computed values
computed values -Lmonte-carlo Gmonte-carlo Rmeasured

circumferential 0 0.1857 0.0049
axial 0 0.1714 -0.0062

torsional 0 0.1143 -0.0064

Figure 17 - measured values
circumferential -0.1800 -0.1704 -0.1406 -0.1343 -0.0706 0.0000 0.0248 0.0397

0.0676 0.0506 0.0700 0.0959 0.1107 0.1193 0.1904
axial -0.1795 -0.1607 -0.0794 -0.0696 -0.0293 0.0596 0.1398 0.2701

-0.1706 -0.1097 -0.0748 -0.0397 0.0406 0.0897 0.2200
torsional 0.0796 -0.1094 -0.0495 -0.0402 -0.0095 0.0149 0.0602 0.0905

-0.0740 -0.0754 -0.0500 -0.0298 0.0104 0.0207 0.0649

Figure 22
distance (mm) -5.94 -4.62 -3.30 -1.98 -0.66 0.66 1.98 3.30 4.62 5.94
circumferential 0.089 0.067 0.069 0.055 0.022 0.035 0.050 0.040 0.024 0.055
axial -0.123 0.030 0.010 0.012 0.040 0.015 -0.064 0.060 0.087 0.015
torsional -0.055 -0.026 -0.009 -0.022 0.055 -0.014 -0.004 0.029 0.138 0.015

Figure 23
distance (mm) -5.36 -4.17 -2.98 -1.79 -0.60 0.60 1.79 2.98 4.17 5.36
circumferential 0.396 0.350 0.360 0.315 0.355 0.374 0.429 0.473 0.507 0.591
axial -0.123 -0.054 -0.030 -0.039 -0.026 -0.052 -0.087 -0.028 -0.012 -0.091
torsional 0.009 -0.020 0.005 -0.022 0.021 -0.007 -0.032 0.039 0.060 0.079



Figure 24
distance (mm) -5.12 -3.98 -2.84 -1.71 -0.57 0.57 1.71 2.84 3.98 5.12
circumferential 0.768 0.754 0.700 0.749 0.778 0.862 0.857 0.931 0.975 1.034
axial -0.185 -0.084 -0.034 -0.062 -0.091 -0.083 -0.054 -0.067 -0.032 -0.131
torsional 0.002 0.007 0.107 -0.062 -0.017 -0.100 -0.064 0.069 0.042 0.044

Figure 25
distance (mm) -4.88 -3.80 -2.71 -1.63 -0.54 0.54 1.63 2.71 3.80 4.88
circumferential 0.818 0.768 0.764 0.765 0.754 0.765 0.783 0.803 0.788 0.867
axial -0.153 -0.148 -0.123 -0.118 -0.121 -0.172 -0.197 -0.200 -0.187 -0.161
torsional -0.052 -0.062 0.032 -0.052 -0.079 -0.018 -0.099 -0.083 0.054 0.011

Figure 26
distance (mm) -5.18 -4.03 -2.88 -1.73 -0.58 0.58 1.73 2.88 4.03 5.18
circumferential 0.463 0.537 0.532 0.562 0.498 0.448 0.379 0.345 0.333 0.286
axial -0.047 -0.089 -0.118 -0.121 -0.133 -0.143 -0.128 -0.108 -0.094 -0.069
torsional -0.021 -0.021 -0.011 0.011 -0.044 -0.028 -0.018 -0.005 -0.013 -0.019

Figure 30
region proximal mid-stent distal
percent expansion at 4 atm 42 ± 8 29 ± 8 42 ± 8
injury score 0.18 ± 0.06 0.11 ± 0.02 0.25 + 0.04
14 day intimal area (mm2) 0.83 ± 0.11 0.52 + 0.05 0.70 ± 0.11



Appendix B: Strain analysisldisplay code

The code used to determine the Green surface strain tensor from a sequence of TIFF

image files of an expanding marked artery is presented below. The code is written in

Matlab 4.2c programming language, and is compatible with the beta 10 version of Matlab

5.0. The code can be divided into two categories: analysis and display.

Analysis Procedures

The procedures are listed below in the order in which they are called by the user.

get_dat takes an image map from the frame grabber with a scale factor and returns the

encoded matrix rn that describes both the digitized arterial envelope and the two

dimensional locations of all the reference points

fit_hypm takes the output matrix from get_dat, completes a non-linear least squares fit of

a general quadratic equation to the data, and rotates it to make the axis of symmetry

horizontal.

out_dat takes rotates the quadratic envelope determined by fit_hypm to create a data

structure describing the three-dimensional arterial surface. It next back-projects the



marker locations from get_dat onto this surface, divides the surface into equal patches,

and stores all the data in single matrix. The matrix is called dn, where n is replaced by the

frame number of the original image.

find_key associates a set of marker triads with every patch location determined by

out dat.

findstr takes the set of marker triads from find_key and their original and displaced

locations from out_dat, computes the Green strain tensor, and adds this information to

the dn data structure.

Display Procedures

show is a wrapper function that draws a graphical user interface and calls showl-show6

as required. It takes a Matlab data file composed of the set of dn matrices produced by

outdat and findstr, and can produce still and animated two and three dimensional graphs

describing the evolution of strain in time.



function dn = dat_fin(nl,dl,na,da,nn,dn)
% DATFIN finds e(x,y,t) and de/dt(x,y,t)
% dn = dat_fin(nl,dl,na,da,nn,dn)

% See out_dat for description of form of dl
% See fit_hypm for description of form of nl,na,nn

% James C. Squire December 1995

% initialize variables

hndl = waitbar(0,'Determining strain...');
nblocks = size(dl,1)-1;
for i = 1:nblocks

triplet = findkeyt(i,nl,dl);
straint = findstnt(triplet,nl,nn);
dstraint = findstnt(triplet,na,nn);
dn(i,12) = straint(3);
dn(i,15) = dstraint(3);

ihoriz = findkeyh(i,nl,dl);
strainh = findstnh(ihoriz,nI,nn);
dstrainh = findstnh(ihoriz,na,nn);
dn(i,l 1) = strainh;
dn(i,14) = dstrainh;

strainv = findstnv(i,dl,dn);
dstrainv = findstnv(i,da,dn);
dn(i,10) = strainv;
dn(i,13) = dstrainv;

waitbar(i/nblocks)
end
close(hndl)

function khoriz = findkeyh(index,nn,dn)

% FINDKEYH finds key point indicies to determine horizontal strain about a point
% khoriz = findkey(index,nn,dn)

% khoriz is in the form [indexl, index2]
% index is an index into dn
% See fit_hypm for description of form of nn.
% See out_dat for description of form of dn.

% James C. Squire August 1995

% initialize variables

HORIZTOL = 1; % Must be at least one patchwidth away from center
DEBUG = 0; % Set to -0 for diagnostic printout

nvert = dn(size(dn,1),2);
nhoriz = dn(size(dn,1),3);
nblocks = nvert*nhoriz;

n3 = nn(1,3);
p2 = nn(3,1); q = sqrt(nn(3,2));
xlist = nn(n3:size(nn,l),2); ylist = nn(n3:size(nn, l),3); zlist = zcalc(xlist,ylist,p2,q,DEBUG);
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xl = dn(index,2); yl = dn(index,3); zI = zcalc(xl,yl,q,p2,DEBUG);
x2 = dn(index,4); y2 = dn(index,5); z2 = zcalc(x2,y2,q,p2,DEBUG);
x3 = dn(index,6); y3 = dn(index,7); z3 = zcalc(x3,y3,q,p2,DEBUG);
x4 = dn(index,8); y4 = dn(index,9); z4 = zcalc(x4,y4,q,p2,DEBUG);

dyleft = sqrt((yl-y3)^2+(zl-z3)^2); dyright = sqrt((y2-y4)A2+(z2-z4)^2);
patchheight = mean([dyleft dyright]);
patchwidth = x2 - x1;
% the center is the projected value; the intersection of the diagonals
patchxcenter = -(((x2 - x4)*(x3*yl - xl*y3) - (xl - x3)*(x4*y2 - x2*y4))/ ...

((x2 - x4)*(-yl + y3) - (xl - x3)*(-y2 + y4)));
patchycenter = -((x4*y2 - x2*y4)/(x2 - x4)) + ...

((-y2 + y4)*((x2 - x4)*(x3*yl - xl*y3) - (xl - x3)*(x4*y2 - x2*y4)))/ ...
((x2 - x4)*((x2 - x4)*(-yl + y3) - (xl - x3)*(-y2 + y4)));

patchzcenter = zcalc(patchxcenter,patchycenter,p2,q,DEBUG);
distances=sqrt((xlist-patchxcenter).^2+(ylist-patchycenter).^2+(zlist-patchzcenter).^2);

% find horizontal key points
xtol = patchwidth * HORIZTOL; % must be at lest xtol away from each other
[p1 d,pl_index]=min(distances);
pix = xlist(p l_index); p ly=ylist(p l_index); plz=zlist(p l_index);
p2d = 999999999;
p2_index = -1;
for i=1 :size(xlist,1)

xt = xlist(i); yt = ylist(i); zt = zlist(i);
xpatchdist = sqrt((xt-patchxcenter).2+(yt-+(t-patchzcenter). 2);
xpointdist = abs(xt - plx);
if xpointdist >= xtol & xpatchdist < p2d

p2d = xpatchdist;
p2_index = i;

end
end

khoriz = [pl_index p2_index];

function ntriplet = findkeyt(index,nn,dn)

% FINDKEYT finds key point indicies to determine strain about a point
% ntriplet = findkeyt(index,nn,dn)

% ntriplet are in form of [indexl, index2, index3]
% where index is an index into dn
% See fit_hypm for description of form of nn.
% See outdat for description of form of dn.

% James C. Squire August 1995
% modified August 1995

% constants
NBEST = 5; % Examine the closest NBEST points for triplets
NEARCENTERG = .3; % Narrowness (=relative importance) of near_center grade [.1,5]
NEARCENTERC = .6; % Ideal closeness to center is NEARCENTERC*patchwidth
DISTANCEAPARTG = 1; % Narrowness (=relative importance) of distance_apart grade [.1,5]
DISTANCEAPARTC = 1.25; % Ideal distance apart is DISTANCEAPARTC*patchwidth
EDGEG = 4; % Relative importance of Edge grade [.1 10]
ANGLEG =3; % Relative importance of Angle grade [.1 10]
DEBUG = 0; % Set to -0 for diagnostic printout

% initialize variables



nvert = dn(size(dn,1),2);
nhoriz = dn(size(dn,1),3);
nblocks = nvert*nhoriz;

n3 = nn(1,3);
p2 = nn(3,1); q = sqrt(nn(3,2));
xlist = nn(n3:size(nn,1),2); ylist = nn(n3:size(nn,1),3);
zlist = zcalc(xlist,ylist,p2,q,DEBUG);
xl = dn(index,2); y = dn(index,3);
x2 = dn(index,4); y2 = dn(index,5);
x3 = dn(index,6); y3 = dn(index,7);
x4 = dn(index,8); y4 = dn(index,9);

zl = zcalc(xl,yl,q,p2,DEBUG);
z2 = zcalc(x2,y2,q,p2,DEBUG);
z3 = zcalc(x3,y3,q,p2,DEBUG);
z4 = zcalc(x4,y4,q,p2,DEBUG);
dyleft = sqrt((yl-y3)^2+(zl-z3)^2); dyright = sqrt((y2-y4)^2+(z2-z4)^2);
patchheight = mean([dyleft dyright]);
patchwidth = x2 - xl;
% the center is the projected value; the intersection of the diagonals
patchxcenter = -(((x2 - x4)*(x3*yl - xl*y3) - (xl - x3)*(x4*y2 - x2*y4))/ ...

((x2 - x4)*(-yl + y3) - (xl - x3)*(-y2 + y4)));
patchycenter = -((x4*y2 - x2*y4)/(x2 - x4)) + ...

((-y2 + y4)*((x2 - x4)*(x3*yl - xl*y3) - (xl - x3)*(x4*y2 - x2*y4)))/ ...
((x2 - x4)*((x2 - x4)*(-yl + y3) - (xl - x3)*(-y2 + y4)));

patchzcenter = zcalc(patchxcenter,patchycenter, p2,q,DEBUG);

% Choose the NBEST closest points and arrange in matrix mbest
% mbest = [index 1 index2 index3 ...
% patchdist_score apartdist_score edge_score angle_score total_score]

distances=sqrt((xlist-patchxcenter).^2+(ylist-ptchyrcenter).^2+(zlist-patchzcenter).^2);
[dummy,tindex]=sort(distances);
closeindex=tindex(l:NBEST); % holds indecies to NBEST closest points
ntriplets = (NBEST)*(NBEST-1)*(NBEST-2)/6; % NBEST choose 3
mbest = zeros(ntriplets,8);
count=1;
for i=I:NBEST-2

for j=i+1:NBEST- 1
for k=j+1:NBEST

mbest(count, 1:3)= [closeindex(i) closeindex(j) closeindex(k)];
count=count+ 1;

end
end

end
if DEBUG-=O & DEBUG<=1

disp(' '); disp('closest distances are');
disp('index distance'); disp([closeindex distances(closeindex)]); pause
disp(' '); disp('mbest = '); disp(mbest);
disp('Note figure 1')
nl = nn(1,1); n2 = nn(1,2);
toplinex = nn(nl:n2-1,2); topliney = nn(nl:n2-1,3);
bottomlinex = nn(n2:n3-1,2); bottomliney = nn(n2:n3-1,3);
keypointsx = xlist(closeindex); keypointsy = ylist(closeindex);
boxx = [xl x2 x3 x4 xl]; boxy = [yl y2 y3 y4 yl];
figure(1)
hold on
for j= 1:nblocks

plot([dn(j,2),dn(j,4),dn(j,6),dn(j,8),dn(j,2)], ..
[dn(j,3),dn(j,5),dn(j,79),dn(j,9),dn(j,3)],'b-')

end
plot(toplinex,topliney,'y-',bottomlinex,bottomliney,'y-' ...



xlist,ylist,'wo',keypointsx,keypointsy,'rx',boxx,boxy,'g-' ....
patchxcenter,patchycenter,'g*');

hold off
pause

end

% For each of the triplets determine
% near_center score from my distribution
% dist_apart score from distribution
% edge score from min(cos(theta)) (stay away from edges)
% angle score from min(sin(theta)) (don't want small angles)

% My distribution: x^a*exp(-b x). The narrowness is prop to a. Center at a/b
anc = NEARCENTERG; bnc=anc/(NEARCENTERC*patchwidth);
ada = DISTANCEAPARTG; bda=ada/(DISTANCEAPARTC*patchwidth);
for i=l:ntriplets

pointlx=xlist(mbest(i, 1)); pointly=ylist(mbest(i, 1)); pointlz=zlist(mbest(i, 1));
point2x=xlist(mbest(i,2)); point2y=ylist(mbest(i,2)); point2z=zlist(mbest(i,2));
point3x=xlist(mbest(i,3)); point3y=ylist(mbest(i,3)); point3z=zlist(mbest(i,3));

distcl=norm([pointlx-patchxcenter pointly-patchycenter pointlz-patchzcenter]);
distc2=norm([point2x-patchxcenter point2y-patchycenter point2z-patchzcenter]);
distc3=norm([point3x-patchxcenter point3y-patchycenter point3z-patchzcenter]);

tin = [distcl distc2 distc3];
tv=[distclAanc * exp(-bnc*distcl) distc2^anc * exp(-bnc*distc2) distc3^anc * exp(-bnc*distc3)];
[tf,ti] = min(tv);
mbest(i,4) = tf; % near_center grade
distnc = tin(ti);

dist12=sqrt((point2x-pointl x)A2 + (point2y-pointly)A2 + (point2z-point 1z)A2);
dist23=sqrt((point3x-point2x)A2 + (point3y-point2y)^2 + (point3z-point2z)A2);
dist 13=sqrt((point3x-pointl x)A2 + (point3y-pointly)A2 + (point3z-pointlz)^2);

tin = [distl2 dist23 distl3];
tv = [dist12^ada*exp(-bda*distl2) dist23^ada*exp(-bda*dist23) distl3 ada*exp(-bda*distl3)];

[tf,ti] = min(tv);
mbest(i,5) = tf; % dist_apart grade
distda = tin(ti);
point r=sqrt(q^2*(1+pointlxA2/p2));
pointl a=sqrt(point1rA2-pointlyA2)/pointlr;

if imag(pointla), pointla=0; end % point falls outside modelled surface
point2r-sqrt(q^2*(1+point2xA2/p2));
point2a=sqrt(point2r 2-point2yA2)/point2r;

if imag(point2a), point2a=0; end
point3r=sqrt(q^2*( l+point3xA2/p2));
point3a=sqrt(point3r 2-point3 y2)/point3r;

if imag(point3a), point3a=0; end
ftedge=min([pointla point2a point3a]); % always from 0 to 1, 1 best
mbest(i,6)=ftedgeAEDGEG;

rl2=[point2x-pointlx point2y-pointly point2z-pointlz];
r23=[point3x-point2x point3y-point2y point3z-point2z];
r3 1=[pointlx-point3x pointly-point3y pointlz-point3z];
anglel23=acos((-rl2*r23')/(norm(rl2)*norm(r23)))* 180/pi;
angle23 l=acos((-r23*r31 ')/(norm(r23)*norm(r3 1)))* 180/pi;
angle312=acos((-r31 *rl2')/(norm(r3 1)*norm(rl2)))* 180/pi;
ftangle = min([anglel23 angle231 angle312])/60;
% 60 would be equilateral triangle, tf from 0 to 1, 1 best
mbest(i,7) = ftangleAANGLEG;

mbest(i,8) = prod(mbest(i,4:7))* 10000;



if DEBUG-=O & DEBUG<=2

% draw the overall stent picture with current points
nl = nn(1,1); n2 = nn(1,2);
toplinex = nn(nl:n2-1,2); topliney = nn(nl:n2-1,3);
bottomlinex = nn(n2:n3-1,2); bottomliney = nn(n2:n3-1,3);
keypointsx = xlist(mbest(i, 1:3)); keypointsy = ylist(mbest(i,1:3));

boxx = [xl x2 x3 x4 xl]; boxy = [yl y2 y3 y4 yl];
disp(sprintf('Showing point %g of %g',i,ntriplets))

figure(l)
clf, hold on
forj=l:nblocks

plot([dn(j,2),dn(j,4),dn(j,6),dn(j,8),dn(j,2)], ..
[dn(j,3),dn(j,5),dn(j,7),dn(j,9),dn(j,3)],'b-')

end
plot(toplinex,topliney,'y-',bottomlinex,bottomliney,'y-', ...

xlist,ylist,'wo',keypointsx,keypointsy,'wx',boxx,boxy,'g-');
hold off
axis([-.3 .1 -.2.2])
axis('square')
title(sprintf('Score = %g',mbest(i,8)))

% draw distribution for near_centerpoint
figure(2)
subplot(221)
tx=linspace(0,5*patchwidth, 100);

ty-tx.^anc.*exp(-bnc.*tx);
% draws it with x scale in patchwidths

plot(tx/patchwidth,ty,'y-',distnc/patchwidth,mbest(i,4),'ro');
set(gca,'xtick',[0 1 2 3 4 5])
title('Nearness to patch')

% draw distribution for distance apart
subplot(222)
tx=linspace(0,5*patchwidth, 100);

ty-tx.^ada.*exp(-bda.*tx);
% draws it with x scale in patchwidths

plot(tx/patchwidth,ty,'y-',distda/patchwidth,mbest(i,5),'ro');
set(gca,'xtick',[0 1 2 3 4 5])
title('Distance from each other')

% draw graph with edge point
subplot(223)
tx=linspace(0,1,100);
ty=tx.^EDGEG;
plot(tx,ty,'y-',ftedge,mbest(i,6),'ro');
title('Closest point to edge')

% draw graph with angle point
subplot(224)
tx=linspace(0,1,100);
ty=tx.^ANGLEG;
plot(tx,ty,'y-',ftangle,mbest(i,7),'ro');
title('evenly spaced angles')

pause
end

end

% return the best points
[dummy,tindex] = max(mbest(:,8));
ntriplet = mbest(tindex,1:3);

if DEBUG--0 & DEBUG<=3



% draw the overall stent picture with best triplets highlighted
nl = nn(l,l); n2= nn(1,2);
toplinex = nn(nl:n2-1,2); topliney = nn(nl:n2-1,3);
bottomlinex = nn(n2:n3-1,2); bottomliney = nn(n2:n3-1,3);
keypointsx = xlist(ntriplet); keypointsy = ylist(ntriplet);

boxx = [xl x2 x3 x4 xl]; boxy = [yl y2 y3 y4 yl];
figure(l)
hold off
cla
title(")
hold on
for j=l:nblocks

plot([dn(j,2),dn(j,4),dn(j,6),dn(j,8),dn(j,2)], ...
[dn(j,3),dn(j,5),dn(j,7),dn(j,9),dn(j,3)],'b-')

end
plot(toplinex,topliney,'y-',bottomlinex,bottomliney,'y-', ...

xlist,ylist,'wo',keypointsx,keypointsy,'wx',boxx,boxy,'g-');
axis([-.3.1 -.2.2])
axis('square')
hold off

end

function shoriz = findstrh(khoriz,na,nb)

% FINDSTRH finds the strain between two key normalized points
% shoriz = findstrh(khoriz,na,nb)

% khoriz is in the form of [indexl, index2]
% index is an index into dn.
% See fit_hypm for description of form of na,nb.

% James C. Squire August 1995
% modified October 1995 to work under assumption of zero torsion
% modified September 1996 to change uniaxial strain definition
% to tensor definition

% initialize variables
n3a = na(1,3); n3b = nb(1,3);
p2a = na(3,1); p2b = nb(3,1);
qa = sqrt(na(3,2)); qb = sqrt(nb(3,2));

% Cartesian coordinates for points pairs 1,2 of before a and after b horiz: x vert: y out of page: z
% start point triad is A,B,C; end triad is a,b,c

hxal = na(n3a+khoriz(1)-1,2); hyal = na(n3a+khoriz(l)-1,3); hzal = zcalc(hxal,hyal,p2a,qa);
hxa2 = na(n3a+khoriz(2)-1,2); hya2 = na(n3a+khoriz(2)-1,3); hza2 = zcalc(hxa2,hya2,p2a,qa);
hxbl = nb(n3b+khoriz(1)-1,2); hybl = nb(n3b+khoriz(l)-1,3); hzbl = zcalc(hxbl,hybl,p2b,qb);
hxb2 = nb(n3b+khoriz(2)-1,2); hyb2 = nb(n3b+khoriz(2)-1,3); hzb2 = zcalc(hxb2,hyb2,p2b,qb);

% distances between points 1,2
horiza = abs(hxal-hxa2);
horizb = abs(hxbl-hxb2);

% compute strain

shoriz = (horizb-horiza)/horiza * (horiza+horizb)/(2*horiza);



function strain_tensor = findstrt(ntriplet,nb,na)

% FINDSTRT finds the strain tensor around three points
% strain_tensor = findstrt(ntriplet,nl,n2)

% ntriplet is in the form of [indexl index2 index3] into nl,n2
% strain_tensor is in the form of [e_thetatheta e_zz e_ztheta]
% See fit_hypm for description of form of na,nb.

% James C. Squire August 1995

DEBUG = 3; % set to 9999 for no debugging

% initialize variables
n3a = na(1,3);
p2a = na(3,1);
qa = sqrt(na(3,2));

n3b = nb(1,3);
p2b = nb(3,1);

qb = sqrt(nb(3,2));

% Cartesian coordinates for points A,B,C,a,b,c horiz: x vert: y out of page: z
% start point triad is A,B,C; end triad is a,b,c
xA = na(n3a+ntriplet(1)-1,2); yA = na(n3a+ntriplet(1)-1,3); zA = zcalc(xA,yA,p2a,qa);
xB = na(n3a+ntriplet(2)-1,2); yB = na(n3a+ntriplet(2)-1,3); zB = zcalc(xB,yB,p2a,qa);
xC = na(n3a+ntriplet(3)-1,2); yC = na(n3a+ntriplet(3)-1,3); zC = zcalc(xC,yC,p2a,qa);
xa = nb(n3b+ntriplet(1)-1,2); ya = nb(n3b+ntriplet(1)-1,3); za = zcalc(xa,ya,p2b,qb);
xb = nb(n3b+ntriplet(2)-1,2); yb = nb(n3b+ntriplet(2)-1,3); zb = zcalc(xb,yb,p2b,qb);
xc = nb(n3b+ntriplet(3)-1,2); yc = nb(n3b+ntriplet(3)-l,3); zc = zcalc(xc,yc,p2b,qb);
if DEBUG<=1

disp(' x y z')
disp(sprintf('A %7.3g %7.3g %7.3g',xA,yA,zA))
disp(sprintf('B %7.3g %7.3g %7.3g',xB,yB,zB))
disp(sprintf('C %7.3g %7.3g %7.3g',xC,yC,zC))
disp(sprintf('a %7.3g %7.3g %7.3g',xa,ya,za))
disp(sprintf('b %7.3g %7.3g %7.3g',xb,yb,zb))
disp(sprintf('c %7.3g %7.3g %7.3g',xc,yc,zc))

end

% Convert to cylindrical coords and store in matricies A,B,C,a,b,c
% each point of form [r theta z]
% z is measured along the stent axis (x value in screen coords), ie
% horiz: z around axis: theta distance from axis: r

A(1) = norm([yA zA]);
B(1) = norm([yB zB]);
C(1) = norm([yC zC]);
a(1) = norm([ya za]); a
b(1) = norm([yb zb]);
c(1) = norm([yc zc]); c
if DEBUG<=1

disp(' ')
disp(' r t
disp(sprintf('A %7.
disp(sprintf('B %7.3
disp(sprintf('C %7.3
disp(sprintf('a %7.31
disp(sprintf('b %7.3
disp(sprintf('c %7.3

end

% Compute strain

A(2) = atan2(yA,zA); A(3) = xA;
B(2) = atan2(yB,zB); B(3) = xB;
C(2) = atan2(yC,zC); C(3) = xC;

t(2) = atan2(ya,za); a(3) = xa;
b(2) = atan2(yb,zb); b(3) = xb;
:(2) = atan2(yc,zc); c(3) = xc;

z'
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g
g

gg
g

%7.3g
%7.3g
%7.3g

%7.3g
%7.3g
%7.3g
%7.3g

%7.3g',A(1),A(2),A(3)))
%7.3g',B(1 ),B(2),B(3)))
%7.3g ',C(1),C(2),C(3)))
%7.3g',a(1),a(2),a(3)))
%7.3g',b(1),b(2),b(3)))
%7.3g',c(1),c(2),c(3)))



r=mean([a(1) b(1) c(1)]);
R=mean([A(1) B(1) C(1)]);
an=R*(B(2)-A(2)); bn=R*(C(2)-A(2)); cn=B(3)-A(3); dn=C(3)-A(3);
am=r*(b(2)-a(2)); bm=r*(c(2)-a(2)); cm=b(3)-a(3); dm=c(3)-a(3);

de = am*dm-bm*cm;
F=[an*dm-bn*cm bn*am-an*bm; cn*dm-dn*cm dn*am-cn*bm]/de;
E = .5*(F'*F-eye(2));

if DEBUG<=2
disp(' ')
disp('F:')
disp(F)
disp(' ')
disp('Euler:')
disp(E)

end

strain_tensor = [E(1,1) E(2,2) mean([E(1,2) E(2,1)])];

function strainv = findstnv(index,dl,d2)

% FINDSTNV finds vertical strain about index point index
% strainv = findstnv(index,dl,d2)

% index is an index into dn
% See out_dat for description of form of dn.

% James C. Squire August 1995
% modified September 1996 to change uniaxial strain definition
% to tensor definition

% initialize variables

nvert = dl(size(dl,1),2);
nhoriz = dl(size(dl,1),3);
ibot = ceil(index/nvert)*nvert;
itop = ibot-nvert+1;

lengthl = mean(dl(itop,[3,5])) - mean(dl(ibot,[7,9]));
length2 = mean(d2(itop,[3,5])) - mean(d2(ibot,[7,9]));

strainv = (length2-length 1)/lengthl * (lengthl+length2)/(2*length 1);

function err = fithyp(lambda)
%FIT_HYP Used by fithypm
% FIT_HYP(lambda) returns the error between the data and the
% values computed by the current function of lambda.
% FITFUN assumes a function of the form

% y = -e-bx (+/-) sqrt((e+bx)^2-4c(ax^2+dx- 1)^2)% ------------------------------------------
% 2c

% with 0 linear parameters and 5 nonlinear parameters
% accounting for translational(2), rotational(l), and shape(2) DOF



% James C. Squire July 1995

global Data Plothandle

nl = Data(1,1); n2 = Data(l,2); n3 = Data(1,3);
xt = Data(nl:n2-1,2);
yt = Data(nl:n2-1,3);
xb = Data(n2:n3-1,2);
yb = Data(n2:n3-1,3);

zt = zeros(size(xt));
for j = 1:length(xt)

ftemp = sqrt((lambda(5)+lambda(2)*xt(j))^2-4 * lambda(3)*(lambda(1)*xt(j)A2+lambda(4)*xt(j) - 1));
zt(j) = (-lambda(5) - lambda(2)*xt(j) + ftemp) / (2*lambda(3));

end

zb = zeros(size(xb));
for j = 1 :length(xb)

ftemp = sqrt((lambda(5)+1ambda(2)*xb(j))A2-4*lambda(3)*(lambda(l)*xb(j)A2+lambda(4)*xb(j)-I));
zb(j) = (-lambda(5) - lambda(2)*xb(j) - ftemp) / (2*lambda(3));

end

set(Plothandle(1),'ydata',zt)
set(Plothandle(2),'ydata',zb)
drawnow
err = norm([zt;zb]-[yt;yb]);

function nn=fit_hypm(data2, auto, lambda)

%FITHYPM fits a hyperbolic model to stent data.
% nn=fit_hypm(rn, auto, lambda)

% See get_data for form of rn.

% It returns nn =
% [nl n2 n3] nl=start row of top envelope, n2 for bottom, n3 for key points
% [sin(theta) cos(theta) theta]
% [p^2 qA2 0]
% [h k 0]
% [hn kn 0]
% [-2 xl yl] -2 means start of top envelope
% [-1 xl yl] -1 means start of bottom envelope
% [1 xl yl] key point number I

% If lambda = [a,b,c,d,e] is supplied, it works in debug mode.
% If auto is supplied, it does not pause while showing its work

% fit_hypm fits the data to the following equation

% y = -e-bx (+/-) sqrt((e+bx)^2-4c(ax^2+dx - 1)A2)
% ------------------------------------------

% 2c

% It uses fit_hyp as a helper function

% Fits to (y-k)A2/qA2 - (x-h)A2/p^2 = 1
% Returns the actual derotated hyperboloid
% James C. Squire July 1995
% Modified August 1995
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global Data
global Plothandle

% Setup data structures
Data = data2;
figure(l)
clf
hold on
nl = Data(1,l);
n2 = Data(1,2);
n3 = Data(1,3);
xt = Data(nl:n2-1,2);
yt = Data(nl:n2-1,3);
xb = Data(n2:n3-1,2);
yb = Data(n2:n3-1,3);
xp = Data(n3:length(Data),2);
yp = Data(n3:length(Data),3);

% Initialize first guess by taking exact soln to 5 well-thought-out sampled points
if nargin < 3

tl=0; tr0O; br-0; bl=0; %these refer to if a corner is taken
[minxt,indminxt]=min(xt);
[minxb,indminxb]=min(xb);
[maxxt,indmaxxt]=max(xt);
[maxxb,indmaxxb]=max(xb);
[minyb, indminyb]=min(yb);

% xl must be the zero x point; store position in xlp
if minxt==0 % it's in the top

yl=yt(indminxt);
tl=l;

elseif minxb--0
yl=yb(indminxb);
bl=l;

else
error('Error: r data not normalized properly')

end
xl=0; % by definition

% put the zero y point (or closest if already pointl) into point2.
if xb(indminyb)=0 % uh,oh: point(0,0) exists

disp('Sorry: point 0,0 exists. You must manually enter start point, or redigitize')
error('Probability of this happening = machine precision ~- 10^-16')

end
x2=xb(indminyb);
if indminyb== 1

bl=l;
elseif indminyb==length(yb)

br-=l;
end
y2=0; % by definition

% fill in point3 trying clockwise from tl (either tl or tr)
if tl==0

x3-minxt;
y3=yt(indminxt);
tl=l;

elseif tr=O
x3-maxxt;
y3=yt(indmaxxt);
tr=l;



else error('Error in assigning point 3')
end

% fill in point4 trying tr,br,bl
if tr-O

x4=maxxt;
y4=yt(indmaxxt);
tr=l;

elseif br-O
x4=maxxb;
y4=yb(indmaxxb);
br=l;

elseif bl=0
x4=minxb;
y4=yb(indminxb);
bl=1;

else error('Error in assigning point 4')
end

% fill in point5 trying br,bl,middle
if br-O

x5=maxxb;
y5=yb(indmaxxb);
br=1;

elseif bl=0
x5=minxb;
y5=yb(indminxb);
bl=l;

else % top middle
lastind = round(length(xt)/2);

x5=xt(lastind);
y5=yt(lastind);

end
% Solution to exact fit over these 5 points (thanks, Mathematica!)
e=-((-(x2*x3*x5*yl^2*(x2^2*y3*y4*(-(x4*y3) + x3*y4) + ...

yl^2*(-(x2^2*x3*y3) + x3*x4^2*y3 + x2^2*x4*y4 - x3^2*x4*y4))* .
(x2*y3 - x5*y3 - x2*y5 + x3*y5)) +...

x2*x3*x4*ylA2*(x2*y3 - x4*y3 - x2*y4 + x3*y4)* ...
(x2^2*y3*y5*(-(x5*y3) + x3*y5)+ ...
yl^2*(-(x2^2*x3*y3) + x3*x5^2*y3 + x2^2*x5*y5 - x3^2*x5*y5)))/...

(x2^3*x3*x4*yl^3*y3*(x2*y3 - x4*y3 - x2*y4 + x3*y4)*y5* ...
(x3*yl - x5*yl + x5*y3 - x3*y5)+ ...
x2^3*x3*x5*ylA3*y3*y4*(x3*yl - x4*yl + x4*y3 - x3*y4)* ...
(-(x2*y3) + x5*y3 + x2*y5 - x3*y5)));

c=-((-1 + e*yl)/yl^2);
d=-((x2^2*(1 - e*yl)*y3*y4*(-(x4*y3) + x3*y4)+ ..

yl^2*(x3*x4^2*y3 - x3^2*x4*y4 + ...
x2^2*(-(x3*y3) + x4*y4 + e*x3*y3*y4 - e*x4*y3*y4)))/...

(x2*x3*x4*ylA2*(x2*y3 - x4*y3 - x2*y4 + x3*y4)));
a=(1 - d*x2)/x2^2;
b=-((-l + d*x3 + a*x3^2 + e*y3 + c*y3^2)/(x3*y3));
lambda = [a b c d e];

end

end
if nargin==l

auto = 1;
end

plot(xt,yt,'ro',xb,yb,'ro','EraseMode','none')
title('Model Stent Envelope')
if -auto, pause, end % Strike any key to continue.
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Plothandle = plot(xt,yt,'y-',xb,yb,'y-','EraseMode','xor');

trace = 0;
tol = .0005; % usu. .00005
options=foptions;
options(1)=trace;
options(2)=tol;
options(14)=3000;
lambda = fmins('fithyp',lambda,options);
if -auto, pause, end

hold off
echo off
disp('Ax^2+Bxy+Cy^2+Dx+Ey ')

disp(sprintf('%g %g %g %g %g',lambda(1),lambda(2),lambda(3),lambda(4),lambda(5)))

if lambda(2) == 0, lambda(2) = eps; end
ft = sqrt(lambda( 1)2+lambda(2)^2-2*lambda(1)*lambda(3)+lambda(3)^2);
mtl = (-lambda(1)+lambda(3)+ft)/lambda(2);
mt2 = (-lambda(1)+lambda(3)-ft)/lambda(2);
if abs(mtl) < pi & abs(mt2) < pi

ifmtl > 0 & mt2 > 0
mt = min(mtl, mt2);

else
mt = max(mtl, mt2);

end
else

if abs(mtl) < abs(mt2)
mt = mtl;

else
mt = mt2;

end
end
theta = atan(mt);
I = sin(theta);
m = cos(theta);
a = lambda(l)*mA2+lambda(2)*l* m +l a m bda(3)*1^2;
c = lambda( 1)*lI^2-lambda(2)*I*m+lambda(3)* m^2;
d = lambda(4)*m+lambda(5)*l;
e = -lambda(4)*l+lambda(5)*m;

h =-d/(2*a);
k =-e/(2*c);
p2 = (-4-d^2/a-e^2/c)/(4*a);
q2 = (4*a*c+c*dA2+a* e^2)/(4*a* c^2);
disp(sprintf('theta = %g degrees', theta/pi*180))

figure(l)
clf
plot(xt, yt, 'ro', xb, yb, 'ro', xp, yp, 'yo')

% Rotation
xrl = xt m + yt* 1;
yrl = -xt * + yt * m;
xr2 = xb*m + yb * 1;
yr2 = -xb * I + yb * m;
xr3 = xp * m + yp * ;
yr3 = -xp * 1 + yp * m;
figure(2)
plot(xrl, yrl, 'ro', xr2, yr2, 'ro', xr3, yr3, 'yo')

% Translation
xtl = xrl - h;



ytl = yrl - k;
xt2 = xr2 - h;
yt2 = yr2 - k;
xt3 = xr3 - h;
yt3 = yr3 - k;
figure(3)
xtt=linspace(min([xtl;xt2]),max([xtl;xt2]),100); ytt = sqrt(q2)*sqrt(l+(xtt/sqrt(p2)).^2); ytb=-ytt;
plot(xtl, ytl, 'ro', xt2, yt2, 'ro', xt3, yt3, 'yo',xtt,ytt,'g.',xtt,ytb,'g.')

% Final normalization
% note: this does not change the data; it is only to make irregular horn-shaped
% stents appear centered (when they should actually be out to one side)
hn = mean([min(xt3),max(xt3)]);
kn = mean([min(yt3),max(yt3)]);
xnl = xtl - hn;
ynl = ytl - kn;
xn2 = xt2 - hn;
yn2 = yt2 - kn;
xn3 = xt3 - hn;
yn3 = yt3 - kn;

% This determines the rA2 value of the fit
ytcalc = zeros(size(xt));
for j = 1 :length(xt)

ftemp = sqrt((lambda(5)+lambda(2)*xt(j))^2-4*la *(da()ambda()*xt(j)^2+lambda(4)*xt(j)-));
ytcalc(j) = (-lambda(5) - lambda(2)*xt(j) + ftemp) / (2*lambda(3));

end

ybcalc = zeros(size(xb));
for j = 1:length(xb)

ftemp = sqrt((lambda(5)+lambda(2)*xb(j))A2-4*lambda(3)*(lambda(l)*xb(j)^2+lambda(4)*xb(j)- 1));
ybcalc(j) = (-lambda(5) - lambda(2)*xb(j) - ftemp) / (2*lambda(3));

end

ytrue = [yt;yb];
ycalc = [ytcalc;ybcalc];
r = corrcoef(ytrue,ycalc); r = r(1,2);
disp(sprintf('The r^2 value is: %g',r^2))

% output results
nn = [6 n2+4 n3+4; ...

1 m theta; ...
p2 q2 0;...
h k 0;...
hn kn 0;...
-2*ones(length(xnl),1) xtl ytl; ...
-ones(length(xn2),1) xt2 yt2;...
[1:length(xn3)]' xt3 yt3];

function [x,y] = getlin(fig,s)
%GETLINE Track mouse movement with rubberbanded line.
% [X,Y] = GETLINE(FIG) tracks the movement of a mouse in
% the figure FIG. The mouse movement is tracked with a
% rubberbanded polyline. Returns the selected line endpoints,
% X and Y in axes coordinates. Left mouse button adds a new
% point to the polygon, right mouse button (shift-click
% on the Macintosh) or <cr> finishes the polygon.
% XY = GETLINE(FIG) returns the data coordinates in a 2-column
% matrix.
%



% See also GETRECT.

% Clay M. Thompson 1-28-93
% Modified July 1995 James C. Squire

% How this works: This function waits for buttonpresses. After
% a button press the current point is saved, and a call-back is
% installed as a button motion function to draw a rubber-banded
% dashed line from this saved point to the current point. When
% the button is pressed again, the current point is saved and the
% process is started all over. This continues until a <cr> or
% right mouse button is pressed.

global Ptl Pt2 hline fig ax

if nargin<1, fig = gcf; end

if nargin==2, % Process call-backs
if strcmp(s,'motion'),

if length(hline)>0,
Pt2 = get(ax,'CurrentPoint'); Pt2 = Pt2(1,1:2);
set(hline,'Xdata',[Ptl(1) Pt2(1 )],'Ydata',[Ptl(2) Pt2(2)])

end
else

error('Invalid call-back');
end
return

end

figure(fig), ax = gca;
c = [1 0 1];

% Create an invisible line to preallocate the xor line color.
handles = line(min(get(ax,'xlim'))*ones( 1,2),min(get(ax,'ylim'))*ones( 1,2),...

'eraseMode','xor','linestyle','-','Color',c,'visible','off);

if any(get(ax,'view')-=[0 90]), error('GETLINE works only on 2-D plots'); end
curse = get(gcf,'pointer');
set(gcf,'pointer','crosshair');

btndown = get(gcf,'windowbuttondownfcn');
btnup = get(gcf,'windowbuttonupfcn');
btnmotion = get(gcf,'windowbuttonmotionfcn');
set(gcf,'windowbuttondownfcn',",'windowbuttonupfcn',")

Pts = []; handles = []; done = 0; first = 1;
while -done

done = waitforbuttonpress;
if gcf-fig,

axes(ax) % Protect against user clicking in another axis
Ptl = get(ax,'CurrentPoint');
Ptl = Ptl(1,1:2);
Pts = [Pts;Ptl];
if -strcmp(get(fig,'selectiontype'),'normal'),
done = 1;
hline = [];

else
hline = line(Ptl(1)*ones(1,2),Pt1(2)*ones(1,2),'eraseMode','xor', ..

'linestyle','-','Color',c);
if first,

set(fig,'WindowButtonMotionFcn','getline(gcf,"motion")')
first = 0;

end



handles = [handles hline];

drawnow
end

end
delete(handles)
set(fig,'pointer',curse);
clear global Ptl Pt2 hline fig ax
set(gcf,'windowbuttondownfcn',btndown,'windowbuttonupfcn',btnup, .

'windowbuttonmotionfcn',btnmotion)
if nargout < 2, x = Pts; return, end
if -isempty(Pts), x = Pts(:,1); y = Pts(:,2); else x = []; y = []; end

function [rn,scale]=get_dat(x,map,scale)
%GET_DAT Gets edge modelling data from an image.
% [rn,scale] = get_dat(x,map,scale)
% Returns a matrix of input points centered
% Input first top half, then bottom half, then the key data points
% If scale is provided as input, does not ask for user to provide reference
% If scale is returned, may use this in next get_dat to eliminate ref errors.
% Returns
% [2 4 6] 2 is index of up upper stent envelope, 6 is index of data points
% [-2 xl yl] -2 also signifies upper envelope
% [-2 x2 y2]
% [-1 xl yl] -1 is lower stent envelope
% [-1 x2 y2]
% [1 xl yl] these are point numbers
% [2 x2 y2]

% James C. Squire July 1995
% Modified September 1995 to include reference distance

imshow(x,map)

[txx,tyy] = getlin;
nx = length(txx);
disp(setstr(7));
disp(sprintf('%g points

[bxx,byy] = getlin;
nt = length(bxx);
disp(setstr(7));
disp(sprintf('%g points

[pxx,pyy] = getpts;
np = length(pxx);
disp(setstr(7));
disp(sprintf('%g points

collected',nx))

collected',nt))

collected',np-1))

if nargin==2
disp('draw line over reference length')
[refx,refy]=getlin
11 = norm([diff(refx),diff(refy)]);
disp(sprintf('Line length is %g pixels',ll));
scale = input('Enter length of line in mm -> ')/11;

end

% Scale in real units and translate so just touching Quadrant 1 boundary
in = [-2*ones(nx,1); -ones(nt,l); [1:np]' ];
tyy=-tyy; byy=-byy; pyy=-pyy; % flip up/down: screen coords vs. matrix coords



xoffset = min([txx;bxx])*scale;
yoffset = min([tyy;byy])*scale;
xx [txx; bxx; pxx]*scale - xoffset;
yy = [tyy; byy; pyy]*scale - yoffset;

% Store them
nl = 2;
n2 = nx + nl;
n3 = nt + n2;
rn = [nl n2 n3; in xx yy];
rn(length(m),:) = []; % throw out the last row given by the right button click
hold off

function dn=outdat(nvert,nhoriz,nn)

%OUT_DAT calculates a list of quadrilateral patches to
% dn=out_dat(nvert,nhoriz,nn)

% See fit_hypm for form of nn.
% nvert, nhoriz describe the number of vertical ax

It returns dn =
[1 xll yll x12 y12 x13 y13 x14 3
[2 x21 y21 x22 y22 x23 y23 x24 3
[n+l nvertnhoriz 0 0 0 0 0 0
vertices are labelled 1 2 in each patch j

form a hyperboloid projection

nd horizontal patches.

'14 ett ezz ezt d(ett)/dt d(ezz)/dt d(ezt)/dt]
'24 ett ezz ezt d(ett)/dt d(ezz)/dt d(ezt)/dt]
0 0]

% James C. Squire August 1995
% modified August 1995

DEBUG = 0;

p2 = nn(3,1);
q = sqrt(nn(3,2));
xpoints = nn(nn(1,3):size(nn, 1),2);
ypoints = nn(nn(1,3):size(nn,1),3);
xmin = min(xpoints);
xmax = max(xpoints);
Npatch = nvert*nhoriz;
clf
% axis([-l 1 -1 1])
dn = zeros(Npatch+1,15);
dn(:,1) = [1:Npatch+l]';

for j=l:Npatch

jrow = nvert/2 - rem(j-1,nvert);
jcol = ceilo/nvert);

if rem(j-1,nvert) < nvert/2
half = 't'; trow = jrow;

elseif rem(j-l,nvert) >= nvert/2
half = 'b'; trow = 1 - jrow;

else disp('Trouble in out_dat point 1')
end

xl = xmin + (xmax-xmin)/nhoriz*(jcol-1);
x2 = xmin + (xmax-xmin)/nhoriz*jcol;



x3 = x2;
x4 = xl;

ytl = q*sqrt( 1+(xl^2/p2))*sin(pi*trow/nvert);
yt2 = q*sqrt( 1+(x2^2/p2))*sin(pi*trow/nvert);
yt3 = q*sqrt( 1+(x3^2/p2))*sin(pi*(trow- 1)/nvert);
yt4 = q*sqrt(1+(x4^2/p2))*sin(pi*(trow-l)/nvert);

if half = 't'
yl = ytl; y2 = yt2; y3 = yt3; y4 =yt4;

elseif half= 'b'
yl = -ytl; y2 = -yt2; y3 = -yt3; y4 = -yt4;

end

dn(j,2) = xl; dn(j,3) = yl; dn(j,4) = x2; dn(j,5) = y2;
dn(j,6) = x3; dn(j,7) = y3; dn(j,8) = x4; dn(j,9) = y4;

patch([xl,x2,x3,x4],[yl,y2,y3,y4],(1-ytl/.8)* 128)
end

dn(Npatch+l, 2) = nvert;
dn(Npatch+l, 3) = nhoriz;

if DEBUG
hold on
plot(xpoints,ypoints,'wo')

while 1
[xx,yy] = getlin;
zz=zcalc(xx,yy,p2,q,DEBUG);

dx = diff(xx)
dy = diff(yy)
dz = diff(zz)
ds = norm([dx dy dz]);
disp(sprintf('xl = %g yl = %g zl = %g',xx(1),yy(1),zz(1)))
disp(sprintf('x2 = %g y2 = %g z2 = %g',xx(2),yy(2),zz(2)))
disp(sprintf('dx = %g dy = %g dz = %g',dx,dy,dz))
disp(sprintf('Total distance separation is %g',ds))
if (input('Again? ','s')) == 'n',break,end

end
hold off

end

function show(filename,skip,action)
%SHOW Displays results of stent data
% function show(filename,skip)
% filename holds data in variables dO,d2,d4,d6, etc.
% skip is the jump between variable names (eg 2 above)

% James Squire
% September 1995

% Information regarding the movie play status will be held in
% the axis user data according to the following table:
play= 1;
stop = - 1;

if nargin==2,
action='initialize';

else
action = 'display';

end



if strcmp(action,'initialize'),

figNumber=-figure(...
'Name','Endovascular Stent Strain',...

'NumberTitle','off, ...
'Visible','off, ...
'BackingStore','off, ...
'Position', get(0,'screensize'));
%'Colormap','hsv

axes(...
'Units','normalized', ...
'Position',[0.05 0.05 0.82 0.90],...
'Visible','on', ...

'NextPlot','replace');

axis([- 1 -1 1]);
set(gca,'userdata',0)

0/

% Information for all buttons
%labelColor-[0.8 0.8 0.8];
ylnitPos=0.90;
xPos=0.912;
btnWid=0.079;
btnHt=0.06;
% Spacing between the butto
spacing=0.05;

n and the next command's label

% The Console frame
frmBorder-0.01;
yPos=0;
frmPos=[xPos-frmBorder yPos btnWid+2*frmBorder 1];
h=uicontrol( ...

'Style','frame', ...
'Units','normalized', ...
'Position',frmPos);

%'BackgroundColor',[0.5 0.5 0.5]

% The Tensor Component popup button
btnNumber-1;

yPos=0.95-(btnNumber-1)*(btnHt+spacing);
textStr='Component';
popupStr=reshape(' Axial Circumfr. Torsion All None ',10,5)';

% Generic button information
btnPosl=[xPos yPos-spacing+btnHt/1.5 btnWid btnHt/2];
btnPos2=[xPos yPos-spacing btnWid btnHt/2];

popupHndlc=uicontrol( ...
'Style','text', ...
'Units','normalized', ...
'Position',btnPosl, ...

'String',textStr);
btnPos=[xPos yPos-spacing btnWid btnHt/2];
popupHndlc=uicontrol( ...

'Style','popup', ...
'Units','normalized', ...
'Position',btnPos2, ...
'String',popupStr);
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% The Differential popup button
btnNumber=2;
yPos=0.95-(btnNumber- 1)*(btnHt+spacing);

textStr='Differential?';
popupStr=reshape( ' No Yes',4,2)';

% Generic button information
btnPosl=[xPos yPos-spacing+btnHt/1.5 btnWid btnHt/2];
btnPos2=[xPos yPos-spacing btnWid btnHt/2];
popupHndld=uicontrol( ...

'Style','text', ...
'Units','normalized', ...
'Position',btnPosl, ..
'String',textStr);

btnPos=[xPos yPos-spacing btnWid btnHt/2];
popupHndld=uicontrol( ...

'Style','popup', ...
'Units','normalized', ...
'Position',btnPos2, ...
'String',popupStr);

% The Frame popup button
btnNumber-3;
yPos=0.95-(btnNumber-1)*(btnHt+spacing);

textStr='Frame';
eval(['load ' filename]);
num data sets = 0;
while exist(sprintf('d%g',num_datasets))

num_data_sets = num_data_sets + skip;
end
num_data_sets = num_data_sets - skip;

popupStr=[];
for i=0:skip:num_data_sets

popupStr=[popupStr;sprintf('%3g',i)];
end

% Generic button information
btnPosl=[xPos yPos-spacing+btnHt/1.5 btnWid btnHt/2];
btnPos2=[xPos yPos-spacing btnWid btnHt/2];

popupHndlf=uicontrol( ..
'Style','text', ...
'Units','normalized', ...
'Position',btnPosl, ..

'String',textStr);
btnPos=[xPos yPos-spacing btnWid btnHt/2];

popupHndlf=uicontrol( ...
'Style','popup', ...
'Units','normalized', ...
'Position',btnPos2, ...
'String',popupStr);

% The Movie popup button
btnNumber=4;
yPos=0.95-(btnNumber- 1)*(btnHt+spacing);

textStr='Movie?';
popupStr=reshape(' No Yes',4,2)';

% Generic button information
btnPosl=[xPos yPos-spacing+btnHt/1.5 btnWid btnHt/2];
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btnPos2=[xPos yPos-spacing btnWid btnHt/2];
popupHndlm=uicontrol( ...

'Style','text', ...
'Units','normalized', ...
'Position',btnPosl, ...

'String',textStr);
btnPos=[xPos yPos-spacing btnWid btnHt/2];

popupHndlm=uicontrol( ...
'Style','popup', ...
'Units','normalized', ...
'Position',btnPos2, ...
'String',popupStr);

/W

% The Display button
btnNumber=5;
yPos=0.95-(btnNumber-1)*(btnHt+spacing);
labelStr='Display';
cmdStr='display';
callbackStr=['show("' filename "',' num2str(skip) ',"display")'];

% Generic button information
btnPos=[xPos yPos-spacing btnWid btnHt];
startHndl=uicontrol( ...

'Style','pushbutton', ...
'Units','normalized', ...
'Position',btnPos, ...
'String',labelStr, ...
'Interruptible','yes', ...
'Callback',callbackStr);

% The Interrupt button
btnNumber=6;
yPos=0.95-(btnNumber-1)*(btnHt+spacing);
labelStr='Interrupt';
% Setting userdata to -1 (=interrupt) will stop the movie.
callbackStr='set(gca,"Userdata",-1)';

% Generic button information
btnPos=[xPos yPos-spacing btnWid btnHt];
stopHndl=uicontrol( ...

'Style','pushbutton', ...
'Units','normalized', ...
'Position',btnPos, ...

'Enable','off, ...
'String',labelStr, ...
'Callback',callbackStr);

% The Close button
labelStr='Close';
callbackStr-'close(gcf)';
closeHndl=uicontrol( ...

'Style','push', ...
'Units','normalized', ...
'Position',[xPos 0.05 btnWid 0.10],...

'String',labelStr, ...
'Callback',callbackStr);

% Uncover the figure

hndlCB = 0; % Since no colorbar yet
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axispos = get(gca,'position');
hndlList=[startHndl stopHndl closeHndl popupHndlc popupHndld popupHndlf popupHndlm hndlCB

axispos];
set(figNumber,'Visible','on', ...

'UserData',hndlList);
figure(figNumber);

elseif strcmp(action,'display'),
axHndl=gca;
figNumber-gcf;
hndlList=get(figNumber,'UserData');
startHndl=hndlList( );
stopHndl=hndlList(2);
closeHndl=hndlList(3);
popupHndlc=hndlList(4);
popupHndld=hndlList(5);
popupHndlf=hndlList(6);
popupHndlm=hndlList(7);
hndlCB = hndlList(8);

% _-- Display data
component = get(popupHndlc,'Value');
differential = get(popupHndld,'Value');

frame = get(popupHndlf,'Value');
movie = get(popupHndlm,'Value');

if component <= 3 & movie == 1
show I(filename,skip)

elseif component <= 3 & movie =2
show2(filename,skip)

elseif component = 4 & movie = 1
show3(filename,skip)

elseif component = 4 & movie = 2
show3(filename,skip)

elseif component = 5 & movie = 1
show5(filename,skip)

elseif component = 5 & movie = 2
show6(filename,skip)

else
error('internal error-invalid component/movie in show.m')

end

end; % if strcmp(action, ...

function showl(filename,skip)

% initialize graphics
hndlList=get(gcf,'UserData');

startHndl=hndlList(1);
stopHndl=hndlList(2);
closeHndl=hndlList(3);
popupHndlc=hndlList(4);
popupHndld=hndlList(5);
popupHndlf=hndlList(6);
popupHndlm=hndlList(7);
hndlCB = hndlList(8);
axispos = hndlList(9:12);

component = get(popupHndlc,'Value');
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differential = get(popupHndld,'Value');
frame = get(popupHndlf,'Value');

set([startHndl closeHndl ],'Enable','off);
set(stopHndl,'Enable','on');

% initalize data
load(filename)
dn = eval(['d' num2str((frame- 1)*skip)]);

nvert = dn(size(dn,1),2);
nhoriz = dn(size(dn,1),3);
nblocks = nvert*nhoriz;
if component = 1 & differential == 1 % axial

y = dn(l:nblocks,11);
elseif component - 1 & differential == 2 % axial difference

y = dn(1:nblocks,14);
elseif component == 2 & differential = 1 % circum.

y = dn(1:nblocks,10);
elseif component == 2 & differential = 2 % circum. difference

y = dn(1:nblocks,13);
elseif component -- 3 & differential == 1 % torsion

y = dn(1:nblocks,12);
elseif component == 3 & differential == 2 % torsion difference

y = dn(1:nblocks,15);
else

error('Error in showl.m; incorrectly called')
end

cla
set(gca,'position',axispos)
axis('auto')
axis('equal')
view(0,90)
grid off
colormap(jet(200));
if hndlCB~=O % colorbar present

close(hndlCB);
hndlCB=O;

end

xmin = dn(1,2);
xmax = dn(nblocks,8);
nsub = mean([xmin xmax]);

hold on
for j=l:nblocks

fill([dn(j,2),dn(j,4),dn(j,6),dn(j,8)]-nsub, [dn(j,3),dn(j,5),dn(j,7),dn(j,9)],y(j))
end
hold off
cmin = min(y);
cmax = max(y);
if cmin < 0 & cmax < 0

cmax = 0;
elseif cmin > 0 & cmax > 0

cmin = 0;
elseif cmin=0 & cmax = 0

cmax = cmax + eps;
end
caxis([cmin cmax])

hndlList(8)=colorbar('v');
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set(gcf,'userdata',hndlList);

set([startHndl closeHndl],'Enable','on');
set(stopHndl,'Enable','off);

end

function show2(filename,skip)

% initialize graphics
hndlMainWin = gca;
hndlList=get(gcf,'UserData');

startHndl=hndlList( );
stopHndl=hndlList(2);
closeHndl=hndlList(3);
popupHndlc=hndlList(4);
popupHndld=hndlList(5);
popupHndlf=hndlList(6);
popupHndlm=hndlList(7);
hndlCB = hndlList(8);
axispos = hndlList(9:12);

component = get(popupHndlc,'Value');
differential = get(popupHndld,'Value');

set([startHndl closeHndl ],'Enable','off);
set(stopHndl,'Enable','on');

% initalize data
load(filename)
num datasets = 0;
while exist(sprintf('d%g',num_data sets))

num_datasets = num_data_sets + skip;
end
num_data_sets = num_data_sets/skip;
if component 1 & differential = 1 % axial

keycol= 11;
elseif component = 1 & differential == 2 % axial difference

keycol=14;
elseif component == 2 & differential 1 % circum.

keycol=10;
elseif component =- 2 & differential = 2 % circum. difference

keycol= 13;
elseif component = 3 & differential - 1 % torsion

keycol=12;
elseif component = 3 & differential = 2 % torsion difference

keycol=15;
else

error('Error in show l.m; incorrectly called')
end

% find the caxis,x,range (so colorbar and scale do not change);
% y is set to make it square with x (y always smaller for thin stent)
minc = 99999;
maxc = -99999;
widest = 0;
for i=0:skip:(num_data_sets- 1)* skip;

dn = eval(['d' num2str(i)]);
nblocks = size(dn, 1)-1;
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if min(dn(l :nblocks,keycol)) < mine
minc = min(dn(l:nblocks,keycol));

end
if max(dn(1 :nblocks,keycol)) > maxc

maxc = max(dn(1 :nblocks,keycol));
end
if (dn(nblocks,8) - dn(1,2)) > widest

widest = dn(nblocks,8) - dn(1,2);
end

end
if minc < 0 & maxc < 0

maxc = 0;
elseif minc > 0 & maxc > 0

minc = 0;
elseif mince=0 & maxc == 0

maxc = maxc + eps;
end
caxis([minc maxc])
axlim = widest/2;

% do the drawing
first = 1;
for i=0:skip:(num_data_sets-1)*skip

dn = eval(['d' num2str(i)]);
view(0,90)
grid off
colormap(jet(200));
hndlList=get(gcf,'UserData');
hndlCB = hndlList(8);

cla
set(gca,'xlim',[-axlim axlim]);
set(gca,'ylim', [-axlim axlim]);
axispos = hndlList(9:12);
if hndlCB-=O % colorbar present

close(hndlCB);
hndlCB=0;
set(gca,'position',axispos)

end
xmin = dn(1,2);
xmax = dn(nblocks,8);
nsub = mean([xmin xmax]);

hold on
caxis([minc maxc])
for j=l :nblocks

fillll([dn(j,2),dn(j,4),dn(j,6),dn(j,8)]-nsub,[dn(j,3),dn(j,5),dn(j,7),dn(j,9)],dn(jkeycol))
end
hold off

hndlList(8)=colorbar('v');
set(gcf,'userdata',hndlList);

if first
m = moviein(num_data_sets);
first = 0;

end
axes(hndlMainWin)

m(:,i/skip+l) = getframe;
if get(gca,'userdata')==- 1
break

end
end

if get(gca,'userdata')==O
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movie(m,15,2.5);
else

set(gca,'userdata',0)
end
caxis('auto')

show I (filename,skip);

function show3(filename,skip)

% initialize graphics
hndlList=get(gcf,'UserData');

startHndl=hndlList(1);
stopHndl=hndlList(2);
closeHndl=hndlList(3);
popupHndlc=hndlList(4);
popupHndld=hndlList(5);
popupHndlf=hndlList(6);
popupHndlm=hndlList(7);
hndlCB = hndlList(8);
axispos = hndlList(9:12);

differential = get(popupHndld,'Value');
frame = get(popupHndlf,'Value');

%set([startHndl closeHndl ],'Enable','off);
set(stopHndl,'Enable','on');

% initalize data
load(filename)
dn = eval(['d' num2str((frame-1)*skip)]);

nvert = dn(size(dn,1),2);
nhoriz = dn(size(dn,1),3);
nblocks = nvert*nhoriz;
data = zeros(nhoriz,3); % data of form [circum axial torsion]
if differential - 1 % regular

for i=l:nhoriz
data(i,:) = mean(dn((i-l)*nvert+1:i*nvert, 10:12));

end
elseif differential == 2

for i=l:nhoriz
data(i,:) = mean(dn((i-1)*nvert+1:i*nvert, 13:15));

end
end
xmin = dn(1,2);
xmax = dn(nblocks,8);
xlim = (xmax-xmin)/2;
datax = linspace(-xlim,xlim,nhoriz);

if hndlCB-=0 % colorbar present
close(hndlCB);
hndlList(8)=0;

end
cla
set(gca,'position',axispos)
axis('normal')
axis('auto')
view(0,90)
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hold on

plot(datax,data)
grid on
hndlList(8) = legend('Circumf.','Axial','Torsion',- 1);
set(gcf,'userdata',hndlList);

set(startHndl,closeHndl,'Enable','on');
set(stopHndl,'Enable','off);

end

function show5(filename,skip)

% initialize graphics
hndlList=get(gcf,'UserData');
startHndl=hndlList( 1);
stopHndl=hndlList(2);
closeHndl=hndlList(3);
popupHndlf=hndlList(6);
hndlCB = hndlList(8);
axispos = hndlList(9:12);
frame = get(popupHndlf,'Value');

set([startHndl closeHndl ],'Enable','off);
set(stopHndl,'Enable','on');

% initalize data
load(filename)
dn = eval(['d' num2str((frame- 1)* skip)]);
dO = eval('d0');
nvert = dn(size(dn,1),2);
nhoriz = dn(size(dn,1),3);
nblocks = nvert*nhoriz;

cla
set(gca,'position',axispos)
if hndlCB-=O % colorbar present; get rid of it

close(hndlCB);
hndlList(8) = 0;
set(gcf,'userdata',hndlList);

end
set(gca,'xlimmode','auto')
set(gca,'aspectratio',[NaN NaN])
grid on
hold on

xnmin = dn(1,2); xnmax = dn(nblocks,8);
x0min = d0(1,2); x0max = d0(nblocks,8);
xnscale = xnmax-xnmin;
x0scale = x0max-x0min;
ynlist = zeros(nhoriz+1,1);
yOlist = zeros(nhoriz+1,1);
for i=0:nhoriz-1

ynlist(i+ 1)=dn(i*nvert+1,3);
y01ist(i+1)=d0(i*nvert+1,3);

end
ynlist(nhoriz+1) = dn(nblocks-nvert+1,5);
yOlist(nhoriz+l) = d0(nblocks-nvert+1,5);
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[zO,y0,x0] = cylinder(y01list,25);
x0 = xO*xOscale; x0 = x0-x0scale/2;
surfl(xO',yO',z0')

[zn,yn,xn] = cylinder(ynlist,25);
xn(:,18:19) = NaN*zeros(nhoriz+1,2);
xn = xn*xnscale; xn = xn-xnscale/2;
hndlSurf=surfl(xn',yn',zn');
set(hndlSurf,'edgecolor','none')
set(hndlSurf,'facecolor','interp')

view(340,30)
colormap(bone(200))
axlim = diff(get(gca,'xlim'))/2;
set(gca,'ylim',[-axlim axlim]);
set(gca,'zlim', [-axlim axlim]);
hold off

set([startHndl closeHndl],'Enable','on');
set(stopHndl,'Enable','off);

end

function show6(filename,skip)

% initialize graphics
hndlList=get(gcf,'UserData');
startHndl=hndlList(1);
stopHndl=hndlList(2);
closeHndl=hndlList(3);
hndlCB = hndlList(8);
axispos = hndlList(9:12);

set([startHndl closeHndl ],'Enable','off);
set(stopHndl,'Enable','on');

% initalize data
load(filename)
numdatasets = 0;
while exist(sprintf('d%g',num_data sets))

num_data_sets = num_data_sets + skip;
end
num_data_sets = num_data_sets/skip;

% find the movie's x axis limits range (so axes do not change);
widest = 0;
for i=0:skip:(num_data_sets - 1)*skip;

dn = eval(['d' num2str(i)]);
nvert = dn(size(dn, 1),2);
nhoriz = dn(size(dn, 1),3);
nblocks = nvert*nhoriz;
if (dn(nblocks,8) - dn(1,2)) > widest

widest = dn(nblocks,8) - dn(1,2);
end

end
axlim = widest/2;

% do the drawing
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first = 1;
for i=O:skip: (num_data_sets- 1)* skip

dn = eval(['d' num2str(i)]);
dO = eval('d0');
cla
set(gca,'position',axispos)

if hndlCB--0 % colorbar present; get rid of it
close(hndlCB);
hndlCB = 0;
hndlList(8) = 0;
set(gcf,'userdata',hndlList);

end
axis('auto')
hold on

xnmin = dn(1,2); xnmax = dn(nblocks,8);
x0min = d0(1,2); x0max = d0(nblocks,8);
xnscale = xnmax-xnmin;
x0scale = x0max-x0min;
ynlist = zeros(nhoriz+1,1);
y0list = zeros(nhoriz+1, 1);
for j=0:nhoriz-1

ynlist(j+1)=dn(j*nvert+1,3);
y01ist(j+l)=dO(j*nvert+ l ,3);

end
ynlist(nhoriz+l) = dn(nblocks-nvert+1,5);
y0list(nhoriz+l) = d0(nblocks-nvert+1,5);
yOlist=y01ist-100*eps; % so when both are shown together...

[zO,y0,x0] = cylinder(y01list,25);
x0 = x0*x0scale; x0 = x0-x0scale/2;
surfl(xO',yO',z0')

[zn,yn,xn] = cylinder(ynlist,25);
xn(:,18:19) = NaN*zeros(nhoriz+1,2);

xn = xn*xnscale; xn = xn-xnscale/2;
hndlSurf=-surfl(xn',yn',zn');
set(hndlSurf,'edgecolor','none')
set(hndlSurf,'facecolor','interp')

view(340,30)
colormap(bone(200))
set(gca,'xlim',[-axlim axlim]);
set(gca,'ylim', [-axlim axlim]);
set(gca,'zlim',[-axlim axlim]);
grid('on')
hold off

if first
m = moviein(num_datasets);
first = 0;

end
if get(gca,'userdata') == -1

break
end
m(:,i/skip+l) = getframe;

end
if get(gca,'userdata')=0

movie(m,20,1.5);
else

set(gca,'userdata',0)
end
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show5(filename,skip)

function zlist=zcalc(xlist,ylist,p2,q,debug)

%ZCALC finds the z value of a hyperbola (part of thesis2)
% zlist=zcalc(xlist,p,q,debug)

% set debug-0 for diagnostic information
% See get_data for form of rn.
% This assumes a hyperbola of form (y/q)^2 - (x/p)^2 = 1

% James C. Squire August 1995

debug= l ;
rlist = sqrt(q^2*(l+(xlist.^2/p2)));
zlist = sqrt(rlist.^2 - ylist.^2);
tindex = find(imag(zlist));
if debug

for j=1 :length(tindex)
disp(' ')
disp(sprintf('Waming: point #%g passed to zcalc outside model',tindex(j)))

end
end
zlist(tindex) = zeros(size(tindex));
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