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ABSTRACT
Small RNAs of -22 nt length play a variety of roles in the biology of animals by repressing the translation
or stimulating the degradation of complementary messenger RNAs. Depending on the structure of their
precursors, they can be categorized as either microRNAs (miRNAs) or small interfering RNAs (siRNAs).
In animals, miRNAs derive from characteristic hairpins in primary transcripts through two sequential
RNase III-mediated cleavages; Drosha cleaves near the base of the stem to liberate a pre-miRNA hairpin,
then Dicer cleaves near the loop to generate a miRNA:miRNA* duplex.

Large-scale sequencing of cDNAs derived from endogenously expressed small RNAs is used here to
examine the small RNAs of the nematode Caenorhabditis elegans and the fly Drosophila melanogaster,
revealing a number of previously unidentified miRNA genes from each organism. These data also revealed
a novel miRNA biogenesis pathway, the mirtron pathway, in which debranched introns mimic the
structural features of pre-miRNAs to enter the miRNA-processing pathway without Drosha-mediated
cleavage. Mirtrons were identified in both D. melanogaster and C. elegans, some of which exhibit patterns
of sequence conservation suggesting important regulatory functions.

Sequencing was performed across a timecourse of D. melanogaster development, permitting refinement of
preexisting miRNA annotations and providing insights into miRNA biogenesis and expression. Conserved
miRNAs were typically expressed more broadly and robustly than nonconserved miRNAs, and miRNAs
with more restricted expression tended to have fewer predicted targets. Insights were also provided into
miRNA gene evolution. Finally, two possible sources of endogenous siRNAs were revealed: antisense
transcription and endogenous hpRNAs.

Besides miRNAs, sequencing from C. elegans revealed thousands of endogenous siRNAs generated by
RNA-directed RNA polymerases acting preferentially on spermatogenesis- and transposon-associated
transcripts. A third class of nematode small RNAs, called 21U-RNAs, was also discovered. 21U-RNAs are
precisely 21 nucleotides long and begin with a uridine but are diverse in their remaining 20 nucleotides.
21U-RNAs originate from >5700 genomic loci dispersed in two broad regions of chromosome IV. These
loci share an upstream motif that enables accurate prediction of additional 21U-RNAs. The motif is
conserved in other nematodes, presumably because of its importance for producing these diverse,
autonomously expressed, small RNAs.
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Chapter 1

Introduction

Non-coding RNA genes

The term "gene" was originally defined abstractly as a general identifier for the

"unit-factors, elements, or allelomorphs in the gametes" that carry heritable information

from parent to offspring (Johannsen 1911). The modern concept of a gene is more

specific. It derives from Beadle and Tatum's "one gene, one enzyme" hypothesis

(Beadle and Tatum 1941) and reflects the definition given by Benzer for a cistron: "a

[genomic] map segment, corresponding to a function which is unitary as defined by the

cis-trans test applied to the heterocaryon" (Benzer 1957). In the framework of the central

dogma of molecular biology, an enzyme is a protein, and a cistron is the DNA segment

encoding that protein. The role of RNA is to shuttle information from the DNA of the

gene towards the ultimate goal of protein production.

An appreciation for the role of RNA molecules beyond the framework of the

central dogma, as mature gene products themselves, came early in the history of

molecular biology. The importance of the ribosomal RNAs (rRNAs) in protein synthesis

was recognized early, and they were later confirmed as not only structural but catalytic

components of the ribosome (Nissen et al. 2000; Noller et al. 1992; Schweet et al. 1958).

The in vivo role of the 'soluble RNAs' (sRNA) was described by the adapter hypothesis,

asserting that a sequence of DNA nucleotides is translated into a sequence of amino acids

by RNA converters, and motivating the rechristening of sRNAs as transfer RNAs

(tRNAs) (Berg and Ofengand 1958; Haogland et al. 1958). It was not until the non-

coding roles of tRNAs and rRNAs had been roughly outlined that the role of the short-



lived messenger RNAs (mRNAs) as an information-carrying intermediate was

established (Jacob and Monod 1961).

The tRNAs and rRNAs proved that not all genes would carry information from

the DNA of the genome to the endpoint of protein sequence specified by the central

dogma. In fact, the dual abilities of RNA as both a functional gene product and as a

template for its own replication fueled speculation that RNA had served as both alpha and

omega of a minimized central dogma prior to evolution's discovery of translation, in the

context of the so-called RNA world (Gilbert 1986). But in the context of contemporary

biology, many more types of non-protein-coding RNAs (ncRNAs) would be discovered

in the wake of tRNA and rRNA. These RNA gene products fulfill a similar spectrum of

roles in the cell as their proteinaceous counterparts, including enzymatic catalysis,

structural roles in macromolecular complexes, molecular recognition, and gene

regulation. They include the small nuclear RNAs involved in splicing; the small

nucleolar RNAs that guide the covalent modification of rRNA; the catalytic self-splicing

introns and RNase P; the structural signal recognition particle RNAs, vault RNAs, and Y

RNAs; the ligand-binding riboswitches; and the chromosome-coating RNAs Xist, POF,

and roX. Discoveries made mostly in the past decade have expanded the set of known

ncRNAs to include a cornucopia of small RNAs associated with the phenomena of RNA

interference, described below.

The discovery of RNA interference

The trans suppression of endogenous genes by introduced homologous transgenes

was first observed in plants, and was termed 'cosuppression' (Napoli et al. 1990; van der



Krol et al. 1990). The observation that viral infection can eliminate the expression of

viral mRNA from nuclear transgenes without reducing the rates of transcription of those

transgenes identified cosuppression as post-transcriptional, and further identified a role

for this type of silencing in innate immunity (Lindbo et al. 1993). Distinction was made

between two 'cosuppression' pathways, one induced by single-stranded RNA (ssRNA)

and the other by double-stranded RNA (dsRNA) (Que et al. 1997). These two modes of

cosuppression were later observed to have some distinct genetic requirements, with the

requirements for silencing of infectious viruses matching those of dsRNA-induced

repression (Beclin et al. 2002; Dalmay et al. 2000).

Gene silencing in trans was also discovered in the fungus Neurospora crassa, and

in that context referred to as 'quelling' (Romano and Macino 1992). A role for RNA in

quelling was identified through molecular characterization of qde-1, a gene required for

quelling that encodes an RNA-dependent RNA polymerase (RdRP) (Cogoni and Macino

1997; Cogoni and Macino 1999; Makeyev and Bamford 2002). In plants, a qde-1

homolog is required for cosuppression by ssRNA but not by dsRNA (Dalmay et al.

2000). The requirement for either dsRNA or an enzyme capable of manufacturing

dsRNA in both quelling and cosuppression implicated dsRNA as the key signaling

molecule of silencing in these systems.

The observation of gene silencing by dsRNA in Caenorhabditis elegans extended

this phenomenon to animals (Fire et al. 1998). In this context, it was referred to as RNA

interference (RNAi), and was subsequently identified in other animals, including

Drosophila melanogaster (Kennerdell and Carthew 1998) and mouse (Wianny and

Zernicka-Goetz 2000). The role of small RNAs as mediators of RNAi was established



through the observation that the dsRNA that induces RNAi is cleaved into ~21-23 nt

fragments both in vitro and in vivo (Bernstein et al. 2001; Parrish et al. 2000; Zamore et

al. 2000), and that those fragments are sufficient to induce cleavage of target mRNAs

(Elbashir et al. 2001; Hammond et al. 2000). Those fragments are called small

interfering RNAs (siRNAs).

The discovery of microRNAs

Even before the role of siRNAs as mediators of RNAi was established, the

endogenously expressed small temporal RNAs (stRNAs) had been discovered and their

role in gene silencing established. The lin-4 and let-7 genes of C. elegans comprised this

class; both genes encode small RNAs ~22 nt long that derive from a hairpin precursor

(Lee et al. 1993; Reinhart et al. 2000; Wightman et al. 1993). Both of these genes were

identified genetically. Mutant lin-4 nematodes exhibit numerous post-embryonic cell

lineage reiterations with diverse phenotypic consequences, including malformation of the

vulva, altered body shape, and extra larval molts (Chalfie et al. 1981; Horvitz and Sulston

1980). In let-7 mutants, the hypodermal blast cells fail to fuse with seam cells and form

an adult cuticle structure at the L4-to-adult molt, resulting in a superfluous fifth larval

stage (Reinhart et al. 2000).

The catalog of known stRNA genes expanded dramatically with direct molecular

cloning and sequencing of cDNAs generated from their small RNA gene products in C.

elegans and Drosophila (Lagos-Quintana et al. 2001; Lau et al. 2001; Lee and Ambros

2001). The genes of this family were observed to all express small RNAs that derived

from larger hairpin precursors. Subsequent sequencing efforts have continued to expand



the miRNA gene number in nematodes and flies, and also identified large numbers of

stRNA genes in vertebrates, planarians, and plants (Mourelatos et al. 2002; Palakodeti et

al. 2006; Reinhart et al. 2002). In response to the vast expansion of this gene class, the

stRNAs were rechristened as microRNAs (miRNAs).

The mechanism of RNA interference

The primary siRNAs needed for RNAi are generated through cleavage of dsRNA

by the RNase III enzyme Dicer (Bernstein et al. 2001; Grishok et al. 2001; Knight and

Bass 2001). The RNA products of these cleavage reactions are left with monophosphates

at their 5' ends and hydroxyl groups at their 3' ends (Elbashir et al. 2001). Dicer cleaves

long dsRNAs into a series of ~21 nt duplexes with 2 nt 3' overhangs, and either strand of

each duplex can be incorporated as a single strand into the RNA-induced silencing

complex (RISC) (Elbashir et al. 2001; Martinez et al. 2002; Nykanen et al. 2001). The

relative stabilities of the two ends of each siRNA duplex determine which strand of that

duplex is preferentially loaded into RISC, with preference given to the strand whose 5'

end is less stable (Khvorova et al. 2003; Schwarz et al. 2003). The loaded strand directs

RISC to cleave the phosphodiester bond of a complementary target RNA between the

bases pairing with nucleotides 10 and 11 of the siRNA (Elbashir et al. 2001).

Alternatively, RISC will translationally repress an mRNA target with non-

complementary nucleotides at those positions (Doench et al. 2003) (Figure 1A).

The ability of RISC to cleave target RNAs, called Slicer activity, is provided by

the Argonaute protein at its core (Liu et al. 2004). The Argonaute protein family, whose

members are defined by possession of Piwi and PAZ domains, spans all of the major



clades of life on Earth (Cerutti et al. 2000). It can generally be divided into two

subfamilies, Ago and Piwi, each named after a representative member (Carmell et al.

2002). The Ago subfamily is named after the AGO1 protein of Arabidopsis that plays a

role in dsRNA-mediated post-transcriptional gene silencing (PTGS) (Morel et al. 2002).

The Piwi subfamily is named after the PIWI protein of Drosophila that is required for

renewal of germ-line stem cells (Cox et al. 1998). There are also a number of Argonaute

proteins in C. elegans that do not fit well into either subfamily and comprise a third

Argonaute clade (Yigit et al. 2006). The Piwi domain is better conserved than the PAZ

domain across the Argonautes, and its tertiary structure resembles that of RNase H

enzymes (Carmell et al. 2002; Song et al. 2004). In accord with the catalytic role of its

structural homolog, the Piwi domain of human Ago2 catalyzes slicing (Rivas et al. 2005),

and Piwi domains in Argonautes from both major subfamilies from organisms of taxa as

diverse as mammals, insects, nematodes, fungi, plants, and eubacteria maintain Slicer

activity (Aoki et al. 2007; Baumberger and Baulcombe 2005; Gunawardane et al. 2007;

Liu et al. 2004; Maiti et al. 2007; Meister et al. 2004; Miyoshi et al. 2005; Nishida et al.

2007; Saito et al. 2006; Yuan et al. 2005). However, some Argonaute proteins have

maintained the Piwi domain but lost the ability to slice (Liu et al. 2004; Meister et al.

2004) (Figure lB). This loss of catalysis likely reflects the diverse roles beyond slicing

that Argonaute proteins are thought to play in gene regulation (Peters and Meister 2007).

The integration of one strand from an siRNA duplex into RISC (this strand is

called the guide strand) requires separating it from the other strand (called the passenger

strand). In Drosophila, the guide and passenger strands are initially distinguished by

R2D2, a dsRNA-binding protein that attaches to the end of the siRNA duplex with more



double-stranded character in solution; the strand whose 3' end is bound by R2D2

becomes the guide strand (Tomari et al. 2004). R2D2 binds to Dicer-2, and it is

dispensable for dsRNA cleavage by Dicer-2 but is required for Dicer-2 to remain

associated with siRNAs during RISC assembly (Liu et al. 2003). Dissociation of the

guide and passenger strands occurs after transfer of the siRNA duplex to Ago2 (Nykanen

et al. 2001). The energetic challenge of this dissociation is eased by cleavage of the

passenger strand by Ago2/Slicer (Matranga et al. 2005; Miyoshi et al. 2005; Rand et al.

2005). In human cells, the dsRNA-binding protein TRBP plays a similar role to that

played by R2D2 in Drosophila (Chendrimada et al. 2005). In C. elegans, RDE-4 is the

dsRNA-binding protein that interacts with both DCR-1 and the RNAi-critical Argonaute

protein RDE-1 (Tabara et al. 1999; Tabara et al. 2002). RDE-4 also recruits a helicase

protein, DRH-1, to the C. elegans RISC (Tabara et al. 2002).

Like PTGS in plants and quelling in fungi but unlike RNAi in mammals or

Drosophila, RNAi in C. elegans involves the amplification of silencing activity through

the action of an RNA-dependent RNA polymerase (RdRP) (Smardon et al. 2000). Small

RNAs, termed secondary siRNAs, are generated that complement the target mRNA 5' of

the region of homology to the double-stranded trigger (Sijen et al. 2001) (Figure 1C).

Even without introduction of a double-stranded RNA trigger, endogenous siRNAs of this

type are generated in vivo that complement expressed mRNAs and transposon messages

(Ambros et al. 2003; Sijen and Plasterk 2003). Secondary siRNAs differ from primary

siRNAs in that they carry 5' triphosphates rather than monophosphates and they interact

with distinct Argonaute and RNAi-related proteins (see chapter 2) (Aoki et al. 2007; Pak



and Fire 2007; Sijen et al. 2007; Yigit et al. 2006). However, they can target

complementary messages for slicing just like primary siRNAs (Aoki et al. 2007).

In plants, suppression of endogenous messages by siRNAs via post-transcriptional

slicing is supplemented by transcriptional repression via RNA-directed DNA methylation

(RdDM) (Mette et al. 2000). Cytosines are methylated by this mechanism only at

positions with direct complementarity to siRNAs through a process that depends on the

nuclear-localized Argonaute protein AGO4 (Xie et al. 2004; Zilberman et al. 2003).

RdDM induced by siRNAs has been reported in mammals as well (Morris et al. 2004),

but a specific lack of RNAi-induced RdDM in mammals has also been reported (Svoboda

et al. 2004). Also, while RdDM of promoters is a mechanism of transcriptional silencing,

siRNAs targeted to mammalian promoters have also been reported to activate

transcription through a process called RNA activation (RNAa) (Janowski et al. 2007; Li

et al. 2006). Such contradictory reports on the effects of promoter-directed siRNAs make

the possibilities of both RdDM and RNAa in mammals uncertain.

The biogenesis of microRNAs

Animal miRNAs are encoded by nuclear genes that are transcribed, then

processed in multiple steps, to generate mature RNA species -22 nt long. The primary

miRNA transcript, or pri-miRNA (Lee et al. 2002), is generally a product of RNA

polymerase II (pol II) and as such is 5' capped and 3' polyadenylated (Bracht et al. 2004;

Cai et al. 2004; Lee et al. 2004b). Unlike the vast majority of animal protein-coding

genes, many miRNA genes are polycistronic. Single continuous pri-miRNA transcripts

have been detected for several sets of genomically clustered miRNA genes (Lee et al.



2002), and the generally correlated expression of genomically clustered miRNAs

supports the existence of many more polycistronic miRNA messages (Baskerville and

Bartel 2005; Lagos-Quintana et al. 2001; Lau et al. 2001; Sempere et al. 2004). In

addition, a large number of miRNA genes reside within the introns of protein-coding

mRNAs (Rodriguez et al. 2004). These intronic miRNAs can be excised from their

unspliced host pre-mRNAs without adverse effects on the stability, further processing, or

eventual translation of the mRNA (Kim and Kim 2007). While the vast majority of pri-

miRNA transcripts are generated by pol II, a small number of endogenously-expressed

miRNA genes are transcribed by RNA polymerase III (pol III) (Borchert et al. 2006).

MicroRNA genes that are endogenously transcribed by pol II continue to be processed

into active mature effective miRNAs when artificially expressed as pol III transcripts

(Chen et al. 2004), indicating that the genesis of the pri-miRNA transcript has little

influence on its ability to enter the miRNA biogenesis pathway.

The critical feature of the pri-miRNA that enables processing is its ability to form

an RNA hairpin, with the mature miRNA deriving from one arm of that hairpin. This

feature was immediately recognized as significant in the first miRNA genes to be

identified (Lee et al. 1993; Reinhart et al. 2000; Wightman et al. 1993), and the

subsequent proliferation of miRNA annotations through molecular cloning and

sequencing demonstrated its ubiquity (Lagos-Quintana et al. 2001; Lau et al. 2001; Lee

and Ambros 2001). While the presence of a hairpin precursor is qualitatively consistent

across all miRNA genes, a quantitative, predictive model of the hairpin characteristics

that are salient to miRNA processing is lacking. Many efforts have been made to develop

such a model and apply it to the identification of novel miRNA genes, but in each case



the models have either relied in large part on non-structural features such as conservation

for their predictive power, been woefully unsuccessful at accurately identifying novel

miRNAs, or both (Altuvia et al. 2005; Ambros et al. 2003; Bentwich et al. 2005;

Berezikov et al. 2005; Grad et al. 2003; Lai et al. 2003; Lim et al. 2003; Miranda et al.

2006; Nam et al. 2005; Ohler et al. 2004; Pfeffer et al. 2005; Sewer et al. 2005; Xie et al.

2005). Better understanding of the miRNA precursor structural requirements has been

achieved through the identification and biochemical evaluation of components of the

processing machinery.

Pri-miRNA hairpins are cleaved in the nucleus to liberate the miRNA precursor

hairpin (pre-miRNA) that eventually gives rise to the mature miRNA (Lee et al. 2002)

(Figure ID). Two cleavages, one in each arm of the pri-miRNA hairpin, are coordinately

catalyzed by the Microprocessor complex, with the RNase III enzyme Drosha at its core

(Denli et al. 2004; Gregory et al. 2004; Lee et al. 2003b). Microprocessor, which

contains multiple copies of Drosha and of its RNA-binding cofactor, DGCR8/Pasha,

recognizes the transition between ssRNA and dsRNA at the base of the pri-miRNA

hairpin and cleaves -~11 bp into the hairpin (Denli et al. 2004; Gregory et al. 2004; Han et

al. 2004; Han et al. 2006; Lee et al. 2003b; Zeng and Cullen 2005). In addition to

miRNA maturation, a role for the RNase activity of Drosha in the maturation of 5.8S

rRNA has been suggested (Wu et al. 2000). DGCR8/Pasha is required to target the

Drosha endonuclease activity to pri-miRNA substrates (Denli et al. 2004; Gregory et al.

2004; Han et al. 2004; Landthaler et al. 2004). The resulting pre-miRNA hairpins have

the 2 nt 3' overhangs, 5' monophosphates, and 3' hydroxyls that are typical of RNase III

products (Basyuk et al. 2003).



Pre-miRNAs are recognized in the nucleus and transported to the cytoplasm in a

RanGTP-dependent manner by Exportin-5 (Bohnsack et al. 2004; Lund et al. 2004; Yi et

al. 2003) (Figure 1D). Exportin-5 recognizes the RNA minihelix structural motif,

consisting of an RNA duplex of at least 17 bp that is flanked on one side by few or no

unpaired nucleotides, in the presence of RanGTP but not RanGDP (Gwizdek et al. 2001;

Gwizdek et al. 2003). Pre-miRNA hairpins adhere to these minihelix requirements, and

shortening of the pre-miRNA stem or introduction of a 5' overhang instead of the typical

3' overhang results in loss of pre-miRNA nuclear export (Zeng and Cullen 2004).

The miRNA and siRNA biogenesis pathways intersect at the cytoplasmic RNase

III enzyme Dicer, which cleaves both long dsRNA into ~21nt siRNAs and pre-miRNA

hairpins to generate mature miRNAs (Bernstein et al. 2001; Grishok et al. 2001;

Hutvagner et al. 2001; Ketting et al. 2001; Knight and Bass 2001; Lee et al. 2002)

(Figure ID). Unlike mammals and nematodes, Drosophila possesses two paralogous

Dicers that partition the processing of small RNA precursors between them, with Dicer-i

primarily responsible for pre-miRNA cleavage and Dicer-2 primarily responsible for

dsRNA cleavage (Lee et al. 2004c; Liu et al. 2003). Like Drosha, which partners with

the RNA-binding protein DGCR8/Pasha to cleave pri-miRNAs, Dicer-i partners with the

RNA-binding protein Loquacious (also called R3D1) that is required for the processing

of many pre-miRNAs and enhances dsRNA-mediated RNAi (Forstemann et al. 2005;

Jiang et al. 2005; Liu et al. 2007; Saito et al. 2005). R2D2, which complexes with Dicer-

2 and is required for RISC-loading of siRNAs, has no effect on pre-miRNA processing

(Forstemann et al. 2005; Liu et al. 2003; Saito et al. 2005).



The duplex generated by Dicer cleavage of a pre-miRNA is analogous to an

siRNA duplex. In this case, the guide strand is called the miRNA, and the passenger

strand is called the miRNA star (miRNA*) (Lau et al. 2001; Lim et al. 2003). The

loading of a miRNA into its silencing complex (miRISC) from this duplex parallels the

loading of RISC with a guide siRNA (Figure ID). In humans, the siRNA RISC-loading

protein TRBP also loads miRNAs into miRISC (Chendrimada et al. 2005). In

Drosophila, the loading of Dicer-2-generated siRNAs into Ago2 RISC is paralleled by

the loading of Dicer-i-generated miRNAs into Agol RISC (Forstemann et al. 2007).

Because miRNA/miRNA* duplexes are generally far from perfect, miRNA* strands are

not generally cleavable by Slicer as are siRNA guide strands (Tomari et al. 2007). But

for the same reason, their dissociation is also far less of an energetic challenge than that

posed by siRNA duplexes. The core human RISC-loading complex, composed of Ago2,

Dicer, and TRBP, is sufficient to process and load miRNAs provided as pre-miRNA

substrates in an ATP-independent manner (MacRae et al. 2008; Maniataki and

Mourelatos 2005).

Plant miRNAs have many of the same features as animal miRNAs. Both derive

from hairpin precursors, both are generated by cleavage of a primary transcript by RNase

III enzymes, and both form a complex with Argonaute proteins to mediate mRNA

repression (Park et al. 2002; Reinhart et al. 2002; Vaucheret et al. 2004). However,

several features distinguish the two biogenesis pathways, notably the generation of both

cleavages by a single enzyme and the localization of the entire biogenesis process to the

nucleus (Papp et al. 2003; Xie et al. 2004). These differences, among others, have fueled

speculation that the miRNA biogenesis pathways may have arisen independently in



plants and animals and represent convergent usages of conserved RNAi process

components (Bartel 2004).

Gene regulation by microRNAs

The mechanisms of gene regulation by microRNAs are diverse and are not yet

fully understood. The primary siRNAs that derive from dsRNAs in RNAi direct the

Slicer-mediated cleavage of their mRNA targets. Plant miRNAs share this mechanism of

target repression, directing the cleavage of their near-perfect-complement targets

(Rhoades et al. 2002). In contrast, animal miRNAs generally exhibit far less

complementarity to their endogenous targets. The first natural miRNA/target interaction

to be identified, between the lin-4 miRNA and lin-14 mRNA 3' untranslated region

(UTR) includes many mismatches and causes repression of translation without mRNA

degradation (Wightman et al. 1993). Just as siRNAs can mimic miRNAs by repressing

the translation of messages with imperfect complementarity, animal miRNAs are capable

of mimicking siRNAs by guiding the cleavage of near-perfect-complement RNAs when

such targets present themselves (Doench et al. 2003; Hutvagner and Zamore 2002).

However, such complementarity is rare. There are a few animal miRNAs that target the

cleavage of transcripts that derive from the opposite genomic strand as the miRNA

(Davis et al. 2005), and only one example of a miRNA with such complementarity to a

distal gene (Yekta et al. 2004).

The ability of miRNAs to inhibit translation via imperfect base pairing with the 3'

UTRs of target mRNAs has been demonstrated both in vivo (Brennecke et al. 2003;

Wightman et al. 1993) and in vitro (Wang et al. 2006). However, the mechanism of such



inhibition remains largely elusive. Messenger RNAs continue to associate with

polyribosomes while being repressed by miRNAs, as do miRNAs themselves and the

miRISC component Argonaute, indicating that inhibition occurs after the initiation of

translation (Maroney et al. 2006; Nottrott et al. 2006; Olsen and Ambros 1999; Seggerson

et al. 2002). In addition, miRNAs repress the translation of messages with both cap- and

IRES-dependent initiation, and the repressive effects of miRNAs are additive with those

of a drug that inhibits initiation, further supporting a post-initiation model of repression

(Petersen et al. 2006). Intriguingly, miRNAs can inhibit the cap-dependent translational

initiation of synthesized mRNAs that are transfected into cells or introduced into

cytoplasmic extracts (Humphreys et al. 2005; Mathonnet et al. 2007; Pillai et al. 2005;

Thermann and Hentze 2007). Such inhibition of initiation likely results from Ago2

successfully competing with initiation factor eIF4E for binding to the m'G cap of

mRNAs that are rapidly introduced into the cytoplasm (Kiriakidou et al. 2007). The

relevance of these interactions to repression of nuclear-derived mRNAs is unclear, as is

the specific mechanism of post-initiation translational repression by miRNAs.

While translational inhibition is their primary method for gene repression,

miRNAs can also modestly destabilize target mRNAs. Investigations of miRNA-

mediated translational repression commonly reveal decreases in the abundance of target

mRNAs in response to miRNA, though always of insufficient magnitudes to account for

the observed losses of protein (Bagga et al. 2005; Olsen and Ambros 1999; Petersen et al.

2006). In addition, the blocking of endogenously-expressed miRNAs with

complementary oligonucleotides and the transfection of cells with non-endogenous

miRNAs both have subtle but wide-spread effects on mRNA levels, both indicating a role



for partial complementarity between miRNAs and the 3' UTRs of down-regulated

mRNAs (Krutzfeldt et al. 2005; Lim et al. 2005). However, as with translational

inhibition, the mechanism of miRNA-mediated mRNA destabilization is unclear at

present. The poly-A tails of target mRNAs are particularly destabilized by miRNAs both

in vivo and in vitro, and the shortening of poly-A tails may contribute to the overall

destabilization of mRNAs and/or reductions of their translation (Humphreys et al. 2005;

Wakiyama et al. 2007; Wu et al. 2006). The localization of miRNA-silenced mRNAs to

cytoplasmic processing bodies (P-bodies) may also contribute to mRNA decay and/or

repression of translation (Liu et al. 2005; Sen and Blau 2005). P-bodies accumulate non-

translating mRNAs and are sites of mRNA decay through the canonical pathway of 5'

decapping and 5'---3' exonucleolytic degradation (Sheth and Parker 2003; Teixeira et al.

2005). MicroRNA-mediated silencing by both mRNA decay and translational repression

depends at least in part on the defining P-body component GW182 (Behm-Ansmant et al.

2006; Rehwinkel et al. 2005). However, it remains uncertain whether these effects on

mRNAs are causes or consequences of P-body association (Chu and Rana 2006).

While the mechanism of miRNA-mediated repression remains somewhat

ambiguous at present, the requirements for such repression of an mRNA via base pairing

with the 3' UTR are better understood. The degree of complementarity between natural

targets varies, but almost invariantly includes perfect complementarity at the 5' end of the

miRNA (Johnston and Hobert 2003; Lai 2002; Lee et al. 1993; Reinhart et al. 2000;

Wightman et al. 1993). These -7nt stretches of complementarity to the miRNA 'seed'

sequence are the only target pairings that are consistently and significantly conserved,

and are also the only pairings whose disruption results in a pronounced loss of repression



(Brennecke et al. 2005; Doench and Sharp 2004; Lewis et al. 2005; Lewis et al. 2003;

Stark et al. 2003). Seed pairing in the 3' UTR is also significantly enriched among those

mRNAs whose stability is perturbed by introduction/sequestration of a miRNA to/from

the cytoplasm (Krutzfeldt et al. 2005; Lim et al. 2005). Several aspects of the context of

a seed match within a 3' UTR contribute to the efficacy of the match as a target site, and

like the seed match itself, these additional determinants are equally consequential when

considering either the translational repression or the mRNA destabilization component of

miRNA-mediated gene repression (Grimson et al. 2007).

Additional regulatory roles for small RNAs in biology

Because Argonaute proteins interact with small RNAs, their ubiquity, abundance,

and diversity across all the kingdoms of life indicates many as-yet-uncharacterized roles

for small RNAs in biology. Combined, the related phenomena of quelling, PTGS, and

RNAi span only a small slice of the diversity of the biome, and miRNAs span an even

smaller slice. Even within the organisms for which these processes have been

characterized, the abundance of additional Argonaute-family genes indicates that there

are additional roles played by small RNAs. For instance, in vertebrates and in

Drosophila, Piwi interacts with a class of small RNAs called piwi-associated RNAs

(piRNAs) that are longer than other small RNAs (typically >26 nt), are 2' O-methylated

at their 3" end, and are highly diverse (Aravin et al. 2006; Brennecke et al. 2007; Girard

et al. 2006; Grivna et al. 2006a; Horwich et al. 2007; Houwing et al. 2007; Lau et al.

2006; Saito et al. 2007). Clusters of piRNAs are derived haphazardly from one strand of

genomic segments that typically extend more than 10 kb. In Drosophila, piRNAs repress



transposable elements, and they were originally classified based on their complementarity

to genomic transposon repeat elements as repeat-associated siRNAs (rasiRNAs) (Aravin

et al. 2003; Brennecke et al. 2007; Klenov et al. 2007). That role seems to be conserved

for some but not all of the vertebrate piRNAs (Aravin et al. 2007), and their association

with polysomes indicates a more general role for piRNAs in the regulation of translation

(Grivna et al. 2006b).

Several eukaryotic lineages, including the frequently-used yeast model

Saccharomyces cerevisiae, have lost core components of the RNAi machinery and with it

the ability to silence genes post-transcriptionally in response to the introduction of

homologous dsRNA (Cerutti and Casas-Mollano 2006). Nonetheless, small RNAs play

an important role in the regulation of chromatin in these species. In fission yeast,

maintenance of centromeric heterochromatin depends on Argonaute, Dicer, and RdRP

proteins (Volpe et al. 2002). Small RNAs similar in size to siRNAs and miRNAs whose

sequences match those of the centromeric repeats accumulate in Schizosaccharomyces

pombe (Reinhart and Bartel 2002). They combine with the Argonaute protein Agol and

other factors to form the RNA-induced initiation of transcriptional gene silencing

complex (RITS complex), and they localize that complex to the centromeric repeats

(Verdel et al. 2004). Introduction of homologous dsRNA is sufficient to induce

chromatin-based silencing in S. pombe (Schramke and Allshire 2003). The similar

requirement of RNAi components or small RNAs for some chromatin-based

transcriptional silencing phenomenae in Drosophila (Pal-Bhadra et al. 1997; Pal-Bhadra

et al. 2002) and Arabidopsis (Lippman et al. 2004) indicates broad conservation of this

physiological role for small RNAs.



An extreme form of RNAi exists in ciliates in which the transcription of dsRNA

in the micronucleus targets the destruction of homologous genomic DNA in the

macronucleus (Chalker and Yao 2001; Yao et al. 2003). In Tetrahymena, DNA

elimination is dependent on the Twilp protein, a member of the Piwi subfamily of

Argonautes, and the induction of Twilp correlates with that of a set of abundant small

RNAs (scnRNAs) (Mochizuki et al. 2002). Another form of RNAi, meiotic silencing of

unpaired DNA (MSUD), exists alongside quelling in Neurospora. MSUD represses all

homologous copies of any gene that is either present in one copy of the diploid zygotic

genome but not the other, or whose loci in the two copies of the genome are not

homologously placed (Shiu et al. 2001). This type of repression requires transcription of

the gene to be silenced and depends on both an RdRP and a member of the Ago

subfamily of Argonautes (Lee et al. 2003a; Lee et al. 2004a; Shiu et al. 2001).

Argonaute proteins are found in prokaryotes as well as eukaryotes, and span both

archeabacteria (Song et al. 2004) and eubacteria (Yuan et al. 2005). Several of the

prokaryotic Argonautes have been crystallized in order to better understand their

eukayotic counterparts. However, their roles in their host organisms are not understood.

The usefulness of those structures to analyses of eukaryotic Argonautes suggests that

some of the mechanisms of small RNA action are conserved between prokaryotes and

eukaryotes. Just as it has in eukaryotes, further exploration of the Argonaute proteins and

their small RNA cofactors in prokaryotes will surely reveal more exciting biology.



Figure Legends

Figure 1. Aspects of small RNA biology. (A) Mechanisms of siRNA- and miRNA-

mediated gene silencing include Slicing of the target mRNA between the bases pairing

with nucleotides 10 and 11 of the siRNA (top) and translational repression, which

requires only basepairing with the 7nt 'seed' at the 5' end of the miRNA/siRNA

(bottom). (B) Slicing activity is maintained across many distantly-related Argonaute

proteins from diverse taxa but is also lost in some Argonautes. Examples are shown for

which Slicer catalytic activity has been experimentally demonstrated to be present or

absent. Tree showing the evolutionary relationships between Argonaute family members

is based on previous analyses (Catalanotto et al. 2000; Yigit et al. 2006). (C) RNAi

amplification in C. elegans results in the production of secondary siRNAs that

complement the target mRNA 5' but not 3' of the regions of homology to the dsRNA

trigger. (D) The canonical miRNA biogenesis pathway.
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Abstract

We sequenced ~400,000 small RNAs from Caenorhabditis elegans. Another 18

microRNA (miRNA) genes were identified, thereby extending to 112 our tally of

confidently identified miRNA genes in C. elegans. Also observed were thousands of

endogenous siRNAs generated by RNA-directed RNA polymerases acting preferentially

on transcripts associated with spermatogenesis and transposons. In addition, a third class

of nematode small RNAs, called 21U-RNAs, was discovered. 21U-RNAs are precisely

21 nucleotides long, begin with a uridine 5'-monophosphate but are diverse in their

remaining 20 nucleotides, and appear modified at their 3'-terminal ribose. 21U-RNAs

originate from more than 5700 genomic loci dispersed in two broad regions of

chromosome IV-primarily between protein-coding genes or within their introns. These

loci share a large upstream motif that enables accurate prediction of additional 21U-

RNAs. The motif is conserved in other nematodes, presumably because of its importance

for producing these diverse, autonomously expressed, small RNAs (dasRNAs).

Introduction

RNAs ~22 nt in length play gene-regulatory roles in numerous eukaryotic lineages,

including plants, animals, and fungi (Bartel 2004; Nakayashiki 2005). The first

endogenous ~22-nt RNAs discovered in eukaryotes were the lin-4 and let-7 RNAs, both

of which were found by mapping mutant C. elegans loci (Lee et al. 1993; Reinhart et al.

2000). The mature lin-4 and let-7 RNAs are each processed from a hairpin formed within

their respective primary transcripts. Through molecular cloning and sequencing, many

small RNAs with the potential to arise from foldback structures characteristic of the lin-4



and let-7 hairpins were identified, including more than 50 from C. elegans, thereby

establishing a class of endogenous RNAs called miRNAs (Lagos-Quintana et al. 2001;

Lau et al. 2001; Lee and Ambros 2001). Additional miRNAs have been identified in C.

elegans by cloning, genetics, or computational prediction supported by experimentation

(Ambros et al. 2003; Grad et al. 2003; Johnston and Hobert 2003; Lim et al. 2003; Ohler

et al. 2004).

In addition to the miRNA, a less abundant species, known as the miRNA star

(miRNA*), derives from the miRNA hairpin precursor (Lau et al. 2001; Lim et al. 2003).

The miRNA and miRNA* species pair to each other with ~2-nt 3' overhangs. In animals,

this miRNA:miRNA* duplex is generated by the sequential action of Drosha and Dicer

RNAse-III endonucleases (Grishok et al. 2001; Hutvagner et al. 2001; Lee et al. 2003).

Drosha cleaves at sites near the base of the stem, thereby liberating a 60- to 70-nt

fragment comprising the majority of the hairpin, which Dicer then cleaves at sites near

the loop (Han et al. 2006; Lee et al. 2003). The miRNA strand of the resulting

miRNA:miRNA* duplex is then loaded into a silencing complex, which contains at its

core a member of the Argonaute family of proteins (Hutvagner and Zamore 2002;

Mourelatos et al. 2002).

Once incorporated into the silencing complex, the miRNA serves as a guide to

direct the post-transcriptional repression of protein-coding messages. Most important for

target recognition is pairing to the miRNA seed, defined as the 6-nt segment comprising

nucleotides two through seven, counting from the 5' terminus of the miRNA (Brennecke

et al. 2005; Doench and Sharp 2004; Lewis et al. 2005; Lewis et al. 2003). When

comparing related miRNAs, the seed is also the most conserved portion of the RNA, and



C. elegans miRNAs can be grouped into families based largely on their shared seed

sequences (Ambros et al. 2003; Lim et al. 2003).

Other types of endogenous small RNAs have been found within libraries made

from C. elegans. Those that are antisense to C. elegans mRNAs have been classified as

small interfering RNAs (siRNAs), with the idea that they might be processed from long

double-stranded RNA (dsRNA) and might direct the silencing of complementary mRNAs

(Ambros et al. 2003; Lim et al. 2003). Other cloned and sequenced ~22-nt RNAs do not

appear to correspond to protein-coding regions, do not have the potential to arise from

hairpins characteristic of miRNA precursors, and yet are expressed at sufficiently high

levels to be detected on RNA blots. These have been annotated as tiny non-coding RNAs

(tncRNAs; (Ambros et al. 2003). In flies and mammals, other distinct classes of small

RNAs have been reported, including repeat-associated siRNAs (rasiRNAs; (Aravin et al.

2003; Vagin et al. 2006) and Piwi-interacting RNAs (piRNAs; (Aravin et al. 2006; Girard

et al. 2006; Lau et al. 2006).

Recent advances in high-throughput sequencing technology have allowed for a

more complete assessment of the global small RNA population in plants (Lu et al. 2005).

Here, we applied high-throughput pyrosequencing methods (Margulies et al. 2005) to the

discovery of small RNAs expressed in mixed-staged C. elegans. Our results reshape the

list of known miRNAs by reporting newly identified miRNA genes, defining the

processing of most previously annotated miRNAs, refining the termini of some, and

raising new questions as to the authenticity of others. In addition, we describe thousands

of endogenous siRNAs that appear to be RNA-templated products of activities acting

preferentially on messages associated with spermatogenesis and transposons. We also



describe the 21U-RNAs, which originate from an estimated 12,000-16,000 genomic loci

dispersed between and within protein-coding genes in two broad regions of chromosome

IV. These loci each have a conserved upstream motif, which we propose specifies the

production of 21U-RNAs from thousands of non-coding transcripts.

Results

Our library of small RNAs isolated from mixed-staged C. elegans was previously

constructed so as to represent only those RNAs with 5' monophosphate and 3' hydroxyl

groups, the termini expected of miRNAs and siRNAs (Lau et al. 2001). Standard

sequencing of this and similar libraries previously yielded sequences of 4078 small RNA

clones that match the C. elegans genome (Lau et al. 2001; Lim et al. 2003). High-

throughput pyrosequencing (Margulies et al. 2005) of the library yielded 394,926

sequence reads that perfectly matched the worm genome. Of those, 80% matched

annotated miRNA hairpins. Another 6.4% matched other annotated non-coding RNA

genes, such as rRNA and tRNA, and were present at similar frequencies for each length

from 18 to 28 nt, which was the pattern expected for degradation fragments of these non-

coding RNAs. Another 9.3% corresponded to 21U-RNAs, and at least 0.7%

corresponded to endogenous siRNAs that were antisense to annotated exons. The

remaining sequences included what appeared to be endogenous siRNAs that were

antisense to annotated introns, mRNA/intron degradation fragments, and a small

contingent of uncharacterized sequences.



Previously annotated miRNAs

Our previous sequencing of small RNA libraries from C. elegans discovered, refined, or

confirmed the identities of 80 miRNAs (Lau et al. 2001; Lim et al. 2003). All 80 were

observed in the new set of high-throughput reads, at relative frequencies similar to those

observed previously (Table Si). As exemplified by lin-4 (Figure 1A-B), these 80 miRNA

genes were typically represented by one dominantly sequenced species, the miRNA, as

well as a sequence from the opposing arm of the hairpin, the miRNA* (Table S1,

Supplemental text). In addition, sequences were sometimes observed that matched the

portion of the transcript in between the miRNA and miRNA* (Figure 1A-B; Table S ).

On average, the miRNA* species was present at about 1.0% the frequency of the

miRNA. When paired to the miRNA it generally exhibited the 3' overhangs typical of

miRNA hairpin processing (Lee et al. 2003; Lim et al. 2003). Identifying the dominant

miRNA* species for many of the miRNAs, together with information on end

heterogeneity, provided useful data for considering the specificity and precision of

Drosha and Dicer processing. For example, the observed miRNA 5' ends were far more

homogenous (99.5% identical) than the miRNA* 5' ends (91% identical), which were

more homogenous than the miRNA 3' ends (85% identical) and miRNA* 3' ends (77%

identical). About half of the 5' heterogeneity was from reads that were longer than the

dominant species, implicating imprecise Drosha/Dicer processing as the major cause of

heterogeneity at this end. Greater 3' heterogeneity was attributed to three factors: 1) less

precise Drosha/Dicer processing, as indicated by templated nucleotides extending beyond

the dominant species, 2) preferential degradation at the 3' end, and 3) addition of

untemplated nucleotides to the 3' ends of miRNA and miRNA* species. The more



precise cut at the miRNA 5' end, compared to the miRNA* 5' end, presumably reflected

selective pressure for accurately defining the miRNA seed. Cleavage by either Drosha or

Dicer appeared equally consistent when that cut would set the seed. The observation that

when Dicer set the seed it was more precise than Drosha disfavored models in which

Dicer simply measures from the Drosha cuts and suggested that additional determinants

are employed when needed to more accurately define Dicer cleavage.

Examining the dominant mature miRNA sequences revealed that 1.33% 3' ends

were extended by a single untemplated nucleotide, with U being the preferred

untemplated nucleotide (54%, Table S ). A second untemplated nucleotide appeared with

greater efficiency (4% of those already extended by one untemplated nucleotide) and

with greater preference for U (73%). Similar efficency and U preference was observed

for a third nucleotide. The untemplated uridylation of miRNAs was reminiscent of that

reported for unmethylated small RNAs in Arabidopsis (Li et al. 2005).

As expected, the high-throughput reads also included some annotated C. elegans

miRNAs that were not among the 80 previously sequenced from our libraries. Thirteen

such previously annotated miRNA hairpins gave rise to high-throughput reads (Table

S 1). All 13 were originally identified computationally and then experimentally supported

by northern blotting and/or a PCR-based assay (Lim et al. 2003; Ohler et al. 2004). For

five of these, the 5' terminus did not match the one previously annotated, an observation

with ramifications for the experimental validation of computational candidates

(Supplemental text). No reads matched 19 of the C. elegans miRNA hairpins annotated in

miRBase (Supplemental text). Of these 19, one was the lys-6 miRNA, which had been



identified genetically and appears to be expressed in only a few cells (Johnston and

Hobert 2003).

Newly Identified miRNAs

In a search for additional miRNAs, we evaluated reads that fell within potential miRNA-

like hairpins, considering the following criteria: 1) the pairing characteristics of the

hairpin; 2) the expression of the candidate, as measured by the abundance of sequence

reads sharing the same 5' terminus; 3) evolutionary conservation, as evaluated by the

apparent conservation of the hairpin in C. briggsae and grouping of the miRNA candidate

into a family based on its seed sequence; 4) the absence of annotation suggesting non-

miRNA biogenesis; and 5) the presence of reads corresponding to the predicted miRNA*

species. The observation of both a candidate miRNA and a candidate miRNA* in a set of

reads provides particularly compelling evidence for Dicer-like processing from an RNA

hairpin. As illustrated for miR-786 (Figure 1C-E), seven newly identified genes satisfied

all of our criteria (Tablel). Eleven others satisfied a subset of the criteria deemed

sufficient for confident annotation as miRNAs. Three additional candidates that were

sequenced more than once were, from our perspective, borderline cases and therefore not

annotated here as miRNAs (Supplemental text).

Sequencing frequencies of the all newly and previously sequenced miRNAs are

illustrated (Figure 1F). Seven newly identified genes were near another miRNA gene and

on the same genomic strand (Table 1), an arrangement implying processing from a

common polycystronic transcript (Lagos-Quintana et al. 2001; Lau et al. 2001). Seven

newly identified genes added to previously known C. elegans miRNA families, in that



they shared the same seed (Table 2). For example, miR-793, miR-794, and miR-795 all

added to the let-7/48/84/241 family. Four other newly identified genes shared seeds with

miRNAs annotated in distant species, thereby extending the scope of families previously

identified in insects or vertebrates to the nematode lineage (Table 2).

21U-RNAs

After accounting for the miRNAs and other types of annotated non-coding RNAs, the

remaining reads were dominated by 21mers with 5' uridines. We refer to the bulk of

these as '21U-RNAs'. The vast majority of RNAs with these properties mapped to two

broad but distinct regions of chromosome IV, one spanning chromosomal coordinates

4.5M to 7.OM, the other spanning 13.5M to 17.2M (Figure 2A). A few mapped to a third

region, which spanned coordinates 9M to 9.7M of chromosome IV. The -34,300 21U-

RNA reads that derived from these three regions contained 5,454 unique sequences

(Figure 2B), for which 5,302 loci were unambiguously mapped because their sequences

were unique in the assembly. Many of these loci were represented by single reads in our

set, suggesting the existence of more members of this small RNA class than were directly

observed. Nonetheless, most of the 21U-RNA loci (67%) were represented by two or

more identical reads, indicating that the 34,300 reads captured a non-trivial portion of the

21U-RNA diversity.

Four 21U-RNAs were sequenced more than 200 times, including 21UR-1

(pUGGUACGUACGUUAACCGUGC), which was represented by 521 reads and

detectable on RNA blots. This 21U-RNA was sensitive to alkaline hydrolysis and

phosphatase treatment, and was a suitable substrate for RNA ligase-the expected



properties of an RNA with a 5' monophosphate (Figure 3C and Sl). 21UR-1 was also

resistant to periodate treatment (Figure 3C), indicating that its 3' nucleotide was missing

the cis diol and suggesting modification at either the 2' or 3' oxygen of this nucloetide, as

reported for small RNAs in plants and rasiRNAs in flies (Li et al. 2005; Vagin et al.

2006).

The 21U-RNAs mapped to both strands of the DNA, but overlapped with each

other or with other sequenced small RNAs on the opposing DNA strand less frequently

than would be expected by chance given a random distribution, thereby providing no

evidence for a dsRNA precursor. WormBase-annotated genes were somewhat less

abundant within the 21U-RNA-rich portions of chromosome IV (mean ± s.d. of 93 ± 28

genes per 500 kb) compared to the genome as a whole (116 ± 26 genes per 500 kb). The

vast majority of the 21U-RNAs mapped either between genes or within introns, with no

preference for the sense or antisense orientiation among intronic matches. Only 2.5% of

the 21U-RNA loci overlapped annotated exons, a substantial depletion versus the total

fraction of the regions overlapping exons (~21%), and the read abundance of sense versus

antisense exonic matches was nearly even (~750 and -810, respectively). Overall, the

genomic data suggested that the 21U-RNA loci are maintained independently of other

genetic elements, with informational constraints that can conflict with those of other

genes.

The -34,300 21U-RNA reads in our set of high-throughput reads came from a

mixed-staged library, raising the question of which stage(s) in development the 21U-

RNAs might accumulate. Our previous effort (Lim et al. 2003) included reads from this

mixed-stage library as well as reads from a larval stage L1 library, a dauer (dormant L3)



library and a mixed-staged library made from him-8 mutant worms (which are enriched

in males). Revisiting the 4078 reads from that earlier study revealed that 125 represented

21U-RNAs: 79 from mixed stage, 8 from dauer, 10 from L1, and 28 from him-8.

Normalizing to the read counts of miRNAs with constant expression throughout larval

development, the him-8 library was ~2-fold enriched in 21U-RNAs compared to the

wild-type mixed-stage library, whereas the L1 and dauer libraries were ~2- and -3-fold

depleted, respectively. The presence of 21U-RNAs in both L1 worms and dauer L3

worms implies their presence throughout much of worm development.

Two Sequence Motifs Associated with 21U-RNA Loci

Other than the U at their 5' termini, the 21U-RNAs shared little sequence identity.

Indeed, the composition of the four nucleotides was more equivalent for the 21U-RNAs

than for their broader genomic contexts, which were A-T rich. However, the 21U-RNA

genomic loci did share two upstream sequence motifs, one much larger than the other

(Figure 3). The large motif was 34 bp and centered on an 8-nt core consensus sequence,

CTGTTTCA. The small motif had a core sequence of YRNT, in which the T

corresponded to the 5' U of the 21U-RNA. The two subdomains of the motif were

separated by a spacer typically 19-21 bp (Figure 3B).

A position-specific scoring matrix based on the combined properties of the two

motifs was used to predict 21U-RNAs on C. elegans chromosome IV. With a score cut-

off that correctly predicted 77% of the sequenced 21U-RNAs, 10,807 loci were identified

on both strands of chromosome IV. The density of genomic matches to the motifs

corresponded well to that of known 21U-RNA loci, demonstrating the specificity of our



motif-scanning procedure (Figure 2B and C). As illustrated for a 100-kb region of

chromosome 4, this correspondence held at high-resolution views (Figure 2D). As a test

of sensitivity, we cross-checked the 10,807 predictions with an independent set of

245,420 C. elegans small RNA reads provided by Andrew Fire (personal

communication) and found that nearly half (46%) of the 21U-RNAs uniquely identified

in this independent dataset had been predicted (see Methods). We suggest that the

correspondence of 21U-RNAs predicted through motif scanning with those detected by

sequencing reflected the function of the motifs in specifying 21U-RNA production in the

animal.

Discovery of the upstream motif allowed assessment of the other properties

ascribed to 21U-RNAs (Figure S2). Nearly all of the motif-associated 21mer reads

(99.8%) began with a U, and 98.5% derived from the defined 21U-rich regions. Over

99% of the motif-associated reads were 21 nt or less, with those that were shorter (5.4%)

likely corresponding to 3' degradation products.

To explore the potential conservation of 21U-RNAs, we scanned all the C.

briggsae genomic contigs (Stein et al. 2003) for motif matches. Each C. briggsae contig

with a high concentration of motifs (_ 75 per 100 kb) was syntenous with one of the three

21U-rich regions of C. elegans chromosome IV (Figure 2A and B). We conclude that any

roles that the motifs might play in the biogenesis of 21U-RNAs have been conserved in

the -~100 million years since the divergence of these two nematode species (Coghlan and

Wolfe 2002). The 21U-RNAs themselves, in contrast, showed little evidence for

conservation. Of the >10,000 21U-RNA sequences predicted on chromosome IV of C.



elegans and the >11,000 sequences similarly predicted in C. briggsae, not a single

sequence was shared between the two species.

Endogenous siRNAs

Of the remaining sequences with perfect matches to the C. elegans genome, some were

antisense to known protein-coding transcripts. In fact, a larger number matched the

antisense strand of spliced mRNAs (2934 reads, 2378 unique sequences; Figure 4A) than

matched the sense strand (2150 reads, 1800 unique sequences; Figure 4B). As done

previously (Ambros et al. 2003; Lau et al. 2001; Lim et al. 2003), we classified the RNAs

matching the antisense strand as candidate endogenous siRNAs, which for simplicity we

refer to herein as siRNAs. RNAs that matched the sense strand also might include

endogenous siRNAs, but as they likely include other hydrolysis products, we refer to

them as sense RNAs.

For different C. elegans libraries, the proportion of miRNAs to siRNAs varies

greatly; our libraries contain 100-times more miRNAs than siRNAs, whereas the Ambros

library contains roughly equal numbers of the two (Ambros et al. 2003; Lim et al. 2003).

The large difference suggests that most C. elegans siRNAs lack the 5' monophosphate

required by our cloning protocol (Ambros et al. 2003). Perhaps they are short RNA-

dependent RNA polymerase (RdRP) products that have retained their 5' triphosphate.

Consistent with this idea, we detected a population of endogenous ~22mers that were

suitable substrates for an in vitro 5'-capping reaction requiring a 5' di- or triphosphate

(Figure 4C). These sequences would be underrepresented in our library, although not

totally absent if some molecules lost their y and 13 phosphates or were transcribed with an



initiating nucleoside monophosphate rather than nucleoside triphosphate, as has been

observed for other RNA polymerases (Martin and Coleman 1989; Ranjith-Kumar et al.

2002).

Recognizing the siRNAs of our library were likely depleted in the major subclass

of endogenous siRNAs, we proceeded with their analysis. Their length distribution had

prominent peaks at 21, 22, and 26 nt (Figure 4A and B). Comparison to the length

distribution of reads matching tRNA and rRNA indicated that the 26mer siRNA

population was distinct, rather than the shoulder of a larger, more broadly distributed

population. A preference for a 5' G, observed previously for siRNAs (Ambros et al.,

2003), was persistent across all lengths of endogenous siRNAs but strongest among

26mers. A 26mer siRNA sequenced 9 times had a 5' monophosphate (siR26-1,

pGCAAGAUGGAAAAGUUUGAGAUUCCG; Figure S1). As observed for the 21U-

RNA, this siRNA was resistant to periodate treatment, again suggesting modification at

either the 2' or 3' oxygen of the 3' nucleotide (Figure 3C). With so many classes of plant

and animal small RNAs now shown to be resistant to periodate oxidation, metazoan

miRNAs appear increasingly unusual in not being modified at their 3' residue.

Despite being spread out over a large number of genes, dense clusters of siRNAs

were observed at some genomic loci (Figure 4D, Table S3). Examination of surrounding

sequence revealed that siRNAs did not exclusively match annotated exons. For example,

some also matched annotated introns. Nonetheless, more than 40 of the unique sequences

represented by our reads did not match the genomic DNA but instead spanned splice

junctions (exemplified in Figure 4E), implying that these RNAs were produced by an

RdRP acting on a spliced transcript. Because these junction-spanning siRNAs had the



length distribution and preference for a 5' G characteristic of the siRNAs in general, it is

reasonable propose that the remainder of the siRNAs were also RdRP products and that at

least some of the RdRP activity was nuclear and thus could act on both spliced and

unspliced templates.

Correlations with siRNAs supported the idea that the biogenesis or function of

some sense RNAs was linked to that of the siRNAs. The overlap of siRNA-

complemented genes was greater with genes matching sense RNAs (24%) than with

genes picked using SAGE data to control for expression (16%; p-value <0.01, chi-square

test). Among the sense-antisense pairs with at least 1-nt overlap at their genomic loci,

30% maximally overlapped (exemplified by all four sense reads in Figure 4D), which

was 5-fold higher than expected by chance. For 47% of the sense-antisense pairs

involving 26mers, the most common configuration placed the 5' nucleotide of the sense

read across from nucleotide 23 of a 26mer siRNA (exemplified by three sense reads in

Figure 4D), which was 20-fold higher than chance expectation.

To gain insight into the biological consequences of siRNAs, we examined the

functional categorization of genes they complemented. In addition to the enrichment for

matching transposon genes, observed previously (Lee et al. 2006), the siRNAs had a high

propensity to match sperm-enriched genes (Supplemental text). This propensity was

particularly striking for the 26mer siRNAs, 55% of which matched sperm-enriched

genes.

Discussion

112 Confidently Identified C. elegans miRNAs



The set of miRNA genes represented in our high-throughput reads included 93 previously

annotated genes, plus 18 newly discovered genes (Table S1). The notable exception was

the lsy-6 miRNA, a genetically identified miRNA thought to be transcribed in only one to

nine cells (Johnston and Hobert 2003). The absence of Isy-6 in a set that included 37,225

reads of miR-52 illustrated the extreme diversity in metazoan miRNA expression. This

difference can be attributed solely to the specific expression of lys-6 in cells that are few

in number and small in volume; we estimated that lsy-6 RNA should have been ~100,000

times less abundant than a miRNA expressed in most cells of the worm (Supplemental

text). Clearly, more reads must be sequenced before all the miRNAs expressed during the

course of nematode development will be catalogued.

Although the unsaturated status of our sequencing project prohibited any

definitive judgments about miRNA annotations that were not represented by our reads,

our observations were informative for evaluating the confidence in those annotations and

the data originally used to justify them. These considerations increased the number of

annotated genes whose authenticity is in doubt (Supplemental text). Nonetheless, the 18

newly identified miRNA genes enabled the number of confidently identified C. elegans

miRNAs to be revised upwards to 112, which included the 111 represented in our high-

throughput reads, plus lsy-6. Currently annotated loci with reasonable prospects of

eventually joining the list include mir-273, for which reverse-genetic functional data has

been reported (Chang et al. 2004). Our three borderline candidates also might eventually

be added (Supplemental text). These include one that was represented by only five reads

and lacked conservation or miRNA* evidence, and two that might be considered "young"

miRNAs, potential Drosha/Dicer substrates that might have recently emerged from short



inverted duplications and have not had sufficient time to acquire the mismatches usually

observed in miRNA hairpins (Table SI). Our results also prompted re-evaluation of

miRNA gene-number estimates in worms (Supplemental text).

The 112 confidently identified C. elegans miRNA genes arose from 83 genomic

clusters, ranging from one to seven genes per cluster (Table S2). When grouped

according to their seeds, they fell into 63 families, 58 (92%) of which have apparent

orthologs in C. briggsae and 31 (49%) of which have counterparts in much more

distantly related lineages, such as flies, fish and mammals (Tables 2, S2, and 55). The 31

families with counterparts in flies or vertebrates encompassed most (64 of 112) of the C.

elegans genes. The newly identified and revised miRNA sequences provided the

opportunity to improve and expand the current set of predicted miRNA targets in C.

elegans (Chan et al. 2005; Lall et al. 2006). Accordingly, the TargetScanS algorithm was

used to predict conserved regulatory targets, which can be viewed at TargetScan.org.

Endogenous siRNA Biogenesis and Targeting

Our library-construction protocol appears to exclude the vast majority of the C. elegans

siRNA molecules, which we suspect have 5' triphosphates. Nonetheless, high-throughput

sequencing generated more candidate siRNAs than observed previously, enabling

insights into endogenous siRNA taxonomy, biogenesis, and function.

Many of the previously annotated tncRNAs fell into clusters of reads that

resembled the siRNA clusters, and many of these tncRNA-containing clusters overlapped

annotated mRNA exons (Table S4; compare to Table S3). Furthermore, the known

factors required for tncRNA biogenesis and endogenous siRNA biogenesis are similar



(Lee et al. 2006). Considering these similarities and reasoning that any minor differences

reported between the biogenesis requirements of particular tncRNAs and siRNAs are

likely to be no greater than those between different siRNAs, we propose that the

tncRNAs do not represent a class of C. elegans RNAs separate from the endogenous

siRNAs. Nonetheless, the endogenous siRNAs of C. elegans are not a monolithic class

and appear to be combination of classes whose taxonomy includes an abundant shorter

class underrepresented in our library, presumably because of 5' triphosphates, and a

newly identified ~26-nt class with 5' monophosphates and modified 3' termini.

Many of the small RNAs classified as C. elegans endogenous siRNAs have strong

links with RNAi-mediated gene silencing. For example, they are enriched in matches to

transposons, and their accumulation decreases in mutant worms that are defective in

RNAi (Lee et al. 2006). Thus, their classification as siRNAs is appropriate. However,

they differ from canonical siRNAs in that they lacked some of the classical features of

Dicer products: most appear to lack a 5' monophosphate; their length distribution (Figure

4A) largely differed from the 23-nt RNAs previously described for C. elegans exogenous

siRNAs (Ketting et al. 2001), and their overlapping ends were uncharacteristic of Dicer

processing (Figure 4D, Table S3), which should yield non-overlapping ends when the

RNAs are in phase with each other. We conclude that endogenous siRNAs biogenesis in

nematodes involves little, if any, sequential Dicer processing of long dsRNA, which is

perhaps unexpected given the facility by which C. elegans utilizes long dsRNA for

exogenous RNAi (Fire et al. 1998), the Dicer-dependence of some tncRNAs and siRNAs

(Lee et al. 2006), and the models of transitive RNAi in worms, in which siRNAs serve as

primers for the production of additional siRNAs (Sijen et al. 2001; Tijsterman et al.



2002). Instead, we propose that most endogenous C. elegans siRNAs are generated by

unprimed RdRP activities insufficiently processive to generate long dsRNAs suitable for

successive cleavage events, and are thus reminiscent of short antisense RNAs generated

by Neurospora QDE-1 (Makeyev and Bamford 2002). Because longer dsRNA is mobile

in worms (Feinberg and Hunter 2003), shorter polymerization might ensure that the

endogenous silencing is cell autonomous. If only a single siRNA was made from each

RdRP product, then the 5' terminus of each siRNA could be determined by the nucleotide

used to initiate synthesis of the antisense strand, which we suspect is predominantly a

GTP.

Recognizing that there could be multiple endogenous RNAi pathways in worms,

we draw a speculative model focusing on the 26mer siRNAs and the propensity of their

23rd residues to pair with sense RNA 5' termini (Figure 5). A 26mer siRNA is

synthesized without priming by an RdRP, initiating with a G across from a C in the

template transcript (step 1). The siRNA guides an endonuclease to cleave the template

between residues that pair to nucleotides 23 and 24 of the siRNA (step 2). The cleaved

template triggers a second round of unprimed siRNA synthesis, which starts across from

the C residue closest to the cleavage site (step 3). Steps 2 and 3 repeat, generating the

phased pattern of siRNAs that overlap in cases where C residues lie close to the cleavage

site. Degradation of the ~26-nt sense fragments proceeds in the 3' to 5' direction, but is

slowed by pairing to the siRNA, thereby leading to accumulation of sense reads that fully

pair to the siRNAs (step 4). Once liberated from the sense fragment, the siRNA might

pair to a second transcript (step 5) and target its cleavage, thereby initiating another series

of siRNA-synthesis and target-cleavage events. Although Dicer is not necessarily at the



heart of this model, siRNA accumulation would still be Dicer-dependent if Dicer was

required for either the initial mRNA cleavage or subsequent cleavages that trigger

unprimed synthesis. A requirement of PIR-1 to remove the siRNA y- and P-phosphates

might explain both the importance of this presumed RNA phosphatase for siRNA

production (Duchaine et al. 2006) and the monophosphate at the 5' terminus of 26mer

siRNAs.

Endogenous siRNAs have previously been implicated in transposon silencing

(Lee et al. 2006; Sijen and Plasterk 2003). We found that endogenous siRNAs,

particularly 26mers, also had a propensity to match spermatogenesis-associated

messages. Worms deficient in EGO-1, a nuclear RdRP, have delayed spermatogenesis-to-

oogenesis transition (Smardon et al. 2000), tempting speculation that EGO-1 produces

the endogenous siRNAs that silence sperm-enriched genes, thereby hastening the

transition to oogenesis.

21U-RNAs: Diverse, Autonomously Expressed, Small RNAs

21U-RNAs are 21-nt RNAs that begin with a U and derive from thousands of loci in

several broad regions of chromosome IV. The conservation in C. briggsae of the

upstream motifs, presumably involved in 21U-RNA biogenesis, suggests that production

of 21U-RNAs has an important biological function even if the RNA product itself might

not. Such function might include opening of chromatin structure or changes to

nucleosome phasing induced upon transcription of the 21U-RNA loci.

The more uniform nucleotide composition of 21U-RNA sequences versus their

surrounding sequence, considered together with the diversity and lack of sequence



conservation within the set of 21U-RNAs, suggested that evolutionary pressure is

maximizing their sequence complexities rather than maintaining their sequence identities.

If 21U-RNAs act by base pairing with a complementary nucleic acid strand, then this

increased complexity would enable a higher degree of pairing specificity for the 21U-

RNA sequences (important for both targeting and preventing off-targeting) than would be

possible using the less uniform nucleotide composition of neighboring sequence. Their

21-nt length and 5' phosphate are both features of small RNAs that associate with

Argonaute protein family members to target gene repression (Tomari and Zamore 2005),

suggesting that the 21U-RNAs might do the same, and perhaps target the chromatin from

which they derive. The regions defined by the 21U-RNA loci were vast, and contained

many protein-coding genes, with a wide variety of functions and expression patterns.

Which of those functions that the 21U-RNAs might be influencing, if indeed they act

locally, is unclear.

Equally mysterious as 21U-RNA function are aspects of their biogenesis. The

large and small motifs might together serve as a promoter, driving expression of each

21U-RNA, with the AT-rich region at the 3' end of the larger motif acting as a TATAA

box. Or perhaps the motifs serve as a signal for targeting the cleavage of a larger

transcript. The larger motif could serve as a promoter for a transcript that is processed at

the site of the smaller motif. If the 21U-RNA primary transcript were to begin at the 5'

end of the mature 21U-RNA, the transcribing polymerase would either have to prefer

incorporation of UMP to that of UTP at the 5' end, or the 21U-RNA would have to be

post-transcriptionally processed to remove the y- and j3-phosphates of the 5'-terminal

UTP.



In our favored scenarios for 21U-RNA production, each locus represents an

independent transcription unit, that is, each could be classified as an individual non-

coding RNA gene. From this perspective, the discovery of the 21U-RNA loci

dramatically increased the number of known nematode genes. A minimum of 5772 loci

produced the observed reads (when also considering the 21U-RNA loci unique to reads

provided by A Fire), and we estimate there to be 12,000-16,000 total loci (Supplemental

text). Nonetheless, the common upstream motif and broad clustering of 21U-RNA loci in

the genome both suggest that these genes do not function alone, but instead act

concurrently to produce some aggregate effect. This scenario presents some fascinating

evolutionary questions: How do selective pressures act to maintain the motifs present at

each of the thousands of individual 21U-RNA loci and, when they fail to do so, how do

new loci emerge within the same broad regions of chromosome IV to replace those that

are lost?

Another intriguing biogenesis question entails how the 3' ends of the 21U-RNAs

are defined. The absence of a discernable motif at or near the 3' end suggests that it is

defined in reference to the position of the 5' end. This hypothesis requires a biochemical

mechanism for precisely counting 21 ribonucleotides of any sequence. The known

activity with closest precision in counting this number of ribonucloetides is Dicer-

catalyzed cleavage. However, C. elegans Dicer is thought to produce 23mer RNAs

(Ketting et al. 2001), and Dicer products have a size diversity exceeding that of 21U-

RNAs, even when processing dsRNA without mismatches (Zamore et al. 2000).

Furthermore, we saw no evidence of 21-nt RNAs arising from the opposing RNA

strand--no analog to the siRNA passenger strand. Even without conventional Dicer



processing, counting 21 nt to determine the 3' terminus in reference to the 5' terminus is

easiest to imagine if it occurs in the context of a double helix, presumably while the

transcript is still paired to its DNA (or RNA) template.

21U-RNAs clearly represent a unique class of small RNAs. They are far more

diverse than miRNAs, and unlike siRNAs and piRNAs, which are expressed in tight

clusters, the 21U-RNAs appear to be autonomously expressed. We suggest that other

types of diverse, autonomously expressed, small RNAs (dasRNAs) might be found in

other species. The deep sequencing of small RNAs in species beyond C. elegans will

provide important information for addressing this possibility.

Experimental Procedures

Library preparation. Five runs of high-throughput pyrophosphate sequencing

(Margulies et al. 2005) were performed, the first at Broad Institute and the next four at

454 Life Sciences (Branford, CT, USA). Primary RT-PCR DNA generated previously

(Lau et al. 2001) was prepared for sequencing using three different methods. For runs 1

and 2, it was amplified as in (Lau et al. 2001) but substituting

pATCGTAGGCACCTGAGA for the 5' PCR primer and stopping the PCR during the

linear phase of amplification. The amplified DNA was purified by phenol/chloroform

extraction then native PAGE. Sequencing runs 1 and 2 began with the standard blunt-end

ligation step and yielded 283,557 and 298,625 reads, respectively. For run 3, the PCR

reaction was smaller (1 x 100 jl) and used primers

GCCTCCCTCGCGCCATCAGTATCGTAGGCACCTGAGA and

GCCTTGCCAGCCCGCTCAGTATTGATGGTGCCTACAG, which added sequences



enabling the blunt-end ligation step of the protocol to be bypassed. This reaction was

purified by phenol/chloroform extraction and denaturing (urea) PAGE and yielded

235,632 reads. For runs 4 and 5, PCR DNA was amplified as in run 3 but the second

primer was replaced with

A30/iSpl 8/GCCTTGCCAGCCCGCTCAGTATTGATGGTGCCTACAG (IDT, Inc.,

Coralville, IA). The 18-atom spacer prevented Taq polymerase from using the poly-A

portion of the primer as a template (Williams and Bartel 1995). PCR product (40 pl) was

denatured (850 C, 10 minutes, formamide loading dye), and the differently sized strands

were purified on a 90% formamide, 8% acrylamide gel, yielding single-stranded DNA

suitable for the emulsion PCR reaction of the sequencing procedure. Sequencing of the

longer strand yielded 196,083 reads (run 4), and the shorter yielded 110,299 reads (run

5). Although runs 4 and 5 yielded fewer reads than the other runs, the diversity of reads

matching the genome was comparable.

Read processing. The 1,124,196 individual sequence reads were processed in four steps:

1) 9-nt segments of each linker that immediately flanked the small RNA-derived

sequence were found in 850,870 reads (181,668 unique small RNA sequences); the

remaining reads were discarded. 2) Each unique sequence was compared to annotated C.

elegans miRNA hairpins (miRBase 7.0)(Griffiths-Jones 2004), and those 210 nt and with

perfect matches over their entire length were set aside (1002 sequences, 317,694 reads;

Table Si). 3) Sequences with perfect matches to the E. coli genome (Hayashi et al. 2001)

as found by BLAST (Altschul et al. 1990) were discarded (20,845 sequences, 176,719

reads). 4) Sequences were compared to the WormBase WS 120 assembly of the C.



elegans genome using BLAST, and those with perfect hits (no gaps or mismatches across

their entire length) were retained (23,109 sequences, 77,232 reads). Up to 50 perfect hits

to the C. elegans genome were recorded per query sequence. In downstream analyses,

sequence and read counts were normalized to the number of genomic loci (Supplemental

Text). Sequences spanning splice junctions were identified from those without matches in

the E. coli or C. elegans genomes using BLAST to search annotated C. elegans cDNAs

(Kent and Zahler 2000).

21U-RNA upstream motifs. 21U-RNA loci were defined as those whose sequences

perfectly matched 21-nt reads beginning with a 5' T and fell into regions of chromosome

IV whose matching normalized reads were dominated by these two properties. Motifs

were defined using alignments of genomic sequence surrounding the 21U-RNA loci, with

each locus equally weighted. The motif scoring matrix was constructed using log2-odds

ratios of nucleotide frequencies at positions in the alignments (foreground) to genomic

nucleotide frequencies (background). Predicted 21U-RNA loci were those scoring :15.5

(Supplemental Text).

An independent set of 245,420 C. elegans small RNA pyrosequencing reads was

provided by Andrew Fire (personal communication). Processing as described above

yielded 1475 21U-RNA sequences representing 7985 reads. 344 sequences were not

present in our dataset. Of those, 157 (46%) matched predicted 21U-RNA loci of

chromosome IV, which was a smaller portion than for sequences unique to any of our

five datasets (64%, 65%, 66%, 69%, and 72%), indicating that some information

represented in our motif model originated from peculiarities of our training set.



Nonetheless, of the 4.7 million 21mers beginning with a T from within those three

regions, motif scanning predicted that only 0.1% were loci of unsequenced 21U-RNAs.

Thus, correctly predicting almost half of the unique sequences from an independent set of

reads (versus 0.1% if those sequences were picked randomly) indicated that most of the

information in our model reflected the biological requirements of the motif.

siRNA methods. Exon coordinates were from WormBase gene annotations (release

WS120, 3/1/2004). Counts matching the sense and antisense strands of exons, excluding

loci classified as 21U-RNAs, were normalized to the number of genomic loci. Splicing

variants were collapsed, leaving 1720 siRNA-complemented genes and 1346 sense RNA-

matched genes. To account for expression, SAGE data from the Genome BC C. elegans

Gene Expression Consortium (http://elegans.bcgsc.bc.ca) was used to select control

cohorts (Supplemental text).

Molecular analyses. For alkaline hydrolysis, mixed-stage C elegans total RNA (40 pg)

was incubated in 0.1 M KOH (900 C, 10 minutes) then neutralized with TrisHC1.

Periodate oxidation and 13 elimination were as described (Kemper 1976). For enzymatic

analyses, 800 jig of total RNA were gel purified, and one fortieth was used to cap with

the remainder divided equally for five treatments. Phosphatase (50U CIP, NEB) and re-

phosphorylation (20U T4 polynucleotide kinase, NEB) were performed according to

manufacturer. RNA ligations were as in the second ligation step of the library

construction (Lau et al. 2001). Capping was with vaccinia guanylyl transferase (Ambion)

and a-32P GTP per manufacturer's instructions. The 26mer marker was an in vitro



transcribed version of siR26-1. Northerns were as described (Lau et al. 2001), except

21U-1 and siR26-1 were hybridized to LNA probes (Exiqon) as described (Vagin et al.

2006).

Figure Legends

Figure 1. Distribution of reads across the lin-4 and mir-786 hairpins

(A) The sequence of the lin-4 hairpin is depicted above its bracket-notation secondary

structure as determined by RNAfold (Hofacker et al. 1994) and above the prior

annotation of the mature lin-4 miRNA (Lee et al. 1993), as refined by Lau et al. (2001).

Below, each of the small RNA sequences that matched the lin-4 hairpin is listed, with the

number of reads representing each sequence shown. The dominant miRNA sequence is

red; the dominant miRNA* species is blue; and the loop-containing sequence is green.

Reads from the other previously annotated miRNA hairpins are provided (Table S 1).

(B) The lin-4 predicted hairpin, with the dominant species highlighted as in (A). Lines

indicate inferred sites of Drosha and Dicer cleavage.

(C) The sequence of the mir-786 hairpin depicted as in (A). Reads from the other newly

identified miRNA hairpins are provided (Table S 1).

(D) An alignment of the mir-786 hairpin sequence with that of its inferred ortholog in C.

briggsae. The dominant miRNA and miRNA* species are highlighted as in (A), and C.

briggsae residues differing from those of C. elegans are in grey.

(E) The C. elegans and C. briggsae mir-786 hairpins, depicted as in (B) with residues

colored as in (D).



(F) Cumulative plot of C. elegans miRNAs with the indicated pyrosequencing frequency;

blue, 53 miRNAs sequenced in Lau et al. (2001); cyan, 27 miRNAs first sequenced in

Lim et al., (2003); orange, 31 miRNAs first sequenced in the current study (including 13

from previously annotated miRNA hairpins).

Figure 2. Observed and predicted 21U-RNAs from thousands of loci across two broad

regions of C. elegans chromosome IV

(A) Observed small RNA reads from chromosome IV. All normalized reads were

counted in 100-kb bins (orange). The subset of normalized reads that were precisely 21 nt

long and began with U were also counted (green). Grey shading is explained in (B).

(B) Observed and predicted 21U RNA loci on chromosome IV. Loci that matched one or

more 21U-RNA read were counted in 100-kb bins (blue). The same was done for 21U-

RNA loci predicted by scanning for the associated motifs (pink). Sections of the

chromosome shaded in grey are syntenic to C. briggsae contigs with a high density (_ 75

per 100 kb) of the 21U-RNA-associated motifs.

(C) Observed and predicted 21U-RNA loci on other chromosomes. Coloring as in (B).

The asterisk above chromosome I indicates the position of the ribosomal repeats, which

are collapsed in the genome assembly; ribosomal RNA fragments mapped to this region,

some of which were 21 nt with a 5' U.

(D) Representative 100-kb fragment of a region that gives rise to 21U-RNAs. Shown are

the 146 loci corresponding to observed 21U RNA reads (blue) and the 257 predicted loci

(pink) from coordinates 14.4-14.5M (WormBase, build WS 120). Shown also are

WormBase-annotated genes.



Figure 3. The 21U-RNA sequence motifs and small RNA chemical reactivity

(A) The large and small motifs found upstream of 21U-RNA loci, depicted as a sequence

motif (Crooks et al. 2004). The T at position 1 corresponds to the 5' U of the 21U RNA.

(B) The distribution of distances between the large and small motifs.

(C) Chemical reactivity of small RNAs. Total RNA (40 yg) was treated as indicated and

analyzed by RNA blot, probing first for 21U-1, then stripping and reprobing for siR26-1,

then miR-52.

Figure 4. Many reads antisense to known or predicted mRNAs

(A) The length and initial nucleotide distribution of the antisense reads.

(B) The length and initial nucleotide distribution of the sense reads.

(C) A population of ~22mer RNAs with terminal 5' di- or triphosphates. Those RNAs

with 5' di- or triphosphates were selectively radiolabeled in a capping reaction that used

a-32P GTP and compared to the indicated 5' phosphorylated (5' P) or capped size

standards by 15% PAGE.

(D) Portions of two WormBase-annotated protein-coding genes aligned with small RNA

reads that matched the sense (blue) and antisense (orange) strands. One hundred siRNA

clusters, each comprising from 4 to 61 antisense reads, are shown in Table S3.

(E) Examples of siRNAs that did not match the genome but did match the splice

junctions (vertical lines) of mature mRNAs.



Figure 5. Speculative model for endogenous RNAi in worms, illustrated using the

F55C9.3 transcript (blue) and sequenced siRNAs (orange) from Figure 4D. Small

arrowheads indicate the transcript cleavage sites. See discussion for explanation.
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Table 1. Eighteen newly identified miRNAs in C. elegans. Reads for miR-789-1 and miR-789-2 cannot be distinguished.

miRNA

miR-784

miR-785

miR-786

miR-787

miR-788

miR-789-1

miR-789-2
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miR-791

miR-792
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miR-794

miR-795

miR-796

miR-797

miR-798

miR-799

miR-800

miRNA reads

11

14

80

32

667

63

63

16

1

4

73

5

miRNA* reads

1

2

3 Yes

Yes

10 Yes

1 Yes

C. briggsae
ortholog

Yes

Yes

Fly or vertabrate
family members

Genomic cluster
parterSequence

UGGCACAAUCUGCGUACGUAGA

UAAGUGAAUUGUUUUGUGUAGA

UAAUGCCCUGAAUGAUGUUCAAU

UAAGCUCGUUUUAGUAUCUUUCG

UCCGCUUCUAACUUCCAUUUGCAG

UCCCUGCCUGGGUCACCAAUUGU

UUCCUGCCUGGGUCACCAAUUGU

CUUGGCACUCGCGAACACCGCG

UUUGGCACUCCGCAGAUAAGGCA

UUGAAAUCUCUUCAACUUUCAGA

UGAGGUAUCUUAGUUAGACAGA

UGAGGUAAUCAUCGUUGUCACU

UGAGGUAGAUUGAUCAGCGAGCUU

UGGAAUGUAGUUGAGGUUAGUAA

UAUCACAGCAAUCACAAUGAGAAGA

UAAGCCUUACAUAUUGACUGA

UGAACCCUGAUAAAGCUAGUGG

CAAACUCGGAAAUUGUCUGCCG

miR-359

miR-240

miR-228

miR-230

miR-795

miR-794

miR-247

I B



Table 2 C. elegans miRNA families, with the corresponding known miRNAs in other animals. Families sorted alphabetically by seed are listed in Table S2, and newly reported C.
briggsae orthologs are listed in Table S5.
Seed C. elegans C. briggsae D. melanogaster D. rerio Mammal

CCCUGA
UUUGUA

GAGGUA
GGAAUG
AUCACA
GGCAGU
CACCGG
GACUAG
GUCAUG
AGCACC
GAUAUG
ACCCGU
ACCCUG
GAGAUC
CGAAUC
AUUAUG

AUGACA
CACAAC
AAUACG
GAAAGA
GGCAAG
UAAAGC
UCGUUG
UCAUCA
GGAGGC
ACAAAG
AAGUGA
UGAGCA
AAGGCA
AUGGCA
UAUUAG
AAGCUC
AAAUGC
UAUUGC
AUUGCA
AAUACU
UUGUAC
ACUGGC
UGCGUA
GGUACG
CUUUGG
UUGGUC
UACAUG
UACACG
ACACGU
CACAGG
UAAGUA
UAGUAG
GCAAAU
AACUGA
AAUCUC
UUGUUU

UUGGUA
CACUGG
AUCAUC
GGCACA
AAUGCC
CCGCUU
CCCUGC
UUGGCA
UGAAAU
AAGCCU
GAACCC
AAACUC

lin-4

Isy-6

let-7/48/84/241
miR-1
miR-43
miR-34
miR-35136138/39/40/41
miR-44/45/61
miR-46/47
miR-49/83

miR-50/62/90

miR-51/52/55
miR-57

miR-58/80/81/82
miR-59
miR-60
miR-64
miR-67
miR-70
miR-71
miR-73/74

miR-75/79
miR-76
miR-77

lin-4/237
Isy-6
let-7148/84/241/7931 794/795
miR-1/796

miR-2/43/2501797
miR-34
miR-35/36137/38/39140/41/42
miR-44/45/61/247
miR-46/47
miR-49/83

miR-50/62/90
miR-51152/53/54/55/56
miR-57

miR-58180/81/82
miR-59
miR-60
miR-63/64/65/66/229
miR-67
miR-70
miR-71
miR-72/73/74
miR-75/79
miR-76
miR-77
miR-78
miR-85
miR-86/785
miR-87/233
miR-124
miR-228
miR-230
miR-231/787
miR-232/357
miR-234
miR-235

miR-236
miR-238/239a/b
miR-240
miR-242
miR-243
miR-244
miR-245
miR-246
miR-248.1
miR-248.2

miR-249
miR-251/252
miR-253
miR-254
miR-255
miR-259
miR-355
miR-358
miR-359
miR-392
miR-784
miR-786
miR-788
miR-789-1/-2
miR-790/791
miR-792
miR-798
miR-799
miR-800

miR-125

let-7
miR-1
miR-2aIb/cl6/11/ 13a/b/308
miR-34

miR-279/286
miR-281
miR-285

miR-100

bantam

miR-307

miR-31alb
miR-4

miR-87
miR-124

miR-277

miR-92alb/310/311/312/313
miR-8
miR-305

miR-galb/c

miR-304

miR-1 25alb/c

let-7a/b/lcdle/flg/h/i
miR-1/206

miR-34

miR-29alb
miR-190
miR-99/100
miR-10alb/c/d

miR-125a/b,mmu-miR-351

let-7a/b/cd/elflg/ili 98/202
miR-1/206

miR-34a/c/449

miR-29alb/c

miR-190

miR-99b/100,hsa-miR-99a
miR-10a,hsa-miR-10b

miR-220

mmu-miR-31
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miR-183

miR-137
miR-25/92alb363
miR-200b/c/429

miR-193alb

miR-9
miR-1 33alb/c

miR-216a/b
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miR-9
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Figure 5
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Supplemental text

Previously sequenced miRNAs

Our previous sequencing of small RNA libraries from C. elegans discovered, refined, or

confirmed the identities of 80 miRNAs (Lau et al. 2001; Lim et al. 2003). These include

the lin-4 and let-7 RNAs (whose termini were refined in (Lau et al. 2001)) as well as 25

miRNAs that were concurrently reported by others (Ambros et al. 2003; Grad et al. 2003;

Lee and Ambros 2001). Of the 80 miRNAs previously sequenced from our libraries, all

were observed in the new set of high-throughput reads.

The reads matching these 80 hairpins had a consistent set of characteristics. There

was usually (70 of 80 hairpins) one dominantly abundant sequence, the miRNA, with a

smaller number of overlapping sequences representing 5'- and 3'-end heterogeneity. For

9 of the 10 exceptions, heterogeneity among the dominant sequences was only found at

the 3' end; the remaining case, miR-248, displayed heterogeneity among the dominant

sequences at the 5' end. In addition, there was typically (70 of 80 hairpins) a set of reads

from the opposing arm of the hairpin, which corresponded -to the miRNA* species (Lau

et al. 2001) and exhibited the 3' overhangs typical of miRNA hairpin processing (Lee et

al. 2003; Lim et al. 2003). On average, the miRNA* species was present at about 1.0%

the frequency of the miRNA, although this was somewhat variable. At one extreme was

miR-239b, which had a similar number of reads from each arm (37 and 25 reads for the

5' and 3' arms, respectively). At the opposite extreme, none of the 7121 miR-81 reads

were from the star arm. For 21 of 80 hairpins, sequences were observed that matched the

portion of the transcript in between the miRNA and miRNA*. Reads for these

byproducts of Dicer processing of the pre-miRNA, whose lengths in some cases



approximated that of a miRNA, were typically much less abundant than the miRNA*

reads. In the case of mir-44 and mir-45, two genes with identical mature miRNA

sequences but different hairpin sequences, reads matching the unique miRNA* and loop-

containing sequences provided the sole evidence that both genes are expressed.

The high sequencing coverage (with a median of 2059 reads per miRNA,

Supplemental Table 1) enabled refinement of the annotated miRNA species for 13 of

these 80 miRNAs. The refinement was nearly always at the 3' terminus of the mature

miRNA, as expected based on the heterogeneity of metazoan miRNA termini (Lagos-

Quintana et al. 2001; Lau et al. 2001). The exceptions were miR-42 and miR-248, which

had been initially annotated based on the sequencing of only one and two clones,

respectively (Lau et al. 2001; Lim et al. 2003). The revised miR-42 annotation extended

the miRNA 5' terminus by one nucleotide (Supplemental Table Sl). Based on the seed

model for miRNA target recognition, this shift of a single nucleotide at the 5' terminus

would dramatically influence the identities of predicted targets. In the case of miR-248, a

dominant 5' terminus was not observed; 19 of the 42 reads matched the previously

annotated sequence (re-annotated as miR-248.2), whereas the other 23 reads were

extended by one nucleotide at their 5' terminus, suggesting that the predicted targets of

miR-248 should be expanded to include also matches to the extended species (annotated

as miR-248.1).

Other previously annotated miRNAs found in our high-throughput reads

RNAs that have not been cloned and sequenced from our libraries have also been

annotated as miRNAs. Thirteen such previously annotated miRNA hairpins gave rise to



high-throughput reads (range, 2 to 159 reads/hairpin; Supplemental Table 1). All 13

were initially identified computationally and experimentally supported by northern

blotting and/or a PCR assay, in which a miRNA-specific primer is used to preferentially

amplify complementary members of the library, with subsequent cloning and sequencing

of the amplicon (Lim et al. 2003; Ohler et al. 2004). For five of these (miR-239b, miR-

250, miR-252, miR-253, and miR-358), the 5' terminus of the high-throughput reads did

not match the one mapped in the previous PCR-cloning-sequencing assay (Supplemental

Table 1). Although we consider these five miRNA genes to now be validated based on

high-throughput reads, the question remains as to what was amplified and cloned

previously. We note that Chan et al. (2005) hypothesize that miR-253 is misannotated

and that they correctly predict the dominant RNA species from this gene.

When considering reads that mapped to the miRNA hairpins, the mature miRNA was

generally defined based on the position of the most abundant 5' end from our high-

throughput reads. However, an exception was in the case of miR-259, which had a

similar number of reads from each arm (29 and 38 reads for the 5' and 3' arms,

respectively); conservation criteria suggested that the functional miRNA was from the 5'

arm.

The previously annotated miRNAs missing in our high-throughput reads

As described above, 93 of the 114 C. elegans miRNA hairpins annotated in miRBase

(version 7.0 (Griffiths-Jones 2004)) were represented in our set of high-throughput reads.

Below we discuss the absence of reads representing the remaining 21 loci.



1sy-6

The absence of lys-6 reads was anticipated based on our sequencing depth and the very

small volume of cells thought to express lsy-6 miRNA. Estimating their aggregate

volume to be between 30 and 600 femtoliters (one to nine cells, each with a cell body 3-4

microns in diameter and a doubling of the volume to account for cytoplasm in their axons

and dentrites; 0. Hobert, personal communication) and the volume of the worm at ~10

nanoliters (~1.0-1.5 mm length, ~50 micron diameter), we suggest that lsy-6 RNA should

have been ~100,000 times less abundant than a miRNA expressed in most cells of the

worm. By this rough estimate we would not expect to observe a lsy-6 read until we reach

a depth of coverage that yields 100,000 reads for a broadly expressed miRNA. Because

the most frequently sequenced miRNA, miR-52, had 37,225 reads, 3-fold deeper

coverage would be needed before a lsy-6 read might be expected. Furthermore, not all

RNAs in the same cell are expressed at the same concentration; the abundance disparity

would increase further if the lsy-6 RNA concentration in those few cells that do express it

was lower than that of other miRNAs in the same cell.

mir-353, mir-354, mir-356, and mir-360

Although the unsaturated status of our sequencing prohibited any definitive judgments

about the veracity of miRNA annotations that were not represented by our reads, our

observations were informative for evaluating the confidence in those annotations and the

data that was originally used to justify them. For example, a lesson was drawn from

those miRNAs whose annotated 5' end differed from the dominant 5' end in the reads,

which we take to be the true 5' end. Most of those original 5' ends had been identified



using miRNA-specific PCR amplification followed by cloning and sequencing (Lim et al.

2003; Ohler et al. 2004). That the original 5' end sometimes (5 of 12 cases) differed

from the authentic miRNA (or miRNA*) called into question what was actually

amplified, cloned and sequenced, and showed that this method for experimental

validation of computational predictions can sometimes yield false positives. The

observation of experimental false positives decreased our confidence in the authenticity

of miR-353, miR-354, miR-356, and miR-360, the four candidates that had been

experimentally supported by this assay but which were not represented in our set of high-

throughput reads. Nonetheless, they could be miRNAs, especially miR-356, which

shares a seed with miR-87 and miR-233.

mir-264 through mir-273

Other annotated miRNAs from MirBase 7.0 not supported by the high-throughput reads

included all 10 RNAs (miR-264 through miR-273) uniquely reported in (Grad et al.

2003). Each of these 10 had been predicted computationally and supported

experimentally by PCR amplification using a candidate-specific primer (Grad et al.

2003). The types of false-positive experimental results described above, generated by

PCR amplification and sequencing, would be expected with more prevalence when using

PCR amplification alone. Furthermore, the observation that our set of high-throughput

reads included many of the previously unsequenced miRNAs uniquely proposed by other

computational efforts, yet this same set included none of the ten candidates uniquely

proposed by (Grad et al. 2003), together with the discussion presented in Ohler et al

(2004), supports the idea that most of these ten are not miRNAs.



mir-256, mir-257, mir-258, mir-260, mir-261, and mir-262

The remaining annotated miRNAs not supported by the high-throughput reads are the six

RNAs (miR-256 through miR-258 and miR-260 through miR-262) uniquely reported in

(Ambros et al. 2003). One is annotated based on similarity to miR-1 and northern

blotting (miR-256), and five are annotated based on cloning and sequencing using a

protocol that did not depend on a 5' monophosphate, with further support from northern

blotting. Two (miR-256 and miR-162) were described as having unusual hairpins and

possibly not miRNAs when they were first proposed (Ambros et al. 2003). For two

(miR-260 and miR-262), we found sequences matching the annotated hairpins, but those

sets of sequences did not resemble the sets of sequences typically obtained from miRNA

hairpins and were instead reminiscent of siRNA clusters (Supplemental Table 1, Figure

5). Thus, the data from high-throughput sequencing, together with the discussion

presented in Ohler et al (2004), supported the idea that these five RNAs cloned in

Ambros et al (2003) are not miRNAs and instead represent endogenous siRNAs.

None of the 1 candidate miRNAs recently predicted by Chan et al (2005) were among

our newly identified miRNAs.

C. briggsae orthologs of the newly identified miRNAs

Putative orthologs were found in the genome sequence of C. briggsae for ten of the 18

newly identified miRNAs. For some of those, the level of conservation between the

hairpins and their C. briggsae counterparts was low compared to that typically exhibited



by the previously annotated miRNAs, and was often scant beyond the miRNA seed

region. Nonetheless, according to current understanding of miRNA targeting (Brennecke

et al. 2005; Farh et al. 2005; Lewis et al. 2005), the functions of these counterpart

miRNAs should be maintained nearly to the same degree as those of the more extensively

conserved miRNAs. It seems that, for some miRNAs, the limited scope of selective

pressure across miRNA hairpins will make the identification of orthologous hairpins very

noisy in species as divergent as C. elegans and C. briggsae. Thus the absence of a

reported ortholog for a miRNA gene does not imply that the miRNA is species-specific;

the degree of divergence between the orthologs may simply be too great for us to have

detected the corresponding sequence in C. briggsae.

Family Designations

When assigning miRNAs to families, we did not require that all members of the family

derive from the same arm of the hairpin. However, most were from the same arm, as

would be expected if most members of the same family shared common ancestry. Seven

of the 22 C. elegans families with multiple members included miRNAs derived from

inconsistent sides of their precursor hairpins. For example, mature miR-72 is from the 5'

arm, whereas mature miR-73 and miR-74 are from the 3' arms. In all but one family

from Table 2, examples from the same arm were found in each species with members,

which implies that even in cases of very limited sequence identity, family members in C.

elegans have common ancestry with those in flies and vertebrates. The exception was C.

elegansiC. briggsae miR-67 (3' arm), Drosophila melanogaster miR-307 (3' arm), and

Danio rerio miR-220 (5' arm).



Three borderline candidates

Three additional candidates that were sequenced more than once were, from our

perspective, borderline cases and therefore were not annotated here as miRNAs. One

candidate with potential to derive from a hairpin with pairing characteristic of metazoan

miRNAs (hairpin-1, Supplemental Table 1) was represented by only five reads, all from

the same arm of the hairpin, and lacked detectable conservation. In two additional cases.

(hairpin-2 and hairpin-3, with 5 and 84 reads, respectively), candidates were not

annotated as miRNAs because the hairpins exhibited more extensive pairing than has

been observed for metazoan miRNA hairpins (Supplemental Table 1). The reads from

hairpin-3 clearly derived from both arms of the hairpin and shared a consistent length

(22-23 nucleotides), both features reminiscent of miRNAs. However, perhaps because of

the uniform pairing within the hairpin, they derived from a motley set of registers up and

down the length of the hairpin- a pattern uncharacteristic of previously described

miRNAs.

The number of C. elegans miRNAs

The lower overall conservation in C. briggsae for the newly identified miRNAs was the

expected result if previous studies found most of the C. elegans miRNAs with extensive

conservation in nematodes. Even if most of the conserved miRNAs have been found, it

will always be possible to speculate that many non-conserved miRNAs, each expressed

only in a few cells or only in special conditions or circumstances, remain to be

discovered. Our increased difficulty of finding orthologs for the newly-reported miRNAs



(Table 1), together with the minimal scope of conservation in those orthologs that we did

identify, provided the first indication that C. elegans miRNAs expressed at very low

levels also tend to be less conserved. A similar phenomenon is observed in vertebrates,

and makes it impossible to estimate meaningful upper limits on gene number by

extrapolating from previous computational studies (Bartel 2004). However, the trajectory

of new miRNA discovery versus depth of sequencing seems to indicate that there are not

many more miRNAs to be found in C. elegans (Figure 1G). Our initial 330 reads

captured 55 miRNAs (Lau et al. 2001); increasing sequencing coverage by one order of

magnitude, to 4078, captured another 35 genes (Lim et al. 2003); yet increasing coverage

by nearly two additional orders of magnitude, to 394,926, captured only another 31 genes

(18 newly identified genes, plus 13 that were previously annotated but not cloned). It will

be interesting to see if this downward trend continues or reverses with even greater

sequencing coverage.

Supplemental Text Describing 21U-RNAs

We estimate the total number of C. elegans 21U-RNA loci to be between 12,000 and

16,000. The 10,800 predicted loci of chromosome IV captured 77% of the sequenced

21U-RNAs. Based on the low frequency of predictions on other chromosomes (Fig. 2C),

the number of false-positives in the set of 10,800 would be less than 1000 loci. Using

1000 as the number of false positives and 0.77 as the specificity yields lower estimate of

-12,000 total loci. Over 6000 predicted 21U-RNAs were not validated by our reads.

These predictions captured only 46% of the 21U-RNAs that were unique to the dataset

from A. Fire. This suggests that the predictions not yet validated might represent only



half of the remaining 21U-RNAs. Subtracting the 1000 false positives, then doubling the

number of predictions not yet validated yields 10,000 loci not yet validated. Adding

these to the 5600 observed 21U-RNA loci suggests an upper estimate of 16,000.

Supplemental Text Describing Genes Corresponding to Endogenous siRNAs

In a compendium of microarray experiments, C. elegans genes with positively correlated

changes in expression across many environmental conditions and mutant backgrounds are

grouped into collections called mountains, many of which are enriched with genes from

certain functional categories (Kim et al. 2001). We compared the distribution of siRNA-

complemented genes among the mountains to that of all genes included in this

compendium (Table S6). All the mountains of transposon-enriched genes and all but one

of the mountains of germline-enriched genes were overrepresented in the set of siRNA-

complemented genes. An enrichment for endogenous siRNAs matching transposases had

been observed previously and is consistent with the proposal that the RNAi machinery

directly silences transposable elements (Lee et al. 2006; Sijen and Plasterk 2003).

We further explored the overrepresentation of germline-enriched genes using

published expression annotations from microarray analysis of mutant worms (glp-4, fem-

3(gf), and fem-l(lf)), in which germline cells do not proliferate, only give rise to sperm,

or only give rise to oocytes, respectively (Reinke et al. 2000). Of the siRNA-

complemented genes in this microarray analysis, 10.4% were annotated as germline-

intrinsic, 16.5% were annotated as sperm enriched, and 3.0% were annotated as oocyte

enriched, an enhancement over the 4.3%, 5.5%, and 2.2% representation of all genes in

each of those three categories, respectively. When considering only the genes



complementing 26mer siRNAs, the fraction that was sperm enriched was even more

striking--increasing from 16.5% to 55%. The observed germline enrichment among

those genes complemented by siRNAs might have reflected preferred targeting of

germline genes by endogenous siRNAs. However, the observed dependence of siRNA

production on mRNA templates implied that the abundance of siRNAs that

complemented any particular mRNA should have scaled linearly with both the mRNA

length and abundance. To evaluate the contribution of length/abundance biases among

germline-expressed genes to the results presented above, we ranked mRNAs identified by

serial analysis of gene expression (SAGE) of mixed stage C. elegans

(http://elegans.bcgsc.bc.ca) according to the products of their tag counts and lengths, and

used the top-ranked genes as a control set to repeat our comparison. Of the control genes

included in the microarray analysis, 9.5%, 0.6% and 3.4% were annotated as germline-

intrinsic, sperm enriched, and oocyte enriched, respectively. The comparison of the

siRNA-complemented set with the control set showed that among germline enriched

genes, sperm-enriched genes were more than 20-fold over-represented in the siRNA set

(p-value <0.01, chi-square test), consistent with a potential regulatory role of siRNAs for

sperm-enriched genes. Analogous results were obtained for transposon genes. In contrast,

the enrichment of germline intrinsic genes and oocyte-enriched genes might have been

due to abundance and length biases.

Experimental Procedures

Genome hit normalization. We considered unique sequences to have a unique character

sequence when compared to all other sequences of equivalent length. The numbers of



unique sequences and reads were both normalized to the number of perfect BLAST-

derived matches to the C. elegans genome. Each hit to a region of interest was counted

independently; thus, if one unique sequence representing 28 sequence reads matched

three loci in the C. elegans genome, two of which were sense matches to exons, we

would report that this contributed (# sense hits to exons)/(# total hits to the genome) = .67

counts to the number of unique sequences matching the sense strand of exons, and (#

reads) * (# sense hits to exons) / (# total hits to the genome) = 18.67 counts to the number

of reads matching the sense strand of exons.

Defining genomic regions rich in 21U-RNAs. Using data from read set 1, a Markov

model was constructed with 3 states: "S" (giving rise to small 21U-RNA species of

interest), "N" (giving rise to no small RNAs), and "F" (false-positive, giving rise to small

RNAs with a variety of sizes and 5' nucleotides). Emissions of four types were observed

for non-overlapping 100nt blocks: 1) no reads mapping to that block; 2) one or more

21U-RNA read, no other reads; 3) no 21U-RNA reads, one or more other read; 4) one or

more 21U-RNA read and one or more other read. Emission probabilities were generated

by training on regions selected manually to resemble each state ("S": chrIV, 15.5-

16.5Mb; "N": chrIV, 10.5-11.5Mb; "F": chrI, 15,000,000-15,080,200). Transition

probabilities were set manually to reflect the observed sizes of clumps of 21U-RNA reads

between coordinates 16.25Mb-17.25Mb on chrIV ("S": 70kb; "N": 40kb; "F" set equal to

"S"). Initial state probablilites were also set manually ("S": 0.3; "N": 0.6, "F": 0.1). That

model was parsed over non-overlapping 100nt blocks of the entire genome using the

Viterbi algorithm, and the resulting parse defined regions rich in 21U-RNAs in



downstream analysis. Briefly, the parse yielded 20 "S" regions spanning

chrlV:4,834,600-6,994,100; one "S" region spanning chrlV:9,131,000-9,132,300; and 22

"S" regions spanning chrlV: 13,599,100-17,262,800. No portions of any other

chromosome were parsed to state "S".

Defining and detecting the 21U-RNA upstream motifs. The sequence motifs found

upstream of the 21U-RNA loci were defined by examining the sequences upstream of

each 21U-RNA genomic locus. 21U-RNA loci were defined as those mapping to regions

of chromosome IV that had been parsed to the "S" state as described above. The small

motif was derived by aligning the surrounding genomic sequence based on the 5'

nucleotide of the 21U-RNA. The distribution of distances between the small motifs

(whose position is fixed relative to the 21U-RNA sequence) and the large motifs was

determined by plotting the frequency of perfect matches to the core sub-motif 'GTTTC'

across the sequence upstream of the 21U-RNAs. The large motif was derived from an

alignment of the upstream genomic sequences constructed based on searches for the

expanded sub-motif 'CTGTTTCA'. Matches were sought with 0, 1, 2, 3, or 4

mismatches to the expanded sub-motif, in that order. For each number of allowed

mismatches, the expanded sub-motif was sought in each position allowed by the

aforementioned distance distribution, in descending order of the distance frequency.

Alignments for the large motif were centered based on the first matches to the expanded

sub-motif.

The scoring matrix for detecting the 21U-RNA upstream motifs was constructed

using log 2-odds ratios. For each position in the large motif, the foreground frequency of



each nucleotide was calculated based on the counts of that nucleotide in the large motif

alignment described above. Foreground nucleotide frequencies for the small motif were

calculated similarly using the small motif alignment described above. The background

nucleotide frequencies were estimated to be 34% for A and T, 16% C and G, based on the

properties of the sequences surrounding the 21U-RNAs and their associated motifs. For

each nucleotide N at each position, pseudocounts were added, and scores derived,

according to the following formula:

Score = og2( (fN* R) + (bN* P)
Score = log2  bN(R + P)

where fN was the foreground (observed) frequency of N at the given position, bN was the

background frequency of N, R was the total number of real (observed) counts, and P was

the total number of pseudocounts. We set P equal to the square root of R.

Scores for the distance between the two motifs were based on the counts of the

minimal sub-motif at various positions relative to the 5' end of the 21U-RNA, as

described above. Foreground frequencies were calculated as number of counts for

distances ranging from 16 to 25 nucleotides (inclusive) divided by the total number of

counts in that range. The background frequency model described even probabilities

across the full range. Pseudocounts were added to each foreground count as described

for nucleotides, and a scoring matrix was calculated in the same manner as for nucleotide

identities.

21U-RNAs were predicted for a given stretch of genomic sequence by applying the

scoring matrix for the large motif to each position on each strand of the genomic

sequence. For each position, the maximum sum of the distance and small motif scores

100



over all allowed distances from the large motif was determined, and was added to the

score for the large motif. If the sum of the scores was _ 15.5, the 21U-RNA was

predicted using the location of the small motif to define the 5' end and assuming a length

of 21nt.

Length and 5' identity of 21U-RNAs. To assess the length distributions of 21U-RNAs,

all genomic loci with matching reads were scored using the motif matrix described above,

and normalized counts were binned according to those scores. For this assessment, the

position of the small motif was fixed according to the 5' end of the read, and its score

added to the maximal combined large motif and distance matrix scores. The fractions of

<21 nt, 21 nt, and >21 nt reads with motifs were derived from the total counts with scores

>0. 5'nucleotide identity was similarly assessed, except that the two positions of the

small motif scoring matrix corresponding to the l"t and 2 nd nucleotides of the read did not

contribute to the motif score.

siRNA methods. Matches to the sense and antisense strands of exons were found by

comparing the coordinates of BLAST hits representing perfect matches to the C. elegans

genome to the coordinates of exons as annotated in the Sanger gene set accompanying

assembly ce2 downloaded from UCSC (Karolchik et al. 2003). This gene annotation set

is derived from the WormBase gene annotations (www.wormbase.org; release WS120,

3/1/2004). Counts matching the sense and antisense strands of exons were determined

using the genome hit normalization scheme described above. Genes with at least a

fraction of a normalized match to any of the small RNA sequences that had not been
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classified as 21U-RNAs comprised the lists of siRNA-complemented genes and sense

RNA-matched genes, depending on the orientation of the BLAST hit. Splicing variants

were collapsed, leaving 1720 siRNA-complemented genes and 1346 sense RNA-matched

genes.

For each mountain presented in (Kim et al. 2001), the fraction of siRNA-

complemented genes included in the mountain (out of 1503 siRNA-complemented genes

included in that analysis) was compared to the fraction of all genes from the topomap

(following the collapse of splice variants) included in the mountain. Significant

enrichment was identified using Chi square tests with a p-value threshold of 0.01.

Similarly, the fraction of siRNA-complemented genes annotated as germline intrinsic,

sperm enriched, or oocyte enriched in reference (Reinke et al. 2000) was compared to the

fraction of all genes included in that microarray analysis so annotated, and significant

enrichment was identified using Chi square tests as described above.

The SAGE control set was constructed using mixed-stage SAGE data with WS140

gene names obtained from the Genome BC C. elegans Gene Expression Consortium

(http://elegans.bcgsc.bc.ca) with the sequence quality filter set to 0.99. From that dataset,

ambiguous and unmatched tags were removed and splicing variants were collapsed.

Genes were ranked according to the product of tag counts and gene lengths, and the top

1720 comprised the control set. The fraction of siRNA-complemented genes annotated

as germline intrinsic, sperm enriched, or oocyte enriched in reference (Reinke et al. 2000)

was compared to the fraction of SAGE control genes so annotated, and significant

enrichment was identified using Chi square tests as described above.
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Tables S1-S5 are found on the accompanying CD-ROM.

Table S6. Gene mountains (Kim et al., 2001) enriched in siRNA-complemented genes

Mountain Functional desciption Percent of siRNA- Percent of all
complemented genes genes

Mount 4 Sperm-enriched genes; protein kinases; protein 21% 6.5%
phospatases; major sperm proteins

Mount 5 12.4% 5.1%
Mount 7 Germ line-enriched; oocyte; meiosis; mitosis 9.1% 4.4%
Mount 11 Germ line-enriched; oocyte; meiosis; mitosis; 7.7% 3.2%

histone H1; retinoblastoma complex
Mount 18 Germ line; oocyte; biosynthesis; protein synthesis 1.7% 1.0%
Mount 20 Germ line-enriched; biosynthesis; protein synthesis 2.5% 0.87%
Mount 23 Protein expression; energy generation 2.1% 0.76%
Mount 25 Mariner transposase 1.7% 0.55%
Mount 32 Nucleosomal histones 0.47% 0.13%
Mount 33 Tcl transposon 1.0% 0.14%
Mount 37 Tc3 transposon 0.67% 0.06%
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(C) Evidence for a 5' monophosphate on a 26mer siRNA. Small RNAs from mixed-stage C. elegans were gel purified and then subjected to the
indicated treatments. Small RNAs were phosphatased, phosphatased and rephosporylated, or tested as substrates in ligation reactions identical
to the second ligation step of the library construction (Lau et al., 2001), either in the presence or absence of the 17-nt 5' adapter. The samples
were resolved on a 15 cm 15% PAGE gel then blotted and probed for siR26-1. As in panel A, phosphatase treatment retarded the mobility of
siR26-1, indicating the presence of a phosphate group. Rephosphorylation restored mobility to that of untreated siR26-1. In the absence of the
17-nt 5' adapter, siR26-1 could potentially ligate on either its 5' or 3' end to endogenous -22-nt RNAs (siR26-1t), such microRNAs, which are
known to be abundant and have ligation-compatible ends. The 17mer, nonphosphorylated its 5' terminus, was capable of ligating only at its 3'
terminus. Thus the ligation product appearing only in the presence of the adapter (siR26-1*) indicated that siR26-1 contained a terminal 5'
monophosphate.
(D) Evidence for a 5' monophosphate on a 21U RNA. Small RNAs from mixed-stage C. elegans were gel purified using 24mer and 18mer 5'
32P-labeled markers. Trace amounts of radiolabeled markers were carried forward in the purified sample (observed in the untreated lane).
Untreated RNA, phosphatase-treated RNA, and phosphatased and rephosphorylated RNA were tested as substrates in ligation reactions
identical to the second ligation step of the library construction (Lau et al., 2001), and samples were resolved on a 15 cm 15% PAGE gel then
blotted and probed for 21U-1. The untreated 21U-1 was fully competent for ligation to the 17-nt 5' adapter (21 U-1 *). Because the 17mer was
capable of ligating only at its 3' terminus, the ligation to 21U-1 confirmed that the phosphate group implicated in the analysis of panel B was a
5' monophosphate. As expected, the trace size markers were also suitable ligation substrates (* and **), and their signal disappeared after
removing the 5' 32P by phosophatase treatment. A faint upper band (21U-1t) likely corresponded to ligation to miRNAs.

Supplemental Figure 1

Supplemental Figure S1. Enzymatic probing of two small
endogenous RNAs indicates they both have 5'
monophosphates.
(A) Evidence for a phosphate group on a 26mer siRNA.
Total RNA from mixed-stage C. elegans was subjected to
the indicated treatments, separated on a 60 cm 17% PAGE
gel, then blotted and probed for siR26-1. The shift with
phosphatase treatment and return to normal mobility upon 5'
phosphorylation indicated the presence of a phosphate
group. These data ruled out phosphorylation at more than
one site, and suggested a 5' monophosphate, although a 5'
di- or triphosphate, or a monophophate at another position
were difficult to exclude based on mobility alone. As also
shown in Figure 3C, resistance to periodate oxidation/
B-elimination indicated modification on either the 2' or 3'
hydroxyl of the 3' terminal ribose.
(B) Evidence for a phosphate group on a 21U-RNA. Total
RNA from mixed-stage C. elegans was subjected to the
indicated treatments, separated on a 60 cm 17% PAGE gel,
then blotted and probed for 21U-1. The shift with
phosphatase treatment and return to normal mobility
upon 5' phosphorylation indicated the presence of a
phosphate group. As in panel A, these data ruled out
phosphorylation at more than one site, and suggested a 5'
monophosphate, although a 5' di- or triphosphate, or a
monophophate at another position were difficult to exclude
based on mobility alone. As also shown in Figure 3C,
resistance to periodate oxidation/B-elimination indicated
modification on either the 2' or 3' hydroxyl of the 3' terminal
ribose. Cross hybridization to a 23-nt species was
detected (#). This cross-hybridizing RNA contained a 2', 3'
diol, as indicated by susceptibility to periodate oxidation and
B1-elimination.
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Figure S2. The properties of the 21 U-RNAs correlate very strongly with each other.
(A) Analysis of read length. For binned 21 U-RNA upstream motif scores (using integer bins), read frequencies are
plotted for three length categories: <21 nt (blue), 21 nt (orange), or >21 nt (green). Higher scores are more likely to
have been derived from the foreground (motif) model than the background model. For the positive-scoring loci,
the large enrichment of <21-nt reads over >21-nt reads suggests that the <21-nt reads might be the result of
degradation. Degradation from the 5' end of a 21 U-RNA would negatively affect scores because it would often
change the 5' nucleotide and would increase the distance between the RNA and the upstream motifs. The
observation that positive score distributions of <21-nt reads and 21 -nt reads tightly correlated implied that length
heterogeneity is primarily at the 3' end of 21U-RNAs.
(B) Analysis of 5' nucleotide and chromosomal location of 21-nt reads. For binned 21 U-RNA upstream motif
scores, read frequencies are plotted for four categories: reads that begin with U and fall within the 21 U-rich
regions of chromosome IV (orange), reads that do not begin with U but do fall within the 21 U-rich regions of
chromosome IV (green), reads that begin with U but fall outside the 21 U-rich regions of chromosome IV (pink),
reads that do not begin with U and fall outside the 21 U-rich regions of chromosome IV (blue). For this panel, the
5' nucleotides of each read were excluded from the motif scoring. 21 U-rich regions were defined as in the text.
Very few (0.2%) 21-nt reads lacking a 5' U were associated with motifs.
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MicroRNAs (miRNAs) are -23-nt endogenous RNAs that often repress the

expression of complementary messenger RNAs (Bartel 2004). In animals, miRNAs

derive from characteristic hairpins in primary transcripts through two sequential

RNase III-mediated cleavages; Drosha cleaves near the base of the stem to liberate a

-60-nt pre-miRNA hairpin, then Dicer cleaves near the loop to generate a

miRNA:miRNA* duplex (Lee et al. 2003; Tomari and Zamore 2005). From that

duplex, the mature miRNA is incorporated into the silencing complex. Here, we

identified an alternative pathway for miRNA biogenesis in which certain

debranched introns mimic the structural features of pre-miRNAs to enter the

miRNA-processing pathway without Drosha-mediated cleavage. We call these pre-

miRNAs/introns "mirtrons" and have identified 14 mirtrons in Drosophila

melanogaster and another four in Caenorhabditis elegans (including the

reclassification of mir-62). Some of these have been selectively maintained during

evolution with patterns of sequence conservation suggesting important regulatory

functions in the animal. The abundance of introns comparable in size to pre-

miRNAs appears to have created a context favourable for the emergence of

mirtrons in flies and nematodes, suggesting that other lineages with many similarly

sized introns probably also have mirtrons and that the mirtron pathway could have

provided an early avenue for the emergence of miRNAs before the advent of

Drosha.

While examining sequencing data of small RNAs from D. melanogaster (Ruby

2007), we observed clusters of small RNAs originating from the outer edges of an

annotated 56-nt intron (Fig. la). These sets of reads (each read representing an
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independently-sequenced cDNA) had properties similar to those observed previously for

miRNA/miRNA* duplexes (Ruby et al. 2006), in that each set had a more consistent 5'

than 3' terminus, and the two sets were complementary to each other, with the

dominantly abundant species of each set forming 2-nt 3' overhangs when paired to each

other. Moreover, the sequence and predicted secondary structure of the intron were

conserved in a pattern resembling that of pre-miRNAs (Lim et al. 2003) (Fig. lb, c). We

annotated this locus as mir-1003.

Despite these clearly miRNA-like properties, semblance to canonical miRNA

primary transcripts (pri-miRNAs) stopped abruptly at the borders of the intron. Pairing at

the base of the hairpin did not extend beyond the miRNA/miRNA* duplex, i.e. beyond

the splice sites. In place of extended pairing, which is needed for pri-miRNA cleavage

by Drosha (Han et al. 2006), the intron had conserved canonical splice sites (Fig. la),

leading to the model that this miRNA did not arise from a canonical miRNA biogenesis

pathway but instead arose from an alternative pathway in which splicing, rather than

Drosha, defined the pre-miRNA (Fig. Id). Consistent with this model, spliced lariats

linearized by the lariat debranching enzyme bear 5' monophosphates(Ruskin and Green

1985) and 3' hydroxyls (Padgett et al. 1984), the same moieties found in pre-miRNAs

(Hutvagner et al. 2001).

Thirteen additional pre-miRNAs/introns, termed mirtrons, were found in a search

of other loci with similar properties (mir-1004-1016, Table S1). The most abundant RNA

species from each of the 14 mirtrons, annotated as the mature miRNA, derived from the

3' arm of its hairpin. Such bias was consistent with the known 5' nucleotide biases of

miRNAs, which frequently begin with a U and rarely with a G (Lau et al. 2001). The
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near-ubiquitous intronic 5' G, together with other requirements at intron 5' ends (Lim and

Burge 2001), would place unfavourable constraints on miRNAs deriving from the 5' arm

of a mirtron, whereas the species from the 3' arm would have more freedom. As

expected, the species from the 3' arms, like canonical miRNAs, usually had a 5' U (12/14

mirtrons).

To test whether the small RNAs from mirtrons were functional miRNAs or

inactive degradation intermediates, we assessed the gene-silencing capacities of miR-

1003 and miR-1006 in Drosophila S2 cells. In animals, extensive complementarity leads

to cleavage of the target mRNA, but posttranscriptional repression is more commonly

mediated by less extensive complementary, primarily involving pairing to a 5' region of

the miRNA known as the miRNA seed (Bartel 2004). miR-1003 and miR-1006

repressed reporter genes with perfectly complementary sites, with the repression levels

approaching that observed for the let-7 miRNA and an analogous reporter (Fig. le). In

addition, both mirtronic miRNAs repressed reporter genes containing Drosophila UTR

fragments with seed-based matches typical of metazoan miRNA targets. Conservation of

the miR-1003 and miR-1006 seeds (Fig. Id, Table S1) suggested an in vivo role for such

mirtron-mediated repression; target predictions for conserved mirtronic miRNAs are

provided at targetscan.org.

Having established that mirtrons can direct miRNA-like gene repression, we

tested the dependence of mirtron processing on splicing and debranching. A mutant mir-

1003 with a substitution that impaired splicing (3' mut) failed to generate detectible pre-

or mature miR-1003 (Fig. 2a, b) and displayed significantly less silencing activity (Fig.

1 e). Mutations disrupting the 5' splice site (5' mut) also impaired splicing and miR-1003
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accumulation (Fig 2a, b). Coexpressing a mutant U1 snRNA (Ul-3G) that had

compensatory changes designed to restore splice site recognition(Lo et al. 1994) restored

splicing of mir-1003 5' mut (Fig. 2b). Rescuing splicing also restored the levels of pre-

and mature miR-1003 (Fig. 2b). These results demonstrated that splicing was required

for mirtron maturation and function, which contrasts with the splicing-independent

biogenesis of canonical miRNAs found within introns (Kim and Kim 2007).

We next used RNAi knockdown experiments to examine the trans-factor

requirements for miR-1003 and miR-1006 biogenesis in Drosophila cells. As predicted

by our model, in which mirtrons enter the miRNA biogenesis pathway after splicing and

debranching, targeting the lariat debranching enzyme reduced the amount of pre- and

mature mirtronic miRNAs without impeding canonical miRNA maturation (Fig. 2c, d).

For each mirtron, a probe to the 5' end of the intron (probe 1) detected both the pre-

miRNA hairpin and the accumulating lariat, whereas a probe to the 3' end of the intron

(probe 2) detected the pre-miRNA but failed to detect the lariat, presumably due to

overlap with the branch-point (Fig. Sla). Altered relative mobility on gels with different

polyacrylamide densities confirmed detection of the mirtron lariat (Fig. S b). The

debranching knockdown results, together with those of the splice-site mutations and

rescue, demonstrated that the intron lariat was an intermediate on the pathway of

mirtronic miRNA biogenesis.

Knockdown of other miRNA biogenesis factors further supported our model. As

expected if debranched mirtrons enter the later steps of the miRNA pathway rather than

the siRNA pathway (Tomari and Zamore 2005), knockdown of Dicer-1 or its partner,

Loquacious, increased the ratio of pre- to mature mirtronic miRNA, whereas knockdown
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of Dicer-2 or its partner, R2D2, did not (Fig. 2c, d). Knockdown of Drosha decreased

pre- and mature let-7 RNA accumulation with little effect on mature miR-1003 or miR-

1006 accumulation and a modest effect on mirtronic pre-miRNAs (Fig. 2c, d). The more

modest effect on mirtronic pre- and mature miRNAs supported the idea that mirtronic

pre-miRNAs are not Drosha cleavage products. The decrease of mirtronic pre-miRNA

would be explained if Drosha bound mirtronic pre-miRNAs, stabilized them from

degradation, and perhaps facilitated their loading into the nuclear export machinery. The

decrease could also reflect increased Dicer-1 accessibility in the Drosha knockdown due

to reduced substrate competition from endogenous pre-miRNAs. In this case,

simultaneous knockdown of Dicer-1 and Drosha would lead to a more substantial

accumulation of pre-miRNAs derived from mirtrons than from canonical miRNAs, as

was observed for pre-miR-1003 and pre-miR-1006 compared to let-7 pre-miRNA (Fig.

2c, d).

The distribution of intron lengths, which varies widely in different organims (Lim

and Burge 2001; Yandell et al. 2006), would influence the probability of new mirtrons

arising during evolution. The introns of Drosophila share a similar length distribution

with the annotated pre-miRNAs, producing a context particularly well suited to the

emergence to mirtrons (Fig. 3a, c). C. elegans also has a substantial number of pre-

miRNA-sized introns. Indeed, examination of prior miRNA annotations revealed that

mir-62, which produces a highly conserved nematode miRNA that was among the very

first to be cloned in animals (Lau et al. 2001; Lee and Ambros 2001), had mirtron-like

properties (Fig. 3b). Like the mirtrons of D. melanogaster, the base pairing capacity of

the sequence surrounding pre-miR-62 ended at the border of the host intron, and the most
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abundant miRNA 3' terminus corresponded to the 3' splice site (with the single read

whose 3' terminus extended into the 3' exon attributable to untemplated nucleotide

addition to the miRNA 3' end (Ruby et al. 2006)). A directed search of C. elegans small

RNA sequences (Ruby et al. 2006) revealed three more mirtrons, annotated here as mir-

1018-1020 (Table S2).

Even if only a very small portion of debranched introns can form secondary

structures resembling those of pre-miRNAs, the abundance of pre-miRNA-sized introns

in flies and nematodes would allow a large absolute number of candidate mirtrons to

emerge over evolutionary timescales. Whether they persist as functional mirtrons

depends on the selective advantage conferred to the host organism as a consequence of

their gene-repression activities. This model for mirtron emergence predicts that, at any

historical point, some introns will be processed as mirtrons that provide no advantage to

the organism but have yet to be eliminated by natural selection or neutral drift.

Accordingly, some but not all processed D. melanogaster mirtrons were significantly

more conserved in D. pseudoobscura than were most small introns, and the same trend

was observed for C. elegans mirtrons in C. briggsae, although their numbers were small

(Fig. 3d). The three most conserved D. melanogaster mirtrons (mir-1003/1006/1010)

gave rise to more reads than 27%, 16%, and 4% of the non-mirtronic miRNAs conserved

to D. pseudoobscura, respectively (Ruby et al. 2007), while the most conserved C.

elegans mirtron (mir-62) gave rise to more reads than 52% of the non-mirtronic miRNAs

conserved to C. briggsae (Ruby et al. 2006).

Compared to flies and nematodes, mammals have few pre-miRNA-sized introns

(Lim and Burge 2001; Yandell et al. 2006) (Fig. 3a), perhaps explaining why we found
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no mirtrons among the annotated mammalian miRNAs (Griffiths-Jones 2004).

Nonetheless, high-throughput sequencing of mammalian small RNAs might yet reveal

mirtrons. In plants, miRNA processing could similarly bypass one of the RNase III

cleavages, although plant mirtrons have not yet been identified (Bartel 2004; Griffiths-

Jones 2004). Moreover, lineages with long introns might have other types of intronic

miRNAs that bypass Drosha-mediated cleavage. This possibility was raised by mir-

1017, whose putative pre-miRNA 5' end, but not 3'end, matched the 5' splice site of its

host intron (Table Si). In contrast to true mirtrons, miRNAs of this type would depend

on a nuclease to cleave their extensive 3'overhangs, as observed for the U14 snRNA

derived from an intron of hsc70 (Leverette et al. 1992). This mechanism, together with

that of mirtron processing, would enable miRNAs to emerge in any organism with both

splicing and posttranscriptional RNA silencing, even those lacking the specialized RNase

III enzyme Drosha or its plant counterpart, DICER-LIKE 1 (Bartel 2004). In this

scenario, miRNAs might have emerged in ancient eukaryotes prior to the advent of

modem miRNA biogenesis pathways.

Methods

Computational methods. D. melanogaster small RNAs were from 2,075,098 high-

throughput pyrosequencing reads (Ruby 2007) and are available at the GEO. C. elegans

small RNA sequences were from reference (Ruby et al. 2006). Introns were defined

according to FlyBase v4.2 D. melanogaster gene annotations (Grumbling and Strelets

2006). C. elegans introns were defined using annotations and genomic sequence from

WormBase (release WS120) (Stein et al. 2001). Mus musculus introns were defined
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using NCBI RefSeq annotations (Pruitt et al. 2005) applied to the March 2005 release of

the mouse genome available through UCSC (mm6) (Karolchik et al. 2003). RNA

secondary structures were predicted using RNAfold (Hofacker et al. 1994). D.

melanogaster intron conservation was assessed based on an 9-species multiZ alignment

(Blanchette et al. 2004) of D. melanogaster, D. simulans, D. yakuba, D. ananassae, D.

pseudoobscura, D. virilis, D. mojavensis, Anopheles gambiae, and Apis mellifera

genomes, generated at UCSC (Karolchik et al. 2003). Percent nucleotide identity between

D. melanogaster and D. pseudoobscura introns was calculated as the number of identity

matches between the two orthologous introns in the multiZ alignment divided by the

length of the longer intron. Introns not aligned between those two species were not

tallied. C. elegans intron conservation was similarly determined using multiZ alignment

of the C. elegans and C. briggsae (WormBase cb25.agp8) (Stein et al. 2001) genomes

generated at UCSC (Karolchik et al. 2003). Pre-miRNA lengths were calculated using

miRBase v9.1 hairpin annotations (Griffiths-Jones 2004). Secondary structures were

generated using RNAfold (Hofacker et al. 1994), and the miRNA* position was inferred

based from the annotated miRNA, assuming 2-nt 3' overhangs. Pre-miRNA lengths were

the sum of the miRNA length, the miRNA* length, and the length of intervening

sequence.

Plasmids. Minigenes containing mir-1003 and mir-1006 and flanking exons were PCR

amplified from genomic DNA. Minigenes for mir-1006 and mir-1003 were cloned into

pMT-puro with the indicated sites to make expression plasmids pCJ19 and pCJ20,

respectively. let-7 was amplified from genomic DNA with primers 474 bp upstream and
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310 bp downstream of the let- 7 hairpin and cloned into pMT-puro to make pCJ24.

Similar minigenes replaced EGFP in p2032 (Brennecke et al. 2005) to give pCJ31 (mir-

1006), pCJ30 (mir-1003), or pCJ32 (let-7). Ula snRNA and Ula-3G snRNA expression

constructs were constructed essentially as described (Lo et al. 1994). Sequences of inserts

in pCJ19 (pMT-puro_mir-1006), pCJ20 (pMT-puro_mir-1003), pCJ24 (pMT-puro_let-7),

pCJ30 (p2032_mir-1003), pCJ31 (p2032_mir-1006), and pCJ32 (p2032_1et-7) are

provided (tableS3.FASTA). Quikchange site-directed mutagenesis (Stratagene, CA) was

used to make 3' splice site mutations with the indicated primers: mir-1003 3' mut

(CCTCTCACATTTACATATTCACGACGCCGTGAGCTGC and

GCAGCTCACGGCGTCGTGAATATGTAAATGTGAGAGG), and mir-1006 3' mut

(GGTACAATTTAAATTCGATTTCTTATTCATGCGTGCAATACCAGTTGATC and

GATCAACTGGTATTGCACGCATGAATAAGAAATCGAATTTAAATTGTACC).

Similarly, mir-1003 5' mut was made with the following mutagenic primers:

(GCTGCGCAGAACGTGGGCATCTGGATGTGGTTGGC and

GCCAACCACATCCAGATGCCCACGTTCTGCGCAGC;

CCTCTCACATTTACATGTTCACAGGCGCCGTGAG and

CTCACGGCGCCTGTGAACATGTAAATGTGAGAGG).

Luciferase-reporter inserts were made by annealing oligonucleotides with their

reverse complements, leaving overhangs for the indicated restriction sites (lowercase):

let-7-ps (gagctcACTATACAACCTACTACCTCAactagt), let-7-psm

(gagctcACTATACAACCTACAAGCACAactagt), miR-1003-ps

(gagctcCTGTGAATATGTAAATGTGAGAactagt), miR-1003-psm

(gagctcCTGTGAATATGTAAAAGAGTGAactagt), miR-1006-ps
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(gagctcCTATGAATAAGAAATCGAATTTAactagt), and miR-1006-psm

(gagctcCTATGAATAAGAAATCCATTATAactagt). Annealed oligos were ligated into

SacI/SpeI cleaved pIS2 (ref. (Lim et al. 2005)). These plasmids were linearized with

HindIII, polished with Klenow enzyme to create blunt ends, and digested with NotI to

excise the Renilla luciferase gene with the modified UTR from the remainder of pIS2.

The gel-purified Renilla gene fragment was then ligated into pMT-puro between EcoRV

and NotI sites for copper-induced expression in S2 cells.

Cell culture and RNAi. S2-SFM cells were adapted from S2 cells to grow in

Drosophila Serum Free Media (SFM) by passaging into increasing amounts of SFM (0%,

25%, 50%, 75%, 90%, 100%), then grown in SFM supplemented with 2 mM L-glutamine

at 250C in a humidified incubator. 5 gpg ofpCJ19 or pCJ20 were transfected into a 60

mm plate containing 2.5x10 6 S2 cells with FuGENE HD. Cells were grown for 3 days,

split 1:10, and selected for 3 weeks in 10 gpg/ml puromycin prior to experimentation, then

maintained in 5 gpg/ml puromycin.

Templates for dsRNA were amplified by PCR and extended to have convergent

T7 promoters. 400 pl PCR reactions were phenol/chloroform extracted, ethanol

precipitated, and used as template for 400 pl T7 transcriptions. Transcription reactions

were treated with 20U of DNase I for 15 minutes. The transcription products were then

extracted in phenol:chloroform (5:1 pH 5.3) and ethanol precipitated. RNA was

resuspended, desalted over Sephadex G-300, then heated to 750 C for 10 minutes and slow

cooled to room temperature. Yield and quality were assessed by agarose gel and UV

absorbance. The sense sequence of each dsRNA is listed in the supplemental FASTA file

(Table S3).
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S2 cells were soaked in 10pg/ml dsRNA in SFM. 500,000 cells were plated per

well of a 24 well plate and soaked for 2 days, split 1:4, soaked another 2 days, expanded

into 6 well plates, then soaked for three days. MicroRNA expression was induced by

addition of 500 giM CuSO4 to the growth media, and RNA harvested 12 hours later with

TRI reagent.

Northern blots were performed as described(Ruby et al. 2006), using the

following oligonucleotides (purchased from IDT) as probes for the indicated RNA

species ('+' precedes LNA bases): ACTATACAACCTACTACCTCA (let-7),

C+TGT+GAA+TAT+GTA+AAT+GTG+AGA (mir-1003 probe 1),

CCAACCACATCCAGATACCCACC (mir-1003 probe 2),

C+TAT+GAA+TAA+GAA+ATC+GAA+TTT+A (mir-1006 probe 1),

TTTACGCATTTCAATTTCAAACTCAC (mir-1006 probe 2),

TTGCGTGTCATCCTTGCGCAGG (U6).

RT-PCR. 500 ng mirtron plasmids were cotransfected with 500 ng either Ul or GFP

carrier plasmid using 3 pl FuGENE HD per well of a 12 well plate. 24 hours post-

transfection, mirtron expression was induced for 36 hours in the presence of 500 giM

CuSO4. Total RNA was extracted with TRI-reagent, and 4 jig were treated with DNase

using the DNA-free kit (Ambion, TX). 500 ng DNA-free RNA were reverse-transcribed

with oligo-dT(16) and Superscript III (Invitrogen, CA) per manufacturers instructions. 1

jl cDNA was used as a template for PCR using exonic primers

(ATAAAGCCGATAAGCGTGCG and CGTCCTTGTGCGTCTCCTCC) flanking mir-
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1003. After 24 cycles of PCR, 10 p.l of the reaction was resolved on an ethidium-stained

1.5% agarose gel and visualized by UV illumination.

Quantitative RT-PCR was performed on an ABI 7000 Real-Time PCR system

with ABI Power SYBR Green reagents. First-strand synthesis was performed as above.

The following primer pairs were used to amplify the specified mRNA:

Actin 5c (CCCATCTACGAGGGTTATGC, TTGATGTCACGGACGATTTC); Drosha

(TCACCATCCACGAGCTAGAC, ACGAAACGCGGAAAGAAGTG); Dicer-1

(GCCATTGAAGCATGACATTG, AAATCCCTCCTTGCCGATAG); Loquacious

(CGATTACCGAGTGGATACGG, CAAAGGAATCGGTGGAAAAG); Dicer-2

(GGCCACGAAACTTAAAGAGC, TGTGGAAAGGACACCATGAC); R2D2

(GACGGAGGGTACGTCTGTAAA, AGCAGTTGGATTTTACGCAAG); CG7942

(TTATCCCTGCCAGCACCTAC, CCTCTACATGAGGCGTTTCC).

Ct and baseline were detected by ABI 7000 SDS software. Actin5C was used to

calculate the ACt, and AACt was calculated by subtracting the ACt from that of the GFP

dsRNA treated samples; the relative abundance was calculated as 1 / (2^(AACt).

Geometric mean ± standard deviation are shown for three replicate wells.

Luciferase assays. S2-SFM cells were plated 300,000 cells/ml in 96 well plates. After

24 hours, cells were cotransfected with 96 ng microRNA-expressing plasmid, 4 ng

perfect-site reporter and 2 ng firefly reporter per well using FuGENE HD (3 p.l lipid per

p.g DNA). Expression of Renilla luciferase was induced 24 hours post-transfection with

500 p.M CuSO4. Luciferase assays were performed 24 hours post-induction with the

Dual-Glo Luciferase system (Promega, WI) on a Tecan Safire2 plate reader. The ratio of
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Renilla:firefly luciferase activity was measured for each well. To calculate fold

repression, the ratio of Renilla:firefly for reporters with mutant sites was divided by the

ratio of Renilla:firefly for reporters with wild-type sites. These values were also obtained

in the presence of a plasmid expressing a non-cognate miRNA, and fold repression for

the cognate miRNA was normalized to that of the non-cognate.

Figure legends

Figure 1. Introns that form pre-miRNAs. a, D. melanogaster mir-1003 with

corresponding reads from high-throughput sequencing (Ruby 2007). The miRNA (red),

miRNA* (blue) and splice sites (green lines) are indicated, with predicted secondary

structure shown in bracket notation (Hofacker et al. 1994). b, Conservation of mir-1003

across seven Drosophila species (Blanchette et al. 2004; Karolchik et al. 2003), coloured

as in (a), and also indicating consensus splice sites (Lim and Burge 2001) (green) and

nucleotides differing from D. melanogaster (grey). c, Predicted secondary structures of

representative debranched pre-miR-1003 orthologs, coloured as in (b). d, Model for

convergence of the canonical and mirtronic miRNA biogenesis pathways (see text). e,

MicroRNA regulation of luciferase reporters in S2 cells. Plotted is the ratio of repression

for wild-type versus mutated sites, normalized to that with the indicated non-cognate

miRNA. Bar colour represents the cotransfected miRNA expression plasmid; coloured

lines below indicate the cognate miRNA for the specified reporter. Error bars represent

the third largest and smallest values from 12 replicates (four independent experiments,

each with three transfections; * P <0.01, ** P <0.0001, Wilcoxon rank-sum test).
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Figure 2. Mirtrons are spliced as introns and diced as pre-miRNAs. a, Schematic of

splice-site mutations. b, Base pairing between the indicated Ula and mir-1003 RNAs

(left), and RT-PCR and Northern-blot analyses of mir-1003 variants from (a). c,

Northern blots analyzing let-7 and miR-1003 maturation in cells treated with double-

stranded RNAs (dsRNAs) corresponding to indicated genes. Shown are results from one

membrane, sequentially stripped and probed for let-7 RNA, pre-miR-1003/lariat (probe

1), pre-miR-1003/miR- 1003 (probe 2), and U6. Previously validated dsRNAs were

used(Dorner et al. 2006; Forstemann et al. 2005), except for debranching enzyme (DBR),

for which two unique dsRNAs were used. Knockdowns were confirmed by monitoring

mRNA level and protein function (Fig. S2). Quantification of band intensities is

provided (Table S3). * marks the lariat. d, Analysis of miR-1006 processing, as in (c).

Figure 3. Emergence and conservation of mirtrons in species with appropriately-sized

introns. a, Distributions of intron (orange) and pre-miRNA (green) lengths from the

indicated species. Introns and pre-miRNAs were binned by length. b, Intron and

associated reads of C. elegans miR-62 (Ruby et al. 2006), coloured as in Figure la.

Reads with untemplated nucleotides added at their 3' terminus are shown below. c,

Distributions of pre-miRNA (green) and mirtron (grey) lengths from D. melanogaster

and C. elegans. d, Conservation of all 40-90 nt introns (orange) versus mirtrons (grey)

from D. melanogaster (% identity shared with D. pseudoobscura) and C. elegans (%

identity shared with C. briggsae).
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Figure S1. Mirtrons accumulate as lariats after splicing and require debranching enzyme (Ldbr) for conversion
into functional pre-miRNAs. a, Left, hybridization of probel to miR-1 003 intron lariat or linear pre-miR-1003. Right,
stable hybridization of probe2 occurs only with linear pre-miR-1003, and is inhibited by the presence of the branch-point
adenosine in the lariat. b, Northern blotting was used to analyze miR-1003 maturation in a time course after induction of
mini-gene expression. Prior to induction, cells were soaked with either of two dsRNAs targeting Idbr (CG7942) or left
untreated. RNA was resolved on a denaturing 15% acrylamide gel. Under these conditions, the lariat runs slightly above
the pre-miRNA hairpin. In DBR dsRNA lanes, the major band detected by probel is absent when the blot is hybridized to
probe2, indicating the presence of a lariat in these samples. When separated on a 17% gel, the lariat runs significantly
higher (Fig. 2c). Changes in relative mobility in gels with different polyacrylamide densities are characteristic of non-linear
RNA species.
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abundance was measured using the AACt method, normalizing to actin 5c (ACt), and then to samples soaked in GFP dsRNA
(AACt). Values are reported as geometric mean ± s.d. (n=3). b, Analysis as in (a), using samples from Fig. 2d. c, Functional
analysis of dicer-2 and r2d2 knockdown by fluorescence microscopy. Cells stably expressing GFP were soaked in dsRNAs
targeting loquacious, dicer-2, or r2d2. After 4 days, dsRNA targeting GFP was added. Depletion of Dicer-2 or R2D2 reduces
the ability of GFP dsRNA to silence GFP. Depletion of Loquacious serves as a negative control. Functional efficacy of the
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Table S1

mir-1003
# reads:
Most abundant read:
Host gene:
Intron coordinates:

352
UCUCACAUUUACAUAUUCACAG

CG6695-RA, CG6695-RB
chr3R:20484326-20484382(+)

# reads
GUGGGUAUCUGGAUGUGGUUGGCUCUGGCGGUCCCUCUCACAUUUACAUAUUCACAG

GUGGGUAUCUGGAUGUGGUUG ...................................

GUGGGUAUCUGGAUGUGGUUGG ..................................

GUGGGUAUCUGGAUUGGUUC .............................

.................................. UCUCACAUUUACAUAUUCA ...

................................. UCUCACAUUUACAUAUUCAC . .

................................. UCUCACAUUUACAUAUUCACA.

................................. UCUCACAUUACAUAUUCACAG

.................................. CUCACAUUUACAUAUCACAG 1

D. melanogaster GTGGGTATC-TGGATGTGGTIGGCTCT ----- GGCGGTCCTCTCACATITACATATrCACAG

D. simulans GTGGGTATC- TGGATGTGGTTGGCTCT ---- GGCGGTCCTCTCACATTTACATATTCACAG

D. yakuba GTGGGTATC- TGATGTGGTGGCTCT- - GGCGGTCCTCTCACATTACATATTCACAG

D. ananassae GTGAGTATAGTGGATTGGGTGGCTCTTAGGCCGGTCCTCTCACATCTCCATATTCACAG

D. pseudoobscura GTGGGTATCGTGCTTGTGGGTGGCTCT - - - -TGGTCAGTCCTCTCACATCTCTATATTCACAG

D. virilis GTGAGTAAT-CAGTTGTGGGTGGCTrT- - - -TGAAAGCCCTCTCACATCTCITTATICACAG

D.mojavensis GTGAGTAAT-CAGTTGTGGGTGGCTCT ---- AGTGAAGCCCTCTCACATCTCTTTATTCACAG

mir-1004
# reads:
Most abundant read:
Host gene:
Intron coordinates:

50
UCUCACAUCACUUCCCUCACAG
CG31772-RA
chr2L:3767620-3767688(+)

# reads

GUUGGGGGACAUUGAUCUCGGAGACGGCGGUUUAACUGAUCCAUUCUCUCACAUCACUUCCCUCACAG

.............................................. UCUCACAUCACUUCCCUCACA.

............................................... UCUCACAUCACUUCCCUCACAG

# loci

1

1

D.melanogaster GT-TGGGGGACAT-----------------------------TGATCTCGGAG------ ACGGCGGTTTAACTGATCCAT- -TCTCTCACATC-ACT - -TCCC - -TCACAG

D. simulans GT-TGGGGGACAT-----------------------------TGATCTCGGAG - - ACGGCGGITAACIGATCCAT- -TCTCTCACATC-ACT - -- TCCC - - TCACAG

D. yakuba GT-TGGGGACAT ----------------------------- TGATCTCGGAG - - ACGGCGGTTAACATCCAT- -TCTCTCACATC-ACT- - TCCC - - TCACAG

D. ananassae GT-GAGATAACACGTCTAACCAACTGATATGAAACTACGAATGTTrITATCG --.-- CTGTCGATTCGAACGA --- --- TCTCTCATATA-ACCGTACCrA--------- TTACAG

D.pseudoobscura GTGTGGGATAC ----------------------------- TGATTTrAGAGAAAAAAAAAACCATTAACGTGAGGCTTCGTTCTCACATC-ATTTT-CCCC -- - TCACAG

D. virilis GT-TGGGGCACAT------ ------------ ----------- TATCTrCAAGAAACTCACAGCCAGCTCATTACTCAC- -TCTCTCCCT- - - TCTCTCCC -------- TCACAG

D.mojavensis GT-------T- -------AAT-----------------------------TGATC-------ACTCcta------tctctgtctctc--tttctctttctgactctctcccactctttATTGTAG

# loci
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Table S1

mir-1005
# reads:
Most abundant read:
Host gene:
Intron coordinates:

UCUGGAAUCUUUAAUUCGCAG
CG2969-RA CG2969-RB
chr2L:4343695-4343756(+)

# reads

GUGAGUUGAUCGAUUUCGAGGUUUUGGCACACGAAUAUAAUCUGGAAUCUUUAAUCGCAG

....................................... UCUGGAAUCUUAAUUCGCA.

........................................ UCGGAAUCUUAAUUCGCAG

D. melanogaster GTGAGT ---- -- TGATCGATITCGAGGTTTTGGCA--------------- ---------- CACGA ------ ATATAATCTGGAATCTITAA -- - TTCGCAG

D. simulans GTGAGT ------- TGATCGATTTCGAGTTTTGGC------------ -------- ----- CACAA------- ATATAATCTGGAATCTTTAA ------ TCGCAG

D. yakuba GTGAGT - -TGATCGATTTCGAGGTIGCA - ------------------------ GCCAA - - AAATAATCITGAATCT -A -- TTCGCAG

D. ananassae GTAAGT ------ -ACATIGTGGATATITTTTATAC ------------ ---------------- --------- -TACAGCCTAATCTATACTATAITrG

D.pseudoobscura GTAAGTG ----- TCCATATCCTCGAGGCTC a ctgcaatgcact actgcaatgaccgcaatgcTGACGTATTAITATGTTCTCCGA ------ TCCCCAG

D. virilis GTAAGGGCTGA--ATTTAAAATTG-AATT------------------------------- AACAAGTATACAACAATATTATAATCC- ----------- CACACAG

D. mojavensis GTAAGCATAGAGCAGATCAGATTTATGATTT ------------------ ------------ CACATATCTCAATACTG CITCGATCC --- -------- TCCACAG

mir-1006
# reads:
Most abundant read:
Host gene:
Intron coordinates:

57
UAAAUUCGAUUUCUUAUUCAUAG
CG17332-RA CG17332-RB CG17332-RD
chr2L: 16720723-16720787(-)

# reads
GUGAGUUUGAAAUUGAAAUGCGUAAAUUGUUUGGUACAAUUUAAAUUCGAUUUCUUAUUCAUAG

((((((.. (((((((((.....((((((((......)))))))) ..)))))))))..))))))AAAUUCGAUUCUUAUUCA..
.......................................... AAAUUCGAUUUCUUAUUCA..

....................................... UAAAUUCGAUUUCUUAUUCAUA.

......................................... UAAAUUCGAU[K TMUUCAUA.

....................................... UAAAUUCGAUUUCUUAUUCAUAG

........................................... AAAUUCGAUUUCUUAUUCAUAG

D. melanogaster GTGAGTTAAATTGAATGCGTAAATTGTTTGGTACAATTAAATTCGATTCTTATTCATAG

D. simulans GTGAGTIG•ATGCGTAAATTGTTTGGTACAATAAATTCGATCTTATTCATAG

D. yakuba GTGAGTTTAATTATIGAAATGCGTAAATTT TACAATIAAATTCGATTTCTTATTCATAG

D. ananassae GTGAGTIGATTGAAATGCGTAAATTGTT TACAATITAAATTCGATTTCTATCATAG

D.pseudoobscura GTGAGTTIGA AAGAATGTA ATA TGTTTGTGCCAATTTAAATTCGATTTCITATTCATAG

D. virilis GTGAGGAAATITATGTAAAGTTTACAATITAAA TTTCTATTCATAG

D.mojavensis GTGAGTI GAAATGTGTAAATTTTTAAATTAAATTCGATTTCTTATTCATAG

#loci
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Table Si

mir-1 007
# reads:
Most abundant read:
Host gene:
Intron coordinates:

9
UAAGCUCAAUUAACUGUUUGCA
CG1718-RA
chrX:21107060-21107125(-)

# reads

GUAAGCAGUGUUUGAACUCGAUCUUGGUUCUUGGACUCUUGAUAAGCUCAAUUAACUGUUUGCAG

....................................... UAAGCUCAAUUAACUGUUUGC..

..................................... UAAGCUCAAUUAACUGUUUGCA.

........................................ UAAGCUCAAUUAACUGUUGCAG

D. melanogaster

D. simulans

D.yakuba

D. ananassae

D.pseudoobscura

D. virilis

D. mojavensis

GTAAGCAGTGTITGAACTCGATC- -TTGGTTC -- -TTG- - -GACTCT ------ TGATAAGCTCAATTAACrGTITGCAG

GTAAGCAGTGTTIGAACrCGATC- -T TTC- - - -TTG - -GACTCT ------ TGATAAGCTCAATTAACTGTTTGCAG

GTAAGCAGTGTICTGAACTCGATC- -TAGGATC-- -- TTG- - -GACTCT------- TGATAAGCTCAATTAACrGTTTGCAG

GTAAGCAGTGTTTGAACTCGATC- -TTGGAAT -- ---- -AGCTCC------- CGATAAGCTCAATTAACTGTITGCAG

GTAAGCAGCGATTGA- - TCAATCaattgaatc - - - --- -gaatcgaatcgaatGATAAACTCCATTAACTG CAG

GTAAGCAGTGCTTGAGCTTATTC- -TCTGGCTTCATTTGACCATTITC ---- TGATAAGCTCAATTAACTGT1GCAG

GTAAGCAGTGTITGAACTAAATC- -TCTGGCT- -ACTTGGCCGTATAT ----- -TGATAAGCTCAACTAACTGTTTGCAG

mir-1008
# reads:
Most abundant read:
Host gene:
Intron coordinates:

46
UCACAGCUUUUUGUGUUUACA
CG18004-RA CG18004-RB
chr2R:6401439-6401496(+)

# reads
GUAAAUAUCUAAAGUUGAACUUGGCCAAUGGCAAGUCACAGCUUUUUGUGUUUACAG

GUAAAUAUCUAAAGUUGAACU ....................................

................................. UCACAGCUUUGUGU ......

................................ UCACAGCUUUUUGUGUUU ....

......... ....................... UCACAGCUUUGUGUUUAC..

......... ....................... UCACAGCU GUGUUUACA.

................................ UCACAGCUUUUUGUGUUUACAG

..................................... CAGCUUUUUGUGUUUACAG

D.melanogaster

D.simulans

D. yakuba

D.ananassae

D.pseudoobscura

D. virilis

D.mojavensis

GTAAATAT- - - CTAAAGTTGAAC- -- TITGGCCAATGGCAAGTCACA - - -GCTTTI"IGTGTITACAG

GTAAATAT- - - CTAAAGTTGAAC- -- TTGGCCAACGGCAAGTCACA - --GCTITTTGTGTACAG

GTAAATAT- - - CTAAAGTGAAC- - -TGGCCAACGGCAAGTCACA - - GCTITIIGTGTTTACAG

GTAAGGAA- - - CTCAATITTTAC- -ATTAAACCGAAGCAATTTAAC --- -ACGITTCTTATTT- CAG

GTAAGGGATCGGCGAGAGTITTTCCCACGGAATATCATTATATTATA - - TTGTTATGTGCCTGCAG

GTAAGTGA - - -TGAT- -GCGTCC- - -ATTGGGAATATCATTTAATT---------- TGTGTTGGTAG

GTAAGTAG - - -TAATAGGTGTTT- - -GTAGACATATTCAGTTAATITCGCAITTGTGTATTGGCAG

#loci

1

1

loci

1

1

1

1

1
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Table S1

mir-1009
# reads: 14
Most abundant read: UCUCAAAAAAUUGUUACAUUUCAG
Host gene: CG3860-RA
Intron coordinates: chr2R: 19500653-19500714(-)

# reads # loci

GUAAGUGUAAGACUUCUUGAGUUACCCGCGAUGAGUAUCUCAAAAAUUGUUACAUUUCAG

.UAAGUGAAG ACUUUCUUGAGU ........................................ 1 1

.......... .......................... UCUCAAAAAUUGUUACAUUUCA. 3 1

.......... ........................... UCUCAAAAAUUGUUACAUUCAG 10 1

D.melanogaster GTAAGTGTAAGACTTTCT ----- TGAGTT - - -ACCCGCGATGAGTATCTCAAAAATTGT- -TACATTTCAG

D. simulans GTAAGTGTAAGACTITCT ---- TGAGTT - - -ACCCGCGATGAGTATCTCAAAAATTGT- -TACATTTCAG

D. yakuba GTAAGTGTAAGACTTTCT - -TGAT- ---- -ACCCGCGAGGAGTATCTCAAAAATTAT- -TACATTICAG

D. ananassae GTAAGTTITGAATACTTC- --- TACTCT - --ATCTTGGA-ATGTCCTCATAATTGTC- -CATCITCTAG

D.pseudoobscura GTAAGTTCGAGAATCCCAAACACATAAGTT - - - CTITTTA --- ACATCCAAA- -- -- -TATTITGTAG

D. mojavensis GTAAGGACCAA- - -TTGG -- TAAAGTGAGAAAT GAAITA TGAAATITATACTrCGTGTTTAG

mir-lOlO
# reads: 193
Most abundant read: UUUCACCUAUCGUUCCAUUUGCAG
Host gene: CG31163-RA CG31163-RB CG31163-RC
Intron coordinates: chr3R: 18118600-18118671(+)

.reads # loci

GUAAGUGGUGUAGAUGAAACAAAUUUACCAACAAUUUUGUUGGAUUGUUUCACCUAUCGUUCCAUUUGCAG

GUAAGUGGUGUAGAUGA((((. ((((((((...............((((((....)))))) .)))))))).)))) ........... )))))))) .. 1 1
GUAAGUGGUGUAGAUGAAA ...................................................... 2 1
GUAAGUGGUGUAGAUGAAAC ................................................... 2 1
GUAAGUGGUGUAGAUGAAAC ..................................................... 3 1

GUAAGUGGUGUAGAUGAAACA .................................................. 30 1

GUAAGUGGUGUAGAU....AAACAA.... ............... ......................... 1 1

.......... ..................................... UUUCACCUAUCGUCCAUGC. 39 1

................................... ............ UUUCACCUAUCGUUCCAUUUGC.. 38 1

............................................... UUUCACCUAUCGUUCCAUUUGCAG 64 1

................................................ UUCACCUAUCGUUCCAUUGC. . 3 1

................................................ UUCACCUAUCGUUCCAUUGCA. 1 1

................................................ UUCACCUAUCGUUCCAUUGCAG 1 1

D.melanogaster GTAAGTGGTGTAGATGAAACAAATTTACCAAC-AAT- -- -TTGTTGGATTITCACCTATCGTTCCATT~GCAG

D. simulans GTAAGTGGTGTAGATUAAACAAATACCAAC-AATA- TITTGITGGATIGTTCACCTATCGTTCCA G

D. yakuba GTAAGTGGTGTAGATGAAACAAATITACCAAC-AATATTTT TTGGATTGTTTCACCTATCGTTCCATIGCAG

D. ananassae GTAAGTGGTGTAGATGAAACAAATITACCAAC-AATA- TTGTTGGATTGTCACCTATCGTTCCATITGCAG

D.pseudoobscura GTAAGTGGTGTAGATCAAACAAATTAACCAAC-CITT-ATGTGGATTGTITCACCTATCGTTCCATITGCAG

D. virilis GTAAGTGGTGTAGATGAAACAAATTTCACAACAAAT- - TTTTTGTIGGATTGTTTCACCTATCGTTCCATITGCAG

D. mojavensis GTAAGTGGTGTAGATGAAACAAATTTCACAAC-AAT- - TTTI GATGT-GTTCACCTATCGTTCCATTTGCAG
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Table S1

mir-1011
# reads:
Most abundant read:
Host gene:
Intron coordinates:

2
UUAUUGGUUCAAAUCGCUCGCAG
CG17274-RA CG17274-RB
chr3R: 16679026-1 6679080(-)

Sreads

GUGAGUUUUUGAGCCAGGAAUAUAGUUCUUAUUAUUGGUUCAAAUCGCUCGCAG

............... ................ UUAUUGGUUCAAAUCGCUCGCAG

D. melanogaster GTGAGTTTTTGAGCCAGG ---- AATATAGTT ------ - CTTAT -- -- TAT-TGGTTCAAATCGCTCGCAG

D. simulans GTGAGTTTTTGAGCCAGG -.--- AATATAGTT ---.---- CTTAT -.-- TAT- TGGTTCAAATCGCTCGCAG

D. yakuba GTGAGTTTTTGAGCCAGG -.--- AATATAATT -------- CTTAT ---- TAT- TGGTTCAAATCGCTCGCAG

D. ananassae GTGAGTCTTTGAACCAGG- ---- AATATAATT ------- TGTAT - -ATAT-TGGTTCAAATCGCTCGTAG

D. pseudoobscura GTGAGATTTTGAATCTAATATATAATATAATC- ------- CGTACGTGTATATATGGTTCAAATTACTCGTAG

D. virilis GTGAGTCATTGAACCAGG ---- AATATATGTATGTAATTCTTAT --- -ATAT- TGGTTCAAATTTCTCGCAG

D.mojavensis GTGAGTCTTTGAGCCAGG. ---- AATATATGTrCAT --- CTTAT ---- TAT- TGGTTCAAATCTCTCGTAG

mir-1012
# reads:
Most abundant read:
Host gene:
Intron coordinates:

101
UUAGUCAAAGAUUTUUCCCCAUAG
CG31072-RA CG31072-RB
chr3R:22687070-22687129(-)

# reads

GUGGGUAGAACUUUGAUUAAUAUUGCUUGAAAAAUAUAGUCAAAGAUUUUCCCCAUAG

GUGGGUAGAACUUUGAUUA ........................................

GUGGGUAGAACUUUGAUUAA .......................................

GUGGGUAGAACUUUGAUUAAU ......................................

GUGGGUAGAACUUUGAUUAAUA.....................................

GUGGGUAGAACUUUGAUUAAUAU ....................................

................................. UUAGUCAAAGAUUUUCCCCAUA.

................................. UUAGUCAAAGAUUUUCCCCAUAG

D.melanogaster

D.simulans

D. yakuba

D.ananassae

D.pseudoobscura

D. virilis

D. mojavensis

GTGGGTAGAACTTTGATTAAT-----------------------ATTGCTTGAAAAAT - - ATTAGTCAA --- -AGATTTT-C------ CCCATAG

GTGGGTAGAACTTTGATTAAT-----------------------ATTGCTTGAGAA-T- - ATTAGTCAA ---- AGATTTT-C - - - -CCCATAG

GTGGGTAGAACTTTGATTAAT --- ATTGCTTGCAAGAT- - - ATTAGTCAA ---- AGGTTTTTC ------ CCCATAG

GTAGGT - TTCAACCAAA ----------------------- TTTCCTTTGAGAGT -------- TCAGTTAACTTTATATATT-C ------ TTTAG

GTGGGTAGT-CTCTCATATAT ----------------------- AGTTATAAAAGAACGAACACCAGTGGTTAA-GCAATGCATT-T -- --- -CTTGTAG

GT--------- ACGGATTGTTTATTTA-----------------AATGCTTTATATAT -------- TTATCTAT -- AAGCTAT-CTTTTTGTTTGCAG

GTGTGTAAA-TATGGATTATT-ATTTATAAATTATCGAAAACTTAACTTCTAATGTTT -------- TTATATTT -- -ATATTTT-CAACATACTCTCAG

#loci

loci

1

1
1
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Table S1

mir-1013
# reads:
Most abundant read:
Host gene:
Intron coordinates:

17
AUAAAAGUAUGCCGAACUCG

CG12072-RA
chr3R:26617357-26617418(-)

# reads

GUGAGUUCGUACACUUAAUUAAUAGGAUCGGCCGUUAAUAAAAGUAUGCCGAACUCGCAG

............... ..... UAAUAGGAUCGCCGUUAAU.....................

...................................... AUAAAAGUAUGCCGAACUCG...

...................................... AUAAAAGUAUGCCGAACUCGC. .

...................................... .AUAAAAGUAUGCCGAACUCGCA.

...................................... AUAAAAGUAUGCCGAACUCGCAG

....................................... .UAAAAGUAUGCCGAACUCGCAG

# loci

1

1

1

1

1

D. melanogaster GTGAGTT------ TCGTACACTTAATAATAGGATCGGCCGTTAATAAAGATGCC - -GAACTCGCAG

D. simulans GTGAGTT------ TCGTACACTTAATTAATAGGATCGGCCGTTAATAAAAGTATCC- - -GAACTCGCAG

D. yakuba GTGAGTT- ----- TCGTACACTTAATTAATTGGGACGGCCGTTAATAAAAGTATGCC-- -GAACTCGCAG

D. ananassae GTAATCT----T T TAATTATCGTGAGTTGGCATCAATGATTGT -------- TATCTTCCAG

D.pseudoobscura GTAAGTCCATGAATTGCATCCCCCTITGAT ---- TATTCTITAATCTGGAAATCCCTGTGATCCCATAG

mir-1014
# reads:
Most abundant read:
Host gene:
Intron coordinates:

3
AAAAUUCAUUUIUCAUUUGCAG
CG2196-RA
chr3R:27579245-27579313(-)

# reads

GUAUAAUGGAAAUAGAUUUUAAUCGCAGGCGCGUCAGUGGUUGAAUUAAAAUUCAUUUCAUUGCAG

...................... ........................ UAAAAU CAUUUUCAUUGCAG

.............................................. AAAAUUCAUUUUCAUUGCAG

D.melanogaster GTATAATGGAAATAGATTTTAATCGCAGGCGCGTCAGTTTGAATTAAAATTCATTTTCTTTGCAG

D. simulans GTATAATGGAAATAGATTAATCGCTGGCGCGTCAG•GTGGTITAAAATTCAT=CATTTGCAG

D.yakuba GTATAATGAATAGATITGAATCGCAGGCGCGTCAGTGGTTGAATTAAAATCATTCATTTGCAG

D.ananassae GTATAATGAAAATTGATTTTAATCACACGGATCGGAGTGGCAAAATTAAAATTCATTCATTTGCAG

D.pseudoobscura GTACAATGGAAATAGATTTTAATCGGGTITCGTTAAAATTCATTTCATTACAG

# loci

1

1
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Table S1

mir-l015
# reads:
Most abundant read: UCCUGGGACAUCUCUCUUGCAG
Host gene: CG6432-RA
Intron coordinates: chr3R:20164953-20165017(+)

GUGAGUGAUGCUCCAGUUAGCUUGGCUGGAGLAGGAUUUAAGUCCU•GGACAUCUCUCUUGCAG

(. (((.((({. (((((... (((((( ............ )))))).)).))))) ..)).))) .)..
GUGAGUGAUGCUCCAGUUAGCUU ........................................

......................................... UC ACAUCU U U GCA

.......................................... UCC G GACAUCUCUCUUGCAG

# reads # loci

D.melanogaster GTGAGTGATGCTCCAGTCAGCITGGC-TGAGTGAGGATITA-------AGTCCTGGGAC-------AT-------CTCTCTGCAG

D.simulans GAGATGCTCCAGTTAGCTIC-TGAGTGAGGATA ------- AGTCCTGGGAC-------AT------- CTCCTIGCAG

D. yakuba GTGAGTGATGCTCCAGATAGCTITAC-TGGTGAGGATrTA ------ AGTCCTGGGAC------- AT- -- --- CCTCTIGCAG

D. virilis GTAAGT - -------- ATTAC-TTGATAACCGTTAAACAAATC AACCACTCTATAACTATCATCTAAACAG

D.mojavensis GTAAGTrTC -- ---- ATGAA ATGTTCATGAATTTITATCCAAGTAATrTCrAC- - - GTTGT ---- CITCTTAACAG

mir-1016
# reads:
Most abundant read:
Host gene:
Intron coordinates:

2
UUCACCUCUCUCCAUACUUAG

CG8479-RA CG8479-RB
chr2R:9747992-9748050(-)

# reads #loci
GUtAAGUAUAGAGA AGAUUGU UAAAUUCCAAAGUUCACCUCUCUCCAUACUUAG

.. . UUCACCUCUCUCCAUACUUAG

D. melanogaster

D. simulans

D.yakuba

GTAAGTATAGAGAGGAT- -GrGATTGGTAAAT -- - TCCAAAGTTCACCTCCCATACTTA - -- G

GTAAGTACAGAGAIGAT- -GTAATGCGTAAAT ---- TCCAAAGTTCACCTCTCTCCATACTA - -- G
GTAAGTATAGAGGGAT- -GTGAGGTAAAT - - TCCAAAGTCACCTCTCTCCATACTA- -- G

D.ananassae GTGAGTAC=ITAATAT- -A-AATCCATAAAT---------CAAAACTCACTT1T-TCCA-ACTTA ----------- G

D.pseudoobscura GTGAGTACACAAITCAA- -TTCCTCGGCAAGG-CTATCGTCTGAAACTAATTTCCCTTCA- -CTTATCCCTGCCCITCAG

D.virilis GTAAGTAGCAGGTGC ---- TGAGTGCATGATT----GTCTCrATATCTGATTATCTI --- CA-------------G

D.mojavensis GTAAGTAGAGCACC CATTTCCAGTACCCAACTATrCGTTACTATTCITACAATITTI- - - -TA- -- G

mir-1017
# reads:
Most abundant read:

Host gene:
Intron coordinates:

GAAAGCUCUACCCAAACUCAUCC

CG6844-RA CG6844-RB

chr3R:20314333-20314502(+)

GU •UUCUAAAAC UCUCUCUACC CAUCCUCAUCCCUAUA GGG
( M(((((( ( (((( (( ((.. .(( .. ...... )) .. (( .. .... .... ( ( .... .(( .. .. - )) ......... . .. ..... ) . . ...) . . ) .. .. .

.. .. ......... .. ..... .... UCCCA UCG C m ..... ..... .. ..... ..... .. ..... ..... .. ..... ..... ... ..... .. ..... ....... .... .............................................................

............................................ CGAAAGCUCUACCCAAACUCAUC C ....................................................................................................

............................................ C-AAAC-UCLUCCCAACAUC ... . ......................................................

............................................. COAAAGCUC UAC CCAAACUCAU .................................... .................................................................

........... ... - ..... ... ........... .. GAAACCUCUACCCAAACUCAUC .........................................................
.. .. ... .. G UCUCC ...................... . UCACCCAA.CAUC. ................................................

.............. C.... .. c a........ .............. GAA CU A CCCAAACUCAUCCC .........................................

.................................... ... .. G. AAA CUC CACCA CUCA UC CCC. .................. ..........................

C Ce , CC.CCC, G'•,CCCC rcCCCCC r.C - -- - - --C-TCCCC ,CC . ------------- - -. -----C-C-----•--CC c . . .... ..- --C- - --.... -CCCCcC C C .. . CC 'c C C c CC C .. Cc... .. ----- C\ 1 0 G Gr10----- - . - - - T' - - -T
D ... ..... ------- ------- -------- - - --- - -- -- --- - -- --- - - -- - ----- -
D.P - - -- T - - A7 - - - = - ------ ------ ------- ------ - -I ------- - -- ---- ----

O·~.-------------------- ---------------- -------mi l•.o ,,, 'rmr•e~~err ~ r...TC•T CC,•....:•,.z-•a••eerr~~c ATC !I.A ........................... ee--rrrý• e•• -- ; -t ý-t ýTt t• .. q..... .. ....... .Ae • • T ... •.ar.•,•TC=•.. C•--•••......... , -

10
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mir-62
# reads:
Most abundant read:
Host gene:
Intron coordinates:

1071
UGAUAUGUAAUCUAGCUUACAG
T07C5.1b T07C5.lc
chrX:12692524-12692582(+)

reads

GUGAGUUAGAUCUCAUAUCCUUCCGCAAAAUGGAAAUGAUAUGUAAUCUAGCUUACAG

(((((((((((.. ((((((. (((((.....))))) ..)))))).A.)))))))))))..GAUAUGUAAUCUAGCUUACAG
.................................. AUGAUAUGUAAUCUAGCUUACAG

................................... UGAAUGUUCUGAC.

.................................. UGAUAUGUAAUCUAGCUACA.

.................................. UGAUAUGUAAUCUAGCUACAG

....... ...................... UAUGUAAUCUAGCUUACAG

C.elegans GTGAGTTAGATCTCATATCCTTCCGCAAAATGGAAATGATATGTAATCTAGCTTACAG

C.briggsae GTGGGTTAGATCCCATATCCTTCCGCTTGATGGAAATGATATGTAATCTAGCITACAG

mir-1018
# reads:
Most abundant read:
Host gene:
Intron coordinates:

2
AGAGAGAUCAUUGGACUUACAG
Y59E1B.1
chrX:1879451-1879507(+)

# reads
GUAAGUUCAUGAUUUCUCCCAUAUAUUUUUCAUGAGAGAUCAUUGGACUUACAG

.................................. AGAGAGAUCAUUGGACUUACAG

mir-1 019
# reads:
Most abundant read:
Host gene:
Intron coordinates:

2
GUGAGCAUUGUUCGAGUUUCAUUU
M04C9.5
chrl:9369650-9369719(+)

# reads
GUGAGCAtU AG CGAGUUUCA AUUAtUA CUGUAAUUCCACAUUG CCAG

.. (((((. (((..(((((. (((((((((...........))))))) .)).))))) .))) .))))).....
GUGAGCAUUGUUCGAGUUUCAUUU .............................................

........................................... CUGUAAUUCCACAGC CCAG

C. elegans GTGAGCATTGTrCG-AGTTTCatttttaataaaatttatttaaaaaClGTAATTCCACATTGCTTTCCAG

C.briggsae GTTTGCATTrCTrGAAGTGCACAGT ------------------- CTATAACGTCGCA - - -GTTCCAG

mir-1020
# reads:
Most abundant read:
Host gene:
Intron coordinates:

2
GUAAGUGUUACAGAAUAAUCU
T16G12.1
chrIll: 10047630-10047700(-)

# reads # loci

GUAAGUGUUACAGAALUAAUCUUAGACAAAACAACUAAAAUUAAUGAAAAAUUAUUCUGUGACACUUUCAG

(.((((((((((((((((( ..............................))))))))))))))))) .)..
GUAAGUGUUACAGAUUACAGAAUAAUCU .................................................

......... ..................................... AUUAUUCUGUGACACUUUCAG

C. elegans GTAAGTGTTACAGAATAATCTTAGACAAAACAACTAAAATTAATGAAAAATTATCTGTGACACTCAG

C.briggsae GTGAGGAACACATACAAATGTrTGGAT ----------------------- TTTATTC - - -GAATrICAG

#loci

1

1

1

1
1

2

2

58

1008

1

# loci

#loci

1

1
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Table S3. Quantification of signals from RNA blots of Figure 2c and 2d. Signals were first normalized to
that of the loading control (U6), then to that of the control dsRNA (GFP). When signal was below detection
(b.d.), the upper bound of the value, based on the normalized detection limit, is shown for relevant lanes.

Fig. 2c Quantification
dsRNA

drosha +GFP drosha dicer-1 loquacious dicer-2 r2d2 dicer-h Idbr(1) Idbr(2)

pre-let-7 miRNA 1.0 0.03 3.54 0.90 0.51 0.60 0.14 0.48 0.91
let-7 miRNA 1.0 0.45 1.36 1.58 1.37 2.02 0.23 1.90 3.80

pre-miR-1003 probel 1.0 0.12 0.57 0.65 0.32 0.29 0.35 0.06 0.08
pre-miR-1003 lariat b.d. b.d. b.d. b.d. b.d. b.d. b.d. 0.36 0.57

pre-miR-1003 probe2 1.0 0.10 0.51 0.68 0.36 0.32 0.31 0.03 0.03
miR-1003 1.0 0.92 0.08 0.09 0.81 0.31 0.10 b.d. (<.04) b.d. (<.04)

Fig. 2d Quantification
dsRNA

drosha +GFP drosha dicer-I loquacious dicer-2 r2d2 dicer-1 Idbr(1)

pre-let-7 miRNA 1.0 b.d. (<.05) 4.56 2.19 1.15 1.51 0.15 1.05
let-7 miRNA 1.0 0.17 0.85 1.61 1.21 0.41 0.21 0.91

pre-miR-1006 probel 1.0 0.36 1.37 1.33 0.92 0.73 1.15 0.46
pre-miR-1006 lariat b.d. b.d. b.d. b.d. b.d. b.d. b.d. 0.18

pre-miR-1006 probe2 1.0 0.34 1.37 1.41 1.10 0.86 1.28 0.53
miR-1006 1.0 0.73 0.14 0.15 0.56 0.31 0.37 0.37
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>pCJ19 (pMT-puro_miR-1006)
actagtAACAACGAATACATCCAGTCGGTGGCCCGGTGCCTGCAGATGATGCTCCGTGTGGATGAGTATCGATTTGCCTTTGTGGGAGTCGACGGAATCAGCACTCTGATCCGTATCTTGTCGAC
CCGTGTCAACTTCCAGGTGAGTTTGAAATTGAAATGCGTAAATTGTTTGGTACAATTTAAATTCGATTTCTTATTCATAGGTGCAATACCAGTTGATCTTTTGCCTGTGGGTGCTGACCTTCAAT
CCCCTGCTGGCCGCCAAGATGAATAAGTTCAGCGTGATCCCCATCCTGGCTGATATCCTCAGCGATTGTGCCAAGGAGAAGGTGACACGCATTATCCTCGCGGTCTTCCGCAATCTGATCGAGAA
GCCGGAGGATTCATCGGTGGCCAAGGACCATTGCATCGCCATGGTCCAGTGCAAGGTGCTGAAGCAGCTATCCATCCTGGAGCAGCGTCGCTTCGACGACGAGGACATTACCGCCGACGTAGAGT
ACCTGAGCGAGAAGCTCCAGAATTCGGTGCAAGACTTGAGCTCCTTTGATGAGTACGCCACAGAGGTGCGCAGCGGTCGCTTGGAATGGTCGCCTGTGCACAAGTCGGCCAAGTTCTGGCGCGAG
AATGCCCAGCGCCTAAACGAAAAGAACTACGAGTTGCTGCGCATCCTCGTCCACCTCCTGGAAACCTCAAAAGATGCCATCATCCTTTCCGTCGCCTGCTTCGACATCGGGGAGTATGTGCGCCA
CTATCCCCGCGGCAAGCAgcggccgc

>pCJ20 (pMT-puro_miR-1003)
actagtATAAAGCCGATAAGCGTGCGGAAATCGAAAAGACCGAGCGTGAACGACTGCAACAGCAGGAACGCGAGGATGAGATGCGCGAACTGGCCCTCAAGCTGCGCAGAAGGTGGGTATCTGGA
TGTGGTTGGCTCTGGCGGTCCTCTCACATTTACATATTCACAGGCGCCGTGAGCTGCGTCACAAATATGGAACGCCCTCGAGTGGAAAGCTCTCGGACAGCGATGCCGAATCTGTGGCATCGGAA
AGCCAGCTGGCAAAGTCGTCGACGCGTCGCAGTCGCAGCAGATCGGAGAGTCGTAGGCGGTCGCCACCGCCGGAAACACAGCACAGCAGACGGAGCAGCAGCCGAACGGAAAGGAGGAGACGCAC
AAGGACGgcggccgc

>pCJ24 (pMT-puro_let-7)
actagtGACAAATGGCGGAGTAAGGATAAAAAGTCGAGTCAAAAACGGATTAATACGAAATAAATAACTACTAAAATAACTAAATAGAAGATCAACAGCGATCCATTAAACAAACTATAACAATA
ATATGTAATATGAAAACCATCGATAATAAATCGTAAAACTAAATTAAACTAAATATCCAACGTCATATAAATACAACTCAAAACGTCATAATAAGAAAACTGATATGGTATAACAAACTCAAGTT
TAAGTTTGAATAACACAACAAAGTAATTTACTTAAATACTCATCTTATGTATATTTTATTTAACATTCAAATGTAACCTTCAAAAGCATTTTTAATATGATTTCTCCGTATTATTTTTCTTCTTG
TTTGCCATCATCGTTTCAACCAAAAACCGAACCAATGATATCCAGAAGATCCTTTAAATACCAAACCACCTAGCAAAAAGGACTACACCAAGGACCTTTTTCTCTCTGGCAAATTGAGGTAGTAG
GTTGTATAGTAGTAATTACACATCATACTATACAATGTGCTAGCTTTCTTTGCTTGACTACAAGCCGCATTTGATAAAAGAATCCCAATCGAACTGCACCACTTAATAAACCCAATCCCCAGCCA
TACAAAAGTTGGTGGTGCAACAA ATTTTGATTGTGGACAACAAAGAAAGTGTTCTGAGCCAAACTATTGTTAAATATCATTACGAATGCCAAAGTATGTAAATGCAACCGGGCATATGTAAATAT
TGGCATTGGTGACATGTGCAAATGTTTGTATGGCTGATTCCCTGAGACCCTAACTTGTGACTTTTAATACCAGTTTCACAAGTTTTGATCTCCGGTATTGGACGCAAACTTGCTGgcggccgc

>pCJ30 (p2032_miR-1003)
ggtaccATAAAGCCGATAAGCGTGCGGAAATCGAAAAGACCGAGCGTGAACGACTGCAACAGCAGGAACGCGAGGATGAGATGCGCGAACTGGCCCTCAAGCTGCGCAGAAGGTGGGTATCTGGA
TGTGGTTGGCTCTGGCGGTCCTCTCACATTTACATATTCACAGGCGCCGTGAGCTGCGTCACAAATATGGAACGCCCTCGAGTGGAAAGCTCTCGGACAGCGATGCCGAATCTGTGGCATCGGAA
AGCCAGCTGGCAAAGTCGTCGACGCGTCGCAGTCGCAGCAGATCGGAGAGTCGTAGGCGGTCGCCACCGCCGGAACACAGCACAGCAGACGGAGCAGCAGCCGAACGGAAAGGAGGAGACGCAC
AAGGACGgcggccgc

>pCJ31 (p2032_miR-1006)
ggtaccAACAACGAATACATCCAGTCGGTGGCCCGGTGCCTGCAGATGATGCTCCGTGTGGATGAGTATCGATTTGCCTTTGTGGGAGTCGACGGAATCAGCACTCTGATCCGTATCTTGTCGAC
CCGTGTCAACTTCCAGGTGAGTTTGAAATTGAAATGCGTAAATTGTTTGGTACAATTTAAATTCGATTTCTTATTCATAGGTGCAATACCAGTTGATCTTTTGCCTGTGGGTGCTGACCTTCAAT
CCCCTGCTGGCCGCCAAGATGAATAAGTTCAGCGTGATCCCCATCCTGGCTGATATCCTCAGCGATTGTGCCAAGGAGAAGGTGACACGCATTATCCTCGCGGTCTTCCGCAATCTGATCGAGAA
GCCGGAGGATTCATCGGTGGCCAAGGACCATTGCATCGCCATGGTCCAGTGCAAGGTGCTGAAGCAGCTATCCATCCTGGAGCAGCGTCGCTTCGACGACGAGGACATTACCGCCGACGTAGAGT
ACCTGAGCGAGAAGCTCCAGAATTCGGTGCAAGACTTGAGCTCCTTTGATGAGTACGCCACAGAGGTGCGCAGCGGTCGCTTGGAATGGTCGCCTGTGCACAAGTCGGCCAAGTTCTGGCGCGAG
AATGCCCAGCGCCTAAACGAAAAGAACTACGAGTTGCTGCGCATCCTCGTCCACCTCCTGGAAACCTCAAAAGATGCCATCATCCTTTCCGTCGCCTGCTTCGACATCGGGGAGTATGTGCGCCA
CTATCCCCGCGGCAAGCAgcggccgc

>pCJ32 (p2032 Let-7)
ggtaccGACAAATGGCGGAGTAAGGATAAAAAGTCGAGTCAAAAACGGATTAATACGAAATAAATAACTACTAAAATAACTAAATAGAAGATCAACAGCGATCCATTAAACAAACTATAACAATA
ATATGTAATATGAAAACCATCGATAATAAATCGTAAAACTAAATTAAACTAAATATCCAACGTCATATAAATACAACTCAAAACGTCATAATAAGAAAACTGATATGGTATAACAAACTCAAGTT
TAAGTTTGAATAACACAACAAAGTAATTTACTTAAATACTCATCTTATGTATATTTTATTTAACATTCAAATGTAACCTTCAAAAGCATTTTTAATATGATTTCTCCGTATTATTTTTCTTCTTG
TTTGCCATCATCGTTTCAACCAAAAACCGAACCAATGATATCCAGAAGATCCTTTAAATACCAAACCACCTAGCAAAAAGGACTACACCAAGGACCTTTTTCTCTCTGGCAAATTGAGGTAGTAG
GTTGTATAGTAGTAATTACACATCATACTATACAATGTGCTAGCTTTCTTTGCTTGACTACAAGCCGCATTTGATAAAAGAATCCCAATCGAACTGCACCACTTAATAAACCCAATCCCCAGCCA
TACAAAAGTTGGTGGTGCAACAAATTTTGATTGTGGACAACAAAGAAAGTGTTCTGAGCCAAACTATTGTTAAATATCATTACGAATGCCAAAGTATGTAAATGCAACCGGGCATATGTAAATAT
TGGCATTGGTGACATGTGCAAATGTTTGTATGGCTGATTCCCTGAGACCCTAACTTGTGACTTTTAATACCAGTTTCACAAGTTTTGATCTCCGGTATTGGACGCAAACTTGCTGgcggccgc

>Drosha dsRNA
GGTCACCAAGCCGGGTTATAAGCCGTGTTCGCTACGCGTTGACCAATTGGACAGGAATAACTCCGATTTGCCCGAGTGCGTAGATCGCGAGACTGGAATCTCACATCCAGCAATCGTGCACTTTG
GCATTTGTCATCCTCAGCTAAGCTACGCTGGAAATCCAGAGTCC CAGAAGGCGTGGCGAGAGTACGTTAAGTACCGTCATCTGATGGCCAACATGTCGAAGCCCTCTTTCAAGGATAAGCGCAAG
CTAGAGGAGAAGGAGCAACGTCTTCAGGAGATGCGAACTCAGGGGCGCATGAAACGAAATATCACAGTGGCGATCAGCTCGGAGGGCTTCTATCGCACCGGCATTATGTGCGACGTTGTGCAGCA
TGCCATGTTGATTCCTGTCCTAACTGGTCACCTTCGCTTTCACAAGTCGCTGGACCTGCTAGAGGAGAGTATCGGGTACCGCTTTAAAAATCGGTACCTTCTCCAATTGGCGCTGACGCATCCCT
CATACAAGGAGAACTACGGTACCAATCCGGATCACGCCCGTAATTCGCTGACTAACTGCGGAATTCGTCAGCCGGAGTACGGAGATCGCAAGATCCATTACATGAACACACGCAAGCGGGGTATC
AACACATTAGTGAGCATTATGT

>Dicer-1 dsRNA
CTACTGGCCACCGCCTACGAGCGGAACACGATTATTTGCCTGGGCCATCGAAGTTCCAAGGAGTTTATAGCCCTCAAGCTGCTCCAGGAGCTGTCGCGTCGAGCACGCCGACATGGTCGTGTCAG
TGTCTATCTCAGTTGCGAGGTTGGCACCAGCACGGAACCATGCTCCATCTACACGATGCTCACCCACTTGACTGACCTGCGGGTGTGGCAGGAGCAGCCGGATATGCAAATTCCCTTTGATCATT
GCTGGACGGACTATCACGTTTCCATCCTACGGCCAGAGGGATTTCTTTATCTGCTCGAAACTCGCGAGCTGCTGCTGAGCAGCGTCGAACTGATCGTGCTGGAAGATTGTCATGACAGCGCCGTT
TATCAGAGGATAAGGCCTCTGTTCGAGAATCACATTATGCCAGCGCCACCGGCGGACAGGCCACGGATTCTCGGACTCGCTGGACCGCTGCACAGCGCCGGATGTGAGCTGCAGCAACTGAGCGC
CATGCTGGCCACCCTGGAGCAGAGTGTGCTTTGCCAGATCGAGACGGCCAGTGATATTGTCACCGTGTTGCGTTACTGTTCCCGACCGCACGAATACATCGTACAGTGCGCCCCCTTCGAGATGG
ACGAACTG

>Loquacious dsRNA
ATGACCAGGAGAATTTCCACGGCTCCAGCTTGCCGCAGCAGCTACAGAACCTCCACATCCAGCCGCAGCAGGCGTCCCCCAATCCTGTCCAGACGGGATTTGCTCCACGGCGGCACTATAATAA
CCTTGTCGGCCTGGGCAATGGAAATGCCGTCAGTGGTAGTCCGGTGAAGGGTGCTCCGCTGGGGCAGCGCCATGTGAAGCTCAAGAAGGAGAAGATATCCGCCCAGGTTGCGCAGCTGTCTCAGC
CAGGTCAGCTGCAGCTGTCAGATGTTGGTGATCCTGCCTTGGCGGGCGGATCGGGCTTACAAGGTGGAGTCGGCCTTATGGGCGTAATATTGCCCAGCGACGAGGCC

>Dicer-2 dsRNA
AAAGTTCAACGCGAAGAGCAAGGCTAAGATGAAAGTTATTTTGATTCCGGAGCTATGCTTCAATTTTAACTTTCCTGGGGATTTATGGCTTAAGTTGATCTTCCTACCCAGCATTTTAAACCGCA
TGTACTTCCTTCTCCACGCAGAGGCCTTACGTAAGCGATTTAATACGTATTTAAACCTCCATCTGCTGCCTTTTAATGGAACTGATTACATGCCCAGACCACTAGAAATTGATTATTCGCTAAAG
CGGAATGTCGACCCCTTGGGCAATGTCATACCAACTGAGGATATCGAGGAGCCGAAATCCCTTTTAGAGCCAATGCCCACAAAGTCCATTGAGGCGTCCGTGGCCAATCTTGAAATAACAGAATT
CGAAAATCCCTGGCAAAAGTATATGGAGCCGGTTGATCTGTCGCGAAATCTTTTGAGTACGTATCCCGTAGAGCTGGACTACTACTATCATTTTAGCGTTGGTAATGTATGTGAGATGAATGAGA
TGGATTTTGAAGATAAGGAATACTGGGCAAAAAATCAGT

>R2D2 dsRNA
TGCTGCCCGGCATACACGGCTTGATGAAGGATTCGACTGTGGGTGATCTGGATGAGGAACTGACTAACCTCAACCGGGACATGGTGAAGGAGCTGCGTGACTACTGCGTCCGCCGCGAGATGCCA
CTGCCCTGCATTGAGGTAGTGCAGCAAAGCGGCACCCCGAGCGCCCCGGAATTCGTGGCCTGTTGCTCCGTGGCCTCCATAGTACGCTACGGAAAGTCGGACAAAAAGAAGGATGCCCGTCAGCG
AGCGGCCATTGAAATGCTGGCCTTAATCTCCAGCAATTCGGACAATTTGCGTCCGGATCAAATGCAAGTAGCGAGCACAAGCAAATTGAAAGTTGTTGATATGGAAGAATCTATGGAGGAATTGG
AGGCATTGCGCAGAAAGAAATTTACCA

>CG7942 [1] (Debranching enzyme) dsRNA
GTGGCGAGCTGGTAGCACCAGTGCTGACCATATTCATTGGCGGCAACCATGAGGCCTCCAATTACCTGCAGGAGCTCCCATACGGCGGTTGGGTGGCTCCAAATATTTACTACCTTGGTTATGCC
GGCGTCGTCAATGTAAACGGTGTTCGGATAGCTGGAATAAGCGGAATCTTCAAGGGTCACGACTTTTTGCGCGGCCATCACGAATTCCCTCCGTATACCGATTCCACGTGTCGCAGTGTCTACCA
TGTGCGGCAGCTAGAAGTCTTTCGGCTGAAACAAATTTCCGGGCGAGTTGATATTTTCCTGTCCCACGACTGGCCCACCGGCATCTATGAATACGGAAACAAGGCGCAACTGCTCCGCAAGAAAC
CATTTTTTGCTGCAGACATGGAAAGCGGGAAGCTGGGTAGCCAGCCACTGGAGGAGTTACTGAAAGCGGTCCAACCGGCCTACTGGTTTGCTGCCCATTTGCATTGCAAGTTTGCCGCTTTGGTG
CCGCACAATCACAGCCAGAAGCTAGGAGATGCTGAATC

>CG7942[2] (Debranching enzyme)
GCAGCAGTGAAGATGAAGACGAGGAAAGGGAGAAGGTAAAGAAAGCTGCTCCTGTACCTCCACCATCCAAATCTGTTCCCGTGACCAAGTTTCTGGCTCTCGACAAATGCCTGCCACGTCGTGCT
TTCCTGCAAGTGGTAGAGGTACCCAGTGACCCCATCGAAGGCACTCCCCGCCTGGAATACGACGCAGAGTGGCTAGCCATCTTGCACAGTACAAATCACTTGATTTCAGTGAAGGAGAATTATTA
TTACCTGCCCGGAAAAAAGGCGGGAGAGTTTACAGAGCGATCAAACTTTACCCCCACTGAAGAAGAACTAGAAGCAGTGACCGCAAAGTTTCAGAAACTTCAAGTCCCCGAGAACTTTGAGCGCA
CAGTGCCAGCTTTCGATCCCGCGGAGCAGTCTGATTATAAGCACATGTTTGTGGATCAACCCAAGGTTCAACTAAACCCCCAGAGCAATACGTTCTGTGCCACTCTGGGTATAGACGATCCGCTG
TGCTTAGTTTTGTTGGCGAATGGCCTAGATCTGCCTGC
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Table S4 Ruby et al., 2007

>GFP dsRNA
GATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGCGGCCGCGACTCTAGATCATAATCAGCCATACCACATTTGTAGAGGTTTTA
CTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTG

>UTR insert CG11094
actagtTGATAATTTTTCATTAACTAGAGTAACGAATACTACTTTGCCCCGATATTTATTATTGTTCAGCATCACATATTAGCTTAATGCTTCGGTGAAATCGCGCGAATTTAACTTTTATAACT
TAGAGTTGAGTAACTTAGAGTTTTATGGAGCAAAACCTCTGTAAATAAATCGAATTTATCGGTAAACTAAAGCGCGACTTGGACTATCTTCAATCAACAAGCCAAATATGTCGATGTGTGACAGC
CGTTCTACGCGTCAGCTTTCTTCAATCAACATTACCCCGTGCTGAGATGTCTGGCCTCAATGTTAATAATCTCAATCTACAATCAACATTCTCTTCTCTTCAATCAACAATCCGCAAACGGATCT
AATCgcggccgc

>UTR insert CG11094-mutant
actagtTGATAATTTTTCATTAACTAGAGTAACGAATACTACTTTGCCCCGATATTTATTATTGTTCAGCATCACATATTAGCTTAATGCTTCGGTGAAATCGCGCGCAGTGAACTTTTATAACT
TAGAGTTGAGTAACTTAGAGTTTTATGGAGCAAACCTCTGTAAATAAATCGCAGTGATCGGTAAACTAAAGCGCGACTTGGACTATCTTCAATCAACAAGCCAAATATGTCGATGTGTGACAGC
CGTTCTACGCGTCAGCTTTCTTCAATCAACATTACCCCGTGCTGAGATGTCTGGCCTCAATGTTAATAATCTCAATCTACAATCAACATTCTCTTCTCTTCAATCAACAATCCGCAACGGATCT
AATCgcggccgc

>UTR insert CG1849
actagtCCTGGAAATCAGACTCCGGCGAAGTTTTATGCTCGGACTCATAAAATCGTGCGACGAGTTTGAATCACAGGCCCTCGATTTTCACCAGGATTTTTTACAAATCCCAGCAGAAAACACGA
AAACTCAAAAACTCAGCCCAAAAAGAAAATACCAAGAAAGCAAACTTTAGTTCAATTTCATTTCAACACAAAACAACAACAACACAATTTGTACATAGCTAACTAGTTGTAACACTCATAACTTT
TTTTTTTTGAGAACCTATTTTTTTCGATGGATAATATGCGAATTTAGCTATTTTTAATCATTATGTTTAACTAGTCGTCTAAGCGAGAAATCAATTTTTTTGTCTAGCCATAAGTTTTAGCGCGA
AAAGAGATCTAACACAAAAATCGAATTTGAAACAAAACCAAATAAAAAACAAAAATCACACACAAAAAgcggccgc

>UTR insert CG1849-mutant
ActagtCCTGGAAATCAGACTCCGGCGAAGTTTTATGCTCGGACTCATAAAATCGTGCGACGAGTTTGAATCACAGGCCCTCGATTTTCACCAGGATTTTTTACAAATCCCAGCAGAAAACACGA
AAACTCAAAAACTCAGCCCAAAAAGAAAATACCAAGAAAGCAAACTTTAGTTCAATTTCATTTCAACACAAAACAACAACAACACAATTTGTACATAGCTAACTAGTTGTAACACTCATAACTTT
TTTTTTTTGAGAACCTATTTTTTTCGATGGATAATATGCGCAGTGAGCTATTTTTAATCAGTATGTTAACTAGTCGTCTAAGCGAGAAATCAATTTTTTTGTCTAGCCATAAGTTTTAGCGCGA
AAAGAGATCTAACACAAAAATCGCAGTGGAAACAAAACCAAATAAAAAACAAAAATCACACACAAAAAgcggccgc

>UTR insert CG5166a
actagtGACACCAGAAACCCAAGTCATCATTCCAAGTTAGTTTTTCCACCGGCGCAAGGAAAGGGCCGCGCTTCATCCAGCATTCCGATTGTAAACTTACTTAGCATATAATGTGAACTCGGTTC
GGAAGGAGCTGATCGCTGATCGCTGATCGAAGCTGCAAGCTGGATGGAAGCTCTTTGCTTGCCCTGCGGGAAATGAAAAACGAATGTGAGATTTTAGAGAGCTTCAATTTATTCGTTTCCTTTT
CGAAATTCGGTAGAACTAATTAATTTTTGTTTAAATTGAATTTTGTTGCCACTTCTCCGCCTCTTCTTACACATTATTCGCCAGCATTTACCAGAAATGTAATGACATCGATATATAAATGATTG
TTTTGACGTTTCTCGGAGAAATTTCCTTGCTAGCTTTACAGGCAGAAGCTAATGTGAGAGCAAGAGCTTGAGTCAGGCTTCCTTTGGGTTTTAGTGCCTCCGTTGTCTCCGAATTAATGAAAAAT
TAACAAGAACAATCCGTATTACTTCTTTGCCCGTCATAAATCGGTTTGGTTATATTTCGTATGATCTAGAAGCATCTGTTGTGGTCTGTTTTGTTTTGTAAACCTTCAAGTTTCCTTAAATGAAg
cggccgc

>UTR insert CG5166a-mutant
actagtGACACCAGAAACCCAAGTCATCATTCCAAGTTAGTTTTTCCACCGGCGCAAGGAAAGGGCCGCGCTTCATCCAGCATTCCGATTGTAAACTTACTTAGCATATAATGTGAACTCGGTTC
GGAAGGAGCTGATCGCTGATCGCTGATCGAAGCTGCAAGCTGGATGGAAGCTCTTTGCTTGCCCTGCGGGAAATGAAAAACGAATCTCACATTTTAGAGAGCTTCAATTTATTCGTTTCCTTTT
CGAAATTCGGTAGAACTAATTAATTTTTGTTTAAATTGAATTTTGTTGCCACTTCTCCGCCTCTTCTTACACATTATTCGCCAGCATTTACCAGAAATGTAATGACATCGATATATAAATGATTG
TTTTGACGTTTCTCGGAGAAATTTCCTTGCTAGCTTTACAGGCAGAAGCTAATCTCACAGCAAGAGCTTGAGTCAGGCTTCCTTTGGGTTTTAGTGCCTCCGTTGTCTCCGAATTAATGAAAAAT
TAACAAGAACAATCCGTATTACTTCTTTGCCCGTCATAAATCGGTTTGGTTATATTTCGTATGATCTAGAAGCATCTGTTGTGGTCTGTTTTGTTTTGTAAACCTTCAAGTTTCCTTAAATGAAg
cggccgc

>UTR insert CG6551
actagtTGATATCCACCCGATTCAAACCACAGCATCAGCATCCGCATCTATATTCGCATCAGCAACAGGAAACCTCTTGCCATGCTACCCACACATCTGAGGACACTGATTTGTTAGCTCAAGAC
AACACAACTGAAATCGAAACGCATTGAATTTAGATCAAATTCGAGCTGGTATCGAATATTAACCATACAAACAAACATAAACAAAAGGCTCCCTAAATGATTTAAATATTGGTCTGGTCCCCTTA
AGATTTAAAAATATCAATTAGTTTTTATGGAAATAGTTAGTTTCAATCGTAATAGGCATTTAAAAAACATTTTACCCTAATTGAGTTTTTAAATCTCCAGAGGATTTCAACGCACCAATATTTTG
TACACAACACACATTGTTAAATTTAAATTTTCACTCGAATTTCAAGTATTCTATTTTGCAAAAATTATTTTGTGTAAATCTCGgcggccgc

>UTR insert CG6551-mutant
actagtTGATATCCACCCGATTCAAACCACAGCATCAGCATCCGCATCTATATTCGCATCAGCAACAGGAAACCTCTTGCCATGCTACCCACACATCTGAGGACACTGATTTGTTAGCTCAAGAC
AACACAACTGAAATCGAAACGCATTGAATTTAGATCAATTCGAGCTGGTATCGAATATTAACCATACAAACAAACATAAACAAAAGGCTCCCTAAATGATTTAAATATTGGTCTGGTCCCCTTA
AGATTTAAAAATATCAATTAGTTTTTATGGAAATAGTTAGTTTCAATCGTAATAGGCATTTAAAAAACATTTTACCCTAATTGAGTTTTTAAATCTCCAGAGGATTTCAACGCACCAATATTTTG
TACACAACACACATTGTTAAATTTAAATTTTCACTCGCAGTGCAAGTATTCTATTTTGCAAAAATTATTTTGTGTAAATCTCGgcggccgc
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Abstract

MicroRNA (miRNA) genes give rise to small regulatory RNAs in a wide variety of

organisms. We used computational methods to predict miRNAs conserved among

Drosophila species and large-scale sequencing of small RNAs from Drosophila

melanogaster to experimentally confirm and complement these predictions. In addition to

validating 20 of our top 45 predictions for novel miRNA loci, the large-scale sequencing

identified many miRNAs that had not been predicted. In total, 59 novel genes were

identified, increasing our tally of confirmed fly miRNAs to 148. The large-scale

sequencing also refined the identities of previously known miRNAs and provided

insights into their biogenesis and expression. Many miRNAs were expressed in particular

developmental contexts, with a large cohort of miRNAs expressed primarily in imaginal

discs. Conserved miRNAs typically were expressed more broadly and robustly than were

nonconserved miRNAs, and those conserved miRNAs with more restricted expression

tended to have fewer predicted targets than those expressed more broadly. Predicted

targets for the expanded set of microRNAs substantially increased and revised the

miRNA-target relationships that appear conserved among the fly species. Insights were

also provided into miRNA gene evolution, including evidence for emergent regulatory

function deriving from the opposite arm of the miRNA hairpin, exemplified by mir-10,

and even the opposite strand of the DNA, exemplified by mir-iab-4.

Small RNA sequences were deposited in the Gene Expresion Omnibus

(GSE7448). Computational tools for miRNA prediction (MiRscan3) are available for
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anonymous download at http://web.wi.mit.edu/bartel/pub/. Two HTML tables and two

MS Excel tables are provided as supplementary material.

Introduction

MicroRNAs (miRNAs) are ~23-nt RNA species that direct the post-transcriptional

repression of messenger RNAs (mRNAs) (Bartel 2004). They are generated from primary

transcripts (pri-miRNAs) that can fold into characteristic hairpin secondary structures. In

animals, those hairpins are typically first cleaved away from the rest of the primary

transcript by the nuclear RNase III enzyme Drosha to generate miRNA pecursors (pre-

miRNA), and are then cleaved near their loops by the cytoplasmic RNase III enzyme

Dicer to generate a heteroduplex of two ~23-nt RNAs (Lee et al. 2003). The mature

miRNA is preferentially packaged into the RNA-induced silencing complex (RISC),

while the other species, known as the miRNA star (miRNA*) is discarded (Lau et al.

2001; Lim et al. 2003b). The decision as to which species is incorporated into the

silencing complex is influenced by the difference in pairing stabilities between the two

ends of the miRNA:miRNA* duplex, with preferential incorporation of the strand whose

5' end is less stably paired (Khvorova et al. 2003; Schwarz et al. 2003).

Once incorporated into the silencing complex, metazoan miRNAs pair to the

messages of their mRNA targets, primarily in 3' untranslated regions (3" UTRs).

Complementarity between the message and a segment in the 5' region of the miRNA

known as the seed (miRNA nucleotides 2-7) appears to be the most crucial requirement

of target recognition. Conserved pairing to the seed region is a feature of most genetically
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identified miRNA-target interactions (Lai 2002; Lee et al. 1993; Wightman et al. 1993).

Indeed, the requirement of conserved pairing to the miRNA seed enables miRNA targets

to be predicted in excess of the noise of false-positive predictions (Brennecke et al. 2005;

Krek et al. 2005; Lewis et al. 2005; Lewis et al. 2003). Short, 7- to 8-nt sites matching the

seed region of the miRNA are not only important but sometimes can suffice for

repression in reporter assays (Brennecke et al. 2005; Doench and Sharp 2004; Lai et al.

2005). Consistent with the in vivo sufficiency of 7mer seed-matching sites in mediating

repression, many messages preferentially co-expressed with a highly expressed miRNA

are depleted in 7mer sites matching that miRNA, presumably due to selective avoidance

of miRNA-mediated repression during evolution (Farh et al. 2005; Stark et al. 2005).

Moreover, miRNAs that share the same seed sequence but are diverse throughout the

remainder of their sequences can be functionally redundant (Abbott et al. 2005; Lim et al.

2005), which justifies their grouping into members of the same miRNA 'family' (Ambros

et al. 2003; Lim et al. 2003b). The seeds that define families are often conserved

throughout diverse species even as the individual miRNA genes within the family vary

(Ruby et al. 2006). The arms of the hairpin precursors are less conserved than the seeds,

but are more conserved than either the surrounding genomic sequence or the intervening

loop sequence (Lai et al. 2003; Lim et al. 2003b).

Most known miRNAs were discovered through the cloning and sequencing of

small-RNA cDNAs (Griffiths-Jones 2004). However, this method can miss miRNAs

expressed at low levels or in only specific cell types or conditions. One approach for

identifying low-abundance miRNAs that has previously been applied in Drosophila is to

identify candidate miRNA hairpins computationally and then validate their expressions
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using more directed, and thereby potentially more sensitive, experimental methods (Lai et

al. 2003). Because identification of plausible candidates is aided by comparative

genomics, this approach gains efficacy as the genome sequences of additional related

species become available. A second approach for identifying rare miRNAs is simply to

increase the scale of small-RNA sequencing well beyond the reach of prior efforts. This

high-throughput sequencing approach has not been used previously in insects, but in

other lineages it has revealed miRNAs and miRNA candidates that escaped earlier

detection because they are rare or not well conserved in related genomes (Berezikov et al.

2006; Fahlgren et al. 2007; Lu et al. 2006; Rajagopalan et al. 2006; Ruby et al. 2006).

Here, we use the two complementary approaches described above -

computational prediction and high-throughput sequencing - to identify nearly 60

additional fly miRNAs and to refine the descriptions of about half of those that had been

previously annotated. These results provided insights into miRNA evolution, biogenesis,

and expression in insects. When combined with improved target prediction, which

utilized information from all 12 sequenced Drosophila genomes (Consortium 2007a;

Consortium 2007b) to increase prediction accuracy, these new and revised miRNAs

substantially expanded and improved the view of miRNA-directed regulation in flies.

Results

Computational prediction of fly miRNAs

Novel miRNA genes were sought computationally as hairpins with secondary structure

and conservation patterns resembling those of previously annotated miRNAs, using an

approach with similarities to that described for miRscan, which had previously been
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applied to nematodes and vertebrates (Lim et al. 2003a; Lim et al. 2003b).For each of six

Drosophila genomes (melanogaster, ananassae, pseudoobscura, mojavensis, virilis, and

grimshawi) (Adams et al. 2000; Consortium 2007a; Consortium 2007b; Richards et al.

2005), RNAfold (Hofacker et al. 1994) was used to identify candidate hairpins from

across the entire genome. Candidate hairpins from each genome were first scored based

on the relative frequencies of structural characteristics in the background candidate set

versus a foreground training set of annotated miRNA hairpins. This training set

comprised 37 miRNA hairpins from D. melanogaster that were selected randomly from

the 78 previously annotated in miRBase v8.1 (Griffiths-Jones 2004); the remaining 41

miRNAs were reserved as a test set, the performance of which was not evaluated until

after the completion of the prediction process. Candidates with scores far below that of

the lowest foreground hairpin were removed from the background set, altering its

aggregate properties. Unlike the previous method, candidates were then re-scored based

on the properties of the minimized background, and the worst candidates were again

eliminated. Following several rounds of eliminating candidates from each individual

genome, candidates from different genomes (nodes) were paired as putative orthologs

(edges) using Blast (Altschul et al. 1990) and put through the same process of iterative

scoring and elimination, now simultaneously evaluating conservation.

The surviving ortholog pairs included 565 hairpin candidates from D.

melanogaster that could form complete networks between all six genomes, including all

15 possible edges. These successful candidates were ranked by the sum of the 15

pairwise scores from their first round of pairwise scoring and elimination (Table Sl). Of

the 37 members of the training set, 26 survived and fell mostly within the higher scoring
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tail of the distribution (Fig. 1A). Examination of the test set revealed that 35 of 41

members of the test set survived and that these 35 hairpins had similar score distributions

as the training set, indicating that our prediction method did not over-fit to the training-

set data (Fig. 1A).

Our concept of a candidate miRNA hairpin specified the genomic strand from

which the hairpin was derived. However, the secondary structure and conservation

properties of a genomic sequence frequently match those of its reverse complement. As a

result, 174 of our 565 candidate hairpins were paired with a candidate locus from the

opposing genomic strand and thus represented only 87 unique genomic loci. We therefore

collapsed our predictions into 478 strand-independent genomic loci, which each included

a prediction of which strand would give rise to the mature miRNA based on the higher

score. Eliminating 151 candidates that overlapped the annotated exons of protein-coding

genes (Table Sl) left 327 candidate loci (Fig. 1B). The top 100 candidate loci were

carried forward as our predictions. These included 55 of the previously annotated genes

(24 of the 26 surviving training set genes), as well as 45 novel predictions.

Recent results from plants and worms demonstrate that for the validation of

miRNA expression, large-scale sequence datasets are more reliable and sensitive

compared to RNA blotting, and more reliable and roughly equally sensitive as PCR

assays (Rajagopalan et al. 2006; Ruby et al. 2006). We therefore used large-scale small

RNA sequence data to evaluate the quality of our predictions.
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High-throughput sequencing of small RNAs

To survey the miRNAs of flies, we performed high-throughput pyrosequencing

(Margulies et al. 2005; Ruby et al. 2006) on libraries of small RNAs isolated from the

following ten D. melanogaster tissues or stages: very early embryo (0-1 hours), early

embryo (2-6 hours), mid embryo (6-10 hours), late embryo (12-24 hours), larvae (first

and third instars), imaginal discs, pupae (0-4 days), adult heads, adult bodies, and tissue-

culture cells (S2). Pyrosequencing yielded a total of 1.14 million small RNA reads

(55,761 - 174,031 reads per library) that perfectly matched the D. melanogaster genome.

Refinement of prior miRNA annotations

Of the 54 D. melanogaster miRNAs (corresponding to 60 hairpins) that had been

previously cloned and sequenced (Aravin et al. 2003; Lagos-Quintana et al. 2001), all 54

were represented in our dataset of 1.14 million small RNA reads, as exemplified by miR-

7 and miR-iab-4 (Fig. 2), and detailed for all the miRNAs (Table S2). For the 60 hairpins

of these previously cloned miRNAs, read frequencies ranged from 60 (miR-303) to

20,049 (miR-14), with a median of 2415, and for each of these hairpins the miRNA*

species was also recovered. Additional Drosophila miRNA genes are annotated in

miRBase v.8.1 based on homology to other miRNAs or computational predictions

supported by RNA blots (Aravin et al. 2003; Lai et al. 2003). Of these 18 genes for which

small RNAs had not been previously cloned, 14 were represented in our dataset (Fig.

2A). The four that were missing (mir-280, -287, -288, and -289) had been predicted

computationally and experimentally supported by RNA blots of samples from early
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embryos, larvae and pupae, and adult males (Lai et al. 2003). Their absence in our

libraries from these same developmental stages called their authenticity into question.

In half the cases (37 of the 74 confirmed genes), the distribution of reads across

the hairpin suggested that the mature miRNA differs from the one that had been

previously annotated (Table S2). Usually, the discrepancy was only at the 3' terminus of

the mature miRNA, as exemplified by miR-7 (Fig. 2B). Although proper 3' annotation is

needed for some miRNA expression profiling methods (Wang et al. 2007), re-annotation

of the miRNA 3' terminus was of little consequence because 3' heterogeneity is a

hallmark of mature miRNAs (Basyuk et al. 2003; Lau et al. 2001; Lim et al. 2003b; Ruby

et al. 2006). However, in 12 cases there was discrepancy at the miRNA 5' terminus

(Table S2). The re-annotation of a miRNA 5' terminus is far more consequential due to

its role in defining the miRNA seed sequence, which in turn defines the set of targets. For

example, shifting the 5' terminus by a single nucleotide changes the identity of one or

both of the two 7mers used for target prediction (Lewis et al. 2005), thereby dramatically

altering the set of predicted targets, and shifting it by two or more nucleotides would have

an even greater effect. Seven of these 12 cases were corrections of annotations that have

been based on computational or molecular evidence not expected to identify the 5'

termini with confidence (Supplemental Text). The other five cases were more interesting

because they illustrated how a single miRNA hairpin or paralogous hairpins could spawn

new miRNA function.

For miR-210, there were 917 reads with the originally annotated 5' end and 1031

reads with an extra 5' nucleotide, all of which mapped uniquely to the genome.

Combined, the abundance and equivalence of reads indicated that miR-210 was a rare
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example of a single hairpin generating mature miRNAs with multiple abundant 5' ends.

As was done for miR-248 in C. elegans (Ruby et al. 2006), we annotated the species with

an extended 5' end as miR-210.1 and the species with the originally annotated 5' end as

miR-210.2, with the idea that both probably direct repression in the fly (Table S2).

In the case of miR-10, the dominant read was from the arm of the hairpin

precursor opposite the annotated miRNA and was sevenfold more abundant (Fig. 3), a

result expanding on the observation that species from both arms are easily detected

(Schwarz et al. 2003). Because conservation criteria supported the function of RNAs

from both arms of the hairpin, and in conjunction with a parallel study (Stark 2007b), we

annotated the two major products of the miR-lO hairpin as miR-10-5p and miR-10-3p.

The seed of the original miR-10 (miR-10-5p) was conserved throughout all annotated

miR-O10 genes, including those of vertebrates (Fig. 3A). The seed of the species more

abundantly represented in our dataset (miR-10-3p) was not conserved in all annotated

miR-lO genes but was nonetheless conserved in at least one miR-lO gene of each species

examined (typically the miR-lOa paralogs of vertebrates; Fig. 3A).

The mir-281 and mir-2 paralogs illustrated how highly related miRNA genes

could have divergent function. For both sets of paralogs, miRNAs deriving from the

miRNA arms of the hairpins could be mapped to multiple related hairpins. Nonetheless,

the miRNA* species, which mapped uniquely to their hairpins, revealed the likely

processing of each hairpin and indicated that one of the two mir-281 hairpins and two of

the five mir-2 hairpins gave rise to miRNA species that differed from those previously

annotated (Supplemental Text).
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Novel miRNAs

Having revised many of the previous miRNA annotations of Drosophila, we next

examined the overlap between our predicted miRNA loci and the small RNA reads. Of

the 100 predictions, 45 had not been previously annotated as miRNA genes. Of those, 20

were supported by the reads. In all 20 cases, our prediction method identified the correct

strand of the miRNA gene (as well as 21 of 24 cases from the training set and 29 of 31

cases from the test set). Given correct identification of the miRNA strand, the miRNA 5'

terminus was correctly predicted in 8 of 20 cases (plus 14 of 21 cases from the training

set and 15 of 29 cases from the test set, Fig. 1C). Some the remaining 25 predictions that

lacked experimental confirmation also might be authentic miRNAs. However, because

most might be false-positives and because their 5' termini were not predicted with high

confidence, we did not consider any of these 25 suitable for annotation or target-

prediction studies.

Looking more broadly at the small RNA reads to identify the miRNAs that were

more difficult to recognize computationally increased our count of newly identified

miRNA loci from 20 to 59. To confidently identify these as miRNA genes, we considered

the following criteria: 1) the pairing characteristics of the hairpin; 2) the miRNA

expression, as measured by the abundance of sequence reads sharing the same 5'

terminus; 3) evolutionary conservation, as evaluated by the apparent conservation of the

hairpin in other fly species and grouping of the miRNA candidate into a family based on

its seed sequence; 4) the absence of annotation suggesting non-miRNA biogenesis, and 5)

the presence of reads corresponding to the predicted miRNA* species. The observation of

both a candidate miRNA and a candidate miRNA* in a set of reads provides particularly
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compelling evidence for Dicer-like processing from an RNA hairpin (Fahlgren et al.

2007; Rajagopalan et al. 2006; Ruby et al. 2006). As illustrated for miR-988 (Fig. 4A), 40

newly identified genes satisfied all five of our criteria, and nineteen others satisfied a

subset of the criteria deemed sufficient for confident annotation as miRNAs (Table 1).

Nine additional candidates fell within predicted miRNA-like hairpins and were

sequenced more than once (Table S2). However, they were considered unlikely to be

miRNAs because they did not satisfy the other criteria sufficiently and they mapped to

either protein-coding transcripts (candidates 1-5) or heterochromatic DNA (candidates 6-

8). Ten of the newly-identified miRNAs derived from loci that were among the top 200

predicted to form miRNA precursor hairpins in a previous effort (Lai et al. 2003). Nine of

those predictions correctly identified the genomic strand from which the miRNA was

derived, but prediction of the mature miRNA had not been attempted.

Two thirds of the novel miRNAs appeared to be broadly conserved in the

Drosophila genus (Table 1). Orthologs were sought in six species spanning both the

Sophophora subgenus (D. simulans, D. yakuba, D. ananassae, D. pseudoobscura) and

the Drosophila subgenus (D. mojavensis, and D. virilis). Putative orthologs were found in

all six species for 28 of the miRNAs and in five of six species for another 9. In 12 of the

remaining cases, orthologs were found in two or fewer of the Drosophila species.

One newly identified locus, mir-996, resided 1.5 kb downstream of a related

miRNA (mir-279) and within the transcript of CG31044, which is annotated as encoding

a 140 amino acid protein (Crosby et al. 2007). We suggest that miR-996, not the putative

protein, is the functional product of this gene. Consistent with this proposal, the observed

miRNA was perfectly conserved across a wide scope of fly species, whereas in the ORF,
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sequence polymorphisms in the closely related species D. simulans, D. yakuba, D.

ananassae, and D. pseudoobscura introduced nonsense mutations at codons 73, 56, 13,

and 40, respectively.

Like many known miRNA genes (Griffiths-Jones 2004), 26 of the 59 newly

identified loci were clustered with other miRNA loci (Table 1, Fig. 5A), and 13 fell

within annotated introns (and from the same genomic strand as the intron, Table 1).

Thus, more than half (69 of 133) of the canonical Drosophila miRNAs were clustered

(Fig. 5A), and over a quarter (36 of 133) were intronic (Table Sl).

Although most of the novel miRNA genes closely resembled those previously

annotated, three of the hairpin precursors were much larger than those observed

previously in animals. For the vast majority of previously annotated fly genes, fewer than

30 nucleotides separated the miRNA and miRNA*, and all had fewer than 60 intervening

nucleotides. The distribution of intervening sequence lengths was generally similar

among the newly identified miRNAs. However, mir-956, mir-989, and mir-997 had

abnormally large intervening sequences of 82 nt, 99 nt, and 112 nt, respectively (Fig. 4C-

D, Table S2). Each of these hairpins gave rise to miRNA* reads, and in each case the

dominant ends of the miRNA versus the miRNA* exhibited 1- or 2-nt 3' overhangs. In

no case was there EST evidence of an intron helping to bridge the distance between the

miRNA and miRNA* loci (Crosby et al. 2007; Karolchik et al. 2003). The lack of

constraint on the length of the intervening sequence was illustrated by mir-989, whose

mature miRNA sequence was perfectly conserved across all seven of the Drosophila

species examined but whose intervening sequence length varied widely, dipping as low

as 52 nucleotides in D. pseudoobscura (Fig. 4D).
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MicroRNA biogenesis in flies

As in nematodes (Ruby et al. 2006), examining the multitude of reads arising from the

previously annotated miRNA hairpins provided insights into the specificity and precision

of Drosha and Dicer processing (Table S2). These RNase III enzymes preferentially leave

2-nt 3' overhangs when cleaving perfect RNA duplexes (Basyuk et al. 2003; Lee et al.

2003), and this configuration between the ends of miRNA and miRNA* species was

observed in our dataset. The 5' ends of both the miRNA and miRNA* species were more

homogenous than the 3' ends, and the miRNA 5' ends were more consistent than the

miRNA* 5' ends, and the miRNA* 3' ends were more consistent than the miRNA 3'

ends, regardless of which was generated by Drosha and which by Dicer (Table S2;

Supplemental Text). The heightened precision of either enzyme when it defined the

miRNA seed implied that Dicer does not simply measure from the site of the Drosha

cleavage and suggested that additional determinants must be employed when needed to

more accurately define Dicer cleavage. Similar conclusions arise from the sequencing

data in nematodes (Ruby et al. 2006).

As reported in other species (Li et al. 2005; Ruby et al. 2006), untemplated

nucleotide addition also contributed to a minor fraction of 3' heterogeneity. In

Drosophila we observed evidence for processivity of the terminal-transferase activity,

with a preference for adding adenosines (Supplemental Text).

Reads that were antisense to either the miRNA or miRNA* appeared for four

previously annotated hairpins (mir-iab-4, -124, -305, -307). The mir-iab-4 hairpin gave

rise to nine antisense reads (Fig. 2D); each of the remaining hairpins gave rise to one
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read. Antisense transcription from mir-iab-4 has been noted previously (Cumberledge et

al. 1990). Our reads from either side of the antisense hairpin paired to each other with 2-

nt 3' overhangs, indicating that the antisense transcript was processed by the miRNA

biogenesis machinery and likely produced a miRNA (miR-iab4as) that enters the

silencing complex.

MicroRNA expression patterns

The collection of reads from a variety of developmental stages and anatomical contexts

permitted analyses of miRNA expression profiles and overall miRNA expression (Fig.

6A). MicroRNAs were clustered based on their relative expression across all ten libraries,

with the expression values for a particular miRNA in a particular library set to the

number of reads corresponding to that miRNA in the given library divided by the total

number of reads matching miRNA hairpins in that library. For previously annotated

miRNAs, this normalization scheme generated expression profiles similar to those

observed previously using 2S rRNA-normalized northern blots (Fig. 6B)(Aravin et al.

2003), whereas other schemes, such as normalizing to the total reads from each library or

to the number of sequenced ribosomal RNA fragments, did not generate profiles

matching the published northern results (data not shown).

Most miRNAs were observed across several libraries. However, several large sets

of miRNAs exhibited strong preference for expression in a single context. The 33

miRNAs that exhibited the narrowest ranges of expression (>70% of their library-

normalized reads deriving from a single library) were prevalent in the imaginal discs,

adult heads, and to a lesser extent, adult bodies and late embryos (61%, 24%, 12%, and
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3% of narrowly expressed miRNAs, respectively), and most were first sequenced in this

study (88% of narrowly expressed miRNAs; Fig. 6A).

The normalization of read counts across libraries also permitted an approximate

but informative assessment of relative overall expression (Fig. 6A). As reported in

vertebrates, worms, and plants (Bartel 2004; Rajagopalan et al. 2006; Ruby et al. 2006),

miRNA abundance correlated strongly with the extent of conservation, with those

miRNAs found only within the subgenus Sophophora expressed significantly less than

those conserved beyond that clade (Fig. 6C, Wilcoxon rank-sum test, p < 2.7 x 10-9).

Notably, the more highly conserved miRNAs were also observed more evenly across the

ten libraries examined (Wilcoxon rank-sum test, p < 8.5 x 10-7; Fig. 6D).

As observed previously in worms and mammals (Baskerville and Bartel 2005;

Lau et al. 2001; Sempere et al. 2004), miRNAs that were clustered in the Drosophila

genome usually had similar expression profiles (Fig. 6E). The correlation of miRNA

expression patterns diminished as the distance separating miRNAs surpassed 10,000 nt.

Proximally located miRNAs are thought to derive generally from common primary

transcripts (Lagos-Quintana et al. 2001; Lau et al. 2001). The mir-991-992 and mir-

310~313 clusters, separated from each other by only 1.0 kb, provided a counter example

(Fig. 5C). Although these two clusters each exhibited internally consistent expression

patterns, there was little correlation of expression between the two clusers (Fig. 6E),

implying that the mir-991/992 and mir-310~313 clusters derived from independent

transcripts. A more intriguing example was provided by mir-283, -12 and -304, all three

of which map within a single intron. The expression patterns of mir-12 and mir-304

correlated very closely with each other (Pearson correlation coefficient = .94), but neither
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correlated well with that of mir-283 (correlation coefficients of .16 and -.05,

respectively), which resided only 1.0 kb upstream of mir-304 and 1.5 kb upstream of mir-

12.

MicroRNA targets

In order to gain insight into the functional consequences of the known D. melanogaster

miRNAs, including those whose annotations were established or modified here, we

predicted their targets using comparative genomics of the sequenced genomes of the

Drosophila genus. As done previously, sites were identified in annotated D.

melanogaster 3' UTRs that matched the seed region of each miRNA. Two types of 7mer

sites were sought: the perfect Watson-Crick match to miRNA nucleotides 2-8 (Brennecke

et al. 2005; Krek et al. 2005; Lewis et al. 2005; Lewis et al. 2003) and the perfect

Watson-Crick match to miRNA nucleotides 2-7, supplemented with an adenosine

opposite miRNA position 1 (Lewis et al. 2005).

Conservation of 7mer sites was assessed using a multi-genome alignment of 12

Drosophila species (Adams et al. 2000; Consortium 2007a; Consortium 2007b; Richards

et al. 2005). The phylogenetic distribution of each seed-match motif was used to calculate

the total branch-length, a measure of evolutionary distance, across which the motif was

conserved (Stark 2007a). Requiring perfect conservation across all of the available

species maximized confidence in predicted targets, defined as the fraction of sites that

were conserved above chance expectation, but also substantially reduced sensitivity (Fig.

7A-C). This trend extended to arbitrary subsets of the currently available species,

including subsets that have been used for other prediction efforts in flies (Brennecke et al.
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2005; Enright et al. 2003; Grun et al. 2005; Stark et al. 2003). Such loss of sensitivity is

partly attributed to artifacts in sequencing coverage, assembly, or alignment, whose

impacts on predictions increase with the number of genomes considered (Grun et al.

2005). Discarding the traditional requirement for perfect conservation within a species set

and replacing it with a branch-length requirement enabled confident predictions to be

reported in spite of the absence of the motif in particular genomes (Stark 2007a). The

confidence of miRNA target predictions increased with the total branch length and

approached a maximum, averaged over all conserved miRNAs, of 0.64 (Fig. 7A),

corresponding to a signal-to-noise ratio of 2.7:1. These improved predictions for the

expanded and revised set of miRNAs are available at targetscan.org.

For comparison, we used the same procedure to predict targets for the D.

melanogaster miRNAs as annotated in miRBase v8.1 (Griffiths-Jones 2004). By both

increasing the number of annotated conserved miRNAs and correcting the identities of

previously annotated miRNAs, our study increased the numbers of both miRNAs and

miRNA families with significantly conserved targets (confidence _ 0.5) by 1.7 fold (Fig.

7D). While 9292 miRNA-target gene pairs were unaffected by the miRNA annotation

additions and changes, 2484 were removed and 5475 were added, thereby changing the

predicted network of miRNAs and targets in D. melanogaster by 68% [(2484 +

5475)/(9292 + 2484)]. Of the 3424 unique genes predicted to be conserved targets of

miRNAs, 706 had conserved sites for only novel miRNAs. Conversely, 290 genes were

erroneously predicted to be conserved targets due to miRNA annotations that were

adjusted based on our sequencing data (Fig. 7E).
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The scope of miRNA targeting varied between those miRNAs broadly expressed

across many libraries compared to those expressed more narrowly, independent of the

relationship between breadth of expression and conservation discussed above. Of those

miRNAs conserved beyond the scope of the Sophophora subgenus, the narrowly

expressed miRNAs tended to have fewer predicted target genes (Fig. 7F, Wilcoxon rank-

sum test, p < .0015).

Discussion

Hairpin characteristics

The sets of miRNAs initially identified in nematodes, flies and mammals derive from

short hairpins, whereas many of those identified in plants derive from longer precursors

(Bartel 2004). Three somewhat longer exceptions have been noted [Drosophila mir-31b

(Aravin et al. 2003), C. elegans mir-229 (Ambros et al. 2003; Lim et al. 2003b), and C.

briggsae mir-72 (Ohler et al. 2004)], but the prevalence of short hairpin precursors has

seemed to justify limiting the length of the sequenced folded during the initial steps of

many prediction protocols (Grad et al. 2003; Lai et al. 2003; Lim et al. 2003b), including

the approach described here. Several protocols even explicitly evaluate the distance

between the predicted miRNA and miRNA* as a characteristic feature of miRNA

hairpins (Bentwich et al. 2005), again including the approach described here. Although

imposing these constraints likely boosts the specificity of miRNA prediction, our

sequencing results indicated that this comes at the cost of missing some miRNAs with

unusually long hairpins, particularly in Drosophila where we found three hairpins (mir-
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956, mir-989, and mir-997) with at least 80 nt separating the miRNA and miRNA*

strands (Fig. 4C-D, Table S2).

Our observation that metazoan miRNA precursors can be much longer than

previously recognized confirmed that minimal sequence or structural requirements are

imposed upon the loops of miRNA hairpins (Berezikov et al. 2005; Han et al. 2006; Lai

et al. 2003) but raised the question of why long miRNA hairpins are not more frequent in

animals. A large, open loop can lead to Drosha processing on the incorrect end of the

hairpin by mimicking the single-stranded RNA normally present at the base (Han et al.

2006). This opportunity for dead-end side reactions implies selective pressure for the

maintenance of a tight loop. Consistent with this idea, mir-956, mir-989, and mir-997

each exhibited extensive secondary structure in the segment connecting the miRNA and

miRNA* (Table S2). Deletions can tighten a loop even if they disrupt secondary

structure, making them more tolerable than insertions, which must be accompanied by

compensatory changes in order to maintain the tightness of the loop. Thus, miRNA

hairpins might be expected to shorten rather than lengthen over evolutionary time.

Another possibility is that shorter pre-miRNAs might be more suitable substrates for

downstream events such as nuclear export, and longer pre-miRNAs might only rarely

bypass these constraints.

The evolutionary origins of novel miRNA genes

High-throughput sequencing of miRNAs in D. melanogaster provided insight into the

origins of novel miRNA genes and how their origins might differ from those of protein-

coding genes. Generally, the first step in the emergence of a new gene is the duplication
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of all or part of an ancestral gene (Ohno 1970). A redundant copy of a gene eventually

faces one of three fates: the accumulation of mutations that render the copy functionless

(nonfunctionalization), the accumulation of mutations that confer a novel and

independently-selectable function (neofunctionalization), or, in cases where the ancestral

gene had multiple functions, the accumulation of complementary degenerative mutations

in both gene copies that specialize each to perform one of the parental functions

(subfunctinoalization) (Force et al. 1999). Protein-coding genes provide some examples

consistent with subfunctionalization and others consistent with neofunctionalization. We

observed examples of miRNA genes that were consistent with each of these models, and

also examples that appeared to be the products of de novo emergence.

The process of subfunctionalization first requires that an ancestral gene acquire

multiple functions. Mechanisms that could impart multiple functions on a miRNA locus

include imprecise processing that generates alternative miRNA 5' termini, like that

observed for mir-210, and transcription from both orientations with subsequent

processing of both pri-miRNAs, as observed for mir-iab-4. But perhaps the most

available mechanism for acquiring new functions is bringing the miRNA* into service.

MicroRNA* species are initially generated at an obligate 1:1 stoichiometric ratio

compared to mature miRNAs and to varying degrees are incorporated into RISC just like

their complementary counterparts, albeit at a generally lower frequency. They thereby

represent an easily accessible substrate for the evolution of novel functionality (Lai et al.

2004) (Fig. 8A). Examples of genes in which conservation data, read abundance, or

experimental data suggested that both strands could be functional included mir-10, mir-

iab-4 and mir-313. The miR-313* seed was only conserved within the melanogaster
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complex, which diverged from the yakuba and erecta complexes of the melanogaster

subgroup 6-15 million years ago (Lachaise et al. 1988). Although the melanogaster

complex species were insufficiently diverged to conclude selective maintenance of the

seed, the high abundance of the miRNA* implied the capacity to affect the expressions of

target messages.

If a locus with multiple miRNA products, such as one of those listed above, were

to duplicate, selective pressure would diminish for each daughter copy to continue

producing all miRNA species, and eventually each daughter copy might retain the ability

to produce just one of the functional miRNA products. This process might be in progress

for the vertebrate miR-O10 paralogs; miR-10-3p is maintained in all of the mir-10a, but not

the mir-10b, hairpins (Fig. 3).

Neofunctionalization requires that gene copies find novel selectable functions

after duplication and prior to loss of expressional competence. Because 5' heterogeneity

was very rare among the known miRNAs, the divergent processing of both the mir-2

paralogs and the tandemly duplicated mir-281 paralogs likely emerged after duplication

and thus represent attractive candidates for neofunctional origins. In the case of mir-281,

divergent processing not only shifted the seed of the ancestral miRNA, thereby

potentially altering its target specificity, but also changed the miRNA:miRNA* pairing

asymmetry, which significantly enhanced expression of the presumptive ancestral

miRNA* species (Supplemental Text). We speculate that future drift of the two loci, with

one increasingly specialized to produce a mature miRNA from the former star strand,

would result in two genes with common ancestry yet no recognizable sequence identity.
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Many pairs of apparently unrelated modem miRNA hairpins might have arisen

from common ancestors through the processes of subfunctionalization and

neofunctionalization. However, common descent is not always easy to identify, and the

two mechanisms can be difficult to distinguish from each other even when descent from a

common ancestor appears evident. For example, the mir-4, the three mir-9, and the mir-

79 loci appeared to have all derived from a common ancestor, as did the mir-5 and the

three mir-6 loci (Lai et al. 2004). However, in each of these cases, the structure of the

gene family tree was ambiguous.

Novel protein-coding genes derive from duplication and divergence of an

ancestral gene, and the active sites of their products generally evolve within the context

of the ancestral tertiary structures. For protein-coding genes, the requirements of

transcription, translation, protein folding, and protein function impose a myriad of

informational constraints, making the completely de novo evolution of novel protein-

coding genes highly improbable and therefore exceedingly rare. MicroRNAs, in contrast,

have much more limited requirements. They must be transcribed, and the subsequent

transcript must be capable of folding into a secondary structure that is competent for

Drosha/Dicer processing (Han et al. 2006). The secondary structure requirements

imposed on miRNA hairpin precursors are not excessively stringent, with a wide variety

of bulge distributions, hairpin lengths, and loop sizes tolerated among the miRNAs of any

given organism. The minimal informational requirements for miRNA-target interactions

make it likely that any expressed miRNA will have a physiological consequence,

enabling a young miRNA to find a selectively advantageous physiological role. Perhaps

the most difficult obstacle for the emergence of new functional miRNA genes would be
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the plethora of co-expressed messages with fortuitous sites in their 3 UTRs whose

expression would be dampened as the expression of the emergent miRNA became

consequential.

The genomic contexts of many miRNAs, including many of the youngest (most

narrowly conserved) miRNAs described here, suggested that the pliancy of the miRNA

processing machinery facilitates the emergence of new miRNA genes. Most derived from

introns or miRNA clusters. In either of those contexts, a miRNA gene can emerge from

otherwise unconstrained portions of pre-existing transcripts with little or no effect on the

other products of those transcripts, thereby circumventing the otherwise required de novo

acquisition of transcriptional competence. The varying extents of conservation observed

within the mir-972~979 cluster, which was preferentially expressed in the imaginal discs,

reflected a variety of ages for the miRNA genes of that transcript (Fig. 5B). The oldest

hairpins, mir-974/976/977, spanned the Drosophila genus, indicating that they are over

30 million years old (Beverley and Wilson 1984). In contrast, the other hairpins of the

same cluster appeared to have emerged after the D. melanogaster/simulans split,

indicating that they are less than 2.5 million years old (Lachaise et al. 1988). The

presence of hairpins with intermediate scopes of conservation, limited to the

melanogaster species group (mir-975/978) or complex (mir-972/973), implied a model of

functional miRNA genes emerging and presumably disappearing with some temporal

regularity from the context of this transcript.

Two other miRNA genes that appeared to have emerged after the D.

melanogaster/simulans split deserved special mention. The first, mir-984, expressed a

miRNA whose 6-nt seed matched that of the let-7 miRNA and thus could repress many
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of the same target mRNAs (Lewis et al. 2005). Despite their seed identity, mir-984 and

let-7 shared little sequence identity and had clearly distinct expression profiles (Fig. 6A,

Table S2), suggesting that mir-984 emerged de novo rather than as a paralog of let-7.

The second gene was mir-954, notable for being the first miRNA gene to be identified on

the dot chromosome of D. melanogaster, chromosome 4 (Fig. 5A). Portions of the

euchromatic chromosome 4 exhibit some heterochromatin-like properties such as

variegated expression of inserted reporter constructs, and two such sites of variegated

expression flank the mir-954 locus (Riddle and Elgin 2006).

The scope of miRNA genes and targets in flies

Our current tally of confidently identified mRNA genes in D. melanogaster stands at 148.

These include 74 of the previously annotated genes, 59 novel genes reported in this study,

and another 15 novel genes (mir-1003~1017) whose transcripts bypass Drospha

processing (Ruby et al. 2007). Forty-five of our top 47 computational predictions and 75

of our 100 predictions were either previously known or newly validated miRNAs (Fig. 1,

Table S1). Independent predictions from a parallel effort had even greater specificity

(Stark 2007b), which might be attributed to the use of different training sets; the set used

here was smaller and included miRNAs annotated in miRBase but whose authenticity is

now in doubt (miR-280, and -289), as well as other miRNAs whose 5' termini appear to

have been incorrectly annotated (miR-2a-2, -33, -274, -284, and -303). The high

specificity of both approaches implied that very few highly conserved miRNAs remain to

be discovered in flies. However, most of the miRNAs identified by our sequencing were

missed by both prediction methods because these miRNAs were insufficiently conserved.
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Because the less broadly conserved fly miRNAs tended to be expressed at lower levels, it

was impossible to use the cloning results to estimate a lower limit on the overall

specificity of the computational gene predictions and thereby derive a meaningful upper

limit on the number of miRNAs remaining to be identified in flies. Reliable upper limits

on miRNA gene numbers face similar constraints in mammals, worms, and plants (Bartel

2004; Rajagopalan et al. 2006; Ruby et al. 2006).

The implication that there are many more miRNAs to be discovered in flies but

almost none of them will be widely conserved, relates to the observed correlation

between miRNA conservation and breadth of expression (Fig. 6D), which was likely

understated here. All of the libraries from which small RNAs were sampled, with the

exception of the S2 library, comprised a conglomerate of cell types, and many of the

libraries surveyed thick slices of developmental time. The stronger direct correlation

between conservation and total magnitude of expression that was observed here and in

other systems may imply that the scarce miRNAs were actually expressed in even

narrower contexts that contributed only a small fraction to their encompassing libraries.

Thus, the remaining undiscovered miRNAs will inhabit niches of increasingly restricted

physiological and evolutionary scopes.

Following that conclusion, another observation becomes relevant: given a

consistent scope of conservation, the number of predicted targets decreased with more

narrow breadth of miRNA expression (Fig. 7F). The regulatory reach of miRNAs, as

indicated by the abundance of genes with conserved miRNA target sites, is likely quite

vast. However, the as-yet-undiscovered miRNAs appear to have remained hidden thanks

to the narrow scopes of their expression. Consequentially, the set of consequential
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miRNA targets will likely grow at a diminishing rate relative to the catalogue of fly

miRNAs, and our overall picture of the biological reach of miRNAs will likely not

change substantially. This being said, the biology of some of the as-yet-undiscovered

miRNAs is still likely to be quite interesting. As illustrated by lsy-6 in C. elegans

(Johnston and Hobert 2003), a single miRNA expressed in only a few cells and acting on

a limited set of targets can make quite a difference to the animal.

Methods

MicroRNA gene prediction is described in Supplemental Text.

Library construction and sequencing. Total RNA was extracted from Canton S D.

melanogaster and from S2 cells using Trizol. Embryos were collected using a population

cage whose food had been changed regularly to minimize egg withholding. Staged

collections of 0-1 hr, 2-6 hr, 6-10 hr and 12-24 hr embryos were obtained by culturing at

25oC. First instar larvae were obtained by aging a 0-12 hr embryo collection on a plate for

24 hours. Wandering third instar larvae were collected from vial cultures and rinsed

several times in PBS to remove excess food. Total imaginal discs, brains and salivary

glands were isolated from wandering instar larvae to make a pooled "disc" preparation.

Separate collections of 0-1 day, 1-2 day and 2-4 day pupae were prepared and pooled to

make a pupal library. Equal numbers of 1- to 5-day-old adult female and male flies were

frozen at -80oC, vortexed, and sieved onto dry ice blocks to obtain adult head and body

fractions. S2 cells were grown in Schneider's medium and rinsed several times in PBS

prior to extraction. A cDNA library was generated from each RNA sample as described
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(Lau et al. 2001) and was prepared for high-throughput pyrophosphate sequencing

(Margulies et al. 2005) as described for run 4 of Ruby et al. (2006). Each library

underwent a single sequencing run except for the 2-6 hr. embryo library, which

underwent two sequencing runs. A total of 2,514,465 reads were generated. The

processing of sequencing data is described (Supplemental Text).

Expression analysis is described in Supplemental Text.

Target Prediction and Analysis. For each miRNA we defined two 7mer motifs that

corresponded to the two types of 7mers matching the seed region (the Watson-Crick

match to miRNA nucleotides 2-8 and the Watson-Crick match to miRNA nucleotides 2-7

followed by an A). All occurrences of the two motifs were identified within annotated D.

melanogaster 3' UTRs from FlyBase Release 4.3 (Crosby et al. 2007), and the

conservation of each of these sites was assessed using whole-genome alignments of D.

melanogaster and 11 additional Drosophila species (Schwartz and Pachter 2007). To

allow for alignment errors or gaps, sites were scored as conserved if they fell within 50 nt

of the aligned site in each informant species. For each site, evolutionary conservation was

evaluated as the total branch length corresponding to its species distribution as described

(Stark 2007a). A site was considered conserved if this branch length representing the

subset of species containing the site met the specified cut-off. To prevent double-

counting of 8mer sites that contained both of the two 7mers, target-prediction results

reported non-overlapping sites, obtained by first removing sites that did not meet the
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specified conservation cut-off and then removing overlapping sites, such that the

maximum possible number of non-overlapping sites was retained.

To estimate the conservation expected by chance, we repeated the target-

prediction analyses using control motifs and compared the conservation frequencies of

their sites with the conservation frequencies of sites obtained for the authentic miRNA.

For each miRNA, 9 controls were generated for each of the two motifs. For the motif

matching miRNA nucleotides 2-8, each control had equal nucleotide composition and a

similar number of matches in D. melanogaster 3' UTRs (deviation < 15%) as the

authentic motif. The last six nucleotides of these controls were each extended by an A to

obtain the nine controls for the other motif. Signal-to-noise ratios were calculated for

each individual miRNA by dividing the frequency of conservation for the authentic sites

by the average frequency of the control sites. Signal-to-noise ratios for all miRNAs

combined were calculated in the same manner, aggregating all sites for all miRNAs under

consideration and their controls. In each case, the number of conserved sites expected by

chance was determined by multiplying the total number of sites by the control

conservation frequency. Confidence was defined as the number of conserved sites above

those expected by chance (i.e., above noise) divided by the total number of conserved

sites. Confidence reflected the likelihood of a single conserved site being under selection.

For analysis of expression breadth versus number of predicted targets, miRNAs

whose conservation did not extend beyond the Sophophora subgenus were not

considered. A set of narrowly expressed miRNAs was defined as those with >70% of

their library-normalized reads deriving from a single library, and a set of broadly

expressed miRNAs as those with no more than 25% of their library-normalized reads
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deriving from a single library. Each set was collapsed into families based on their 6 nt

seed, resulting in 17 narrowly expressed families and 19 broadly expressed families. The

number of predicted targets was determined for each family in each set by requiring

targets to be conserved across 70% of the available branch length. In cases where the

number of predicted target genes differed among family members because of differences

at microRNA nucleotide 8 (which changes one of the two 7mer sites), the largest number

of predicted target genes for the family was used.

Figure legends

Figure 1. Performance of miRNA gene prediction.

(A) The summed pairwise scores across all 15 two-species comparisons for each miRNA

hairpin candidate. Those candidates overlapping the training, test, newly identified, and

unvalidated sets of miRNA hairpins are colored as indicated in the key (right) and listed

(Table S 1).

(B) The candidate loci, following strand collapse and exon filtering, depicted as in (A).

The top 100 candidates, which had scores above 698, were carried forward as the set of

computational gene predictions (Table S1). Of the remaining candidates, only a few

were likely to be authentic miRNAs.

(C) Specificity of the 100 predictions. Plotted are the number of predicted loci that were

validated, the number that correctly identified the strand of the miRNA gene, and the

number that correctly identified the miRNA 5' end (Table S 1), colored as in (A).
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(D) The overlap of the 100 predicted miRNA loci with the training set, test set, and newly

identified miRNA loci. Two loci from the training set and two from the test set were not

validated by sequencing (red).

Figure 2. Correspondence between previously annotated miRNA hairpins and sequenced

miRNAs.

(A) Overlap between previously annotated miRNA hairpins and the total set of 133

hairpins of canonical miRNAs supported by our high-throughput sequencing (Table S2).

Mirtronic loci are described elsewhere (Ruby et al. 2007).

(B) Small RNAs derived from the mir-7 hairpin. A portion of the mir-7 transcript is

shown above its bracket-notation secondary structure, mature miRNA annotation from

miRBase v8.1 (Griffiths-Jones 2004) flanked by asterisks, and sequences from the

current study. For each sequence, the number of reads giving rise to that sequence and the

number of loci to which the sequence maps in the D. melanogaster genome are shown on

the right. Highlighted are the most abundant sequences corresponding to the miRNA

(red), miRNA* (blue), intervening loop (green), and fragment flanking the 5' Drosha

cleavage site (orange, Supplemental Text). Analogous data for all previously annotated

D. melanogaster miRNAs is provided (Table S2).

(C) The predicted hairpin structure of the mir-7 hairpin, colored as in (B). Lines indicate

inferred Drosha and Dicer cleavage sites.

(D) Small RNAs derived from the mir-iab-4 and mir-iab4as hairpins, displayed as in (B).

(E) The predicted secondary structure of the sense mir-iab-4 hairpin precursor, formatted

as in (C).
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(F) The predicted secondary structure of the mir-iab-4 reverse complement, mir-iab4as,

formatted as in (C).

Figure 3. Expression and conservation of mir-10.

(A) The sequence and bracket-notation secondary structure of the mir-10 hairpin,

highlighting the mature miR-10-5p (blue) and the mature miR-10-3p (red), with read

abundance along the length of the sequence plotted above and orthologous hairpins

aligned below. Nucleotides differing from the D. melanogaster identities are in grey.

Vertical lines indicate the edges of the 6-nt seed of each mature RNA.

(B) The mir-10 hairpin predicted secondary structure, colored as in (A). Horizontal lines

indicate the inferred Drosha and Dicer cleavage sites.

Figure 4. Newly identified miRNAs.

(A) The sequence and bracket-notation secondary structure of the mir-988 hairpin,

highlighting the miRNA (red) and the miRNA* (blue), with read abundance along the

length of the sequence plotted above and orthologous hairpins aligned below

(nonconserved nucleotides in gray) (Consortium 2007a; Consortium 2007b). Vertical

lines indicate the inferred Drosha and Dicer cleavage sites. Analogous data for all newly

identified D. melanogaster miRNAs is provided (Table S2).

(B) The predicted secondary structure of the mir-988 hairpin, colored as in (A).

Horizontal lines indicate the inferred Drosha and Dicer cleavage sites.

(C) The unusually large hairpin of mir-989, colored as in (A).
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(D) The sequence and bracket-notation secondary structure of the mir-989 hairpin, with

coloring and read-abundance display as in (A). Conservation across the length of the

hairpin is shown below as a histogram, with bar depth indicating for each nucleotide the

number of orthologs from the organisms shown in (A) with that nucleotide conserved.

Figure 5. Genomic landscape of miRNA genes.

(A) The distribution of miRNA genes and clusters across the D. melanogaster genome,

with newly identified miRNAs indicated (red). Euchromatic portions of the genome are

drawn to scale, with (+) strand annotations marked above each chromosome and (-)

strand annotations marked below. MicroRNA gene clusters, listed together (with gene

numbers separated by slashes), were each defined as series of miRNA loci on the same

strand of a given chromosome with no intervening gaps greater than 10 kb.

(B) Genomic arrangement and conservation of members of the mir-972~979 cluster.

Detection of an ortholog in the specified species is indicated (black box).

(C) Genomic arrangement of the mir-310 cluster. Expression profiles among the

constituent miRNAs of each labeled sub-cluster indicated that the two sub-clusters were

expressed independently (Fig. 6E).

Figure 6. Expression of D. melanogaster miRNAs.

(A) The expression profiles of the D. melanogaster miRNAs across the ten libraries (left)

and total level of expression (right). For each library, miRNA reads are normalized to the

total reads deriving from miRNA hairpins in that library. Increasing red color intensity

indicates an increasing percentage of normalized reads deriving from that library. Read
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counts and normalized counts for each miRNA in each library are provided (Tables S3

and S4). The summed normalized expressions across all ten libraries are shown on the

right; units are number of miRNA reads per 100,000 total miRNA hairpin reads per

library. Tree and image on left were generated using publicly available software packages

Cluster (Eisen et al. 1998) and MapleTree (L. Simirenko).

(B) The expression profiles following normalization of four miRNAs whose profiles can

be compared to those determined by stage-specific northern blot (Aravin et al. 2003).

(C) The relationship between miRNA conservation and magnitude of total expression.

MicroRNAs were separated into two groups based on whether they were conserved

(Cons.) or not conserved (Not cons.) beyond the subgenus Sophophora. Black bars

indicate the median expression for each category; red bars indicate the 25 t and 75th

percentiles. Total expression is defined as in (A).

(D) The relationship between conservation and breadth of expression, portrayed as in (C).

The y-axis indicates the maximum percentage of expression for a given miRNA derived

from a single library.

(E) The relationship between the genomic distances separating miRNAs and the

correlation of their expressions. Each point represents a pair of miRNAs from (A),

including all pairs from the same strand of the same chromosome, but excluding those

that can be attributed to multiple genomic loci. The x-axis indicates the distance between

the mature miRNAs in nucleotides. The y-axis indicates the Pearson correlation

coefficient between the normalized expression patterns of the two miRNAs, as displayed

in (A). The red dots represent miR-991 or miR-992 paired with members of the miR-

178



310~313 cluster, and miR-283 paired with miR-12/304. Despite their proximity, these

subclusters appeared to be expressed independently.

Figure 7. MicroRNA target predictions.

(A) Confidence of miRNA target prediction versus phylogenic branch length over which

sites were conserved in the Drosophila genus. Confidence increased with branch length

within 12 Drosophila species (blue line). Confidence versus branch length values for the

following fixed sets of species, strictly requiring conservation in every species, are shown

as dots of the indicated colors. Green: seven species used by Grun et al (Grun et al. 2005)

(D. melanogaster, erecta, yakuba, ananassae, pseudoobscura, mojavensis, virilis).

Orange: members of the Sophophora subgenus (D. melanogaster, sechellia, simulans,

erecta, yakuba, ananassae, persimilis, pseudoobscura, willistoni). Red: members of the

melanogaster subgroup (D. melanogaster, sechellia, simulans, erecta, yakuba,

ananassae). Purple: D. melanogaster and pseudoobscura only (Enright et al. 2003; Stark

et al. 2003).

(B) Sensitivity of target prediction, shown as the average number of sites per conserved

miRNA, versus confidence threshold. Colored as in (A). Note that strict conservation

requirements cannot accommodate reduced confidence thresholds, as illustrated by

dashed lines.

(C) Average number of retained target sites per miRNA for each analysis depicted in (A)

and (B) at a confidence threshold of 0.5, colored as in (A).
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(D) The number of miRNAs and miRNA families with targets above a confidence

threshold of 0.5. Numbers for miRNAs from miRBase v8.1 (Griffiths-Jones 2004) are

compared to those for our expanded/corrected set of miRNA annotations.

(E) Change to the scope of the predicted miRNA-target network (left) and set of genes

predicted to be targeted by miRNAs (right) as a result of miRNA annotation additions

and changes. Target-miRNA pairs and target genes identified based on miRBase v8.1

annotations (Griffiths-Jones 2004) are in blue; those based on the expanded/corrected set

of miRNA annotations provided by the current study are in red.

(F) Specifically expressed miRNAs had fewer predicted targets than did broadly

expressed miRNAs. Sets of the most broadly and narrowly expressed miRNAs were

collapsed into families based on 6-nt seeds, including only miRNAs conserved beyond

the Sophophora subgenus. The number of predicted targets for each family was set to the

maximum number of predicted targets of any family member. The median (black bars)

and 25" and 7 5 th percentiles (red bars) of the number of targets per miRNA family are

indicated for each set.

Figure 8. Three models for the genesis of miRNA genes. Blue bars represent ancestral

miRNAs; orange bars represent novel miRNAs. (A) An example of subfunctionalization:

a miRNA* acquires function; following gene duplication, one daughter copy maintains

the function of the original miRNA while the other maintains the function of the former

miRNA*. Another example of subfunctionalization begins with heterologous 5'

processing. (B) Neofunctionalization: a miRNA gene duplicates; one daughter copy

maintains the function of the original miRNA while the other accumulates mutations that
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confer novel functionality to either the former miRNA or miRNA*. (C) De novo gene

emergence: an unselected portion of a pre-existing transcript, such as an intron or part of

a pri-miRNA, acquires the capacity to fold into a hairpin that can be processed into a

mature miRNA. That product is selectively maintained due to the fortuitous benefit of

gene silencing guided by its seed.
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1. Newly identified miRNAs in D. melanogaster
Reads Conserved In Other family members
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Figure 2
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Supplemental Text

Refinement of prior miRNA annotations

For 37 of the 74 miRNA genes that were previously annotated in Drosophila

melanogaster (Griffiths-Jones 2004) and validated by our reads, the distribution of reads

across the hairpin suggested refinements to the annotation of the mature miRNA (Table

S2). In 12 cases there was discrepancy at the miRNA 5' terminus. For six of these mature

species (miR-33,-263a, -274, -282, -283, -284), the annotated 5' termini were predictions

based on conservation (Aravin et al. 2003; Grad et al. 2003; Lai et al. 2003). In each of

these cases, the annotated miRNA 5' end was 1-4 nucleotides upstream of the observed

5' end (Table S2). These six miRNAs have been experimentally supported by RNA blots,

but there has been no previous attempt to map their 5' termini (Aravin et al. 2003; Grad

et al. 2003; Lai et al. 2003), and thus discrepancies between the annotated and actual

sequences were expected. The 5' end of miR-303 has been based on a single read (Aravin

et al. 2003); our larger set of reads contained ~50-fold more reads with a 5' terminus

offset by 2 nt in the 3' direction. In the case of miR-87, the total number of reads from

our dataset matching the hairpin was insufficient to challenge the current 5' terminus

annotation (Table S2).

As with mir-10 (Main Text), most reads matching the mir-313 hairpin were from

the arm opposing the previously annotated miRNA. The original annotation for miR-313

shared a 5' end with 74 reads from our dataset, whereas the star species gave rise to 392

reads sharing a common 5' end. In contrast to miR-10, however, conservation criteria did

not support function of the most abundantly sequenced species. It was not conserved even



in the closely related D. yakuba or D. ananassae, whereas the miRNA was highly

conserved and shared a seed with five other conserved miRNAs. This scenario resembled

that observed for Arabidopsis miR403 (Rajagopalan et al. 2006) and supported either the

idea that the read frequency does not always indicate the more abundant species, or the

idea that the less abundant species is occasionally the functional one.

For miR-210, an additional case with discrepancy at the 5' terminus, the reads

that matched the hairpin suggested that two mature miRNAs are generated from the same

arm of the hairpin (miR-210.1 and -210.2, Main Text).

Other miRNAs with revised 5' termini included those in the miR-2 group. D.

melanogaster has five annotated mir-2 hairpins: mir-2a-1, mir-2a-2, mir-2b-1, mir-2b-2,

and mir-2c. The mature miR-2a and miR-2b miRNAs were identified by cloning and

sequencing, whereas miR-2c had been predicted based on similarity to the other two

(Aravin et al. 2003; Lagos-Quintana et al. 2001; Lai et al. 2003). Our reads confirmed

expression from all five hairpin precursors. Due to the high similarity of these five

hairpins, reads from the miRNA arm of the hairpin whose sequences could be attributed

uniquely to a single hairpin were scarce, but when considering all the data together,

including the dominant miRNA* species from each hairpin, we concluded that each of

these hairpins generates a single preferred miRNA:miRNA* duplex, and that the 5' ends

of miR-2a-2 and miR-2c are offset from their prior annotations by two nucleotides in the

3' direction (Table S2).

The processing of mir-281-1 versus mir-281-2 appeared similarly diverged. These

two hairpins, likely the result of a tandem duplication, are within 200 bp of each other

(Aravin et al. 2003; Lai et al. 2003). All of the reads from the annotated miRNA strands
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matched both hairpins. Two populations of reads supported two dominant 5' termini.

Analysis of the 3' overhangs left by reads from the miRNA* arm of the hairpins

indicated that the reads with the original 5' annotation should mostly be attributed to mir-

281-1, whereas the shifted reads should be attributed mostly to mir-281-2. Moreover, in

this scenario, the miR-281-2* reads outnumbered the miRNA reads attributed to this

hairpin (177 to 90), a result consistent with the asymmetry guidelines for loading of the

silencing complex (Schwarz et al. 2003). Nonetheless, the numbers were not far from

each other, and both arms of the mir-281-2 hairpin were highly conserved, suggesting

that either or both might have conserved function. Accordingly, we annotated the RNAs

from this hairpin as miR-281-2-5p and miR-281-2-3p, respectively.

MicroRNA biogenesis in flies

As in nematodes (Ruby et al. 2006), examining the multitude of reads arising from the

previously annotated miRNA hairpins provided insights into the specificity and precision

of Drosha and Dicer processing (Table S2). Of the 117 miRNA hairpins with reads from

the miRNA* strand and unambiguously defined miRNAs (mir-2, -210, -281 hairpins

excluded for reasons discussed above), 96 of the most abundant miRNA* 3' ends had

precise 2-nt overhangs relative to the miRNA 5' ends. When considering all the reads

from the miRNA* strand of the 117 hairpins, 83% exhibited 2-nt 3' overhangs relative to

the miRNA 5' ends. Of the 21 hairpins whose most abundant miRNA* 3' termini did not

overhang by exactly 2 nt, 13 had 10 or fewer miRNA* reads, raising the possibility of

insufficient sampling as an explanation for their apparent offsets.
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For all ends on both arms of the hairpin, heterogeneity that extended rather than

shortened the mature product comprised a sizable fraction (35.8%) of all heterogeneity.

These reads whose ends extended further than the most abundant ends revealed

misprocessing by Drosha or Dicer, whereas those that shortened the mature product could

be attributed to either misprocessing or degradation. As reported in other species (Li et al.

2005; Ruby et al. 2006), untemplated nucleotide addition also contributed to a minor

fraction of 3' heterogeneity, and was observed for 108 of the 131 mature miRNA species.

Whereas mature miRNAs were extended by a single nucleotide with an efficiency of only

3.2%, the efficiency of single nucleotide extension increased to 14.3%, 15.6%, and

16.7% for addition of a second, third, and fourth nucleotides, respectively, suggesting

weak but detectable processivity for the untemplated terminal-transferase activity. The

preferred untemplated base was adenine, representing 60.0%, 85.5%, 83.6%, and 74.3%

of the identities in each of the first four positions, respectively.

The 5' ends of both the miRNA and miRNA* species were more homogenous

than the 3' ends; also, the 5' end of the miRNA was more consistent than the 5' end of

the miRNA*. Excluding the hairpins with reads of ambiguous origin described above

(mir-2, -210, -281), the 5' ends were 98.7% identical for miRNAs (98.1% and 98.9%

identical for miRNAs deriving from the 5' and 3' arms of the hairpin, respectively) and

94.6% identical for miRNA*s (92.8% and 95.2% identical on the 5' and 3' arms,

respectively). The 3' ends were 70.2% identical for miRNAs (58.7% and 74.6% identical

on the 5' and 3' arms) and 84.0% identical for miRNA*s (79.0% and 85.7% identical on

the 5' and 3' arms). Thus, the miRNA 5' ends were more consistent than the miRNA* 5'

ends, and the miRNA* 3' ends were more consistent than the miRNA 3' ends, regardless
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of which enzyme generated them. This trend held when examining only the heterogeneity

that lengthened the small RNAs (variants with extra 5' nucleotides were 4.5-fold more

abundant for the miRNA* than for the miRNA when each was normalized to the number

of reads with the most common 5' end; 3.8-fold and 5.2-fold for miRNAs on the 5'and 3'

arms, respectively), and thus was not attributable purely to degredation. The heightened

precision of either enzyme when it defined the miRNA seed implied that Dicer does not

simply measure from the site of the Drosha cleavage and suggested that additional

determinants must be employed when needed to more accurately define Dicer cleavage.

Similar conclusions arise from the sequencing data in nematodes (Ruby et al. 2006).

In addition to the miRNA and miRNA* species, other short RNA byproducts of

miRNA processing with 5' monophosphates and 3' hydroxyl groups (required by our

library construction protocol) were sometimes observed. Hairpin loop-containing

sequences that connect the miRNA and miRNA* species prior to Dicer cleavage were

sometimes observed at a low frequency (Fig. 2, Table S2). In addition, thirteen of the

previously annotated miRNA hairpins (mir-2a-1, -2b-2, -3, -4, -5, -6-2, -7, -9a, -13b-2, -

277, -279, -283), as well as seven of the novel miRNA hairpins (mir-190, -964, -974, -

976, -977, -988, -997) gave rise to reads flanking the 5' end of the pre-miRNA (Table

S2). These 170 reads were more homogenous at their 3' ends than at their 5' ends, with

the majority of 3' ends defined by the inferred Drosha cut. Their presence implied a role

for 5'-"3' exonuclease in the degradation of pri-miRNA processing byproducts.

Accordingly, the eukaryotic cytoplasmic 5'-3' exonuclease Xrnlp and its nuclear

isozyme Ratlp are 5' monophosphate-dependent (Johnson 1997; Stevens 1980). Only
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three reads were observed flanking pre-miRNA 3' ends (mir-6-2, -11, -314), and the 5'

ends of two of those matched the dominant inferred Drosha cleavage site.

Supplemental methods

MicroRNA gene prediction. For each of six Drosophila genomes (melanogaster,

ananassae, pseudoobscura, mojavensis, virilis, and grimshawi) (Adams et al. 2000;

Consortium 2007a; Consortium 2007b; Richards et al. 2005), RNAfold (Hofacker et al.

1994) was used to predict candidate hairpins from across the entire genome by folding

110-nt windows, advanced by 10-nt increments along each strand. Windows with a total

calculated folding energy < -18 kcal/mol were split into individual hairpins, and those

with at least 20 predicted base pairs were retained as candidates. Forked hairpins were

permitted provided that the longest forked segment contained no more than five base

pairs. In the cases of D. melanogaster and D. pseudoobscura, genomic segments

annotated as repetitive and >60 nt long (Grumbling and Strelets 2006) were not folded,

but folding windows were allowed overlap with such segments by up to 30 nt.

Candidate hairpins were evaluated based on 35 features (x1 - x35), each of which

could have any from a set of pre-determined values associated with it. Features were

treated as either 'quantitative' or 'dimensionless'. Quantitative features were properties

whose values were numerical and could be placed in bins of arbitrary size. For each

hairpin evaluated, the feature value associated with that hairpin was the appropriate bin.

Bins were continuous, and in cases where values could extend beyond the scope of the

defined bins, the counts were assigned to the edge bins. Dimensionless features had

values that were either non-quantitative or strictly Boolean. These features required that
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no hairpin could return either an intermediate value or a value outside the scope of the

pre-determined possibilities. For each feature xi, for each possible value xi, a single

pseudocount was added for each value in accord with Laplace's rule, and the true counts

were the number of hairpins in the given set with the given value for the given feature.

For quantitative features, counts were also smoothed across bins by distributing 12.5% of

a bin's counts to each adjacent bin, twice. The process of training determined log-odds

scores for each value of each feature by comparing the value's foreground (training set)

frequency to its background (candidate set) frequency:

Siv = log2( p(Xiv I foreground) / p(xiv I background))

where Siv was the score assigned to feature value xiv, and p(xiv I set) was the probability

(frequency) of feature value xiv in a given set of hairpins.

The D. melanogaster training set comprised 37 randomly-selected miRNA

hairpins from the miRBase v8.1 annotations (Griffiths-Jones 2004). The D.

pseudoobscura training set comprised the miRBase-annotated orthologs of the D.

melanogaster training set. The training sets for the other species were determined through

manual inspection of top Blast results using the D. melanogaster training set as queries

and the total set of candidate hairpins from the target organism as the database (Altschul

et al. 1990). Foreground values were determined in reference to the annotated miRNA 5'

terminus. Background values were determined in reference to a randomly selected 5' end

from anywhere on the hairpin. A randomly selected set of 10,000 hairpins was used to

generate background frequencies in each instance of training.

Features x,_3 were quantitative. x, described the number of nucleotides separating

a candidate miRNA from its presumed miRNA* in single-nucleotide bins ranging from 0
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to 35. x2 described the asymmetry of bulges and internal loops. At each unpaired

nucleotide or segment within the portion of the hairpin bounded by the candidate

miRNA, the absolute value of the difference between the numbers of nucleotides on

either side of the bulge or internal loop was added to a sum. Bins were integers ranging

from 0 to 9. x3 described the sequence complexity of the full candidate hairpin. The

hairpin sequence was divided into words as described (Lempel and Ziv 1976), and the

complexity measure was defined as log4( 4A / (B - 2A)2), where A is the length of the

longest word and B is the length of the entire sequence. This system was an ad-hoc

attempt to arrive at a length-independent complexity measurement, which differed from

the definition of information content described (Lempel and Ziv 1976). Bins were

integers ranging from -2 to 5.

Features x4-35 were dimensionless. x4 and x5 described the nucleotide identities at

miRNA positions 1 and 9, respectively. These positions are both outside of the targeting-

relevant 'seed', and both have been observed to show preference for U (Lau et al. 2001;

Lewis et al. 2005). Values included each of the four nucleotides plus 'N', which indicates

an uncalled base and is used in genome assemblies to connect mapped but non-

overlapping contigs. x625 described the base pairing of mature miRNA nucleotides at

positions 1-20; these pairings will persist following liberation of the miRNA/miRNA*

duplex from the hairpin precursor. Bins were Boolean indications of a base pair predicted

at the given position. x26-35 described base pairing for nucleotides outside of the

miRNA/miRNA* core duplex, and were numbered based on position in the hairpin

relative to the miRNA/miRNA*. Two positions were evaluated towards the loop and
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eight towards the base of the stem. All of the structure-based features made use of the

predicted minimal free-energy structure generated by RNAfold (Hofacker et al. 1994).

For each candidate hairpin, a score was determined for each possible position of a

22-nt miRNA by summing the scores for features x1_35, and the hairpin was assigned the

score of the maximal scoring 22-nt candidate. All training and candidate set hairpins were

scored to generate foreground and background score distributions, respectively. The

standard deviation of the foreground distribution was calculated, and a cut-off score was

picked half a standard deviation below the minimum foreground score. Candidate

hairpins scoring below the cutoff were eliminated, and the process was repeated with the

more restricted background set. D. melanogaster and D. pseudoobscura candidates were

each put through five rounds of such elimination; candidates from the remaining genomes

were each put through three rounds.

At this point, the definition of a candidate changed from a hairpin to a pair of

putatively orthologous hairpins. For each pair of organisms, candidate pairs were

identified by assigning the best Blast hit (window size, 11 nt; mismatch penalty, -1) to

each query hairpin. Blast searches were performed in both directions, with each set of

candidates serving once as the query set and once as the database. A pairwise alignment

was generated for each candidate and used to arrive at a set of candidate miRNA 5'

coordinates. A pair of coordinates, corresponding to positions in each of the hairpin

sequences, was generated for each position in the alignment. The predicted 5' end was

the pair of coordinates that produced the maximum score for the candidate.

Two-species candidate sets were used for training and scoring as described above,

except with 25 additional features (features x36 58). x36 55 were dimensionless, and
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described the conservation of each miRNA nucleotide as a Boolean. Positions 1 and 9

were not considered here because their identities were being scored. Positions to be

compared were determined relative to the miRNA 5' ends rather than based on position

in the pairwise alignment. x56 was quantitative, and described the relative conservation of

the miRNA versus the sequence connecting the miRNA and miRNA*. The arithmetic

difference between the fraction of the miRNA conserved minus the fraction of the

connecting sequence conserved was binned over intervals of .05 extending from -1 to 1.

The 5' nucleotide identities for hairpins from each organism were considered separately;

while x45 described identities in the first hairpin of each pair, x57-58 considered identities

in the second hairpin. All of the other features considered fot hairpin candidates were

also considered for ortholog pair candidates. x6-35 returned a Boolean True only if the

given position formed a base pair in the same direction in both hairpins (i.e., only if the

"(" or ")" in the bracket notation were the same). The quantitative features x1_3 used the

average of the values returned by the two hairpins.

Each set of candidates was put through four rounds of scoring and elimination as

described above. Surviving candidate hairpins were defined as those hairpins for which a

complete network of orthologs could be constructed across all six species examined. For

an example using three species, if hairpins A, B, and C were from D. melanogaster, D.

pseudoobscura, and D. virilis, respectively, then the requirements for A to be a surviving

D. melanogaster candidate were that A and B had survived as an ortholog pair, A and C

had survived as an ortholog pair, and B and C had survived as an ortholog pair. It would

not have been sufficient for hairpins B and C to have each survived the

D.pseudoobscura/D.virilis eliminations paired with other hairpins. Those D.
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melanogaster hairpins with complete networks were ranked according to the sums of

their networks' first-round pairwise scores. Candidates with multiple complete networks

were assigned the maximum score from those networks. Some candidate overlapped; in

cases with more than 80% overlap, the overlapping candidate with the lower score was

eliminated. Inspection of the surviving candidates revealed 62 of obviously low sequence

complexity, indicating a failure of the complexity score to adequately eliminate simple

repeats. These 62 were removed manually to generate the final list of 565 candidate

hairpins (Table S1 and Fig. 1A). Consolidating hairpins from opposite DNA strands and

filtering out those overlapping with annotated exons yielded the final list of 327

candidate loci, the top 100 of which where carried forward as the computational

predictions (Table S1 and Fig. 1B-C).

Library construction and sequencing. Libraries of cDNAs derived from small RNAs

were prepared and sequenced as described in the methods of the Main Text. As

previously described (Ruby et al. 2006), sequence reads were processed in four steps.

First, perfect matches to the 9-nt segments of each linker that immediately flanked the

small RNA-derived sequence were found in 2,075,098 reads; the remaining reads were

discarded. Second, each sequence was compared to annotated D. melanogaster miRNA

hairpins (miRBase 8.1) (Griffiths-Jones 2004), and those sequences _10 nt and with

perfect matches over their entire length were set aside (224,398 reads). Third, each

sequence was compared to the D. melanogaster 18S, 5.8S, 2S, and 28S rRNA genes

(Grumbling and Strelets 2006), and those with perfect matches over their entire length

were set aside (511,088 reads). Sequences with ambiguous calls (Ns) were also discarded
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here. Fourth, the remaining sequences were compared to the D. melanogaster genome

(Adams et al. 2000) using Blast (Altschul et al. 1990), and those with perfect matches

across their entire length were retained (409,195 reads). Up to 50 perfect-match loci were

recorded for each query. The remaining sequences that did not perfectly match the

genome were queried later for examples of untemplated nucleotide addition. Sequences

that were found to match miRNA hairpins were also compared to the rest of the genome

so that the uniqueness of those matches could be assessed.

Expression analysis. For each library, the total number of miRNA hairpin-matching

reads was calculated as a normalization factor. For each unique sequence, the number of

perfect matches to miRNA hairpins was divided by the number of perfect matches to the

D. melanogaster genome and multiplied by the number of reads that gave rise to that

sequence. The number of reads matching a particular mature miRNA was calculated

similarly, but only sequence matches that overlapped the center of the dominantly

abundant mature miRNA sequence contributed to the miRNA tally. Each miRNA tally

from each library was normalized to the total number of miRNA hairpin-matching reads

for that library, and those normalized tallies were used for both relative and total

expression analysis..

Relative expression analysis sought to determine the expression preferences of

individual miRNAs across the biological contexts represented by our cDNA libraries.

Here, the normalized tally of a particular miRNA in a particular library was divided by

the sum of normalized tallies for that miRNA across all libraries. The result was an

expression profile centered at 0.1, with values ranging from 0 to 1. The application
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Cluster was used for hierarchical clustering of miRNAs using average linkage correlation

(Eisen et al. 1998).

Total expression analysis sought to evaluate and compare the magnitudes of

expression for individual miRNAs. The normalized tallies of each miRNA across all

libraries were summed and multiplied by 106. The resulting value corresponded to the

number of reads for a given miRNA per million reads matching miRNA hairpins,

assuming an equal contribution by all ten libraries. It was only a rough measure of total

expression because the various libraries did not proportionally represent all the tissues

and stages of the flies. Comparisons of miRNA expression within a given library were

more accurate, but with the exception of the S2 cells and early embryos, comparisons

within a library were still confounded by a complex mixture of tissues.
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Chapter 5

Future directions

The function of 21U-RNAs

The upstream motif associated with 21U-RNAs provides some preliminary and

speculative insight into their method of biogenesis, but the function of 21U-RNAs

remains unknown. The lack of primary sequence conservation within the 21U-RNAs

themselves, in contrast with the upstream motifs, places two constraints on models for

their function. First, it makes a model in which the 21U-RNAs themselves are targeting

specific genes for repression in a miRNA- or siRNA-like manner unrealistic. Second, the

presence of a common upstream motif that is highly predictive in identifying expressed

21U-RNAs, together with the observation that the magnitude of 21U-RNA expression is

only substantial when the 21U-RNAs are considered together as a group, suggests co-

expression and cooperative function between the members of this class. The abundance

and heterogeneity of 21U-RNA genes also places an important constraint on

experimental approaches to their study. Because they derive from many thousands of

genomic loci that are interdigitated and overlapping with a variety of protein-coding

genes, they are not amenable to genetic manipulation. The identification of a nodal

component of their biogenesis or action is crucial to defining their role in nematode

biology.

Some insight into the function of 21U-RNAs could be gained through a better

understanding of their temporal expression pattern. To this end, we have sequenced
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small RNAs from each of the major developmental stages of C. elegans (embryo, L1, L2,

L3, L4, and adult) using Solexa sequencing technology (Seo et al. 2004) (see

Acknowledgements for a list of collaborators). 21U-RNA concentrations are elevated in

conjunction with the proliferation of the germ line during the L4 stage, remain high in

adult worms, and their abundance carries over to embryos. Their concentrations are then

depleted during the L1, L2, and L3 larval stages. The developmental profile suggested

germ line expression, and indeed, 21U-RNAs were severely depleted in germ line-

deficient glp-4 mutant worms.

Localization of 21U-RNA expression to the time and place of germ line

proliferation suggested that 21U-RNAs could play a role in the maturation of the germ

line. Accordingly, the representative 21U-RNAs were severely depleted in prg-1 mutants

(Pedro Batista, personal communication), and deep sequencing of small RNAs from the

prg-1 mutant background confirmed depletion across the entire 21U-RNA class. The

PRG-1 protein is a member of the Piwi subfamily of Argonautes whose mutation leads to

defects in germ line development and decreased brood size (Cox et al. 1998; Yigit et al.

2006). The 21U-RNAs also co-immunoprecipitate with the PRG-1, demonstrating a

direct molecular interaction between the two (Pedro Batista, personal communication).

Thus, PRG-1 overcomes the crucial constraint on investigation of 21U-RNA function by

providing a single component whose activity is coupled with that of the 21U-RNA

population as a whole. As a result, approaches such as a genetic screen for suppressors of

the prg-1 mutant phenotype could be interpreted in part in terms of genetic interactions

with the 21U-RNA class of small RNAs as well as with the prg-1 gene itself.
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MicroRNA expression profiling in C. elegans

While deep sequencing of mixed-stage C. elegans small RNAs was useful for the

identification and classification of small RNAs, the developmental time course of deep

sequencing analyzed from Drosophila achieved an additional dimension of information

about gene expression. The expression patterns of many C. elegans microRNAs have

already been determined by northern blot, but that method becomes increasingly

unreliable and non-specific as the miRNAs being analyzed become less abundant. A

comprehensive set of miRNA expression profiles from C. elegans would undoubtedly be

of great use to those who study miRNAs in nematodes, and deep-sequence datasets

across C. elegans development have already been generated (see above). The microRNA

expression profiles across these datasets are currently being analyzed.

While northern blots (Ambros et al. 2003; Lau et al. 2001; Lee and Ambros 2001;

Lim et al. 2003; Sempere et al. 2004) and the sequence datasets described above provide

information on the temporal expression patterns of the C. elegans miRNAs, almost

nothing is known about their spatial expression patterns. This is not true of miRNAs in

other systems; blotting, microarray hybridization, or sequencing from dissected tissues

has provided spatial expression patterns for mammalian miRNAs (Baskerville and Bartel

2005; Farh et al. 2005; Kim et al. 2004; Lagos-Quintana et al. 2002; Landgraf et al.

2007), transgenic sensors have been used to detect spatial expression patterns in

Drosophila and mouse (Brennecke et al. 2003; Mansfield et al. 2004), and in situ

hybridization has provided similar data for zebrafish and mouse miRNAs (Kloosterman

et al. 2006; Wienholds et al. 2005). The expression of reporter genes fused to miRNA

gene promoters has also been used in those systems and in C. elegans to determine the
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spatial expression patterns of miRNA primary transcripts (Johnston and Hobert 2003).

Most of those approaches are labor-intensive and require an independent set of analyses

for each miRNA examined. The more efficient and multiplex method of tissue isolation

followed by sequencing of small RNAs is stymied in C. elegans by the intractability of

nematode dissection.

The solution to spatial expression profiling that has been applied to mRNAs in C.

elegans is to express an epitope-tagged poly-A binding protein as a transgene under a

tissue-specific promoter and then to co-immunoprecipitate all of the mRNAs that are

expressed in the relevant tissue (Roy et al. 2002). The required precedent for this

approach was the identification of a factor that would interact with all expressed mRNAs

in a relatively unbiased manner. Characterization of C. elegans miRISC has identified

many such factors for miRNAs (Zhang et al. 2007). Expression of an epitope-tagged

copy of any one of these factors under a series of tissue-specific promoters, followed by

pull-down of associated small RNAs and high-throughput sequencing, would permit the

rapid development of a comprehensive miRNA spatial expression atlas.

Vertebrate mirtrons

MicroRNAs expressed through the mirtron biogenesis pathway were identified

here in both C. elegans and in Drosophila. The requirements of the mirtron biogenesis

pathway have been confirmed in Drosophila (Okamura et al. 2007), and potential

mammalian mirtrons have also been identified (Berezikov et al. 2007). However, many

of those mirtrons identified in mammals are verified with scant sequence data, and most

form predicted secondary structures that do not resemble those of canonical pre-miRNAs.
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The secondary structure differences between the annotated mammalian mirtrons and

canonical mammalian pre-miRNAs cast doubt on the prescribed biogenesis pathway of

those intron-boundary reads that no quantity of sequencing could overcome. In the work

described here, the biogenesis requirements of representative candidate mirtrons were

evaluated by expression of those candidates as mini-genes and knockdown of potential

biogenesis factors by RNAi. Similar experiments should be performed in mammalian

cells. Mouse ES cells with a dicer knockout have already been used to evaluate the

Dicer-dependence of small RNAs in those cells (Calabrese et al. 2007). Mouse ES cells

with the dgcr8 gene knocked out have also been generated (Wang et al. 2007). The

expression of mirtrons would be eliminated in the dicer KO background and unaffected

in the dgcr8 KO background. Deep sequencing of small RNAs from wild type mouse ES

cells and each of these two mutant backgrounds could thus be used to identify mirtrons

that are expressed endogenously in mouse ES cells. Such analyses are underway. The

same cell lines could also be used to evaluate the processing requirements of candidate

mirtrons.

Evolutionary scope of microRNAs

The availability of genome sequences for many species within the Drosophila

genus facilitated analysis of the conservation of miRNA genes. The conclusion of this

analysis was that many of the rarely-sequenced miRNAs have arisen recently in the

evolution of this clade, for no apparent orthologs could be found. However, the features

of miRNA genes that must be selectively maintained in order to preserve function do not

impose great limitations on the primary sequence of the gene. Most of the sequence
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requirements are those imposed by the hairpin structure of the precursor, and primary

sequence changes do not affect RNA secondary structures as long as they are

complemented by compensatory mutations. To further complicate conservation analysis,

the hairpin structures of miRNA precursors are quite heterogeneous, implying that many

single mutations to a miRNA hairpin that modify the secondary structure would be

tolerated by natural selection. Finally, the functional portion of the miRNA, the seed, is

only 7 nt long, leaving a very narrow window of reliably conserved sequence to identify

in a related genome. In some cases, putative orthologs have been identified whose

conservation approaches the described minimum (chapter 2, figure 1D). However, the

low levels of observed conservation in these cases and expected conservation in the cases

of miRNAs for which no orthologs have been identified leave open the possibility of

false positive and false negative errors, respectively.

The appropriate test of these evolutionary models would be to deeply sequence

small RNAs from closely related species. At least two of the species whose genome

sequences were used for the evolutionary analyses described here, Caenorhabditis

briggsae and Drosophila pseudoobscura, have been used extensively as laboratory model

organisms (Baird and Chamberlin 2006; Dobzhansky 1937). Comparison of sequencing

results from C. elegans to similarly-generated datasets from C. briggsae, or of results

from D. melanogaster to datasets from D. pseudoobscura, would provide several types of

useful data. First, the same standards that are applied here to miRNA annotation could be

applied to ortholog identification: the observation of mature miRNAs deriving from the

putative miRNA locus. For the minimally conserved orthologs identified here, the

ortholog model that would be tested specifies a precise 5' end for the putatively
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orthologous miRNA gene based on the conserved seed sequence. Observation of

conserved expression would address the concern about spurious false-positive ortholog

annotations. Second, independent annotation of miRNA genes from a related organism

would reduce the search space for orthologs ~106 fold. This estimation assumes ~102

miRNA genes in a genome with -108 base pairs, both of which are accurate for species

within the Caenorhabditis and Drosophila genuses. Instead of looking for seed

conservation anywhere in the genome, one would only need to examine the expressed

miRNAs, virtually eliminating the signal-to-noise problem otherwise associated with

miRNA ortholog identification.

The approach to ortholog identification described above would fail if the pattern

or magnitude of expression for a miRNA had changed substantially over evolutionary

timescales, but this potential source of failure also introduces a third arena of discovery

using near-species analyses: the evolution of the expression patterns of conserved

miRNA genes. Just like nucleotide sequences, gene expression profiles accumulate

changes as a function of evolutionary divergence (Rifkin et al. 2003). Although natural

selection can stabilize or drive the divergence of mRNA expression patterns (Nuzhdin et

al. 2004; Rifkin et al. 2005), it has been shown that strong conservation of gene

expression profiles generally reflects conservation of physiological roles (Liao and Zhang

2006). Gene expression profiles have been used to study the evolution of flies (Nuzhdin

et al. 2004; Rifkin et al. 2005; Rifkin et al. 2003), nematodes (Denver et al. 2005),

primates (Enard et al. 2002), fishes (Whitehead and Crawford 2006), and yeasts (Fay et

al. 2004). In array-based profiling studies, array noise and the inconsistent behavior of

probes in different phylogenetic contexts pose significant challenges to analysis, but the
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replacement of array-based quantification of expression with high-throughput sequencing

has been proposed as a solution to both of these sources of error (Khaitovich et al. 2006;

Liao and Zhang 2006).

The apparent frequency of miRNA gene birth and death has already been

proposed as an engine of phenotype evolution (chapter 4). Further, the established

relationship between miRNA expression patterns and those of their potential targets, in

which miRNA targeting is either selectively maintained or avoided by co-expressed

mRNAs (Farh et al. 2005; Stark et al. 2005), implies that changes in miRNA expression

patterns would generally have phenotypic consequences significant enough to be the

subject of natural selection.

Endogenous siRNAs in Drosophila

In C. elegans, the endogenous siRNAs that we observed had similar properties to

the secondary siRNAs that are generated during RNAi as a consequence of RdRP activity

(Ambros et al. 2003; Pak and Fire 2007). In contrast to C. elegans, no RdRP or

amplification/spreading of RNAi signal has been identified in Drosophila, indicating that

the physiological niche occupied by endogenous siRNAs in nematodes is not maintained

in insects. Nonetheless, Drosophila expresses two Dicers and two Argonautes, and one

copy of each gene plays a specialized role in either RNAi or miRNA biogenesis. The

dedication of an siRNA biogenesis pathway to the processing of dsRNA implies that

there are as-yet-unidentified endogenous dsRNA triggers of RNAi in Drosophila.

During analysis of the sequence data from chapter 4, I identified two potential

sources of endogenous RNAi triggers. The first source is antisense transcription. Large-
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scale small RNA sequence data generally captures some arbitrary mRNA degradation

products. These products are highly heterogeneous in terms of their length distribution.

In C. elegans, RdRP activity generates endogenous siRNAs antisense to mRNAs that

outnumber reads in the sense orientation. In contrast, mRNA sense reads greatly

outnumber antisense reads in Drosophila. However, the antisense reads in Drosophila

have a non-random length distribution with a prominent peak at 21nt in length (figure

1A), matching the length of Dicer-generated siRNAs in that organism (Bernstein et al.

2001; Zamore et al. 2000). Antisense transcripts are regulators of gene expression even

in organisms without Dicer-mediated RNAi (Hongay et al. 2006). It remains to be

demonstrated that the antisense RNAs described here are genuine Dicer products, and

further, it has not been shown that the presumably Dicer-generated products observed

here play a role in gene silencing or are simply the superfluous byproducts of gene

regulation by an antisense transcription mechanism. Finally, it remains to be examined

what biological processes such antisense transcription and/or Dicer processing might

regulate.

The second source of endogenous RNAi triggers that I identified in Drosophila is

endogenous long RNA hairpins (hpRNA) genes. Transgenes encoding hpRNAs are used

to introduce double-stranded RNAs to the cells of tissues or whole organisms in contexts

where injection, transfection, and feeding would be inappropriate or ineffective. Such

hpRNA transgenes have been used for gene silencing in nematodes (Tavernarakis et al.

2000), insects (Kennerdell and Carthew 2000), plants (Chuang and Meyerowitz 2000),

and mammals (Svoboda et al. 2001), though few mammalian cell types allow the use of

such constructs without triggering of the pro-apoptotic interferon response (Yang et al.
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2001). Among the small RNAs from Drosophila analyzed in chapters 3 and 4, two

examples were observed of hairpins whose processing better resembled that of an hpRNA

than a miRNA. The first, hpRNA-1, gave rise to only five reads (figure 1B). The two

reads from the 5' arm of the hairpin share four overlapping nucleotides, indicating that

the hairpin may be processed in multiple registers. However, two nucleotides from the 3'

end of the 5' read base paired with two nucleotides from the 3' end of two reads from the

3' arm of the hairpin, consistent with the sequential generation of RNA duplexes with 2nt

3' overhangs.

Notably, the 5' arm of hpRNA- 1 almost perfectly complemented the ATP

synthase beta subunit mRNA (figure IC). Small RNAs generated from this hairpin

would be expected to repress ATP synthase just as the processed products of designed

hpRNAs silence the genes that they complement. This possible interaction between

hpRNA-1 and ATP synthesis has yet to be investigated. Oxygen starvation induces a

number of changes in gene expression and metabolic activity, including the repression of

oxidative phosphorylation and the upregulation of glycolytic enzymes, thereby increasing

ATP generation through the oxygen-independent mechanism of glycolysis (Semenza

1999). The potential for hpRNA-1 to target a gene that is critical for oxidative

phosphorylation suggests that it could be induced in response to oxygen starvation.

Notably, all five of the reads mapping to hpRNA-1 were isolated from the pupal stage of

development, during which anatomical transformation places high energy demands on

the fly and during which the body of the fly is inactive and compact, limiting both gas

exchange and the ability of the open circulatory system to distribute oxygenated fluid
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through the coelomic cavity. The relationship between hpRNA-l expression and oxygen

starvation also has yet to be investigated.

The second hpRNA, referred to here as hpRNA-2, derived from a tandem repeat

on the X chromosome. The genomic sequence between annotated genes CG6903 and

CG4068 contains 20 copies of a repeat unit ~280 basepairs in length. The ~170 nt core

of each repeat unit that is best conserved across all 20 units also shares identity with its

own reverse complement sequence (average: 76%), permitting those portions of the

repeat to either fold into individual hairpins or basepair with adjacent repeats (figure

1D,E). Over a thousand small RNA reads mapped only to this chromosome X repeat

region, though the vast majority could be mapped to almost any of the 20 repeats within

the region. Those reads derive from one strand of the genome almost exclusively (1318

reads from one strand versus 5 from the other). The majority of the reads form a tandem

array of 21-22mers that spans the length of the core repeat. The most abundant 5' end

accounts for 466 reads. A 21 nt periodicity extends into and across the loop of the

hairpin that is formed when a single repeat unit folds back on itself, indicating that these

phased reads derive from stepwise processing of a duplex formed by two repeat units

rather than a single-unit hairpin. Notably, knockdown of genes in S2 cells revealed that

the biogenesis of siRNAs from hpRNA-2 depended on Dcr-2 and Ago-2, components of

the RNAi pathway, but not on Dcr-1, Ago-1, or Drosha, components of the miRNA

biogenesis pathway (Huili Guo, personal communication).
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Argonaute-associated small RNAs

The interaction between the C. elegans Piwi protein PRG-1 and the 21U-RNAs

was identified genetically with the observation that 21U-RNAs vanish on a northern blot

in prg-1 mutants. However, this approach could only be expected to work reliably if the

RNAs in question are both abundant enough to reliably detect by northern blot and can

only be stabilized by a single Argonaute protein. Also, that approach left open the

possibility that 21U-RNA expression is somehow downstream of prg-1 expression, and

that 21U-RNAs never directly interact with PRG-1. This possibility was eliminated

through the co-immunoprecipitation of 21U-RNAs with PRG-1, as described above.

The sequencing of small RNAs that co-immunoprecipitate with defined members

of the Argonaute family will play a crucial role in understanding the biological roles of

both the Argonautes and their associated small RNAs. The sequencing of small RNAs

that co-immunoprecipitate with RNA binding proteins has already been useful in

conclusively demonstrating the miRNA specificity of the ALG-1 and ALG-2 Argonaute

proteins from C. elegans (Zhang et al. 2007) and the lack of endogenously-expressed

siRNA in mouse ES cells (Calabrese and Sharp 2006). The role of PRG-1 would be

better understood if the complete variety of associated small RNAs were defined by high-

throughput sequencing from co-immunoprecipitate. Such efforts are underway. The

plethora of uncharacterized Argonaute proteins would also be better understood if the

populations of small RNAs that interact with each were known.

The raising of an antibody to specifically recognize an individual member of a

large protein family like the Argonautes carries with it no guarantee of success.

However, such a reagent is of general utility for study of the cell biology or substrate
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specificity of such a protein. In addition, such reagents may become necessary for

analysis of functionally distinct but otherwise not obviously distinguishable classes of

small RNAs. For instance, the identification of the upstream sequence motif associated

with 21U-RNAs was assisted greatly by their non-random genomic distribution. The

length distribution of endogenous siRNAs allowed some subdivision of that class,

separating the 26mers from the 21-22mers. However, the observed 21-22mers may

combine the primary and secondary classes of siRNA, both of which could be expressed

endogenously. In cases such as these, knowledge of which small RNAs interact with

which Argonaute proteins could provide crucial insight into both the commonalities and

diversity within a functional class of small RNAs.

Figure legends

Figure 1. Endogenous siRNAs and hpRNA hairpins. (A) The length and 5' nucleotide

distribution of reads that overlap annotated mRNAs in the sense (green) or antisense

(blue) orientation. Read counts are normalized across libraries as described in chapter 4.

(B) The hpRNA-1 hairpin, with matching reads indicated by black bars. (C) The 5' arm

of the hpRNA-1 hairpin (orange) base paired with a portion of the ATP synthase beta

subunit mRNA (black). (D) The hpRNA-2 hairpin formed by two adjacent repeat units.

Phased reads are represented as in (A). (E) A dot plot of the hpRNA-2 genomic region.

Black dots represent sense strand matches of 25nt, 0 mismatch windows. Red dots

represent antisense strand matches of 15nt, r1 mismatch windows.
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