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Abstract

The material properties of composites can be heavily dependent on localized phenom-
ena. As a result, micromechanical models have been introduced to account for these
phenomena. In this thesis, the micromechanical method of cells model by Aboudi
is cast into a finite element framework. The model is first implemented for linear-
elastic, continuous fiber composites. During the implementation, additional interface
elements are introduced into the unit cell to later provide for damage evolution in
the composite. The resulting finite element user material is compared with the orig-
inal Aboudi model equations and standard finite element solutions. The model is
also used to approximate a statistical representation of the composite geometry by
introducing variability into the volume fraction.

A Newton iteration scheme on the displacements is introduced into the material
model to allow for nonlinear material behavior. The interface elements are given
a failure criterion to model debonding between the fiber and matrix in addition to
brittle fracture of the matrix and fibers.

A series of problems (loadings include a temperature change, a thermal gradient,
distributed pressure, and beam bending) are analyzed demonstrating the prediction
of local fiber and matrix stress states in addition to the macroscopic stress state of the
composite. It is shown that a statistical representation of the fiber volume fraction
increases the predicted maximum constituent stresses. Debonding and fiber breakage
are examined to demonstrate the resulting degradation of the composite stiffness.

The use of the method of cells material model is found to have a large effect on
the computational expense of finite element analysis, especially in nonlinear analy-
ses. However, this effect decreases with increasing problem size and depends upon
computer architecture. Due to the continually improving power of even desktop work-
stations, the use of micromechanical material models in finite element analysis, and
the method of cells in particular, is found to be a viable and powerful option.
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Chapter 1

Introduction

The discipline of composite materials is constantly providing engineers with stiffer

and stronger, yet lighter materials. The design of composite materials provides great

flexibility in choosing a material. In fact, many times materials can be custom tai-

lored to meet the design needs of a particular engineering task. This flexibility has in

the end led to vastly improved products. However, not everything about composite

materials make life easier for the design engineer. Composite materials are generally

anisotropic or at best, transversely isotropic. This fact greatly complicates the anal-

ysis of their behavior necessary to the design process. In addition, not only are most

composites anisotropic, but often times the reinforcement material, the matrix mate-

rial, or both may be non-elastic or even nonlinear in their behavior. This complicates

the analysis even further. Finally, the properties of the composite itself are often not

known, particularly if it is a new layup of materials or if the constituent materials

themselves have been changed. As a result, extensive testing must often times be

performed before the composite will be usable. In short, the analysis of composite

materials requires knowledge of not only anisotropy, but also appropriate structural

theory to derive the laminate properties. In addition, if the composite is to truly be

pushed to its limits, failure criteria must also be included. [25, 47]

Many composite analyses are performed using a macroscopic approach. In this

approach, the properties of the composite are homogenized to produce an anisotropic,

yet homogeneous continuum before the analysis is conducted [15]. The true nature



of the composite is generally one of a randomly spaced anisotropic reinforcement

material in an isotropic medium. In contrast to the macroscopic approach, the mi-

cromechanical approach to analyzing composites instead considers the properties of

the fiber and matrix separately and applies the loading and boundary conditions at

the individual fiber and matrix level. The overall properties of the composite are de-

veloped by relating the average stresses and strains. In doing so, the micromechanical

approach may provide much more detail into the true interactions between the fiber

and matrix, potentially leading to a more accurate model of the composite behavior.

One of the advantages of a micromechanical approach to deriving the effective

material properties arises from the fact that many composites are formed of layers

in addition to being anisotropic. A micromechanical approach can be performed on

the composite provided that the individual phase properties are known; the effective

material properties for the composite are a result of the analysis. A macroscopic

analysis on the other hand requires that the effective material properties be known

before the analysis may be performed. As the effective properties are a function of

the configuration of the individual layers, in a macroscopic analysis a different layup

is a completely different composite whereas the micromechanical analysis may still be

performed by simply changing the orientation of the layers. A macroscopic analysis

is however usually less costly in terms of computation time due to the fact that the

properties are calculated off-line.

Another advantage of micromechanical analysis falls in the area of failure. Failure

in composites usually occurs at the micromechanical level and is difficult to capture

in a macroscopic model using macroscopic failure criteria. Failure at the microscopic

level can take many forms including fiber breakage, matrix cracking, and matrix-

fiber interface debonding, or damage. Failure at the interface between phases is of

particular interest due to the fact that it is this type of damage that is most common

in composites. Modeling the interface between the matrix and the fiber becomes very

involved and only a cursory model of localized damage is introduced in the work of

this thesis.

Other benefits of micromechanical analysis include the ability to study the ef-



fects of reinforcement volume fraction and thermal stresses at the matrix-fiber inter-

face [11].

1.1 Finite Element Analysis

With the advent of computers, finite element analysis has become one of the most

important tools available to an engineer for use in design analysis. The finite element

method is one of the most general procedures for attacking complex analysis problems.

The aim of this work is to increase its generality even more by expanding the material

model library. This was done by casting a micromechanical composite model into the

finite element framework. The micromechanical model is then applied by the finite

element program at every material calculation point in the finite element mesh. By

selecting a model with the capability to analyze a number of different composite types,

it should greatly increase the flexibility of composite analysis. As always though, the

most important steps in using the finite element method still reside with the engineer

in making an appropriate choice for the idealization of the problem and correctly

interpreting the results. [19]

The micromechanical material model was developed to be used with ABAQUS,

a large commercially available finite element code. ABAQUS provides the analyst

with the ability to add to the material and element libraries through the use of user

subroutines coded in FORTRAN. These subroutines are entirely the responsibility of

the developer; the only requirements on them are that they provide the information

needed by ABAQUS for the solution.

1.2 Micromechanical Composite Models

It must be pointed out that micromechanics models are still only approximate models

of the behavior of composite materials. This begins with the approximation used for

the geometry. It is practically impossible, and also generally undesirable, to use

a model based on the actual spatial distribution of the reinforcing material within



the specific composite which is to be used in a design. Instead, two approaches are

commonly used to arrive at an approximation for the geometry. The first of these

is the use of a statistical distribution for the fiber within the matrix material. The

fiber spacing is hence a random variable. In the other geometry approximation, a

periodic structure is assumed in which the fiber is evenly spaced throughout the

matrix continuum. This approach is generally simpler and allows the analysis of a

single unit cell of the material. The use of a periodic distribution is typically justified

when the volume fraction of fibers is high.

Many micromechanical models have been proposed over the years for use in com-

puting the effective material properties of composites. A very brief review of some of

the ideas behind these models will be presented here. A more complete review can

be found in Chapter 2 of Aboudi [16].

1.2.1 The Voigt Approximation

The first model, introduced by Voigt, is probably the simplest. It finds the effective

material stiffness as the combination of the individual material stiffnesses weighted

by the appropriate volume fractions, corresponding to the assumption that the strain

is constant throughout the composite. That is,

[C*] -= v[C1] + (1 - vf)[C21 (1.1)

where [C*] is the effective material stiffness matrix of the composite, [C1] is the

stiffness matrix of the fiber, [C2] is the stiffness matrix of the matrix material, and

vf is the fiber volume fraction.

1.2.2 The Reuss Approximation

Another very simplistic model is that proposed by Reuss. The assumption here is that

the stress is constant throughout the composite. In this case it is then the effective



compliance which is a weighted combination of the individual material compliances,

[S*] = vf[S1] + (1 - vf)[S 2] (1.2)

where [S*] is the effective compliance matrix of the composite, [S1 ] is the compliance

matrix of the fiber, and [S2] is the compliance matrix of the matrix.

It was shown by Hill [37] that the Voigt and Reuss approximations bound the

actual overall moduli. The Voigt approximation provides the upper bound while the

Reuss approximation provides the lower bound [16].

1.2.3 The Self-Consistent Scheme

The version of the self-consistent scheme discussed here is that proposed by Hill [38].

In this model it is assumed that a single fiber exists in an infinite homogeneous

medium as shown in Figure 1-1(a). This medium has the properties of the composite

that are to be developed by the model itself. A uniform strain in the fiber can be

produced by applying a uniform force on the boundary of the continuum. The uniform

strain is then assumed to be the average over all the fibers in the composite. This

assumption is the basic tenet of the self-consistent scheme from which the effective

moduli can then be calculated. The self-consistent model has a physically sound

base and has been found to provide reliable results. One criticism of self-consistent

models to be kept in mind is that they often do not work well for composites with

intermediate and high volume fractions of fibers.

The self-consistent method has been extended to applications besides simple elas-

ticity. For example, Dvorak and Bahei-El-Din extend it to allow for elastic-plastic

matrix materials in [28]. In doing so, it was necessary for them to change the ge-

ometry of the representative cell. A composite cylinder inclusion was substituted for

the fiber in the original representative cell of the self-consistent scheme. This com-

posite cylinder consists of the fiber surrounded by a thick layer of matrix material.

The modified model then assumes that the composite cylinder is contained within an

elastic-plastic medium which has the same properties as the composite. This model



is often referred to as the vanishing fiber diameter model because the fiber diameter,

while finite, is assumed to be small enough to have no effect on the matrix behavior

in the plane transverse to the fiber's axis. See Figure 1-1(b).

1.2.4 The Method of Cells

The method of cells, developed by Aboudi [1, 2, 5, 4, 6, 12], makes use of a periodic

rectangular array for the inclusion geometry, as shown in Figure 2-1(a). The unit

cell used to construct the regular array consists of four subcells, one for the fiber

and three for the matrix as shown in Figure 2-1(b). The effective stiffness matrix is

derived by relating the average stresses to the average strains inside the subcells, and

then averaged over the volume of the unit cell.

The continuous fiber case of the method of cells was the micromechanical model

selected for use in this thesis. This decision was made based on the following issues:

* Computational expense, generally measured in computation time. Perhaps the

most important factor in the decision. The use of a complex model would

most certainly have been too computationally expensive for actual use in finite

element solutions of large problems'. The method of cells as used here is really

a first order application of a higher-order theory developed by Aboudi [1].

* Capability to analyze nonelastic constituents. Many of the other models do not

generalize easily to nonelastic material models for the matrix and reinforcing

material while maintaining the same representative geometry.

* Ability to perform a full three-dimensional analysis. This is particularly impor-

tant when the materials are allowed to become non-elastic.

* Ease of adapting to a finite element framework. The method of cells follows a

method very similar to finite elements to begin with.

* Provides results which agree well with experimental data and other microme-

chanical models. In all of the papers researched for this thesis, the results for

Imeasuring size in terms of numbers of degrees of freedom



Figure 1-1: Different Unit Cells Used in Micromechanical Analysis
(a) The Self-Consistent Scheme (b) The Modified Self-Consistent Scheme

(c) Teply-Dvorak Homogenization Scheme



the method of cells were always found to be within both the scatter of the

experimental data and the Hashin-Shtrikman bounds [35].

A complete description of the method of cells is left for Chapter 2 since it will be

presented in far more detail than the other models outlined here.

1.2.5 The Teply-Dvorak Homogenization Model

Teply and Dvorak use minimum principles of plasticity in [52] to eliminate some of

the limitations of the previous models in analyzing behavior when an elastic-plastic

material undergoes plastic deformation. Similar to the approach of Aboudi, they use

a periodic model to approximate the composite geometry. However, the fibers in

this model are assumed to have a hexagonal cross-section in contrast to the square

cross-section used in the method of cells. The unit cell Teply and Dvorak chose is a

triangle linking the centers of three adjacent hexagonal fibers. Each fiber is then part

of six different unit cells, as shown in Figure 1-1(c). Teply and Dvorak refer to the

microstructure as a periodic hexagonal array, abbreviated PHA. The homogenization

to derive the overall properties is based on a comparison of unit cell energies in the

PHA and the resulting homogeneous medium.

Some additional micromechanical models based on a unit cell approach can be

found in [39, 31, 23, 46, 56, 49, 33].

1.3 Comparison of Models

The natural questions to ask at this point are which model provides better results and

what limits are there to those results. To get a better understanding of the answers to

those questions, comparisons are generally made between the results of the different

models.

One such comparison is made by Teply and Reddy in [53]. Teply and Reddy at-

tempt to establish a "unified formulation for micromechanics models" using a finite

element formulation. Using this finite element formulation they are prepared to make

comparisons between the models on the issues of relative convergence and accuracy of



the overall properties developed. The Aboudi method of cells model and the Teply-

Dvorak model are discussed in depth [16, 52]. In order to make the comparison, Teply

and Reddy cast the Aboudi model into a finite element model. The formulation is

essentially that of a hybrid element, with independent approximations for the dis-

placements and stresses. Consistent with the method of cells, a linear displacement

interpolation is used while the stresses are interpolated using a piece-wise constant

approximation. Using the homogenization procedure developed by Teply and Dvorak

in formulating their model into finite elements [52], it is shown mathematically that

the method of cells solution for the overall properties is equivalent to the homogenized

method of cells model developed here. The main result Teply and Reddy find is that

the method of cells provides stiffness and compliance moduli that constitute lower

and upper bounds, respectively, for the actual moduli of the composite.

Another evaluation of the results of the method of cells was performed by Bigelow,

Johnson, and Naik [22]. In it the method of cells is compared with three other

micromechanical models for metal matrix composites. The three other models used

are the vanishing fiber diameter model [28], the multi-cell model [39], and the discrete

fiber-matrix model [31]. The four models are very similar in their basic setup; for

example, all four of the models assume a square periodic array of continuous fibers.

This facilitates direct comparison rather than necessitating a new formulation for

each model as was seen in Teply and Reddy [53]. The results of the models for the

overall laminate properties and the stress-strain behavior are compared to each other

and to experimental data. In addition, the stresses inside the constituents are also

compared. The results of the comparison find that all four models did reasonably

well in predicting the overall laminate properties and stress-strain behavior. The

differences between the models were generally found to be smaller than the variation

in the experimental results, making it hard to claim one model performed better than

another. On the other hand, when it comes to the area of constituent stresses it is

clear that the discrete fiber-matrix model performs better than the other models.

This is to be expected though since it is designed to provide accurate values for

the fiber and matrix stresses whereas the remaining three are designed more for the



determination of overall laminate properties.

Robertson and Mall have developed a modified version of the method of cells [49].

This model maintains nearly all the tenets of the method of cells but combines it with

the vanishing fiber diameter model and multi-cell model by using the assumption

that composite normal stresses will not produce shear stresses in either the fiber or

matrix. The unit cell used is slightly altered from that of Aboudi. The rectangular

periodic array is still used but it is sectioned differently than in the method of cells,

as shown in Figure 1-2. The representative volume element is shown in Figure 1-

2(a) as the box completely containing a single fiber. The unit cell is then a quarter

of this representative volume element. The unit cell may then be sectioned further

into matrix and fiber subcells. Figure 1-2(b) shows the eight region model used by

Robertson and Mall. Their aim was to simplify the approach used by Aboudi so as

to reduce the expense of performing a full three dimensional analysis using nonlinear

constituent materials. The results presented show that the free transverse shear

approach, as it has been named, provides results that agree quite well with that of

Aboudi and finite element solutions for the effective moduli.

1.4 Literature Review

The use of averaging techniques, or homogenization, as used in the method of cells

to arrive at the overall properties of an inhomogeneous material has received a lot of

attention for use in composite analysis.

Micromechanical analysis of composites has other applications besides simply cal-

culating the overall stiffness properties. As previously mentioned, it may be used to

study the effect of interfacial properties, interfacial debonding, and even the individ-

ual constituent stresses. Divakar and Fafitis [27] have used it to study the effect of

interface shear in concrete, while King et al. [42] have used it to study the effect of

the matrix and interfacial bond strength on the shear strength of carbon fiber com-

posites. In addition, micromechanical models are well suited to studying continuum

damage in composites as shown by Bazant [20], Yang and Boehler [55], Ju [40], and
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Lene [43].

Bendsoe and Kikuchi have used homogenization techniques in optimizing the

shape design of structural elements [21]. They use the method to turn the shape

optimization problem into one of finding the optimal distribution of material. This

is done by introducing a composite framework made up of substance and void. The

method of homogenization is then used to determine the effective macroscopic ma-

terial properties. Like the method of cells, the material model is based on a mi-

cromechanical model to derive these macroscopic properties. A unit cell consisting

of the actual material plus one or more holes is used to construct the composite by

repeating the cell so as to create a periodic array. The use of voids in the place of

a reinforcement material provides the effective material properties as a function of

the density of the material; this relationship may then be used to optimize the shape

of the design for the given loads and design requirements. More information on this

application of homogenization can be found in [50, 30, 24, 32].

The history of the method of cells itself has seen it applied to many different

types of analyses. Aboudi himself has developed many of these applications (refer to

Chapter 2 for a list of these applications), but he is not alone. Some examples have

already been given in the form of the work of Teply and Reddy [53] and Robertson

and Mall [49]. In addition to these examples, Yancey and Pindera [54] have used

the method of cells to analyze the creep response of composites with viscoelastic

matrix materials and elastic fibers. Pindera has also applied the method of cells to

elastoplastic models for metal matrix materials, working with Lin [48]. Similarly,

Arenburg and Reddy [18] have also studied the behavior of metal matrix composite

structures with the method of cells. Perhaps the most interesting use of the method

of cells is that used by Engelstad and Reddy in [29]. Engelstad and Reddy develop

a nonlinear probabilistic finite element technique for the analysis of composite shell

laminates in an attempt to study the effect of variability in composites. They use

a first-order second-moment method to create the probabilistic finite element model.

In the analysis all the material properties act as random variables along with the ply

thickness and ply angle. The method of cells is then used to calculate the ply-level



properties based on the randomly varying constituent material inputs.

1.5 Scope of This Work

It is shown in this thesis that the method of cells developed by Aboudi can be cast

into a general user material routine for use in finite element analysis. The main scope

of this thesis has been to establish this user material routine as a framework to which

modification can be done easily in extending the model to include more complicated

material models for the constituents. The work for this thesis was performed in con-

junction with the ESA-11 group of Los Alamos National Laboratory located in Los

Alamos, NM. The end product is intended to be a general analysis tool for their use.

Their desire was to have a simple working model to allow them to perform composite

analysis. The intention was that in the future, after the framework for micromechan-

ical analysis had been put in place, higher order micromechanical methods and more

complicated material models may then be added as computing resources permit.

A detailed description of the method of cells is given in Chapter 2. This chapter

is intended to familiarize the reader with the specifics of the method of cells as de-

veloped by Aboudi. The description is given for a continuous fiber composite whose

constituents are strictly elastic as it is simplest. The method is detailed only for

the derivation of the elastic properties. The reader interested in the derivation of

thermoelastic properties and extensions of the model is referred to [16], Aboudi's

numerous papers, and the applications described above.

The finite element formulation used for the method of cells is outlined in Chapter 3.

The method is cast into the form of an user material using the continuous fiber version

of the method of cells outlined in Chapter 2. In the development of the user material,

an extension of the model is introduced to allow the capability to model damage

evolution over time in the composite.

The testing of the user material routine is discussed in Chapter 4. The results

obtained from finite element analysis are compared with the analytical results of

the Aboudi model. Some examples of composite analysis using the user material



are also presented demonstrating some of the advantages of the method of cells and

micromechanical analysis in general. Damage is not allowed to occur in the composite

for the analyses of this chapter.

Nonlinearity is introduced into the finite element user material in Chapter 5. This

is done by allowing the composite to debond over time as a function of the loading

history. The function used to represent the failure of the bond is very approximate

with the emphasis placed on setting up the nonlinear iteration scheme rather than

implementing a detailed model of the behavior at the interface. A simple finite

element analysis is performed to demonstrate the degradation of the overall moduli

as damage evolves in the composite. The matrix and reinforcement materials remain

perfectly elastic in this analysis even though the composite is allowed to debond.



Chapter

The Method of Cells

Aboudi has written numerous papers outlining the use of the method of cells to derive

the properties for different composite applications. These applications include:

* Calculation of the elastic moduli and thermoelastic properties for continuous

fiber, short fiber and particulate composites [2, 4, 5, 12].

* Calculation of the instantaneous properties of elastoplastic, i.e. metal-matrix,

composites [6, 7, 10, 3].

* Calculation of the average properties for viscoelastic and elastic-viscoelastic

composites [14, 1, 17].

* Prediction of strength properties [11, 13].

* The effects of damage and imperfect bonding on the effective properties of a

composite [10, 36, 8, 9].

* Prediction of the behavior of composites with nonlinear constituents [15].

A condensed and consolidated review of Aboudi's work with the method of cells up

until 1991 can be found in [16].

In the interest of clarifying and keeping the terminology consistent, the description

here of the method of cells uses a slightly different definition of terms than that used

The representative volume element described by Aboudi will here beby Aboudi.



designated a representative volume cell and the cells inside the representative volume

element will be called elements, or subcell elements. In effect, the use of the terms

has been interchanged for reasons that will become apparent when the finite element

adaptation is discussed.

The method of cells will be discussed here for the case of elastic continuous fibers.

The derivation of thermoelastic properties as well as the derivation of properties

for other material states and geometries is left to the references cited above. The

following sections are based on the derivation of the constitutive equations described

by Aboudi in [16]. The notation adopted is that proposed by Aboudi so as to not

introduce confusion should the reader choose to study some of the extensions to the

method of cells described above.

2.1 Assumptions and Geometry

As mentioned previously, the method of cells is based upon the assumption that the

composite can be approximated by a periodic array. In using this periodicity, it is

possible to analyze a single representative volume element of the continuum rather

than the whole continuum. The representative volume element is then used as the

building block from which the continuum is constructed, as shown in Figure 2-1(a). As

Aboudi himself describes it, the representative volume element must meet two criteria

[16]. First, the element must include enough information to correctly represent the

continuum, i.e. it must include all the phases present in the continuum. Secondly, the

element must be structurally similar to the composite on the whole. These conditions

are met by the cell structure shown in Figure 2-1(b).

The microstructure of the composite is modeled within each representative vol-

ume element, attempting to better represent the interactions between the matrix and

fiber. The matrix is represented by a number of elements inside of each representa-

tive volume cell while the reinforcing material is allotted a single element. For the

continuous fiber case pursued here, the matrix is assigned three elements in the cell.

The coordinate system is set up so that the fibers are assumed to extend into the
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global xl direction. The periodic array can then be seen in the x2 , x3 plane, with a

cross-sectional view of the element shown in Figure 2-1(b). Following Aboudi's no-

tation for numbering the elements, the fiber element is designated / = 1 and y = 1.

The remaining elements, (0, -y) = (1,2), (2,1), and (2,2) are matrix elements. The

length of one side of the cell is assumed to be hi + h2 , where hi is the width of

the fiber. Since the fiber is transversely isotropic (isotropic in the h2, h3 plane), the

cross-sectional area of the fiber is then h2 . The remaining length, h2 can be calculated

based on the fiber volume fraction of the composite. As shown in Figure 2-1(b), local

coordinate systems are defined for each element, the origin of each centered in the

element. These local coordinates are designated as - and 4.
Using these local coordinate systems, the displacements within each element are

interpolated linearly from the center. It is possible to use a linear displacement

interpolation here since it is the average properties of the composite that are being

calculated. Again following Aboudi's notation, the displacement interpolations inside

each element may be written:

Uý-)Y ) W + x)oq,0P + ) (2.1)

where i = 1, 2, 3 and w) is the displacement of the center of the element. As the

displacement interpolation is linear, €I3 ) and piB) represent the constant coefficients

of the linear dependence on the subcell coordinates.

Based on this displacement interpolation, the strains are then calculated as:

{ } = [ ) + (2.2)

where 0 represents partial differentiation with respect to the coordinate noted in the

subscript and i, j = 1, 2, 3. The strain tensor is ordered here as

{11} = [E,22 , 33 , 212 , 2E3 , 2E23 (2.3)

The stresses may then be calculated from the strains and the coefficients of thermal



expansion:

{Pr)} = [C(7)]{E()} - {r(P)}AT

where the stiffness matrix is

[C(7)] =

(137) (0-Y)
C1 1  C1 2

22)c 2 2

(c37)
C1 3

C23

C3 3

symm.

and the vector of coefficients of thermal expansion for the element is

{(1r~a)}

(J)(O) + 2c(#-) (#7)C1 1 OA 12 T

(#7) (#7) ( ( ) + ('7)) (#7Y)C1 2 OA +C2 2  C 2 3

c()/) (7A) + (Cy) (+ 17) (P7)
c12 DA 22  2 3 )aT

0

0

0

(2.5)

In this equation, a(A# ) and a( # ) are the axial and transverse coefficients of thermal

expansion for the material of the element (0y). The stress tensor in equation 2.4

is ordered in the same manner as the strains, and AT is the difference between the

actual temperature of the material and the reference temperature at which there are

no thermal strains.

2.2 Imposition of Continuity Conditions

The interactions between the elements within a representative volume cell and be-

tween the cells themselves are expressed in terms of displacement and traction con-

tinuity conditions. In the homogenization procedure these conditions are then used

(2.4)
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to derive conditions applicable to the whole continuum. The average properties of

the composite result from this homogenization. It is important to note that since it

is the average behavior of the composite being derived, the continuity conditions are

imposed on an average basis. The stresses and strains which are computed using this

behavior are then actually the averages over the volume. In the framework of the

method of cells, this implys that the average stress and strain in the composite are

computed from the average stresses and strains in the elements by taking yet another

average. Thus the average stress and strain are:

1 2 (2.6)
aij = V ) 3 •ij (2.6)

.- = V Yij(2.7)

where va, is the volume of the element (f7y) and V is the volume of the representative

cell. The average strains in subcell (,-y) are obtained from equation 2.1 using 2.2:

11 W (2.8)ax,
Q - 2Y (2.9)

3 = (2.10)

2E12 + ( W2 (2.11)

2-= + (2.12)

2-Y) + (2.13)

The average stresses in the subcell (7y) are then calculated from 2.4. Equivalently,

& = 1 ,/2 hp/2 ax (2.14)
V'y J-hy/2 J-hp/2



2.2.1 Traction Continuity

Traction continuity is imposed by simply equating the average stress components

between elements:
(ly) -(2y) (2.15)
2i 0 2i(2.15)

and

31) = '32) (2.16)

2.2.2 Displacement Continuity

In order to ensure displacement continuity, it must be true that the normal and

tangential displacements are equal at the interfaces between elements as shown in

equations 2.17-2.18.

1•) I=_-h1 /2 =27) ~ 2) =h2 /2 (2.17)

7 1)=h1/2 U -P2) =-h 2/2 (2.18)

These conditions are expressed for two elements within the same representative cell.

The conditions for two elements in adjacent cells are obtained by interchanging the

signs of the distances at which the displacements are interpreted. In order to apply

these conditions in an average sense, equations 2.17 and 2.18 must be integrated over

the length of the boundary. For example, continuity between elements (17) and (2y)

(where -1) = ±h1/2 respectively) would require that

h 1/2 f) ,/2 (22 y)  (2.19)
J-h,/2 I')=-h,/2 J-h,/2 (2.19)I=h/2

Substituting in the displacement interpolation of equation 2.1, equation 2.19 becomes

- = 27) h2 ( 7) (2.20)
2 2

In order to transform these discrete equations into equations for the whole continuum,

equation 2.20 must be applied throughout the whole composite. It is necessary to

note first that equation 2.20 is written for the centerline •2 , and the distance from



the centerline to the interface between elements is -h 1/2 for x(~) and h2/2 for x 2).

Using this information, it is possible to make the transformation to the continuous

case with a first order expansion of equation 2.20. The result is:

S hi a k(1y) hi W2- Th 2 9 (2-) h2 g27 )w' hi ) h ), h2 T -) h•.(27) (2.21)
2 8X2  2 2X 2 z 2(

where the ± and ::F denote the fact that two forms of the equation are obtained de-

pending on whether the starting point is two elements within the same representative

cell or two adjacent elements in different cells. By adding the two different relations

expressed in equation 2.21, it is found that

W ) = W%2 )  (2.22)

Similarly, by subtracting the two and using equation 2.22 it is found that

h ±-z) + h2 (h, + h2) 1-w )  (2.23)1 X2

Following the same methodology, the continuity condition of equation 2.18 provides

w. B1) = W0 2)  (2.24)

and

ho) (h + h2 2) 3) WI1) (2.25)

It can be deduced from equations 2.22 and 2.24 that

(11) (12) (21) (22) _ (2.26)
wi =w wi wi (2.26)

The continuity of the displacements is then described by the twelve expressions which

can be formed from equations 2.23, 2.25, and 2.26.



2.3 Derivation of Constitutive Relations

Using the above traction and displacement conditions, it is now possible to derive the

constitutive relations for the overall composite behavior. For this derivation, both the

fiber and matrix are assumed to be transversely isotropic. The method which follows

is broken into two steps. The first step involves deriving the constitutive equations for

an orthotropic material with square symmetry, that is, instead of transverse isotropy,

the relations are for a material which is equivalent in the x 2 and x 3 directions. To

obtain transverse isotropy, these relations must be rotated through 27r around the xz

axis.

2.3.1 Square Symmetry

Using equation 2.23 for i = 2, the following relations are obtained for the coefficients

of the displacement interpolation:

2) = (hT- h222) 1h (2.27)

21) =(h22 - hll))h2 (2.28)

Likewise, substituting i = 3 into equation 2.25 gives

-12) = (hE33 - hlj11))/h2 (2.29)

h21) = (33- h~ 22)/h (2.30)

where the combination hi + h2 has been defined as h.

Substituting these relations for the coefficients into the traction continuity con-

ditions, equations 2.15 and 2.16, and using the relations for the stresses given by



equation 2.4 yields

A10 22 ) + A2 ±(11) + A 3 )333 = J1

A40 + A + A6 22) 2 J,
1 1) A 1 + = (2.31)

A7 1) + As• 22 ) + A =911)  J3

A'0 1 ~+ Al + A12'L=2 3 4

The coefficients used here are defined as:

A, = c(1 + h2 /hi) A 2 = CT(hi/h 2) A3 = cn,

A4 = cm(h /h 2) + c f A5 = c3 A6 = cm(h 2/hl)
(2.32)

A7 = c23 As = A6 A = A4

A1o = c23(hi/h 2) All = A 3  A 12 = A,

J1 = c•222 (h/hl) + C3 33 (h/h 2)

J2= (c7 - Cf2) 11 + C-'222(h/h 2) + cr33(h/hl) + (rF - r))AT
(2.33)

J3= (cb - c{2)E11 + c!- h c2 (h/hl) + C722 33 (h/h2 ) + (2 2 - rr)AT

J4 = c2-n 22(h/h 2) + C72Q 33 (h/hl)

Equations 2.31 can then be solved for the coefficients of the displacement interpola-

tion:

0211) = T1J + T2J2 + T3J3 + T4J 4

22) TJ + T6J2 T7J3 + T8J4  (2.34)
(2.34)

03() = T9J1 + T1oJ2 + T11 J3 + T12J4
122 = T13J1 + T1 4J2 + T15J3 + T16J4



The Tj here are defined as

DTI = -(A 5 A 8A1 2 + A6A 9Aj1 )

DT 2 = A 2A 8AL2 + A 3A 9All - A 1AgA 12

DT 3 = A 1A5 A1 2 + A 2A 6A11 - A 3 A 5All

DT 4 = A 1A 6A 9 + A 8 (A3A 5 - A 2A 6)

DT 5 = A 6A 9Ao1 + A12 (A 5A 7 - A 4A 9)

DT6 = -(A 2A7A 1 2 + A3A 9A1 o)

DT 7 = A 3A 5Alo + A 2 (A 4A1 2 - A 6A10 )

DT8 = A 2A 6A 7 + A 3 (A 4A 9 - A 5A 7) (2.35)

DT 9 = A 4A8 A 12 + A 6 (A 7A1 - ASAlo)

DT1 o = A 1A 7A1 2 + A 3 (A 8Ao1 - A 7A 11 )

DT11 = A 3A 4All + A1 (A 6Alo - A 4A 12 )

DT12 = -(A 1A 6A 7 + A 3A4A 8)

DT3s = A 4A 9All + As(ASA 1 o - A 7All)

DT 14 = A1A 9 Alo + A 2 (A 7All - ASAlo)

DT1 s = -(A 1AsAlo + A 2A 4All)

DT 16 = A 2A 4As + A 1(A 5A 7 - A 4A 9 )

where

D = A 1 [A6A 9Alo + A 12(A 5 A7 - A4A 9)]

+A 2 [A4A8 Al 2 + A 6 (A 7All - AsA 10 )]

+A 3 [A4A 9All + A 5 (A 8Ao1 - A7AM1 )]

Now that the coefficients of the displacement interpolation are known, it is possible

to solve for the the normal stresses of equation 2.4. They become:

'511 = bll"ll + b12E22 + b13i 33 - FlAT

"522 = bz12 11 + b22 "22 + b23 33 - F2AT (2.36)

533 = b13T11 + b23T22 + b33i 33 - F3AT



The bij here are the entries in the constitutive matrix relating the average stress

to the average strain, written as the [B] matrix here. They may be solved for as:

Vb11 = vlcll + c•1(v 12 + v21 + v22) + (c2 - C +f)(Q2 + Q3)

Vb12 = (Cm 12  + Q3C3) + ( v 21  Q2C + Q4C3)

b13 = b12

Vb22  [C(V12 + Q') + QC + [C(V21 + Q) Q (2.37)Vb22 22 1 3 3 2 2 2 4

Vb23 = [C( + Q) + Q4] + h [C(V12 + Q'1) + Q'C]

b3 = b22

Also the effective coefficients of thermal expansion are:

v1 = ( 2y - P)(Q2 + Q3) + vuff + (v12 + V21 + v22)
vr 2 = (r2 - r2)(Q2 + Q3) + v + (V12 + V21 + v 22 2

r3 = r2

The Q coefficients are defined as:

Q1 = vlc 2 (T1 + T9) - v 12 Cý(T 5(h 2 /h5 ) + T9(h,/h 2))

-v 21 C &(T 1 (h1 /h 2) T13(h2/h 1)) + v22cm(T 5 + T13) (2.39)

The remaining Qi, i = 2,3, 4 are found by replacing the Tj by Tj+ , Tj+2, and Tj+3

respectively in Q1. Similarly,

Q' = v11(c22T1 + c 3T9) - v12 (c22T(h 2 /hl) + c3T 9 (hj/h2))

-v 21(c2T1 (hl/h 2 ) + C~T13(h2/hl)) + v22(c2T5 + C23T 13) (2.40)

and as before the remaining Q', i = 2, 3, 4 are found by replacing the Tj by Tj+ 1 , Tj+2,

and Tj+3 respectively in Qj.

The remaining coefficients to be determined for the constitutive matrix are the

shear coefficients. The b44 coefficient will be determined first. To begin, i = 1 is



substituted into equation 2.23, resulting in:

(21) = (h - h1))/h2 (2.41)
8x2

(12) (h-2 - 22)) (2.42)
OX2

Following the same method as for the derivation of the normal components, these

relations are substituted into the traction continuity equation, equation 2.15, and

using the stress relations from equation 2.4 the result can be solved for the coefficients

of the linear displacement interpolation. After some lengthy algebra, it is found that:

'513 = 2b44J 12  (2.43)

where

b44 = C4 [C44[h( 11+ v21)+ h2(+ h12 + V22 4 hl 2 + v22)] /(VA) (2.44)

The term A is defined as A = hlcý4 + h2 c44.

From the square symmetry it follows that

713 = 2b44613  (2.45)

There is now only one remaining coefficient to be determined, b66. The derivation

begins by again substituting i = 3 into equation 2.23 to obtain:

h, (l+) h2 h W3 (2.46)3 3 a2

Similarly, i = 2 is substituted into equation 2.25 to obtain:

hlop8) + h20 (P2) = hOw2 (2.47)
x3Continuing, equation 2.46 is multiplied by h

Continuing, equation 2.46 is multiplied by h1 with -y = 1 and then added to the result



of multiplying equation 2.47 by h2 for 0 = 1 to provide:

hN ( 1") h 2 1 + h2hh2 (12) = M1 (2.48)

where N ( 1) and M1 are defined to be:

- (=3 -Y) + 2,-y)

Mp = hhp

(2.49)

(2.50)+ 1W
'ýX )(8 8X2

Alternatively, multiplying equation 2.46 by h2 with y = 2 and adding it to the result

of multiplying equation 2.47 by h2 with P = 2 yields:

hN (22) + h1h2 +12) h1h2 )21) = iM (2.51)

By adding equations 2.48 and 2.51, we obtain:

vll N ( ) + v12 N (12) + V21 N (21 ) + V22N (22) = 2h 2- 23 (2.52)

Combining this relation with the traction continuity equations, 2.15 with i = 3 and

2.16 with i = 2, yields four equations in the four coefficients N (61) . Using the fact

that

these coefficients are then:

-2Y) = c(Y) N( Y)

N ( 11) = 2h2C~ T23/6

N ( 12) = 2h2C 6 23 /6

N (21) = N ( 12)

where

6 = h2c2 + (2hlh 2 + h2)c 6
h1c66 2 +h)66

(2.55)

It must be noted that in equation 2.53. c(') is defined as c 6 for c(11) and cm for

(2.53)

(2.54)

N(22) = N(12)



c6) , (0 + 7y - 2). It follows that

where

The constitutive equations for the average stresses and strains may then be written

where the stiffness matrix is

[B] =

and the vector of effective coefficients of thermal expansion is

{r} = [r1, r 2, r3, 0, 0, 0] (2.59)

The order of the stress and strain tensors follow the convention set by equation 2.3.

2.3.2 Transverse Isotropy

As mentioned previously, the constitutive relation defined for equation 2.58 is for a

material exhibiting square symmetry and not transverse isotropy. In order to trans-

form these equations to transverse isotropy, all three coordinates are rotated around

the x1 axis through the angle (. The transformation results in a new [B'] which has

"23 = 2b66E 23

b66 = c66 c6 h2/6

(2.56)

(2.57)

{1} = [B]{Z} - {rF}AT (2.58)

bi1  b12

b22

0

0

0

b44

0 0

0 0

0 0

0 0

b44  0

b66

symm.



the components

bll

b12

b'22 = b22 (coS4  + sin4 4)

b23 = b23 (cos 4 ý + sin4 ')

b44

b66 = b66( COS4 + sin 4 ) +

= bll

- bl 2

+ 2(b23 + 2b66) sin2 ý cos 2

+ 2(b22 - 2b66) sin 2  cos 2

= b44

2(b22 - b23 - b66) sin2 cos 22

The effective stiffness constants are derived from this transformation by integrat-

ing through a full period, & = [0, 27], as follows

[E] = - [B (()]d (2.61)

The components of the the effective stiffness matrix are hence

ll = bl

el2 = b12

- 3b22 + 23 + b66

- b22 + b23 - b66

e44 = b44

e66 = 1(e22 - e23)

and

[E] =

ell el2

e22

e12

e23

e22

0

0

0

e44

0

0

0

0

e44symm.

(2.62)

(2.63)

(2.60)



The new vector of effective coefficients of thermal expansion is

{F'} = [E][B- 1]{r} (2.61

and the constitutive equation for the transversely isotropic in its final form is thus

{1} = [E]{I} - {r'}AT (2.6t

4)

5)



Chapter 3

Finite Element Adaptation

In adapting the method of cells to a finite element framework, the first step was to

write an user element that would be the equivalent of the element in the represen-

tative volume cell. Another element was introduced in the process of adapting the

method of cells to finite elements. This element, designated here as the interface

user element', is not part of the method of cells framework and was introduced to

add flexibility to the model through the eventual goal of modeling debonding in the

composite. The interface element is used to connect the cell user elements in making

up a representative volume cell and hence represents the interface between the fiber

and matrix materials.

The second step in casting the method of cells into the finite element framework

was to create an user material routine which would combine the user elements and

create a representative volume cell. This user material routine2 is essentially a small

finite element routine. It sets up a mesh of the representative volume cell at each

material point and then performs the necessary operations to derive the stiffness

matrix and force vector used by the finite element program ABAQUS. It is in this

user material that the homogenization techniques of the method of cells are used.

As mentioned previously, the user material subroutine and user element routines

'The subroutine names used in the implementation for the two user elements are ABOUDI and
DAMAGE for the subcell element and the interface element, respectively.

2ABAQUS uses the subroutine name UMAT for its material subroutines.



were intended from the start to be used as building blocks for future modifications.

As a result of this, it was attempted to write them in a modular fashion allowing later

parts to be added without changing the whole.

3.1 Subcell User Element

As will be shown later in this work, the expense of using a micromechanical model of

the type implemented here can be extreme in terms of computation time. The linear

displacement interpolation used in the Method of Cells, while basic, helps to keep the

increase in expense from becoming inhibitive.

3.1.1 Geometry

In translating the element of the representative volume cell into a working user el-

ement for ABAQUS, a six-noded, three-dimensional finite element was chosen, see

Figure 3-1. The nodes are placed in the center of each face of the rectangular el-

ement. Three degrees of freedom are allowed at each node. Once again, a local

coordinate system is defined with Y1 running along the axis of the fiber and X2, X3

defining the plane of isotropy in the fiber. The relative dimensions of the element

are designated dl, d2, and d3. Since in the end the properties are averaged over the

volume, the actual size of the dimensions is irrelevant. To simplify the computation,

the total volume of the element is consequently chosen to be unity, as is di, the length

of the fiber inside of the representative volume cell. The remaining dimensions may

then be calculated from the fiber volume fraction. The stiffness and force vectors are

integrated in one point located at the center of the element.

Since the stresses and strains in the composite are to be averaged over the volume,

the actual dimensions of the fiber and matrix are unimportant. Hence the volume

of each representative volume element is assumed to be one. The depth of the fiber,

that is the length of the fiber in the x, direction, is also assumed to be one and then

the corresponding dimensions hi and h2 are calculated based on the volume fraction

of the reinforcing material.



Figure 3-1: Subcell User Element
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3.1.2 Derivation of the Stiffness Matrix

As in the method of cells, a linear displacement interpolation is used from the center

of each cell. The displacement interpolation may be written here as:

*n) (x Iy2, 2y3) = Ui + ±oi + 2Xi + i3 V (3.1)

where i = 1, 2, 3 and n is the node number. The coefficients of the interpolation in

T1, T2 , and Y3 are then:

€i = dui/dxl

Xi = dui/d22

(3.2)

(3.3)

and

Vi = dui/dS3 (3.4)

Since the interpolation of the displacement is assumed to be linear within the ele-

ment, an approximation of these derivatives is made. One such approximation that

is consistent with the compatibility requirements of Aboudi is:

i = (u -_2))/d

Xi= (u 3 -- )/d2

(3.5)

(3.6)

(3.7)

From the displacement interpolation, the element strains are as follows:

E11 = dul/d-l = 01

622 = d 2/d5 2 = X2

Ea3 = du3/1d 3 = 0C3

712 = dulI/d2 + du2/dXfl = 02 + Xl

(3.8)

(3.9)

(3.10)

(3.11)



713 = du,/d"3 + du3/d,1 = 0 3 + O1

'Y23 = du2/d" 3 + du3/d' 2 = X3 + 02

Substituting in the derivative approximations, the strains become:

E22 = (u•( -_• ())/ d

e33 = (U(5) - u 6 )/d3

(1) (2) 1 (3) (4)> d2

713 = (3) u (4)/d2 + (U5) - u(6)/ d3

Y23 3 2 +

Arranging in matrix form:

{f} = [B]{U}

The vectors in equation 3.20 are ordered in the following manner:

{E} = {f11 62 2 E3 3 7Y12 7Y13 Y23}

(U1 = ( u a U(2) (2) (2)
1 i- ¾ 2 3 U1 2 U3

(6) 2(6) (6)
U1 2 U 3

The [B] matrix is then:

0 0 -1di 0 0 0 0 0 0 0 0 0 0 0 0 0 0

d2
0 0 -:1

d2
0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 01 d3

0 ddi 0 0 -1 0 0 0 -1
d2

0 0 1
0 0 0 0 0 0 0 0

0 01 di 0 0 -1
dl

000

000000 0 0L d2

d3

d2

0 0 -1 0
d3

0 0 -1d3 d3

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

[B] =

0



Note that this [B] matrix is constant for each element. Using a one point integration,

the stiffness matrix, [Kse], is then:

[Kse] = (d1d2d3)[B]T [D] [B] (3.23)

where [D] is the constitutive matrix for the material of the element. Similarly, the

force, or right-hand-side, vector is:

{Rse} = (d1d2d3)[B]T {a} (3.24)

It should be noted that because of the coefficients of thermal expansion are used to

calculate the thermal strain within each element, the overall coefficients of thermal

expansion are a priori contained in the resulting constitutive matrix for the composite.

3.2 Interface User Element

The interface element eventually used to model damage in the composite was imple-

mented in the form of a three-dimensional spring to connect adjoining nodes between

elements within each cell. The interface user element has a normal component and

two tangential components, the tangential components representing shearing at the

interface between the matrix and reinforcing material, as shown in Figure 3-2. The

coordinate system adopted for the interface element is such that the one direction is

assumed to always be the normal direction. As a result, the two and three directions

thereby define the plane of shear, and the two entries in the stiffness matrix from

these shearing contributions are equal by symmetry arguments. The [Kie] matrix is



Node 1 kS ) Node 2

1

Figure 3-2: The Interface Element: A 3-Dimensional Spring
The S1 Spring Represents the Normal Component of the Interface while the S2 and

S3 Springs are the Shear Components. The S2 and S3 Springs Connect Nodes 1 and 2,
and Represent the Relative Displacement of the Nodes in the Shear Plane.



quite simple, and may be written directly as:

[Kiel =

kl 0 0 -k1  0 0

0 k2  0 0 -k 2  0

0 0 k3  0 0 -k 3

-ki 0 0 ki 0 0

0 -k 2  0 0 k2  0

0 0 -k 3 0 0 k3

with the vector of displacements arranged as follows:

{(v} = {u (i-i)P 3 1) (22) 2272) 322) } (3.25)

The superscripts (P/1yl) and ( 32y/2) above denote the two subcell elements which are

to be connected within the cell3 by the interface user elements. The entries of the

[Kie] matrix are properties of the interface itself and as such, are not well documented.

To avoid numerical problems in the initial implementation, it was assumed that no

debonding occurred during the analysis. This condition is relaxed in Chapter 5 to

include a simple debonding criteria.

3.3 ABAQUS User Material Subroutine

As in many advanced nonlinear finite element programs, the user material subroutine

option in ABAQUS allows for the development of material models which are not in-

cluded in the standard ABAQUS library. The material model is coded in FORTRAN

as a subroutine which is then included in the ABAQUS input deck when used in an

analysis. The subroutine is called by ABAQUS at each material point in the mesh

of the problem. At each point, the subroutine is provided with the temperature and

the volume-averaged strains along with the material properties for the matrix and

fiber. From this information, the material model calculates the stiffness matrix, [C],

3Attempting to keep the notation somewhat consistent with that of Aboudi



and the volume-averaged stresses, {f7}, and returns these to ABAQUS for use in the

solution of the problem. A flow chart of the operation of the user material subroutine

is presented in Figure 3-3.

In order to make the initial development of the user material easier, an orthotropic

constitutive model was chosen for the matrix and fiber constituents. In addition, the

interface elements were chosen to be much stiffer than the fiber or matrix so that the

adjoining elements in the cell were kinematically constrained together.

3.3.1 Meshing the Representative Cell

When the user material routine is called by ABAQUS, a small submesh 4 of the repre-

sentative volume cell is set up at each material point, as shown in Figure 3-4 for the

continuous fiber case of four subcell elements connected by four interface elements.

It should be noted that in the submesh used here, the fiber element is chosen to be

the element corresponding to (0Iy) = (21) of the Aboudi framework shown in Fig-

ure 2-1(b). This change has no effect on the results provided by the model; hence,

for all future discussions, the fiber will be assumed to be element (3'y) = (11) in

keeping with the notation of Aboudi. The remaining three subcells of the submesh

have the properties of the matrix material. This submesh is the same at every point

throughout the global mesh and thus it is hardcoded into the routine to reduce the

computation time required at each material point.

To extend the model to handle short-fiber composites, another four cells would

be added directly behind the four in the current mesh. All four of these added cells

would then be matrix cells.

3.3.2 Substructuring and Solution

The individual stiffness matrices from the elements, [Kse] and [Ki,], are assembled

into the global stiffness matrix of the representative cell, [K]. It is this global stiffness

4The term submesh is used here to differentiate between the mesh of the problem to be solved
and the small subcell mesh of the representative cell used to derive the material properties for use
in the solution of the mesh of the problem.



Pass In Temperature and

Volume-Averaged Strains

Compute Material
Constitutive Matrix

Compute Volume-
Averaged Stresses

Figure 3-3: Flow Chart of the User Material Subroutine



Figure 3-4: Mesh of the Representative Cell
F1 is the Fiber Element, M1-M3 are Matrix Elements,

and S1-S4 are the Interface Elements.
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matrix that is used in the calculation of the material constitutive matrix. In preparing

the global stiffness matrix, [K], the displacements are ordered such that the internal

degrees of freedom are separated from the degrees of freedom on the boundary of the

representative cell. The techniques of substructuring, also known as static conden-

sation, are then used to eliminate the internal degrees of freedom from the stiffness

matrix for the cell [57]. By doing so, it is then possible to solve for the external force

vector, Rb, since the boundary displacements are known from the strains provided by

ABAQUS. Beginning by blocking the [K] matrix of the equation Ku = R, this may

be written in matrix form as:

[Kii~ Kiib Ui }={ (3.26)
kbi Kbb Ub Rb

The vector Ri has only contributions from the thermal strains which may be calculated

from the information provided by ABAQUS. Consequently, the first row of 3.26 can

be solved for Ui:

{Ui} = Kj (Ri - KibUb) (3.27)

Substituting into the second row of 3.26:

(Kbb - KbiK,•Kib){Ub} Rb - KbiKj•'R (3.28)

for which the only unknown is Rb. It must be remembered that the vector Rb can be

attributed to both thermal and mechanical strains.

Rb = Rbmeh + Rbther (3.29)

The thermal strains may be calculated using the temperature provided by ABAQUS

so that the remaining unknown is simply Rbmech'

The static condensation to eliminate the internal degrees of freedom is performed

through Gaussian elimination on the representative cell stiffness matrix, [K]. The

elimination is performed on the internal degrees of freedom, of which there are 24.



The blocked [K] matrix then looks like:

Kii Krb U {Ri} (3.30)
0 bb Ub b

where Kii is now an upper triangular matrix. The previous Kbi becomes zero during

the elimination. Also during the elimination, Kbb has become the left hand side of

equation 3.28 so that:

Ebb = Kbb - KbiKi 1 Kib (3.31)

The right hand side of equation 3.28 contains the unknown Rb, but before the gaussian

elimination is performed this vector contains only the thermal strains. Substituting

in 3.29 and solving 3.28 for Rbm,,ch:

Rb,,,h = (Kbb - KbiKilKib)b} + KbiK} jRi - Rbther (3.32)

From this, equation 3.27 may be now be solved for the internal displacements and

the solution is complete.

3.3.3 Conversion from Displacement to Strain

The solution outlined in the previous section yields a constitutive matrix for the rep-

resentative cell in terms of force and displacement. ABAQUS works in terms of stress

and strain. Thus, the force vector must be converted to a vector of volume-averaged

stresses while the [K) matrix must be converted from being based on displacements

to strains. The stiffness matrix after the static condensation is a 48 x 48 matrix since

there were 48 boundary displacements. This must be shrunk down to a 6 x 6 matrix.

Using energy considerations it will be shown that the matrix which transforms the

strains into displacements is simply the transpose of the matrix which transforms

the forces into stresses. To begin, the matrix [A] is defined to be the transformation



between the displacements and the strains:

{Ub} = [A]{Z} (3.33)

where {-} is the vector of volume-averaged strains. Using the energy balance:

= {Rb }T{b} (3.34)

where {f} is the vector of volume-averaged stresses. Substituting equation 3.33 in 3.34

and canceling {f} from both sides completes the proof:

{f} = [A]T {Rb} (3.35)

The [A] matrix itself is developed by writing the displacement interpolation as:

I u(x, y, z) alz + bly + clz a bl cl x
u2 (x, y, z) = 2x +b 2y+c 2z = a 2 b2 c2  (3.36)

u3(x, y, z) a3x + b3y + c3z a3 b3 c3  z

By taking the derivatives of the displacements we are able to relate the coefficients

to the strains:
Bul = al = E11 (3.37)

Ou2
O b2 = 622 (3.38)iy
Ou 3

=-ca = E33 (3.39)

The shear strains are:
Oul Ou2

612 = + = bl + a2 (3.40)
ay Ox

Ou1  Ou.
E13 = a + + cl + a3 (3.41)

Oz Ox

Ou 2  Ou3E23 = +  = C2 + b3 (3.42)
Oz ay



The final conditions necessary to calculate the coefficients come from the rotations:

w = (U3 U2 (b3 - c2) (3.43)
2w ay 8z 2

1  B u 3B 1
wy = 0 = 1 aulz aUx3 2 (c, - as) (3.44)

2 1(0u2  Uy 1

Rewriting equation 3.36 using relations 3.37 through 3.45 and reorganizing, the strain-

displacement relation is:

El1

U (x, y, Z) x 0 0 y z 0 1 22

u2 (x, y, z) 0 y 0 X 0 Iz (3.46)

u3 (x, y, Z) 0 0 z 0 x y 12
613

C2 3

This relation provides the connection between the three displacements at each node of

the representative cell and the strains at that node. The complete [A] matrix used to

transform the global stiffness matrix into the material constitutive matrix is derived

by plugging in the coordinates of each node5 on the boundary. The constitutive

matrix is then:

[C] = [A]T [K][A] (3.47)

and the volume-averaged stresses are given by equation 3.35.

3.3.4 Postprocessing Operations

The user material subroutine is actually called twice by ABAQUS during the analysis

of the problem. The routine is first called during the assembly of the global stiffness

50f which there are 18. The coordinate system used is a local one defined for the whole repre-
sentative volume cell, centered at the point where the four subcells come together.



matrix. The strains passed in by ABAQUS at this time are zero as the stiffness matrix

is independent of the strain-state (for linear statics.) The second call of the material

user routine occurs after ABAQUS has completed the solution of the problem. For

this call the strains from the solution are passed into the subroutine so that the actual

element stresses and strains may be calculated for use in post-processing.

The user material subroutine option in ABAQUS also allows the user to save his

own variables for use in post-processing 6 . The individual subcell elements stresses

and strains were output using this option so that behavior inside the cell could be

studied.

Similarly, several variables were included to look at possible failure inside of the

representative cell. Some simple uniaxial failure criteria, one each for the fiber and

matrix, were adopted from Aboudi [11, 13]. The fiber criterion used was

< 1 (3.48)
Sf-

where all is the axial stress in the fiber and Sf is either the tensile strength or the

compressive strength of the fiber depending on the state of stress present in the fiber.

This expression will be less than one if the fiber is not in failure. Similarly, the matrix

failure criterion was

S a _2 + 1 3 < 1 (3.49)X2 S2

where ap, is the maximum principal stress in the plane perpendicular to the axis of

the fiber, Xm is the ultimate matrix tensile strength, Sm is the ultimate matrix shear

strength, and a12 and a13 are the axial shear stresses. In addition, the von Mises

equivalent stress was also calculated for each subcell element.

A complete listing of the user material subroutine can be found in Appendix A.

6 These variables are called STATEV in ABAQUS.



3.4 Note on the Specifics of Implementation

The development of the user routines for ABAQUS was performed on a VAXstation

4000-60, manufactured by Digital Equipment Corporation (DEC), working in the

VMS operating system. It is important to note that the input decks, and consequently

all subroutines used in the input decks, to ABAQUS are required to be expressed in

capital letters. In addition, a double precision floating point variable on that platform

is declared as a REAL*8. The default single precision floating point variable for a

Cray Y-MP 8/64, however, is the equivalent of a double precision variable on the

VAX. Thus, functions such as SQRT and DSQRT' must be used carefully when the

routines are transferred for use on platforms other than the original one, with the

double precision form used on the VAX and the single precision form used on the

Cray for example.

7 DSQRT is the double precision form of the square root function.



Chapter 4

Testing the Finite Element Model

Once the finite elements for use in the representative cell had been written and the

material routine completed, it was then necessary to verify that the results provided

were in agreement with both the original method of cells model and results obtained

from elasticity solutions. This is obviously of great importance as a model which

does not produce good results is useless, but in addition, it was very important to

gain an estimate of the cost of using a micromechanical analysis of this type inside

a finite element program. To that end, timing studies were performed to gauge the

increase in the computation time when the micromechanical model is introduced

versus macroscopic methods of composite analysis.

4.1 Verification of the Subcell User Element

The subcell user element described in Section 3.1 represents only a single subcell of

the representative volume cell. The user material routine uses four of these subcell

elements to construct a representative volume cell for each material point within

the mesh of the finite element problem. But before the subcell user element could

be included into the user material routine, it was first necessary to verify that the

element performed correctly by itself under different loading situations. Towards this

end, analysis was performed using first a single element and then a mesh of four

elements, effectively setting up a representative cell using ABAQUS. At this point it



is important to make clear the distinction between the use of a four element method

of cells model to derive the effective material properties of a composite and the use of

the method of cells as a user material to derive the effective material properties of the

composite. The use of only four elements in a finite element analysis will inevitably

lead to incorrect results in all but the simplest of cases. It is only through the use of a

very large number of elements that the finite element approximation approaches the

true solution of the problem. On the other hand, in using the method of cells at each

material integration point of a larger mesh (for example, at each integration point

of the mesh shown in Figure 4-2), a unit cell is analyzed at each integration point.

The process of homogenizing to derive the effective overall composite properties, as

described in Chapter 2, is then accomplished by the finite element program itself. This

homogenization process, in which the discrete rectangular array composite model of

the method of cells is transformed into a continuous medium, is the step that is

omitted by using a four element mesh in ABAQUS to derive the overall composite

properties.

4.1.1 Single Element Case

A mesh consisting of a single subcell user element' was set up using the isotropic

properties of the fiber material listed in Table 4.1. The model was tested by imposing

unit strain states and checking for the correct stresses and internal displacements.

The strain states were imposed by prescribing all of the boundary displacements on

the element. Six unit strain states were examined, one for each of the normal and pure

shear states. For these strain states the resulting stress vector then simply contains

the appropriate components of the material stiffness matrix. The element was found

to perform correctly for all the situations tested.

'This is the user element described in detail previously in Section 3.1. To use it, the elements
must be defined from the nodes with the *USER ELEMENT option in ABAQUS.



Table 4.1: Properties Used in Isotropic Test Run

Volume Fraction = 0.5 Fiber Matrix
Young's Modulus (GPa) 1000 100
Shear Modulus (GPa) 416.67 38.46
Poisson's Ratio 0.2 0.3
Coeff. of Ther. Expansion (cm/cm- OC) 5.22e-5 7.0e-5

4.1.2 Multi-Element Case

The next step in verifying the user element was to create a mesh of four subcell user

elements. These four elements were arranged as shown in Figure 3-4 to insure that the

elements would perform correctly when combined in the setup of the representative

cell. The elements were kinematically constrained together to prevent separation

during the analysis2 . The same six strain states as used in the single element case

were then imposed on the mesh; once again this was performed by prescribing the

boundary displacements. It should be noted that the prescription of the boundary

nodes in this case is identical to the way boundary conditions are applied inside the

user material routine.

Unlike the single element case, the prescription of the boundary displacements

in the four element case does not eliminate all of the zero-energy modes from the

four subcell element mesh. An eigenvalue analysis was performed to study the mode

shapes and eigenvalues of the mesh. It was found that this combination of four subcell

elements had a "gear-shape" zero-energy mode, as shown in Figure 4-1, in addition

to the usual rigid-body modes. This mode is a result of the fact that the subcell

element is not really a complete element. In order to eliminate the mode, it would be

necessary to use a higher order displacement interpolation than the linear one used in

the method of cells. It was found that this mode can be canceled by constraining one

of the interior nodes in the tangential direction. This corresponds to constraining the

vertical displacement at point 1 in Figure 4-1 to be zero. It was necessary that this

2 This is performed by defining multi-point constraints, the *MPC option in ABAQUS, at adjacent
nodes. The nodes are then bound together to move as one.



Figure 4-1: Zero Energy Mode for the Four Subcell Element Mesh
Eliminated by setting u3 = 0 at Point 1

constraint also be implemented into the method of cells user material routine. When

the interface elements were used to connect the internal nodes of the subcell elements

instead of rigidly constraining them to move together, this tangential constraint had

to be applied to each element within the representative cell.

The problems were later re-run with four interface elements introduced to connect

the cells. The springs of the interface element were made very stiff to mimic the

constraint imposed when the interface elements were not used. The results obtained

for this case were found to be identical between the cases.

4.1.3 Results for Multi-Element Case

Once the gear-shape zero-energy mode had been eliminated, the multi-element mesh

was tested against results obtained from a direct solution of the method of cells

equations. This solution was obtained from a program written previously at Los

Alamos National Laboratory by R. M. Hackett [34]. As in the method of cells, the

element corresponding to (y,) = (11) in Figure 2-1(b) was chosen to be the fiber

element while the remaining three elements were composed of the matrix material.



The mesh was first tested using fiber and matrix constituents which were isotropic.

The properties used for this case are given in Table 4.1. The effective stiffness ma-

trix was then derived by applying the six simple strain states discussed above. For

example, the cll component was obtained by imposing a unit strain in the one direc-

tion and then averaging the stresses in the four elements over the volume. The c2 2

component was likewise obtained by imposing a unit strain in the two direction, and

so forth. The effective coefficients of thermal expansion were also calculated. These

values were obtained by applying a 1 °C temperature increase to the unloaded mesh.

By using the constitutive relation,

{f} = [C]{,ot - ýther}, (4.1)

the effective coefficients of thermal expansion can be calculated from the stresses, {1}

(where the overline denotes volume-averaged values), obtained in the analysis. Since

Etot = 0 and Ether = AT, it follows that the solution is

-1
{1} = AT[C]-'{ } (4.2)

The results of the analysis are summarized in Table 4.2. As can be seen, excellent

agreement is achieved between the method of cells solution and that derived from

using the subcell user element mesh.

Another comparison was made using transversely isotropic constituents for the

fiber and matrix. The method followed to back out the components of the constitutive

matrix and the coefficients of thermal expansion was exactly the same as described

above. Table 4.3 gives the properties used in this analysis and the results of the

analysis are summarized in Table 4.4. As can be seen, the agreement is once again

very good.



Table 4.2: Comparison of the Method of Cells and User Element Solutions
for a Composite with Isotropic Constituents

Method of Cellsa Subcell User Elementa

594.38 90.30 90.30 594.27 90.31 90.31
Effective Stiffness Matrix 90.30 286.14 83.45 90.30 286.13 83.45

90.30 83.45 286.14 90.30 83.45 286.13

Shear Modulus-12 Dir. 87.20 87.21
Shear Modulus-13 Dir. 87.20 87.21
Shear Modulus-23 Dir. 70.42 70.42

Coeff. of Ther. Exp.-11 Dir. 5.39e-5 5.4e-5
Coeff. of Ther. Exp.-22 Dir. 6.20e-5 6.2e-5
Coeff. of Ther. Exp.-33 Dir. 6.20e-5 6.2e-5

aAll stiffness moduli are given in terms of GPa; the coefficients
in terms of (cm/cm- °C)

of thermal expansion are given

Table 4.3: Properties Used in Transversely Isotropic Test Run

Volume Fraction = 0.5 Fiber Matrix
Young's Modulus-ll Dir. (GPa) 1000 100
Young's Modulus-22 & 33 Dirs. (GPa) 500 100

Shear Modulus-12 & 13 Dirs. (GPa) 300 38.46
Shear Modulus-23 Dir. (GPa) 200 38.46

Poisson's Ratio-12 & 13 Dirs. 0.2 0.3
Poisson's Ratio-23 Dir. 0.25 0.3
Coeff. of Ther. Expansion-1i1 Dir. (cm/cm- 0C) 1.0e-7 7.0e-5
Coeff. of Ther. Expansion-22 & 33 Dirs. (cm/cm- oC) 1.0e-5 7.0e-5



Table 4.4: Comparison of the Method of Cells and User Element Solutions
for a Composite with Transversely Isotropic Constituents

Method of Cellsa Subcell User Elementa

588.67 78.32 78.32 588.52 78.32 78.32
Effective Stiffness Matrix 78.32 241.58 77.69 78.33 241.56 77.68

78.32 77.69 241.58 78.33 77.68 241.56

Shear Modulus-12 Dir. 82.17 82.19
Shear Modulus-13 Dir. 82.17 82.19
Shear Modulus-23 Dir. 64.52 64.51

Coeff. of Ther. Exp.-11 Dir. 6.82e-6 7.0e-6
Coeff. of Ther. Exp.-22 Dir. 4.50e-5 4.5e-5
Coeff. of Ther. Exp.-33 Dir. 4.50e-5 4.5e-5

aAll stiffness moduli are given in terms of GPa; the coefficients of thermal expansion are given
in terms of (cm/cm- °C)

4.2 Verification of the User Material

Once the subcell user element had been tested out completely, the element was used

to develop the user material routine as described in Chapter 3. In order to test the

entire user material, the results of a simple one element analysis were compared to

the results obtained from the method of cells in the same manner as described for

the multi-element mesh of subcell elements. The results from this analysis showed

that the user material routine was indeed providing the same results as the method

of cells.

Once this had been established, the user material was ready to be tested on

realistic finite element analysis problems. Several problems were set up in ABAQUS.

The tests were performed by running the problems first with the standard orthotropic

material model provided by ABAQUS and using the effective material properties

obtained from the method of cells solution. The same problems were then run once

again, this time using the user material routine. These tests, in addition to checking

the accuracy of the results, provided information about the increase in computation

time required when the micromechanical model is introduced. They also highlight

some of the advantages of using a micromechanical material model. For these analyses



Table 4.5: Properties of the Fiber Material, AS

S1 As I
Longitudinal Modulus (GPa) 213.74
Transverse Modulus (GPa) 13.79

Longitudinal Shear Modulus (GPa) 13.79
Transverse Shear Modulus (GPa) 6.89

Longitudinal Poisson's Ratio 0.20
Transverse Poisson's Ratio 0.25

Long. Coeff. of Ther. Expansion (cm/cm- OC) -0.99e-6
Trans. Coeff. of Ther. Expansion (cm/cm- C) 10.08e-6
Longitudinal Tensile Strength (GPa) 2.07
Longitudinal Compressive Strength (GPa) 1.79

AS, a carbon fiber by Hercules, and LM, a low modulus epoxy, were used as the

constituent materials for a fiber volume fraction of 0.6. The use of these properties

was intended to be for numerical comparison. The properties are given in Tables 4.5

and 4.6 as found in [45].

4.2.1 Plate Model With Thermal Loading

The first problem chosen for study was a simple plate problem. The plate was meshed

with 256 C3D203 elements, four elements through the thickness of the plate and eight

elements along the width and length as shown in Figure 4-2. Two different composite

layups were created. The first was set up as a unidirectional composite, with the fibers

running in the one direction for all element layers. The second layup represented a

crossply laminate; the fibers in the top two element layers ran in the one direction

while the fibers in the bottom two element layers ran in the two direction. Pin and

roller boundary conditions were imposed on the bottom of the plates at three of the

four corner nodes, as shown in Figure 4-3.

The plates were then subjected to two types of thermal loads: an uniform tem-

perature increase and a temperature gradient through the thickness. In the uniform

3The C3D20 element is a 3-dimensional, 20-noded full integration quadratic element.



Table 4.6: Properties of the Matrix Material, LM

Modulus (GPa)
Shear Modulus (GPa)
Poisson's Ratio
Coeff. of Ther. Expansion (cm/cm- OC)

Tensile Strength" (MPa)
Compressive Strength" (MPa)
Shear Strength" (MPa)
Tensile Fracture Strain (%)
Compressive Fracture Strain (%)
Shear Fracture Strain (%)

2.21
0.77
0.43

102.6e-6
55.16

103.4
55.16

8.1
15
10

alt is not completely clear how these properties were obtained as the testing was not described
in [45].

loading, the temperature throughout the two laminates was increased by 100 0C over

the reference temperature4 . In applying the thermal gradient to the unidirectional

laminate, the temperature was increased linearly through the thickness of the plate

so that the top of the plate was 100 0C hotter than the bottom. The temperature at

the bottom of the plate was kept at the reference temperature. When the thermal

gradient was applied to the crossply laminate, the midplane of the composite rather

than the bottom was maintained at the reference temperature. The temperature in

the composite was then increased linearly to be 50 C hotter at both the top and

bottom of the plate.

The results for the problem of the unidirectional composite under a constant

temperature increase are presented in Table 4.7. As can be seen from the data,

while the global stresses are zero, the stresses inside the individual fiber and matrix

cells are nonzero. This is as expected since the coefficients of thermal expansion

are different between the fiber and matrix. The micromechanical model is able to

capture this fact, whereas the model based on effective global properties shows only

that the global stress state is zero. The composite has simply expanded uniformly

4 The reference temperature refers to the temperature at which there are no thermal stresses.

LM



Figure 4-2: Mesh of Plate Problem
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Figure 4-3: Boundary Conditions for Thermal Loading of Plate Problems

in the two and three directions while contracting in the one direction (since the fiber

has a negative coefficient of thermal expansion in the axial direction.) From looking

at the failure criteria, it can be seen that the matrix is up to 30% of its failure value

even though the global stresses are zero. This indicates very strongly the potential

for failure of the matrix when thermal strains are present in addition to other forms

of loading, yet this effect would not be captured in a macroscopic analysis. This also

illustrates the importance of accounting for the localized stresses introduced by the

difference in the coefficients of thermal expansion for the matrix and fiber.

The temperature increase was then applied to the crossply composite. The de-

formed mesh is shown in Figure 4-4. The curvature in the mesh results from the fact

that the plys expand in different directions due to the lack of symmetry about the

mid-surface. The top ply expands the most in the two direction while the bottom ply

expands most in the one direction. This behavior results from the fact that expansion

in the axial direction is limited by the negative axial coefficient of thermal expansion

in the fiber. A plot of the global normal stresses in the one direction shows that the

global stresses, like the constituent stresses, are also no longer zero (See Figure 4-5).

C
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Figure 4-4: Deformed Mesh for Crossply Laminate Under
Uniform Temperature Increase
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Figure 4-5: Global Normal Stresses in One Direction for Crossply
Laminate Under Uniform Temperature Increase
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Table 4.7: Results for Unidirectional Composite Under
Constant Temperature Change

S11 a 22  033 a12  a13 1 23
Maximum Overall Stresses (MPa) 0 0 0 0 0 0
Fiber Stresses (MPa) 20.81 6.59 6.59 0 0 0
Maximum Matrix Stresses (MPa) -42.19 -22.66 -22.66 0 0 0

Failure Criteria:a Fiber
0.01

Matrix
0.32

aCalculated for the fiber using the uniaxial criterion of equation 3.48. For the matrix the calcu-
lation was performed by dividing the maximum von Mises stress by the compressive strength (103.4
MPa). A value > 1 indicates failure.

Figure 4-6 shows the deformed mesh for the unidirectional laminate when sub-

jected to the linear thermal gradient through the thickness. The curvature results,

as would be expected, since the material expands more at the top of the composite

where it is hotter than at the bottom. While the global stresses for this case are

zero, Figure 4-7 shows that the constituent stresses are not. As can be seen, the

axial fiber stress increases linearly through the thickness of the composite. This same

problem was run once again using a negative thermal gradient. The only change this

introduced was found in the failure criteria. The values, while still small, increased

for the negative gradient since the composite is weaker in compression.

The thermal gradient was then applied in the manner described above to the

crossply laminate. The deformed mesh, shown in Figure 4-8, is similar to that for the

uniform temperature problem of Figure 4-4. By comparing the global normal stresses

in the one direction, Figures 4-5 and 4-9, it is found that the stress is much higher in

the uniform temperature case. This is correct since the temperature change for the

gradient problem is really half of that for the uniform increase problem.

4.2.2 Plate Model Under Bearing Pressure

The unidirectional and crossply laminates problems were also run subjecting the plate

to a uniform pressure of magnitude 100 MPa applied to the top of the plate. This

pressure was chosen to be on the order of the compressive strength of the matrix

--- --
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Figure 4-6: Deformed Mesh for Unidirectional Composite
Under Linear Thermal Gradient
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Figure 4-8: Deformed Mesh for Crossply Laminate Under Thermal Gradient
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Figure 4-9: Normal Stresses
Laminate Under

in One Direction for Crossply
Thermal Gradient
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Table 4.8: Results for Unidirectional Fiber Laminate under Bearing Pressure

011 22 033 12 13 023

Max. Overall Stresses (MPa) 0 0 -100.0 0 0 0
Fiber Stresses (MPa) 27.56 16.97 -118.8 0 0 0
Max. Matrix Stresses (MPa) -75.66 -58.33 -118.8 0 0 0
Failure Criteria:a Fiber Matrix

0.013 1.32

von Mises Stress in Matrix Element (12) Element (21) Element (22)
Element (/y)b (MPa) 45.43 53.92 21.04

aCalculated using equations 3.48 and 3.49. A value > 1 indicates failure.
bThis is compared to the compressive strength of the matrix, 103.4 MPa from Table 4.6.

in order to show some of the failure prediction capabilities of the micromechanics

material model. The boundary conditions in this case were changed so that all nodes

on the bottom face of the plate were constrained in the three direction. In addition,

the pin condition and one of the roller conditions on the corner nodes shown in

Figure 4-3 were kept to prevent rigid body motion. The results for the unidirectional

laminate are presented in Table 4.8. The table shows that the macroscopic stress

state is one of uniaxial stress in the three direction. However, from looking at the

individual matrix and fiber subcell stresses, it is found that the local stress state is not

simply uniaxial loading as a result of the interactions between the fiber and matrix.

It was found in testing performed at Los Alamos National Laboratory that a

bearing pressure loading situation such as that applied in this problem does not

produce failure within the matrix, and in fact, that the matrix was still well below

failure [44]. Inconsistent with this finding, the values for the failure criteria given in

Table 4.8 show the matrix to be failing. It should be remembered though that these

failure criteria compare the maximum compressive stress to the uniaxial compressive

strength. In actuality, the subcell matrix and fiber stresses are shown in Table 4.8 to

be multiaxial. If instead the von Mises equivalent stress in the matrix is compared to

the compressive failure strength, it appears that the matrix is in fact not undergoing

failure. It must be recalled that it is unknown what methods were used to obtain

the value for the compressive failure strength cited here. It is unclear whether this



is a yield strength value or if failure occurred before yielding; hence, the von Mises

assumption that failure occurs at the onset of yielding may or may not be valid.

The discrepancy between the two methods of failure prediction displays some of the

shortcomings of the simple micromechanics failure criteria used, in the model and

the importance of choosing the appropriate criteria. The Aboudi failure criteria are

intended for use in uniaxial loading situations and hence do not perform well in

situations where the stress state is not simply uniaxial. The von Mises criterion, on

the other hand, does take into account the presence of a multiaxial stress state, but

it is a yielding criterion and is not applicable to all situations. The analysis here also

points to the need for experimental data to compare with the micromechanical failure

criteria. Finally, there is a need for more thorough reporting of material properties

and the methods used to obtain them.

The results for the crossply laminate mesh when subjected to the same bearing

pressure are shown in Table 4.9. Now, it is not only just the local stress state, but

also the macroscopic stress state for each ply which is no longer uniaxial. The matrix

failure criteria once again indicates failure, but as before the von Mises indicates that

there is no failure.

4.2.3 Quasi-Isotropic Pressure Vessel

The final problem used to test the user material routine was a quasi-isotropic pres-

sure vessel under an internal pressure of magnitude 100 MPa. This problem was

chosen more as a demonstration illustrating how the model would be used to cre-

ate a situation of quasi-isotropy than to actually show that the model was working

correctly.

The mesh of the spherical pressure vessel was created by taking advantage of

axisymmetry. Due to this symmetry, it was possible to model only a small wedge

of the pressure vessel. In doing so, the size of the problem, and consequently the

expense, was greatly reduced. The resulting mesh is shown in Figure 4-10. Two

types of elements were used in the analysis. The elements at the ends of the wedge



Table 4.9: Results for Crossply Laminate under Bearing Pressure

II II 112 1 922 a I 12a l ( 13aJI U23a
hT -- - - -- f I II 1 ,,,,

I Max. Macro. Stresses, 0O Ply 105.2 1.10 -92.07 0.56 1 15.71 20.36
Min. Macro. Stresses, 00 Ply 11 -10.68 -42.80 1-114.1 1 -0.56 I -15.71 -20.36
Max. Macro. Stresses, 900 Ply 85.75 2.02 -72.48 2.111 13.051 23.83
Min. Macro. Stresses, 900 Ply -8.01 -52.42 -126.7 1-2.11 -13.05 -23.83
Max. Fiber Stresses, 00 Ply 215.1 18.14 -103.9 0.67 18.81 20.36
Min. Fiber Stresses, 0

0

Ply 10.20 -33.70 -128.8 -0.67 -18.81 -20.36

I_ _ 1 I+ - 4

11 Max. Fiber Stresses, 900 Ply 11178.1 1 14.77 -85.97{ 2.53 15.62 23.83
Min. Fiber Stresses, 900 Ply 17.93 J1-41.62 -145.6 -2.53 1 -15.62 1 -23.83
Max. Matrix Stresses, 00 Ply -70.60 -57.44 -103.9 0.18 18.81 20.36
Min. Matrix Stresses, 00 Ply' i -87.86 1 -80.29 -128.8 1 -0.18 -18.81 -20.36 I1
Max. Matrix Stresses, 900 Plyb  -54.83 -41.82 -85.97 0.68 15.62 23.83
Min. Matrix Stresses, 900 Plyb -98.68 -89.63 -145.6 -0.68 -15.62 -23.83
Failure Criteria:b L Fiber Matrix

0° Ply 0.10 1.74
90' Ply 11 0.086 i 2.00

von Mises Stress in Matrix
Element (0-y) (MPa) Element (12) Element (21) Element (22)

00 Ply 47.28 64.28 40.57
900 Ply 51.59 j 64.98 45.52 11

aAll stress values are in MPa.b Calculated using equations 3.48 and 3.49. A value > 1 indicates failure.
CThis is compared to the compressive strength of the matrix, 103.4 MPa from Table 4.6.
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have only 15 nodes, and consequently, C3D15 5 elements were used. The elements in

the remainder of the wedge were constructed using C3D20 elements.

A quasi-isotropic composite is one in which the mechanical behavior is nearly

isotropic despite the anisotropic nature of the composite constituents. This situation

may be created in a composite by winding the fibers using three orientations, 00 and

±600 from the 00 layer. The fibers are wound around a core made to the desired shape

of the end product, oftentimes a cylinder or sphere. Only a single layer of fibers is

wound at any orientation before the fiber orientation is changed. For example, a single

layer of 0O fibers would be wound, then the orientation would be changed to +600

and another single layer of fibers would be added. The orientation is then changed

to -600 and the final layer is wound. The orientation is then returned to 00 and the

whole process is repeated again. The matrix material, which is basically an epoxy,

is brushed on in the form of a liquid between each fiber layer and hardens to hold

the fibers in place. The oriented fiber layers themselves are extremely thin. Thus,

the three differently-oriented layers are occupying nearly the same space within the

composite, and they act in conjuction to provide behavior that is nearly independent

of the way the composite is oriented.

This condition of quasi-isotropy can be created in a finite element program by

layering three sets of elements on top of each other. For the problem at hand, the

elements shown in Figure 4-10 were used along with two more sets of identical elements

defined on the same nodes. Each layer was then given a different fiber orientation.

In the first layer, the fibers ran circumferentially around the sphere. The remaining

two layers were then set up with fibers running at ±600 from the circumferential

layer. In order to orient the fibers in the correct direction, it was necessary to set

up a local coordinate system at each integration point. The *ORIENTATION and

the user subroutine ORIENT were used in ABAQUS to set up these local coordinate

systems. Since the three layers were superimposed on top of each other, the fiber

and matrix properties had to be appropriately reduced. Consequently, the moduli for

each layer were equal to the original moduli divided by three.

SThese elements are 15-noded, full integration quadratic elements



Figure 4-10: Mesh of the Spherical Pressure Vessel Wedge
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Table 4.10: Finite Element Solution for Stresses in Quasi-Isotropic Pressure Vessel

U11a U22 a U33 a 12a ( 13 a 2 3 a

Stresses at Inner Surface
00 Fibers 162.3 -31.53 -2.08 0.05 0.0001 -0.03

+600 Fibers 161.2 -31.53 -2.03 0.02 0.02 -0.04
-600 Fibers 161.2 -31.53 -2.03 -0.07 -0.02 0.01

Totalb 239.8 -94.59 238.7 0.0 0.0001 -0.06
Stresses at Outer Surface

00 Fibers 90.74 -0.309 6.64 -0.074 -0.003 0.084
+600 Fibers 90.76 -0.309 6.63 -0.069 -0.004 0.086
-60' Fibers 90.90 -0.310 6.63 0.143 0.0004 -0.002

Totalb 1146.1 -0.928 146.2 -0.0001 -0.063 0.168

aAll stress values are in MPa.
bThis is the sum of the three after transforming the -600 stresses to align with the 00 stresses.

After the transformation, a22 represents the radial stress while all and a33 are the stresses in the
circumferential and meridinal directions, respectively.

The results of the analysis are presented in Table 4.10. The macroscopic stresses

are given for each orientation as well as the total macroscopic stress in the sphere. The

values for the stresses in each orientation are given in the local coordinate systems;

therefore, in order to calculate the total stresses in the sphere, the stresses in the -600

orientations had to be transformed to align with the 0' fiber direction [26]. After this

transformation was performed, the total stresses were then calculated by summing

over the three layers.

The stresses of the quasi-isotropic solution may be compared with the complete

elastic solution for an isotropic thick-walled sphere [51], plotted as a function of

the radius in Figure 4-11. The boundary stresses from the elasticity solution at

the inner and outer surfaces of the sphere are given in Table 4.11. The elasticity

solution was performed using spherical coordinates; the total stresses in the finite

element solution are also reported in spherical coordinates, but in a slightly different

order due to the use of the orientation options in ABAQUS. The radial stress, a,, in

Table 4.11, corresponds to a22 in the finite element solution of Table 4.10. Similarly,

the circumferential and meridinal stresses, aee and aco, correspond to all and a33,

respectively, in the finite element solution.



Table 4.11: Elasticity Solution for Stresses in a Thick-Walled Sphere

0"rra C00a ,,,a rOa ra 00a

Inner Surface -100.0 207.4 207.4 0 0 0
Outer Surface 0 157.4 157.4 0 0 0

aAll stress values are in MPa.

Figure 4-11a shows that the magnitude of the radial stress is maximum at the

inner surface of the sphere and decays through the thickness to zero at the outer

surface. The maximum, -100 MPa from Table 4.11, is simply the negative of the

internal pressure. In comparison, the finite element solution produces a value of

-94.59 MPa at the inner surface, as found in Table 4.10, an error of only 5.4%. At

the outer surface, the finite element solution provides a value of -0.928 as compared

to zero for the elasticity solution. A small part of the error found here may be

accounted for by remembering that the finite element solution is computed at points

inside the elements and not actually at the boundaries of the sphere. In addition,

another portion of the error is probably due to the fact that only three elements were

used through the thickness of the sphere. As the number of elements through the

thickness is increased, the solution should come closer to the true values obtained

in the elasticity solution. The largest part of the error however is probably due to

the fact that a quasi-isotropic state is created in the finite element problem in the

local 1-3 plane. The behavior in the quasi-isotropic sphere is therefore closer to that

of a transversely isotropic composite, with the anisotropy in the radial direction.

Hence the comparison to the isotropic elasticity solution for the behavior through

the thickness of the sphere is not completely correct. Yet despite this fact, the finite

element solution still provides a decent approximation of isotropic behavior for the

radial stresses in the sphere.

From symmetry arguments, it is obvious that the stresses in the circumferential

and meridinal directions are equal. They will subsequently be referred to simply as

the hoop stress. The hoop stress, like the radial stress, is also maximum at the inner

surface and minimum at the outer surface as seen in Figure 4-11b. From Table 4.11,
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Figure 4-11: Elasticity Solution for Thick Walled Sphere
(a) Radial Stress (b) Stress in the Circumferential and Meridinal Directions



the boundary values for the elasticity solution are found to be 207.4 MPa and 157.4

MPa. When looking at the finite element solution for the hoop stress, it is seen that

the values for all and aU3 are not exactly equal, but very close to it. The difference

at the inner surface is 1.1 MPa, off by only 0.5%. The agreement is even better

at the outer surface where the stresses differ by less than 0.1%. The hoop stress

values for the finite element solution do not however compare as well to the elasticity

solution as did the radial stresses. The error in the finite element solution is -7.2%

at the outer surface and increases to 15.6% at the inner surface. It is thus seen that

while the method of cells material model did succeed in providing essentially isotropic

behavior in the 1-3 plane, the fact that the model is essentially transversely isotropic

rather than being completely isotropic prevents excellent agreement between the finite

element solution and the elasticity solution. Once again, the accuracy of the finite

element solution should increase as the number of elements through the thickness is

increased.

4.3 Statistical Representation of Geometry

Another advantage of the method of cells over other micromechanical composite mod-

els is that statistical variation of both the constituent properties and the composite

geometry can be introduced very easily. In this section, the unidirectional composite

plate model of Section 4.2.1 is altered by allowing the fiber spacing to vary throughout

the plate. This is done by using a different volume fraction from integration point

to integration point in the material property calculation. In order to maintain the

continuous fiber model, the variation of the volume fraction was allowed only in the

two and three directions of the plate (See Figure 4-2).

Since the volume fraction was allowed to change between integration points, it was

necessary to use a state variable rather than the normal property definition under the

*USER MATERIAL card in ABAQUS in order to input the volume fraction into the

material subroutine. The value of the state variable was set for each integration point

before the analysis was begun using the user subroutine SDVINI. A random number
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Figure 4-12: Distribution of Volume Fractions used in Material Property Calculation

generator was included in this subroutine in order to generate the volume fraction

values for use in the material subroutine. The numbers provided by the random

number generator ranged between zero and one. The distribution was normalized

and the range was altered so that the actual volume fraction used in the material

calculation was allowed to range between 0.525 and 0.675. These limits were selected

based on a standard deviation of 0.025 for the volume fraction reported by Engelstad

and Teply in [29]. A histogram of the resulting statistical distribution for the volume

fraction is shown in Figure 4-12. The actual spatial distribution of the volume fraction

throughout the plate is given in Figure 4-13. The fibers in the plate run in the one

direction, and as can be seen, the volume fraction changes in the two and three

directions but not in the one direction. The blacked out areas of the plot represent

areas where the volume fraction is changing so much that the contour lines overlap.

Figures 4-14 and 4-15 show views of the plate from the sides. In Figure 4-14 the view

is along the 2-direction axis, and the variation of the volume fraction in the 1-3 plane

can be seen more clearly. Similarly, Figure 4-15 views the plate along the 1-direction



Table 4.12: Stresses in Unidirectional Plate with Varying Volume Fraction

__11 0j22 0'33 a12 J 13 023
Maximum Overall Stresses (MPa) 5.97 7.07 8.53 0.08 0.40 0.73
Minimum Overall Stresses (MPa) -5.92 -7.42 -6.73 -0.08 -0.40 -0.82
Maximum Fiber Stresses (MPa) 23.83 13.26 14.92 0.10 0.49 0.73
Maximum Matrix Stresses (MPa) -46.96 -28.11 -28.26 -0.03 -0.14 -0.82
Failure Criteria: Fiber Matrix

0.012 0.34

aCalculated for the fiber using the uniaxial criterion of equation 3.48. For the matrix the calcu-
lation was performed by dividing the maximum von Mises stress by the compressive strength (103.4
MPa). A value > 1 indicates failure.

axis so that the variation in the 2-3 plane can be plainly seen.

As in Section 4.2.1, the analysis was conducted by subjecting the plate to a uni-

form temperature increase of 100 'C over the reference temperature. The resulting

deformed mesh is shown in Figure 4-16 with the displacements magnified 300 times. It

can be seen that the changing volume fraction introduces a small amount of waviness

in the 2-3 plane of the deformed mesh. This can be seen better in the side view of the

deformed mesh shown in Figure 4-17 where the displacements are further amplified to

1000 times their real value. In contrast to the results of the analysis performed with

constant volume fraction (summarized in Table 4.7), the analysis here shows that the

macroscopic stresses are no longer zero (See Table 4.12). Contour plots of the normal

stresses in the two and three directions are shown in Figures 4-18 and 4-19. From

comparing these figures to the plot of the volume fraction variation in Figure 4-13, it

is seen that the pattern of stress distribution is very similar to that for the volume

fraction, as would be expected. It is also worthy to note the fact that the non-uniform

volume fraction has led to the development of shear stresses, the largest of which is

a23. Figure 4-20 shows that the distribution of the a 23 shear stress is also similar to

that of the input volume fraction.

It is also shown in Table 4.12 that the individual matrix and fiber stresses are

higher than in the uniform volume fraction case. In general the stresses increased

by 10 to 25% for the varying volume fraction case. However, the transverse normal
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Figure 4-13: Spatial Distribution of the Volume Fraction throughout the Plate
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Figure 4-16: Deformed Mesh of Plate with Varying Volume Fraction
The Displacements are Magnified 300 Times
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Figure 4-17: Side View of Deformed Mesh at 1000 Times Magnification
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Figure 4-19: Normal Stress in the Three Direction for Plate
with Varying Volume Fraction
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stresses in the fiber more than doubled when the composite was no longer assumed to

be perfectly periodic. As a result of the higher stresses in the composite constituents,

it was also found that the values for the failure criteria listed in the table had increased.

In conclusion, the addition of variability in the fiber spacing throughout the matrix

has indicated that the periodic method of cells model may understate the effects

caused by the large difference between the fiber and matrix properties. The addition

of variation has no doubt produced a model truer to the actual composite, but further

study is needed in which all of the input properties are allowed to vary. Even more

important is the need for comparison with experimental data.

4.4 Computational Expense

The use of a micromechanical material model such as the one developed in this work

is limited by the amount of time it adds to the total time required to complete the

analysis. The fraction of the computation time devoted to material property calcu-

lations to the total computation time decreases as the number of degrees of freedom

increases. This is due to the fact that as the number of degrees of freedom grows, the

amount of time spent in elimination to solve the problem drastically increases while

the increase in the amount of time spent in material calculations is approximately

linear. The usefulness of a complex material model thus depends on the rate at which

the proportion of time spent in the material model decreases. Since ABAQUS does

not report the amount of time spent on each different part of the analysis, it was

necessary to use an estimate of the way that increasing problem size reduces the

relative effect of material property calculations on the total computation time. This

estimate was performed by comparing computation times between problems run with

the method of cells material model and problems run with a macroscopic material

model.

The unidirectional plate bearing pressure problem of Section 4.2.2 was used to

assess the behavior of this estimate. Before the analyses could be run, it was necessary

to re-mesh the plate several times. The meshes started at using a single C3D20



Table 4.13: Comparison of Computation Time Between Plate Problem
with and without Method of Cells

Computation Timea

Problem Size Cray Y-MP 8/64b DEC 3000c VAX 4000-60 VAX 4000-200

One Element 0.182 0 2 4
with user routine 0.628 1 12 26
Four Elements 0.432 1 6 13
with user routine 2.167 6 45 100
32 Elements 2.688 8 46 108
with user routine 16.33 55 393 800
256 Elements 22.32 81 703 1737
with user routine 131.5 400 3439 7254
2048 Elements 338.9 1831 38153 98562
with user routine 1214. 4385 59049 142619

'All values are in seconds.
bThe version of ABAQUS for the Cray reports computation time in seconds up to four decimal

places while the version for VMS rounds to the nearest second.
cThis workstation uses the new DEC alpha chip.

element to model the whole plate. The mesh was then refined by dividing the plate

into four C3D20 elements. Consecutive meshes were then constructed by multiplying

the number of elements by two for the width, length, and thickness, yielding meshes

of 32 elements, 256 elements, and 2048 elements. These meshes were run using both

the standard orthotropic model of ABAQUS and the method of cells micromechanical

model. The results obtained are summarized in absolute terms in Table 4.13 while

the ratios of computation times are given in Table 4.14. The problems were run on

several different platforms to also estimate the effect of computer architecture on the

decay of the ratio.

The trends in the ratios show that the effect of the additional computation time

due to the use of the method of cells material model is large initially and then decreases

rapidly as the number of degrees of freedom becomes very large (see Figure 4-21).

The slight increase in the ratios at the intermediate problem sizes may be due to a

couple factors. First of all, the computation times were only given to the nearest

second on the DEC workstations. As a result, the ratio is highly sensitive to the

rounding of the values for smaller problems. Secondly, when the number of degrees



Table 4.14: Ratio of Computation Times with and without the Method of Cells

Ratio
Problem Size Cray Y-MP 8/64 DEC 3000 VAX 4000-60 VAX 4000-200

One Element 3.45 Undef.a 6.00 6.50
Four Elements 5.02 6.00 7.50 7.69
32 Elements 6.08 6.88 8.54 7.41
256 Elements 5.89 4.94 4.89 4.18
2048 Elements 3.58 2.39 1.55 1.45

aThe computation time for the problem without the user routine was rounded to zero by the
computer so the ratio could not be computed.

of freedom is small, the elimination is still a very minor part of the analysis. In this

case the setup of the problem and the material routine no doubt dominate the total

computation time.

The effect of computer architecture can be seen in Figure 4-21. The ratio for

the DEC platforms falls off quickly towards the asymptotic value of one after the 32

element problem. However, the behavior on the Cray Y-MP is slightly different. This

may to some extent be due to the fact that the values for the Cray were reported

in seconds with significant digits up to three decimal places and henceforth are more

accurate for the smaller problems. The ratios for the larger problems show however

that the Cray still behaves differently as the problem size grows. The increase in the

ratio for the Cray is more gradual and also decays later and slower than those for the

DEC workstations. This effect is probably due to the vectorized nature of the Cray

since the user routine was not written to take advantage of vectorization.



1 10 100 1000

--0- Cray Y-MP
-0- DEC 3000
-a- 4000-200
-0- 4000-60

10000

Number of Elements

Figure 4-21: Ratio of Computation Times with and without the Method of Cells
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Chapter 5

Nonlinear Finite Element

Adaptation

As mentioned previously, the model developed in Chapter 3 is for linear-elastic mate-

rials. In order to allow the model to handle more realistic material behaviors such as

plasticity and/or damage evolution, it is necessary to include nonlinearity. In a non-

linear finite element model, the stiffness matrix is no longer independent of the loading

history as in the linear-elastic case. It is instead a function of the displacements and

forces internal to the representative cell, as shown in equation 5.1,

[K] = (5.1)

where [K] is now the tangent or instantaneous stiffness matrix, {R%} is the internal

force vector, and {u} is the displacement vector. As a result, it is necessary to iterate

on the displacements inside of the material model until convergence is achieved.

This chapter outlines the inclusion of a nonlinear iteration scheme into the method

of cells material model. In addition, a very simple debonding model is introduced for

the interface element, which is then employed to demonstrate the use of this nonlinear

iteration scheme.
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5.1 Newton Iteration Scheme

To perform the iterations on the displacements and internal forces, a Newton iteration

scheme was included in the material model. The displacement increment at iteration

step i was determined according to the difference equation:

{ut+At}1 = {u'At}_i- + [K({ut+At}i 1_)] - 1 {{Rt+ a t} - {Ri({ut+At})_i)}} (5.2)

where Rb is the boundary force vector. The convergent internal displacements and the

convergent internal forces from the previous time increment were used as the starting

point for the first iteration at i = 1. That is,

{u +t}0o = {ut}c (5.3)

{Ri({f t1}o)} = {Ri({ut})} (5.4)

where {Ri({ut}c)} and {utj, are the convergent internal forces and displacements of

the previous increment. In order to have the internal displacements and forces of the

previous time step available at the next time increment, it was necessary to store the

internal displacements at each step as state variables after convergence was reached.

The convergent internal forces could then be calculated using the displacements.

Convergence for the effective constitutive matrix was determined by comparing

the incremental internal force residuals at each iteration to a convergence tolerance

chosen by the analyst.

5.2 Damage Model

Composite properties are heavily dependent on the strength of the bond between

the two material phases. In many cases it is the breaking of these bonds that ulti-

mately leads to the failure of the composite. In order to try and capture the effect of

debonding on the composite behavior, the interface element discussed in section 3.2

was revised to allow for damage to the bonds. The degradation of these bonds over
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time affects the overall material stiffness making the model nonlinear and requiring

the use of an iteration scheme such as the Newton method presented above.

At this stage in the development of the nonlinear debonding model, the exact

form of the debonding criteria was less important than the actual framework set

up to incorporate debonding. A complicated interface model at this point would

in all probability be too computationally expensive to be useful for the intended

purpose of this model. The Mohr-Coulomb criterion introduced below is most likely

a poor model of yield in the interface. It should be noted that modeling the interface

between the constituents of a composite is currently a very active field of research, and

accurate experimental data for the stiffness and failure of the interface is practically

nonexistent.

The damage model introduced in this section was based on a Mohr-Coulomb form

for the debonding criteria, as shown in equation 5.5

-r = /C+l + 2 T123)1/2 (5.5)

where Te is an "effective stress" and p is a property of the bond similar to a friction

coefficient. This criterion has been used in SOILS models and for polymer yielding

[41]. It describes failure as pressure dependent, relating the onset of permanent

deformation to the stress state. It uses the idea of internal friction to calculate an

effective shear stress which depends on the normal force to determine when slippage

begins. As a result, the bond will fail sooner in tension than in compression using

this model.

The relation in 5.5 can be converted to a strain basis:

-r = pEE1 + G(Qy 2 + 71)3/

Ye = + (7Y2 + Y3)1/2 (5.6)

where Ye is then the effective strain. The coefficients E and G are also properties of

the bond.
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Figure 5-1: Relationship of the Damage Parameter to the Effective Strain

Using the effective strain, a functional relationship for the damage parameter was

defined as shown in Figure 5-1. The parameters -1y and -7 can be thought of as

yielding and failure strain levels, respectively, while -/; is the maximum value of Ye

obtained up to the current step. The damage parameter has a physical interpretation

as the ratio of the debonded area of the interface to the total area of the interface:

D = AD(5.7)
(AD + Ag)

where D ranges from 0 to 1. It should be noted that D depends only on the maximum

value of 1e over time and never decreases.

The force-deflection relations for the springs of the interface element are then

defined as:

F, = K,•(1 - D)651  (56 > 0)

F, = K,,61 (6~ < 0) (5.8)
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for the normal spring (direction one) and

Ft = K,(1 - D)Ji, i = 2,3 (5.9)

for the shear springs in the two and three directions. The stiffnesses are defined as:

AE
Kn= h

AG
KS

h

where h is the bond thickness and A = AD + AB. The strains are derived from the

displacements as

62
7Y12 h

63
Y13 h

h

Using the force-deflection relationships, the tangent stiffness matrix can be found

by differentiating 5.8 and 5.9.

where

and

{OF} = [K]{O6}

{OF} = {
{06} = {

OF1
OF2
OF3

ai1
062

063
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The kll component of the tangent stiffness matrix is then

ki 1 = Kn(1ail - D) - Kn61

for S1 > 0 and

for 61 < 0. The chain rule derivatives are:

OD

fory, e< y,,y, ye > f, or ye < 7- and

aD
87e

aD (^ 0)

61

S0

1
('j - ' -

when ,y < ye < Yf and Ay, > 0, Ye > 7Y (See Figure 5-1). And,

8'e pE
a61 Gh

Similarly, the off-diagonal terms are:

8F1
k12 = O2 - -- KnS1(962 ( D (ye(7'e j62

62 h(622 + 6325)1/2

k13 aFl K I D063 &'YKe( ao32

0Ye 63

63 h(622 + 632)1/2
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(5.12)

(5.13)

(5.14)

where

(5.15)

(5.16)

and

where

(5.17)

(5.18)

(5.19)



The remaining stiffness terms then follow as:

_= -aF = -Ks_ aD (^,,e (5.20)

k1= -K ,, 62 o \ (5.2)

k22 F2 - Ks(1- D) - K s62 (5-.21)(062 / \t62/

k23 F 2 (-K62 9(5.22)

The, r e ( iact al re paF3 9D 87I-,ek.5 F - (aD-KA e(5.23)

k32d b iF 3 o e a8(7 e(5.24)
K 86a62e 2

kaF 3sK, ( - D) - K D -(5.25)
063 \ 0 Ye /863

A complete listing of the code for the nonlinear material model with the damage

interface elements is provided in Appendix B.

5.3 Example Results

The reader is advised once again that actual values for the properties of the bond

described above are unavailable. The following exercises are hence simply numerical

experiments to illustrate both the use of the nonlinear routine and the prediction of

failure due to both matrix-fiber debonding and fiber breakage.

Along with the introduction of the damage criterion in the interface element,

additional "interface" elements were added to the original representative cell mesh

so that matrix cracking and fiber breakage in the axial direction were also possible

(See Figure 5-2). The word interface is used loosely here since the same element and

failure criterion as used for modeling matrix-fiber debonding is also used to model the

fiber breakage and matrix cracking. A summary of the failure modes allowed by the

resulting model is given in Table 5.1. Also listed in the table are the state variables

used to store the damage parameter for each particular element.
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D. Macek

Figure 5-2: Representative Cell with Added "Interface" Elements In Axial Direction
The SDVi are the actual state variables used to store the damage parameter

for the interface elements.
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Table 5.1: Failure Modes of the Revised Method of Cells Material Model

Interface Element" Type of Failure Modeled Associated State Variable
S1 Matrix-Fiber Debonding SDV87
S2 Matrix-Fiber Debonding SDV88
S3 Fiber Breakage SDV89
S4 Matrix Cracking SDV90
S5 Matrix Cracking SDV91
S6 Matrix Cracking SDV92
S7 Matrix Cracking SDV93
S8 Matrix Cracking SDV94

aAs designated in Figure 5-2.

5.3.1 Matrix-Fiber Debonding

To illustrate the effect of matrix-fiber debonding on the behavior of a composite

structure, a mesh was constructed for a cantilever beam subjected to a prescribed

end deflection. During the analysis, the deflection was ramped up to the maximum

value and then ramped back down to zero. The fibers in the model were unidirectional

and ran along the length of the beam (the global one direction in Figure 5-3). The

interface properties were specified so that failure would occur by shearing at the

midplane of the beam. The form of the effective strain-damage parameter curve was

such that brittle fracture occurred when yf was reached, similar to the behavior of

many common matrix materials. The problem was then run for three temperature

ranges. In the first, the beam remained at the reference temperature for zero thermal

strain, 20 C, throughout the loading. In the second, the temperature was uniformly

raised to 70 C throughout the composite before the loading was begun; likewise, in

the third case the temperature was lowered to -30 C before the beam was loaded.

A plot of the damage parameter in the S1 spring for the -30'C case is shown in

Figure 5-3. The beam is shown just after the first fracture of the matrix-fiber bond has

occurred. The displacement at the end of the beam is equal to 15.76 mm at this point.

It should be noted that even though the legend shows the maximum damage to be

0.5, the data shows the true value to be 1.0 at the midplane. The value in the legend
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is incorrect due to the way that the postprocessor averages values in making contour

plots. As can be seen from the plot, the beam has already completely debonded

along the midplane, effectively dividing it in two. The displacements in the figure are

magnified five times to show how the two halves of the beam consequently slide over

each other after the debonding has occurred. Figure 5-4 shows the beam at a later

point where the end displacement has increased to 21.39 mm (the displacements are

magnified three times). The region of the composite which is completely debonded

has expanded, especially at the end where the beam is attached. Finally, in Figure 5-

5 when the end deflection has reached 27 mm, it is seen that the fiber and matrix

have debonded on such a large scale at the attached end of the beam that it is no

longer able to carry a bending load. The cases run at 20 OC and 70 "C showed similar

behavior. It was found however that as the temperature increased, the matrix-fiber

bond failed sooner. This effect is shown in the force-deflection plot of Figure 5-6.

Both the loading and unloading of the beam are shown in the plot for all three

temperatures.

5.3.2 Fiber Breakage

The cantilevered beam problem was run once more, this time using the model to sim-

ulate fiber breakage in the S3 "interface" element. The beam was once again loaded

by prescribing the end displacement, and it was assumed that the fibers underwent

brittle fracture when -yf was reached. The beam was heated to 70 oC before the load-

ing was begun. Figure 5-7 shows the damage parameter in the S3 interface element

when the fibers are just beginning to break under the load. The breaking begins at

the top of the beam at the point where the beam is attached. Likewise, in Figure 5-8

the damage parameter is shown when the end displacement has reached 15.87 mm.

The breakage has not yet completely propagated through the thickness of the beam.

Finally, in Figure 5-9, the fibers have now failed completely at the point where the

beam is attached. A force-deflection plot for the fibers is shown in Figure 5-10. The

point where the fibers begin to break can be seen to occur at a deflection of about

seven millimeters, whereafter the force drops off sharply to the unloading curve. The
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Figure 5-3: Initial Damage in S1 Interface Element for Cantilevered Beam at -30 OC
The legend incorrectly shows the maximum damage to be 0.5 instead of the true

value of 1. The displacements are magnified 5 times.
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Figure 5-4: Expanded Region of Debonding in Cantilevered Beam at -30 OC
The displacements have been magnified 3 times.
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Figure 5-5: Cantilevered Beam at -30 oC After Having Lost the
Ability to Carry Bending Load
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Figure 5-6: Loading and Unloading Force-Deflection Curves For Cantilevered Beam
at Various Temperatures with Matrix-Fiber Debonding
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sharp dropoff displays the fact that after the fibers start to break, the load is carried

primarily in the matrix causing the overall composite to be much weaker.

It should be noted that even for the small problems discussed in this section, the

computation time was significantly larger than for the linear-elastic cases of Chapter 4.

For example, the cantilever problem was meshed with 168 C3D8R' elements. When

compared with the 256 C3D202 element plate problem shown in Table 4.13 for the

Cray Y-MP, it was found that the nonlinear problem took approximately three times

as long to arrive at a convergent solution. This is largely due to the fact that twelve

more internal degrees of freedom were used in the nonlinear debonding routine than

in the linear-elastic case. The iterations themselves made only a small contribution

to the increase in computation time as the number of elements undergoing failure was

small.

This section was completed with the help of Richard W. Macek of Los Alamos

National Laboratory [44].

'These are 8-noded, reduced integration elements.
2It may be recalled that these are 20-noded, full integration elements.
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Figure 5-7: Initial Damage in the S3 Interface Element for Cantilevered
Beam with Weak Fibers
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Figure 5-8: Expanded Region of Fiber Breakage for Cantilevered

Figure 5-8: Expanded Region of Fiber Breakage for Cantilevered
Beam with Weak Fibers
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Figure 5-9: Completely Broken Fibers in Cantilevered Beam at -70 OC
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Figure 5-10: Loading and Unloading Force-Deflection Curves For
Beam with Weak Fibers
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Chapter 6

Conclusions

6.1 Conclusions

6.1.1 Micromechanical Framework Established

The basic framework for using micromechanical material models in finite element

analysis was established in ABAQUS. The method of cells developed by Aboudi was

cast into this framework for linear elastic unidirectional composites in the form of a

user material subroutine. This approach is based on the assumption of a periodic

rectangular array for the composite geometry and derives the average properties of

the composite using a linear displacement interpolation. Interface elements were

introduced into the unit cell of the method of cells during the implementation to

eventually allow for the ability to evolve damage in the composite over time.

The user material routine was used to perform several common types of finite ele-

ment composite structure analysis for a linear orthotropic material. The results were

compared with solutions performed using ABAQUS' standard orthotropic material

model, and the agreement was found to be excellent. The micromechanical model

however provides much more information about the behavior of the composite than

the macroscopic model. The individual matrix and fiber stresses and strains are ob-

tained in the analysis in addition to the macroscopic state. The importance of these

localized stresses was highlighted in examples of thermal loading situations where,
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due to the difference in the fiber and matrix thermal properties, large stresses may be

developed in the individual constituents while the macroscopic stress state remains

zero. The examination of some simple failure criteria showed that the addition of

thermal loading into a structural analysis may lead to constituent failure which is not

predicted in a macroscopic model of the composite behavior.

The method of cells material model was then extended to allow for nonlinear

behavior using a Newton iteration scheme on the displacements. To demonstrate the

use of this iteration scheme, a Mohr-Coulomb form of failure criterion was introduced

into the interface element to allow for damage to the composite in the form of fiber-

matrix debonding, matrix cracking, and fiber breakage. A beam bending analysis was

performed to show the reduction in the stiffness of the composite beam which results

as damage accumulates.

The method of cells may also be used to model variation in the properties and

microstructure of a composite. To illustrate the use of the method of cells model

for this purpose, a statistically based representation of the fiber spacing throughout

the matrix was introduced by assuming a normal distribution for the fiber volume

fraction used at each material integration point. The introduction of this variation

was found to increase the constituent stresses which arise due to the inequality of the

fiber and matrix thermal properties.

6.1.2 Computational Expense

The use of the method of cells as a finite element material model has a significant

effect upon the expense of the analysis. However, it was found that the ratio of

the computation times between problems run with and without the material routine

quickly falls as the size of the problem increases, approaching the asymptote of one.

By running the analyses on several platforms, it was also found that computer ar-

chitecture has a minor effect on the decay of this ratio. The advance of computing

resources to their current status has made it possible to consider using a microme-

chanical model such as the method of cells in finite element analysis. It has been

shown that this is a powerful method in attacking the difficult problem of composite
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analysis. As computational power continues to improve, it will be possible to in-

troduce more complicated micromechanical models using the framework established

here.

6.2 Future Work

6.2.1 Optimization

During the writing of the user material model, more emphasis was placed on devel-

oping a working material model than creating an extremely streamlined routine for

computational speed. Reorganization of the subroutine with optimization in mind

will hopefully make its use less expensive. The single largest factor in the speed of

the routine remains the solution for the internal displacements of the representative

volume cell. It is possible that the gaussian elimination may be completely avoided

in the material stiffness calculation by instead imposing unit strains and volume av-

eraging the resultant subcell element stresses. The expense of the micromechanical

analysis would consequently be greatly reduced.

6.2.2 Other Composite Types

The method of cells has been developed by Aboudi for short fiber and particulate

composites in addition to the continuous fiber version used here. The extension of

the current user material model to include these composite types simply involves the

addition of more subcell elements into the representative volume cell at each material

integration point. The generality of the material model will be greatly increased once

this addition has been completed.

6.2.3 Constituent Models

The most important applications for the micromechanical material model in finite

elements come in area of analyzing composites with nonelastic constituent materi-

als. Such constituent material models as elastic-plastic, viscoelastic, and viscoelastic-
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viscoplastic are intended for the near future. In addition, better failure criteria need

to be implemented to more appropriately model fiber breakage and matrix cracking.

Along with these failure criteria, experimental data must be obtained to allow for

comparisons of the results.

6.2.4 Interface/Debonding Models

Perhaps the area in which the most work is needed lies in the development of accurate

models for the behavior of the fiber-matrix interface. As was mentioned previously,

this is currently a very active field of research, but the development necessitates

testing to determine properties for the bonds. The scale of the problem has so far

hindered the measurement of these properties.

6.2.5 Statistical Variation Models

A full statistical variation of the fiber and matrix properties as well as the composite

geometry was performed by Engelstad and Reddy in [29]. A similar sort of variation

may easily be introduced into the method of cells material model. The allowance

for property and geometry variation would, in conjunction with the other proposed

improvements, provide an extremely general composite material model for use in the

finite element method.
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Appendix A

Fortran Source Code for User

Material Subroutine

*user subroutines

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C

c this is the program that controls the use of the aboudi cell

c elements. it is a small finite element program which meshs the

c area and then assembles the stiffness matrix. the internal degrees

c of freedom are condensed out and then we are left with the desired

c quantities in terms of the boundary displacements. a transformation

c is performed on the remaining stiffness matrix to convert it to a

c relation between the volumetric stress and the volumetric strain. to

c using the element routines, the element stresses are then received

c and passed back to abaqus along with the stiffness matrix.

c

c this is set up for abaqus version 5.3 and includes the micro-

c failure criteria and von mises stress.

c

c last modified 1/12/94 jpg

c

c last change--upgrade to version 5.3

c 20

ccccccccccCccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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subroutine umat(stress,statev,ddsdde,sse,spd,scd,

1 rpl,ddsddt,drplde,drpldt,

2 stran,dstran,time,dtime,temp,dtemp,predef,dpred,cmname,

3 ndi,nshr,ntens,nstatv,props,nprops,coords,drot,pnewdt

4 celent,dfgrdO,dfgrdl,noel,npt,layer,kspt,kstep,kinc)

c

include 'abaparam. inc'

c

character*8 cmname 30

dimension stress (ntens),statev(nstatv),

1 ddsdde(ntens,ntens),ddsddt(ntens),drplde(ntens),

2 stran(ntens),dstran(ntens),time(2),predef(1),dpred(1),

3 props(nprops),coords(3),drot(3,3),dfgrdO(3,3),dfgrdl(3,3)

c

dimension rhs(18),amatrx(18,18),svars(12),

lcrds(3,24),u(18),flags(4),lm(18)

c

dimension stiff(72,72),frhs(72)

dimension astar(48,6),tmp(48,6),tstrn(6) 40

dimension ub(48),ubkib(24),ui(24),lhol(4),s(6)

real*8 volf,volm,d,11,12,stren

real*8 stiffj,stfjj,ttemp,sprl,spr2,oper

integer i,j,k,m,nel,lstop jj,ndof,odd,high,li,ii

integer ml,dofcon,lstopj,lstopk

c

ndofel = 18

mcrd = 3

nnode = 24

lstop = 24 50

ndof = 72

ttemp = temp + dtemp

flags(3) = 1

c

c the user input variables are arranged in the following manner:

c props(l) = ell fiber

c props(2) = e22 fiber
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props(3) = e33 fiber

props(4) = v12 fiber

props(5) = v13 fiber

props(6) = v23 fiber

props(7) = g12 fiber

props(8) = g13 fiber

props(9) = g23 fiber

props(10) = alphall fiber

props(11) = alpha22 fiber

props(12) = alpha33 fiber

props(13) = e matrix

props(14) = poisson's ratio matrix

props(15) = shear modulus matrix

props(16) = alpha matrix

props(17) = spring stiffness in 1 dir

props(18) = spring stiffness in 2 dir

props(19) = spring stiffness in 3 dir

props(20) = reference temperature

props(21) = fiber volume fraction

props(22) = tensile strength-fiber

props(23) = compressive strength-fiber

props(24) = ultimate matrix tensile strength

props(25) = ultimate matrix compressive strength

props(26) = ultimate matrix shear strength

props(27) = number of aboudi cells to be used in analysis

(this is usually either 4 or 8, with a default of 4)

(right now its really only set up for 4)

note: this program is set up so that the first element is

the fiber cell.

compute the size of the cells based on the input volume

fraction. it is assumed that the integration point is at the

center of the cell arrangement. (in local coordinates this is

(-0.5*d, 0.5*(11+12), 0.5*(11+12))).

nel = props(27)

if ((nel.ne.4).and.(nel.ne.8)) then

125



nel = 4

endif

if ((props(21).lt.0.0).or.(props(21).gt.1.0)) then

return

endif

volf = props(21)

volm = 1.0 - props(21) 10o

if (nel.eq.4) then

d= 1.0

11 = dsqrt(volf/d)

rad = dsqrt((4.0*1*ll11) + (4.0*volm))

12 = ((-2.0*11) + rad)/(2.0)

else

d = 0.5

11 = dsqrt(2.0*volf)

rad = dsqrt((11*11)+(8.0*volm)-4.0)

12 = (-1.0*l1+rad)/1.0 110

endif

C

c loop through the elements to assemble the stiffness matrix.

C

do 40 j = 1,6

do 20 i = 1,48

astar(i,j) = 0.0

20 continue

40 continue

do 80 j = 1, 72 120

frhs(j) = 0.0

do 60 i = 1, 72

stiff(i,j) = 0.0

60 continue

80 continue

c

do 260 m = 1, nel

ml = m - 1
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set up the matrix of coordinates

if (m.lt.5) then

crds(1,1+ml*6)

crds(1,2+ml*6)

do 100 i = 3,6

crds(1,i+ml*6)

100 continue

else

crds(1,1+ml*6)

crds(1,2+ml*6)

do 120 i = 3,6

crds(1,i+ml*6)

=0.0

= -d

= -0.5*d

= -d

= -2.0 *d

= -1.5*d

120 continue

endif

if ((mod(m,2)).gt.0) then

odd = 0

else

odd = 1

endif

if ((m.eq.1).or.(m.eq.2).or.(m.eq.5).or.(m.eq.6)) then

high = 0

else

high = 1

endif

crds(2,1+ml*6) = 0.5*11 + odd*(0.5*11+0.5*12)

crds(2,2+ml*6) = crds(2,1+ml*6)

crds(2,5+ml*6) = crds(2,1+ml*6)

crds(2,6+ml*6) = crds(2,1+ml*6)

crds(2,3+ml*6) = 11 + odd*12

crds(2,4+ml*6) = odd*11

crds(3,1+ml*6) = 0.5*11 + high*(0.5*11+0.5*12)

do 140 i = 2,4

crds(3,i+ml*6) = crds(3,1+ml*6)

140 continue

crds(3,5+ml*6) = 11 + high*(12)
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crds(3,6+ml*6) = high*ll

c

c get the stiffness matrix for this element.

c

do 180 i = 1,18 170

u(i) = 0.0

180 continue

jtype = 1

jelem = 0

call uelab(rhs,amatrx,svars,ndofel,props,crds,mcrd,

lnnode,u,jtype,time,dtime,kstep,kinc,jelem,predef,npred,f lags,

2m,lm,nprops,ttemp)

c

c assemble the global stiffness matrix and force vector

C 180

do 220 j = 1,18

do 200 i = 1,18

stiff(lm(i),lm(j))=stiff (lm(i),lm(j))+amatrx(i,j)

200 continue

frhs(lm(j))=frhs(lm(j))+rhs(j)

220 continue

c

c set up the a matrix, which converts the boundary

c displacements into strains and the boundary forces into stresses.

c this a matrix is multiplied times the stiffness matrix to 190

c provide the final material stiffness matrix. this final stiffness

c matrix relates the volumetric strains to the volumetric stresses.

c

do 240 i = 1,18,3

if (lm(i).gt.lstop) then

li = lm(i) - lstop

ii = 1 + i/3

astar(li,1) = crds(1,ii+ml*6)

astar(li,4) = 0.5*crds(2,ii+ml*6)

astar(li,5) = 0.5*crds(3,ii+ml*6) 200

astar(li+1,2) = crds(2,ii+ml*6)
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astar(li+1,4) = 0.5*crds(l,ii+ml*6)

astar(li+1,6) = 0.5*crds(3,ii+ml*6)

astar(li+2,3) = crds(3,ii+ml*6)

astar(li+2,5) = 0.5*crds(1,ii+ml*6)

astar(li+2,6) = 0.5*crds(2,ii+ml*6)

endif

if (m.eq.1) then

dofcon = lm(9)

endif 210

240 continue

260 continue

c

c put in spring elements (set up for only 4 right now)

c

do 340 m = 1,4

jtype = 2

do 300 i = 1,6

u(i) = 0.0

300 continue 220

call uelab(rhs,amatrx,svars,ndofel,props,crds,mcrd,

Innode,u,jtype,time,dtime,kstep,kinc,jelem,predef,npred,f lags,

2m,lm,nprops,ttemp)

c

c put into the global stiffness matrix

C

do 320 j = 1, 6

do 310 i = 1, 6

stiff(lm(i),lm(j) )=stiff(lm(i),m(j))+amatrx(i,j)

310 continue 230

frhs(lm(j) )=frhs(lm(j) )+rhs(j)

320 continue

340 continue

c

c constrain out dof 3 for node 3. this is done to constrain

c out the zero-energy modes. instead of eliminating the dof outright,

c the row and column are set to 0 with a 1 on the diagonal.
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do 420 i = 1,ndof

stiff(i,dofcon) = 0.0 240

420 continue

do 440 i = 1,ndof

stiff(dofcon,i) = 0.0

440 continue

stiff(dofcon,dofcon) = 1.0

frhs(dofcon) = 0.0

c

c now that we have the global stiffness matrix and the force

c vector assembled, condense out the internal degrees of freedom by

c gauss elimination. 250

c

C

do 560 j = 1, istop

stiffj = stiff(j,j)

cmax = 0.0

do 500 i = j, ndof

stiff(j,i) = stiff(j,i)/stiffj

500 continue

frhs(j) = frhs(j)/stiffj

do 540 jj = j+1, ndof 260

stfjj = stiff(jj,j)

do 520 i = j, ndof

stiff(jj,i)=stiff jj,i)-stiff(j,i)*stfjj

520 continue

frhs(jj) = frhs(jj)-frhs(j)*stfjj

540 continue

560 continue

c

c develop the final material stiffness matrix, c. this is

c equal to the triple product: a * stiff(reduced) * a. 270

C

do 620 j = 1,6

do 600 i = 1,48
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tmp(i,j) = 0.0

600 continue

620 continue

do 680 k = 1,48

istopk = istop + k

do 660 j = 1,6

do 640 i = 1,48 280

tmp(i,j)=tmp(i,j)+stiff(lstop+i,lstopk)*astar(k,j)

640 continue

660 continue

680 continue

do 720 j = 1,6

do 700 i = 1,6

ddsdde(i,j) = 0.0

700 continue

720 continue

do 780 k = 1,48 290

do 760 j = 1,6

do 740 i = 1,6

ddsdde(i,j)=ddsdde(i,j)+astar(k,i)*tmp(k,j)

740 continue

760 continue

780 continue

c

c compute the boundary displacements from the volumetric

c strains.

c 300

do 800 i = 1, ntens

tstrn(i) = stran(i) + dstran(i)

800 continue

do 820 i = 1, 48

ub(i) = 0.0

frhs(i+lstop) = -frhs(i+lstop)

820 continue

do 860 j = 1, 6

do 840 i = 1, 48

131



ub(i) = ub(i) + astar(i,j)*tstrn(j)

840 continue

860 continue

c

c compute the boundary forces.

c

do 900 j = 1, 48

istopj = istop + j

do 880 i = 1+lstop, ndof

frhs(i)=frhs(i)+stiff(i,lstopj)*ub(j)

880 continue 320

900 continue

c

c compute the volumetric stresses from the boundary forces

c

do 940 i = 1, 6

stress(i) = 0.0

do 920 j = 1, 48

stress(i) = stress(i) + astar(j,i)*frhs(j+lstop)

920 continue

940 continue 330

c

c compute the internal displacements (the vector ri).

c this is done by backsubstituting into the top left-hand corner

c of the stiff matrix.

c

do 1000 i = 1, lstop

ubkib(i) = 0.0

1000 continue

do 1040 j = 1, 48

istopj = lstop + j 340

do 1020 i = 1, istop

ubkib(i)=ubkib(i)+stiff(i,lstopj)*ub(j)

1020 continue

1040 continue

do 1060 i = 1, istop
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ui(i) = frhs(i) - ubkib(i)

1060 continue

ui (istop) = ui (istop)/stiff (Istop, stop)

do 1100 i = lstop-1,1,-I

do 1080 j = i+1, Istop 350

ui(i) = ui(i)-ui(j)*stiff(i,j)

1080 continue

1100 continue

c

c call the element routines again passing in the

c displacements to retrieve the element stresses and strains.

c

do 1300 m = 1, nel

ml = m - 1

if (m.eq.1) then 360

lhol(1) = 1

lhol(2) = 3

lhol(3) = 2

lhol(4) = 4

else if (m.eq.2) then

lhol(1) = 3

lhol(2) = 1

lhol(3) = 2

lhol(4) = 4

else if (m.eq.3) then 370

lhol(1) = 1

lhol(2) = 3

lhol(3) = 4

lhol(4) = 2

else if (m.eq.4) then

lhol(1) = 3

lhol(2) = 1

lhol(3) = 4

lhol(4) = 2

endif 380

do 1200 i = 1, 6
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u(i) = ub(i+ml*12)

1200 continue

do 1220 i = 1, 4

if (lhol(i).lt.3) then

u((i-1)*3+7) = ui(l+(lhol(i)-l)*3+ml*6)

u((i-1)*3+8) = ui(2+(lhol(i)-1)*3+mi*6)

u((i-1)*3+9) = ui(3+(lhol(i)-1)*3+mi*6)

else

u((i-l)*3+7) = ub(7+(lhol(i)-3)*3+ml*12) 390

u((i-1)*3+8) = ub(8+(lhol(i)-3)*3+ml*12)

u((i-1)*3+9) = ub(9+(lhol(i)-3)*3+ml*12)

endif

1220 continue

jtype=1l

jelem = 1

call uelab(rhs,amatrx,svars,ndofel,props,crds,mcrd,

innode,u,jtype,time,dtime,kstep,kinc,jelem,predef,npred,lflags,

2m,lm,nprops,ttemp)

c 400

c the state variables are in the order of:

c statev(1-6) -- stresses in the fiber cell

c statev(7-12) -- strains in the fiber cell

c statev(13-18) -- stresses in matrix cell 1

c statev(19-24) -- strains in matrix cell 1

c statev(25-30) -- stresses in matrix cell 2

c statev(31-36) -- strains in matrix cell 2

c statev(37-42) -- stresses in matrix cell 3

c statev(43-48) -- strains in matrix cell 3

c statev(49) fiber failure criterion 410

c statev(50) matrix failure criterion

c statev(51) von mises equivalent stress--fiber

c statev(52-54) von mises stress-matrix cells

c

do 1240 i = 1,12

statev(i+ml*12) = svars(i)

1240 continue
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1300 continue

c

c micro-failure criteria proposed by aboudi 420

c the criterion for the fiber compares the stress in the

c fiber to either the tensile or compressive strength, depending

c upon the state of stress. a result less than one

c the criterion for the matrix looks at the maximum

c principal stress in the plane perpendicular to the axis of

c the fiber and the axial shear stresses, s12 and s13. the

c principal stress is squared and then divided by the square of the

c the ultimate tensile strength of the matrix. the axial shear

c stresses are squared and added together. this sum is then divided

c by the square of the ultimate shear strength of the matrix. these 430

c two quotients are then added, with a sum of less than one

c indicating that failure has not occurred in the matrix.

c

if (statev(1).gt.0.0) then

statev(49) = statev(1)/props(22)

else

statev(49) = -statev(1)/props(23)

endif

statev(50) = 0.0

c 440

c the von mises equivalent stress--fiber cell

c

statev(51) = dsqrt((0.5*((statev(1)-statev(2))**2+

1(statev(2)-statev(3)) **2+(statev(3)-statev(1))**2) ) +

2(3.0*(statev(4)*statev(4)+statev(5)*statev(5)

3+statev(6) *statev(6))))

do 1340 i = 1,3

do 1320 j = 1,6

s(j) = statev(i*12+j)

1320 continue 450

oper = dsqrt(((s(2)-s(3))/2.0)**2+(s(6)*s(6)))

spri = (s(2)+s(3))/2.0 + oper

spr2 = (s(2)+s(3))/2.0 - oper
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if (abs(spr2).gt.abs(sprl)) then

sprl = spr2

endif

if (sprl.le.0.0) then

stren = props(25)

else

stren = props(24) 460

endif

oper = ((sprl*sprl)/(stren*stren))+

+(((s(4)*s(4))+(s(5)*s(5)))/(props(26)*props(26)))

if (oper.gt.statev(50)) then

statev(50) = oper

endif

C

c the von mises equivalent stress--matrix cells

c

statev(i+51) = dsqrt((0.5*((s(1)-s(2))**2+ 470

1(s(2)-s(3))**2+(s(3)-s(1))**2))+

2(3.0*(s(4)*s(4)+s(5)*s(5)+s(6)*s(6))))

1340 continue

c

5000 format (3f10.5)

5010 format (12f11.0)

5020 format (12f8.0)

5030 format (6g10.3)

5040 format (3f12.5)

5050 format (6f10.5) 480

return

end

c

subroutine uelab(rhs,amatrx,svars,ndofel,props,crds,mcrd,

lnnode,u,jtype,time,dtime,kstep,kinc,jelem,predef,npred,lflags,

2m,lm,nprops,ttemp)

c

implicit real*8(a-h,o-z)

dimension rhs(ndofel),amatrx(ndofel,ndofel),svars(1),
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lprops(1),crds(mcrd,nnode),u(ndofel), 490

2predef (),lflags(4),lm(ndofel)

C

if (jtype.eq.1) then

call aboudi(rhs,amatrx,svars,ndofel,props,crds,mcrd,

innode,u,jtype,time,dtime,kstep,kinc,jelem,predef,npred,lflags,

2m,lm,nprops,ttemp)

else if (jtype.eq.2) then

call damage(rhs,amatrx,svars,ndofel,props,crds,mcrd,

innode,u,jtype,time,dtime,kstep,kinc,jelem,predef,npred,lflags,

2m,lm,nprops,ttemp) 500

endif

c

return

end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c

c aboudi element

c

ccccccccccccccccccccccccccccCCcccccccccccccccccccccccccccccccccccccccccccccc

subroutine aboudi(rhs,amatrx,svars,ndofel,props,crds,mcrd, 510

Innode,u,jtype,time,dtime,kstep,kinc,jelem,predef,npred,lflags,

2m,lm,nprops,ttemp)

c

implicit real*8(a-h,o-z)

dimension rhs(ndofel),amatrx(ndofel,ndofel),svars(1),

lprops(1),crds(mcrd,nnode),u(ndofel),

2predef(1),lflags(4),Im(ndofel)

c

dimension b(6,18)

dimension strain(6),tstr(6),thstr(6),stress(6) 520

dimension temp(18,6),d(6,6),abar(18,18)

real*8 dl,d2,d3,dtemp,prod

integer i,j,k,ml

dimension lhol(4)

c
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c 6 node aboudi cell model element for abaqus

c the vectors are arranged in the following manner:

c dof 1 at node 1,

c dof 2 at node 1,

c dof 3 at node 1, 530

c dof 1 at node 2,

c dof 2 at node 2,

c dof 3 at node 2, and so on.

c

c svars(1) to svars(6) = stresses at integration points

c svars(7) to svars(12) = strains at integration points

c

c the program is called in parts. the first part calls the element

c to obtain the element stiffness matrix and assemble the global stiffness

c matrix. in the second part, the element stresses and strains are 540

c returned given the displacement field, or state of strain, that exists

c at the boundaries.

c

c initialize the b matrix.

c

mi = m - 1

dl = 1.0/(abs(crds(1,1+ml*6) - crds(1,2+ml*6)))

d2 = 1.0/(abs(crds(2,3+ml*6) - crds(2,4+mi*6)))

d3 = 1.0/(abs(crds(3,5+ml*6) - crds(3,6+m1*6)))

prod = 1.0/(dl*d2*d3) 550

C

do 20 k = 1,18

do 20 j = 1,6

b(j,k) = 0.0

20 continue

c

c b matrix

c

b(1,1) = dl

b(1,4) = -dl 560

b(2,8) = d2
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b(2,11) = -d2

b(3,15) = d3

b(3,18) = -d3

b(4,2) = dl

b(4,5) = -dl

b(4,7) = d2

b(4,10) = -d2

b(5,3) = dl

b(5,6) = -dl 570

b(5,13) = d3

b(5,16) = -d3

b(6,9) = d2

b(6,12) = -d2

b(6,14) = d3

b(6,17) = -d3

c

c determine the d matrix (constitutive)

c

call orthotropic(props,nprops,d,m) 580

c

c route the subroutine to the correct parts, depending upon

c what is being asked for.

c

if (jelem .eq. 1) go to 200

c

c initialize the amatrix and check to see if the mass

c matrix is desired. if the mass matrix is desired

c (iflags(3) = 3), then the amatrix is initialized to zero

c and the subroutine returns control to abaqus. 590

c

do 40 j = 1,18

do 40 i = 1,18

amatrx(i,j) = 0.0

40 continue

if (lflags(3).eq.3) go to 1000

c
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calculate the stiffness (amatrx) matrix.

the triple product: b * d * b

this calculation is

do 60 j = 1,6

do 60 i = 1,18

temp(i,j)

60 continue

do 80 k = 1,6

do 80 j = 1,6

do 80 i = 1,18

temp(i,j)

80 continue

do 100

do 100

do 100

= 0.0

= temp(i,j) + b(k,i) * d(k,j)

k = 1,6

j = 1,18

i = 1,18

amatrx(i,j) = amatrx(i,j) + prod * temp(i,k) * b(k,j)

100 continue

c

complete the lm array

lhol(1) = node 3

lhol(2) = node 4

lhol(3) = node 5

lhol(4) = node 6

if (m.eq.1) then

Ihol(1) = 1

lhol(2) = 3

lhol(3) = 2

lhol(4) = 4

else if (m.eq.2) then

lhol(1) = 3

lhol(2) = 1

lhol(3) = 2

lhol(4) = 4

else if (m.eq.3) then
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lhol(1) = 1

lhol(2) = 3

lhol(3) = 4

lhol(4) = 2

else if (m.eq.4) then

lhol(1) = 3

lhol(2) = 1 640

lhol(3) = 4

lhol(4) = 2

endif

do 120 i = 1,3

1m(i) =

lm(i+3)

i+12+(m*12)

= i+15+(m*12)

120 continue

do 160 j = 1,4

do 140 i = 1,3

if (lhol(j) .eq. 1) then

lm(i+3+j*3) = i+(ml*6)

else if (lhol(j) .eq. 2) then

lm(i+3+j*3) = i+3+(ml*6)

else if (lhol(j) .eq. 3) then

lm(i+3+j*3) = i+18+(m*12)

else

lm(i+3+j*3) = i+21+(m*12)

endif

140 continue

160 continue

calculate the total strain from the displacements

(using strain = b * displacements)

200 do 220 i = 1,6

tstr(i) = 0.0

220 continue

do 240 j = 1,18

rhs(j) = 0.0
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do 240 i = 1,6 670

tstr(i) = tstr(i) + b(i,j)*u(j)

240 continue

c

c calculate the thermal strains in the element

c

dtemp = ttemp - props(20)

do 260 i = 1,6

thstr(i) = 0.0

260 continue

c 680

if (m.eq.1) then

do 280 j = 1,3

thstr(j) = props(j+9) * dtemp

280 continue

else

do 290 j = 1,3

thstr(j) = props(16) * dtemp

290 continue

endif

c 690

c subtract the thermal strains out from the total strain

c

do 300 i = 1,6

strain(i) = 0.0

strain(i) = tstr(i) - thstr(i)

300 continue

c

c calculate the stresses from the strain

c

do 310 i = 1,6 700

stress(i) = 0.0

310 continue

do 320 j = 1,6

do 320 i = 1,6

stress(i) = stress(i) + d(i,j) * strain(j)
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320 continue

c

c compute the force vector, rhs.

c

if (iflags(3).eq.2) go to 1000 710

do 360 j = 1,6

do 340 i = 1,18

rhs(i) = rhs(i) - prod * b(j,i) * stress(j)

340 continue

360 continue

c

c set state variables

c

do 380 i = 1,6

svars(i) = stress(i) 720

svars(i+6) = strain(i)

380 continue

1000 return

5000 format (3f 10.5)

5010 format (18f6.0)

end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c

c subroutine orthotropic which determines the d (constitutive)

c matrix for a general orthotropic material. 730

c

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine orthotropic(props,nprops,d,m)

c

implicit real*8(a-h,o-z)

dimension props(nprops),d(6,6)

integer nprops,m

c

real*8 det,v12,v13,v23,v21,v31,v32

real*8 e11,e22,e33,g12,g13,g23 740

integer i,j
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if (m.eq.1) then

ell = props(l)

e22 = props(2)

e33 = props(3)

v12 = props(4)

v13 = props(5)

v23 = props(6)

v21 = vl2*(props(2)/props(1))

v31 = v13*(props(3)/props ()) 750

v32 = v23*(props(3)/props(2))

det = 1 - (v12*v21) - (v23*v32) - (v13*v31) -

+ (2. O*v2*v23*v31)

g12 = props(7)

g13 = props(8)

g23 = props(9)

else

ell = props(13)

e22 = ell

e33 = ell 760

v12 = props(14)

v13 = v12

v23 = v12

g12 = props(15)

g13 = g12

g23 = g12

v21 = v12

v31 = v13

v32 = v23

det = 1 - (v12*v21) - (v23*v32) - (v13*v31) - 770

+ (2.0*v12*v23*v31)

endif

C

do 20 j = 1,6

do 20 i = 1,6

d(i,j) = 0.0

20 continue
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d(1,1) = (1 - (v23*v32))*ell/det

d(1,2) = (v12 + (v13*v32))*e22/det 780

d(1,3) = (v13 + (v23*v12))*e33/det

d(2,2) = (1 - (v31*v13))*e22/det

d(2,3) = (v23 + (v21*v13))*e33/det

d(3,3) = (1 - (v12*v21))*e33/det

d(2,1) = d(1,2)

d(3,1) = d(1,3)

d(3,2) = d(2,3)

d(4,4) = g12

d(5,5) = g13

d(6,6) = g23 790

C

return

end

ccccccccccccccccccccccccCcccccccccccccccccccccccccccccccccccccccccccccccccccc

C

c damage element

c

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine damage(rhs,amatrx,svars,ndofel,props,crds,mcrd,

lnnode,u,jtype,time,dtime,kstep,kinc,jelem,predef,npred,lflags, soo

2m,lm,nprops,ttemp)

C

implicit real*8(a-h,o-z)

dimension rhs(ndofel),amatrx(ndofel,ndofel),svars(1),

Iprops(1),crds(mcrd,nnode),u(ndofel),

2predef(1),1flags(4),lm(ndofel)

c

dimension lhol(2)

integer i,j

C 810

c the vectors are arranged as follows:

c dof 1 at node 1

c dof 2 at node 1
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dof 3 at node 1

dof 1 at node 2

dof 2 at node 2

dof 3 at node 2

props(17) = ea/l in the 1 direction

props(18) = ea/l in the 2 direction

props(19) = ea/l in the 3 direction

c

c initialize and construct the amatrix

c

do 10 i = 1, 6

rhs(i) = 0.0

do 10 j = 1, 6

amatrx(i,j) = 0.0

10 continue

if (lflags(3).eq.3) go to 1000

amatrx (, 1)

amatrx(1 ,4)

amatrx(2,2)

amatrx(2,5)

amatrx(3,3)

amatrx(3,6)

amatrx(4,1)

amatrx(4,4)

amatrx(5,2)

amatrx(5,5)

amatrx(6,3)

amatrx(6,6)

props (17)

-props (17)

props (18)

-props (18)

props (19)

-props (19)

amatrx(1 ,4)

amatrx(1, 1)

amatrx(2,5)

amatrx(2,2)

amatrx(3,6)

amatrx(3,3)

compute the im array

if (m .eq. 1) then

lhol(1) = 0

lhol(2) = 6
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else if (m.eq.2) then 850

lhol () = 3

lhol(2) = 15

else if (m.eq.3) then

lhol(1) = 9

lhol(2) = 21

else

lhol(1) = 12

lhol(2) = 18

endif

do 20 i = 1,3 860

lm(i) = i + lhol(1)

lm(i+3) = i + lhol(2)

20 continue

c

c compute the force vector, rhs

c

if (iflags(3).eq.2) go to 1000

do 30 i = 1, 6

do 30 j = 1, 6

rhs(i) = rhs(i) - amatrx(i,j) * u(j) 870

30 continue

c

1000 return

end
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Appendix B

Fortran Source Code for

Nonlinear User Material

Subroutine with Damage Interface

Elements

ccccccccccccceccCccCCCCCC cccCccCCccccccccccccceCCC cccccccccccccccccccccccccc

c

c this is the program that controls the use of the aboudi cell

c elements. it is a small finite element program which meshs the

c area and then assembles the stiffness matrix. the internal degrees

c of freedom are condensed out and then we are left with the desired

c quantities in terms of the boundary displacements. a transformation

c is performed on the remaining stiffness matrix to convert it to a

c relation between the volumetric stress and the volumetric strain.

c using the element routines, the element stresses are then received 10

c and passed back to abaqus along with the stiffness matrix.

c

c axial fiber fracture, debonding, and matrix cracking have been added.

c the model may only be used for fully 3d analyses.

c modified by r. w. macek (1-18-94).

c
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note: this is set up for abaqus version 5.3

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 20

subroutine umat(stress,statev,ddsdde,sse,spd,scd,

1 rpl,ddsddt,drplde,drpldt,

2 stran,dstran,time,dtime,temp,dtemp,predef,dpred,cmname,

3 ndi,nshr,ntens,nstatv,props,nprops,coords,drot,pnewdt,

4 celent,dfgrdO,drgrdl ,noel,npt,layer,kspt,kstep,kinc)

c

c when actually running abaqus, take out the implicit line

c and uncomment this include statement. also, change the

c input variable declarations below.

c 30

include 'abaparam. inc'

c implicit real*8(a-h,o-z)

c

character*8 cmname

dimension stress(ntens),statev(nstatv),

1 ddsdde(ntens,ntens),ddsddt(ntens),drplde(ntens),

2 stran(ntens),dstran(ntens),time(2),predef(1),dpred(1),

4 props(nprops),coords(3),drot(3,3) ,dfgrdO(3,3),dfgrd1 (3,3)

c

dimension rhs(18),amatrx(18,18),svars(14), 40

lcrds(3,28),u(18),1flags(4),lm(72)

c

dimension stiff(84,84),frhs(84),s(6)

dimension astar(48,6),tmp(48,6),tstrn(6)

dimension ub(48),ubkib(36),ui(36),lhol(4)

dimension lms(48),area(8),h(8)

dimension deltau(84),dofcon(4)

real*8 volf,volm,d,ll11,12,norm,mmu,mgamy,mgamf

real*8 stiffj,stfjj,ttemp,sprl ,spr2,oper

integer i,j,k,m,nel,lstop,jj,ndof,odd,high,li,ii 50

integer dofcon,lstopj,lstopk,iter,mlst6,mlst18

c
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data lm/25,26,27,40,41,42,1,2,3,43,44,45,4,5,6,46,47,48,

+ 28,29,30,52,53,54,55,56,57,7,8,9,10,11,12,58,59,60,

+ 31,32,33,64,65,66,13,14,15,67,68,69,70,71,72,16,17,18,

+ 34,35,36,76,77,78,79,80,81,19,20,21,82,83,84,22,23,24/

c

data lms/2,1,3,8,7,9,

+ 6,4,5,18,16,17, 60

+ 25,26,27,37,38,39,

+ 12,10,11,24,22,23,

+ 14,13,15,20,19,21,

+ 28,29,30,49,50,51,

+ 31,32,33,61,62,63,

+ 34,35,36,73,74,75/

data ncon/1/

data dofcon/3,0,0,0/

ndofel = 18

mcrd = 3 70

nnode = 28

Istop = 36

ndof = 84

ttemp = temp + dtemp

Iflags(3) = 1

pnewdt=1.5

c

c the user input variables are arranged in the following manner:

c props(l) = ell fiber

c props(2) = e22 fiber 80

c props(3) = e33 fiber

c props(4) = v12 fiber

c props(5) = v13 fiber

c props(6) = v23 fiber

c props(7) = g12 fiber

c props(8) = g13 fiber

c props(9) = g23 fiber

c props(10) = alphall fiber
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c props(11) = alpha22 fiber

c props(12) = alpha33 fiber 90

c props(13) = e matrix

c props(14) = poisson's ratio matrix

c props(15) = shear modulus matrix

c props(16) = alpha matrix

c props(17) = mu, the effective spring friction coefficient

c props(18) = e, the effective spring young's modulus

c props(19) = g, the effective spring shear modulus

c props(20) = reference temperature

c props(21) = fiber volume fraction

c props(22) = tensile strength-fiber 1oo

c props(23) = compressive strength-fiber

c props(24) = ultimate matrix tensile strength

c props(25) = ultimate matrix shear strength

c props(26) = convergence tolerance

c props(27) = number of aboudi cells to be used in analysis

c (this is usually either 4 or 8, with a default of 4)

c (right now its really only set up for 4)

c note: this program is set up so that the first element is

c the fiber cell.

c props(28) = gammay, the yield strain of the spring 110

c props(29) = gammaf, the failure strain of the spring

c props(30) = h, the bond thickness for the springs

c props(31) = ultimate matrix compressive strength

c

c compute the size of the cells based on the input volume

c fraction. it is assumed that the integration point is at the

c center of the cell arrangement. (in local coordinates this is

c (-0.5*d, 0.5"(11+12), 0.5*(11+12))).

c

c this routine contains a nonlinear solver using newton iteration 120

c on the displacements. the displacements internal to the aboudi cell

c are stored in state variables 51-86 as they are needed for the next

c time increment.

c
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nel = 4

if ((props(21).lt.0.0).or. (props(21).gt.1.0)) then

return

endif

volf = props(21)

volm = 1.0 - props(21) 130

if (nel.eq.4) then

d = 1.0

11 = dsqrt(volf/d)

rad = dsqrt((4.0*ll*11) + (4.0*volm))

12 = ((-2.0"*11) + rad)/(2.0)

else

d = 0.5

11 = dsqrt(2.0*volf)

rad = dsqrt((11*11)+(8.0*volm)-4.0)

12 = (-1.0*11+rad)/1.0 140

endif

c

c set svars(14), which is the initial area of the bond, and

c initialize svars(13).

c

area(1)=11

area(2)=area(1)

area(3)=11*ll

area(4)=12

area(5)=area(4) 15o

area(6)=11*12

area(7)=area(6)

area(8)=12*12

h(1)=props(30)

h(2)=h(1)

c h(3)=.0001

h(3)=props(30)

h(4)=h(3)

h(5)=h(3)

h(6)=h(3) 160

152



h(7)=h(3)

h(8)=h(3)

c

c zero statev at start of analysis

c

if(kstep.le.1.and.kinc.le.1) then

do 5 i=l,nstatv

statev(i)=O.

5 continue

end if 170

C

c compute fracture characteristics for fiber and matrix

c

fibermu=1.0e6

fibery=fibermu*props(22)/props(7)

fiberf=1.01*fibery

c

mmu=props(25)/props (24)

mgamy=props(25) /props(15)

mgamf=l.01*mgamy is0

c

c loop through the elements to assemble the stiffness matrix.

c

do 20 j = 1,6

do 10 i = 1,48

astar(ij) = 0.0

10 continue

20 continue

c

do 130 m = 1, nel 190

mlst6 = (m-1)*6

mlstl8 = (m-1)*18

c

c set up the matrix of coordinates

c

if (m.lt.5) then
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crds(1,1+mlst6) = 0.0

crds(1,2+mlst6) = -d

do 50 i = 3,6

crds(1,i+mlst6) = -0.5*d

50 continue

else

crds(1,1+mlst6) = -d

crds(1,2+mlst6) = -2.0*d

do 60 i = 3,6

crds(1,i+mlst6) = -1.5*d

60 continue

endif

if ((mod(m,2)).gt.0) then

odd = 0

else

odd = 1

endif

if ((m.eq.1).or.(m.eq.2).or.(m.eq.5).or.(m.eq.6)) then

high = 0

else

high = 1

endif

crds(2,1+mlst6) = 0.5*11 + odd*(0.5*11+0.5*"12)

crds(2,2+mlst6) = crds(2,1+mlst6)

crds(2,5+mlst6) = crds(2,1+mlst6)

crds(2,6+mlst6) = crds(2,1+mlst6)

crds(2,3+mlst6) = 11 + odd*12

crds(2,4+mlst6) = odd*11

crds(3,1+mlst6) = 0.5*11 + high*(0.5*11+0.5*12)

do 70 i = 2,4

crds(3,i+mlst6) = crds(3,1+mlst6)

70 continue

crds(3,5+mlst6) = 11 + high*(12)

crds(3,6+mlst6) = high*11

set UD> tile a matrix. which converts the! boundary
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c displacements into strains and the boundary forces into stresses.

c this a matrix is multiplied times the stiffness matrix to

c provide the final material stiffness matrix. this final stiffness

c matrix relates the volumetric strains to the volumetric stresses.

c

do 120 i = (1+(mlstl8)),(18+(mlstl8)),3

nstar=lm(i)/3+1

nflag=0 240

if(nstar.ge.9.and.nstar.le.12) nflag=1

if (lm(i).gt.lstop.or.nflag.eq.1) then

li = Im(i) - lstop

ii = 1 + i/3

if(nstar.eq.9) li=37-lstop

if(nstar.eq.10) li=49-lstop

if(nstar.eq.11) li=61-lstop

if(nstar.eq.12) li=73-lstop

astar(li,1) = crds(1,ii)

astar(li,4) = 0.5*crds(2,ii) 250

astar(li,5) = 0.5*crds(3,ii)

astar(li+1,2) = crds(2,ii)

astar(li+1,4) = 0.5*crds(1,ii)

astar(li+1,6) = 0.5*crds(3,ii)

astar(li+2,3) = crds(3,ii)

astar(li+2,5) = 0.5*crds(1,ii)

astar(li+2,6) = 0.5*crds(2,ii)

endif

120 continue

130 continue 260

c

c compute the boundary displacements

c

do 140 i = 1, ntens

tstrn(i) = stran(i) + dstran(i)

140 continue

do 150 i = 1, 48

ub(i) = 0.0
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150 continue

do 170 j = 1, 6 270

do 160 i = 1, 48

ub(i) = ub(i) + astar(ij)*tstrn(j)

160 continue

170 continue

c

c set up the displacement vector using the current boundary

c displacements and the internal displacements from the previous

c time step.

c

do 180 i = 1,1stop 280

ui(i) = statev(i+50)

deltau(i) = statev(i+50)

180 continue

do 190 i = lstop+1,84

deltau(i) = ub(i-lstop)

190 continue

c

c initially set displacements for axial damage springs

c to reflect damage

C 290

if(statev(89).lt..99) then

dam3=h(3)/(1.-statev(89))

deltau(25) =deltau(37)

if(statev(1).gt.0.)

+ deltau(25)=deltau(37) -statev(1)*dam3/props(1)

deltau(26) =deltau(38) +statev(4) *dam3/props(7)

deltau(27)=deltau(39)+statev(5)*dam3/props(7)

end if

c

if(statev(92).lt..99) then 300

dam6=h(3)/(1.-statev(92))

deltau(28)=deltau(49)

if(statev(13).gt.0.)

+ deltau(28) =deltau(49) -statev(13)*dam6/props(13)
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deltau(29)=deltau(50) +statev(16)*dam6/props(15)

deltau(30)=deltau(51)+statev(17)*dam6/props(15)

end if

c

if(statev(93).lt..99) then

dam7=h(3) /(1.-statev(93)) 310

deltau(31)=deltau(61)

if(statev(25).gt.0.)

+ deltau(31)=deltau(61)-statev(25)*dam7/props(13)

deltau(32)=deltau(62)+statev(28)*dam7/props(15)

deltau(33)=deltau(63)+statev(29) *dam7/props(15)

end if

c

if(statev(94).lt..99) then

dam8=h(3)/(1.-statev(94))

deltau(34)=deltau(73) 320

if(statev(37).gt.0.)

+ deltau(34)=deltau(73) -statev(37)*dam8/props(13)

deltau(35)=deltau(74)+statev(40)*dam8/props(15)

deltau(36)=deltau(75)+statev(41)*dam8/props(15)

end if

C

c begin the iteration scheme

c

iter = 0

C 330

c get the stiffness matrix for this element.

c

200 do 220 j = 1, 84

frhs(j) = 0.0

do 210 i = 1, 84

stiff(ij) = 0.0

210 continue

220 continue

do 260 m = 1, nel

mlstl8= (m-1)*18 340
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do 230 i = 1,18

c

c this will be used later when we make the stiffness matrix in the

c cells nonlinear also

c

u(i) = deltau(lm(i+(mlstl8)))

c u(i) = 0.0

230 continue

jtype = 1 350

jelem = 0

call uelab(rhs,amatrx,svars,ndofel,props,crds,mcrd,

1 nnode,ujtype,time,dtime,kstep,kinc,jelem,predef,npred,lflags,

2 m,nprops,ttemp)

c

c assemble the global stiffness matrix and force vector

c

do 250 j = 1,18

do 240 i = 1,18

stiff(lm(i+(mlstl8)),lm(j+(mlstl8))) = 360

+stiff(lm(i+(mlstl8)),lm(j+(mlstl8))) +amatrx(i,j)

240 continue

frhs(lm(j+(mlstl8)))=frhs(lm(j+ (mlstl8)))+rhs(j)

250 continue

260 continue

c

c put in spring elements (set up for only 8 right now)

c

do 340 m = 1,8

mlst6 = (m-1)*6 370

jtype = 2

jelem = 0

do 300 i = 1,6

u(i) = deltau(lms(i+(mlst6)))

300 continue

svars(13)=statev(86+m)
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svars(14)=area(m)

if(m.ge.3) then

spropl7=props(17)

spropl8=props(18) 380

spropl9=props(19)

sprop28=props(28)

sprop29=props(29)

sprop30=props (30)

if(m.eq.3) then

props(17)=fibermu

props(18)=props(1)

props(19)=props(7)

props(28)=fibery

props(29)=fiberf 390

props(30)=h(i)

end if

if(m.ge.4) then

props(17)=mmu

props(18)=props(13)

props(19)=props(15)

props(28)=mgamy

props(29)=mgamf

props(30)=h(i)

end if 400

end if

call uelab(rhs,amatrx,svars,ndofel,props,crds,mcrd,

1 nnode,u,jtype,time,dtime,kstep,kinc,jelem,predef,npred,lflags,

2 m,nprops,ttemp)

if(m.ge.3) then

props(17)=spropl7

props(18)=spropl8

props(19)=spropl9

props(28)=sprop28

props(29)=sprop29 410

props(30)=sprop30

end if
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c

c put into the global stiffness matrix

c

do 320 j = 1, 6

do 310 i = 1, 6

stiff(lms(i+(mlst6)),lms(j+(mlst6))) =

+stiff(lms(i+(mlst6)),lms(j+(mlst6)))+amatrx(ij)

310 continue 420

frhs(lms(j+(mlst6)))=frhs(lms( j+(mlst6)))+rhs(j)

320 continue

340 continue

c write(*,*) ' iteration',iter

c write(*,*) 'residual'

c write(*,*) (frhs(ii),ii=1,lstop)

c

c at this point we check for convergence (it is done here

c because we need to compute the new stiffness matrix based on the

c internal displacements from the last iteration.) to check for 430

c convergence, we take a norm of the internal force vector and

c compare it to the user input convergence tolerance

c

nconvrg=0

if (iter.gt.0) then

norm = 0.0

do 600 i = 1,1stop

norm = max(norm,abs(frhs(i)))

600 continue

if (norm.lt.props(26)) nconvrg=l 440

endif

c

c now that we have the global stiffness matrix and the force

c vector assembled, condense out the internal degrees of freedom by

c gauss elimination.

c

c

do 560 j = 1, 1stop
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stiffj = stiff(jj)

cmax = 0.0 450

do 500 i = j, ndof

stiff(j,i) = stiff(j,i)/stiffj

500 continue

frhs(j) = frhs(j)/stiffj

do 540 jj = j+1, ndof

stfjj = stiff(jjj)

do 520 i = j, ndof

stiff(jj,i)=stiff(j,i)-stiff(j,i)*stfjj

520 continue

frhs(jj) = frhs(jj)-frhs(j)*stfjj 460

540 continue

560 continue

c

c compute the internal displacements (the vector ri).

c this is done by backsubstituting into the top left-hand corner

c of the stiff matrix.

c

do 830 i = 1, istop

ui(i) = frhs(i)

830 continue 470

ui(lstop) = ui(lstop)/stiff(lstop,lstop)

do 850 i = lstop-1,1,-1

do 840 j = i+1, lstop

ui(i) = ui(i)-ui(j)*stiff(i,j)

840 continue

850 continue

iter = iter + 1

do 860 i=1,1stop

deltau(i)=deltau(i)+ui(i)

860 continue 480

if(nconvrg.eq.1) go to 900

if (iter.le.20) then

go to 200

else
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if(norm.gt.10.*props(26)) pnewdt=.l

write(*,*) 'step ',kstep,' inc ',kinc

write(*,*)

+ ' aboudi routine did not converge

write(*,*) 'stran ',(stran(i),i=1,6)

write(*,*) 'dstran ',(dstran(i),i=1,6)

write(*,*) 'residual ',norm

write(6,*) 'step ',kstep,' inc ',kinc

write(6,*)

+ ' aboudi routine did not converge

write(6,*) 'stran ',(stran(i),i=1,6)

write(6,*) 'dstran ',(dstran(i),i=1,6)

write(6,*) 'residual ',norm

endif

for element ',noel

for element ',noel

develop the final material stiffness matrix, c. this is

equal to the triple product: a * stiff(reduced) * a.

c

900 do 920 j = 1,6

do 910 i = 1,48

tmp(i,j) = 0.0

910 continue

920 continue

do 950 k = 1,48

lstopk = Istop + k

940 j = 1,6

930 i = 1,48

tmp(ij)=tmp(ij)+stiff(lstop+i,lstopk)*astar(kj)

continue

continue

continue

do 970 j

do 960 i

= 1,6

= 1,6

ddsdde(ij) = 0.0

960 continue

970 continue 520
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do 1000 k = 1,48

do 990 j = 1,6

do 980 i = 1,6

ddsdde(ij)=ddsdde(ij) +astar(k,i)*tmp(k,j)

980 continue

990 continue

1000 continue

c

c compute the volumetric stresses from the boundary forces

C 530

do 1020 i = 1, 6

stress(i) = 0.0

do 1010 j = 1, 48

stress(i) = stress(i) - astar(j,i)*frhs(j+lstop)

1010 continue

1020 continue

c

c call the aboudi element routines again passing in the

c displacements to retrieve the element stresses and strains.

C 540

do 1300 m = 1, nel

mlstl8 = (m-1)*18

mlstl2 = (m-1)*12

do 1200 i = 1,18

if(lm(i+(mlstl8)).gt.lstop) then

u(i) = ub((lm(i+(mlstl8)))-Istop)

else

u(i) = deltau(lm(i+(mlstl8)))

endif

1200 continue 550

jtype=1

jelem = 1

call uelab(rhs,amatrx,svars,ndofel,props,crds,mcrd,

1 nnode,u,jtype,time,dtime,kstep,kincjelem,predef,npred,lflags,

2 m,nprops,ttemp)

c
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c the state variables are in the order of:

c statev(1-6) -- stresses in the fiber cell

c statev(7-12) -- strains in the fiber cell

c statev(13-18) -- stresses in matrix cell 1 560

c statev(19-24) -- strains in matrix cell 1

c statev(25-30) -- stresses in matrix cell 2

c statev(31-36) -- strains in matrix cell 2

c statev(37-42) -- stresses in matrix cell 3

c statev(43-48) -- strains in matrix cell 3

c statev(49) fiber failure criterion

c statev(50) matrix failure criterion

c statev(51-86) -- converged internal displacements

c statev(87-94) -- damage parameter for springs

c statev(95) -- fiber von mises stress 570

c statev(96-98) -- matrix von mises stresses

c

do 1240 i = 1,12

statev(i+mlstl2) = svars(i)

1240 continue

1300 continue

c

c micro-failure criteria proposed by aboudi

c the criterion for the fiber compares the stress in the

c fiber to either the tensile or compressive strength, depending 580

c upon the state of stress. a result less than one

c the criterion for the matrix looks at the maximum

c principal stress in the plane perpendicular to the axis of

c the fiber and the axial shear stresses, s12 and s13. the

c principal stress is squared and then divided by the square of the

c the ultimate tensile strength of the matrix. the axial shear

c stresses are squared and added together. this sum is then divided

c by the square of the ultimate shear strength of the matrix. these

c two quotients are then added, with a sum of less than one

c indicating that failure has not occurred in the matrix. 590

c

if (statev(1).gt.0.0) then
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statev(49) = statev(1 )/props(22)

else

statev(49) = -statev(1)/props(23)

endif

statev(50) = 0.0

c

c the von mises equivalent stress--fiber cell

C 600

statev(95) = dsqrt((0.5*((statev(1)-statev(2))**2+

1(statev(2)-statev(3))**2+(statev(3)-statev(1))**2))+

2(3.0*(statev(4)*statev(4)+statev(5)*statev(5)

3+statev(6)*statev(6))))

do 1340 i = 1,3

do 1320 j = 1,6

s(j) = statev(i*12+j)

1320 continue

oper = dsqrt(((s(2)-s(3))/2.0)**2+(s(6)*s(6)))

sprl = (s(2)+s(3))/2.0 + oper 61o

spr2 = (s(2)+s(3))/2.0 - oper

if (abs(spr2).gt.abs(sprl)) then

sprl = spr2

endif

if (sprl.le.0.O) then

stren = props(31)

else

stren = props(24)

endif

oper = ((sprl*sprl)/(stren*stren))+ 620

+(((s(4)*s(4))+(s(5)*s(5)))/(props( 2 6)*props(2 6 )))

if (oper.gt.statev(50)) then

statev(50) = oper

endif

c

c the von mises equivalent stress--matrix cells

c

statev(i+95) = dsqrt((0.5*((s(1)-s(2))**2+
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1(s(2)-s(3))**2+(s(3) -s(1))**2))+

2(3.0*(s(4)*s(4) +s(5)*s(5)+s(6)*s(6)))) 630

1340 continue

c

c store internal dispalcements as state variables

c

do 1400 i = 1, Istop

statev(50+i) = deltau(i)

1400 continue

c

c call the spring elements to save the state variables (damage)

C 640

do 1500 m=1,8

mlst6 = (m-1)*6

jtype = 2

jelem = 1

do 1530 i = 1,6

u(i) = deltau(lms(i+(mlst6)))

1530 continue

svars(13)=statev(86+m)

svars(14)=area(m)

if(m.ge.3) then 650

sprop 17=props(17)

spropl8=props(18)

spropl9=props(19)

sprop28=props(28)

sprop29=props(29)

sprop30=props(30)

if(m.eq.3) then

props(17) =fibermu

props(18)=props(1)

props(19)=props(7) 660

props(28)=fibery

props(29)=fiberf

props(30)=h(i)

end if
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if(m.ge.4) then

props(17)=mmu

props(18)=props(13)

props (19) =props(15)

props(28)=mgamy

props(29)=mgamf 670

props(30)=h(i)

end if

end if

call uelab(rhs,amatrx,svars,ndofel,props,crds,mcrd,

1 nnode,u,jtype,time,dtime,kstep,kincjelem,predef,npred,lflags,

2 m,nprops,ttemp)

if(m.ge.3) then

props(17)=spropl7

props(18)=spropl8

props(19)=spropl9 680

props(28)=sprop28

props(29)=sprop29

props(30)=sprop30

end if

statev(86+m)=svars(13)

1500 continue

c

5000 format (3f10.5)

5010 format (12fl1.0)

5020 format (12f8.0) 690

5030 format (6g10.3)

5040 format (3f12.5)

5050 format (6f10.5)

return

end

c

subroutine uelab(rhs,amatrx,svars,ndofel,props,crds,mcrd,

1 nnode,u,jtype,time,dtime,kstep,kincjelem,predef,npred,lflags,

2 m,nprops,ttemp)

C 700
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implicit real*8(a-h,o-z)

dimension rhs(ndofel),amatrx(ndofel,ndofel),svars(1),

lprops(1),crds(mcrd,nnode),u(ndofel),

2predef(1),lflags(4),time(2)

c

if (jtype.eq.1) then

call aboudi(rhs,amatrx,svars,ndofel,props,crds,mcrd,

1 nnode,u jtype,time,dtime,kstep,kinc jelem,predef,npred,lflags,

2 m,nprops,ttemp)

else if (jtype.eq.2) then 710

call damage (rhs,amatrx,svars,ndofel,props ,crds,mcrd,

1 nnode,u,jtype,time,dtime,kstep,kincjelem,predef,npred,lflags,

2 m,nprops,ttemp)

endif

c

return

end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c

c aboudi element 720

C

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine aboudi(rhs,amatrx,svars,ndofel,props,crds,mcrd,

1 nnode,u,jtype,time,dtime,kstep,kincjelem,predef,npred,lflags,

2 m,nprops,ttemp)

c

implicit real*8(a-h,o-z)

dimension rhs(ndofel),amatrx(ndofel,ndofel) ,svars(1),

lprops(1),crds(mcrd,nnode),u(ndofel),

2predef(1),1flags(4),time(2) 730

c

dimension b(6,18)

dimension strain(6),tstr(6),thstr(6),stress(6)

dimension temp(18,6),d(6,6),abar(18,18)

dimension lhol(4),nent(3,4),phi(3,4)

c
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c 6 node aboudi cell model element for abaqus

c the vectors are arranged in the following manner:

c dof 1 at node 1,

c dof 2 at node 1, 740

c dof 3 at node 1,

c dof 1 at node 2,

c dof 2 at node 2,

c dof 3 at node 2, and so on.

c

c svars(1) to svars(6) = stresses at integration points

c svars(7) to svars(12) = strains at integration points

c

c the program is called in parts. the first part calls

c element to obtain the element stiffness matrix and assemble the 750

c global stiffness matrix. in the second part, the element stresses

c and strains are returned given the displacement field, or state of

c strain, that exists at the boundaries.

c

c initialize the b matrix.

c

mlst6 = (m-1)*6

dl = 1.0/(abs(crds(1,1+mlst6) - crds(1,2+mlst6)))

d2 = 1.0/(abs(crds(2,3+mlst6) - crds(2,4+mlst6)))

d3 = 1.0/(abs(crds(3,5+mlst6) - crds(3,6+mlst6))) 760

prod = 1.0/(dl*d2*d3)

c

do 20 k = 1,18

do 20 j = 1,6

b(j,k) = 0.0

20 continue

c

c b matrix

c

b(1,1) = dl 770

b(1,4) = -dl

b(2,8) = d2
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b(2,11) = -d2

b(3,15) = d3

b(3,18) = -d3

b(4,2) = dl

b(4,5) = -dl

b(4,7) = d2

b(4,10) = -d2

b(5,3) = dl 780

b(5,6) = -dl

b(5,13) = d3

b(5,16) = -d3

b(6,9) = d2

b(6,12) = -d2

b(6,14) = d3

b(6,17) = -d3

c

c determine the d matrix (constitutive)

C 790

call orthotropic(props,nprops,d,m)

c

c route the subroutine to the correct parts, depending upon

c what is being asked for.

c

if (jelem .eq. 1) go to 200

c

c initialize the amatrix and check to see if the mass

c matrix is desired. if the mass matrix is desired

c (lflags(3) = 3), then the amatrix is initialized to zero 800

c and the subroutine returns control to abaqus.

c

do 40 j = 1,18

rhs(j) = 0.0

do 40 i = 1,18

amatrx(i,j) = 0.0

40 continue

if (lflags(3).eq.3) go to 1000
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c

c calculate the stiffness (amatrx) matrix. this calculation is 810

c the triple product: b * d * b

c

do 60 j = 1,6

do 60 i = 1,18

temp(ij) = 0.0

60 continue

do 80 k = 1,6

do 80 j = 1,6

do 80 i = 1,18

temp(ij) = temp(i,j) + b(k,i) * d(k,j) 820

80 continue

c

do 100 k = 1,6

do 100 j = 1,18

do 100 i = 1,18

amatrx(ij) = amatrx(i,j) + prod * temp(i,k) * b(k,j)

100 continue

c

c add small stiffness for zero energy modes

C 830

c

nent(1,1)=2

nent(1,2)=5

nent(1,3)=7

nent(1,4)=10

phi(1,1)=dl

phi(1,2)=-dl

phi(1,3)=-d2

phi(1,4)=d2

c 840

nent(2,1)=3

nent(2,2)=6

nent(2,3)=13

nent(2,4)=16
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phi(2,1)=dl

phi(2,2)=-dl

phi(2,3)=-d3

phi(2,4)=d3

c

nent(3,1)=9 850

nent(3,2)=12

nent(3,3)=14

nent(3,4)=17

phi(3,1)=d2

phi(3,2)=-d2

phi(3,3)=-d3

phi(3,4)=d3

c

c stifmin=min(amatrx(1,1),amatrx(2,2),amatrx(3,3))

gstif=l.Oe-6*d(4,4) 860

do 190 1=1,3

do 180 i=1,4

do 180 j=1,4

aplus=gstif*phi(1,i)*phi(lj)

amatrx(nent(l,i),nent(1,j))=amatrx(nent(1,i),nent(1,j))+

+ aplus

rhs(nent(1,i))=rhs(nent(1,i))-aplus*u(nent(1,j))

180 continue

190 continue

C 870

c calculate the total strain from the displacements

c (using strain = b * displacements)

c

200 do 220 i = 1,6

tstr(i) = 0.0

220 continue

do 240 j = 1,18

do 240 i = 1,6

tstr(i) = tstr(i) + b(ij)*u(j)

240 continue 880
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calculate the thermal strains in the element

dtemp = ttemp - props(20)

do 260 i = 1,6

thstr(i) = 0.0

continue

if (m.eq.1) then

do 280 j = 1,3

thstr(j)

280 continue

else

do 290 j = 1,3

thstr(j)

290 continue

endif

c

= props(j+9) * dtemp

= props(16) * dtemp

subtract the thermal strains out from the total strain

do 300 i = 1,6

strain(i)

strain(i)

300 continue

c

= 0.0

= tstr(i) - thstr(i)

calculate the stresses from the strain

do 310 i = 1,6

stress(i) = 0.0

310 continue

do 320 j

do 320 i

320

c

c

= 1,6

= 1,6

stress(i) = stress(i) + d(ij) * strain(j)

continue

compute the force vector, rhs.
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if (lflags(3).eq.2) go to 1000

do 360 j = 1,6

do 340 i = 1,18 920

rhs(i) = rhs(i) - prod * b(j,i) * stress(j)

340 continue

360 continue

c

c set state variables

c

do 380 i = 1,6

svars(i) = stress(i)

svars(i+6) = strain(i)

380 continue 930

1000 return

5000 format (3f10.5)

5010 format (18f6.0)

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C

c subroutine orthotropic which determines the d (constitutive)

c matrix for a general orthotropic material.

c

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 940

subroutine orthotropic(props,nprops,d,m)

c

implicit real*8(a-h,o-z)

dimension props(nprops),d(6,6)

integer nprops,m

c

real*8 det,v12,v13,v23,v21,v31,v32

real*8 ell,e22,e33,gl2,g13,g23

integer i,j

if (m.eq.1) then 950

ell = props(l)

e22 = props(2)
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e33 = props(3)

v12 = props(4)

v13 = props(5)

v23 = props(6)

v21 = v12*(props(2)/props(1))

v31 = vl3*(props(3)/props(1))

v32 = v23*(props(3)/props(2))

det = 1 - (v12*v21) - (v23*v32) - (v13*v31) - 960

+ (2.0*v12*v23*v31)

g12 = props(7)

g13 = props(8)

g23 = props(9)

else

ell = props(13)

e22 = ell

e33 = ell

v12 = props(14)

v13 = v12 970

v23 = v12

g12 = props(15)

g13 = g12

g23 = g12

v21 = v12

v31 = v13

v32 = v23

det = 1 - (v12*v21) - (v23*v32) - (v13*v31) -

+ (2.0*v12*v23*v31)

endif 980

c

do 20 j = 1,6

do 20 i = 1,6

d(i,j) = 0.0

20 continue

c

d(l,l) = (1 - (v23*v32))*ell/det

d(1,2) = (v12 + (v13*v32))*e22/det
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d(1,3) = (v13 + (v23*v12))*e33/det

d(2,2) = (1 - (v31*v13))*e22/det 990

d(2,3) = (v23 + (v21*v13))*e33/det

d(3,3) = (1 - (v12*v21))*e33/det

d(2,1) = d(1,2)

d(3,1) = d(1,3)

d(3,2) = d(2,3)

d(4,4) = g12

d(5,5) = g13

d(6,6) = g23

c

return 1000

end

subroutine damage(rhs,amatrx,svars,ndofel,props,crds,mcrd,

1 nnode,u,jtype,time,dtime,kstep,kincjelem,predef,npred,lflags,

2 m,nprops,ttemp)

c

implicit real*8(a-h,o-z)

dimension rhs(ndofel) ,amatrx(ndofel,ndofel) ,svars(1),

1props(1),crds(mcrd,nnode),u(ndofel),

2predef(1),lflags(4),time(2)

C 1010

dimension lhol(2)

real*8 epsl,eps2,eps3,deltal,delta2,delta3

real*8 dam,mu,e,g,gammay,gammaf,h

real*8 gammae,curdam,kn,ks,divis,tol

real*8 dddge,dgeddl ,dgedd2,dgedd3

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccccccccccCCCCCCCCCCCCCcCCCCCC

C

c damage element

c

c this is now a nonlinear damage element. the stress at any point 1020

c is dependent on the maximum strain seen by the element at any

c previous time.

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC ccCC c ccccccccccccCCCCCCCCC

C
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c the vectors are arranged as follows:

c dof 1 at node 1

c dof 2 at node 1

c dof 3 at node 1

c dof 1 at node 2

c dof 2 at node 2 1030

c dof 3 at node 2

c

c props(17) = mu, the effective spring friction coefficient

c props(18) = e, the effective spring young's modulus

c props(19) = g, the effective spring shear modulus

c props(28) = gammay, the yield strain for the spring

c props(29) = gamma-f, the failure strain for the spring

c (this must be greater than gamma-y)

c props(30) = h, the bond thickness for the spring

c 1040

c svars(13) = d, the damage parameter (cumulative)

c svars(14) = a, the initial total area of the bond

c

c initialize and construct the amatrix

c

do 10 i = 1, 6

rhs(i) = 0.0

do 10 j = 1, 6

amatrx(i,j) = 0.0

10 continue 1050

if (lflags(3).eq.3) go to 1000

C

mu = props(17)

e = props(18)

g = props(19)

gammay = props(28)

gammaf = props(29)

h = props(30)

c

c tol is the tolerance value which i use to check the los060
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c deltas against 0.

c

tol = 0.01*h

kn = svars(14)*e/h

ks = svars(14)*g/h

c

c calculate the effective strain, gammae

C

deltal = u(4)-u(1) 1070

delta2 = u(5)-u(2)

delta3 = u(6)-u(3)

epsl = deltal/h

eps2 = delta2/h

eps3 = delta3/h

gammae = (mu*e*epsl/g)+dsqrt((eps2*eps2)+(eps3*eps3))

dddge = 0.0

if (gammae.1t.gammay) then

curdam = 0.0

else if (gammae.gt.gammaf) then 1080

curdam = 1.0

else

c curdam = gammae/(gammaf-gammay)

curdam=.-(gammay/gammae)* ((gammaf-gammae)/(gammaf-gammay))

endif

if (curdam.gt.svars(13)) then

dam = curdam

if (curdam.lt.1.0) then

c dddge = 1.0/(gammaf-gammay)

dddge = gammaf*gammay/(gammaf-gammay)/gammae/gammae 1090

endif

if(dam.gt.1.) dam=1.

svars(13)=dam

else

dam = svars(13)

endif
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if(jelem.eq.1) go to 1000

dgeddl = (mu*e)/(g*h)

divis = dsqrt((delta2*delta2)+(delta3*delta3))

if (abs(delta2).lt.tol) then 1100

dgedd2 = 0.0

else

dgedd2 = (delta2)/(h*divis)

endif

if (abs(delta3).lt.tol) then

dgedd3 = 0.0

else

dgedd3 = (delta3)/(h*divis)

endif

C 1110

if (deltal.gt.0.0) then

amatrx(1,1) = kn*(1.0-dam)-(kn*deltal*dgegedddgedgeddl)

amatrx(1,2) = -1.0*kn*deltal*dddge*dgedd2

amatrx(1,3) = -1.0*kn*deltal*dddge*dgedd3

else

amatrx(1,1) = kn

endif

amatrx(2,2) = ks*(1.0-dam)-(ks*delta2*dddge*dgedd2)

amatrx(3,3) = ks*(1.0-dam)-(ks*delta3*dddge*dgedd3)

amatrx(2,1) = -1.0*ks*delta2*dddge*dgeddl 1120

amatrx(2,3) = -1.0*ks*delta2*dddge*dgedd3

amatrx(3,1) = .-1.0*ks*delta3*dddge*dgeddl

amatrx(3,2) = -1.0*ks*delta3*dddge*dgedd2

c

c symmeterize amatrx

c

c amatrx(1,2)=.5*(amatrx(1,2)+amatrx(2,1))

c amatrx(1,3)=.5*(amatrx(1,3)+amatrx(3,1))

c amatrx(2,3)=.5*(amatrx(2,3)+amatrx(3,2))

c amatrx(2,1)=amatrx(1,2) 1130

c amatrx(3,1)=amatrx(1,3)

c amatrx(3,2)=amatrx(2,3)
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cc check for nonpositive definite amatrx

cc

c det= amatrx(1,1)*amatrx(2,2)*amatrx(3,3)

c det=det+amatrx(1,2)*amatrx(2,3)*amatrx(3,1)

c det=det+amatrx(1,3)*amatrx(2,1)*amatrx(3,2)

c det=det-amatrx(1,3)*amatrx(2,2)*amatrx(3,1)

c det=det-amatrx(1,1)*amatrx(2,3)*amatrx(3,2) 1140

c det=det-amatrx(1,2)*amatrx(2,1)*amatrx(3,3)

c if(det.le.0.) then

c do 90 i=1,3

c do 90 j=1,3

c 90 amatrx(i,j)=0.

c end if

do 120 j = 1,3

do 100 i = 1,3

amatrx(i,j+3) = -amatrx(i,j)

amatrx(i+3,j) = -amatrx(i,j) 1150

amatrx(i+3,j+3) = amatrx(i,j)

100 continue

120 continue

c

c compute the force vector, rhs

c note: this is the negative of the internal force vector

c

if (lflags(3).eq.2) go to 1000

if (deltal.gt.0.0) then 1160

rhs(1) = kn*(1.0-dam)*deltal

else

rhs(1) = kn*deltal

endif

rhs(2) = ks*(1.0-dam)*delta2

rhs(3) = ks*(1.0-dam)*delta3

rhs(4) = -rhs(1)

rhs(5) = -rhs(2)

180



rhs(6) = -rhs(3)

C 1170

1000 return

end
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