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Abstract

An approach to on-line cursive handwriting recognition, based on discrete motor
control commands and analysis by synthesis to solve an inverse-dynamic problem, is
proposed and evaluated. In this model a continues input handwriting data is trans-
formed into a discrete sequence of control commands. The patterns are generated in-
ternally in the analyzer according to predefined sequences of commands until the best
match with the input data is obtained. To find this best match the time-alignment
algorithm, based on dynamic programming, has been designed.

Because of the nature of the proposed model, where all possible shapes and stiles
of cursive handwriting are described as a sequence of discrete control commands,
practically any need for an extensive training and parameter estimation has been
eliminated.

The actual cursive handwriting recognition system (WordCracker) is presented.
Constraint dictionaries containing either single letters or three-letter words were con-
structed and used to evaluate WordCracker. In both cases low error rates have been
achieved.

Our experiments demonstrated the potential for the proposed model to be devel-
oped into a writer independent, full lexicon cursive handwriting recognition system.

Thesis Supervisor: Robert C. Berwick
Title: Professor
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Chapter 1

Introduction

For the past three decades, there has been an increasing interest among researchers

in problems related to machine simulation of the human reading process. Intensive

research has been carried out in this area with a large number of technical papers

and reports devoted to character and word recognition [33, 20, 19]. This subject

has attracted an immense research interest not only because of the very challenging

nature of the problem, but also because it provides means for automatic processing of

large volumes of data such as postal codes and addresses [5], office automation [30],

signature recognition and verification [28, 25, 24], and other business and scientific

applications.

The recent emergence of pen computers with high resolution tablets has made

available dynamic (temporal) information as well as created the need for robust on-

line handwriting recognition algorithms. Considerable effort has been spent in the

past years on on-line cursive handwriting recognition [35, 27, 26, 36], but there are

no robust, low error rate recognition schemes available yet.

1.1 Problem Description

One of the major difficulties of the cursive word recognition descends from the great

variability observed in different samples of script issued from the same writer over

time or from different scriptors. So it is difficult to find a reliable description of a



word able to represent all the admitted occurrences of the input shape.

When focusing on the techniques of machine simulation of the human reading

process many diverse fields are addressed. Techniques from cognition, psychophysics,

statistics, and computer science can all be applied to help constrain problem domain.

Cursive handwriting is a complex graphic realization of natural human commu-

nication. Its production and recognition involve a large number of highly cognitive

functions including vision, motor control, and natural language understanding.

Research of the motor aspects of handwriting has suggested that the pen move-

ments produced during cursive handwriting are the result of "motor programs" con-

trolling the writing apparatus. This view was used for natural synthesis of cursive

handwriting [4]. Some of these works are based on a similar to ours approach [35, 29].

None of the previous works, however, have solved the inverse-dynamic problem of

finding the "motor code" used for the production of cursive handwriting.

In this paper we propose a new on-line handwriting recognition model. This

model is based on the motor-control theory [12, 3, 40, 14, 15] and uses analysis by

synthesis approach [13] to solve the inverse-dynamic problem. This combination of

the motor-control theory and analysis by synthesis produce a natural way of robust

cursive handwriting recognition.

In this model a continues input handwriting data is transformed into a discrete

sequence of control commands. The patterns are generated internally in the articula-

tor. The articulator takes as an input the predefined sequence of control commands

describing a particular entry in the dictionary. The length of the entry does not mat-

ter. It might be a single letter, word, or even a sentence. The probability of how well

this particular entry matches the input data is calculated. This process is repeated

until the best match is found.

In this paper we also present an implementation of a new on-line handwriting

recognition system (WordCracker). This system has been created using the de-

scribed above model. We show that all cursive letters of English alphabet (which we

consider to be basic units) can be represented as a sequence of limited number (20 in

our implementation) control commands. The larger units of handwriting (words) are



the concatenation of the basic ones.

The underlying idea that all possible shapes and stiles of cursive handwriting can

be reduced to the same sequence of discrete control commands eliminates practically

any need for extensive training and parameter estimation (the problem of all cur-

rent recognition schemes). We show a very good WordCracker performance (on

the constrained dictionaries) with only a few parameters of the script needed to be

estimated. The possibility of complete eliminating parameter estimation in the future

is discussed.

All of these proves that the proposed model has good chances to become a new

and very promising approach in on-line cursive handwriting recognition, and that

WordCracker is an easy to use, friendly, and robust cursive handwriting recognition

system.

1.2 Goals

The need for a new robust on-line cursive handwriting recognition system motivated

the design of the model and implementation of the system proposed in this paper.

While the scope of this thesis is not to create a person independent, full lexicon

on-line system for recognizing cursive handwriting, a desired attribute of the proposed

system is extensibility towards this goal.

One of the major goals that we tried to achieve (and I think we have succeeded)

was to design and implement a really "natural" recognition scheme. The scheme that

uses the same underlying mechanisms that we humans use for handwriting production

and recognition. Not only because of the really interesting and challenging nature of

this problem, but also because, we think, that this is the only right way of addressing

such kind of problems. Not to reinvent something, but understand how it works in

"real world" and try to simulate it in "computer world", using all the power we have

nowadays. This is the only way to the future.

Another goal is to create a robust system which does not require an extensive

training, which is easy to use and provides a friendly graphical user interface (GUI).



This allows easier experimentation and demonstrates the possibility of creating a

commercial product in the future.

1.3 Outline

Chapter 2 discusses previous work in related areas. Chapter 3 describes the model

architecture and technical issues of WordCracker implementation. The experiments

performed to evaluate the system and results are discussed in Chapter 4. Conclusions

and discussion of future work are included in Chapter 5.



Chapter 2

Previous Work

2.1 General Overview

The systems proposed up to now to solve the problem of handwriting recognition can

be generally divided into off-line and on-line.

In the field of off-line recognition of handwritten words several works have been

devoted to word description techniques using the structural approach. Simon and

Baret [34] and Hull et al. [16] divided the regular part from the singular part of

the trace before performing coding; this idea is spreadly used by many groups in the

world (see also [32]). Moreover, Simon and Baret' work used a dictionary containing

a set of codes of the words used in the field of bank cheques. In Simon's approach the

matching procedure was carried out starting from the analysis of anchors in the chain

that defined robust features and then using dynamic matching for the other parts of

the code. On the other hand, Hull et al. proposed a new word recognition technique

without explicit segmentation of the word. Specifically this approach, developed for

the whole word recognition in postal addresses, extracted a chain code from the

contour of the whole word and then used this code to derive singular features. The

approach appears to be stable with respect to variability in writing and it is also

supported by the biological behavior of human beings. Camillerapp et al. [1] proposed

a system for off-line handwriting recognition based on a structural approach. Each

word was represented by its graph model deduced directly from the grey-level image



by detecting specific primitives along the baseline og the word. A new method based

on a syntactic description of the words for automatic recognition of off-line Arabic

cursive handwritten words was also proposed by Zahour et al. [41].

In the field of on-line recognition of run-on handwriting the results have mainly

been obtained using a unified tablet-display such as a paper-like computer interface.

Fujisaki et al. [11] developed a system that classified strokes, generates character

hypotheses, by means of a hypothesis generator, and verified them by means of a

hypothesis tester to estimate the most suitable character sequence for each word.

They also used two different types of linguistic constraints: the first constraint was

based on the character type transition probability, the second one evaluated sequences

by character tri-grams. Schomaker and Teulings [31] considered the stroke-based

systems for cursive script recognition versus the character-based systems. E. Doojies

[4] used the idea of "motor programs" controlling the writing apparatus for natural

synthesis of cursive handwriting. Y. Singer and N. Tishby [35] and D. Rumelhart [29]

made an attempt to construct a dynamical model of handwriting for recognition and

solve the inverse-dynamic problem of revealing the motor code used for the production

of cursive handwriting.

2.2 Motor-Control Theory

The idea of "motor programs" that control the handwriting is quite old. S. Grillner

[12] introduced the notion of oscillators and tied handwriting to locomotion. A few

works have been devoted to devising a measurement apparatus [3, 40, 14, 2, 22]. An

initial approach to modeling a handwriting trajectory has been done by Mermelstain

and Eden [23], who segmented writing for fitting with quarter sine waves. J. Danier

van der Gon and J. Thuring [3] assumed assumed a rectangular form to the accelera-

tions. J. McDonald [22] fit trapezoids to the accelerations. M. Yasuhara [40] assumed

an exponential rise and decay time to an acceleration plateau. The end result of this

process is a list of acceleration burst durations and amplitudes which when applied

to the corresponding model yields synthetic writing close to the measured human



handwriting.

J. Hollerbach [15] introduced an oscillatory model of handwriting. In this theory

there is a preexisting and underlying repeated pattern of letter shapes. This pat-

tern propagates indefinitely unless it is modulated. Rather than an active process

of forming letter shapes, there already exist letter shapes typical of the oscillation

pattern and the modulations serve to remold the preexisting letter shapes into the

desired letters. A modulation will change the underlying oscillation pattern to a new

one, which will propagate indefinitely unless it is also modulated. In this model the

motor programs controlling the process of handwriting are considered as the sequence

of modulations. The oscillatory process acts as an interpretive program that "inter-

prets" the motor program, which are the sequence of modulations, in the context of

the current oscillation.

Y. Singer and N. Tishby [35] extended the Hollerbach's oscillatory motion theory

and developed a parameter estimation and regularization scheme which was used for

the analysis, synthesis, and coding of cursive handwriting.

2.3 Formalization of Cursive Handwriting

The first attempt to formalize the description of cursive handwriting was made by

M. Eden and M. Halle [8, 7, 6]. In their model they defined a set of four primitive

symbols ("bar", "hook", "arch", and "loop"), where each primitive symbol was a

point pair, partially ordered. That is, two points were ordered one above the other or

to the right or both, and a sense vector was specified for the tangent to the continuous

line to be drawn between the two points. Two conventions were introduced. These

specified that the rotation of each tangent vector from one end of the stroke to the

other was 1800 and was monotone. They generated a set of 11 symbols by rotating

and reflecting these primitives. Finally they obtained a set of 33 strokes by allowing

the symbols to be located in on of three partially overlapping horizontal fields.

Each letter in the language was defined as a unique, finite sequence of strokes.

Additional rather complicated rules were used for collating strokes (different rules



applied to the strokes within a single letter and between letters).

A harmonic oscillator theory was used to describe the actual production of hand-

writing. The cursive script generated using these techniques was close to real human

cursive handwriting. No attempts to use this scheme for handwriting recognition

were made.

2.4 Analysis by Synthesis Approach

The notion of "analysis by synthesis" has been introduced by M. Halle and K. Stevens

[13] in 1962. In this paper they proposed an outline of a speech recognition model

in which mapping from signal to message space was accomplished through an active

or feedback process. Patterns were generated internally in the analyzer according

to a adaptable sequence of instructions until a best match with the input signal

was obtained. Since the analysis was achieved through active internal synthesis of

comparison signals, the procedure was called "analysis by synthesis".

Unfortunately, for the last 30 years, since this idea has been introduced, only a

few works have been devoted to the actual attempts to use analysis by synthesis for

handwriting (or speech) recognition.

There were a few attempts to construct dynamical models for speech recognition

based on the predictive neural networks [18, 38, 21, 37]. Ken-ichi Iso [17] used an

approach similar to ours. He proposed a speech recognition method based on the

dynamical model of speech production. It was the first work where linguistic and

articulatory information were actually separated. His model consisted of an articula-

tor and its control command sequences. The latter had the linguistic information of

speech and the former had the articulatory information which determined transfor-

mation from linguistic intentions to speech signals.

In the field of handwriting recognition Rumelhart [29] proposed a dynamical

model, but he did not actually solved the inverse-dynamic problem of "revealing"

the "motor code" used for production of cursive handwriting.

Y. Singer and N. Tishby [35] extended Hollerbach's osillatory model of handwriting



[15] and using analysis by synthesis approach to solve the inverse problem developed

a new parameter estimation and regularization scheme.

None of the previous works, however, have actually tried to combine in one model

the ideas of motor control theory, formalization of cursive handwriting, and analysis

by synthesis approach.

The idea of creating a new cursive handwriting recognition scheme, based on all

of these principles, which will be close to the way humans do writing production and

recognition motivated the research described in this paper.



Chapter 3

Model Description and

WordCracker Implementation

3.1 Model Architecture

The proposed model consists of a handwriting articulator and control commands

for the articulator. Each single letter (which is considered as a basic unit) has a

control command sequence. The control command sequence for larger segments of

handwriting (word or sentence) is obtained as a concatenation of the ones for the

basic units.

Figure 3-1 on page 17 shows the model architecture. Input handwriting data is

represented by a feature vector sequence (length T),

al, ... , at, ... , aT. (3.1)

Each feature vector has P components (P-dimensional vector). We used X and Y-

coordinates of the pixel to describe the feature vector (that is, in our case P = 2).

Control command sequence for each basic unit of handwriting (letter) is represented

by a control command vector sequence (length N),

C , ... , - Cn, ... , CN. (3.2)
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Each control command is a Q-dimensional vector. The control command sequence

for a word is a concatenation of the ones for single letters (sometimes, with addition

of a few extra commands to account for the transition from one letter to another).

The articulator, which is a nonlinear predictor with control input c, provides a

mapping between the input feature vector at- 1 and predicted feature vector et, given

the control command vector c,. The articulator is represented by a nonlinear vector

function f,
et,. = f (at-, cn). (3.3)

The distance between input feature vector at and predicted feature vector et,, is

defined by prediction error dn,

d,, = lat- et,,,|' .  (3.4)

This can be generalized to Gaussian probability of producing the feature vector at,

given the control command cn, P(aticn),

1 (atp - e )- InP(atI c) = 2 a, - e 2  + ln(2r)otr,P}, (3.5)
p= 1 'n~p

where at,p is a p-th component of at and et,,,p is a p-th component of et,.

The probability of the handwriting data observed, given the control command

sequence, can be computed as

T

P(al, aTICl, ..., CN) = max H P(atmcn(t)), (3.6)
{n(t)}•)=

where function n(t) determines time-alignment between input handwriting feature

vector sequence and control command sequence. The optimal time-alignment {n*(t)}

which gives maximum probability is determined by dynamic programming. Using

this probability as a score, we can perform handwriting recognition.



3.2 Implementation Issues

The model described above gives a general outline of the system (WordCracker) pre-

sented in this paper. Although, WordCracker has been implemented strictly according

to the model, a few implementation specific issues need additional explanation.

3.2.1 Articulator and Control Commands

The articulator is a nonlinear predictor, which takes as an input the previous (in the

time domain) handwriting feature vector (in our implementation it is two-dimensional

vector) and one of the allowed control commands. Given these, the articulator com-

putes the current predicted feature vector. After that the distance between predicted

and observed feature vectors is calculated. The result is passed to the time-alignment

module, where, based on the total observation sequence and the whole set of allowed

commands, the best probable path is computed. This algorithm is repeated for ev-

ery entry in the dictionary and the one which results in the best probability is the

predicted meaning of the observed data.

The idea behind the control commands was to describe the pen movement over the

time in terms of simple curves (such as lines and ellipses) so that, at any instance of

time the next point on the curve can be computed given the previous one and, maybe,

some extra parameters (we called it state of the command and will talk about it later).

So all the information that should be passed to articulator is the previously observed

feature vector (coordinates of the previous point), the curve identifier (command

itself) and the state of the command, if this particular command needs it.

Control commands

In our system we use a set of 20 commands to describe all possible shapes of cursive

handwriting. In general all the commands can be divided into three large groups.

1. The commands which are ellipse-based. They require additional information

about the current state of the command.



2. The commands which are based on the straight lines. These commands do not

require any additional data.

3. Other commands, which are based on the straight lines, but required additional

information about state of the command.

Ellipse-based commands These commands were designed with the assumption

that the trace of the pen can be modeled by the arc of the ellipse. To compute, at

any instance of time, the next position of the pen (that is, its X- and Y-coordinates),

given the previous position and the type of the ellipse (which is specified by its large

and small axises and by the axis tilt.), we need to

1. Compute the position of the ellipse center.

2. Increment the phase which was used to calculate the previous pixel position by

specified A,

New.Phase = Old-Phase + A. (3.7)

3. Compute the next pixel position, given the center and new phase.

All the ellipse-based commands follow the described above steps. The differences

between the particular commands from this group are the differences in the ellipse

parameters, which can vary greatly from one command to another, but they are all

fixed for the each particular command. These differences are:

* Length of the axises. Both axises can be modified independently in different

commands.

* Tilt. It can vary from - to .2 "

* Direction of the movement (clockwise or counterclockwise).

* Starting phase. It can vary from -r to r.

The additional parameter "state of the command" is required for this group of com-

mands. It is specific for every command and it is passed to the articulator every time



the particular command from this group is executed. It currently contains the only

one field describing the phase, that was used in the previous step of executing the

same command. This field is set only if the time-alignment module has decided that

the system should repeat the same command. Otherwise this field contains NULL,

which indicates that this is the first time the command is used and the current phase

should be set to the starting phase, defined for this command.

The ellipse-based commands currently used in WordCracker are as follow:

{ counterclockwise,

{ counterclockwise,

{ counterclockwise,

{ counterclockwise,

from 1 }
{ counterclockwise,

from 2 }
{ counterclockwise,

from 2 }
{ clockwise, normal

{ clockwise, normal

{ clockwise, normal

normal tilt, normal axis sizes, starts from M }
normal tilt, normal axis sizes, starts from 0 }

normal tilt, normal axis sizes, starts from r }

twice the normal tilt, X-axis twice smaller than normal, starts

normal tilt, both X- and Y-axis are five times reduced, starts

normal tilt, both X- and Y-axis are three times reduced, starts

tilt,

tilt,

tilt,

normal axis sizes, starts from - }
normal axis sizes, starts from ( }

normal axis sizes, starts from -r }

{ clockwise, normal tilt, both X- and Y-axis are three times reduced, starts from -M

}

Commands based on the straight lines These commands were designed with

the assumption that the trace of the pen can be modeled by the straight tilted line.

To compute, at any instance of time, the next position of the pen, given the previous

position, we need to now only the tilt and the direction of movement(up, down, left,

or right) which are fixed for every command.

The "state of the command" parameter of articulator is not used for this group

of command and always set to NULL.



The commands based on the straight lines currently used in WordCracker are as

follow:

{ down, right to left, normal tilt }

{ down, right to left, two times normal tilt }

{ down, left to right, two times normal tilt }

{ up, left to right, normal tilt }

{ up, left to right, two times normal tilt }

{ up, left to right, three times normal tilt }

{ left, no tilt }

{ right, no tilt }

Other commands There are two commands in this group: cross for t and cross

for f. Both commands are required additional information about the state of the

command, that is if the command has been executed before or not. If not, than

they calculate the single "jump" of the starting pixel to the left and up (the exact

algorithm to do that is different for each command). If the command has been used

before, than it repeats the { right, no tilt } command described above.

The parameters called "normal axis size", "normal tilt", and "A" are obtained

during the parameter estimation procedure and described in the corresponding sec-

tion.

Articulator

The function articulator() is defined as follows:

int articulator ( data PreviousObserv,

int Command,

data *NextPredictedObserv,

int NotUsed,

StateOfCommand *State),



PreviousObserv. This is the previous observation. The type of this parameter is

data, which is defined as

typedef struct

{
long x;

long y;

} data;

This structure contains the information about the pixel position on the screen.

Command. This is an integer identifier of the particular command. In other words

this parameter specifies what type of a curve should be used to compute the next pixel

position.

NextPredictedObserv. This is a pointer to the data datatype. The articulator

will fill it with the data corresponding to the next predicted pixel position.

NotUsed. This parameter is currently not used.

State. This is the current state of the command. The type of this parameter is

StateOfCommand, which is defined as

typedef struct

{
double Phase;

double NotUsed;

} StateOfCommand;

This structure contains additional information, which is used by the commands which

require some additional data. If the command does not required additional data, this

parameter is ignored.

3.2.2 Time-alignment Algorithm

The time-alignment procedure is implemented as a modified Viterbi algorithm for

HMM [39, 9].



In general we need to solve a problem of finding the single best command sequence,

(3.8)

for the given observation sequence,

(3.9)

To do this we need to define the quantity

n*(t) = max P[c,c ...,c-, c i, a1 , a2, ... , at In(t)],I 1 C2 C ... Ct-1 C (3.10)

that is, n*(t) is the best score (highest probability) along a single path n(t), at time

t, which accounts for the first t observation and ends in the command i. By induction

we have

n!(t + 1) = max{n*(t) , pj[at+l, aI] (3.11)

where pj[at+1 I ast] is a probability of observation at+, after executing command j,

given observation at.

To actually retrieve the command sequence, we need to keep track of the argument

that maximized, Eq. (3.11), for each t and j. We do do this via the array 1#(t). The

complete procedure for finding the best state sequence can now be stated as follows:

1. Initialization

=n(1) 1, 1<i<N

l<i<N.

(3.12)

(3.13)

2. Recursion

n!(t) = max {n*(t - 1) pj[at I at-]}3 I<i<N 2 <t < T,

1;(t) = arg max {n?(t - 1) -p[a I at-_]} 2 < t < T,
1<i<N

1 <j 5N

1 <j • N.

(3.14)

(3.15)

C - {C,..., ct,..., CT},



3. Termination

P*= max [n*(T)] (3.16)
1<i<N

S= arg max [n'(T)]. (3.17)1<i<N

4. Path (command sequence) backtracking

n* = bt+1(n +1). (3.18)

If we apply this algorithm to relatively large sequences of observation two problem

arise:

1. Underflow, because the actual value of resulted probability is very low.

2. Too many multiplications, which are computationally very expensive.

We can solve both problems by using logarithms of the probability instead of the

real values. In this case we can implement this procedure without any multiplica-

tions, replacing them with summations. The resulted calculation required for this

implementation is on the order of N 2T additions.

3.2.3 Parameter Estimation

The major difference between the proposed model and all the other technics used

for handwriting recognition is that our model does not require any training at all.

It does require to estimate four parameters, such as "normal X-axis size", "normal

Y-axis size", "normal tilt", and '"normal A". WordCracker does it by asking the

user to write two times letter "o" and two times letter "n". WordCracker gets all

the information about these four parameters from this data. It takes 30 seconds to

do this as apposed to 20 - 60 minute training, which is usual for standard HMM

implementation.

"Normal axis sizes" and "normal tilt" can be obtained from the data collected

during writing letter "n". These parameters are used to estimate the average height,

width, and tilt of the letter.



"A" parameter can be obtained by dividing 27r by the average number of pixiles

in the letter "o". This parameter acounts for the differnces in the speed of writing

among different users.

3.2.4 Observations and Remarks

A few additional words should be said about specific details of time-alignment algo-

rithm implementation and related problems that occured during the construction of

the control command sequences for particular letters.

These letters are "a", "d", and "q". The problem was that all of them could

be described by the same control command sequence. This means that a special

effort should have been taken to distinguesh among them after the general algorithm

desided that one of these letters was the most probable match to the handwritten

data.

This problem was solved at the level of time-alignment algorithm. During the

computation of the probability for the best sequence of commands over time, given

the current observation feature vector, the algorithm keeps track of all the commands

on this path. After the calculation is finished the path can be backtraced. It makes

it possible to find out how long the system stayed in the particular command and

as a result it allows to distinguish among "a", "d", and "q". In fact, the only

difference between "d" and other two letters is that the system stays longer in the

"go up" command. Similarly for "q" the system stays considerably longer in "go

down" command.



Chapter 4

Experimental Evaluation and

Results

The recognition software system, WordCracker, based on the model discussed in

the previous section, was written in C and evaluated under the SunOS and IRIX

operating systems.

To evaluate WordCracker two dictionaries have been constructed. One con-

tained 26 single letters of English alphabet and the other contained 100 three-letter

words. The words in the second dictionary were carefully chosen to represent most

of the possible letter combinations occuring in common English words. To make the

recognition more difficult, special attention has has been paid to include the words

which differ only in one letter (words like "fan", "can", and "man"). The testing has

been done using both a Wacom tablet and a pen, and a mouse as a drawing device.

The use of a mouth instead of a pen introduced additional Gaussian noise and made

the whole recognition process more difficult and the results more reliable.

Dictionary Percentage of correctly recognized words
Single letters 97.6%
Three letter words 92.4%

Table 4.1: Percentage of words correctly recognized



The results of WordCracker performance in handwriting recognition using these

two dictionaries are given in Table 4.1. The results show that the system performs

significantly better on the single letter dictionary than on the dictionary consisting of

the three-letter words. This difference in recognition error can be explained by two

factors:

* The size of the dictionary. The single word dictionary included only 26 entries,

compared to 100 entries in the three letter word dictionary.

* The average length of the entry. Because a command sequence for a word was

constructed as a concatenation of these for the single letters and the whole word

was treated as a basic entry, the recognition error was increasing with the size

of the entry.

In the single letter dictionary only a few letters were responsible for the overall

recognition error. These letters are:

* "a","d", and"q". These three letters use the same control command sequence

and a special procedure was used to distinguish among them (see section Ob-

servation and Remarks for details). Because of the nature of this additional

procedure the recognition of these letters is very sensitive to the speed of the

handwriting and rapidly decreases as speed goes up.

* "o" and "c". These two letters are very close to each other ("c" can be con-

sidered as an unfinished "o"). As a result the system sometimes misrecognized

"o" as "c", but never the other way around.

* "e" and "1". These letters also use very similar control command sequences.

The recognition was considerably robust while both letters were written of the

expected sizes (as estimated during the Parameter estimation procedure). The

errors started to occur during the attempts to scale "I" down or "e" up.

In the cases of all the other letters the error rate was very low and the recognition

was close to 100%.



Figure 4-1: Examples of different writing styles used for the word "ego". In all cases
the word has been recognized correctly.

In the three-letter dictionary the error was distributed evenly among all the words

and was increasing with the increase of handwriting speed, which resulted from a

worse sampling at higher speed.

The system seems to be considerably robust to the change of writing style and

scaling. Figure 4-1 shows different styles of handwriting used by the different subjects

to write the word "ego".

This insensitivity to the style change can be explained by the fact that all the

subjects regardless of the personal habits in writing used the same underlying motor

commands when they were attempting to write a particular letter (and as a result,

a particular word). It also proves that the chosen basic commands were in general

correct.

The scaling problem was solved on the level of time-alignment module. On this

level the difference between two identical letters, one of which is scaled up or down,

is just the difference in how long the system is staying in each of the allowed com-

mands. This approach also allows to change the size of different parts of the letter

independently. This effect results in the ability to recognize different letter shapes

and styles.

These two results, namely ability to accommodate different writing shapes and



stiles and good scaling performance, make it possible to eliminate parameter estima-

tion module from the future implementation of a new version of WordCracker.

All the presented results and consideration make the proposed model a very

promising approach to on-line cursive handwriting recognition, and WordCracker

a very robust handwriting recognition system, which requires a minimal training and

is able to accommodate various sizes, shapes, and styles of handwriting.



Chapter 5

Conclusions and Future Work

Although the idea that the pen movements in the production of cursive handwriting

are the results of a simple "motor program" is quite old, the task of revealing this

"motor code" remains a difficult inverse-dynamic problem.

In this paper we have presented a robust scheme which transforms the continuous

pen movements into discrete motor control commands. These commands can be

interpreted as a possible high level coding of the motor system.

A cursive handwriting recognition system, WordCracker, has been created based

on the mentioned above model. Using analysis by synthesis to solve the inverse-

dynamic problem, low error rates on constrained dictionaries were achieved (2.4% on

the single letter dictionary and 7.6% on the three letter dictionary).

The system does not require practically any training whatsoever. Currently it

needs to estimate a few parameters of the script (which is very fast and easy for

the writer), but even these estimations can be eliminated in the future. The idea

of representing any possible style of handwriting as a sequence of limited number of

motor commands and system good performance in scaling make this goal a relatively

easy task.

Another future goal is to test WordCracker on much bigger dictionaries (3000-

5000 words). The realization of this goal require faster hardware and probably some

optimization of recognition algorithm.

The recognition system presented in this paper does not purpet to be a solution



to machine cursive handwriting recognition. Issues such as recognition of groups of

several words or sentences were ignored. These topics are the objectives for the future

research.

The discrete motor control representation largely reduces the variability in dif-

ferent writing styles and writer specific effects. Since different writing styles are

transformed to the same representation, the transformation itself can be used for text

independent writer identification and verification tasks.

Although the relationship between this representation and the actual cognitive

representation of handwriting remains open, though there is some psychophysical

experimental evidence linking the recognition time to the writing time for handwriting

[10].

Another conclusion that can be drawn from the analysis of the presented model is,

that the proposed approach is not limited to the handwriting recognition and can be

used as a general purpose recognition scheme for any kind of dynamical (temporal)

data. Automated speech recognition, that does not require days of training, or real-

time lips reading are the potential applications of this approach.



Appendix A

WordCracker
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