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Abstract

Every cell in the human body contains the same genetic information, with few
exceptions, yet each cell type enacts a distinct gene expression program to allow for
highly specialized functions. These tightly controlled programs are the results of
transcriptional regulation, by transcription factors and chromatin regulators, as well as
post-transcriptional regulation, mediated in part by microRNAs (miRNAs). Additionally,
cells must respond to external cues, and signal transduction pathways converge on gene
regulatory machinery to shape cellular identity. The work presented here focuses on the
mechanisms by which transcription factors, chromatin regulators, miRNAs and signal
transduction pathways coordinately regulate two particular medically important gene
expression programs: (1) the program that controls pluripotency in embryonic stem (ES)
cells, giving these cells the capacity to differentiate into every adult cell type, and (2) the
program that allows regulatory T (Treg) cells to prevent autoimmunity by suppressing the
response of self-reactive conventional T cells. Genomic investigations of the core
regulatory circuitry of each of these cells types presented here provide new insight into
the genetics of pluripotency and autoimmunity, and suggest a strategy for reprogramming
based on chemical manipulation of the cellular programs that control cell identity.
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Chapter 1

Introduction



A single fertilized egg can give rise to all of the diverse, specialized cell types that

exist within an adult mammalian body. Because each adult cell type, with few

exceptions, contains the same genetic information as the fertilized egg from which it

derives, regulatory factors are crucial to determine the subset of genes that is actively

expressed in any particular cell type. Examinations of the regulatory mechanisms that

establish and maintain distinct cell types reveal the molecular "programs" that underlie

specialized cellular functions. Aberrations in normal cellular programming likely lead to

a subset of common human diseases; understanding cellular circuitry could help elucidate

molecular underpinnings of disease. Additionally, "reprogramming" of cellular identity

can now be accomplished by the introduction of defined regulatory factors into cells,

converting them from one cell type to another.

The work presented here focuses on the gene expression programs of two cell

types: (1) the program that controls pluripotency in embryonic stem (ES) cells,

establishing and maintaining their capacity to differentiate into every adult cell type, and

(2) the program that allows regulatory T (Treg) cells to prevent autoimmunity by

suppressing the response of self-reactive conventional T cells. For both of these cell

types, master regulatory factors have been identified, allowing for the reprogramming of

somatic cells to pluripotency, and the reprogramming of conventional T cells to

suppressive Treg cells. Genomic investigations of the core circuitry of each of these cells

types presented here provide new insight into the genetics of pluripotency and



autoimmunity, and suggest a strategy for reprogramming based on chemical manipulation

of the cellular programs that control cell identity.

Molecular control of cellular identity

A key challenge in studies of cellular identity is defining the specific factors that

are responsible for giving a cell its specialized attributes. The landmark work of Davis et

al. (1987) established that MyoD1, which is selectively expressed in myogenic cells, is

sufficient to convert mouse fibroblasts to muscle-like cells when ectopically expressed.

Consistent with its role in shaping cellular identity, MyoD 1 is a transcription factor that

binds to DNA and directly regulates gene expression. The role of MyoD1 in the

developmental programming of muscle cells was clarified by genetic studies that

demonstrated that, although MyoD 1 is redundant with another transcription factor, Myf-

5, the function of these two factors is required for the development of skeletal muscle in

the mouse (Rudnicki et al., 1993). In vivo and in vitro genetic studies of these factors

revealed key features of how a molecular program is able to control mammalian cell

specification. The factors can autoregulate their own expression levels, regulate the

expression levels of each other, and contribute to the regulation of common target genes

(Weintraub, 1993). More recent examinations of the occupancy of genome by MyoD1

have revealed the specific DNA binding events that underlie this program (Blais et al.,

2005; Cao et al., 2006).



Work in the hematopoietic system has further demonstrated that transcription

factors play crucial roles in cell-fate determination (Pevny et al., 1991; Orkin and Zon,

2008). Genetic studies have identified a core set of transcription factors that are required

for maintenance of multipotent hematopoietic stem cells. Distinct transcription factors,

which are selectively expressed in cells at various stages of commitment in the myeloid

and lymphoid lineages, are required for lineage commitment and proper development of

mature hematopoietic cells (Orkin and Zon, 2008). Remarkably, normal cell-fate

determinations can be reprogrammed by the ectopic expression of transcription factors

from other hematopoietic lineages, underscoring the power of transcriptional regulation

in shaping cellular identity (Xie et al., 2004; Orkin and Zon, 2008).

While transcription factors are crucial regulators of cellular identity, additional

layers of regulation also contribute. Three other important modes of regulation, which

are discussed below and in subsequent chapters, are microRNAs (miRNAs), extra-

cellular signals and epigenetic modifications to histones and DNA. Transcription factors,

miRNAs, signal transduction pathways and epigenetic chromatin marks coordinately

control cellular identity (Figure 1).

miRNAs were first identified in Caenorhabditis elegans as genes that play key

roles in the timing of cell-fate determinations (Chalfie et al., 1981; Lee et al., 1993;

Wightman et al., 1993; Reinhart et al., 2000). These short, non-coding transcripts are an

abundant class of transcripts in multi-cellular organisms and play important roles in

development and cellular specification by specifying post-transcriptional repression of

target mRNAs (Bartel, 2004; Ambros, 2004; Plasterk, 2006). In plants, the majority of



miRNA targets are developmental transcription factors (Rhoades et al., 2002), and,

although the targets are more diverse in mammalian cells, miRNAs appear to have a

pronounced regulatory effect on mRNAs involved in transcriptional control and

development (Stark et al., 2005).

Extra-cellular cues and intra-cellular signal transduction pathways enable the

local environment of a cell to contribute to its identity (Shaywitz and Melton, 2005). The

terminal components of these signaling pathways often act as transcriptional regulators

and help to reshape the gene expression program of a cell in response to the environment.

Epigenetic mechanisms, notably covalent modifications of histones and DNA

bases, contribute to the stability of gene transcription required for cells to maintain their

identities over time and even through cell-division. While cellular identity is shaped with

inputs from extra-cellular signals, once cellular identity is established it tends to be robust

to perturbations from the environment (Hadorn, 1968). Chromatin regulators and the

epigenetic marks deposited on chromatin help to maintain this cellular memory.

Modifications at key loci alter accessibility of chromatin to transcriptional machinery,

provide novel binding sites for transcriptional regulators, or occlude existing binding sites

for transcriptional regulators (Bird, 2002; Goll and Bestor, 2005; Margueron et al., 2005;

Bernstein et al., 2007). Epigenetic marks on chromatin, which are mitotically heritable,

are able to exert long-term effects on the transcriptional program of a cell and its

progeny.

The current model of the molecular circuitry for pluripotency serves well to

illustrate how a regulatory network involving signal transduction pathways, transcription



factors, post-transcriptional regulation by miRNAs and epigenetic modifications to

chromatin and can control cellular identity. Over the past several years, much progress

has been made on elucidating the molecular circuitry of pluripotent ES cells and, now,

somatic cells can now be reprogrammed to pluripotency with defined factors. Known

features of the regulatory circuitry of ES cells are highlighted below. This discussion is

an introduction to studies presented in Chapter 2 and Chapter 3, which build on what was

previously known about the molecular circuitry of pluripotency. In contrast, prior to the

studies described in Chapter 4, little was known about the regulatory circuitry of

immuno-suppressive Treg cells. A discussion of the role of Foxp3, a key transcription

factor in Treg cells, as well as the roles of miRNAs and T-cell receptor signaling in

shaping Treg cell identity, introduces the global studies of Foxp3 transcriptional regulation

described Chapter 4.

ES cells and pluripotency

ES cells are distinctive for their potential to both self-renew and differentiate into

any adult cell type. These cells are derived in vitro from the inner cell mass (ICM) of

blastocysts (Evans and Kaufman, 1981; Martin, 1981; Thomson et al., 1998). Under

proper conditions, these cells can be maintained over prolonged periods in culture,

retaining their pluripotency, as evidenced by the ability of murine ES cells to develop

into to all embryonic and adult cell types in chimaeric mice, including germline cells.



Genetic studies have identified core transcriptional regulators of the ES

pluripotent state, including Oct4, Sox2 and Nanog, which are required for the

maintenance of pluripotency (Scholer, 1990; Nichols, 1998; Avilion, 2003; Chambers,

2003; Mitsui, 2003). These transcription factors are all expressed in pluripotent ES cells,

as well as the inner cell mass of the blastocyst from which ES cells are derived, and Oct4

and Nanog are rapidly silenced during early cellular differentiation. More recently, a

family of Klf transcription factors, including Klf2, Klf4 and Klf5, was also shown to be

required for pluripotency (Jiang et al., 2008).

The gene expression program underlying pluripotency can be restored to the

genome of somatic cells either by nuclear transfer into recipient oocyte cytoplasm

(Campbell et al., 1996; Wakayama et al., 1998; Wakayama et al., 2001;Hochedlinger and

Jaenisch, 2002; Eggan et al., 2004; Li et al., 2004; Inoue et al., 2005) or cell-fusion with

ES-cells (Tada et al., 2001; Cowan et al., 2005; Yu et al., 2006), especially ES cells over-

expressing the transcription factor Nanog (Silva et al., 2006). Additionally, in what

appears to be a special case, spermatogonial germ cells can acquire pluripotency under

certain culture conditions (Kanatsu-Shinohara et al., 2004). These findings indicate that

cellular, and perhaps extra-cellular factors, are sufficient to induce pluripotency in

differentiated cells. Much effort went into defining the master regulatory factors that are

sufficient to establish the gene expression program for pluripotency. The work in

myogenic and hematopoietic cells, discussed above, suggested that strong candidates

include transcription factors that are selectively expressed in pluripotent cells and

contribute to the maintenance pluripotency.



Indeed, a defined set of ES cell transcription factors is now known to induce

pluripotency in somatic cells (Takahashi and Yamanaka, 2006). Retroviral transduction

of three nuclear factors, Oct4, Sox2 and Klf4 is sufficient to reprogram mouse and human

somatic cells into induced pluripotent stem (iPS) cells that are indistinguishable from

embryo derived embryonic stem (ES) cells (Takahashi and Yamanaka, 2006; Okita et al.,

2007; Wernig et al., 2007; Maherali et al., 2007; Takahashi et al., 2007; Park et al., 2007;

Nakagawa et al., 2008; Wernig et al., 2008). c-Myc, a powerful oncogene, is not required

for the induction of pluripotency, but significantly increases the kinetics and efficiency of

developmental reprogramming (Takahashi and Yamanaka, 2006; Nakagawa et al., 2008;

Wernig et al., 2008). Recent experiments have demonstrated that other combinations of

factors also can induce iPS cells (Yu et al., 2007; Nakagawa et al., 2008). Identification

of these factors, coupled with studies of their occupancy of and effects on the genome,

reveals key features of the molecular circuitry that establishes and maintains

pluripotency.

The molecular circuitry of pluripotency

Genome-wide location analysis has provided insight into the molecular

mechanisms by which transcription factors maintain pluripotency in human and murine

ES cells (Boyer et al., 2005; Loh et al., 2006; Jiang et al., 2008; Kim et al., 2008). These

experiments have yielded three key findings: (1) Oct4, Sox2 and Nanog form an

interconnected autoregulatory loop, (2) all three factors often co-occupy the same sites in

the promoters of their target genes, and finally, (3) Oct4, Sox2 and Nanog collectively



target two sets of genes, one that is actively expressed in ES cells and another that is

silent in ES cells, but remains poised for subsequent expression during cellular

differentiation (Boyer et al., 2005) (Figure 2). In particular, these studies reveal key

features of the genetic logic of pluripotency, and more broadly, provide clues as to how

multiple transcription regulators can coordinately control cell identity.

Interconnected autoregulation

Oct4, Sox2 and Nanog all bind to their own promoters, as well the promoters of

the genes encoding the two other factors (Boyer et al., 2005) (Figure 2). This molecular

circuitry appears to allow the factors to maintain their own expression. Autoregulation

could provide stability of gene expression, allowing for the maintenance of the

metastable pluripotent state (Alon et al., 2007). Such autoregulation is a genetic feature

of many eukaryotic master regulators (Lee et al., 2002; Odom et al., 2004; Odom, 2006).

Functional studies confirm that Oct4 and Sox2 co-occupy and activate the Oct4 and

Nanog genes (Kuroda et al., 2005; Okumura-Nakanishi et al., 2005). Experiments with

an inducible Sox2-null murine ES-cell line provide compelling evidence for the existence

of this interconnected autoregulatory loop and its role in the maintenance of pluripotency

(Masui et al., 2007). Sox2 deletion leads to rapid differentiation of these ES cells, but

enforced expression of Oct4 can rescue the phenotype and maintain pluripotency,

suggesting that the major required function of Sox2 is maintenance of proper Oct4

expression. This regulatory circuitry suggests an explanation for the rare iPS colonies

formed when Oct4, Klf4 and c-Myc are over-expressed in MEFs (Takahashi and

Yamanaka, 2006). When Oct4 is exogenously over-expressed it can contribute directly



to the activation of endogenous Oct4 and endogenous Sox2, the products of which in turn

contribute to the maintenance of these genes.

Co-occupancy of target genes

Furthermore, Oct4, Sox2 and Nanog co-occupy a large set of promoters, often at

apparently overlapping genomic sites (Boyer et al., 2005) (Figure 2). This suggests that

these pluripotency factors generally do not control their target genes independently, but

rather act coordinately to maintain the transcriptional program required for pluripotency.

Biochemical studies support his model. Recently, a large multi-protein complex,

including Nanog and Oct4, was identified by iterative immunoprecipitation experiments

in ES cells (Wang et al., 2006). Several transcription factor subunits of this complex

were shown to be required for the maintenance of pluripotency, providing further

evidence that multiple interacting proteins coordinately control pluripotency. Multiple

ES cell transcription factors identified in this complex occupy overlapping sites in the

genome (Kim et al., 2008). This model provides an explanation for the fact that iPS cell

generation requires the combinatorial over-expression of multiple transcription factors;

no single factor is sufficient to induce pluripotency. However, exogenous Nanog is not

required, suggesting that not all components of this putative complex are required to

initiate the process of reprogramming.

Regulating developmental regulators

Master regulators of pluripotency occupy the promoters of active genes that

promote ES cell self-renewal, including transcription factors, signal transduction



components and chromatin modifying enzymes (Boyer et al., 2005). Oct4, Sox2 and

Nanog also co-occupy the promoters of a smaller set of developmental transcription

factors that are silent in ES cells, but which are associated with lineage commitment and

cellular differentiation (Boyer et al., 2005) (Figure 2). These ES cell transcription

factors, expressed in the ICM and the epiblast in vivo, contribute to the repression of

transcription factors associated with other lineages present in the early embryo, the

trophoblast and the primitive endoderm (Niwa et al., 2000; Boyer et al., 2005; Niwa et

al., 2007). Additionally, Oct4, Sox2 and Nanog are found at the promoters of

developmental transcription factors that are expressed later in development and

contribute to lineage specification (Boyer et al., 2005). These findings suggest that Oct4,

Sox2 and Nanog may help to maintain the pluripotent state of ES cells by contributing to

repression of key lineage specification factors.

Many of the known developmental regulators targeted by Oct4, Sox2 and Nanog

are also occupied by the Polycomb Group (PcG) proteins, which contribute to chromatin

modifications and gene silencing (Lee et al., 2006; Bernstein et al., 2006; Boyer et al.

2006) (Figure 2). In ES cells, developmental regulator genes are silenced in a fashion

that allows for subsequent expression in appropriate lineages that can descend from these

pluripotent cells. H3K27 methylation, catalyzed by the Polycomb Repressive complex 2

(PRC2), is associated with this dynamic form of silencing, especially of regulators of

development (Lee et al., 2006; Bernstein et al., 2006; Boyer et al. 2006). H3K27

methylation is selectively removed from the promoters of genes that are active in a given

cell type (Lee et al., 2006; Bernstein et al., 2006; Boyer et al. 2006; Mikkelson, 2007;

Zhao et al., 2007; Pan et al., 2007). H3K27 demethylases, UTX and JMJD3, contribute



to the removal of these epigenetic marks during vertebrate development (Lee et al., 2007;

Lan et al., 2007). Some evidence suggests that a subset of genes that will not be required

in a given lineage is silenced in a more permanent fashion in differentiated cells.

Polycomb Group protein EZH2 may recruit DNA methyltransferases that catalyze CpG

methylation, a stable epigenetic mark associated with silencing (Vir6 et al., 2006).

However, many developmental regulators retain H3K27 methylation at genes that are

silenced in a given lineage (Guenther et al., 2007; Mikkelson et al., 2007). Furthermore,

recent work indicates that these genes often remain "poised" for activation, even in

lineages where they are not used. RNA polymerase II is found initiated, poised to

transcribe developmental regulator genes, but paused at transcription starts in lineages

where the genes remain silent (Guenther et al., 2007). These findings suggest that

Polycomb complexes, or associated proteins, could serve to pause RNA polymerase

machinery at key regulators of development in pluripotent cells and in lineages where

they are not expressed (Figure 2). Furthermore, the continued presence of RNA

polymerase II at the start sites of genes that are not expressed could suggest a

fundamental plasticity of cell type, even among cells that have already differentiated.

miRNA regulation in ES cells

Pluripotency transcription factors control a complex gene regulatory network.

Autoregulation and control of other transcription factors involved in pluripotency and

developmental decisions have already been discussed. One notable missing piece of this

network model is analysis of the transcriptional control of miRNAs, non-coding RNAs

that participate in post-transcriptional gene regulation.



Mature miRNAs, which specify post-transcriptional repression, arise from larger

transcripts that are then processed (Figure 3). Primary miRNA sequences are transcribed

and then cleaved in the nucleus by a multi-unit microprocessor to yield a precursor

miRNA (pre-miRNA) hairpin (Denli et al., 2004; Gregory et al., 2004). The hairpin

subsequently exits the nucleus and is cleaved by the RNase type III enzyme, dicer, to

yield a mature 18-24 nucleotide miRNA (Bernstein et al., 2001; Hutvagner et al., 2001;

Grishok et al., 2001; Knight and Bass, 2001). Mature miRNAs interact with

complementary sequences in messenger RNA molecules and can contribute to

destabilization of target mRNAs and repression of translation (Bartel, 2004; Ambros,

2004; Plasterk, 2006).

Several lines of evidence indicate that miRNAs contribute to the control of early

development. miRNAs appear to regulate the expression of a significant percentage of all

genes in a wide array of mammalian cell types (Lewis et al., 2005; Lim et al., 2005; Krek

et al., 2005; Farh et al., 2005). A subset of miRNAs is preferentially expressed in ES

cells or embryonic tissue (Houbaviy et al., 2003; Suh et al., 2004; Houbaviy et al., 2005;

Mineno et al., 2006). Dicer-deficient mice fail to develop (Bernstein et al., 2003) and ES

cells deficient in miRNA processing enzymes show defects in differentiation, self-

renewal and perhaps viability (Kanellopoulou et al., 2005; Murchison et al., 2005; Wang

et al., 2007). Specific miRNAs have been shown to participate in mammalian cellular

differentiation and embryonic development (Stefani and Slack, 2008). However,

functional interactions between transcription factors and miRNAs in the regulatory

circuitry that controls early development have not yet been examined.



Signaling pathways

Pluripotent embryonic stem cells can self-renew in an undifferentiated,

pluripotent state in culture, but are dependent on extra-cellular cues for this maintenance

of pluripotency. MEF feeder cells provide a culture condition that promotes ES cell self-

renewal, as does MEF-conditioned media, suggesting that MEFs secrete soluble factors

that contribute to the maintenance of pluripotency (Okita and Yamanaka, 2006). LIF was

the first soluble factor identified that allows for propagation of undifferentiated ES cells

without the use of MEFs (Williams et al., 1988; Smith et al., 1988). Notably, LIF does

not promote the maintenance of pluripotency in human ES cells, which could be due to a

species-specific effect of LIF signaling, or could be the result of a difference in the

developmental stage at which mouse and human ES cells are isolated (Brons et al., 2007;

Tesar et al., 2007; Rossant, 2008). More recently, other soluble factors, including Wnt,

BMP, FGF have been shown to promote pluripotency depending on species and cell

isolation method (Okita and Yamanaka, 2006; Rossant, 2008). Human ES cells and

autologously derived fibroblasts, were shown to send reciprocal paracrine signals of FGF

and IGF, respectively, and these signals were sufficient to maintain the pluripotency of

the ES cells (Bendall, 2007). These findings suggest that signals help to establish a local

microenvironment in vitro, and presumably in vivo, to maintain pluripotency.

The Wnt signaling pathway (illustrated in Figure 4b) contributes to the

maintenance of pluripotency in mouse and human ES cells (Sato et al., 2004; Ogawa et

al., 2006; Singla et al., 2006; Cai et al., 2007), as well as the self-renewal of

undifferentiated adult stem cells in multiple tissues (Reya and Clevers, 2005). This intra-



cellular signal transduction pathway feeds into the core transcriptional circuitry of

pluripotency (Cole et al., 2008). The terminal components of the canonical Wnt pathway

are Tcf/Lef family transcription factors, the most abundant of which in ES cells is Tcf3

(shown in Figures 2 and 4). In ES cells, Tcf3 occupies the genome at sites that overlap

extensively with the binding sites of Oct4, Sox2 and Nanog. Wnt stimulation of ES cells,

or depletion of Tcf3 in these cells, modulates the expression of key ES cell transcription

factors including Oct4 and Nanog (Cole et al, 2008). In yeast experiments, terminal

kinases downstream of signal transduction pathways were recently shown to directly

interact with the genome and contribute to transcriptional regulation (Pokholok, 2006).

This is likely a general feature of eukaryotic signal transduction pathways. Efforts are

underway to investigate the ways in which the terminal components of multiple signaling

pathways impinge on the core transcriptional circuitry of ES cells to contribute to the

maintenance of pluripotency or cellular differentiation.

Molecular control of differentiation

Signaling pathways also contribute to cellular differentiation. When cellular

lineage commitment occurs, the appropriate regulators of development lose Polycomb-

mediated repression and are activated. In addition, regulators of pluripotency, including

Oct4 and Nanog are rapidly silenced. Retinoic acid is one particularly well-characterized

inducer of differentiation, and has been shown to contribute to silencing of the Oct4 locus

(Okamoto, 1990; Pikarsky, 1994).

Further studies have begun to characterize the carefully regulated silencing of

Oct4 and other regulators of pluripotency that occurs during early differentiation. A set



of nuclear repressors has been identified that are induced in differentiating cells and are

required for proper silencing of Oct4, including ARP-1, COUP-TFl and GCNF (also

referred to as Nr6al) (Ben-Shushan, 1995; Fuhrmann, 2001; Gu, 2005; Gu, 2006).

Pluripotency regulators also undergo major changes in epigenetic state during

differentiation. At Oct4, marks of activation including H3K4me3 and H3K7 and H3K9

acetylation are lost. Furthermore, H3K9me2 and me3, marks associated with

heterochromatin, are gained in a G9a histone methyltransferase-dependent manner

(Feldman, 2006). Finally, in a process dependent on de novo DNA methyltransferases

DNMT3a/3b, which are recruited directly or indirectly by G9a, the Oct4 promoter

undergoes CpG methylation. These findings indicate that Oct4, and other ES cell-

specific genes including Rex1, but not Nanog or Sox2, undergo a multi-step, tightly

regulated form of silencing, during which they adopt an epigenetic state characteristic of

heterochromatin (Feldman, 2006). These epigenetic changes appear to enforce a more

stable form of silencing compared to the more labile epigenetic silencing associated with

H3K27 methylation at genes that must be dynamically regulated during development.

Oct4 is not required in somatic cells in the adult mouse (Lengner, 2007). In fact, ectopic

expression of Oct4 has been shown to rapidly lead to massive hyperplasia of poorly

differentiated cells, especially in the intestine, and rapid fatality, highlighting the strong

evolutionary pressure to ensure complete silencing of pluripotency regulators in somatic

cells (Hochedlinger, 2005). These multilayered marks of epigenetic silencing, including

H3K9 methylation and CpG methylation, must be progressively removed in the process

of generating iPS cells from somatic cells (Figure 5).

Induction of pluripotency in somatic cells with defined factors



The core regulatory circuitry of ES cell pluripotency outlined above immediately

suggests key features of the molecular mechanism by which iPS cells are generated from

somatic cells. Over-expression of Oct4 and Sox2 presumably leads to the activation of

the endogenous loci encoding these factors due to their ability to contribute to

interconnected autoregulation. Furthermore, they almost certainly directly activate the

transcription of genes encoding other regulators, including Nanog, which are also

required for maintenance of pluripotency. Immunostaining confirms that cells that

ultimately adopt a true ES cell-like state reactivate expression of Nanog and other

markers of pluripotency (Wernig, 2007).

Ultimately, iPS cells adopt a universal transcriptional program largely

indistinguishable from that of ES cells (Okita, 2007; Wernig, 2007; Maherali, 2007). In

order to accomplish this reactivation, reprogramming factors must reverse the multi-

layered heterochromatin-like silencing that occurs at least at a subset of key pluripotency

regulators (Figure 5). To date, H3K9 methylation status has not been examined at the

promoters of pluripotency regulators in iPS cells, but bisulfite sequencing has revealed a

loss of DNA methylation at these loci (Okita, 2007; Wernig, 2007; Maherali, 2007). The

exogenous reprogramming factors and re-activated, endogenous pluripotency factors

must directly or indirectly reestablish the global epigenetic state associated with

pluripotency. In particular, as described above, repression of developmental regulators

mediated by Polycomb Group proteins must be re-established, thus silencing the

transcriptional program of the somatic cell of origin. Indeed, H3K27me3 chromatin

modifications that had been lost in differentiation to MEFs are re-established in iPS cells

(Wernig, 2007; Maherali, 2007; Takahashi et al., 2007).



Chromatin changes associated with developmental reprogramming appear to

happen progressively over an extended period of time, and do not occur homogenously in

all cells transduced with reprogramming factors. This was highlighted in initial

experiments that selected for reprogrammed cells with drug selection linked to Fbx15

expression (Takahashi and Yamanaka, 2006). In these experiments, re-activation of the

Fbx15 locus correlates with some degree of pluripotency induction, however the global

expression pattern of these cells still differs greatly from true, germline-competent ES

cells. Consistent with these differences in expression pattern, the cells have not fully

adopted an ES cell-like epigenetic state, and partial CpG methylation is still found at the

promoters of key regulators of pluripotency (Takahashi and Yamanaka, 2006) (Figure 5).

However, with addition of the same four factors, other cells do in fact adopt a

transcriptional and epigenetic program that is much closer to ES cells and allows for true

pluripotency (Okita et al., 2007; Wernig et al., 2007; Maherali et al., 2007). These rare

cells with more complete epigenetic reprogramming can either be selected with drug

selection linked to Oct4 or Nanog (Okita et al., 2007; Wernig et al., 2007; Maherali et al.,

2007), or can be identified based on morphology (Meissner et al., 2007; Blelloch et al.,

2007). Furthermore, over time, following introduction of the reprogramming factors,

more cells gradually appear adopt a true pluripotent epigenetic state, consistent with

models where these epigenetic changes occur progressively or stochastically (Brambrink

et al., 2008; Stadtfeld et al., 2008) (Figure 5).

The observation that Klf4, and other Klf family members, co-occupy many of the

promoters bound by Oct4, Sox2 and Nanog, although not necessarily at the same sites

(Jiang et al., 2008, Kim et al., 2008), provides clues to how Klf4 contributes to



developmental reprogramming. The functional significance of this co-occupancy is

highlighted by studies of transcriptional regulation of Leftyl, an ES-cell specific gene

(Nakatake et al., 2006). Oct4 and Sox2 bind to overlapping sites in the Leftyl promoter,

but are not sufficient to transcriptionally activate the gene in somatic cells. Remarkably,

addition of one more factor, Klf4, allows for expression of Leftyl in somatic cells. Klf4

binds to a separate DNA in the sequence, more proximal to the transcriptional start site

than the Oct4/Sox2 site (Nakatake et al., 2006). This suggests an attractive model for

the role of Klf4 in reprogramming. Klf4 occupies a subset of Oct4/Sox2/Nanog bound

promoters, and the combined actions of Oct4, Sox2 and Klf4 are required for proper

expression of key ES cell genes.

Although, c-Myc does not appear to be strictly required for developmental

reprogramming, this oncogene has a significant effect on the timing and efficiency of

reprogramming (Nakagawa et al., 2008; Wernig et al., 2008). c-Myc, perhaps in concert

with Klf4, could allow for a cancer-like transformation of somatic cells, conferring on

MEFs the resistance to senescence and rapid proliferative phenotype associated with ES

cells (Rodolfa and Eggan, 2006; Yamanaka, 2007; Knoepfler, 2008). A slightly different

model posits that c-Myc plays an important role in priming the chromatin state of MEFs

to allow the reprogramming factors to more efficiently switch the cell state (Rodolfa and

Eggan, 2006; Yamanaka, 2007; Knoepfler, 2008). This model is supported by the

extensive association of Myc protein with genome and its ability to modify chromatin

(Cawley et al., 2004; Fernandez et al., 2003; Li et al., 2003; Knoepfler, 2006).

Furthermore, genomic occupancy of c-Myc is distinct from that of core reprogramming

factors, and overlaps highly with nucleosomes modified with epigenetic marks of active



transcription (Kim et al., 2008). In addition, a non-transcriptional role has been proposed

for c-Myc (Knoepfler, 2008). c-Myc associates with pre-replication complexes and

promotes DNA synthesis independent of transcriptional regulation (Dominguez-Sola et

al., 2007). Rapid DNA replication, promoted by Myc over-expression, could provide an

enhanced opportunity for the somatic genome to reset its epigenetic state in the presence

of exogenous reprogramming factors.

Further studies of the programming of ES cells and the reprogramming of

somatic cells

Presented here are two studies, in Chapter 2 and Chapter 3, that build on the

existing model of the regulatory circuitry controlling pluripotency. Chapter 2 examines

how miRNA genes are regulated by core transcription factors and Polycomb group

proteins in ES cells. This study integrates miRNAs into a model of the multi-level

network, involving both transcriptional and post-transcriptional regulation, that controls

ES cell identity. Chapter 3 describes efforts to exploit knowledge of the regulatory

network controlling ES cell pluripotency, to increase the efficiency of reprogramming

somatic cells to pluripotency. In particular, the study uses transient stimulation of the

Wnt signaling pathway, which connects directly to the core transcriptional circuitry of ES

cells (Cole et al., 2008), to promote the induction of pluripotency in concert with nuclear

reprogramming factors.



Foxp3 and control of CD4+CD25+ Regulatory T cells

CD4+CD25+ regulatory T (Treg) cells are a specialized sub-population of T cells

that are essential for the prevention of autoimmunity (Sakaguchi et al., 1995). Treg cells

have an attenuated cytokine response to T-cell receptor stimulation, and can suppress the

proliferation and effector function of neighboring T-cells in vivo and in vitro (Shevach,

2002; von Boehmer, 2005). The molecular mechanisms of this suppression remain

largely unknown (Shevach, 2002; von Boehmer, 2005). Failure to develop CD4+CD25+

Treg cells is known to cause multi-organ autoimmunity both in mice and humans. Patients

with common autoimmune diseases, such as multiple sclerosis, have normal numbers of

Treg cells, but these Treg cells are deficient in suppressing conventional T cells as

measured by in vitro suppression assays (Viglietta et al., 2004; Baecher-Allan et al.,

2006).

The forkhead transcription factor Foxp3 is a key developmental determinant of

Treg cells. Foxp3 expression is restricted to Treg cells, and Foxp3 knockout causes a

specific defect in Treg cell development (Hori et al., 2003; Fontenot, 2003; Khattri et al.,

2003; Fontenot, 2005). Foxp3 knockout mice have a phenotype characterized by massive

lymphoproliferation and multi-organ autoimmunity (Brunkow et al., 2001). In humans,

FOXP3 mutations have been linked to the autoimmune condition, Immune dysregulation,

Polyendocrinopathy, Enteropathy, X-linked syndrome (IPEX) (Wildin et al., 2001;

Bennett et al., 2001). Foxp3 is not only required for the establishment of functional Treg

cells, but also for the maintenance of mature Treg cells in the periphery (Williams and

Rudensky, 2007). Enforced expression of Foxp3 is sufficient to cause conventional T



cells to assume a suppressive phenotype, demonstrating its role as a master regulator of

the Treg cell identity (Hori et al., 2003). An understanding of the mechanism by which

Foxp3 drives the differentiation of Treg cells would help elucidate the genetic program

that allows for the suppressive phenotype of Treg cells and would also identify candidates

for genes in which mutations contribute to aberrant Treg cell function in human

autoimmune disease.

miRNAs in Treg cells

There is accumulating evidence of the role of miRNA-mediated gene regulation

in the immune system. Targeted deletion of murine miR-155, a miRNA preferentially

expressed in hematopoietic cells, revealed key roles for this transcript in regulation the

adaptive immune response, including helper T cell differentiation (Rodriguez et al., 2007;

Thai et al., 2007). miR-155-deficent T cells displayed aberrant expression of cytokines

and transcription factors (Rodriguez et al., 2007).

miRNAs are also important specifically in Treg function. Dicer depletion results in

deficent Treg cells and abnormal immune response (Cobb et al., 2006). Treg cells have a

miRNA expression profile distinct from that of conventional T cells, including higher

levels of miR-155. Ectoptic expression of Foxp3 is able to shift the miRNA expression

profile of conventional T cells towards the profile of Treg cells, including activation of

miR-155, suggesting that key miRNAs are under the control of this master regulator of

the Treg identity (Cobb et al., 2006).

Regulation of Teg cells by T-cell stimulation



One of the defining functional characteristics of Treg cells is a diminished cytokine

response to stimulation of the T-cell receptor (TCR) relative to conventional T cells.

Whereas conventional T cells secrete high doses of interleukin 2 (112) in response to T-

cell stimulation, Treg cells are refractory to secreting 112 (Schubert et al., 2001) (Figure

6). In fact, Foxp3 binds directly to the 112 promoter and represses transcription of this

gene (Schubert et al., 2001; Chen et al., 2006; Wu et al., 2006). The consensus forkhead

DNA sequence motif bound by Foxp3 in this promoter is adjacent to the binding motif

for another transcription factor, Nfat (nuclear factor of activated T-cells) (Schubert et al,

2001.). Foxp3 interacts with and attenuates that transcriptional activity of Nfat and NF-

kappaB, two transcription factors that translocate to the nucleus of T cells in response to

T-cell stimulation (Bettelli et al., 2005). These findings suggest that a key function of

Foxp3 might be to control a distinctive Treg response to TCR stimulation (Figure 6). In

fact, FOXP3 physically interacts with NFAT in a DNA-binding complex (Wu et al.,

2006). The two transcription factors cooperate, both positively and negatively, to regulate

the transcription of key known target genes, including 112, which is repressed in Treg cells,

and Il2ra (CD25), a cell surface molecule preferentially expressed in Treg cells (Wu et

al., 2006). Nfat is a canonical effector of T-cell stimulation, suggesting that Treg cell

identity is cooperatively shaped by the lineage specification factor, Foxp3, and the

transcriptional program induced by T-cell stimulation. However, the extent of Foxp3

cooperation with Nfat in shaping the gene expression program of in Treg cells cannot be

assessed fully without knowledge of the set of promoters occupied by Foxp3 throughout

the genome.

Global control of the Treg gene expression program by Foxp3



Chapter 4 describes studies to identify the global set of Foxp3 target genes to

begin to elucidate how this transcription factor establishes Treg cellular identity.

Experiments presented were designed to identify genes whose promoters are occupied by

Foxp3 and whose expression is dependent on this transcription factor. To investigate the

interaction of Foxp3 with T-cell stimulation in controlling the gene expression program

of T reg cells, Foxp3 binding and Foxp3-dependent gene expression patterns were

examined in the presence and absence of T-cell stimulation. This work was a step

towards understanding how Foxp3 establishes the gene expression program required for

Treg cell function and how defects in this program might contribute to autoimmunity.
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Figure Legends

Figure 1. Model of the molecular circuitry controlling cellular identity. The

expression of both protein-coding genes (pink rectangles) and miRNA genes (purple

hexagons) are dependent on transcriptional regulation by transcription factors (blue

circles) and chromatin regulators (green circles). The activity of these regulators is often

dependent on extra-cellular cues that influence intra-cellular signal transduction

pathways. The products of genes include transcriptional regulators and miRNAs that

participate in the gene regulatory network.

Figure 2. Core transcriptional circuitry of ES cells. Multiple core ES cell

transcription factors (blue circles) (1) participate in an interconnected autoregulatory loop

(bottom left), (2) generally co-occupy the same sites in the promoters of their target

genes, and, (3) collectively target two sets of genes, one that is actively expressed in ES

cells and another that is silent in ES cells, but remains poised for subsequent expression

during cellular differentiation (Boyer et al., 2005) Polycomb Group proteins (PcG, green

circle) co-occupy a set of silent developmental regulators in ES cells that are expressed in

differentiated cells in a lineage-specific fashion. These genes tend to show evidence of

transcriptional initiation by RNA Polymerase II (Po12, grey oval), but are not

productively transcribed in ES cells.

Figure 3. miRNA biogenesis. Primary miRNAs are transcribed, generally by RNA

Polymerase II, and then cleaved in the nucleus by Drosha and Dgcr8 to generate an RNA

hairpin. The hairpin is exported from the nucleus and cleaved by Dicer, to yield a mature

18-24 nucleotide miRNA, which is unwound and incorporated into the RISC complex.



Mature miRNAs interact with complementary sequences in mRNAs and the RISC

complex contributes to destabilization of target mRNAs and repression of translation

(Bartel, 2004).

Figure 4. Core components of the Wnt/l3-catenin pathway. a. In the absence of extra-

cellular Wnt ligand, Frizzled and LRP receptors (low-density-lipoprotein-receptor-related

proteins 5 or 6) are not associated in the plasma membrane. A multi-protein complex,

including APC (adenomatous polyposis coli), Axin (axis inhibitor) and Gsk3B (glycogen-

synthase kinase 3B), phosphorylates cytoplasmic B-catenin (B-cat) and tags it for

degradation by the proteosome. This prevents the accumulation of nuclear B-cat. In the

absence of nuclear B-cat, TCF3 associates transcriptional co-repressors of the GRG

(groucho-related gene) family at the promoters of target genes. b. Wnt ligand promotes

the association of Frizzled and LRP receptors. This leads to the phosphorylation and

inactivation of Gsk3B, mediated by Dvl (Dishevelled) (not shown). B-cat accumulates

and migrates to the nucleus where it associates with Tcf/Lef proteins, including Tcf3

shown here, at target genes to regulate transcription.

Figure 5. Model of progressive epigenetic reprogramming in iPS cell generation. a.

Fibroblasts transduced with reprogramming factors undergo gradual changes over weeks

to adopt the true pluripotent epigenetic state of fully reprogrammed iPS cells (Brambrink

et al., 2008; Stadtfeld et al., 2008). Fully reprogrammed iPS cells have a global gene

expression program comparable to ES cells (Okita et al., 2007; Wernig et al., 2007;

Maherali et al., 2007) b. In fibroblasts, the promoters of genes encoding core ES cell

transcription factors, including Oct4 and Nanog, are CpG methylated (indicated with



closed circles) and silenced. Initial experiments generating iPS cells (Takahashi and

Yamanaka, 2006) identified cells that are partially reprogrammed based on their global

expression pattern and partially demethylated (mixed closed circles and open circles) at

the promoters of genes encoding key regulators of pluripotency. In fully reprogrammed

iPS cells (Okita et al., 2007; Wernig et al., 2007; Maherali et al., 2007), promoters of

genes encoding core ES cell transcription factors, including Oct4 and Nanog, are CpG

demethylated (indicated with open circles). c. Upon transduction, viral encoded

reprogramming factors are expressed and presumably bind to the promoters of

endogenous genes encoding core ES cell regulators, although the timing of this is not yet

known. The endogenous genes encoding core ES regulators are gradually activated. In

fully reprogrammed iPS cells, the viral genes are silenced, suggesting that the pluripotent

state is maintained by core ES cell transcription factor autoregulation.

Figure 6. Foxp3 transcriptional control and T-cell signaling, a. Ligation of the T-cell

receptor (TCR) and co-stimulatory molecules including CD28 leads to a productive

cytokine response, including synthesis and secretion of Interleukin 2 (112), in

conventional T cells. Transcription factors including Nfat, Apl and NF-kappaB (NFKB)

contribute to this response to T-cell stimulation. b. One of the defining functional

characteristics of Treg cells is a diminished cytokine response to stimulation of the T-cell

receptor (TCR) relative to conventional T cells. One potential function of Foxp3 in Treg

cells is direct inhibition of transcription at the promoters of genes, such as 112, that would

otherwise be activated by T-cell stimulation. c. Foxp3 could also regulate the expression

of proteins that modulate the intra-cellular signaling pathway that mediates the response

to T-cell stimulation. Shown here is a hypothetical gene X that is activated by Foxp3 and



inhibits T-cell stimulation, but similarly Foxp3 could repress a gene that would otherwise

promote T-cell stimulation. Models of Foxp3 function presented in b and c are both

consistent with the data presented in Chapter 4.
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Summary

MicroRNAs (miRNAs) are crucial for normal embryonic stem (ES) cell self-renewal

and cellular differentiation, but how miRNA gene expression is controlled by the

key transcriptional regulators of ES cells has not been established. We describe

here a new map of the transcriptional regulatory circuitry of ES cells that

incorporates both protein-coding and miRNA genes, and which is based on high-

resolution ChIP-seq data, systematic identification of miRNA promoters, and

quantitative sequencing of short transcripts in multiple cell types. We find that the

key ES cell transcription factors are associated with promoters for most miRNAs

that are preferentially expressed in ES cells and with promoters for a set of silent

miRNA genes. This silent set of miRNA genes is co-occupied by Polycomb Group

proteins in ES cells and expressed in a tissue-specific fashion in differentiated cells.

These data reveal how key ES cell transcription factors promote the miRNA

expression program that contributes to self-renewal and cellular differentiation, and

integrate miRNAs and their targets into an expanded model of the regulatory

circuitry controlling ES cell identity.



Introduction

Embryonic stem (ES) cells hold significant potential for clinical therapies because

of their distinctive capacity to both self-renew and differentiate into a wide range of

specialized cell types. Understanding the transcriptional regulatory circuitry of ES cells

and early cellular differentiation is fundamental to understanding human development

and realizing the therapeutic potential of these cells. Transcription factors that control ES

cell pluripotency and self-renewal have been identified (Chambers and Smith, 2004;

Niwa, 2007; Silva and Smith, 2008) and a draft of the core regulatory circuitry by which

these factors exert their regulatory effects on protein-coding genes has been described

(Boyer et al., 2005; Loh et al., 2006; Lee et al., 2006; Boyer et al. 2006; Jiang et al.,

2008; Cole et al., 2008; Kim et al., 2008). MicroRNAs (miRNAs) are also likely to play

key roles in ES cell gene regulation (Kanellopoulou et al., 2005; Murchison et al., 2005;

Wang et al., 2007), but little is known about how miRNAs participate in the core

regulatory circuitry controlling self-renewal and pluripotency in ES cells.

Several lines of evidence indicate that miRNAs contribute to the control of early

development. miRNAs appear to regulate the expression of a significant percentage of all

genes in a wide array of mammalian cell types (Lewis et al., 2005; Lim et al., 2005; Krek

et al., 2005; Farh et al., 2005). A subset of miRNAs is preferentially expressed in ES

cells or embryonic tissue (Houbaviy et al., 2003; Suh et al., 2004; Houbaviy et al., 2005;

Mineno et al., 2006). Dicer-deficient mice fail to develop (Bernstein et al., 2003) and ES

cells deficient in miRNA processing enzymes show defects in differentiation, self-

renewal and perhaps viability (Kanellopoulou et al., 2005; Murchison et al., 2005; Wang



et al., 2007; Calabrese et al., 2008). Specific miRNAs have been shown to participate in

mammalian cellular differentiation and embryonic development (Stefani and Slack,

2008). However, how transcription factors and miRNAs function together in the

regulatory circuitry that controls early development has not yet been examined.

The major limitation in connecting miRNA genes to the core transcriptional

circuitry of ES cells has been sparse annotation of miRNA gene transcriptional start sites

and promoter regions. Mature miRNAs, which specify post-transcriptional gene

repression, arise from larger transcripts that are then processed (Bartel, 2004). Over 400

mature miRNAs have been confidently identified in the human genome (Landgraf et al.,

2007), but only a minority of the primary transcripts have been identified and annotated.

Prior attempts to connect ES cell transcriptional regulators to miRNA genes have

searched for transcription factor binding sites only close to the annotated mature miRNA

sequences (Boyer et al., 2005; Loh et al., 2006; Lee et al., 2006). Additionally, studies of

the core transcriptional circuitry of ES cells have compared transcription factor

occupancy to mRNA expression data, but have not systemically examined miRNA

expression in ES cells and differentiated cell types, limiting our knowledge of

transcriptional regulation of miRNA genes in these cells (Boyer et al., 2005; Loh et al.,

2006; Lee et al., 2006; Cole et al. 2008).

To incorporate miRNA gene regulation into the model of transcriptional

regulatory circuitry of ES cells, we began by generating new, high-resolution, genome-

wide maps of binding sites for key ES cell transcription factors using massive parallel

sequencing of chromatin immunoprecipitation (ChlP-seq). These data reveal highly



overlapping occupancy of Oct4, Sox2, Nanog and Tcf3 at the transcriptional start sites of

miRNA transcripts, which we systematically mapped based on a method that uses

chromatin landmarks and transcript data. We then carried out quantitative sequencing of

short transcripts in ES cells, neural precursor cells (NPCs) and mouse embryonic

fibroblasts (MEFs), which revealed that Oct4, Sox2, Nanog and Tcf3 occupy the

promoters of most miRNAs that are preferentially or uniquely expressed in ES cells. Our

data also revealed that a subset of the Oct4/Sox2/Nanog/Tcf3 occupied miRNA genes are

silenced in ES cells by Polycomb Group proteins, but are expressed later in development

in specific lineages. High-resolution transcription factor location analysis, systematic

mapping of the primary miRNA transcriptional start sites in mouse and human, and

quantitative sequencing of miRNAs in three different cell types provide a valuable data

resource for studies of the gene expression program in ES and other cells and the

regulatory mechanisms that control cell fate. The data also produce an expanded model

of ES cell core transcriptional regulatory circuitry that now incorporates transcriptional

regulation of miRNAs, and post-transcriptional regulation mediated by miRNAs, into the

molecular understanding of pluripotency and early cellular differentiation.



Results

High-resolution genome-wide location analysis in ES cells with ChlP-seq

To connect miRNA genes to the core transcriptional circuitry of ES cells, we first

generated high-resolution genome-wide maps of Oct4, Sox2, Nanog, and Tcf3 occupancy

(Figure 1). ChIP-seq allowed us to map transcription factor binding sites and histone

modifications across the entire genome at high resolution (Barski et al., 2007; Johnson et

al., 2007; Mikkelsen et al., 2007; Robertson et al., 2007), and we optimized the protocol

to allow for robust analysis of transcription factor binding in murine ES cells

(Supplemental Material). Oct4, Sox2, Nanog and Tcf3 were found to co-occupy 14,230

sites in the genome (Figure 1A, Supplementary Figures S1 and S2, Supplementary

Tables S1-S3). Approximately one quarter of these occurred within 8kb of the

transcription start site of 3,289 annotated genes, another one quarter occurred within

genes but more than 8kb from the start site, and almost half occurred in intergenic regions

distal from start sites (Supplementary Text). Binding of the four factors at sites

surrounding the Sox2 gene (Figure 1B) exemplifies two key features of the data: all four

transcription factors co-occupied the identified binding sites and the resolution was

sufficient to determine the DNA sequence associated with these binding events to a

resolution of <25bp. Composite analysis of all bound regions provided higher resolution

and suggested how these factors occupy their common DNA-sequence motif

(Supplementary Figure S3, Supplementary Table S4). Knowledge of these binding

sites provided data necessary to map these key transcription factors to the promoters of

miRNA genes.



Identification of miRNA promoters

Imperfect knowledge of the start sites of primary miRNA transcripts has limited

our ability to identify the transcription factor binding events that control miRNA gene

expression in vertebrates. Previous strategies to identify the 5' ends of primary miRNAs

have been hampered because they relied on isolation of transient primary miRNA

transcript, required knowledge of the specific cell type in which each given miRNA is

transcribed, or focused only on potential start sites proximal to mature miRNAs (Fukao et

al., 2007; Mikkelsen et al., 2007; Zhou et al., 2007; Barrera et al., 2008). To

systematically identify transcriptional start sites for miRNA genes in the mouse and

human genomes, we took advantage of the recent observation that histone H3 is tri-

methylated at its lysine 4 residue (H3K4me3) at the transcriptional start sites of most

genes in the genome, even when genes are not productively transcribed, and knowledge

that this covalent modification is restricted to sites of transcription initiation (Barski et

al., 2007; Guenther et al., 2007). We used the genomic coordinates of the H3K4me3

enriched loci derived from multiple cell types (Supplementary Table S5, Barski et al.,

2007; Guenther et al., 2007; Mikkelsen et al., 2007) to create a library of candidate

transcription start sites in both human and mouse (Figure 2 and Supplementary Figure

S4).

High-confidence promoters were identified for over 80% of miRNAs in both

mouse and human (Figure 2, Supplementary Figure S4 and Supplementary Tables S6

and S7). These promoters were associated with 185 murine primary microRNA



transcripts (pri-miRNAs) (specifying 336 mature miRNAs), and 294 human pri-miRNAs

(specifying 441 mature miRNAs) (Supplementary Table S6 and S7). To identify

promoters for miRNA genes, the association of candidate transcriptional start sites with

regions encoding mature miRNAs was scored based on proximity to annotated mature

miRNA sequences (Landgraf et al., 2007), available EST data, and conservation between

species (Figure 2A and Supplementary Figure S5 and Supplementary Text). Four

lines of evidence indicate that this approach identified genuine transcriptional start sites

for miRNA genes. Existing EST data provided evidence that the predicted transcripts do

in fact originate at the identified start sites and continue through the annotated loci of

mature miRNAs (Figure 2B and Supplementary Figures S5). In addition to the

chromatin signature of promoters, a high fraction of these regions contained CpG islands,

a DNA sequence element often associated with promoters (Figure 2B and

Supplementary Table S6 and S7). Third, in some instances where evidence of primary

miRNA transcripts, which may be present only transiently before processing, were not

available in published databases at the identified transcriptional start sites, chromatin

marks associated with transcriptional elongation including nucleosomes methylated at H3

lysine 36 (H3K36me3) and H3 lysine 79 (H3K79me2), provided evidence that such

transcripts are actively produced (Figure 2C and Mikkelsen et al., 2007). Finally, most

miRNA promoters showed evidence of H3K4me3 enrichment in multiple tissues, as

observed at the promoters of most protein-coding genes (Barski et al., 2007; Guenther et

al., 2007; Heintzman et al., 2007) (Figure 2D).



Occupancy of miRNA promoters by core ES cell transcription factors

The binding sites of the ES cell transcription factors Oct4, Sox2, Nanog and Tcf3

were next mapped to these high-confidence miRNA promoters (Figure 3). In murine ES

cells, Oct4, Sox2, Nanog, and Tcf3 co-occupied the promoters for 55 distinct miRNA

transcription units, which included three clusters of miRNAs that are expressed as large

polycistrons, thus suggesting that these regulators have the potential to directly control

the transcription of 81 distinct mature miRNAs (Figure 3A and Supplementary Tables

56). This set of miRNAs occupied by Oct4/Sox2/Nanog/Tcf3 represents roughly 20

percent of annotated mammalian miRNAs, similar to the -20 percent of protein-coding

genes that are bound at their promoters by these key transcription factors

(Supplementary Table S2).

To determine if transcription factor occupancy of miRNA promoters is conserved

across species, we performed genome-wide location analysis for Oct4 in human ES cells

using microarray-based analysis. We found extensive conservation of the set of miRNA

genes that were occupied at their promoters by Oct4, as exemplified by the mir-302

cluster (Figure 3A and 3B and Supplementary Tables S7 and S8). Transcription

factor occupancy does not necessarily mean that the adjacent gene is regulated by that

factor; conserved transcription factor occupancy of a promoter, however, suggests gene

regulation by that factor. Thus, our data identify a set of miRNA genes that are bound at

their promoters by key ES cell transcription factors in mouse and human cells (Figure

3C), suggesting that core ES cell transcription factor regulation of these particular

miRNA transcripts has functional significance.



Regulation of Oct4 bound miRNA transcripts during differentiation

Oct4 and Nanog are rapidly silenced as ES cells begin to differentiate (Chambers

and Smith, 2004; Niwa, 2007). If the Oct4/Sox2/Nanog/Tcf3 complex is required for

activation or repression of its target miRNAs, the targets should be differentially

expressed when ES cells are compared to a differentiated cell-type. To test this

hypothesis, Solexa sequencing of 18-30 nucleotide transcripts in ES cells, mouse

embryonic fibroblasts (MEFs), and neural precursors (NPCs), was performed to obtain

quantitative information on the abundance of miRNAs in pluripotent cells relative to two

differentiated cell types (Figure 4).

In each cell type examined, a small subset of mature miRNA transcripts

predominated (Figure 4A). Members of the mir-290-295 cluster, which encodes

multiple miRNAs with the same seed sequence, constituted approximately two thirds of

all mature miRNA transcripts in murine ES cells. Let-7 family members constituted

roughly one quarter and one half of miRNAs in MEFs and NPCs, respectively. The mir-

290-295 cluster, which dominated the expression profile of ES cells, but was scarce in

both MEFs and NPCs, is occupied at its promoters by Oct4, Sox2, Nanog and Tcf3

(Figure 3A), consistent with the hypothesis that these factors are important for

maintaining the expression of the mir-290-295 miRNA cluster in ES cells.

To determine if the behavior of the mir-290-295 cluster is typical of the

Oct4/Sox2/Nanog/Tcf3-occupied miRNAs, we further examined the expression of this



set of miRNAs in the three cell types. Figure 4B shows how the abundance of this group

of miRNAs changed in MEFs and NPCs relative to ES cells. Approximately half of the

miRNAs dropped more than an order of magnitude in abundance in MEFs and NPCs

relative to ES cells. A small subset of the Oct4/Sox2/Nanog/Tcf3-occupied miRNAs,

which will be further discussed below, were expressed only at low levels in ES cells and

showed increased abundance in MEFs and NPCs.

Oct4/Sox2/Nanog/Tcf3-occupied miRNAs are, in general, preferentially

expressed in embryonic stem cells, as demonstrated by the analysis shown in Figure 4C.

Whereas most miRNAs are unchanged in expression in ES cells relative to MEFs or

NPCs, a significant portion of Oct4/Sox2/Nanog/Tcf3 occupied miRNAs are 100 fold

more abundant in ES cells than in MEFs (p<5 x 10-15), and 1,000 fold more abundant in

ES cells than in NPCs (p<5 x 10-9). This group of Oct4/Sox2/Nanog/Tcf3 bound

miRNAs that is significantly more abundant in ES cells than in NPCs and MEFs, was

also found to be actively expressed in induced pluripotent stem (iPS) cells (generated as

described in Wernig et al., 2007), at levels comparable to that in ES cells, consistent with

the hypothesis that core ES cell transcription factors maintain the expression of these

miRNAs in pluripotent cells (Supplementary Figure S6).

Polycomb Group Proteins co-occupy tissue-specific miRNAs that are silenced in ES

cells



We noted that the Oct4/Sox2/Nanog/Tcf3-bound miRNAs include the majority of

miRNAs that were preferentially expressed in ES cells, but the data also revealed a

second, smaller group of Oct4/Sox2/Nanog/Tcf3-bound miRNA genes that appeared to

be transcriptionally inactive in ES cells (Figure 4B). This is reminiscent of previous

observations with protein-coding genes in ES cells: Oct4 occupied a set of

transcriptionally active genes, but also occupied, with Polycomb Group proteins, a set of

transcriptionally repressed genes that are poised for expression upon cellular

differentiation (Lee et al., 2006; Bernstein et al., 2006; Boyer et al., 2006). We reasoned

that Polycomb complexes might also co-occupy Oct4 bound promoters for miRNA genes

that showed little or no evidence for expression, and thus contribute to their silencing.

Indeed, new ChIP-seq data for the Polycomb Goup protein Suzl2 in murine ES cells

supported this hypothesis (Figure 5A and Supplementary Tables S6, S7, S10). As

expected, these promoters were also enriched for nucleosomes with histone H3K27me3,

a chromatin modification catalyzed by Polycomb Group proteins (Figure 5A and

Supplementary Table S6 and Mikkelsen et al., 2007). In keeping with the repressive

function of the Polycomb Group proteins reported at protein coding genes, miRNAs

occupied at their promoters by Suzl2 in ES cells were significantly less abundant in ES

cells compared to all other miRNAs (Figure 5B). Approximately one quarter of the

Oct4/Sox2/Nanog/Tcf3-occupied miRNAs belonged to the repressed set of miRNA genes

bound by Suzl2 in murine ES cells (Supplementary Tables S6 and S7).

To further examine the behavior of this set of miRNAs during embryonic cell-fate

commitment, we returned to our quantitative sequencing data of short transcripts in ES

cells, MEFs and NPCs (Figure 5C). Notably, miRNAs that were bound by Polycomb



Group proteins in ES cells are among the transcripts that are specifically induced in each

of these cell types. For example, transcript levels of miR-9, a miRNA previously

identified in neural cells and which promotes neural differentiation (Lagos-Quintana et

al., 2002; Krichevsky et al., 2006), are significantly elevated in NPCs relative to ES cells,

but this miRNA remains repressed in MEFs. Similarly, miR-218 and miR-34b/34c

expression is induced in MEFs, but remains at low levels in NPCs (Figure 5C).

Consistent with Polycomb-mediated repression of these lineage-specific miRNAs, the

repressive chromatin mark deposited by Polycomb Group proteins, H3K27me3, is

selectively lost at the promoters of the miRNAs in the cells in which they are induced

(Figure 5C and Mikkelsen et al., 2007).

The tissue-specific expression pattern of miRNAs repressed by Polycomb in ES

cells is consistent with these miRNAs serving as determinants of cell-fate decisions in a

manner analogous to the developmental regulators whose genes are repressed by

Polycomb in ES cells (Lee et al., 2006; Bernstein et al., 2006; Boyer et al., 2006). Such a

function in cell-fate determination would require that these miRNAs remain silenced in

pluripotent ES cells. Indeed, the miRNAs that are repressed in ES cells by Polycomb

Group proteins appear to be induced, later in development, in a highly restricted subset of

differentiated tissues specific to each miRNA (Supplementary Figure S7), unlike the

majority of miRNAs identified in mouse (Landgraf et al., 2007). The miRNAs with

promoters bound by Polycomb Group proteins in ES cells are significantly enriched

(p<0.005) among the set of the most tissue-specific mammalian miRNAs

(Supplementary Fig. S7 and Landgraf et al., 2007). This suggests a model whereby



Polycomb Group proteins repress a set of tissue-specific miRNA genes in ES cells, a

subset of which are co-occupied by Oct4, Sox2, Nanog and Tcf3 (Figure 5D).



Discussion

Here we provide new high-resolution, genome-wide maps of core ES cell

transcription factors, identify promoter regions for most miRNA genes, and deduce the

association of the ES cell transcription factors with these miRNA genes. We also provide

quantitative sequence data of short RNAs in ES cells, NPCs and MEFs to examine

changes in miRNA transcription. The key transcriptional regulators in ES cells

collectively occupied the promoters of many of the miRNAs that were most abundant in

ES cells, including those that were down-regulated as ES cells differentiate. In addition,

these factors also occupied the promoters of a second, smaller set of miRNAs that were

repressed in ES cells and were selectively expressed in specific differentiated cell types.

This second group of miRNAs constitutes a subset of the miRNAs that were silenced by

the Polycomb group proteins in ES cells, which is also known to silence key lineage-

specific, protein-coding developmental regulators. Together these data reveal two key

groups of miRNAs that are direct targets of Oct4/Sox2/Nanog/Tcf3, one group of

miRNAs that is preferentially expressed in pluripotent cells and a second group that is

silenced in ES cells by the Polycomb group proteins, and is poised to contribute to cell

fate-decisions during mammalian development.

miRNA contribution to ES cell identity

Several miRNA ploycistrons, which encode the most abundant miRNAs in ES

cells and which are silenced during early cellular differentiation (Houbaviy et al., 2003;



Suh et al., 2004; Houbaviy et al., 2005), were occupied at their promoters by Oct4, Sox2,

Nanog and Tcf3. These include the mir-290-295 cluster, which contains multiple mature

miRNAs that share seed sequences with members of the murine mir-302 cluster, as well

as the human mir-371-373 and mir-302 clusters. miRNAs in the 17-92 cluster also share

a highly similar seed sequence. miRNAs in this family have been implicated in cell

proliferation (O'Donnell et al., 2005; He et al., 2005; Voorhoeve et al., 2006), consistent

with the impaired self-renewal phenotype observed in miRNA-deficient ES cells

(Kanellopoulou et al., 2005; Murchison et al., 2005; Wang et al., 2007). The zebrafish

homologue of this miRNA family, mir-430, contributes to the rapid degradation of

maternal transcripts in early zygotic development (Giraldez et al., 2006), and mRNA

expression data suggests that this miRNA family also promotes the clearance of

transcripts in early mammalian development (Farh et al., 2005).

In addition to promoting the rapid clearance of transcripts as cells transition from

one state to another during development, miRNAs also likely contribute to the control of

cell identity by fine-tuning the expression of genes. mir-430, the zebrafish homologue of

the mammalian mir-302 family, serves to precisely tune the levels of Nodal antagonists

Leftyl and Lefty 2 relative to Nodal, a subtle modulation of protein levels that has

pronounced effects on embryonic development (Choi et al., 2007). Recently, a list of

-250 murine ES cell mRNAs that appear to be under the control of miRNAs in the mir-

290-295 cluster was reported (Sinkkonen et al., 2008). This study reports that Leftyl and

Lefty2 are evolutionarily conserved targets of the mir-290-295 miRNA family. These

miRNAs also maintain the expression of de novo DNA methyltransferases 3a and 3b

(Dnmt3a and Dnmt3b), perhaps by dampening the expression of the transcriptional



repressor Rbl2, helping to poise ES cells for efficient methylation of Oct4 and other

pluripotency genes during differentiation.

Knowledge of how the core transcriptional circuitry of ES cells connects to both

miRNAs and protein-coding genes, reveals recognizable network motifs downstream of

Oct4/Sox2/Nanog/Tcf3, involving both transcriptional and post-transcriptional

regulation, that further reveal how this circuitry controls ES cell identity (Figure 6).

Leftyl and Lefty2, both actively expressed in ES cells, are directly occupied at their

promoters by Oct4/Sox2/Nanog/Tcf3. Therefore, the core ES cell transcription factors

appear to promote the active expression of Leftyl and Lefty2, but also fine-tune the

expression of these important signaling proteins by activating a family miRNAs that

target the Leftyl and Lefty2 3'UTRs. This network motif whereby a regulator exerts both

positive and negative effects on its target, termed "incoherent feed-forward" regulation

(Alon, 2007), provides a mechanism to fine-tune the steady-state level or kinetics of a

target's activation (Figure 6A). Over a quarter of the proposed targets of the mir-290-

295 miRNAs also are likely under the direct transcriptional control of

Oct4/Sox2/Nanog/Tcf3 based on our binding maps, suggesting that these miRNAs could

participate broadly in tuning the effects of ES cell transcription factors (Figure 6A).

The miRNA expression program directly downstream of Oct4/Sox2/Nanog/Tcf3

could help poise ES cells for rapid and efficient differentiation, consistent with the

phenotype of miRNA-deficient cells (Kanellopoulou et al., 2005; Murchison et al., 2005;

Wang et al., 2007; Calabrese et al., 2008). Oct4/Sox2/Nanog/Tcf3 also likely contributes

to this poising by their occupancy of the Let-7g promoter. Mature Let-7 transcripts are



scarce in ES cells, but were among the most abundant miRNAs in both MEFs and NPCs

(Figure 3). Primary Let-7g transcript is abundant in ES cells, but its maturation is

blocked by Lin28 (Viswanathan et al., 2008 and data not shown). We now report that the

promoters of both Let-7g and Lin28 are occupied by Oct4/Sox2/Nanog/Tcf3, suggesting

that the core ES cell transcription factors promote the transcription of both primary Let-

7g and Lin28, which blocks the maturation of Let-7g. In this way Let-7 and Lin-28

appear to participate in an incoherent feed-forward circuit downstream of

Oct4/Sox2/Nanog/Tcf3 to contribute to rapid cellular differentiation (Figure 6B).

Notably, ectopic expression of Lin28 in human fibroblasts promotes the induction of

pluripotency (Yu et al., 2007), suggesting blocked maturation of pri-Let-7 transcripts

plays an important role in the pluripotent state. Additionally, Dnmt3a and Dnmt3b,

which are indirectly up-regulated by the mir-290-25 miRNAs (Sinkkonen et al., 2008),

are also occupied at their promoters by Oct4/Sox2/Nanog/Tcf3, providing examples of

"coherent" regulation of important target genes by ES cell transcription factors and the

ES cell miRNAs maintained by those transcription factors (Figure 6C).

Multi-layer Regulatory Circuitry of ES cell identity

The regulatory circuitry we present for miRNAs in ES cells can now be integrated

into the model of core regulatory circuitry of pluripotency we have proposed previously

(Boyer et al., 2005; Lee et al., 2006; Cole et al., 2008), as illustrated in Figure 7. Our

data reveal that Oct4, Sox2, Nanog and Tcf3 occupy the promoters of two key sets of

miRNAs, similar to the two sets of protein-coding genes regulated by these factors: one



set that is actively expressed in pluripotent ES cells and another that is silenced in these

cells by Polycomb Group proteins and whose later expression might serve to facilitate

establishment or maintenance of differentiated cell states.

The expanded circuit diagram presented here integrates transcription factor

occupancy of miRNA genes and existing data on miRNA targets into our model of the

molecular control of the pluripotent state. These data suggest that miRNAs that are

activated in ES cells by Oct4/Sox2/Nanog/Tcf3, serve to modulate the direct effects of

these transcription factors, participating in incoherent feed-forward regulation to tune

levels of key genes, and modifying the gene expression program to help poise ES cells

for efficient differentiation. Core ES cell transcription factors and the miRNAs under

their control coordinately contribute transcriptional and post-transcriptional gene

regulation to the network that maintains ES cell identity.

Concluding Remarks

The regulatory circuitry controlled by ES cell transcription factors, Oct4, Sox2,

Nanog and Tcf3, and the Polycomb Group proteins, which is required for the normal ES

cell state, has offered insights into the molecular control of ES cell pluripotency and self-

renewal and cellular reprogramming (Jaenisch and Young, 2008). We now provide high-

resolution genome-wide location analysis of these factors provided by ChIP-seq data, and

quantitative sequencing of short transcripts in multiple cell types, to connect miRNA

genes to the core circuitry of ES cells. This information should prove useful as



investigators continue to probe the role of miRNAs in pluripotency, cell-fate decisions,

and perhaps regenerative medicine.
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Experimental Procedures

A detailed description of all materials and methods used can be found in Supplementary

Information.

Cell Culture

V6.5 (C57BL/6-129) murine ES cells were grown under typical ES conditions (see

Supplementary Information) on irradiated mouse embryonic fibroblasts (MEFs). For

location analysis, cells were grown for one passage off of MEFs, on gelatinized tissue-

culture plates. To generate neural precursor cells, ES cells were differentiated along the

neural lineage using standard protocols (see Supplementary Information). V6.5 ES cells

were differentiated into neural progenitor cells (NPCs) through embryoid body formation

for 4 days and selection in ITSFn media for 5-7 days, and maintained in FGF2 and EGF2

(R&D Systems) (See Supplementary Information). Mouse embryonic fibroblasts were

prepared and cultured from DR-4 strain mice as previously described (See

Supplementary Information).

Antibodies and ChIP assays

Detailed descriptions of antibodies, antibody specificity and ChIP methods used in this

study are provided in Supplementary Information.

Crosslinked cells (-1 x 107 per IP) were lysed and sonicated using a Misonix 3000

sonicator to solubilize and shear crosslinked DNA to a 200bp-1000bp fragment size.

Batch sonicated whole cell extract was incubated 12-18 hours at 4°C with 100 pll of

Dynal Protein G magnetic beads (Dynal) that has been pre-bound to 10 gpg of the

appropriate antibody. Immunoprecipitates were washed with RIPA buffer and the DNA

eluted in 1% SDS at 650C for 1 hour. Chemical cross-links were reversed for 10 hours to

allow isolation of immunoenriched DNA fragments. Immunoprecipitated DNA and

control whole cell extract DNA were purified by treatment with RNAse A, proteinase K

and two consecutive phenol:chloroform:isoamyl alcohol extractions.
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ChlP-seq

Crosslinked cells (1 x 107 per IP) were lysed and sonicated using a Misonix 3000 sonicator

to solubilize and shear crosslinked DNA to a 200bp-1000bp fragment size. Batch sonicated

whole cell extract was incubated 12-18 hours at 40C with 100 tl of Dynal Protein G

magnetic beads (Dynal) that has been pre-bound to 10 jtg of the appropriate antibody.

Immunoprecipitates were washed with RIPA buffer and the DNA eluted in 1% SDS at

650C for 1 hour. Chemical cross-links were reversed for 10 hours to allow isolation of

immunoenriched DNA fragments. Immunoprecipitated DNA and control whole cell extract

DNA were purified by treatment with RNAse A, proteinase K and two consecutive

phenol:chloroform:isoamyl alcohol extractions.

Purified immunoprecipitated DNA were prepared for sequencing according to a modified

version of the Solexa Genomic DNA protocol. Fragmented DNA was end repaired and

subjected to 18 cycles of LM-PCR using oligos provided by Illumina. Amplified fragments

between 150 and 300bp (representing shear fragments between 50 and 200nt in length and

-100bp of primer sequence) were isolated by agarose gel electrophoresis and purified.

High quality samples were confirmed by the appearance of a smooth smear of fragments

from 100-1000bp with a peak distribution between 150 and 300bp. 3ng of Linker-ligated

DNA was applied to the flow-cell using the Solexa Cluster Station fluidics device.

Following bridge amplification the cluster density and morphology were confirmed by

microscopic analysis of flow-cells stained with a 1:5000 dilution of SYBR Green I

(Invitrogen). Samples were then subjected to 26 bases of sequencing according to

Illumina's standard protocols.

Images acquired from the Solexa sequencer were processed through the bundled Solexa

image extraction pipeline and aligned to both mouse NCBI build 36 and 37 using ELAND.

Only sequences uniquely matching the reference genome without mismatches were used.

Mapped reads were extended to 200bp and allocated into 25bp bins. Groups of bins

containing statistically significant enrichment for the epigenetic modification were

identified by comparison to a Poissonian background model as well as comparison to an

empirical distribution of reads obtained from whole cell extract DNA.



Quanititative short RNA sequencing

A method of cloning the 18-30nt transcripts previously described (Lau et al., 2001) was

modified to allow for Solexa (Illumina) sequencing (manuscript submitted). Single-

stranded cDNA libraries of short transcripts were generated using size selected RNA

from mouse embryonic stem cells, mouse neural precursors, and mouse embryonic

fibroblasts. RNA extraction was performed using Trizol, followed by RNeasy

purification (Qiagen).

5gg of RNA was size selected and gel purified. 3' Adaptor

(pTCGTATGCCGTCTTCTGTTG [idT]) was ligated to RNA with T4 RNA ligase and

also, separately with RNA Ligase (Rnl2(1-249)k->Q). Ligation products were gel

purified and mixed. 5' adaptor (GUUCAGAGUUCUACAGUCCGACGAUC) was

ligated with 4 RNA Ligase.

RT-PCR (Superscript II, Invitrogen) was performed with 5' primer

(CAAGCAGAAGACGGCATA). Splicing of overlapping ends PCR (SOEPCR) was

performed (Phusion, NEB) with 5' primer and 3' PCR primer

(AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGA), generating

cDNA with extended 3' adaptor sequence. PCR product (40 gl) was denatured (850 C, 10

min, formamide loading dye), and the differently sized strands were purified on a 90%

formamide, 8% acrylamide gel, yielding single-stranded DNA suitable Solexa

sequencing.

The single-stranded DNA samples were resuspended in 10mM Tris (EB buffer)/0.1%

Tween and then used as indicated in the standard Solexa sequencing protocol (Illumina).

Each library was run on one lane of the Solexa sequencer.



Promoter array design and data extraction

The design of the oligonucleotide-based whole genome array set and data extraction

methods are described in Lee et al., 2006. The microarrays used for location analysis in

this study were manufactured by Agilent Technologies (http://www.agilent.com).
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Figure 1 High-resolution genome-wide mapping of core ES cell transcription factors

with ChIP-seq. A. Summary of binding data for Oct4, Sox2, Nanog and Tcf3. 14,230

sites are co-bound genome wide and mapped to either promoter proximal (TSS +/- 8kb,

dark green) (27% of binding sites), genic (>8kb from TSS, middle green) (30% of

binding sites), or intergenic (light green) (43% of binding sites). The promoter proximal

binding sites are associated with 3,289 genes. B. (upper) Binding of Oct4 (blue), Sox2

(purple), Nanog (orange) and Tcf3 (red) across 37.5kb of mouse chromosome 3

surrounding the Sox2 gene (black below the graph, arrow indicates transcription start

site). Short sequences uniquely and perfectly mapping to the genome were extended to

200bp (maximum fragment length) and scored in 25bp bins. The score of the bins were

then normalized to the total number of reads mapped. Highly enriched regions are

highlighted by a dotted box. Oct4/Sox2 DNA binding motifs (Loh et al., 2006) were

mapped across the genome and are shown as grey boxes below the graph. Height of the

box reflects the quality of the motif. (lower) Detailed analysis of three enriched regions

(Chromosome 3: 4,837,600-34,838,300, 34,845,300-34,846,000, and 34,859,900-

34,860,500) at the Sox2 gene indicated with boxes above. The 5' most base from ChIP-

seq were separated by strand and binned into 25bp regions. Sense (darker tone) and anti-

sense (light tone) of each of the four factors tested are directed towards the binding site,

which in each case occurs at a high-confidence Oct/Sox2 DNA binding motif indicated

below.

Figure 2 Identification of miRNA promoters. A. Description of algorithm for miRNA

promoter identification. A library of candidate transcriptional start sites was generated

with histone H3 lysine 4 tri-methyl (H3K4me3) location analysis data from multiple

tissues (Barski et al., 2007; Guenther et al., 2007; Mikkelsen et al., 2007). Candidates

were scored to assess likelihood that they represent true miRNA promoters. Based on

scores, a list of mouse and human miRNA promoters was assembled. Additional details

can be found in Supplemental Text. B. Examples of identified miRNA promoter regions

are shown. A map of H3K4me3 enrichment is displayed in regions neighbouring

selected human and mouse miRNAs for multiple cell types: human ES cells (hES), REH



human pro-B cell line (B cell), primary human hepatocytes (Liver), primary human T

cells (T cell), mouse ES cells (mES), neural precursor cells (NPCs) and mouse embryonic

fibroblasts (MEFs). miRNA promoter coordinates were confirmed by distance to mature

miRNA genomic sequence, conservation and EST data (shown as solid line where

available). Predicted transcriptional start site and direction of transcription are noted by

an arrow, with mature miRNA sequences indicated (red). CpG islands, commonly found

at promoters, are indicated (green). Dotted lines denote presumed transcripts. C.

Confirmation of predicted transcription start sites for active miRNAs using chromatin

modifications. Normalized ChIP-seq counts for H3K4me3 (red), H3K79me2 (blue) and

H3K36me3 (green) are shown for two miRNA genes where EST data was unavailable.

Predicted start site (arrow), CpG islands (green bar), presumed transcript (dotted lines)

and miRNA positions (red bar) are shown. D. Most human and mouse miRNA promoters

show evidence of H3K4me3 enrichment in multiple tissues.

Figure 3 Oct4, Sox2, Nanog and Tcf3 occupancy of miRNA promoters. A. Oct4

(blue), Sox2 (purple), Nanog (orange) and TCF3 (red) binding is shown at four murine

miRNA genes as in Figure lA. H3K4me3 enrichment in ES cells is indicated by shading

across genomic region. Presumed transcripts are shown as dotted lines. Coordinates for

the mmu-mir-290-295 cluster are derived from NCBI build 37. B. Oct4 ChIP enrichment

ratios (ChIP-enriched versus total genomic DNA) are shown across human miRNA

promoter region for the hsa-mir-302 cluster. H3K4me3 enrichment in ES cells is

indicated by shading across genomic region. C. Schematic of miRNAs with conserved

binding by the core transcription factors in ES cells. Transcription factors are represented

by dark blue circles and miRNAs are represented by purple hexagons. miRNAs from the

miR-302 cluster and miR290-295 (mouse)/371-372(human) cluster are selectively

expressed in ES cells (Houbaviy et al., 2003).

Figure 4 Regulation of Oct4/Sox2/Nanog/TCF3-bound miRNAs during

differentiation. A. Pie charts showing relative contributions of miRNAs to the complete

population of miRNAs in mES cells (red) , MEFs (blue) and neural precursors (NPCs,



green) based on quantification of miRNAs from by small RNA sequencing. A full list of

the miRNAs identified can be found in Supplementary Table S6. B. Normalized

frequency of detection of individual mature miRNAs whose primary transcripts are

occupied by Oct4, Sox2, Nanog and Tcf3 in mouse. Red line in center and right panel

show the level of detection in ES cells. C. Histogram of changes in frequency of

detection. Changes for miRNAs whose primary transcripts are occupied by Oct4, Sox2,

Nanog and Tcf3 in mouse are shown as bars (red for ES enriched, blue for MEF enriched

and green for NPC enriched). The background frequency for non-occupied miRNAs is

shown as a grey line.

Figure 5. Polycomb represses lineage-specific miRNAs in ES cells. A. Suzl2 (light

green) and H3K27me3 (dark green, Mikkelsen et al., 2007) binding are shown for two

miRNA genes in murine ES cells. Predicted start sites (arrow), CpG islands (green bar),

presumed miRNA primary transcript (dotted line) and mature miRNA (red bar) are

shown. B. Expression analysis of miRNAs from mES cells based on quantitative small

RNA sequencing. Cumulative distributions for PcG bound miRNAs (green line) and all

miRNAs (grey line) are shown. C. Expression analysis of miRNAs bound by Suzl2 in

mES cells. Relative counts are shown for mES (red), NPCs (orange) and MEFs (yellow).

miR-9 transcript levels were selectively induced in NPCs, while miR-218 and miR-34c

were induced in MEFs. H3K27me3 (green line) was lost from the miR-9-1 and the miR-

9-2 promoters in NPCs, while the promoters retained H3K4me3 (blue line) (Mikkelsen et

al., 2007). H3K27me3 was lost at the miR-218 and miR-34c promoters in MEFs. D.

Schematic of a subset of miRNAs bound by Suzl2 in both mES and hES cells. Cells

known to selectively express these miRNAs based on computation predictions (Farh et

al., 2005) or experimental confirmation (Yi et al., 2006; Yi et al., 2008; Landgraf et

al.,2007) are indicated. Transcription factors are represented by dark blue circles, and

Suzl2 by a green circle. miRNA gene promoters are represented by purple hexagons.

Figure 6. miRNA modulation of the gene regulatory network in ES cells. A. An

incoherent feed-forward motif (Alon 2007) involving a miRNA repression of a



transcription factor target gene is illustrated (left). Transcription factors are represented

by dark blue circles, miRNAs in purple hexagons, protein-coding gene in pink rectangles

and proteins in orange ovals. Particular instances of this netowrks motif identified in ES

cells, where signaling molecules or transcriptional regulators directly downstream of

Oct4/Sox2/Nanog/Tcf3 are tuned or silenced by miRNAs maintained in ES cells by

Oct4/Sox2/Nanog/Tcf3, are illustrated (right). B. Another incoherent feed-forward motif

(Alon 2007) where a protein, encoded by a gene under the control of

Oct4/Sox2/Nanog/Tcf3, inhibits the maturation of a primary miRNA transcript

maintained in ES cells by Oct4/Sox2/Nanog/Tcf3, is illustrated (left). In ES cells, Lin28

blocks the maturation of primary Let-7g (Visiwanthan et al., 2008). Lin28 and the Let-7g

gene are occupied by Oct4/Sox2/Nanog/Tcf3. Also, noted by the purple dashed line is

the Targetscan prediction (Grimson et al., 2007), that mature Let-7g would target Lin28

(right). c, A coherent feed-forward motif (Alon 2007) where a miRNA represses the

expression of transcriptional repressor, which indirectly activates the expression of a gene

maintained in ES cells by Oct4/Sox2/Nanog/Tcf3, is illustrated (left). This motif is found

in ES cells, where mir-290-295 miRNAs repress Rbl2 indirectly maintaining the

expression of Dnmt3a and Dnmt3a, which are also occupied at their promoters by

Oct4/Sox2/Nanog/Tcf3 (right).

Figure 7. Multi-level regulatory network controlling ES cell identity. Updated map of

ES cell regulatory circuitry is shown. Interconnected auto-regulatory loop is shown to the

left. Active transcripts are shown at the top right, and PcG silenced transcripts are shown

at the bottom. Transcription factors are represented by dark blue circles, and Suzl2 by a

green circle. Gene promoters are represented by red rectangles, gene products by orange

circles, and miRNA promoters are represented by purple hexagons.
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Summary

Somatic cells can be reprogrammed to induced pluripotent stem (iPS) cells by

retroviral transduction of four transcription factors, Oct4, Sox2, Klf4 and c-

Myc. While the reprogrammed pluripotent cells are thought to have great

potential for regenerative medicine, genomic integrations of the retroviruses

increase the risk of tumorigenesis. Thus, new approaches are required that

circumvent the need for retroviruses to induce reprogramming. We report

here that soluble Wnt3a promotes the generation of iPS cells in the absence of

c-Myc retrovirus. Furthermore, chemicals that target the Wnt pathway are

able to modulate the efficiency of iPS cell formation. These data demonstrate

that signal transduction pathways and transcription factors can act

coordinately to reprogram differentiated cells to a pluripotent state, and

suggest the first synthetic small molecule that promotes the reprogramming

process.



Introduction

Retroviral transduction of the four nuclear factors, Oct4, Sox2, Klf4 and c-Myc

has been used to reprogram mouse and human somatic cells into induced pluripotent stem

(iPS) cells that are indistinguishable from embryo derived embryonic stem (ES) cells

(Takahashi and Yamanaka, 2006; Okita et al., 2007; Wernig et al., 2007; Maherali et al.,

2007; Takahashi et al., 2007). More recent experiments have demonstrated that other

combinations of factors also can induce iPS cells (Yu et al., 2007; Park et al., 2007;

Nakagawa et al., 2008). While retroviruses afford an efficient means of over-expressing

these transcription factors for an extended period of time, they preclude the clinical utility

of the presently derived iPS cells because of the danger of insertional mutagenesis and

the high risks of tumorigenesis associated with the transduction of oncogenes such as c-

Myc (Okita et al., 2007). Recently, iPS cells have been generated without c-Myc

retrovirus (Myc[E) and chimeric mice arising from these Mycl-3 cells have a significantly

lower incidence of tumors than mice generated from Myc infected cells (Nakagawa et al.,

2008; Wernig et al., 2008). While they carry a reduced risk of causing cancer, Mycl-I iPS

cells can only be generated at extremely low efficiencies and with delayed kinetics

relative to Myc transduced cells (Nakagawa et al., 2008; Wernig et al., 2008). To realize

the therapeutic potential of iPS cells (Hanna et al., 2007), there is great interest in

identifying methods that can replace genetic manipulations of the donor cells and

substitute for the retroviruses and oncogenes currently used for the induction of the

reprogramming process. Here we identify a defined small molecule that could promote

the generation of MycE-1 iPS cells.



Knowledge of the transcriptional regulatory circuitry controlled by Oct4, Sox2, as

well as Nanog, which promotes reprogramming of human cells (Yu et al., 2007), offers

important clues to the mechanism of reprogramming (Boyer et al., 2005; Loh et al., 2006;

Jaenisch and Young, 2008; Kim et al., 2008). These ES transcription factors control a

large number of genes, both promoting the transcription of genes required for self-

renewal, and repressing the transcription of genes that would cause cellular

differentiation. Additionally, Oct4, Sox2 and Nanog all bind to their own promoters, as

well as the promoters of the genes encoding the two other factors. This interconnected

auto-regulatory loop likely contributes to the stability of the pluripotent state and suggests

that exogenous transcription factors directly promote the transcription of the endogenous

genes to induce reprogramming. Klf4 was more recently shown to occupy the promoters

of an overlapping set of genes, including Oct4, Sox2 and Nanog (Jiang et al., 2008; Kim

et al., 2008). During iPS cell formation, once key genes such as Oct4 and Nanog, whose

promoters are methylated and silenced in somatic cells, are induced by the

reprogramming factors (Okita et al., 2007; Wernig et al. 2007; Maherali et al., 2007), the

transcriptional program of pluripotency is reactivated. At this point, expression of

exogenous reprogramming factors becomes dispensable because the endogenous

transcriptional regulatory circuitry is able to maintain itself in iPS cells under normal ES

cell culture conditions (Wernig et al., 2007; Brambrink et al., 2008; Stadtfeld et al.,

2008).

Naturally occurring signaling molecules that modulate the expression of ES cell

transcription factors are promising candidates for soluble factors that enhance

reprogramming. The Wnt signaling pathway contributes to the maintenance of



pluripotency in mouse and human ES cells (Sato et al., 2004; Ogawa et al., 2006; Singla

et al., 2006; Cai et al., 2007), as well as the self-renewal of undifferentiated adult stem

cells in multiple tissues (Reya and Clevers, 2005). In addition, initial studies of iPS

generation suggested that constitutively active B-catenin, another downstream component

of the Wnt pathway, might promote reprogramming of fibroblasts to pluripotency

(Takahashi and Yamanaka, 2006).

Recent genome-wide location analysis of Tcf3, one of the key transcriptional

regulators downstream of the Wnt pathway in embryonic stem cells, has revealed that this

factor co-occupies almost all promoter regions occupied by ES cell specific transcription

factors, including Oct4 and Nanog, and is bound to the promoters of Oct4, Sox2, Nanog

and c-Myc in ES cells (Cole et al, 2008). This demonstrates that the Wnt signaling

pathway directly converges on the core regulatory circuitry of ES cell transcription,

consistent with the observed effects of this pathway on pluripotency. Since the Wnt

pathway is so intimately connected to the core circuitry of pluripotency, we hypothesized

that the stimulation of the pathway using soluble factors could modulate the efficiency of

inducing pluripotency in somatic cells.

Here we examine the influence of Wnt stimulation on the reprogramming of

murine fibroblasts. Consistent with the observation that downstream components of the

Wnt signaling pathway converge on the core regulatory circuitry of pluripotency, we find

that Wnt stimulation is able to increase the efficiency of reprogramming by nuclear

factors in the absence of c-Myc retrovirus. Furthermore, we find chemicals that are

reported to modulate the B-catenin pathway can contribute both positively and negatively
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to reprogramming. Notably, ICG-427 appears to enhance the efficiency of generating

iPS cells without exogenous c-Myc under standard ES cell culture conditions.



Results

Wnt3a conditioned medium promotes reprogramming ofMEFs to an ES-like state

To determine the effect of Wnt3a on reprogramming, we infected mouse

embryonic fibroblasts (MEFs) that harbor a doxycyline (DOX)-inducible Oct4 cDNA

(Hochedlinger et al., 2005) with inducible lentiviral vectors encoding Sox2, Klf4, and c-

Myc (Brambrink et al., 2008). These cells also contain a G418 resistance cassette in the

endogenous Oct4 locus allowing for drug selection of iPS cells (Wernig et al., 2007).

Four factor expression was induced by addition of DOX in cells cultured in the

presence or absence of Wnt3a conditioned medium (Wnt3a-CM) (Willert et al., 2003),

G418 selection was initiated after 5 days and the number of drug resistant colonies was

determined 24 days after induction (Figure la). Figure lb shows that the total number

of drug resistant colonies was increased more than 7 fold when the cells were cultured in

Wnt3a-CM. We also noted that the drug resistant colonies were larger and more ES-cell

like by morphology when cultured in Wnt3a-CM than in ES cell medium (Figure ic).

Furthermore, the colonies that appeared in Wnt3a-CM with G418 selection initiated on

Day 5 could be further propagated, in contrast to the small colonies derived in standard

ES cell medium.

Given that Wnt3a-CM had a positive effect on reprogramming in concert with the

four transcription factors, we next examined if Wnt3a-CM could promote iPS cell

generation in MEFs lacking transduction of any of the factors. In parallel experiments,

fibroblasts were transduced with subsets of the transcription factors and observed in the

presence and absence of Wnt3a-CM (Figures ld and le). No resistant colonies formed



in the absence of Oct4 or Klf4 infection. One colony was observed in the absence of

Sox2 retrovirus, but this colony could not be not be further propagated in ES cell culture

conditions. In contrast, in the presence of Wnt3a-CM multiple robust G418-resistant

colonies formed in the absence of c-Myc in cells transduced only with Oct4, Sox2 and

Klf4 (Figures id and le). Similar to colonies from MEFs transduced with all four

factors, these iPS lines could be propagated in standard ES cell media without further

selection and retained ES cell morphology. In replicate experiments, G418-resistant

colonies were formed occasionally with no c-Myc transduction in the absence Wnt3a-

CM. However, consistent with published reports (Nakagawa et al., 2008; Wernig et al.,

2008), these colonies were rare. In the following, iPS cells generated with only three

factors and without c-Myc will be designated as Myce- iPS cells.

To more closely examine the effects of Wnt3a-CM treatment on the

reprogramming process, Oct4/Sox2/Klf4 and Oct4/Sox2/Klf4/c-Myc over-expressing

MEFs were cultured with and without Wnt3a-CM, and G418 selection was initiated at

different times after DOX addition. Figure if shows that when three factor over-

expressing cells were cultured in Wnt3a-CM medium about 3 fold more Myc[] iPS

colonies appeared when G418 was added at day 5 and about 20 fold more colonies when

G418 was added at 10 days after induction as compared to cultivation in ES cell medium

(Figure if, left panel). Wnt3a-CM medium also increased the number of drug resistant

colonies after induction of all four factors, though the fold increase was less pronounced

than in three factor transduced cells (Figure 1f, right panel). These results indicate that

Wnt3a-CM increased the number of drug resistant colonies in both three factor and four
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factor induced cells, with the most pronounced effect on three factor over-expressing

cells with selection applied at the later time point.

Rare MycE1 iPS clones have been shown previously to arise without any genetic

selection (Nakagawa et al., 2008; Wernig et al., 2008). We tested whether Wnt3-CM

would also aid in the generation of MycE3 iPS cells in the absence of selection for Oct4

reactivation. For this, cells with GFP driven by the endogenous Oct4 promoter were

utilized (Meissner et al., 2007). Oct4/Sox2/Klf4 infected cells with and without Wnt3a-

CM treatment were analyzed for GFP expression by flow cytometry at days 10, 15 and 20

after DOX induction. No GFP positive cells were present with or without Wnt3a-CM

treatment on day 10 or day 15. By day 20 a small population of GFP expressing cells

was detected in cells cultured in Wnt3a-CM, but not in standard ES cell medium (Figure

Ig). The Wnt3a-CM exposed cultures formed GFP expressing colonies with morphology

typical for ES or iPS cells (Figure lh). However, unlike four factor transduced cells,

which usually form a highly heterogeneous population of cells when propagated without

selection, the Oct4/Sox2/Klf4/Wnt3a-CM colonies appeared homogenously ES-like,

similar to previously reported MycE- iPS clones (Nakagawa et al., 2008).

Developmental potential of Wnt3a-CM-derived Mycl -i iPS cells

Several assays were performed to characterize the developmental potential of

Myc t- iPS cells derived with Wnt3a-CM treatment. Immunocytochemistry confirmed the

expression of markers of pluripotency, including the nuclear factor Nanog (Figures 2a

and 2b), and the surface glycoprotein SSEA1 (Figures 2c and 2d). Functional assays

confirmed that, like ES cells, these iPS cells were pluripotent. When injected into SCID



mice subcutaneously, the Myce- iPS cells gave rise to teratomas with histological

evidence of cells differentiating into all three germ layers (Figures 2e, 2f and 2g). More

importantly, Myc[1 iPS cells derived with Wnt3a-CM treatment contributed to the

formation of somatic tissues as well as the germline in chimeric mice (Figure 2h). These

results indicate that Wnt3a-CM treated Myc H clones are pluripotent cells that are

morphologically and functionally indistinguishable from ES cells.

Small molecule modulators of Wnt pathway affect reprogramming

Screens for chemicals that modulate the effects of Wnt signaling have identified

compounds that selectively inhibit either the differentiation promoting effects of the Wnt

pathway (ICG-427) or the self-renewal promoting effects of the pathway (ICG-001) (Teo

et al., 2005; McMillan and Kahn, 2005 and unpublished data). These small molecules

were attractive candidates to test for their effects on reprogramming because of the effect

we observed with Wnt3a-CM.

To quantify the effects of Wnt3a-CM, triplicate experiments were performed on

Oct4/Sox2/Klf4-inducible, G418 selectable MEFs (Figure 3b). Myc[ G418 resistant

colonies were extremely scarce in standard ES cell culture conditions, with 0-3 colonies

forming on each ten centimeter plate. However, when G418 selection was initiated in

Wnt3a-CM at day 15 after factor induction, about 20 fold more drug resistant colonies

formed, confirming the efficacy of this medium in enhancing reprogramming. It should

be noted that conditioned medium from control fibroblasts lacking Wnt3a over-

expression also caused a marked increase in the number of G418-resistant colonies,
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which was roughly half of the Wnt3a-CM effect. Thus, normal fibroblasts may secrete

factors, perhaps including Wnt3a, that promote reprogramming.

We then examined if the compounds described above modulated the Wnt3a-CM

dependent effects on iPS cell formation. Figure 3b (right columns) shows that ICG-001

completely inhibited the effect of Wnt3a-CM on Myc[E- iPS formation. In contrast, ICG-

427, which has been shown to contribute to maintenance of pluripotency in ES cells

(unpublished data), did not have a significant effect on the number of G418 resistant

colonies growing in Wnt3a-CM, although there upward trend in colony number was

observed.

The effects of Wnt3a-CM and the same Wnt pathway inhibitors were also

examined in MEFs over-expressing all four reprogramming factors, including c-Myc

(Figure 3c). High numbers of G418 resistant colonies were observed in standard ES cell

medium with four factor reprogrammed cells and in Wnt3a-CM, with only a subtle

increase in the number of colonies in Wnt3a-CM. In contrast to the dramatic effect of

ICG-001 on Myc'1 cells, the compound had only a subtle effect on the number of G418

colonies in c-Myc transduced cells, and a relatively high number of resistant colonies

were observed under these conditions. These results are consistent with the notion that

Wnt3a can, at least in part, replace the role of c-Myc in reprogramming.

Because the Wnt3a-CM medium may contain, in addition to Wnt3a, unknown

factors that could enhance reprogramming, we used the selective Wnt inhibitors to

investigate the role of the Wnt pathway in defined ES cell medium. Figure 3d shows

that the addition of ICG-427 significantly increased efficiency of reprogramming in 3
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factor over-expressing cells (formation of Myc [E] G418 resistant colonies). In contrast,

ICG-001 treatment slightly lowered the number of Myc[E- G418 resistant colonies as

compared to that observed in standard ES medium. Thus, even without conditioned

medium, the chemical modulation of the Wnt pathway had a reproducible positive effect

on the induction ofpluripotency in somatic cells. We thus identify ICG-427 as a defined

small molecule that appears to promote the reprogramming process.

107



Discussion

Our data establish that the Wnt signaling pathway can contribute to the generation

of iPS cells. We observed that reprogramming by four nuclear factors is accelerated in

the presence of Wnt3a-CM and that at early time-points after induction robust iPS

colonies were observed only in the presence of Wnt3a-CM. More importantly, Wnt3a-

CM significantly accelerated and enhanced the efficiency of reprogramming without

transduction of c-Myc. While in standard ES cell conditions rare Myce J iPS appeared

only late after infection (Nakagawa et al., 2008; Wernig et al., 2008), drug resistant or

GFP positive iPS colonies were detected already at 5 days or 20 days, respectively, after

factor induction in Wnt3a-CM. When selection was initiated at later time points, Wnt3a

had an even more pronounced effect on the formation of Myc[ 1 iPS cells, increasing the

number of G418 resistant colonies -20 fold. While the details of the kinetics of the

effects of Wnt on reprogramming need to be explored further in future experiments,

these data demonstrate that Wnt stimulation is an effective substitute for Myc-encoding

retrovirus in aiding the action of Oct4, Sox2 and Klf4 (Figure 4). Although Wnt

stimulation of three factor over-expressing cells produced fewer G418 resistant colonies

than four factor over-expression, the Myce 1 iPS colonies that were formed were more

homogeneously ES-like in appearance and growth characteristics than cells over-

expressing four factors. It is possible that more optimal concentrations of Wnt3a or small

molecule modulators of this pathway may yield as many colonies as the addition of Myc

retrovirus.



Recent reports have demonstrated that Myc is dispensable for inducing

pluripotency in MEFs (Nakagawa et al., 2008; Wernig et al., 2008), establishing Oct4,

Sox2 and Klf4 as a core set of reprogramming factors, although a slightly different

combination of factors also functions in human cells (Yu et al., 2007). Epigenetic

reprogramming of MEFs with defined factors is a gradual process, where transcription

factors progressively re-establish the core circuitry of pluripotency over the course of

weeks (Brambrink et al, 2008). Myc accelerates this process (Nakagawa et al., 2008;

Wernig et al., 2008), conceivably because it enhances cell proliferation allowing the

changes to unfold more rapidly. Additionally, Myc is suspected to have widespread

effects on chromatin state (Knoepfler, 2008; Kim et al., 2008) and could facilitate the

productive binding of the core reprogramming factors to their appropriate genomic

targets (Jaenisch and Young, 2008). Wnt stimulation seems to at least partially be able to

replace the requirement for c-Myc in reprogramming consistent with the notion that Wnt

stimulation and c-Myc act in the same signaling pathway.

The Wnt signaling pathway has been shown to connect directly to the core

transcriptional regulatory circuitry of ES cells, suggesting a mechanism by which this

pathway could directly promote the induction of the pluripotency in the absence of c-Myc

transduction (Figure 4). In ES cells, Tcf3 occupies and regulates the promoters of Oct4,

Sox2 and Nanog (Cole et al., 2008). In MEFs, these endogenous pluripotency

transcription factors are silenced. During reprogramming, as exogenous Oct4, Sox2 and

Klf4 contribute to the reactivation of the endogenous pluripotency factors, Wnt signaling

could directly potentiate the effect of these transcription factors, as it does in ES cells

(Cole et al., 2008). Additionally, Wnt could serve to activate endogenous c-Myc directly,



thereby substituting for exogenous c-Myc. Indeed, c-Myc is a well-established target of

the Wnt pathway in colorectal cancer cells (He et al., 1998). In ES cells, Tcf3 occupies

the c-Myc promoter, and Wnt3a positively contributes to expression of the gene (Cole et

al., 2008). The fact that enforced over-expression of c-Myc counteracts the negative

effect of the Wnt inhibitor ICG-001 on the reprogramming process suggests that Wnt

stimulation could be acting upstream endogenous Myc. Wnt-induced effects on cell

proliferation, mediated by c-Myc or other endogenous proliferation factors, could help to

accelerate the sequential process of forming MycE-l iPS colonies. In these models, which

are not mutually exclusive, the small molecule ICG-427 modulates the Wnt/b-catenin

signaling pathway to promote the reprogramming process, while ICG-001 impedes the

process (Figure 4).

Although the finding still needs to be reproduced, the use of ICG-427 could be a

critical first step towards generating iPS with chemical cues instead of retroviral

transduction of transcription factors, which harbor significant risks of oncogenic

transformation. Wnt modulators, including ICG-427, could provide a means of boosting

the efficiency of generating iPS cells without Myc over-expression, which otherwise only

form at extremely low efficiency with delayed kinetics. These compounds will likely

prove useful as chemicals, or other transient cues, are identified that substitute for the

remaining three reprogramming retroviruses. Finally, this provides an important proof of

principal that chemical manipulation of the core circuitry controlling cellular identity can

significantly contribute to the directed alteration of cell state. Here, based on knowledge

that the Wnt signals connect directly to this core circuitry in ES cells, we provide

functional evidence that small molecule modulation of this pathway regulates the



induction of pluripotency in somatic cells. Future efforts to manipulate other signaling

pathways and other core regulators of cell identity that control the pluripotent state will

likely further help to alleviate the current reliance on retroviruses in the generation of iPS

cells.



Experimental Procedures

Cell Culture

V6.5 (C57BL/6-129) murine ES cells and iPS cells were grown under typical ES

conditions on irradiated mouse embryonic fibroblasts (MEFs). Transgenic MEFs used in

the infections with DOX-inducible lentiviruses (Brambrink et al., 2008) were harvested at

13.5dpc and selected on 2ug/ml puromycin from embryos after blastocyst injection of

Oct4-IRES-GFPneo/Oct4-inducible ES cells (Wernig et al., 2007) or harvested from Fl

matings between R26-M2rtTA mice (Beard et al., 2006) and Oct4-GFP mice (Meissner et

al., 2007). Wnt3a conditioned media and control conditioned media was generated

according to standard protocols (ATCC) (Willert et al., 2003). Wnt modulators ICG-427

and ICG-001 were dissolved in DMSO to a stock concentration of 0.1M. The final,

working concentration of all 3 inhibitors was 4uM.

Viral Transduction

Tetracycline inducible lentiviral constructs expressing the cDNAs for Oct4, Klf-4, Sox2

and c-Myc were used as previously described (Brambrink et al., 2008). Virus was

prepared by transfecting HEK293T cells with a mixture of viral plasmid and packaging

constructs expressing the viral packaging functions and the VSV-G protein. Medium was

replaced 24 hours after transfection and viral supernatants were collected at 48 hours and

72 hours. After filtration, supernatants were pooled and MEFs were incubated with viral

supernatants and fresh media at a ratio of 1:1 for 24 hours and subsequently cultured in



ES-cell medium, conditioned medium or in medium supplemented with chemical

inhibitors.

Immunostaining and Antibodies

Cells were stained as described previously (Wernig et al., 2007). Antibodies against

Nanog (Bethyl) and SSEAl (R&D systems, Minneapolis, MN) were used according to

supplier recommendations.

Teratoma Formation

Teratoma formation was assayed as previously described (Hochedlinger et al., 2005).

Briefly, cells were trypsinized and 5x10 5 cells were injected subcutaneously into SCID

mice. After 14-21 days, teratomas were dissected, fixed in 10% phosphate-buffered

formalin overnight and subsequently embedded in paraffin wax using a Tissue-Tek VIP

embedding machine (Miles Scientific, Naperville, IL) and a Thermo Shandon Histocenter

2 (Thermo Fisher Scientific, Waltham, MA). Sections were cut at a thickness of 2 tm

using a Leica RM2065 (Leica, Wetzlar, Germany) and stained with hematoxylin and

eosin (Hochedlinger et al., 2005).

Blastocyst Injection
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Injections of iPS cells into Balb/c host blastocysts were carried out as previously

described (Beard et al., 2006).
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Figure Legends

Figure 1 Wnt3a promotes epigenetic reprogramming. a. Schematic representation of

the experimental time-line. MEFs were infected with DOX-inducible lentivirus, split into

cultures with and without Wnt3-CM treatment (Willert et al., 2003), and then induced

with DOX (day 0). G418 selection was initiated at fixed time points after induction amd

Wnt3a-CM treatment was maintained for 7 days of selection. DOX and G418 were

maintained until resistant colonies were assessed. b. G418-resistant colony counts from

MEFs overexpressing Oct4/Sox2/Klf4/c-Myc in standard ES cell media or with Wnt3a-

CM treatment. c. Phase images of G418 resistant colonies formed with and without

Wnt3a-CM treatment. d. G418-resistant colony counts from MEFs infected with different

combinations of reprogramming factors in the presence and absence of Wnt3a-CM. G418

resistant colonies emerged without c-Myc transduction in the presence of Wnt3a-CM. e.

Phase image of MycNE- G418 resistant colony formed with Wnt3a-CM treatment. In this

experiment, no colonies were observed for MycNl1 cells in the absence of Wnt3a-CM. f.

G418-resistant colony counts from MEFs over-expressing Oct4/Sox2/Klf4 (Myc[H) or

Oct4/Sox2/Klf4/c-Myc (Myce+J) in the presence (red bars) and absence (gray bars) of

Wnt3a-CM. G418 selection was initiated on day 5 or day 10 post-induction as indicated

and colonies (in a 32cm 2 area) were assessed on day 20. g. Scatter plots comparing GFP

intensity to autofluoresence, using flow cytommetry, in Oct4-GFP cells on day 20 post-

induction of Oct4/Sox2/Klf4, reveal a GFP expressing population of cells (indicated with

an arrow) only with Wnt3a-CM treatment. h. Phase image of GFP expressing Myc_ cells

derived with Wnt3a-CM treatment and without any genetic selection.

Figure 2 Induction of Pluripotency in Wnt Stimulated cells. a-d. Immunostaining

reveals induction of pluripotency markers, Nanog (a,b) and SSEA-1(c,d) in Wnt3a-CM

treated MycHq cells. e-g. Wnt3a-CM treated MycE- lines formed teratomas when injected

into SCID mice subcutaneously. Teratomas from Oct4/Sox2/Klf4/Wnt3aCM iPS lines

showed evidence of differentiated cells of three germ layers similar to teratomas formed

from V6.5 mES injections. Arrows indicated neural tissue in (e), cartilage in (f), and



endodermal cells in (g), h. Oct4/Sox2/Klf4/Wnt3aCM iPS lines derived without

selection gave rise to chimeric mice (as shown on the left) with agouti coat color and

pigmented eyes (in contrast to wild type Balb/c mouse, right) providing evidence of

contribution to somatic cells. Coat color of offspring confirmed that the

Oct4/Sox2/Klf4/Wnt3aCM iPS line generated here is germline-competent (data not

shown).

Figure 3 Small molecule modulators of Wnt pathway affect reprogramming a.

Counts are shown for G418 resistant colonies in Oct4/Sox2/Klf4 over-expressing MEFs

cultured in ES cell media, MEF conditioned media, Wnt3a over-expressing conditioned

media, and Wnt3a over-expressing conditioned media with ICG-001 or ICG-427.

Selection was initiated on day 15 post-induction, and colonies were assessed on day 28.

Mean number of counts from triplicate experiments is displayed with error bars

indicating S.D. b. Counts are shown for G418 resistant colonies (in a 32cm 2 area) in

Oct4/Sox2/Klf4/c-Myc over-expressing MEFs cultured in ES cell media, Wnt3a over-

expressing conditioned media, and Wnt3a over-expressing conditioned media with ICG-

001 or ICG-427. Selection was initiated on day 10 post-induction, and colonies were

assessed on day 20. c. Counts are shown for G418 resistant colonies in Oct4/Sox2/Klf4

infected MEFs cultured in standard ES cell media alone or with ICG-001 or ICG-427.

These MEFs were co-infected with dsRed as a control for viral titer. Selection was

initiated on day 15 post-induction, and colonies were assessed on day 28. Mean number

of counts from triplicate experiments is displayed with error bars indicating S.D.

Figure 4 Model of Wnt stimulation and induction of pluripotency. Wnt stimulation

promotes the formaton of iPS cells in the absence of c-Myc transduction. This could be

due to: i) direct regulation by the Wnt pathway of key endogenous pluripotency factors,

such as Oct4, Sox2 and Nanog as suggested by genomic studies in ES cells (Cole et al.,

2008), ii) Wnt pathway-induced activation of endogenous Myc (He et al., 1998; Cole et

al., 2008), or other cell proliferation genes, accelerating the sequential process of forming



iPS colonies. The small molecule ICG-427 modulates the Wnt/b-catenin signaling

pathway to promote the reprogramming process, while ICG-001 impedes the process.
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Summary

Foxp3+CD4+CD25÷ regulatory T (Treg) cells are essential for the prevention of

autoimmunity (Sakaguchi et al., 1995; Baecher-Allan et al., 2006). Tre, cells have an

attenuated cytokine response to T-cell receptor stimulation, and can suppress the

proliferation and effector function of neighbouring T-cells (Shevach, 2002; von

Boehmer, 2005). The forkhead transcription factor Foxp3 (forkhead box P3) is

selectively expressed in Treg cells, is required for Treg development and function, and

is sufficient to induce a Treg phenotype in conventional CD4+CD25- T-cells (Hori et

al., 2003; Fontenot et al., 2003; Khattri et al., 2003; Fontenot et al., 2005).

Mutations in Foxp3 cause severe, multi-organ autoimmunity in both human and

mouse (Brunkow et al., 2001; Bennett et al., 2001; Wildin et al., 2001). FOXP3 can

cooperate in a DNA-binding complex with NFAT (nuclear factor of activated T-

cells) to regulate the transcription of several known target genes (Wu et al., 2006b).

However, the global set of genes regulated directly by Foxp3 is not known and

consequently, how this transcription factor controls the gene expression program

for Treg function is not understood. Here we identify Foxp3 target genes and report

that many of these are key modulators of T-cell activation and function.

Remarkably, the predominant, although not exclusive, effect of Foxp3 occupancy is

to suppress the activation of target genes on T-cell stimulation. Foxp3 suppression of

its targets appears to be crucial for the normal function of Treg cells, because

overactive variants of some target genes are known to be associated with

autoimmune disease.



We developed a strategy to identify genes whose promoters are bound by Foxp3

and whose expression is dependent on that transcription factor (Figure 1). To generate

two cell lines that are genetically matched except for Foxp3, we transduced a

Foxp3-CD4 + murine T-cell hybridoma with FLAG-tagged Foxp3. This approach was

favoured over comparison of ex vivo cells, which are heterogeneous with regard to

activation status. The lines provided sufficient numbers of homogeneous cells with

appropriate controls to facilitate both location analysis and expression analysis. FACS

(fluorescence-activated cell sorting) analysis confirmed that Foxp3 is expressed in the

hybridoma at levels comparable to those in ex vivo CD4+CD25 + Treg cells

(Supplementary Figure Sl). Previous work has shown that conventional CD4+ T-cells

ectopically expressing Foxp3 do not upregulate interleukin 2 (112) secretion following T-

cell receptor (TCR) dependent stimulation (Schubert et al., 2001). To confirm that the

Foxp3 + hybridomas contain functional Foxp3, we assayed Foxp3- and Foxp3+ cells for

112 secretion. Indeed, FACS analysis revealed that 112 secretion is strongly inhibited in

phorbol myristate acetate (PMA)/ionomycin stimulated Foxp3 + hybridomas compared to

stimulated Foxp3- hybridomas (Supplementary Figure S2).

To identify direct targets of Foxp3, DNA sequences occupied by the transcription

factor were identified in a replicate set of experiments using chromatin-

immunoprecipitation (ChIP) combined with DNA microarrays. For this purpose, DNA

microarrays were used that contain 60-mer oligonucleotide probes covering the region

from -8 kilobases (kb) to +2 kb relative to the transcript start sites for approximately



16,000 annotated mouse genes (Boyer et al., 2006). The sites occupied by Foxp3 were

identified as peaks of ChIP-enriched DNA that span closely neighbouring probes (Figure

2). Foxp3 was found to occupy the promoters of 1,119 genes in PMA/ionomycin

stimulated hybridomas (Supplementary Tables S1 and S2). The well-characterized Foxp3

target gene (Wu et al., 2006b; Chen et al., 2006), 112, was among the genes occupied by

Foxp3 (Figure 2A). Most of the promoters occupied by Foxp3 in stimulated T-cells were

also occupied in unstimulated cells (Supplementary Tables S1 and S2, and

Supplementary Figure S3). However, at some promoters Foxp3 binding increased

considerably in cells stimulated with PMA/ionomycin (Figure 2A and Supplementary

Figure S3). Control immunoprecipitation experiments in Foxp3- cells, which produced

few positive signals, confirmed the specificity of these results (Supplementary Figure

S4). Our confidence in the binding data was further strengthened by the discovery of a

DNA sequence motif, which matches the consensus forkhead motif, at the genomic loci

that were bound by Foxp3 (Figure 2B and Supplementary Table S5). This motif

distinguishes Foxp3 bound regions from unbound regions tiled on the promoter arrays

with a high level of confidence (P < 10-41). Instances of this motif are significantly more

likely to be conserved in Foxp3 bound regions than in promoter regions that are not

bound by Foxp3 (P < 10-23), suggesting that these sites serve a functional role

(Supplementary Table S5).

To gain insights into the cellular functions that are directly regulated by Foxp3

transcriptional control, we compared the list of genes occupied by Foxp3 in stimulated

hybridomas to the biological pathways annotated by the Kyoto Encyclopedia of Genes

and Genomes (KEGG) (Kanehisa et al., 2000). Among these pathways, Foxp3 target



genes are most strongly associated with the TCR signalling pathway (P = 1.4 x 10-5)

(Figure 2C). Foxp3 target genes encode proteins that participate at multiple levels of this

pathway, including cell surface molecules, signalling components and transcriptional

regulators. Many genes with known roles in T-cells are missed with existing automated

surveys, so we also manually inspected the list of Foxp3 target genes. This revealed that

many additional Foxp3 targets are probably important for T-cell function, including

microRNAs that are differentially expressed between Treg cells and conventional T-cells

(Figure 2A and Supplementary Table S3 and Cobb et al., 2006). Surprisingly, Ctla4

was not among the Foxp3 targets, but analysis by RT-PCR (polymerase chain reaction

with reverse transcription) revealed no Ctla4 expression in Foxp3- and Foxp3'

hybridomas (data not shown). However, the Foxp3 targets included genes previously

reported to be upregulated in Treg cells, such as Il2ra (CD25) (Sakaguchi et al., 1995),

Tnfrsfl8 (GITR) (McHugh et al, 2002), Nrpl (Bruder et al., 2004) and Ccr4 (lellem et al.,

2001), consistent with predictions that these are directly regulated by Foxp3.

Previous reports have shown that only a portion of transcription factor binding

events is associated with transcriptional regulation (Harbison et al., 2004). To identify the

set of genes whose expression is dependent on Foxp3, we performed gene expression

profiling on Foxp3- and Foxp3+ T-cell hybridoma cells before and after PMA/ionomycin

stimulation. Comparison of data from unstimulated Foxp3- and Foxp3+ cells revealed few

differentially expressed genes, suggesting that the transcription factor had little influence

on global gene expression in unstimulated hybridomas (Supplementary Table SS). In

contrast, PMA/ionomycin-stimulated Foxp3- and Foxp3÷ cells showed significant

differences in expression of almost 1% of mouse genes. Many of these genes were



directly occupied by Foxp3, and Foxp3 binding was predominantly, but not exclusively,

associated with genes whose expression is downregulated in stimulated Foxp3'

hybridomas. Foxp3 occupied the promoters of approximately half of the genes in this

cluster (Figure 3A). This set of downregulated target genes is enriched for genes that are

implicated in TCR signalling (P = 6.1 x 10-3). Underscoring the significance of this

finding, E2f4, an unrelated control transcription factor that occupies -800 genes in these

hybridomas, was found to occupy only one of these promoters (Supplementary Table

S4).

Only a subset of all Foxp3 occupied genes was found to be differentially

expressed. One reason for this could be that Foxp3 requires cofactors to modulate

transcription. Recently, FOXP3 was shown to cooperate with NFAT in a DNA-binding

complex to activate or repress target gene expression (Wu et al., 2006b). Consistent with

this report, Foxp3 exerts a more pronounced transcriptional effect in stimulated

hybridoma cells than in non-stimulated cells. Importantly, in our experiments, the set of

Foxp3 bound genes are enriched (P < 1019) for the presence of an Nfat DNA sequence

motif neighbouring the sites of Foxp3 occupancy (Supplementary Table S5).

We next examined whether the genes regulated by Foxp3 in the T-cell

hybridomas show similar regulatory behaviour in ex vivo T-cells. Hybridoma cells were

used initially because they afforded cells that differ only by Foxp3 status, they provided a

homogenous population of non-stimulated T-cells, and we could have confidence in

genome-wide location data using FLAG-tagged Foxp3. Nonetheless, microarray

expression profiling was performed on ex vivo T-cells from different mice that express a



transgenic TCR alone or together with the TCR agonist ligand (Klein et al., 2003), from

which relatively pure populations of naive CD4+CD25- T helper and Foxp3+CD4*CD25'

Treg cells, respectively, could be isolated. This analysis revealed that many, although not

all, of the regulated targets that were identified in the hybridomas show consistent

expression patterns in stimulated ex vivo cells (Figure 3B and Supplementary Fig. S5).

Some differences in gene expression, especially genes that are activated by Foxp3 only in

Treg cells, may be due to the fact that ex vivo Treg cells are generated through antigenic

stimulation (Jordan et al., 2001; Kretschmer et al., 2005) and hence could contain

transcriptional cofactors that differ from those in hybridoma cells.

Our findings were further validated for a panel of nine Foxp3 targets. Site-specific

primers were used to confirm the binding of Foxp3 to the promoters of these genes

(Figure 3C) and quantitative RT-PCR was used to assay messenger RNA levels in non-

stimulated and stimulated hybridomas and ex vivo cells, in the presence and absence of

2 tM cyclosporin A (Figure 3D). These experiments confirmed the direct effects of

Foxp3 at targets that were identified in the genome scale experiments. Notably, in these

experiments (Figure 3D) all genes that were activated following stimulation in Foxp3-

cells and repressed in Foxp3 + cells were activated in a calcineurin dependent manner,

consistent with the notion that Nfat is involved in their activation. In addition, just as

Foxp3 regulates the protein levels of secreted 112 (Supplementary Fig. S2), cell surface

staining and FACS analysis show that Foxp3 regulates the level of Ly6a protein,

demonstrating that Foxp3 transcriptional regulation of its targets modulates protein levels

(Supplementary Fig. S6).



Taken together, the results from ex vivo T-cells and the hybridoma system

identify a core set of Foxp3 regulatory targets (Figure 4A), most of which showed

suppressed activation in stimulated Foxp3 ÷ cells. A smaller number of Foxp3 target genes

was upregulated in stimulated Foxp3 ÷ cells, including some encoding cell surface

molecules with known roles in immunoregulation, such as Ly6a (Stanford et al., 1997)

and Tnfrsf9 (4-1BB) (Myers et al., 2005). The results from the hybridoma system

indicate that Foxp3 occupies regions of most of its target promoters in both unstimulated

and stimulated conditions, but increased binding at some promoters and regulation of

most targets is observed after stimulation. Furthermore, in hybridomas the major function

of Foxp3 at these genes is to suppress the level of gene activation that would occur if this

transcription factor were not expressed (Figure 4B). Conceivably, the Foxp3 dependent

downregulation of T-cell activation and cytokine genes, and upregulation of

immunosuppressive cell surface molecules, contribute to both the hyporesponsive and

suppressive Treg phenotype.

Mutations in some Foxp3 target genes are already known to be associated with

autoimmune disease. The protein tyrosine phosphatase Ptpn22 is a notable example. In

our experiments, Ptpn22 is one of the highest confidence direct targets of Foxp3; it is

upregulated on stimulation in Foxp3- cells, and this upregulation is inhibited in Foxp3+

hybridomas (Figure 3A) and ex vivo Treg cells (Figures 3B and 3D). Ptpn22 modulates

the signal cascade downstream of the TCR, and mutations in the human PTPN22 have

been associated with type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus

and Graves' disease, as well as other autoimmune diseases (Bottini et al., 2004; Wu et al.,

2006a; Bottini et al., 2006). A recent report suggests that one PTPN22 single-nucleotide
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polymorphism associated with autoimmunity is a gain-of-function mutation (Vang et al.,

2005). Our findings are compatible with the hypothesis that the gain-of-function mutation

might be pathogenic if mutant PTPN22 is overactive in Treg cells (Vang et al., 2005).

In summary, our data indicate that Foxp3 binds to the promoters of well-

characterized regulators of T-cell activation and function. In the T-cell hybridomas

studied here, the major role of this transcription factor is to dampen the induction of key

genes when Treg cells are stimulated. In ex vivo Treg cells, Foxp3 could also activate the

expression of a greater number of genes, perhaps owing to the greater abundance of

certain transcriptional cofactors in these cells. Some of the identified Foxp3 target genes

have been previously implicated in autoimmune diseases, implying that a therapeutic

strategy to recapitulate the function of this transcription factor may have clinical utility

for these diseases.
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Experimental Procedures

A detailed description of all materials and methods used can be found in Supplementary

Information.

Growth of murine CD4+ T-cell hybridomas and ex vivo T-cells

CD4+ 5B6-2 hybridoma cells expressing a PLP139-151-specific TCR, which was kindly

provided by V. Kuchroo, were cultured in Dulbecco's modified Eagle medium

(Invitrogen). Primary murine CD4÷ T-cells were cultured in RPMI-1640 medium

(Invitrogen). For gene expression profiling, real-time RT-PCR, and location analysis,

cells were cultured in the absence or presence of 50 ng ml-1 phorbol 12-myristate 13-

acetate (PMA) and 200 ng ml-1 ionomycin at 37 'C and harvested after 6 h. Where

indicated, cells were preincubated for 1 h with 2gM cyclosporin A. Details of cell

generation and isolation are provided in Supplementary Information.

Antibodies and ChIP assays

Detailed descriptions of antibodies, antibody specificity and ChIP methods used in this

study are provided in Supplementary Information.

Promoter array design and data extraction

The design of the oligonucleotide-based promoter array set and data extraction methods

are described in Supplementary Information. The microarrays used for location analysis

in this study were manufactured by Agilent Technologies (http://www.agilent.com).

Motif analysis

Discovery of the Foxp3 sequence motif from the ChIP-chip binding data was performed

using the THEME algorithm. The Foxp3 motif learned by THEME and the Nfat motif

from the TRANSFAC database (version 8.3) were used to scan all arrayed sequences to

identify matches to the motifs.



Functional classification of bound genes

Comparison of Foxp3 target genes to annotated KEGG biological pathways was

performed using the online DAVID tool (http://niaid.abcc.ncifcrf.gov/).

Gene expression profiling

For each hybridoma culture condition, total RNA was prepared from 1 x 107 cells using

Trizol (Gibco) followed by additional purification using the RNeasy Mini Kit (Qiagen).

Biotinylated antisense cRNA was then prepared according to the Affymetrix standard

labelling protocol (one amplification round). For each primary T-cell culture condition,

total RNA was isolated from 5 x 105 cells with RNeasy. Biotinylated antisense cRNA

was prepared by two rounds of in vitro amplification using the BioArray RNA

Amplification and Labelling System (Enzo Life Sciences) according to the protocol for

10-1,000 ng of input RNA provided by the manufacturer. Biotinylated cRNAs of

hybridomas and primary T-cells were fragmented and hybridized to Affymetrix

GeneChip Mouse Expression Set 430 2.0 arrays at the Microarray Core Facility (Dana-

Farber Cancer Institute).

Quantitative RT-PCR

To determine transcript levels in T-cell hybridomas and ex vivo T-cells, RNA was

isolated, reverse-transcribed and subjected to real-time PCR performed on an ABI

PRISM thermal cycler using SYBR Green PCR core reagents (Applied Biosystems).

Detailed information is provided in Supplementary Information.
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Figure Legends

Figure 1 Strategy to identify direct Foxp3 transcriptional effects. Genetically

matched Foxp3+ and Foxp3- cell populations were generated by transduction of FLAG-

tagged Foxp3 into a Foxp3- murine T-cell hybridoma. Foxp3 binding sites at promoters

across the genome were identified by ChIP experiments with an anti-FLAG antibody.

Foxp3 dependent transcriptional regulation was identified by gene expression profiling

performed on each of these cell types.

Figure 2 Direct Foxp3 targets include key modulators of T-cell function. a, Foxp3

ChIP enrichment ratios (ChIP-enriched versus total genomic DNA) across indicated

promoters are shown for stimulated (pink) and unstimulated (blue) cells. Exons (blocks)

and introns (lines) of genes and the mir-155 precursor (grey) are drawn to scale below the

plots, with direction of transcription noted by an arrow. b, Foxp3 bound genomic regions

are enriched for the presence of a forkhead DNA motif, represented here in WebLogo

(http://weblogo.berkeley.edu). c, The KEGG (Kanehisa et al, 2000) TCR signalling

pathway, enriched (P = 1.4 x 10-s) for proteins encoded by direct targets of Foxp3 (blue

outline), is displayed.

Figure 3 Foxp3 directly suppresses the activation of target genes. a, Replicate

expression data for the 125 genes with Foxp3 dependent differential expression in

stimulated hybridomas (False Disovery Rate [FDR] < 0.05) - were hierarchically

clustered and displayed. - The Z-score normalized induction (red) or repression (green) is

shown for each gene. Direct targets of Foxp3 in stimulated hybridomas are indicated

(dark blue for FDR < 0.05, light blue for FDR < 0.10). b, For repressed (green) and

induced (red) Foxp3-bound targets in a, log2(fold difference) in expression between

stimulated ex vivo effector (Teff) T-cells and Treg cells is displayed. Slcl 7a6 and Adaml0

are not expressed in the ex vivo samples. c, Site-specific PCR on 10 ng of ChIP DNA

confirmed selected targets. Immunoprecipitated (IP) DNA was compared to serial
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dilutions (90, 30 and 10 ng of DNA) of unenriched whole cell extract (WCE) DNA.

Enrichment ratios, shown at top right of each sub-panel, are normalized relative to the

unenriched b actin control. DNA fragment size (bp) is indicated on the left of each row.

d, The transcript levels of the panel of Foxp3 targets presented in c and of Foxp3 were

analysed by real-time RT-PCR in stimulated and unstimulated cells, with (grey) and

without (black) cyclosporin A. Mean values ± s.d. of relative expression, determined in

triplicate, are shown for indicated genes.

Figure 4 Core direct regulatory effects of Foxp3. a, Shown here are a subset of direct

Foxp3 targets that exhibit consistent transcriptional behaviour in hybridomas and in ex

vivo T-cells (Supplementary Fig. S5). b, Foxp3 binds to a large set of promoters both in

unstimulated and stimulated T-cells, but Foxp3 transcriptional regulation is more

extensive in stimulated T-cells. The genomic regions where Foxp3 binds are enriched for

an Nfat binding site DNA motif. In the hybridomas, Foxp3 predominantly acts to directly

suppress the activation of its target genes.
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Chapter 5

Future Directions and Conclusion
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The work presented here focuses on molecular programs controlling two cell

types, embryonic stem (ES) cells and regulatory T (Treg) cells. Chapter 2 extends the

model of regulatory circuitry downstream of core ES cell transcription factors Oct4,

Sox2, Nanog and Tcf3 to incorporate miRNA genes as well as protein-coding genes.

Oct4, Sox2, Nanog and Tcf3 co-occupy the promoters of miRNAs that are preferentially

expressed in ES cells, as well as a set of miRNAs that are repressed in ES cells by

Polycomb Group proteins and expressed in differentiated cells in a tissue-specific pattern.

Therefore in ES cells, Oct4, Sox2, Nanog and Tcf3 appear to regulate not only proteins

that are preferentially expressed in ES cells and contribute to self-renewal and normal

pluripotency, but also miRNAs. Additionally, miRNAs that are repressed in ES by

Polycomb Group proteins could serve as lineage determinants, similar to the

developmental transcription factors that are similarly silenced in ES cells.

Chapter 3 describes efforts to reprogram somatic cells to pluripotency with a

signaling pathway that connects directly to the core regulatory circuitry of ES cells.

Tcf3, a transcriptional regulator downstream of the canonical Wnt pathway in ES cells,

occupies genomic regions that are highly overlapping with Oct4, Sox2 and Nanog

binding sites, and Wnt signaling contributes to the maintenance of pluripotency in ES

cells. Data presented in Chapter 3 demonstrates that stimulation of the Wnt pathway

promotes the generation of induced pluripotent stem (iPS) cells in concert with nuclear

reprogramming factors.



The work presented in Chapter 4 focuses on the gene expression program under

the control of Foxp3, a crucial transcription factor in Treg cells. In contrast to ES cells,

where several key studies had already examined the core transcriptional circuitry, no

global analysis of Foxp3 transcriptional regulation had been conducted previously. We

were able to identify binding sites for this master regulator across the murine genome and

demonstrate that this factor suppresses the expression of a set of target genes that would

otherwise be induced by T-cell receptor (TCR) stimulation. The over-representation of

consensus Nfat binding DNA motifs that we observed neighboring Foxp3 binding sites is

consistent with a model where Foxp3, Nfat and perhaps other key factors, cooperate to

shape Treg cell identity (Wu et al., 2006; Ono et al., 2007). Among the genes that are

targeted by Foxp3 are some of the genes most commonly mutated in a range of

autoimmune diseases, including the phosphatase Ptpn22 (Bottini et al. 2004; Wu et al.,

2006; Bottini et al., 2006; Vang et al., 2006), consistent with a model where defects in the

Treg cellular circuitry are a common cause of autoimmunity.

Knowledge of the molecular programs that control cellular identity provides clues

as to how cellar identity can be manipulated. Furthermore, this knowledge has potential

to shed new light on human diseases that result from failures in the programs that

normally control cellular identity. Two major directions for future research, which

follow from the work presented here, are discussed below. Briefly, we have constructed

a library of murine miRNAs to test their ability to shape cellular identity. miRNAs that

are now connected to the core ES cell regulatory circuitry are particularly intriguing

candidates to examine for their roles in promoting pluripotency or in cell-fate

determination. Second, because Foxp3 was observed to target genes that are commonly

150



mutated in autoimmune disease, we are eager to study further the relationship between

Foxp3 occupancy of the genome and polymorphisms associated with autoimmunity.

Complementary investigations of the core circuitry of Treg cells and genetic studies of

patients have potential to elucidate the etiology of autoimmune diseases.

Manipulating miRNA expression to reprogram cellular identity

We have designed a library of annotated murine miRNA sequences cloned into a

lentiviral vector. Known mature miRNA sequences and genomic flanking sequence were

inserted into Gateway entry vectors and recombined into lentiviral expression vectors.

This system drives miRNA transcription using an RNA polymerase II Ubiquitin

promoter. The vector also includes a blasticidin resistance gene, allowing for the

selection of infected cells. Northern blots on infected neural precursor cells have

confirmed that the system offers enforced expression of individual mature miRNA

transcripts.

The connections observed between miRNAs and the core transcriptional circuitry

transcriptional circuitry of ES cells, described in Chapter 2, are a strong motivation to

examine the contributions of individual miRNAs to pluripotency and cellular

differentiation. The library that we have created, which allows for enforced expression of

miRNAs, will serve as a tool to further characterize the functions of miRNAs. We hope

to screen for miRNAs that help to maintain pluripotency upon LIF withdrawal, or

increase the efficiency of generating iPS cells in combination with transcription factors.



Additionally, we hope to characterize the effects of miRNAs on the developmental

potential of ES cells and identify miRNAs that are useful to direct ES cell-fate decisions.

The miRNA library will allow for multiple high-throughput approaches to

examine miRNA contribution to cellular identity. Experiments can be conducted in an

arrayed fashion, testing in parallel the effect of each cloned miRNA. However, for

efficiency and also to identify potential combinatorial effects of miRNAs on cellular

identity, we can also infect cells with pools of virus. For example, to identify miRNAs

that promote lineage specification, we can infect ES cells with pools of virus, allow the

cells to differentiate into heterogeneous embryoid bodies, and then sort for cells of

different lineage markers. PCR amplification of the miRNA provirus, followed by either

microarray analysis (as described in Voorhoeve et al., 2006) or quantitative sequencing,

should allow us to determine which exogenous miRNAs are preferentially associated

with cells of a specific lineage suggesting that they could have directed the differentiation

of infected ES cells. Notably, these studies are not limited to ES cells; similar

experimental designs could be applied to examine miRNA contribution to other cell types

or cell functions, including screens to identify miRNAs that contribute to the suppressive

phenotype of Treg cells.

Molecular circuitry of Treg cell and insight into autoimmune disease

The transcription factor Foxp3 is required for the establishment and maintenance

of functional Treg cells (Hori et al., 2003; Fontenot et al., 2003; Khattri et al., 2003;
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Fontenot et al., 2005). Foxp3 is sufficient to induce a suppressive phenotype in

conventional T cells (Hori et al., 2003). Foxp3 mutations are found in a rare human

autoimmune syndrome, IPEX, characterized by multi-organ autoimmunity including

enteropathy, thyroiditis and diabetes mellitus (Bennett et al, 2001; Wildin et al., 2001).

Patients with this disease, as well as mice with targeted Foxp3 deletion, lack Treg cells

(Fontenot et al., 2005; Baecher-Allan and Hafler, 2006). In contrast, in more common

forms of autoimmune disease, such as multiple sclerosis, patients have normal numbers

of Treg cells, but these cells appear defective based on in vitro suppression assays

(Viglietta et al., 2004; Baecher-Allan and Hafler, 2006).

One compelling hypothesis is that Foxp3 itself is not mutated in common

autoimmune diseases, but targets of the transcription factor are mutated or aberrantly

regulated leading to Treg cell dysfunction. The core circuitry of Treg cells could be

disturbed at different nodes to cause different dysfunctions associated with distinct

autoimmune diseases. These speculations are supported by our observation that Foxp3

occupies the promoters of some of the genes most commonly associated with

autoimmune diseases. PTPN22 is a Foxp3 target gene and polymorphisms in this gene

are associated with type I diabetes, rheumatoid arthritis, systemic lupus erythematosus

and other autoimmune diseases, but no significant risk association has been identified

with multiple sclerosis (Bottini et al. 2004; Bottini et al., 2006; Vang et al., 2006; De

Jager et al., 2006 and D.A.H., personal communication). Meanwhile, IL2RA (CD25),

which is also a direct target of Foxp3 and which is preferentially expressed in Treg cells, is

strongly implicated in multiple sclerosis (p< 1x10-27), as well as other common

autoimmune diseases (Hafler et al., 2007; D.A.H., personal communication).
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To examine the relationship between the core regulatory circuitry of Treg cells and

common human autoimmune diseases, we are taking a three-pronged approach. First, we

are planning ChIP-seq experiments to establish high-resolution maps of genomic loci in

human Treg cells associated with Foxp3 and other key transcription factors, terminal

components of signaling pathways known to effect Treg cells, and chromatin

modifications. Second, these maps will be compared to data that is currently being

generated by genome-wide association studies of common human autoimmune diseases,

including type I diabetes and multiple sclerosis. New sequencing technologies will allow

for dense re-sequencing of genomic regions of interest in patient cells and healthy

controls. Third, we will compare gene expression profiles of Treg cells from patients to

those of healthy controls. The literature already contains some examples suggesting that

approach will be fruitful. Runxl/Amll is a transcription factor that physically interacts

with Foxp3 and contributes to Treg cell function in cooperation with Foxp3 (Ono et al.,

2007). Recently, several polymorphisms associated with distinct autoimmune diseases

have been identified that ablate Runxl binding sites in the genome (Prokunina et al.,

2002; Helms et al., 2003; Tokuhiro et al., 2003). The experimental approach outlined

above has potential to identify systematically mutations that disrupt the core circuitry of

Treg cells and contribute to common autoimmune diseases.

Concluding Remarks

The work presented here focuses on the molecular circuitry of two cell types, ES

cells and Treg cells. These studies highlight ways that transcription factors, miRNAs,

154



signal transduction pathways and chromatin modifications coordinately regulate cellular

identity. Furthermore, these studies argue that knowledge of these complex programs can

offer clues to reprogramming cellular identity. While these two cell types are of

considerable scientific and clinical interest, the studies described here might also be

considered part of a general approach to studies of cellular identity. There is now

significant potential to examine systematically the programs that shape the diverse set of

cell types constituting the human body, to examine how these programs fail in human

disease, and to examine how cells can be reprogrammed for therapeutic purposes.
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EST or gene evidence are shown as black lines. Presumed transcripts are shown as grey lines.
Positions of the mature miRNAs are annotated as thicker lines.
human_miRNA_track.hg17.bed - Map of predicted miRNA genes in human. Transcripts with
EST or gene evidence are shown as black lines. Presumed transcripts are shown as grey lines.
Positions of the mature miRNAs are annotated as thicker lines.
mES_regulator_ChlPseq.mm8.WIG.gz - ChlP-seq data for Oct4, Sox2, Nanog and Tcf3 in
mES cells. Top track for each data set illustrates the normalized number of reads assigned to
each 25bp bin. Bars in the second track identify regions of the genome enriched at p < 10 .
mES_chromatin_ChlPseq.mm8.WIG.gz - ChlP-seq data for H3K4me3, H3K79me2,
H3K36me3 and Suzl2 in mES cells. Top track for each data set illustrates the normalized
number of reads assigned to each 25bp bin. Bars in the second track identify regions of the
genome enriched at p < 10-9. Enriched regions were not identified for H3K79me2 and
H3K36me3

Supplemental References

Supplementary Tables and Files are available from the Young Lab



Growth Conditions and Quality Control for Human Embryonic Stem Cells

Human embryonic stem (ES) cells were obtained from WiCell (Madison, WI; NIH

Code WA09) and grown as described. Cell culture conditions and harvesting

have been described previously (Boyer et al., 2005; Lee et al., 2006; Guenther et

al., 2007). Quality control for the H9 cells included immunohistochemical analysis

of pluripotency markers, alkaline phosphatase activity, teratoma formation, and

formation of embryoid bodies and has been previously published as

supplemental material (Boyer et al., 2005; Lee et al., 2006).

Growth Conditions for Murine Embryonic Stem Cells

V6.5 (C57BL/6-129) murine ES cells were grown under typical ES cell culture

conditions on irradiated mouse embryonic fibroblasts (MEFs) as previously

described (Boyer et al., 2006). Briefly, cells were grown on gelatinized tissue

culture plates in DMEM-KO (Gibco/Invitrogen) supplemented with 15% fetal

bovine serum (characterized from Hyclone), 1000 U/ml leukemia inhibitory factor

(LIF) (Chemicon; ESGRO ESG1106), non-essential amino acids, L-glutamine,

Penicillin/Streptomycin andl3-mercaptoethanol. Immunostaining was used to

confirm expression of pluripotency markers, SSEA 1 (Developmental Studies

Hybridoma Bank) and Oct4 (Santa Cruz, SC-5279). For location analysis, cells

were grown for one passage off of MEFs, on gelatinized tissue-culture plates.



Antibodies

Oct4-bound genomic DNA was enriched from whole cell lysate using an epitope

specific goat polyclonal antibody purchased from Santa Cruz (sc-8628) and

compared to a reference whole cell extract (Boyer et al., 2005). A summary of

regions occupied with high confidence for this antibody identified by ChlP-seq in

mES cells is provided in Table S3 and by ChIP-chip on genome-wide tiling

arrays in hES cells are on Table S8. Oct4 ChlP-seq data can be visualized on

the UCSC browser by uploading supplemental file:

mES_regulator_Chl Pseq.mm8.WIG.gz

Sox2-bound genomic DNA was enriched from whole cell lysate using an affinity

purified goat polyclonal antibody purchased from R&D Systems (AF2018) and

compared to a reference whole cell extract (Boyer et al., 2005). A summary of

regions occupied with high confidence for this antibody identified by ChlP-seq in

mES cells is provided in Table S3. Sox2 ChlP-seq data can be visualized on the

UCSC browser by uploading supplemental file:

mES_regulator ChIPseq.mm8.WIG.gz

Nanog-bound genomic DNA was enriched from whole cell lysate using an affinity

purified rabbit polyclonal antibody purchased from Bethyl Labs (b11662) and

compared to a reference whole cell extract (Boyer et al., 2005).. A summary of

regions bound with high confidence for this antibody is provided in Table S3.
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Nanog ChlP-seq data can be visualized on the UCSC browser by uploading

supplemental file:

mES_regulator_ChlPseq.mm8.WIG.gz

Tcf3-bound genomic DNA was enriched from whole cell lysate using an epitope

specific goat polyclonal antibody purchased from Santa Cruz (sc-8635) and

compared to a reference whole cell extract (Cole et al., 2008). A summary of

regions occupied with high confidence for this antibody identified by ChlP-seq in

mES cells is provided in Table S3. Tcf3 ChlP-seq data can be visualized on the

UCSC browser by uploading supplemental file:

mES_regulator_ChlPseq.mm8.WIG.gz

Suz12-bound genomic DNA was enriched from whole cell lysate using an affinity

purified rabbit polyclonal antibody purchased from Abcam (AB12073) and

compared to a reference whole cell extract (Lee et al., 2006). A summary of

regions bound with high confidence for this antibody is provided in Table S10.

Suzl2 ChlP-seq data can be visualized on the UCSC browser by uploading:

supplemental file mES_chomatin_ChlPseq.mm8.WIG.gz

H3K4me3-modified nucleosomes were enriched from whole cell lysate using an

epitope-specific rabbit polyclonal antibody purchased from Abcam (AB8580)

(Santos-Rosa et al., 2002; Guenther et al., 2007). Samples were analyzed using

ChlP-seq. Comparison of this data with ChlP-seq published previously
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(Mikkelsen et al., 2007) showed near identify in profile and bound regions (Table

S5). H3K4me3 ChlP-seq data can be visualized on the UCSC browser by

uploading supplemental file:

mES_chomatin_ChlPseq.mm8.WIG.gz

H3K79me2-modified nucleosomes were isolated from mES whole cell lysate

using Abcam antibody AB3594 (Guenther et al., 2007). Chromatin

immunoprecipitations against H3K36me3 were compared to reference WCE

DNA obtained from mES cells. Samples were analyzed using ChlP-seq and were

used for visual validation of predicted miRNA promoter association with mature

miRNA sequences only (Figure 2). H3K79me2 ChlP-seq data can be visualized

on the UCSC browser by uploading supplemental file:

mES_chomatin_ChlPseq.mm8.WIG.gz

H3K36me3-modified nucleosomes were isolated from mES whole cell lysate

using rabbit polyclonal antibody purchased from Abcam (AB9050) (Guenther et

al., 2007). Chromatin immunoprecipitations against H3K36me3 were compared

to reference WCE DNA obtained from mES cells. Samples were analyzed using

ChlP-seq and were used for visual validation of predicted miRNA promoter

association with mature miRNA sequences only (Figure 2). H3K36me3 ChlP-seq

data can be visualized on the UCSC browser by uploading supplemental file:

mES_chomatin_ChlPseq.mm8.WIG.gz



Chromatin Immunoprecipitation

Protocols describing all materials and methods have been previously described

(Lee et al. 2007) and can be downloaded from:

http://web.wi.mit.edu/young/hES_PRC/

Briefly, we performed independent immunoprecipitations for each analysis.

Embryonic stem cells were grown to a final count of 5x10 7 - 1x108 cells for each

location analysis experiment. Cells were chemically crosslinked by the addition of

one-tenth volume of fresh 11 % formaldehyde solution for 15 minutes at room

temperature. Cells were rinsed twice with IxPBS and harvested using a silicon

scraper and flash frozen in liquid nitrogen. Cells were stored at -800C prior to

use.

Cells were resuspended, lysed in lysis buffers and sonicated to solubilize and

shear crosslinked DNA. Sonication conditions vary depending on cells, culture

conditions, crosslinking and equipment. We used a Misonix Sonicator 3000 and

sonicated at approximately 28 watts for 10 x 30 second pulses (90 second pause

between pulses). For ChIP of Oct4, Nanog, Tcf3 and Suz12 in murine ES cells,

SDS was added to lysate after sonication to a final concentration of 0.1%.

Samples were kept on ice at all times.

The resulting whole cell extract was incubated overnight at 4°C with 100 pl of

Dynal Protein G magnetic beads that had been preincubated with approximately
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10 pg of the appropriate antibody. Beads were washed 4-5 times with RIPA

buffer and 1 time with TE containing 50 mM NaCI. For ChIP of Oct4, Nanog, Tcf3

and Suzl2 in murine ES cells, the following 4 washes for 4 minutes each were

used instead of RIPA buffer: 1X low salt (20mM Tris pH 8.1, 150mM NaCI, 2mM

EDTA, 1% Triton X-100, 0.1% SDS), 1X high salt (20mM Tris pH 8.1, 500mM

NaCI, 2mM EDTA, 1% Triton X-100, 0.1% SDS), 1X LiCI (10mM Tris pH 8.1,

250mM LiCI, 1mM EDTA, 1% deoxycholate, 1% NP-40), and 1X TE+ 50mM

NaCI. Bound complexes were eluted from the beads by heating at 650C with

occasional vortexing and crosslinking was reversed by overnight incubation at

650C. Whole cell extract DNA (reserved from the sonication step) was also

treated for crosslink reversal.

ChlP-Seq Sample Preperation and Analysis

All protocols for Illumina/Solexa sequence preparation, sequencing and quality

control are provided by Illumina (http://www.illumina.com/pages.ilmn?lD=203). A

brief summary of the technique and minor protocol modifications are described

below.

Sample Preparation

Purified immunoprecipitated (ChlIP) DNA were prepared for sequencing

according to a modified version of the Illumina/Solexa Genomic DNA protocol.

Fragmented DNA was prepared for ligation of Solexa linkers by repairing the

ends and adding a single adenine nucleotide overhang to allow for directional
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ligation. A 1:100 dilution of the Adaptor Oligo Mix (Illumina) was used in the

ligation step. A subsequent PCR step with limited (18) amplification cycles added

additional linker sequence to the fragments to prepare them for annealing to the

Genome Analyzer flow-cell. After amplification, a narrow range of fragment sizes

was selected by separation on a 2% agarose gel and excision of a band between

150-300 bp (representing shear fragments between 50 and 200nt in length and

-100bp of primer sequence). The DNA was purified from the agarose and diluted

to 10 nM for loading on the flow cell.

Polony generation on Solexa Flow-Cells

The DNA library (2-4 pM) was applied to the flow-cell (8 samples per flow-cell)

using the Cluster Station device from Illumina. The concentration of library

applied to the flow-cell was calibrated such that polonies generated in the bridge

amplification step originate from single strands of DNA. Multiple rounds of

amplification reagents were flowed across the cell in the bridge amplification step

to generate polonies of approximately 1,000 strands in 1 pm diameter spots.

Double stranded polonies were visually checked for density and morphology by

staining with a 1:5000 dilution of SYBR Green I (Invitrogen) and visualizing with a

microscope under fluorescent illumination. Validated flow-cells were stored at

40C until sequencing.

Sequencing
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Flow-cells were removed from storage and subjected to linearization and

annealing of sequencing primer on the Cluster Station. Primed flow-cells were

loaded into the Illumina Genome Analyzer 1G. After the first base was

incorporated in the Sequencing-by-Synthesis reaction the process was paused

for a key quality control checkpoint. A small section of each lane was imaged and

the average intensity value for all four bases was compared to minimum

thresholds. Flow-cells with low first base intensities were re-primed and if signal

was not recovered the flow-cell was aborted. Flow-cells with signal intensities

meeting the minimum thresholds were resumed and sequenced for 26 cycles.

Solexa Data Analysis

Images acquired from the Illumina/Solexa sequencer were processed through the

bundled Solexa image extraction pipeline, which identified polony positions,

performed base-calling and generated QC statistics. Sequences were aligned using

the bundled ELAND software using murine genome NCBI Build 36 and 37 (UCSC

mm8, mm9) as the reference genome. Alignments to build 37 were used for analysis

of the mmu-mir-290 cluster only as that cluster is not represented on build 36. Only

sequences perfectly and uniquely mapping to the genome were used. A summary

of the number of reads used is shown in Table S1.

The analysis methods used were derived from previously published methods

(Johnson et al., 2007, Mikkelsen et al., 2007). Sequences from all lanes for each

chromatin IP were combined, extended 200bp (maximum fragment length
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accounting for -100bp of primer sequence), and allocated into 25 bp bins.

Genomic bins containing statistically significant ChlP-seq enrichment were

identified by comparison to a Poissonian background model, using a p-value

threshold of 10-9 . A list of the numbers of counts in a genomic bins required for

each sample to meet this threshold are provided in Table S1. Addtionally, we

used and empirical background model obtained from identical Solexa sequencing

of DNA from whole cell extract (WCE) from matched cell samples (> 5x

normalized enrichment across the entire region, see below). A summary of the

bound regions and their relation to gene targets can be found in Tables S2, 83,

S5 and S10.

The p-value threshold was selected to minimize the expected false-positive rate.

Assuming background reads are spread randomly throughout the genome, the

probability of observing a given number of counts can be modelled as a Poisson

process where the expectation can be calculated as the number of mapped

reads times the number of bins per read (8) divided by the total number of bins

available (we assumed 50% as a very conservative estimate). With the genome

divided into ~108 bins of 25 bp, a probability of p<10-9 represents the likelihood

that -~1 experiment in 10 will randomly enrich one bin in the genome.

The Poisson background model assumes a random distribution of binding

events, however we have observed significant deviations from this expectation in

ChlP-seq datasets. These non-random events can be detected as sites of
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enrichment using control IPs and create a significant number of false positive

events for actual ChlP-seq experiments. To remove these regions, we compared

genomic bins and regions that meet the statistical threshold for enrichment to an

empirical distribution of reads obtained from Solexa sequencing of DNA from

whole cell extract (WCE) from matched cell samples. We required that enriched

regions have five-fold greater ChlP-seq density in the specific IP sample as

compared with the non-specific WCE sample, normalized for the total number of

reads. This served to filter out genomic regions that are biased to having a

greater than expected background density of ChlP-seq reads. We observed that

-200-500 regions in the genome showed non-specific enrichment in these

experiments.

Identifications of regions enriched for Oct4/Sox2/Nanog/Tcf3

The identification of enriched regions in ChIP-chip and ChlP-seq experiments is

typically done using threshold for making a binary determination of enriched or

not enriched. Unfortunately, there is not actually a clear delineation between

truly bound and and unbound regions. Instead, enrichment is a continuum and

the threshold is set to minimize false positives (high-confidence sites). This

typically requires that thresholds be set at a level that allows a high false-

negative rate (-30% for ChIP-chip, Lee et al). When multiple factors are

compared, focusing only on the intersection of the different data sets compounds



this effect, leading to higher false negative rates and the loss of many critical

target genes.

Oct4, Sox2, Nanog and Tcf3 co-occupy promoters throughout the genome (Cole,

Figure 1) and cluster analysis of enriched sites reveals apparent co-enrichment

for all 4 factors at >90% of sites (Frampton & Young, unpublished data).

However, the overlap for any two factors at the cut-off for high-confidence

enrichment is only about two thirds (Figure SI, Tables S2 and S3). Therefore

many of these sites must have enrichment that is below the high-confidence

threshold for at least some of the participating factors. Variability in the

enrichment observed for each factor at different binding sites is common in the

data (Figures lb, 3, and S2).

To determine a threshold of binding for multiple factors, we used two

complementary methods to examine high-confidence targets of the four

regulators. First, the classes of genes enriched by different numbers of factors at

high-confidence were compared to the known classes of targets based on gene

ontology (Figure Slb, htto://aostat.wehi.edu.au/cqi-bin/lqoStat.pl, Beissbarth and

Speed, 2004). The highest confidence targets (those with high levels of immuno-

enrichment observed for all for factors) preferentially encoded factors involved in

DNA binding, regulation of transcription and development as has been previously

shown (Boyer et al., 2005). These gene ontology categories continued to be

overrepresented among high-confidence targets of either 3 of the 4 factors or 2



of 4 the factors, albeit at lower levels, but were barely enriched among high

confidence targets of only one factor.

As a second test, we examined how different numbers of overlapping high-

confidence targets affected the overlap with our previous genome-wide studies

using ChIP-chip. Because not all regions of the genome are tiled with equal

density on the microarrays used for ChIP-chip, we first determined the minimum

probe density required to confirm binding detected by ChlP-seq (Figure S2). At

most genes with high probe density, the ChlP-seq and ChIP-chip data were very

highly correlated. However, regions of the genome with microarray coverage of

less than three probes per kilobase were generally unreliable in detecting these

enrichment. These regions, which had low probe coverage on the microarrays,

represent approximately 1/3 of all sites co-enriched for the four factors by ChlP-

seq. In regions where probe density was greater than three probe per kilobase

the fraction of ChlP-seq sites confirmed by ChIP-chip experiments increased with

additional factors co-binding with a large fall off below 2 factors (data not shown).

Based on these two analyses, we elected to choose targets occupied at high-

confidence by 2 or more of the 4 factors tested for further analysis in this

manuscript. (Figures la and Sla [red line]).

While a majority of the miRNA promoters identified as occupied by

Oct4/Sox2/Nanog/Tcf3 are not occupied by all four factors at high-confidence, it

is interesting to note that all of the miRNA genes that share highly similar seeds



to miR-302 are occupied at high confidence by all four factors (miR-302 cluster,

miR-290 cluster and miR-106a cluster), similar to the promoters of core

transcriptional regulators of ES cells. By comparison, promoters also occupied by

Suzl2 almost never showed high-confidence binding for all four factors (Table

S4, see mmu-miR-9-2 in Figure 3). Similar effects were observed for protein-

coding genes in mES cells (Lee et al., 2006). Whether this is caused by reduced

epitope availability in PcG bound regions or reflects reduced protein binding is

unclear.

DNA Motif Discovery and High-resolution Binding-Site Analysis

DNA motif discovery was performed on the genomic regions that were enriched

for Oct4 at high-confidence. In order to obtain maximum resolution, a modified

version of the ChlP-seq read mapping algorithm was used. Genomic bins were

reduced in size from 25 bp to 10 bp. Furthermore, a read extension that placed

greater weight towards the middle of the 200 bp extension was used. This model

placed 1/3 count in the 8 bins from 0-40 and 160-200 bp, 2/3 counts in the 8 bins

from 40-80 and 120-160 bp and 1 count in the 4 bins from 80-120 bp. This

allowed increased precision for determination of the peak of ChlP-seq density in

each Oct4 bound region. 100bp surrounding the 500 Oct4 bound regions with

the greatest peak ChlP-seq density were submitted to the motif disocvery tool

MEME (Bailey and Elkan, 1995; Bailey, 2006) to search for over-represented

DNA motifs. A single sixteen basepair motif was discovered by the MEME



algorithm (Table S4, Figure S2i). This motif was significantly (p<10-100) over-

represented in the Oct4 bound input sequences and occurred in 445 of the 500

hundred basepair sequences.

As a default, MEME uses the individual nucleotide frequencies within input

sequences to model expected motif frequencies. This simple model might result

discovery of motifs which are enriched because of non-random di-, tri-, etc.

nucleotide frequencies. Consequently, three different sets of control sequences

of identical length were used to ensure the specificity of the motif discovery

results. First, the sequences immediately flanking each input sequence were

used as control sequences. Second, randomly selected sequences having the

same distribution of distances from transcription start sites as the Oct4 input

sequences were used as control sequences. Third, sequences from completely

random genomic regions were used as control sequences. Each of these sets of

control seqeunces were also examined using MEME. For each of these controls,

the motif discovered from actual Oct4 bound sequences was not identified in the

control sequences.

The motif discovery process was repeated using different numbers and lengths

of sequences, but the same motif was discovered for a wide array of input

sequences. Furthermore, when motif discovery was repeated with the top 500

Sox2, Nanog, and Tcf3 occupied regions, the same motif was identified. Overall,

the motif occurs within 100 bp of the peak of ChlP-seq density at more than 90%
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of the top regions enriched in each experiment, while occuring in the same span

at 24-28% of control regions and within 25 bp of the ChlP-seq peak at more than

80% of regions versus 9-11% of control regions.

We next attempted to determine the precise sites on the genome bound by Oct4,

Sox2, Nanog, and Tcf3 at basepair resolution using composite analysis of the

bound regions for each factor. In particular, we examined if the different factors

tended to associate with specific sequences within the assymetric DNA motif

identified at a high fraction of the sites occupied by Oct4, Sox2, Nanog, and Tcf3.

A set of -2,000 of the highest confidence bound regions was determined for each

factor based on a count threshold approximately two fold higher than the

threshold for high-confidence regions shown in Table S1 (Poissoin: p < 10-9).

Regions without a motif within 50bp of the peak of ChlP-seq enrichment, typically

-10% of regions, were removed from this analysis. The distance from the first

base of the central motif in each bound region to the 5' end of all reads within

250bp was tabulated, keeping reads mapping to the same strand as the motif

separate from reads mapping to the oppositie strand. The difference in ChlP-seq

read frequency between reads mapping to the same strand as the motif and the

reads mapping to the oppositite strand was calculated at every basepair within

the 500 bp window Figure S3. We made the assumption that the precise peak

of the ChlP-seq distribution was the point at which this strand bias was equal to

zero.
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To determine the precise position where the strand bias was equal to zero, we

created a simplified model of the strand bias for each transcription factor. We

chose a function with 4 parameters (A,B, C, and M), one of which (M) was the

point at which the curve crosses the x-axis.

x-M C

x-M Bf(x)=A x arctan( x e
B

Least squares curve fitting was performed GNUplot (http://www.gnuplot.infol)

using an approximated set of initial conditions (A = -1000, B = 100, C = 2, M =

10). The variablity in M was detemined by monte carlo simulation (n=25) using a

random set of half of the ChlP-seq reads in each dataset and is shown in Figure

S3.

Identification of miRNA promoters in human and mouse

To better understand the regulation of miRNAs, we sought to identify the sites of

transcription initiation for all miRNAs in both human and mouse, at least to low

resolution (-1 kb). Most methods used to identify promoters require active

transcription of the miRNA and isolation of rare primary miRNA transcripts. We

decided to use an approach based on in vivo chromatin signature of promoters.

This approach has two principle advantages. First, the required data has been

published by a variety of laboratories and is readily accessible and second, it

does not require the active transcription of the miRNA primary transcript.



Recent results using genome-wide location analysis of H3K4me3 indicate that

between 60 and 80% of all protein-coding genes in any cell population have

promoters enriched in methylated nucleosomes, even where the gene is not

detected by typical transcription profiling (Guenther et al., 2007) Importantly, over

90% of the H3K4me3 enriched regions in these cells map to known or predicted

promoters, suggesting that H3K4me3 can be used as a proxy for sites of active

initiation. Our strategy to identify miRNA promoters, therefore, uses H3K4me3

enriched sites from as many sources as possible as a collection of promoters. In

human, H3K4me3 sites were identified in ES cells (H9), hepatocytes, a pro-B cell

line (REH cells) (Guenther et al., 2007) and T cells (Barski et al., 2007). Mouse

H3K4me3 sites were identified from ES cells (V6.5), neural precursors, and

embryonic fibroblasts (Mikkelsen et al., 2007). In total, we identified 34,793 high-

confidence H3K4me3 enriched regions in human and 34,096 high-confidence

regions enriched in mouse, collectively present at -75% of all protein-coding

genes.

The list of miRNAs identified in the miRNA atlas (Landgraf et al., 2007) was used

as the basis for our identification. The total list consists of 496 miRNAs in human,

382 miRNAs in mouse. -65% of the murine miRNAs can be found in both

species.
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For each of these miRNAs, possible start sites were derived from both all

H3K4me3 enriched regions within 250kb upstream of the miRNA as well as all

known start sites for any miRNAs that were identified as being within known

transcripts from RefSeq (Pruitt et al., 2005) Mammalian Gene Collection (MGC)

(Gerhard et al., 2004) Ensembl (Hubbard et al., 2005), or University of California

Santa Cruz (UCSC) Known Genes (genome.ucsc.edu) (Kent et al., 2002) for

which EntrezGene (http://www.ncbi.nlm.nih.gov/entrez/) gene IDs had been

generated. Where an annotated start site was found to overlap an H3K4me3

enriched region, the known start was used in place of the enriched region.

A scoring system was derived empirically to select the most likely start sites for

each miRNA. Each possible site was given a bonus if it was either the start of a

known transcript that spanned the miRNA or of an EST that spanned the miRNA.

Scores were reduced if the H3K4me3 enriched region was assignable instead to

a transcript or EST that did not overlap the miRNA. Additional positive scores

were given to enriched sites within 5kb of the miRNA, while additional negative

scores were given based on the number of intervening H3K4me3 sites between

the test region and the miRNA. Finally, each enriched region was tested for

conservation between human and mouse using the UCSC liftover program

(Hinrichs et al., 2006). If two test regions overlapped, they were considered to be

conserved (21%). In the cases where human and mouse disagreed on the quality

of a site, if the site had an EST or gene overlapping the miRNA, that site was

given a high score in both species. Alternatively, if one species had a non-



overlapping site, that site was considered to be an unlikely promoter in both

species. Finally, for miRNAs where a likely promoter was identified in only one

species, we manually checked the homologous region of the other genome to

search for regions enriched for H3K4me3-modified nucleosomes that may have

fallen below the high-confidence threshold. Start sites were considered to be

likely if the total score was > 0 (Figure S4 and S5). In total, we identified likely

start sites for -85% of all miRNAs in both species (Tables S6 and S7). Predicted

miRNA genes can be visualised on the UCSC browser by uploading the

supplemental files:

mouse_miRNA_track.mm8.bed and human_miRNA_track.hg17.bed

Several lines of evidence suggest the high quality of these predictions. First,

previous studies have found that miRNAs within 50kb of each other are likely to

be co-regulated (Lagos-Quintana et al., 2001; Lau et al., 2001). While the nature

of these clusters was not included in our analysis, nearly all miRNAs within a

cluster end up identifying the same promoter region (see Figures 2, 3, 5 and

S3). The only exceptions to this are found in the large clusters of repeat derived

miRNAs found in chromosome 12 of mouse and chromosome 14 in human

where a single H3K4me3 enriched region splits the clusters. Second, consistent

with the frequent association of CpG islands with the transcriptional start sites for

protein-coding genes, -50% of the miRNA promoters identified here overlap CpG

islands (Tables S6 and S7). Finally, for miRNAs that were active in ES cells,



histone modifications associated with elongation were able to "connect" the

mature miRNAs to the predicted transcription start site (Figure 2).

To further ascertain the accuracy of our promoter predictions, we compared our

predicted start sites to those identified in recent studies. Predictions were tested

against mmu-mir-34b / mmu-mir-34c (Corney et al., 2007), hsa-mir-34a (Chang

et al., 2007) mmu-mir-101a, mmu-mir-202, mmu-mir-22, mmu-mir-124a-1, mmu-

mir-433 (Fukao et al., 2007), and hsa-mir-17/18a/19a/20a/19b-1/92a-1

(O'Donnell et al., 2005). Additional miRNA promoters in these manuscripts were

not predicted strongly by the above algorithm. For these 14 miRNAs, H3K4me3

sites were identified within 1 kb of all but two of the sites. mmu-mir-202 was

predicted about 20kb upstream of the annotated start site, but may reflect an

H3K4me3 site absent from the tissues sampled. mmu-mir-433 is in the middle of

a large cluster of miRNAs on mouse chromosome 12. The annotated TSS lies

within the cluster between mir-433 and mir-431 suggesting the promoter may be

incorrect. Overall, the accuracy of the promoter predictions is believed to be

-75% (6/8). Additional H3K4me3 data sets and EST data should allow for

improved accuracy in predicting and validating these initiation sites.

ChIP-chip Sample Preparation and Analysis

Immunoprecipitated DNA and whole cell extract DNA were purified by treatment

with RNAse A, proteinase K and multiple phenol:chloroform:isoamyl alcohol

extractions. Purified DNA was blunted and ligated to linker and amplified using a



two-stage PCR protocol. Amplified DNA was labeled and purified using Bioprime

random primer labeling kits (Invitrogen): immunoenriched DNA was labeled with

Cy5 fluorophore, whole cell extract DNA was labeled with Cy3 fluorophore.

Labeled DNA was mixed (-5 pg each of immunoenriched and whole cell extract

DNA) and hybridized to arrays in Agilent hybridization chambers for up to 40

hours at 400C. Arrays were then washed and scanned.

Slides were scanned using an Agilent DNA microarray scanner BA. PMT

settings were set manually to normalize bulk signal in the Cy3 and Cy5 channel.

For efficient batch processing of scans, we used Genepix (version 6.0) software.

Scans were automatically aligned and then manually examined for abnormal

features. Intensity data were then extracted in batch.

44k Human Whole Genome Array

The human promoter array was purchased from Agilent Technology

(www.agilent.com). The array consists of 115 slides each containing -44,000

60mer oligos designed to cover the non-repeat portion of the human genome.

The design of these arrays are discussed in detail elsewhere (Lee et al., 2006).

Data Normalization and Analysis

We used GenePix software (Axon) to obtain background-subtracted intensity

values for each fluorophore for every feature on the whole genome arrays.

Among the Agilent controls is a set of negative control spots that contain 60-mer
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sequences that do not cross-hybridize to human genomic DNA. We calculated

the median intensity of these negative control spots in each channel and then

subtracted this number from the intensities of all other features.

To correct for different amounts of each sample of DNA hybridized to the chip,

the negative control-subtracted median intensity value of control oligonucleotides

from the Cy3-enriched DNA channel was then divided by the median of the

control oligonucleotides from the Cy5-enriched DNA channel. This yielded a

normalization factor that was applied to each intensity in the Cy5 DNA channel.

Next, we calculated the log of the ratio of intensity in the Cy3-enriched channel to

intensity in the Cy5 channel for each probe and used a whole chip error model to

calculate confidence values for each spot on each array (single probe p-value).

This error model functions by converting the intensity information in both

channels to an X score which is dependent on both the absolute value of

intensities and background noise in each channel using an f-score calculated as

described for promoter regions or using a score of 0.3 for tiled arrays. When

available, replicate data were combined, using the X scores and ratios of

individual replicates to weight each replicate's contribution to a combined X score

and ratio. The X scores for the combined replicate are assumed to be normally

distributed which allows for calculation of a p-value for the enrichment ratio seen

at each feature. P-values were also calculated based on a second model

assuming that, for any range of signal intensities, IP:control ratios below 1
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represent noise (as the immunoprecipitation should only result in enrichment of

specific signals) and the distribution of noise among ratios above 1 is the

reflection of the distribution of noise among ratios below 1.

High Confidence Enrichment

To automatically determine bound regions in the datasets, we developed an

algorithm to incorporate information from neighboring probes. For each 60-mer,

we calculated the average X score of the 60-mer and its two immediate

neighbors. If a feature was flagged as abnormal during scanning, we assumed it

gave a neutral contribution to the average X score. Similarly, if an adjacent

feature was beyond a reasonable distance from the probe (1000 bp), we

assumed it gave a neutral contribution to the average X score. The distance

threshold of 1000 bp was determined based on the maximum size of labeled

DNA fragments put into the hybridization. Since the maximum fragment size was

approximately 550 bp, we reasoned that probes separated by 1000 or more bp

would not be able to contribute reliable information about a binding event halfway

between them.

This set of averaged values gave us a new distribution that was subsequently

used to calculate p-values of average X (probe set p-values). If the probe set p-

value was less than 0.001, the three probes were marked as potentially bound.
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As most probes were spaced within the resolution limit of chromatin

immunoprecipitation, we next required that multiple probes in the probe set

provide evidence of a binding event. Candidate bound probe sets were required

to pass one of two additional filters: two of the three probes in a probe set must

each have single probe p-values < 0.005 or the centre probe in the probe set has

a single probe p-value < 0.001 and one of the flanking probes has a single point

p-value < 0.1. These two filters cover situations where a binding event occurs

midway between two probes and each weakly detects the event or where a

binding event occurs very close to one probe and is very weakly detected by a

neighboring probe. Individual probe sets that passed these criteria and were

spaced closely together were collapsed into bound regions if the centre probes of

the probe sets were within 1000 bp of each other.

Comparing Enriched Regions to Known Genes and miRNAs

Enriched regions were compared relative to transcript start and stop coordinates

of known genes compiled from four different databases: RefSeq (Pruitt et al.,

2005), Mammalian Gene Collection (MGC) (Gerhard et al., 2004), Ensembl

(Hubbard et al., 2005), and University of California Santa Cruz (UCSC) Known

Genes (genome.ucsc.edu) (Kent et al., 2002). All human coordinate information

was downloaded in January 2005 from the UCSC Genome Browser (hgl7, NCBI

build 35). Mouse data was downloaded in June of 2007 (mm8, NCBI build 36).

To convert bound transcription start sites to more useful gene names, we used

conversion tables downloaded from UCSC and Ensembl to automatically assign



EntrezGene (http://www.ncbi.nlm.nih.gov/entrez/) gene IDs and symbols to the

RefSeq, MGC, Ensembl, UCSC Known Gene. Comparisons of Oct4, Sox2,

Nanog, Tcf3, H3K4me3 and Suz12 to annotated regions of the genomes can be

found in Tables S3, S5, S8 and S10

For miRNAs start sites, two separate windows were used to evaluate overlaps.

For chromatin marks and non-sequence specific proteins, miRNA promoters

were considered bound if they were within 1kb of an enriched sequence. For

sequence specific factors such as Oct4, we used a more relaxed region of 8kb

surrounding the promoter, consistent with previous work we have published

(Boyer et al., 2005). A full list of the high confidence start sites bound to

promoters can be found in Tables S6 and S7.

Growth Conditions for Neural Precursors, mouse embryonic fibroblasts,

and induced pluripotent stem cells.

To generate neural precursor cells, ES cells were differentiated along the neural

lineage using standard protocols. V6.5 ES cells were differentiated into neural

progenitor cells (NPCs) through embryoid body formation for 4 days and

selection in ITSFn media for 5-7 days, and maintained in FGF2 and EGF2 (R&D

Systems) (Okabe et al., 1996).

Mouse embryonic fibroblasts were prepared from DR-4 strain mice as previously

described (Tucker et al., 1997). Cells were cultured in Dulbecco's modified
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Eagle medium supplemented with 10% cosmic calf serum, P-mercaptoethanol,

non-essential amino acids, L-glutamine and penicillin/streptomycin.

Analysis of Mature miRNA Frequency by Solexa Sequencing

Polony generation on Solexa Flow-Cells

The DNA library (2-4 pM) was applied to the flow-cell (8 samples per flow-cell)

using the Cluster Station device from Illumina. The concentration of library

applied to the flow-cell was calibrated such that polonies generated in the bridge

amplification step originate from single strands of DNA. Multiple rounds of

amplification reagents were flowed across the cell in the bridge amplification step

to generate polonies of approximately 1,000 strands in 1 pm diameter spots.

Double stranded polonies were visually checked for density and morphology by

staining with a 1:5000 dilution of SYBR Green I (Invitrogen) and visualizing with a

microscope under fluorescent illumination. Validated flow-cells were stored at

40C until sequencing.

Sequencing and Analysis

Flow-cells were removed from storage and subjected to linearization and

annealing of sequencing primer on the Cluster Station. Primed flow-cells were

loaded into the Illumina Genome Analyzer 1G. After the first base was

incorporated in the Sequencing-by-Synthesis reaction the process was paused

for a key quality control checkpoint. A small section of each lane was imaged and

the average intensity value for all four bases was compared to minimum

187



thresholds. Flow-cells with low first base intensities were re-primed and if signal

was not recovered the flow-cell was aborted. Flow-cells with signal intensities

meeting the minimum thresholds were resumed and sequenced for 36 cycles.

Images acquired from the Illumina/Solexa sequencer were processed through

the bundled Solexa image extraction pipeline which identified polony positions,

performed base-calling and generated QC statistics. Sequences were then

assigned to a miRNA if they perfectly matched at least the first 20bp of the

mature miRNA sequences downloaded from targetScan

(http://www.targetscan.orq/). Mature miRNA frequencies were then normalized to

each other by determining the expected frequency in mapped reads/million. A full

list of the miRNAs detected can be found in Table S9.

miRNA Microarray Expression Analysis

Mouse embryonic fibroblasts and neural precursor cells were cultured as

described above. Murine induced pluripotent (iPS) cells, derived as previously

described (Wernig et al., 2007), were cultured under the same conditions as

murine embryonic stem cells (described above). RNA was extracted with RNeasy

(Qiagen) reagents. 5 pg total RNA from treated and control samples were

labeled with Hy3 TM and Hy5 TM fluorescent label, using the miRCURY TM LNA

Array labeling kit (Exiqon, Denmark) following the procedure described by the

manufacturer. The labeled samples were mixed pair-wise and hybridized to the

miRNA arrays printed using miRCURY TM LNA oligoset version 8.1 (Exiqon,

Denmark). Each miRNA was printed in duplicate, on codelink slides (GE), using



GeneMachines Omnigrid 100. The hybridization was performed at 60C overnight

using the Agilent Hybridization system - SurHyb, after which the slides were

washed using the miRCURYTM LNA washing buffer kit (Exiqon, Denmark)

following the procedure described by the manufacturer. The slides were then

scanned using Axon 4000B scanner and the image analysis was performed

using Genepix Pro 6.0.

Median minus background signal intensities for all microarray probes were

tabulated and quantile normalized. Within each sample, each probe was given a

signal value of the average signal of the probe of that rank, across the full

dataset. Intensities were then floored at one unit and log normalized. Control

probes were removed from further analysis. Statistically significant differential

expression was calculated using the online NIA Array Analysis Tool

(http://lgsun.grc.nia.nih.gov/ANOVA/).

Probes were tested for differential expression using the following settings:

Threshold z-value to remove outliers: 10000

Error Model: Max(Average, Bayesian)

Error variance averaging window: 100

Proportion of highest error variances to be removed: 0.01

Bayesian degrees of freedom: 5

FDR threshold: 0. 10



Of 1008 probes, 230 were determined to be differentially expressed between 3

MEF and 2 ES samples. Expression data for the iPS samples were not used for

identifying differentially expressed miRNAs.

For clustering and heat map display, expression data were Z-score normalized.

Centroid linkage, Spearman rank correlation distance, hierarchical clustering of

genes and arrays was performed using Gene Cluster 3.0 (http://bonsai.ims.u-

tokyo.ac.ip/-mdehoon/software/cluster/software.htm#ctv). Heatmaps were

generated using Java Treeview (http://itreeview.sourceforge.net/) with color

saturation at 0.6 standard deviations. Complete miRNA microarray expression

data, differentially expression results, and clustergram data are provided

(Supplementary Tables S99).

Tissue-Specificity of miRNAs

To determine the global tissue-specificity for miRNAs we used data from the

recent publication of the miRNA atlas4. Specificity scores were taken from Table

S34 Node 0 from Landgraf et al. (2007). Of the 45 distinct mature miRNAs with

specificity scores >1 that are not bound only by Oct4/Sox2/Nanog/Tcf3, 16 were

identified as Suz12 targets. These 16 represent over 40% of the distinct mature

miRNAs whose promoters are occupied by Suzl2 (p < 5x10"4 for specificity

scores > 1.3)

Identification of Oct4/Sox2/Nanog/Tcf3 occupied feed forward loops
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To identify feed forward loops we examined the recent data set identifying

functional targets of the miR-290 cluster (Sinkkonen et al., 2008). In their study,

Sinkkonen et al. identified miR-290 targets by both looking at mRNAs that

increase in level in a Dicer -/- cell line and overlap that data set with mRNAs that

decrease in expression when miR-290 is added back to the cells. Because the

promoter of the miR-290 gene is occupied by Oct4/Sox2/Nanog/Tcf3, any targets

of the miRNA cluster that are also occupied by the 4 factors would represent feed

forward targets. Of the 245 miR-290 cluster targets identified in the intersect of

the two data sets, promoters for 64 are occupied by Oct4/Sox2/Nanog/Tcf3. This

is approximately 50% more interactions then would be expected by random

(binomial p-value < 1x104).

Interestingly, only a small minority of these genes is also occupied by significant

quantities of the PRC2 subunit Suz12. Of the 64 targets whose promoters are

occupied by Oct4/Sox2/Nanog/Tcf3, only 5 are occupied by domains of Suzl2

binding >500bp (larger region sizes have been correlated with gene silencing,

Lee et al., 2006). This may be because PcG bound proteins are not functional

targets of mir-290 in mES cells or because these proteins are not expressed

following Dicer deletion, they are excluded from the target list, but may be targets

at other stages of development. In the later case, the miRNAs may serve as a

redundant silencing mechanism for ES cells to help prevent even low levels of

expression of the developmental regulators bound by PcG complexes.



SUPPLEMENTAL FIGURES

Figure S1. Promoters for known genes occupied by Oct4/Sox2/Nanog/Tcf3

in mES cells. a. Overlap of genes whose promoters are within 8kb of sites

enriched for Oct4, Sox2, Nanog, or Tcf3. Not shown are the Nanog:Oct4 overlap

(289) and Sox2:Tcf3 overlap (26). Red line deliniates genes considered occupied

by Oct4/Sox2/Nanog/Tcf3. b. Enrichment for selected GO-terms previously

reported to be associated with Oct4/Sox2/Nanog binding (Boyer et al., 2005) was

tested on the sets of genes occupied at high-confidence for I to 4 of the tested

DNA binding factors. Hypergeometric p-value is shown for genes annotated for

DNA binding (blue), Regulation of Transcription (green) and Development (red).

Figure S2. Comparison of ChlP-seq and ChIP-chip genome wide data for

Oct4, Nanog and Tcf3. a. Binding of Oct4 (blue), Nanog (orange) and Tcf3 (red)

across 17kb surrounding the Wnt8a and Nodal genes (black below the graph,

arrow indicates transcription start site) as in Figure 1b. (upper) Binding derived

from ChlP-seq data plotted as reads per million. (lower) Binding derived from

ChIP-chip enrichment ratios (Cole et. al., 2008) b. Poor probe density prevents

detection of -1/3 of ChlP-seq binding events on Agilent genome-wide tiling

arrays. Top panel shows the fraction of regions that are occupied by

Oct4/Sox2/Nanog/Tcf3 at high-confidence in mES cells as identified by ChlP-seq

that are enriched for Oct4 (blue), Nanog (orange) and Tcf3 (red) on Agilent
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genome-wide microarrays (Cole et al., 2008). Numbers on the x-axis define the

boundaries used to classify probe densities for the histogram. Bottom panel

illustrates a histogram of the microarray probe densities of the enriched regions

identified.

Figure S3. High resolution analysis of Oct4/Sox2/Nanog/Tcf3 binding

based on Meta-analysis. a-d. Short sequence reads for a. Oct4, b. Sox2, c.

Nanog, d. Tcf3 mapping within 250bp of 2000 highly enriched regions where the

peak of binding was found within 50bp of a high quality Oct4/Sox2 motif were

collected. Composite profiles were created at base pair resolution for forward and

reverse strand reads centered on the Oct4/Sox2 motif (aligned at +1). The

difference between the number of positive and negative strand reads are shown

for each base pair (circles). The best fit line is shown for each factor (see

Supplemental Text). e-h. Zoomed in region of a-d showing 20bp surrounding the

Oct4/Sox2 motif. Dashed line indicates the position where the best fit line

crosses the X-axis. For reference, the motif is shown below each graph, i.

Summary of meta-analysis for Oct4, Sox2, Nanog and Tcf3. Arrows indicate the

nucleotide where each transcription factor switches from a positive strand bias to

a negative strand bias. The octomer and HMG box motifs are indicated.

Figure S4. Algorithm for Identification of miRNA promoters. a, Flowchart

describing the method used to identify the promoters for primary miRNA

transcripts in human and mouse. For a full description, see supplemental text. b,



Two examples of identification of miRNA promoters. Top, Initial identification of

possible start sites based on H3K4me3 enriched regions from four cell types.

Enrichment of H3K4me3-modified nucleosomes is shown as shades of gray. Red

bar represents the position of the mature miRNA. Black bars below the graph are

regions enriched for H3K4me3. Initial scores are shown below the black bars.

The region on the far right was excluded from the analysis (score = X) since it is

downstream of the mature miRNA. Middle, Identification of candidate start sites

<5kb upstream of the mature miRNA (yellow shaded area). Bottom, identification

of candidate start sites that either initiate overlapping (left) or non-overlapping

(right) transcripts. EST and transcript data is shown. Scores associated with

identified genes are shown bold.

Figure S5. Summary of miRNA promoter classification, a. Promoters

assigned to mature miRNAs were classified by the dominant feature of their

scoring. Green: miRNAs that were found to have overlapping ESTs or genes

confirming their promoters. Orange: miRNAs that were found to have a candidate

start site within 5kb of the mature miRNA. Gray: miRNAs with either no

candidates within 250kb of the mature miRNA or where all candidates had a

score less then zero (see Fig. S4b, right). Yellow: miRNAs for which the closest

candidate start site was selected solely on the basis of its proximity. b, The basis

of miRNA promoter identification, including Gene or EST evidence (green),

distance of <5 kilobases to mature miRNA (orange), nearest possible promoter to

miRNA (yellow), tended to be conserved between human and mouse

194



Figure S6. miRNA genes occupied by the core transcriptional regulators in

ES cells are expressed in induced Pluripotent Stem (iPS) cells. miRNAs

were purified from MEFs (lanes 1-3), mES cells (lane 4,5) and iPS cells (lane6)

and hybridized to LNA miRNA arrays. Differentially expressed probes enriched

in either mEFs or mES cells are shown (FDR < _10%, see supplemental text, iPS

cells were not used to determine differential expression). miRNA probes were Z-

score normalized, and cell types were clustered hierarchically (top). Probes

associated with active miRNAs occupied at their promoters by

Oct4/Sox2/Nanog/Tcf3 are listed to the right.

Figure S7. PcG occupied miRNAs are generally expressed in a tissue

specific manner. Mature miRNAs derived from genes occupied by Suzl2 and

H3K27me3-modified nucleosomes were compared to the list of tissue specific

miRNAs derived from the miRNA expression atlas (Landgraf et al., 2007).

Vertical axis represents tissue-specificity and miRNAs with specificity score >1

are shown. miRNAs bound by Oct4/Sox2/Nanog/Tcf3 and expressed in mES

cells are not shown (largely ES cell specific miRNAs). Among the tissue specific

miRNAs there is significant enrichment (p < 0.005 by hypergeometric distribution)

for miRNAs occupied by Suzl2 (green).
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Appendix B: Supplementary Material

Foxp3 occupancy and regulation of key target genes
during T-cell stimulation
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Cell Generation and Culture Conditions

Cell Culture, Stimulation and Analysis of Cytokine Production

CD4 + 5B6-2 hybridoma cells expressing a PLP139.151-specific TCR, which was

kindly provided by Vijay Kuchroo, were cultured in Dulbecco's modified Eagle

medium (Invitrogen). Primary murine CD4* T cells were cultured in RPMI-1640

medium (Invitrogen). Media were supplemented with 10% FCS, 2 mM Glutamax,

1 mM HEPES, 1 mM sodium pyruvate, 0.1 mM non-essential amino acids, 0.55

mM 2-mercaptoethanol, 100U/ml penicillin/streptomycin and 0.1 mg/ml

gentamycin. For gene expression profiling, real-time RT-PCR, and location

analysis, cells were cultured in the absence or presence of 50 ng/ml phorbol 12-

myristate 13-acetate (PMA) and 200 ng/ml ionomycin at 370C and harvested

after 6h. Where indicated, cells were preincubated for 1h with 2 pM cyclosporin

A. For the analysis of cytokine production of 5B6-2 hybridoma cells, 10 mg/ml

brefeldin A was added for the last 4h of 6 and 36h cultures. Cells were harvested

at various time points and intracellular cytokine staining was performed using the

Cytofix/Cytoperm kit (Becton Dickinson) according to manufacturer's

recommendations and phycoerythrin-conjugated anti-mouse IL-2 (JES6-5H4)

and TNF-a (MP6-XT22) antibodies.

Generation of Foxp3-expressing CD4' T cell Hybridoma Clones

The murine full-length Foxp3 was amplified from cDNA of purified BALB/c

CD4'CD25' spleen cells using 5'-ATGCCCAACCCTAGGCCAGCCAA-3' as the

sense and 5'-TCAAGGGCAG GGATTGGAGCAC-3' as the antisense primers. A
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minimal Kozak consensus sequence (double-underlined) just upstream of the

initiator codon and a FLAG-tag (single-underlined) and were added using 5'-

GAATTCACCATGATGGACTACAAGGACGACGACGACAAGCCCAACCCTAGG

CCAGCCAA-3' as the sense and 5'-GGATC

CTCAAGGGCAGGGATTGGAGCAC-3' as the antisense primers. For further

cloning sense and antisense primer sequences contained 5' EcoRI and BamHI

restriction sites, respectively. Lentiviral vectors encoding the N-terminal FLAG-

tagged Foxp3-IRES-GFP or Empty-IRES-GFP control were generated from the

pLenti6/V5-D-TOPO vector (Invitrogen). The integrity of cloned cDNA was

confirmed by sequencing and sequence comparison to GenBank accession no.

NM_054039. Concentrated culture supernatants of 293FT transfected with

lentiviral vectors were used to infect 5B6-2 hybridoma cells. Stably transduced

5B6-2-[Foxp3]-IRES-GFP or 5B6-2-[Empty]-IRES-GFP 5B6-2 hybridoma cell

clones were established after flow cytometric single-cell sorting.

Transgenic Mice

TCR-hemagglutinin (TCR-HA) BALB/c mice express a transgenic TCR specific

for the H2-IEd HA107-119 peptide. Double-transgenic TCR-HA x pgk-HA mice

additionally express the HA protein under the control of the phosphoglycerate

kinase (pgk) promoter and are characterized by high frequencies of TCR-HA-

expressing Treg cells (Klein et al., 2003). Mice were bred in the Dana-Farber

Cancer Institute animal facility under specific pathogen-free conditions. Animal
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care and all procedures were in accordance with the guidelines of the Animal

Care and Use Committee of the Dana-Farber Cancer Institute.

Purification and FACS analysis of primary CD4* T cells

Single cell suspensions of pooled spleen and lymph node cells were prepared

from TCR-HA and TCR-HA x pgk-HA mice for the purification of naTve and Treg

cells, respectively. Cells were stained with fluorochrome-conjugated anti-mouse

mAbs CD4 (RM4-5), CD25 (PC61) and TCR-HA (6.5). HA107-.19-specific

CD4'CD25- naive T cells and Foxp3-expressing CD4'CD25h'gh Treg cells were

then purified using a FACSAria cell sorter and FACSDiva software (Becton

Dickinson). Cells were >98% pure upon re-analysis. Intracellular staining with

the anti-mouse/rat mAb FJK-16s (eBioscience) revealed that -95% of purified

TCR-HA*CD4'CD25 high cells express Foxp3. CD4'CD25- naive T cells showed

negligible staining for Foxp3 (50.5%). For the analysis of Ly6a surface

expression on freshly isolated or in vitro stimulated antigen-specific Teff and Treg

cells, primary T cells were purified as described above and additionally stained

using a phycoerythrin-conjugated anti-mouse mAb Ly6a/e (E13-161.7).

Foxp3 Location Analysis

Chromatin Immunoprecipitation

Protocols describing ChIP methods are available from:

http://jura.wi.mit.edu/young_public/hESregulation/ChlP.html
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Briefly, for each location analysis reaction -108 N-terminal FLAG-tagged Foxp3-

IRES-GFP or Empty-IRES-GFP 5B6-2 hybridomas were chemically crosslinked

by the addition of 11 % formaldehyde solution for 20 min at room temperature.

Cells were washed twice with 1 x PBS and pellets were stored at -800C prior to

use. Cells were resuspended, lysed, and sonicated to solubilize and shear

crosslinked DNA. We used a Misonix Sonicator 3000 and sonicated at power 7

for 10 to 18, 20 second pulses (60 second pause between pulses) at 40C while

samples were immersed in an ice bath. The resulting whole cell extract was

incubated overnight at 40C with 100 ul of Dynal Protein G magnetic beads

preincubated with 10 pg of the appropriate antibody for at least 4 hrs. Beads

were then washed 4 times with RIPA buffer and 1 time with TBS. Bound

complexes were eluted from the beads in elution buffer by heating at 65°C with

occasional vortexing, and crosslinking was reversed by -6 hour incubation at

65 0C.Whole cell extract DNA (reserved from the sonication step) was also

treated for crosslink reversal. Immunoprecipitated DNA and whole cell extract

DNA were then purified by treatment with RNaseA, proteinase K and multiple

phenol:chloroform:isoamyl alcohol extractions. Purified DNA was blunted, ligated

to a universal linker and amplified using a two-stage PCR protocol. Amplified

DNA was labeled using Invitrogen Bioprime random primer labelling kits

(immunoenriched DNA was labeled with Cy5 fluorophore, whole cell extract DNA

was labeled with Cy3 fluorophore). Labeled and purified DNA was combined (4

- 5 pg each of immunoenriched and whole cell extract DNA) and hybridized to



arrays in Agilent hybridization chambers for 40 hours at 40'C. Arrays were then

washed and scanned.

Antibodies for ChIP

For ChIP experiments, we used Anti-FLAG (Sigma M2) and anti-E2F4 (Santa

Cruz 1082) antibodies. E2F4 antibody has been shown to specifically recognize

previously reported E2F4 target genes (Ren et al., 2002; Weinmann et al., 2002).

Anti-FLAG antibody has also been demonstrated to work for chromatin

immunoprecipitation (Henry et al., 2003).

Ten Slide Promoter Array

This study employed a 10-slide mouse promoter array set that has been used in

previously published work (Boyer et al., 2006). These arrays were designed to

contain oligonucleotides that cover approximately 10 kb around the transcription

start sites of approximately 16,000 of the best annotated mouse transcription

start sites. Arrays were manufactured by Agilent Technologies

(www.agqilent.com).

Selection of Regions and Design of Subsequences

To define transcription start sites, we first selected transcripts from three of the

most commonly used databases for sequence information (Refseq, Ensembl,

MGC). Transcription start sites within 500 bp of each other were considered

single start sites. To restrict our array to the most likely transcription start sites,
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we selected only those that were found in at least two of the three databases. We

also included microRNAs from the RFAM database.

25 kb of sequence around each transcription start site (20 kb upstream to 5 kb

downstream) was initially extracted for analysis from the repeat-masked

sequence derived from the May 2004 build of the mouse genome. Because we

were balancing feature number, exact number of transcription start sites, tiling

density and extent of upstream genomic coverage for our array design, we chose

to design oligos across a much larger region than we were likely to fit on the

array. Each transcription start site was considered independent, even if the 25 kb

region overlapped with the 25 kb region of another transcription start site. While

we anticipated not being able to use all of these oligos, this allowed us flexibility

in later design steps to add oligos for additional upstream genomic coverage if

space became available. The subset of probes from -8 kb to +2 kb was selected

for the actual array. We used the program ArrayOligoSelector 10 (AOS;

http://arrayoligosel.sourceforge.net/) to score 60-mers for every unmasked

subsequence greater than 62 bp across all promoter regions. The scores for

each oligo were retained but not put through the built-in AOS selection process.

Instead, the collection of scored 60-mers was divided by promoter and sorted by

genomic position. Each set of 60-mers was then filtered based on the AOS oligo

scoring criteria: GC content, self-binding, complexity and uniqueness. For our

most stringent filter, we selected the following ranges for each parameter: GC

content between 30 percent and 100 percent, self-binding score less than 100,
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complexity score less than or equal to 24, uniqueness greater than or equal to

-40.

From this subset of 60-mers, we selected oligos designed to cover the promoter

region with an estimated density of one probe every 280 bp. At this point, we

restricted oligo selection to those oligos found within the region 8 kb upstream to

2 kb downstream of the transcription start site. To achieve more uniform tiling, we

instituted a simple method to find probes within a particular distance from each

other. Starting at the upstream end of the region, we selected the first qualified

probe and then selected the next qualified probe located 150 bp to 280 bp away.

If there were multiple eligible probes, we chose the most distal probe within the

280 bp limit. If no probes were identified within this limit, we continued scanning

until we found the next acceptable probe. The process was then repeated with

the most recently selected probe until we reached the end of the promoter

region.

For regions that were not covered by high quality probes, we returned to the full

set of scored 60-mers and filtered using less stringent criteria. This gave us an

additional set of 60-mers that we then used to fill gaps in our coverage. After this

second pass, we identified gaps in our coverage and added oligos that were

properly spaced and best fit our criteria regardless of whether they passed the

filter cutoffs. This iterative process gave us a compromise between optimal probe

quality and optimal probe spacing.
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Compiled Probes and Controls

There are 407,355 features split over 10 arrays. The probes are arranged such

that array 1 begins with the first selected transcript start site on the left arm of

chromosome 1, array 2 picks up where array 1 ends, array 3 picks up where

array 2 ends, and so on. Over 16,000 genes are represented on the arrays and

each promoter region corresponding to a unique start site is covered by

approximately 25-27 probes. A true average distance between probes is difficult

to calculate due to the presence of large gaps in the probe tiling. Most of these

gaps simply represent the distance between the first and last oligos of two

different sets of probes designed against two different genes. Other gaps are

caused by lack of available sequence information, repeat masking or sequences

that are otherwise highly repetitive and not suitable for oligo design.

Several sets of controls were added. A total of 353 oligos representing

Arabidopsis thaliana genomic sequence were included. These Arabidopsis

oligos were BLASTed against the mouse genome and do not register any

significant hits. These oligos were intended to check background signal. We

added a total of 186 oligos representing five proximal promoter regions of genes

that are known targets of the transcriptional regulator Oct4 (Pipox, Foxhl,

Oct4/Pou5fl, Msh2 and Hoxbl). Each of the four promoters is represented by 21

- 32 different oligos that are evenly positioned across the regions. The oligos for

the Hoxb1 region are printed an additional two times. These promoter regions
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can be used as positive controls. There are 481 gene desert controls. To identify

these probes, we identified intergenic regions of 1 Mb or greater and designed

probes in the middle of these regions. These are intended to identify genomic

regions that are most likely to be unbound by promoter-binding transcriptional

regulators (by virtue of their extreme distance from any known gene). We have

used these as normalization controls in situations where a factor binds to a large

number of promoter regions. There are 224 features printed as intensity controls;

37 oligos are printed twice and 25 of these 37 are printed an additional six times.

Based on a limited number of test hybridizations, this set of oligos gives signal

intensities that cover the entire dynamic range of the array. Our intention was

that this set could serve as a way to normalize intensities across multiple slides

throughout the entire signal range. There are 2,256 controls added by Agilent

(standard) and the remainder of each array consists of blank spots.

Single Slide Proximal Promoter Array

Anti-FLAG Foxp3 IPs were compared to control IPs (E2F4, empty vector) on a

single slide array with -95,000 probes (Supplemental Figure S4). Oligo probes

were designed essentially as described above. Probes were designed to tile the

entire genome with 1 probe placed every -250bp. A subset of these probes,

covering 800bp upstream and 200bp downstream of annotated transcriptional

start sites, were then selected to cover the proximal promoters of approximately

18,000 genes.
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Array Scanning and Data Extraction

Slides were scanned using an Agilent DNA microarray scanner BA. PMT

settings were set manually to normalize bulk signal in the Cy3 and Cy5 channel.

For efficient batch processing of scans, we used GenePix 6.0 software

(Molecular Devices). Scans were automatically aligned and then manually

examined for abnormal features. Intensity data were then extracted in batch.

The complete ChIP-chip datasets have been submitted to the online data

repository ArrayExpress (http://www.ebi.ac.uklarravexpress/) and are associated

with accession code E-TABM-154.

Data Normalization and Analysis

GenePix was used to obtain background-subtracted intensity values for each

fluorophore for every feature on the array. To obtain set-normalized intensities

we first calculated, for each slide, the median intensities in each channel for a set

of control probes that are included on each array. We then calculated the

average of these median intensities for the set of 10 slides. Intensities were then

normalized such that the median intensity of each channel for an individual slide

equalled the average of the median intensities of that channel across all slides.

Each slide contains a set of negative control spots that contain 60-mer

sequences that do not cross-hybridize to murine genomic DNA. We calculated

the median intensity of these negative control spots in each channel and then

subtracted this number from the set-normalized intensities of all other features.
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To correct for different amounts of genomic and immunoprecipitated DNA

hybridized to the chip, negative control-subtracted median intensity value of the

IP enriched DNA channel for the set of intensity control probes described above

was then divided by the median of the genomic DNA channel for the same set of

probes. This yielded a normalization factor that was applied to each intensity in

the genomic DNA channel.

Because binding events are rare in the genome, DNA fragments can only be

enriched using ChlIP, and not anti-enriched. Therefore, the distribution of probes

that are below the 1:1 axis (X-score = 0) can provide an empirical non-parametric

noise distribution for the experiment. For each X score above 0, the probability of

enrichment was calculated to be equal to the number of probes with an X score

greater then (more enriched) the test score divided by the total number of

probes (enriched + noise) with an absolute value of the X score greater then the

test score. This calculation removes the assumption that the X scores on a given

array are normally distributed.

Identification of Bound Regions

To automatically determine bound regions in the datasets, we developed an

algorithm to incorporate information from neighbouring probes. For each 60-mer,

we calculated the average X score of the 60-mer and its two immediate

neighbours. If a feature was flagged as abnormal during scanning, we assumed it
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gave a neutral contribution to the average X score. Similarly, if an adjacent

feature was beyond a reasonable distance from the probe (1000 bp), we

assumed it gave a neutral contribution to the average X score. The distance

threshold of 1000 bp was determined based on the maximum size of labeled

DNA fragments put into the hybridization. Since the maximum fragment size was

approximately 550 bp, we reasoned that probes separated by 1000 or more bp

would not be able to contribute reliable information about a binding event halfway

between them. This set of averaged values gave us a new distribution that was

subsequently used to calculate test statistics for each probe set.

As most probes were spaced within the resolution limit of chromatin

immunoprecipitation, we next required that multiple probes in the probe set

provide evidence of a binding event. Bound probes were required to have a

single probe probability of enrichment and a probe set probability of enrichment

greater than 0.95 (5% False Discovery Rate) for high stringency binding calls and

.90 (10% False Discovery Rate) for low stringency binding calls. Individual probe

sets that passed these criteria and were spaced closely together were collapsed

into bound regions if the centre probes of the probe sets were within 1000 bp of

each other.

Comparing Bound Regions to Known Genes

The location of all bound regions was compared to a composite set of transcripts

compiled from three databases: RefSeq (Pruitt et al., 2005), Ensembl (Hubbard et
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al., 2005), and UCSC annotated known genes (http://genome.ucsc.edu/cgi-

bin/hgTrackUi?g=knownGene) that were associated with Entrez Gene identifiers

and miRNAs downloaded from the the RFAM database

(http://www.sanger.ac.uk/Software/Rfam/). By this method approximately 16,000

Entrez Genes have a least one probe within -8 kb to +2 kb of their transcription

start site. All coordinate information was downloaded from the UCSC Genome

Browser (NCBI build 6; March 2005). For genes, we assigned bound regions

within the -8 kb to +2 kb of the transcriptional start site, which is consistent with

our array design. MicroRNAs allowed a less stringent binding within 10kb

upstream or downstream of the 5' end of the miRNA.

Control Location Analysis Experiments

Control location analysis experiments demonstrate the specificity of our

antibodies for the appropriate targets. When Foxp3 location analysis was

performed in hybridoma cells that were not transduced with FLAG-tagged Foxp3

almost no enrichment of DNA was detected. Location analysis experiments with

anti-E2F4 antibodies identified expected E2F4 targets, which are dissimilar from

the Foxp3 targets that were discovered. These control experiments were

performed using the single slide proximal promoter arrays.

Site-Specific PCR Analysis

We used site-specific PCR to confirm binding of Foxp3 to a panel of Foxp3 target

genes identified by ChIP-chip. A subset of the bound probe sets was selected
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and primer pairs were designed to amplify a 150-200 bp region around the

genomic location of probes that show peak levels of immunoenrichment. PCR

was performed on ligation-mediated PCR amplified IP samples (Figure 3c). 10 ng

of immunoprecipitated (IP) DNA was used in PCR reactions. For input whole cell

extract (WCE) samples, a range of DNA amounts (90, 30 and 10 ng of DNA) was

used. The PCR was performed for 23 cycles and products were visualized on an

agarose gel stained with SYBR Gold (Amersham) and quantified using

ImageQuant (Amersham). Enrichment ratios shown in Figure 3c were

calculated as the ratio of the intensity of the PCR product from 10 Ong IP DNA to

the product from 10ng WCE DNA. Ratios were normalized relative to the ratio

observed for the unenriched 1/3 actin control. For site-specific PCR in unamplified

IP material from cyclosporin A treated cells (Figure S3), ChIP protocol was

followed through the proteinase K digestion. For site-specific PCR, 2ul of IP

material was used. Again, for whole cell extract (WCE) samples a range of DNA

amounts (90, 30 and 10 ng of DNA) was used. 28 cycles of PCR were

performed and products were visualized on agarose gel with ethidium bromide.

For all site-specific ChIP analysis, a region of the /3 actin promoter where no

Foxp3 binding is expected is used as a negative control.

GENE 5' OLIGO 3' OLIGO SIZE

Itk GCTGTTCTTCCAGGAGGATG AGGCTGGCTGATGCTGATAG 190 bp

Jak2 ACGGCAGGACTAATTGTTGC GAAAGGGGGAGAAAGAGACG 180 bp

Zap70 TCTAGGACAGGAACACATTGG GTGTCGGGAACACAAGAGGA 158 bp

Ptpn22 TTCTGCCTTTCTTCTGGGAAT CTAGCGCCTTCCTTTCTCAA 162 bp

112 GTCCTCATGGGCTCAACATC GGGAGGCCAACCTTTGTAAT 156 bp

Pou2afl TTCATGAGACGGAAACCACA CACATCTACAGGAGGGAACCA 156 bp

Ly6a CCCAGCACAGTGGTAAGAGG GGCAGGGTTTATCACTTGGA 182 bp



Tnfrsf9 TGTGTGTGTGAAGAGGGGTTT TCCACAGACGTGACAAGGAG 151 bp

CD25 GGGTGAAAAGACAGCTTGGT GGGTGTGGGATTCACAAATG 151 bp

13 Actin AGGGTACCACCGGAAAAGTC CCCCAAAGGCTGAGAAGTTA 150 bp

DNA Motif Analysis

Discovery of the Foxp3 sequence motif from the ChIP-chip binding data was

performed using the THEME algorithm (Maclsaac et al., 2006). THEME tests

specific, biologically informed hypotheses about a transcription factor's binding

specificity and identifies a motif consistent with both the binding data and prior

knowledge regarding the protein's DNA-binding domain structural family.

We extracted genomic sequence corresponding to the regions bound by Foxp3

at high confidence in stimulated cells for use as the "foreground" data set in

THEME. We then extracted sequence regions at random from unbound regions

on the array for use as the "background" data set. The length of these unbound

sequences was matched to the average size of the bound set (700bp) to avoid

biasing either set towards motif presence or absence. We then ran THEME,

testing hypotheses consistent with the Forkhead DNA-binding domain family, and

identified the motif that yielded the lowest bound vs. unbound classification error

after 5-fold cross-validation. The statistical significance of the best motifs cross-

validation error was assessed by running THEME on randomized data (using the

starting hypothesis from which the best motif was derived) and calculating a Z-

score for the observed error under the null hypothesis that the sequences were

selected at random from the background set. We then tested hypotheses

corresponding to 35 other distinct DNA-binding domains in an identical fashion,

222



and found that the best motif identified from the Forkhead family yielded a lower

cross-validation error than any motif from all other families tested.

The Foxp3 motif learned by THEME, and the Nfat motif from the TRANSFAC

(version 8.3) database (Wingender et al., 1996) were used to scan all arrayed

sequences to identify matches to the motif. Each potential site was assessed by

summing the position-specific scores from the motif log-odds matrix. Sites were

identified as matches if their score was greater than or equal to the threshold,

determined by the THEME algorithm, which classified bound and unbound

sequences with the lowest error during motif discovery. For the Nfat motif from

TRANSFAC a threshold of 60% of the maximum possible score was used.

Foxp3 motif conservation in bound regions was determined using mm6/hgl7

mouse-human pairwise alignments obtained from the UCSC Genome Browser

(Karolchik et al., 2003). If the human sequence directly aligned to the motif

match in mouse also met the score threshold we identified that site as a

conserved match. We performed the same conservation calculations for

randomly selected unbound microarray sequence regions. Statistical significance

was determined by fitting a hypergeometric distribution to the data and testing

the null hypothesis that the number of conserved Foxp3 motifs observed in

bound regions arose from random selection without replacement from the

background population. We then examined the distribution of spacings between

Foxp3 and Nfat motifs (when they occurred together in the same Foxp3 bound

region). Statistical significance was determined using the hypergeometric test
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described above. Results are summarized in Supplemental Table S5. The

online tool WebLogo (http://weblogo.berkley.edu) was used to generate DNA

motif sequence logo in Figure 2b.

Gene Expression Analysis

Gene Expression Profiling

For each hybridoma culture condition, total RNA was prepared from 1 x 107 cells

using Trizol (Gibco) followed by additional purification using the RNeasy Mini Kit

(Qiagen). Biotinylated antisense cRNA was then prepared according to the

Affymetrix standard labelling protocol (one amplification round). For each primary

T cell culture condition, total RNA was isolated from 5 x 105 cells with RNeasy.

Biotinylated antisense cRNA was prepared by two rounds of in vitro amplification

using the BioArray RNA Amplification and Labeling System (Enzo Life Sciences)

according to the protocol for 10-1000 ng of input RNA provided by the

manufacturer. Biotinylated cRNAs of hybridomas and primary T cells were

fragmented and hybridized to Affymetrix GeneChip Mouse Expression Set 430

2.0 arrays at the Microarray Core Facility (Dana-Farber Cancer Institute). Arrays

were stained, scanned, and quantified according to standard Affymetrix

protocols. Data were annotated according the NetAffx database

(http://www.affvmetrix.com/analysis/index.affx) as of March, 2006. The complete

expression datasets have been submitted to the online data repository

ArrayExpress (http://www.ebi.ac.uk/arravexpress/) and are associated with

accession code E-TABM-154.
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Expression Data Normalization

Quantile normalization was performed separately on the hybridoma and ex vivo

expression datasets. Expression data were ranked within each sample. Each

probeset was given the value of the average signal of the probesets of that rank,

across the dataset.

Identification of Differentially Expressed Genes

The hybridoma dataset was analyzed for statistically significant differential

expression using the online NIA Array Analysis Tool (Sharov et al., 2005):

(http://lgsun.grc.nia.nih.gov/ANOVA/).

Probesets were tested for differential expression using the following settings:

Threshold z-value to remove outliers: 10000

Error Model: Max(Average, Bayesian)

Error variance averaging window: 200

Proportion of highest error variances to be removed: 0.01

Bayesian degrees of freedom: 5

FDR threshold: .05

Of 45,101 probesets on the Affymetrix Mouse 430 2.0 array, 256 were

differentially expressed between Foxp3- and Foxp3+ stimulated hybridomas,

while 23 probesets were differentially expressed in the unstimulated cells. The

expression data for these probesets are provided (Supplemental Tables S7 and
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S8). Probesets were excluded that had an average signal intensity that was not

in the upper tercile on the arrays (54.4 units). Probesets that did not map to the

genes for which we had Foxp3 binding data and probesets that mapped to

multiple genes were also excluded. In the cases where multiple probesets

mapping to one gene were differentially expressed, only the probeset showing

the largest differential expression was displayed.

It is worth noting that a stringent cutoff to call differential expression is used. This

identifies expression changes with high confidence but produces an

underestimate because there are many genes that show small changes. Our

goal is to gain insight into Foxp3 action, and by focusing on only the most

pronounced transcriptional effects, we aim to minimize the effects of noise in the

expression data. As a result of this approach, some genes that are likely to be

regulated directly by Foxp3 exhibit small transcriptional effects that are not called

differentially expressed. For example the genes Bc10, Cd53, Rbpsuh, and Rgsl

are all direct Foxp3 binding targets that are known to play a role in regulation of T

cells, and have the characteristic expression pattern of suppressed activation,

but do not meet the FDR < 5% statistical significance cutoff for differential

expression.

Genes with consistent Foxp3 dependent differential expression in between

stimulated ex vivo T helper and Treg cells and between stimulated Foxp3- and

Foxp3+ hybridoma cells were determined according to the following method.
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Probesets were excluded that had an average signal intensity that was smaller

than the median signal on the arrays (26.2 units). Probesets that did not map to

the genes for which we had Foxp3 binding data and probesets that mapped to

multiple genes were also excluded. In the cases where multiple probesets

mapping to one gene were differentially expressed, only the probeset showing

the largest differential expression was displayed.

A score for Foxp3 dependent differential expression was calculated in the

hybridoma and ex vivo datasets separately. The product of these scores was

used to sort the genes and identify those with the largest Foxp3 dependent

differential expression, which was consistent in the two cell types. To calculate

each score, the average signal intensity within the two groups being compared

was calculated. The difference in signal between the groups being compared

was divided by the median signal intensity of all probesets on the array (26.2

units) plus one eighth of the average signal intensity for that probeset.

(A - B) / ( (A + B)/16 + median)

This generated a differential expression score that is comparable to a signal to

noise ratio, where noise is estimated be a linear function of signal intensity. In

Figure S5, the 125 genes with the highest overall differential expression score

were displayed, to match the number of genes that are shown in Figure 3A.

Hierarchical Clustering and Heatmap Display
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For clustering and heat map display, expression data were Z-score normalized

separately within the hybridoma and ex vivo datasets. For heatmap display in

Figure S5 data were Z-score normalized within the full hybridoma and ex vivo

datasets including the unstimulated samples, though only the stimulated samples

are displayed. Average linkage, correlation distance, centered, hierarchical

clustering was performed using Gene Cluster (http://bonsai.ims.u-

tokyo.ac.jp/-mdehoon/software/cluster/software.htm#ctv). Heatmaps were

generated using Java Treeview (http://jtreeview.sourceforge.net/). Cluster

branches were flipped about tree nodes for optimal display. In Figure 3B, those

genes from panel A that are bound by Foxp3 and are expressed in ex vivo cells

are displayed in panel B. S/c17a6 and Adam O1 are excluded because they are

not expressed in the ex vivo samples.

Real-time RT-PCR

Total RNA was prepared from hybridoma cells or FACS purified primary T cell

populations using the RNeasy kit (Qiagen) followed by DNase digestion (Qiagen).

cDNA was synthesized from total RNA using Superscript II reverse transcriptase

and oligo(dT) (Invitrogen Life Technologies) according to the manufacturer's

recommendations. Real-time RT-PCR was performed on an ABI PRISM thermal

cycler (Applied Biosystems) using SYBR® Green PCR core reagents (Applied

Biosystems). Real-time RT-PCR primer sets were either obtained from

SuperArray or are available upon request.
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Significance of List Overlap

Statistical significance of overlap between differentially expressed genes and

Foxp3 bound genes was calculated using a standard Chi-Square test.

Functional Annotation and Statistical Significance of Gene Lists

Functional annotation and statistical significance of gene lists was performed with

the on-line tool, DAVID (http://niaid.abcc.ncifcrf.gov/) (Dennis et al., 2003).

Genes were imported as EntrezGene IDs and, using the Functional Annotation

tool, compared to KEGG pathways (Kanehisa et al., 2000).

The Foxp3 binding targets in PMA/ionomycin-stimulated CD4* hybridomas were

enriched for genes associated with the following KEGG pathways:

KEGG Pathway P-Value

T CELL RECEPTOR SIGNALING PATHWAY 1.4E-5

CELL CYCLE 4.3E-3

FATTY ACID ELONGATION IN MITOCHONDRIA 2.5E-2

CYTOKINE-CYTOKINE RECEPTOR INTERACTION 5.9E-2

PYRIMIDINE METABOLISM 9.2E-2

The Foxp3 target genes that are downregulated in Foxp3+ stimulated

hybridomas relative to their levels in Foxp3- stimulated hybridomas were

enriched for genes associated with the following KEGG pathways:
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KEGG Pathway P-Value

T CELL RECEPTOR SIGNALING PATHWAY 6.1E-3

CYTOKINE-CYTOKINE RECEPTOR INTERACTION 3.6E-2
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Supplemental Figure Legends

Figure S1. Flow cytometric analysis of Foxp3 expression. 5B6-2-[Foxp3]-

IRES-GFP or 5B6-2-[Empty]-IRES-GFP 5B6-2 hybridoma cells (a) or FACS-

purified ex vivo TCR-HA transgenic CD4*CD25- na'fve or CD4*CD25 ÷ Treg cells

(b) were cultured in the absence or presence of PMA/ionomycin. After 6h cells

were harvested and intracellular staining was performed using the mAb FJK16s

(anti-Foxp3). Histograms show relative levels Foxp3 protein expression, which

demonstrates that Foxp3 is expressed at a similar level in the transduced

hybridomas as in ex vivo Treg cells.

Figure S2. Cytokine production of Foxp3-transduced 5B6-2 hybridomas.

5B6-2-[empty]-IRES-GFP (a) or 5B6-2-[Foxp3]-IRES-GFP (b) hybridoma cells

were cultured in the presence of PMA/ionomycin for the indicated times.

Brefeldin A was added for the last 4h of 6h and 36h cultures. After surface

staining for CD4 expression and fixation, intracellular staining with the indicated

cytokine antibodies or appropriate isotype controls was performed. Numbers in

dot plots indicate the frequencies of cells in the respective quadrant. These data

show that Foxp3 transduction suppresses production of 112, but does not

suppress production of TNF-a.

Figure S3. The promoters of most Foxp3 target genes are bound by Foxp3

before and after T cell stimulation. (a) The lists of genes whose promoters are
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bound by Foxp3 in unstimulated (blue) and stimulated (pink) hybridoma cells are

shown in a Venn diagram. The genes occupied by Foxp3 in stimulated T cells

(FDR < .05) are represented by the pink circle. The genes occupied by Foxp3 in

unstimulated T cells (FDR < .05) are represented by the blue circle. The dotted

light blue circle represents the genes occupied by Foxp3 in unstimulated cells if

the threshold is relaxed to FDR < .10. Most of the genes bound in stimulated

cells are prebound in unstimulated cells. (b) Although most Foxp3 bound genes

in stimulated cells were also bound in unstimulated cells, the binding profiles

were not identical in the two conditions. Ptpn22 and Jak2 were representative of

target genes where strong immunoenrichment was observed in both conditions.

The binding profile for Foxp3 is shown at these promoters with binding in

unstimulated cells displayed with a blue line and binding in stimulated cells

displayed with a pink line. The profile across these promoter regions indicates

that additional Foxp3 binding events are stabilized in response to PMA/ionomycin

stimulation. This phenomenon is observed at several Foxp3 targets. In contrast

to the strong immunoenrichment observed in both conditions at Ptpn22 and Jak2,

recent reports (Wu et al., 2006; Chen et al., 2006) indicate that Foxp3 is

stabilized at the promoters of 112 and CD25 in response to T cell stimulation. This

finding is confirmed in our Foxp3 binding data as shown here. (c) Foxp3 binding

at the Ptpn22 and Jak2 promoters in unstimulated cells was independently

confirmed with site-specific ChIP in cyclosporin A treated cells. Primers flanking

the binding peaks indicated with asterisks in (b) were used for ChIP PCR

reactions shown here. Immunoenrichment at the Ptpn22 and Jak2 promoters



was observed. As expected, immunoenrichment was not observed at the 112,

CD25, and control 13 actin promoters.

Figure S4. Control experiments confirm the specificity of Foxp3 ChIP-chip.

When log2 intensity values of IP (Cy5 label) material are plotted against log2

intensity values of whole cell extract (Cy3 label), considerable enrichment of IP

material is oberserved in ChIP experiments in FLAG-tagged Foxp3+ cells both

before (a) and after (b) PMA/ionomycin stimulation. In contrast, very little IP

enrichment is observed when the same IPs are performed in Foxp3- hybridomas

(c). A positive control IP with an anti-E2F4 antibody identifies expected IP

enriched E2F4 targets (d), which are largely distinct from the identified Foxp3

target genes (see Supplemental Table S4).

Figure S5. Many Foxp3 targets show consistent Foxp3 dependent

differential expression in ex vivo and hybridoma cells. Genes were selected

that showed consistent Foxp3 dependent differential expression in ex vivo and

hybridoma cells according to methods described in the Supplementary section,

Identification of Differentially Expressed Genes. 125 genes are displayed to

match the number of genes in Figure 3a. For clustering and heatmap display

data were Z-score normalized within the full hybridoma and ex vivo datasets

including the unstimulated samples, though only the stimulated samples are

displayed. Data were hierarchically clustered and are displayed in a heatmap.

The Z-score normalized induction (red) or repression (green) is shown for each
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gene. Direct targets of Foxp3 are signified with blue bars, with dark blue

representing genes called bound with a false discovery rate of 5% and light blue

representing a false discovery threshold of 10%. There is a significant

enrichment of direct Foxp3 targets among the genes that are downregulated in

stimulated Foxp3+ cells (p < 1019).

Figure S6. Analysis of Ly6a protein expression on primary Treg. Surface

expression of Ly6a on CD4+6.5 + na've T cells from TCR-HA mice or Foxp3-

expressing CD4'CD25high6.5+ Treg cells from double-transgenic TCR-HA x pgk-

HA mice was analyzed on freshly FACS-purified cells (a) or after 18h of culture in

the absence or presence of 50 ng/ml PMA and 200 ng/ml ionomycin with or

without a 1h preincubation with 2 pM cyclosporin A (b).
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Figure S2

a
5B6-2-[empty]-IRES-GFP:
PMA/Iono:

C%4J

t .::.,: .

LL

Oh

0.0

0.1 65.9
. .. .:.

..... ~6..:i' •: ' • ' :•;
• ....,.•:. ":

•~ ~ ~~ .. ;,• ,

' . . . • _

L CD4

5B6-2-[Foxp3]-IRES-GFP:
PMA/Iono: 0 h

CN

t'

I-
ht

0.0

niL
0.3

L CD4

j

6h

79.8

6h

1.4

94.2
,. '

36 h

36 h

1.1

I 92.9

36 h

( 0.1

0I-
03o~*
i0.1fm 0.1

C
0

% C-D4

.0N..
(3

4-

C0

0

t

36 h

0.1

!..

0.2

C,

CD4

238

! "~

! -- ·

I ........ I ...... ,.......,I·· · · . . ...... · · · · · . . ..... I

-·.I·~-·-·

.- ;..,i
.. :·4~

i
··

· · · ·· ·· ·I ·- ·· ··r . . .....· · · ·1 . ....... i . . .....

. ...... I r7 . ...... '1 . .. ........ II · . ....... I . . ....

.··,··I·,. ·i
. .. .....I !·· · . . . .....

. ., .

""""' "~'~~`' """1

. . ...... !··· · . . . ... '1 . . . ..



Figure S3
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Figure S4
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Figure S5
hybridoma ex vivo
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Figure S6
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