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Abstract. Continuum manipulators have been widely adopted for 
single-port laparoscopy (SPL). A novel continuum manipulator with 
uniform notches which has two degrees of freedom (DOFs) is presented in 
this paper. The arrangement of flexible beams makes it own a higher load 
capacity. Its kinematic model is coupled with the mechanical model. The 
comprehensive elliptic integral solution (CEIS) is more practical in the 
actual deformation of the flexible beams. Based on that method, kinematics 
modeling is established from the driven space to the Cartesian space. The 
friction coefficient is an important factor which can affect the kinematic 
modeling. Therefore, an experimental platform is established to obtain the 
friction coefficient. The kinematic modeling is verified through the 
prototype. Experimental results show that the model has high precision. 

1 Introduction 
Robot design and control technology have made great progress recently. The traditional 

rigid manipulator can be used to complete the related tasks perfectly under the simple 
working environment of artificial construction. However, they cannot be used to complete 
relevant tasks well under the complex working environment, e.g. human body interior, 
complex pipelines, ruins, etc. The continuum manipulator is researched by more and more 
scholars to solve the problem of operations for complex space. The continuum manipulator is 
a kind of bionic mechanism, which is inspired by the biological structures, e.g. elephant 
trunk, snake and tentacles. The continuum manipulator, which has more freedom and better 
bending characteristics can be used to complete complex operations in a narrow space. It can 
be classified into discrete and continuum configurations. The discrete configuration is 
similar to the traditional rigid manipulator, which is formed by a series connection of 
multiple modular joints and supported by the elastic body. The continuum configuration can 
be regarded as being formed by the series connection of the flexible mechanism. The 
complete and uninterrupted elastic material can be taken as the skeleton of the continuum 
configuration directly. It not only owns no gap, high precision characteristics [1], but also has 
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better flexibility and biocompatibility, which can help it complete more flexible movement 
inside the human body, and do less damage to the internal tissues of the human body. 

As a typical representative of minimally invasive surgery (MIS), laparoscopic surgery 
generally requires opening 2-4 minimally invasive holes on the surface of the human body. 
SPL appeared in order to minimize the risk of such trauma and infection. The flexibility and 
small size of the continuum manipulator make it possible to be applied in SPL. Roh et al. 
have developed an SPS robot system that transmits motion through a saddle-shaped surface 
with end loads up to 1kgf [2]. Choset et al. designed a Cardio ARM robot system which is 
made up of rigid cylindrical links in series [3]. Li et al. developed a CTSM robot that 
transmits motion through a spherical surface, and it's tested currently [4]. The above 
examples are the discrete configuration. In contrast to it, there are some examples of 
continuous configuration. Ding et al. developed the IREP robot system based on a flexible 
continuum manipulator which is made of nickel-titanium memory alloy [5]. Kutzer et al. 
developed a CDM flexible arm based on a notched continuum [6]. Xu et al. developed an 
SJTU unfoldable robotic system that can pass the Φ12mm hole [7]. Du et al. have developed 
two single-hole surgical robots based on different forms of notches [8,9]. 

The above examples demonstrate the feasibility and effectiveness of the continuum 
manipulator applied in single-hole surgery. It is necessary to choose a suitable modeling 
method to improve the control accuracy of the manipulator. The deformation of the 
continuum configuration manipulator is related to the end load. Yang established a 
mechanical model through a cantilever beam theory which is suitable for small linear elastic 
deformation [8]. Yang established a mechanical model through a Timoshenko beam theory 
which is suitable for small linear elastic deformation [9]. The shear and rotation effects are 
considered in the Timoshenko beam theory. Gao et al. proposed a modeling method based on 
Cosserat rod theory which is suitable for elastic rods with super large deformation [10]. The 
shear deformation, centerline expansion and deformation, and bulk force effects are 
considered in Cosserat rod theory. 

The main problem of continuum configuration is lower load capacity. In order to improve 
its practicability in SPL, more scholars have invested in research to improve its load capacity. 
In this paper, a uniform notch continuum with a strong load capacity is proposed. The design 
and characters of the structure are introduced in Section 2. The kinematic modeling method 
based on CEIS is presented in Section 3. The accuracy of the kinematic model can be proved 
by experiments in section 4. 

2 Structural design 
In this paper, a continuum manipulator with uniformed notches is obtained by the 
superelasticity of Nitinol. Nitinol tube's length is 142mm, outer diameter is 10mm, and inner 
diameter is 8.8mm. The notches are obtained by wire-cut electrical discharge machining 
(WEDM). The continuum manipulator proposed in this paper adopts an elliptical straight 
beam notch scheme, as shown in Fig. 1(a). 

A and B are two fixed points on the continuum manipulator. When they are located, the 
ellipse can be independently adjusted for beam length l  and thickness h . It is beneficial for 
further optimization of the structure. Besides, the ellipse can be used to reduce stress 
concentration.  

The bending planes of adjacent flexible beams are perpendicular to each other, as shown 
in Fig. 1(b), (c). Another arrangement is to place flexible beams with the same bending 
direction together, as shown in Fig. 1(d). In Fig. 1(c), (d), flexible beam m represents the 
beam which is closest to the base among the beams whose bending plane is plane x-z. When 
the end of the continuum manipulator is subjected to a load F, the bending angle of beam m 

 CSCNS2019
MATEC Web of Conferences 309, 05006 (2020) https://doi.org/10.1051/matecconf/202030905006

2



in Fig. 1(c) is larger than that in Fig. 1(d). This can increase the range of motion of the 
continuum manipulator in the plane x-z. Therefore, the arrangement of Fig. 1(c) is adopted in 
this paper. 
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Fig. 1. (a) Notch shape. (b) Arrangement of flexible beams. (c) The bending planes of adjacent flexible 
beams are perpendicular. (d) The bending planes of adjacent flexible beams are the same. 

The cross-section of the flexible beam i is shown in Fig. 2. The moment of inertia of the 
section to the neutral axis can be obtained as follows:  
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where Izi is the moment of inertia of the section of flexible beam i transversely facing the 
neutral axis zi, r1 is the inner diameter of the nitinol tube, r2 is the outer diameter of the nitinol 
tube, and hi is the thickness of flexible beam i. 
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Fig. 2. Cross-section of the flexible beam i. 
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3 Kinematics model 
The deflection of some flexible beams exceeds 10% of the beam length, which is a large 
deflection deformation. In order to describe this deformation more accurately, the 
relationship between the load and deformation is described through CEIS in this paper [11]. 
The mechanics model is briefly introduced in Subsection 3.1. Since the kinematics modeling 
is inseparable from the mechanical model, the process of solving the end load of each flexible 
beam is mainly introduced in Subsection 3.2. Through combining the work of the first two 
sections, the position and pose of the continuum end are solved in Subsection 3.3. 

3.1 Mechanics model 

Each flexible beam can be regarded as a cantilever beam model. Load parameters, structure 
parameters, and deformation parameters are shown in Fig. 3. The coordinate system {i_1} is 
attached to the forced end of the flexible beam. The coordinate system {i_2} is attached to the 
fixed end of the flexible beam. In the figure, ai and bi represent the change in position of the 
end, and θoi represents the change in pose of the end. 
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Fig. 3. Flexible beam deformation diagram. 

The deformation parameters of the flexible beam can be obtained by iterating the 
following two sets of expressions: 
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The algorithm flow chart is shown in Fig. 4. An inflection point is a point where the 
curvature is zero. In the figure, m indicates the number of inflection points. When load 
parameters and structure parameters are known, deformation parameters can be obtained 
through the algorithm. 
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Fig. 4. Algorithm flow for solving deformation parameters of the flexible beam. 

3.2 Solution for the deformation parameters of each flexible beam  

The flexible beam i is placed between the rigid body i and the rigid body i+1, as shown in Fig. 
5. The rules of establishing the coordinate system are the same as those of the mechanical 
model [see Fig. 3]. The coordinate system {i_1} is attached to the contact surface between the 
flexible beam i and rigid body i. The coordinate system {i_2} is attached to the contact 
surface between the flexible beam i and rigid body i+1. Similarly, the coordinate system 
{i-1_1} is attached to the contact surface between the flexible beam i-1 and rigid body i-1. 
The coordinate system {i-1_2} is attached to the contact surface between the flexible beam 
i-1 and rigid body i. Therefore, two coordinate systems {i-1_2} and {i_1} are both fixed in the 
rigid body i. Each element of the homogeneous transformation matrix _1

1_ 2
i

i T−  is constant. 
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Fig. 5. The schematic diagram for the deformation of the flexible beam i. 
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According to the parity of i, the homogeneous transformation matrix _1
1_ 2
i

i T−  can be 
obtained as follows: 

_1 _1
1_ 2 1_ 2

1 0 0 1 0 0
0 0 1 0 0 0 1 0

( ) ( )
0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1

δ δ

− −
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   −
   
   

 is odd  is even

i i

i i
i iT i T i                        (4) 

where δi is the xi_1 component of the vector _1 1_ 2−i iO O , which is 0 in this paper. 
The initial values ai, bi and θoi are Li, 0 and 0, respectively. From Fig. 3, the homogeneous 

transformation matrix of {i_1} with respect to {i_2} can be observed as 
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.                                                         (5) 

A driven wire can be divided into many sections small driven wires. When the forces 
provided by driven wires outside the plane yi_1z i_1 are known, the end-load of the flexible 
beam i can be solved. Only the forces provided by driven wire Ni-2Mi are unknown before this 
iteration. The equivalent force vectors of other known forces are stored in the matrix FVD. 
The matrix FVD is a matrix of 3×(2i-4), and each column vector corresponds to an external 
force vector in the coordinate system {i-1_2}. The equivalent origins of these known forces 
are stored in the matrix Fpo. The matrix Fpo is a matrix of 4×(2i-4), and each column vector 
corresponds to a homogeneous coordinate of an origin in the coordinate system {i-1_2}. The 
expressions of FVD and Fpo in the coordinate system {i_2} are shown as 

{ _ 2} _ 2 _1 { 1_ 2}
_1 1_ 2

{ _ 2} _ 2 _1 { 1_ 2}
_1 1_ 2

i i i i
VD i i VD

i i i i
po i i po

F R R F

F T T F

−
−

−
−

 =


=

 

 

.                                                      (6) 

Before this iteration, {i-1_2}Ni-2 is a known quantity, and its expression in the coordinate 
system {i_2} is shown as 

{ _ 2} _ 2 _1 { 1_ 2}
2 _1 1_ 2 2

i i i i
i i i iN T T N−
− − −=   .                                                     (7) 

As i>2, the friction forces between the driven wires and continuum manipulator are 
considered in this paper. There are three assumptions as follows: 

1) The Coulomb friction model is applied, ie _ _fi in Ni inF Fµ= , where _fi inF  and _Ni inF  
are the friction force and the normal force provided by the flexible beam i-1, respectively; 

2) The driven wires pass through Ni-2 and Mi. Ni-2 is a fixed point on the rigid body i-1, 
and Mi is a fixed point on the rigid body i; 

3) The driven wires are only subjected to the force at Ni-2 and Mi. The direction of normal 
force lies in the bisector of two driven wires. The direction of the friction force is 
perpendicular to that of the normal force. 

In order to obtain the forces provided by the driven wire Ni-2Mi on the flexible beam i-1, 
the force analysis is carried out. Taking the driven wire Ni-2Mi as the research object, the 
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force analysis diagram is shown in Fig. 6. There are three parts in external forces applied on 
the driven wire Ni-2Mi: 

1) FT_Ni-2 Mi-2 is the tensile force provided by the driven wire Mi-2Ni-2, the direction is 
from Ni-2 to Mi-2, and the magnitude is known before this iteration; 

2) FT_MiNi is the tensile force provided by the driven wire MiNi, the direction is from Mi 
to Ni, and the magnitude is unknown before this iteration; 

3) The friction forces and normal forces provided by the flexible beam i-1. The specific 
directions of friction forces are related to the deformation trend of the flexible beam i-1 [see 
Fig. 6(a), (b)]. Therefore, the specific directions of friction forces need to be discussed. The 
magnitudes of the normal forces and the friction forces are unknown.  
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Fig. 6. The external forces applied on the wire rope. (a) The flexible beam is deforming. (b) The 
flexible beam is returning to its original state. 

Through the force balance equation, the magnitude of tension FT_MiNi can be obtained as 
follows: 
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The friction forces and normal forces provided by the driven wire Ni-2Mi can be replaced 

by FT_Ni-2Mi-2 and FT_MiNi equivalently. Therefore, what are actually stored in the FVD are 
the tensile forces provided by different driven wires. Considering that the effect of 
interaction forces between adjacent driven wires can be offset, the end-load of the flexible 
beam i(i>2) can be simplified as follows: 

1 1

_1 1 1

{ _ 2} { _ 2} { _ 2}

{ _ 2} { _ 2} { _ 2} { _ 2} { _ 2}
_1 1 _1( )

M N M Ni i i i
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− −
−

 = +


= × + ×
                           (9) 

where FT_Mi-1Ni-1 is the tensile force provided by the driven wire Mi-1Ni-1, and it's known 
before this iteration.  

The algorithm flow for solving the deformation parameters of the flexible beam i(i>2) is 
shown in Fig. 7. 

 CSCNS2019
MATEC Web of Conferences 309, 05006 (2020) https://doi.org/10.1051/matecconf/202030905006

7



N

Start

Calculate the homogeneous matrix         
          through formula (4)

ai=Li,bi=0,θoi=0

Calculate the homogeneous matrix         
          through formula (5)

Calculate the expression of the quantity 
FVD、Fpo、Ni-2 in the coordinate system 
{i_2} through formula (6), (7)

Accuracy Requirement?

End

Y

Input i, the expression of the  
quantity FVD、Fpo、Ni-2 in the 

coordinate system {i-1_2}

Calculate the end-load of the flexible beam 
i through formula (8),(9). Get deformation 
parameters ai/Li, bi/Li, θoi  by algorithm 
flow chart 4

 Update matrix FVD, Fpo, calculate the 
expression of the quantity Ni-1 in the 

coordinate system {i_2}

A B

A B

_1
1_ 2−
i

i T

_ 2
_1

i
i T

 

Fig. 7. Algorithm flow for solving deformation parameters of the flexible beam i. 

The solution process of the first two flexible beams is similar to the above process. Since 
one end of the first driven wire is fixed on the rigid body 1, there is no friction force between 
the first driven wire and the rigid body 1. Similarly, there is no friction force between the 
second driven wire and the rigid body 2. Therefore, friction forces don't exist during the 
solution process of the first two flexible beams. The end load of the flexible beam i can be 
simplified as follows: 
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            (10) 

where FT1 is the tensile force provided by the first driven wire on the rigid body 1, and FT2 is 
the tensile force provided by the second driven wire on the rigid body 2. 

3.3 Solving for position and pose of continuum end 

After solving the deformation parameters of each flexible beam, the homogenous matrix 
from the tip to the base is shown as 

2
_ 2 _1 1_ 2 1_1

_ 2 _1 1_ 2 1_1=Base Base i i
Tip n i i Tip

i n

T T T T T T−
=

 
 
 
∏    .                                             (11) 
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The operating space is shown in Fig. 8. As can be seen from the figure, the operating 
space can meet general SPL needs. 

 

Fig. 8. The operating space. 

4 Experiments and results 
The kinematics model is verified through experiments in this section. An experimental 
platform is established to obtain the friction coefficient in Subsection 4.1. The verification 
experiment of the kinematics model is introduced in Subsection 4.2. 

4.1 Measurement experiment for friction coefficient 

The schematic diagram of the experimental model is shown in Fig. 9(a). Before the start of 
each set of experiments, the angle α1 is known. Then the angle α2 is adjusted by the ball screw 
until the system reaches the critical friction state. The friction coefficient can be obtained as 
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Fig. 9. Experiment for Friction Coefficient. (a) Experimental principle diagram. (b) Partially enlarged 
view. (c) The overall view of the experimental bench.  

The physical quantities of the formula are shown in the schematic diagram. The partially 
enlarged view and the overall view of the experimental bench are shown in Fig. 9(b) and (c), 
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respectively. 18 sets of measurement experiments are carried out. The mean value is taken as 
the friction coefficient, which is 0.3117 [see Fig. 10]. 

 
Fig. 10. Experimental data and result. 

4.2 Validation of kinematics model 

The experiment platform for validation of the kinematics model is shown in Fig. 11(a). The 
continuum manipulator is located in the fixed table. The end of the manipulator is pulled by 
the weight through the driven wire. The manipulator begins to deform under the tensile force 
of the weight. The photos of deformation results could be taken by the CCD camera, as 
shown in Fig. 11(b). 

(a)

(b)

CCD Camera

Calibration Board

Fixed Table
Weight

Driven Wire

 

Fig. 11. Experiment for validation of the kinematics model. (a) Experiment platform. (b) The photo got 
by the CCD camera. 

During the experiment, the load is increased from 0 to 1.5kg in increments of 0.1kg. 
Through the calibration board, the position of the tip end of the manipulator could be 
calculated by Matlab. The results of the experimental and theoretical values are shown in Fig. 
12(a). The error of each experimental result is shown in Fig. 12(b). The results indicate that 
the mean tip error of all the verification experiments is 0.597 ± 0.556 mm. The max tip error 
is 1.153 mm, which is less than 5% of the total manipulator length. The possible sources are 
the gravity of the manipulator, gravity acceleration value, and image acquisition. 
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(a) (b)  
Fig. 12. (a) The results of the experimental and theoretical values. (b) The errors of all the experimental 
results. 

5 Summary 
A two DOFs continuum manipulator with uniform notches is proposed in this paper. The 
kinematics model and the mechanical model are coupled. The mechanical model is 
established through CEIS. The tensile forces, normal forces and friction forces provided by 
driven wires are considered to establish the kinematics model. The friction coefficient is 
measured through a specific experimental platform. The results indicate that the mean tip 
error of all the verification experiments is 0.597 ± 0.556 mm. All the errors are less than 5% 
of the total manipulator length. A future study could focus on the solution of inverse 
kinematics, force feedback and shape perception. 
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