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Abstract. Recently, deep learning algorithms have been widely into fault diagnosis in the intelligent 
manufacturing field. To tackle the transfer problem due to various working conditions and insufficient 
labeled samples, a conditional maximum mean discrepancy (CMMD) based domain adaptation method is 
proposed. Existing transfer approaches mainly focus on aligning the single representation distributions, 
which only contains partial feature information. Inspired by the Inception module, multi-representation 
domain adaptation is introduced to improve classification accuracy and generalization ability for cross-
domain bearing fault diagnosis. And CMMD-based method is adopted to minimize the discrepancy between 
the source and the target. Finally, the unsupervised learning method with unlabeled target data can promote 
the practical application of the proposed algorithm. According to the experimental results on the standard 
dataset, the proposed method can effectively alleviate the domain shift problem. 

1 Introduction 
Fault diagnosis is a fundamental problem in the modern 
machinery prognostics health management (PHM). 
Thanks to the widespread use of intelligent sensors, data-
drive methods have received extensive attention from 
academia and industry departments [1]. Recently, deep 
learning (DL) based intelligent fault diagnosis 
algorithms have already prospered and found their ways 
into fault diagnosis [2]. Zhang et al. [3] designed an 
effective deep convolutional neural network with wide 
first layer kernels (WDCNN) to extract features and 
restrain high frequency noise. Guo et al. [4] utilized 
wavelet transform in different scales to get rid of the 
vibration signal for data preprocessing and put frequency 
features into DCNN for fault diagnosis. They both 
achieved success and obtained high classification 
accuracy in specific training conditions. 
Because the operation condition of the bearing is 

changing with noise, loads, and other complex 
environmental factors in real industrial scenarios, which 
often produces different data distribution and then leads 
to the performance degradation of the model 
dramatically. Therefore, domain adaptation and robust 
algorithms are in need.  

Although the existing approaches about bearing 
diagnosis (such as DAN [5], DANN [6]) are competitive, 
several issues and challenges still need to be addressed. 
Firstly, existing methods commonly focus on aligning 
single representation distribution to minimize the 
discrepancy, ignoring the diversity. Secondly, smaller 
and faster algorithm is more conducive to terminal 
deployment in the field of fault detection. Based on 
previous works, we propose a CMMD-based domain 

adaptation framework by introducing Inception module 
and CMMD distance to improve the detection 
performance. The main contributions in this paper are 
summarized as follows: 
(1) A novel intelligent network is proposed for bearing 
fault diagnosis with Inception module. Different views 
from representations contain more feature distribution 
information for classification and domain adaptation. 
(2) The CMMD distance are introduced to align the 
feature distribution between the source and the target. 

2 Related work  

The success of DL-based intelligent fault diagnosis 
mainly depends on the following two aspects: (1) 
extensive labeled samples are available. (2) Data 
distribution from the training set is the same as the test 
set [7]. However, the test set is often newly collected 
vibration data with different working conditions and 
different distribution. Fortunately, unsupervised deep 
transfer learning  (UDTL) is designed to deal with the 
this dilemma. UDTL is commonly used in the field of 
computer vision (CV) and natural language processing 
(NLP) [8]. Their strategies are mainly divided into two 
class: (1) embedding adaptation layers to minimize the 
discrepancy by the distance measure (such as MMD, 
mean and covariance matrix, and so on). (2) introducing 
adversarial training strategy to learn domain-invariant 
features.  

Recently, UDTL also find its way into the field of 
intelligent fault diagnosis. Especially, domain adaptation 
is usually the most common method. MMD distance 
measure is often used to match the domain adaptation 
and have achieved good results in [8]. Meanwhile, recent 
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researches extend the adversarial training methods to 
align the distributions by introducing a domain 
discriminator [6]. However, all these work focus on 
aligning distributions of domain from a single view.  
In this paper, we will explore multi-view domain 
distribution aligning. Moreover, the CMMD distance is 
measured through multi-scale feature space by Inception 
module from googLeNet [9]. 

2.1. Domain adaptation  

Generally, a typical domain adaptation (DA) framework 
can be formulated as jointly training the source 𝐷𝐷𝑠𝑠 data 
with labels and the target 𝐷𝐷𝑡𝑡  data without labels. 
Assuming that the source is 𝐷𝐷𝑠𝑠 = {(𝑥𝑥𝑖𝑖𝑠𝑠,𝑦𝑦𝑖𝑖𝑠𝑠)}𝑖𝑖=1

𝑛𝑛𝑠𝑠 and the 
target is 𝐷𝐷𝑡𝑡 = {(𝑥𝑥𝑖𝑖𝑡𝑡)}𝑖𝑖=1

𝑛𝑛𝑡𝑡 , where 𝑥𝑥 is the sample, y is the 
label and n is the number of the sample. 𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑡𝑡 are 
from different joint distributions respectively: 𝑃𝑃(𝑥𝑥𝑖𝑖𝑠𝑠,𝑦𝑦𝑖𝑖𝑠𝑠) 
and 𝑄𝑄(𝑥𝑥𝑖𝑖𝑡𝑡 ,𝑦𝑦𝑖𝑖𝑡𝑡). In most situations, 𝑃𝑃 is not equal to 𝑄𝑄 . 
Therefore, the fault diagnosis model is designed to learn 
domain-invariant features and minimize the domain shift. 
The process is depicted in Fig. 1 (a). 

 

Fig. 1 (a) Illustration of domain adaptation. The top plots represent the source domain classifier; the bottom plot represents the cross-
domain classifier after domain adaptation, (b) schematic diagram of single window resampling method. 
 

Fig. 2 (a) Inception module, the 1D convolutional parameters are denoted as follows: kernel size/stride/padding, (b) comparison of 
MMD and CMMD. 

2.2 Data augmentation.  

In the field of computer vision and natural language 
processing, the input samples are fixed. However, fault 
diagnosis algorithms based on the vibration signal need 
to resample the training samples and determine the best 
size of input data. In the past, the single window 
resampling method was widely used for data 
augmentation in time-series data, as shown in Fig. 1 (b). 
In this way, we could produce a large number of training 
samples without extra efforts. The existing most 
excellent methods tend to set the resampling size to 1024 
or 2048 [2, 3, 4, 5, 6]. In this paper, the resampling size 
is 1024. 

2.3 Inception module  

Inception module is firstly proposed to add the width of 
the neural network and increase the adaptability of the 
network to the scale. The receptive field of different 
branches is different, so there is multi-scale information 
in it. The details of Inception module is shown in Fig. 2 
(a). In addition, it is also beneficial to learn different 
domain-invariant representations. 

2.4 Conditional Max Mean Discrepancy.  

To approach the adaptation of unlabeled information in 
the target domain, most existing methods aim to bound 
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the discrepancy metric between the source and the target. 
In this paper, we focus on optimizing the multiple kernel 
variant of MMD (MK-MMD) proposed by Gretton et al. 
[10]. Denote by ℋ𝑘𝑘  be the reproducing kernel Hilbert 
space (RKHS) embedded with a characteristic kernel k, 
where 𝑓𝑓  represents a kernel function. 𝐷𝐷𝑘𝑘(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑡𝑡)  is 
defined as the RKHS distance between 𝑃𝑃(𝑥𝑥𝑠𝑠) and 𝑄𝑄(𝑥𝑥𝑡𝑡). 
𝐷𝐷𝑘𝑘(𝑥𝑥𝑠𝑠, 𝑥𝑥𝑡𝑡)
∶= sup

𝑓𝑓∈ℋ
��1

𝑚𝑚
∑ 𝑓𝑓(𝑥𝑥𝑖𝑖𝑠𝑠) −𝑚𝑚
𝑖𝑖=1

1
𝑛𝑛
∑ 𝑓𝑓(𝑥𝑥𝑖𝑖𝑡𝑡)𝑛𝑛
𝑖𝑖=1 ��                    (1)                              

In addition, Elhamifar and Vidal [11] have 
demonstrated that the same class samples may project to 
the same subspace even though they are from different 
domains. Based on this, class subspace constraint is 
applied to minimize the domain shift, namely CMMD, as 
shown in Fig. 2 (b).  
𝐷𝐷𝑘𝑘(𝐶𝐶𝑖𝑖 , 𝑥𝑥𝑠𝑠, 𝑥𝑥𝑡𝑡)
∶= sup

𝑓𝑓∈ℋ
�1
𝐶𝐶
∑ �1

𝑚𝑚
∑ 𝑓𝑓(𝑥𝑥𝑖𝑖𝑠𝑠) −𝑚𝑚
𝑖𝑖=1

1
𝑛𝑛
∑ 𝑓𝑓(𝑥𝑥𝑖𝑖𝑡𝑡)𝑛𝑛
𝑖𝑖=1 �𝐶𝐶

𝑐𝑐=1 �        (2)                       

Since the samples are unlabeled data in the target 
domain, Eq. 2 cannot be used directly. Another 

hypothesis that the source and the target share the same 
labels, is added [12].  

3 Proposed Framework 

3.1. Overview of proposed framework 

The proposed framework is composed of three parts, i.e., 
one is for feature extraction, another is for domain 
adaptation, and the last is for classification. Fig. 3 shows 
the overview of proposed framework. 

The resampling data from the source and the target 
respectively are put into one dimension convolutional 
neural network (1DCNN) for feature extraction. Next, 
shallow feature maps are processed to deep feature maps 
through Inception module. In this process, non-
parametric CMMD loss is calculated and used to consist 
of the training loss. Finally, deep feature maps from the 
source are sent into classifier for prediction, along with 
their labels. 

 

Fig. 3 Illustration of the proposed framework. The convolutional module consisted of 1d convolution, batch normalization, and 
LeakyReLU layers, the convolutional parameters are denoted as follows: channel number, kernel size/stride-padding. 

3.2. Multi-scale adaptation module. 

Inspired by multi-view learning, multi-scale 
representation distribution aligning is also better than the 
single’s. To learn multiple different domain-invariant 
features and minimize the discrepancy between class 
subspaces, wider and deeper representation distributions 
are considered to be aligned by Inception module. In 
addition, 1×1 convolutions are mainly used as dimension 
reduction modules. In a word, Inception module is 
adopted to extract multi-scale features and improve the 
distribution aligning performance. 

3.3. Training strategy 

To improve unsupervised domain adaptation 
performance, we jointly optimize the source 
classification error and CMMD distance. The loss of the 
proposed model can be formulated as: 

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  
1
𝑚𝑚
�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦(𝑓𝑓(𝑥𝑥𝑖𝑖𝑠𝑠),𝑦𝑦𝑖𝑖𝑠𝑠)
𝑚𝑚

𝑖𝑖=1
+  𝜆𝜆 𝐷𝐷𝑘𝑘(𝐶𝐶𝑖𝑖 , 𝑥𝑥𝑠𝑠, 𝑥𝑥𝑡𝑡)                             (3) 

 Where the former denotes the cross-entropy between the 
prediction and labels, the latter is CMMD loss with 
trade-off parameter (λ > 0). Moreover, λ is not fixed 
and changing with training epoch, as defined in Eq. 4. 

λ = 2 �1 + 𝑒𝑒−10× 𝑒𝑒𝑒𝑒𝑡𝑡𝑐𝑐ℎ
𝑒𝑒𝑒𝑒𝑡𝑡𝑐𝑐ℎ𝑠𝑠�� − 1                        (4) 

When epoch is increasing, λ is becoming larger so that 
CMMD loss will take more optimization. Adam 
optimizer with an initial learning rate 2𝑒𝑒−4 is employed 
[13]. Moreover, multi-step learning rate scheduler is 
applied with 0.5 decay factor. 

4 Experiments 

4.1. Experimental setup 
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NVIDIA GeForce RTX 2080Ti is used for all 
experiments. The proposed framework is completed by 
Python and Pytorch. 

4.1.1 Experimental data set. 

 

Table 1. Ten kinds of fault data from CWRU data set. 

Class 
Label 0 1 2 3 4 5 6 7 8 9 

Fault 
Location 

N
A 

I
F 

B
F 

O
F IF B

F 
O
F IF B

F 
O
F 

Diameter
s (mil) 0 7 7 7 1

4 14 14 2
1 21 21 

 
The Case Western Reserve University (CWRU) data set 
is a standard and recognized benchmark for bearing fault 
diagnosis [14]. The test rig is mainly made up of a 2hp 
motor, a power meter, a torque sensor, and an electronic 
control device. The raw vibration data was collected by 
the accelerometers at the frequency of 12 kHz and 48 
kHz, with the loads of 0 to 3 horsepower. Following 
most of existing works, there are ten kinds of drive end 
fault data whose sampling frequency of 12 kHz, as 
described in Table 1. In the experiments, 1000 samples 
of each fault are resampled randomly from time-series 
data. Therefore, the data set is consisted of 10000 
samples. 

4.1.2 Domain adaptation tasks 

Working load changing is the most common 
phenomenon in industrial production. To validate the 
effectiveness of the proposed framework, we designed a 
series of experiments on CWRU data set. Based on 
sampling data from different loads, the domain 
adaptation tasks are defined in Table 2. 

Table 2 Domain adaptation tasks from CWRU data set. 

Loads 0 1 2 3 

Tasks 

0→1 1→0 2→0 3→0 

0→2 1→2 2→1 3→1 

0→3 1→3 2→3 3→2 

4.2. Experimental results 

To evaluate the proposed framework, extensive 
experiments are completed for comparison. Average and 
maximum accuracy are reported to reflect the model 
performance and stability in five experiments. From 
Table 3, it is clear that the proposed method achieved the 
best performance. In the following, some explanations 
will be presented. 

Table 3. Domain adaptation tasks from CWRU data set. 

Model Baseline(WDCNN) DAN DANN Proposed 

Task Mean Max Mean Max Mean Max Mean Max 

0→1 89.91 90.4 99.38 99.50 98.76 99.30 99.54 99.80 

0→2 88.50 89.3 99.98 100.00 99.96 100.00 99.75 99.92 

0→3 93.01 93.4 100.00 100.00 99.81 100.00 99.56 99.62 

1→0 95.40 95.71 99.31 99.40 98.73 99.05 99.70 99.83 

1→2 99.20 99.35 99.98 100.00 99.96 100.00 99.90 99.93 

1→3 91.00 91.22 99.97 100.00 99.65 99.80 99.88 99.98 

2→0 95.82 95.91 98.61 98.65 97.70 98.25 99.61 99.80 

2→1 95.10 95.22 98.52 98.60 98.40 98.45 99.62 99.86 

2→3 91.50 91.62 100.00 100.00 99.82 99.95 99.84 99.95 

3→0 78.82 79.16 98.72 98.90 97.62 97.85 99.50 99.65 

3→1 78.10 78.33 98.53 98.60 98.41 98.50 98.60 98.85 

3→2 85.10 85.21 100.00 100.00 99.98 100.00 99.90 99.95 

Average 90.12 90.40 99.42 99.47 99.07 99.26 99.61 99.76 

Params 54790 1379998 2694816 119258 

4.2.1 Baseline (WDCNN). 

WDCNN proposed by Zhang et al. [3], is used as the 
baseline for comparison in many papers. To validate the 
effectiveness of transfer learning, the backbone of the 

proposed network also adopted the baseline module. 
WDCNN’s experimental results are from the original 
paper. Comparing the baseline and the domain 
adaptation model, it shows that domain adaptation can 
not only improve the accuracy but also improve the 
generalization ability of the model. 
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4.2.2 Model performance. 

Without domain adaptation, the baseline can also 
achieve decent performance. However, it is still far from 
expected. In many cases, fault diagnosis methods need 
better performance to avoid financial losses and other 
safety concerns.  Therefore, DL-based domain 
adaptation is important in modern industrial production.  
To deal with unlabeled target data, UDTL methods are 

adopted to improve the performance. In this paper, 
several excellent methods are only presented for 
comparison, such as DAN [5], DANN [6]. Note that the 
comparison results are all from Wang et al.’s paper [6]. 
The parameters of the two experiments are very large. 
Although their performance are very good, they are not 
fit for the deployment of industrial production scenarios 
due to limited computational resources. Fortunately, the 
proposed model cannot only reach a high performance 
but also has fewer parameters, as shown in Table 3. The 
proposed CMMD distance is an advanced version of the 
previous MMD distance. This is the guarantee of the 
model’s performance. 

5 Conclusions  

In this paper, a UDTL-based model of bearing fault 
diagnosis is proposed. Compared with previous work, 
we introduce Inception module and CMMD-based 
distance between the source and the target to realize 
domain adaptation in the field of bearing fault diagnosis. 
It also achieves better performance and has few 
parameters. It not only effectively alleviates the domain 
adaptation problem with unlabeled data but also benefit 
for industrial implementation of the model. In the future, 
we will extend it to more complicated data sets and 
industrial applications. 
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