
A microcontroller-based software framework for
controlling a mechatronic system

Nikolaos Nikolaidis1, Nikolaos Evgenidis1,*, Dimitrios Bechtsis1, Fotis Stergiopoulos1,

Apostolos Tsagaris1, Dimitrios Triantafyllidis1, Asterios Papaoikonomou2 and Anastasios

Filelis2

1International Hellenic University (IHU), Department of Industrial Engineering & Management, PO

Box 141, Sindos, Thessaloniki, 57400, Greece
2 Evresis S.A DA 12a Block:39b Industrial Area, 57400, Sindos, Thessaloniki

Abstract. The proposed software framework is presented and an

Application Programming Interface (API) is developed based on the

Arduino Mega 2560. The API processes external commands that follow the
operational logic of a gel electrophoresis device. The API acts as an

intermediary layer between the gel electrophoresis mechatronic system’s

microcontroller and the motors’ controllers. The microcontroller enables the

basic functionalities of the gel electrophoresis system while the use of 2 axis
(X, Z) motor controllers is necessary for controlling the moving parts of the

mechatronic system. We control the movement’s direction, position, speed,

and acceleration. The developed API controls the stepper motors drive axles

and the DC motors for opening and closing the drawers and other moving

parts of the mechatronic system.

1 Introduction

An Application Programming Interface (API) has been developed in order to control a gel

electrophoresis device that is currently under development. Electrophoresis has been known

for about a century and involves the movement of proteins when an electric current is applied

in a compartment filled with gel [1]. A agarose enhance solution is used as a substrate to

facilitate the proteins movement, as a common practice in many Gel Electrophoresis (GE)

devices The device (Fig. 1) consists of the following basic mechanical components [2]: (i)

tube drawer system, (ii) bar code scanner, (iii) wash tank, (iv) robotic arm/gripper, (v) sample

carrier, (vi) electrophoresis chamber, (vii) frame/film manipulator, (viii) staining-unstaining

chamber, (ix) drying chamber, (x) camera analysis chamber. In this context, the typical steps

of the gel electrophoresis process are: (i) take the sample and place it at a gel substrate, (ii)

Apply an electric current, (iii) Dry the sample, iv) Stain and un-stain the sample, (v) Dry the

sample and (vi) Analyze the sample and print the results. In order to automate the typical

steps of the gel electrophoresis process, a mechatronic system was used, and the proposed

API has been developed for controlling the mechanical arm of the mechatronic system. The

use of an API for controlling a microcontroller is widely used when a lot of external sources

must be coordinated [3].

*Corresponding author: evgenidisnikos@gmail.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

MATEC Web of Conferences 318, 01052 (2020) https://doi.org/10.1051/matecconf/202031801052
ICMMEN 2020

mailto:evgenidisnikos@gmail.com

Fig. 1. The overall mechatronic system

2 The microcontroller’s connections

Microcontrollers can provide accurate control for the moving parts of a mechatronic system

[4]. For controlling the mechatronic system of the electrophoresis device an Arduino

microcontroller has been used and the schematic diagram of the controller is presented at Fig.

2.

Fig. 2. The connections of the microcontroller

The yellow colored ports stand for the stepper motor connections, the blue for the power

connections and the orange ports control the drawer movement. Moreover, the diagram

indicates the debugging signals and an additional serial port for future use. Ports 18 to 21 are

selected in order to provide an independent external stop signal INT0 to INT3, ports A12 to

A14 are used as the drawers limit switches in a Pin Change INTerrupt (PCINT[2:0]) business

logic. The drawers’ velocity is controlled by port 44 PWM OC5C signal and finally the

actuation of the motors MotorXen (X axis) and MotorZen (Z axis) uses ports 22 and 24

respectively. On overall microcontroller operated control circuits that drive motors and gear-

bearing arrangements are considered of major importance in custom devices [5].

3 The messaging scheme of the developed API

For every input message the API provides an answering message using the USB port as an

interface. Warning messages are also sent at an error handling situation when the software

identifies an error. In general, 4 types of answering messages are provided: (i) Information

Messages, (ii) Warning Messages, (iii) Error Messages and (iv) Setup Messages.

2

MATEC Web of Conferences 318, 01052 (2020) https://doi.org/10.1051/matecconf/202031801052
ICMMEN 2020

Table 1. The 4 types of Answering Messages: Information, Warning, Error and SetUp Messages

I1 Info: Motor X initialized
I2 Info: Motor Z initialized
I3 Info: motor X started
I4 Info: motor Z started
I5 Info: motor X finished
I6 Info: motor Z finished
Ι7 Info: X enable output is high
active
I8 Info: X enable output is low
active
I9 Info: Z enable output is high
active
I10 Info: Z enable output is low
active
I11 Info: X drive is always
active
I12 Info: X drive is in auto
mode
I13 Info: Z drive is always active
I14 Info: Z drive is in auto
mode
I15 Info: Motor X drive set to
manual mode and enabled (use
S,XE,M for permanent change).
I16 Info: X drive set to manual
mode and disabled. X,L and X,R
commands will be ignored until
re-enabled.
I18 Info: Motor Z drive set to
manual mode and enabled (use
S,ZE,M for permanent change)
I19 Info: Z drive set to manual
mode and disabled. Z,L and Z,R
commands will be ignored until
re-enabled
Ι30 Info: Drawer 0 is opening
I31 Info: Drawer 0 stopped
I32 Info: Drawer 0 is closing
I33 Info: Drawer 0 closed
Ι34 Info: Drawer 1 is opening
I35 Info: Drawer 1 stopped
I36 Info: Drawer 1 is closing
I37 Info: Drawer 1 closed
Ι38 Info: Drawer 2 is opening
I39 Info: Drawer 2 stopped
I40 Info: Drawer 2 is closing
I41 Info: Drawer 2 closed
I42 Drawer 0=status, 1=status,
2=status

W0 Warning: you must connect pin 53 to
RESET to activate reset command
W1 Warning: motor X already stopped
W2 Warning: Motor Z already stopped
W3 Warning: speed of X exceeds max and
replaced with 800
W4 Warning: speed of Z exceeds max and
replaced with 800
W5 Warning: speed of X cannot be 0 -
replaced with 1
W6 Warning: speed of Z cannot be 0 -
replaced with 1
W7 Warning: acceleration of X lower than min
- replaced with 10
W8 Warning: acceleration of Z lower than min
- replaced with 10
W30 Warning: Drawer # is already closed
W31 Warning: Drawer # is already closing
W32 Warning: Drawer # is already opening
W33 Warning: drawer # is already stopped
W34 Warning: drawer # is closing now and
cannot be opened
W35 Warning: drawer # is neither opening
nor in unknown status - stop command is not
allowed

S1 Setup: Enter the active level of
the enable input for drive X (H for
high, L for low) and press
S2 Setup: X enable output set to
high active
S3 Setup: X enable output set to
low active
S4 Setup: enter the active level of
the enable input for drive Z (H for
high, L for low) and press
S5 Setup: Z enable output set to
high active
S6 Setup: Z enable output set to
low active
S7 Setup: enter the enable mode
for drive X (M for manual, A for
Automatic) and press <Enter>
S8 Setup: X drive set to manual
mode
S9 Setup: X drive set to auto mode
S10 Setup: enter the enable mode
for drive Z (M for manual, A for
Automatic) and press <Enter>
S11 Setup: Z drive set to manual
mode
S12 Setup: Z drive set to auto mode
S13 Setup: X enable set to high
active
S14 Setup: X enable set to low
active
S15 Setup: X drive set to auto mode
S16 Setup: X drive set to manual
mode
S17 Setup: Z enable set to high
active
S18 Setup: Z enable set to low
active
S19 Setup: Z drive set to auto mode
S20 Setup: Z drive set to manual
mode

E0 Error: unknown command received
E1 Error: motor X already running
E2 Error: motor Z already running
E3 Error: direction X must be L (left), R (right),
0 (stop) or E (enable)
E4 Error: direction Z must be L (left), R (right),
0 (stop) or E (enable)
E5 Error: minimum number of steps in X is 1 -
received 0
E6 Error: minimum number of steps in Z is 1 -
received 0
E7 Error: Valid S,ZE parameters are S,ZE,H
S,ZE,L S,ZE,A and S,ZE,M
E8 Error: Valid setup commands are S,aE,H
S,aE,L S,aE,A and S,aE,M where a = X or Z
E9 Error: Valid S,XE parameters are S,XE,H
S,XE,L S,XE,A and S,XE,M
EA Internal error: OCR and prescaler arrays
are not of the same size
E10 Error: Motor X enable must be ON or OFF
E11 Error: Motor Z enable must be ON or OFF
E30 Error: Wrong drawer number. It must be
0, 1 or 2
E31 Error: Wrong drawer command.
Available: H=Home, O=Open, S=Stop or
U=statUs
E32 Error: you must wait for drawer # to
finish moving
E33 Error: Max time of 3000 ms exceeded in
move of drawer # and move cancelled

3

MATEC Web of Conferences 318, 01052 (2020) https://doi.org/10.1051/matecconf/202031801052
ICMMEN 2020

4 Software flowcharts for controlling the motors

Arduino supports the development of the software program in two distinct phases. The first

phase is the program setup which is executed once either at the initialization step or after

every reset signal. The second phase includes a continuously running loop, the main program,

that continuously monitors all the ports and reacts at every signal. Our main goal was to use

a serial programming architecture and as a result the routines are controlled with interrupt

routines. The main program monitors the ports for an input message string (a comma

separated character string) from the USB port and makes a call to the parser in order to select

and execute the proper interrupt routines. The main program also controls the motors (Stepper

and DC motors) for the mechatronic system (arm, drawer’s and other moving parts). The flag

stringcomplete is updated from Arduino’s serialEvent() that is called after the end of a single

loop and indicates the routines that must be executed. The main loop checks if stringcomplete

is activated and calls the serialEvent() routine (Fig. 3a) in order to get the characters from the

input message string. For every distinct character at the string, the system safely stores the

character and returns stringcomplete =1 for indicating that a input was successfully inserted.

The next step is to execute the parser routine (Fig. 3b) for indicating the procedure and the

commands that should be followed. The procedure includes a maximum of 5 substrings that

are separated with a comma (the message format is: scmd, s1, s2, s3 and s4). Depending on

the first substring (scmd values are R,X,Z,D) the main loop executes the corresponding

routines.

Fig. 3a. Flowchart of the serialEvent

routine

Fig. 3b. Flowchart of the main loop

The controller is based on Arduino Mega 2560 and uses three (3) digital outputs for each

stepper motor: (i) enable, (ii) direction and (iii) moving step. The outputs are used both for

4

MATEC Web of Conferences 318, 01052 (2020) https://doi.org/10.1051/matecconf/202031801052
ICMMEN 2020

the X and the Z axis. The serial port of the controller is used for the communication with the

mechatronic system in order to control the motors. The control message setup includes

information for (i) the movement at the X or Z axis (ii) the left (L), right (R) or (0) stop

signals (iii) the maximum or min speed (vi) the acceleration at a certain level (10 to 65.535)

and (v) the number of steps from 1 to 65.535 (Fig. 4a). For example, a message that states

(X,R,100,200,800) would inform the system that the motor that controls the X axis should

turn right at a speed value of 100 and an acceleration value 200 for 800 steps. Furthermore,

we could handle the motors by using a setup command in order to enable either the manual

or the automatic mode. For example, a message setup message that states (S,XE,M) would

inform the system for controlling the axis X in manual mode. At the automatic mode the

output signal becomes active just before the start movement and inactive just after the end of

the movement. This reduces the energy concussion of the system, the motor’s temperature

and the restraint torque at our prototype. At the manual mode, the output signal is activated

until the user sends a deactivation command.

Fig. 4a. The motors basic menu

Fig. 4b. The motors acceleration control

At Fig. 4b we present the control flowchart for the movement of the motor. To set the motor

movement in a specific position we need timers to control the speed, the position and the

acceleration. For speed control and position identification at the X axis we use a timer3 in

clear time (CTC) mode and for acceleration we use timer1 in compare register (OCR) mode.

For moving at a specific position, we first identify the total number of pulses needed and the

exact steps for the motor. In order to reach the total number of pulses the motor gradually

accelerates and waits for the timer 3 who controls axis X to stop the motor using the routine

MotorXStop. While AccelFlagX equals to one, the motor’s acceleration gradually increases

the pulses at numpaccel. As a next step in order to smoothly stop the motor the

DecelerationStartX routine is used. If AccelFlagX is not equal to minus one (-1) and the

number of pulses X (numpulsesX) equals the number of acceleration pulses (numpaccelX)

5

MATEC Web of Conferences 318, 01052 (2020) https://doi.org/10.1051/matecconf/202031801052
ICMMEN 2020

the DecelerationStartX routine is activated in order to gradually stop the motor. For the Z

axis the routine uses timer 4 and repeats the logical steps.

5 Conclusion

In the previous sections, a software framework based on the Arduino microcontroller for

controlling the mechatronic system of an innovative fully automatic electrophoresis system

has been presented. The proposed API takes into consideration all the functionalities of the

mechatronic system and responds well in real world conditions. The total size of the software

is 11.162 bytes that is about 4% of the total available storage (253.952 bytes). The global

variables are using 1208 bytes that is about 14% of the total RAM memory (8.000 bytes).

The results showed high accuracy in operation and efficiency in the control of the

mechatronic system’s moving parts, according to the requirements.

This research has been co-financed by the European Regional Development Fund of the European
Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship

and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: T1EDK-02403)

References

1. B. Aslam, M. Basit, M. A. Nisar, M. Khurshid, & M.H. Rasool, J. Chromatogr. Sci.,

55(2), 182-196 (2017)

2. K. Theodoridis, F. Stergiopoulos, D. Bechtsis, N. Nikolaidis, D. Triantafillides, A.

Tsagaris, A. Filelis, A. Papaikonomou, An innovative and fully automated system for

gel electrophoresis, ESCAPE 2020 Conference, Italy (Accepted) (2020)

3. L. Sungchul, J. Juyeon , K. Yoohwan , St. Haroon, A Framework for Environmental

Monitoring with Arduino-Based Sensors Using Restful Web Service, Proceedings of the

2014 IEEE International Conference on Services Computing (2014)

4. R. Md. Kamruzzaman, H.B. Muhibul, Microcontroller Based DC Motor Speed Control

Using PWM Technique, International Conference on Electrical, Computer and

Telecommunication Engineering (2012)

5. V. K. Singh, A. Sahu, A. Beg, B. Khan and S. Kumar, "Speed & Direction Control of

DC Motor through Bluetooth HC-05 Using Arduino", International Conference on

Advanced Computation and Telecommunication (ICACAT). (2018)

6

MATEC Web of Conferences 318, 01052 (2020) https://doi.org/10.1051/matecconf/202031801052
ICMMEN 2020

