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Abstract

Powder interlayer bonding (PIB) is a novel joining technique.  The technique has been developed to

facilitate high integrity repairs of aerospace components, manufactured from titanium alloys

commonly employed in the aerospace industry.  The PIB technique utilises an interlayer between the

two faying surfaces.  In this study heating was supplied via induction, enabling a bond to be created in

an inert atmosphere, shielding the fusion zone from oxidation during bonding.  The PIB technique

proved capable of producing high integrity bonds in additive manufactured Ti-6Al-4V, where

approximately 85% of the strength of the alloy is retained after bonding.  Advantages of this technique

over more established joining methods such as tungsten inert gas (TIG) welding and plasma arc (PA)

welding include a narrow fusion zone and localised heating.  It is believed that PIB can compete
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against these more mature techniques, providing a technique suitable for joining a range of alloys

found in the aerospace industry.
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1. Introduction

 

 

The drive for increased performance from gas turbines often requires more complex geometrical

components to be incorporated in their design, which can result in challenging repair conditions.  It is

believed that the powder interlayer bonding (PIB) method will provide opportunities to salvage

otherwise redundant components, potentially providing a reduction in running costs for engine

suppliers where replacement components can account for approximately 70% of their maintenance

costs[1].  The PIB process uses a powder interlayer between the surfaces being joined, which removes

the requirement for very smooth surfaces.  The bond region is heated via a Joule heating processes

such as induction, which results in narrow fusion zones.  Titanium’s affinity for oxygen, hydrogen,

nitrogen and carbon at joining temperatures requires the PIB process to be performed in an inert

atmosphere which shields the weld region from oxidation. 

PIB has previously demonstrated the potential[2] to be considered as a process for the repair of

aerospace components.  Through further development it is anticipated that the process will

complement the more mature joining techniques that are commonly used to join titanium alloys such

as plasma arc (PA) welding, tungsten inert gas (TIG) welding, laser beam (LB) welding[3].  Although

these mature techniques are widely used there are some drawbacks associated with employing them. 

Both TIG[4] and PA[5] welding techniques produce large heat affected zones (HAZ), with distortion

often affecting TIG welds[4].  Although LB welding produces small HAZ’s it comes at far higher
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nitrogen and carbon at joining temperatures requires the PIB process to be performed in an inert

atmosphere which shields the weld region from oxidation. 

PIB has previously demonstrated the potential[2] to be considered as a process for the repair of

aerospace components.  Through further development it is anticipated that the process will

complement the more mature joining techniques that are commonly used to join titanium alloys such

as plasma arc (PA) welding, tungsten inert gas (TIG) welding, laser beam (LB) welding[3].  Although

these mature techniques are widely used there are some drawbacks associated with employing them. 

Both TIG[4] and PA[5] welding techniques produce large heat affected zones (HAZ), with distortion

often affecting TIG welds[4].  Although LB welding produces small HAZ’s it comes at far higher

costs and can be more difficult to accurately control[6].  These processes necessitate very high

temperatures at the weld region, resulting in HAZ’s of varying sizes.  These high temperatures

produce transformed microstructures[7] when the beta transus (βT) of the alloy is exceeded, and these

structures have larger grains than the base alloy[8] which can negatively affect mechanical properties

when compared to the original material[9].

Titanium alloys are widely utilised in the gas turbine, often contributing more than 25% of an engines

total weight[10].  The α + β Ti-6Al-4V (Ti-6-4) alloy is extensively used in the gas turbine, often

being found in the cooler regions where it is used for both structural and rotating components[11],

such as casings, fan blades and discs[12].  The alloy is weldable and can be formed into complex

shapes. Ti-6-4 has excellent mechanical properties with a reported BT of 996oC ± 14oC, fatigue

strength of 500 MPa at 107 cycles at room temperature[13] and has been reported to have a UTS of

~1050 MPa as a rolled product[14].

More recently additive manufacturing (AM)  has been used to produce net shaped complex

geometrical titanium components[15]. The process is a layer on layer manufacturing technique, where

a layer of the alloy is deposited upon a previous layer[16].  The process has numerous potential

applications such as prototypes and component repair[17].  It is seen as an attractive process for

titanium alloys offering the potential to reduce manufacturing costs through reduced machining and

shorter component lead times. 

2. Experimental

 

The AM Ti-6-4 material used in this study was manufactured and supplied by 3TRP.  Cylinders were

built in an EOS direct metal laser sintering (DMLS) machine.  The flat geometry specimens were

initially built into 10mm diameter cylinders.  Cylinders then had a thread added as shown in Figure 1a,

to aid gripping before bonding.  In order to assess the suitability of PIB as a manufacturing technique,

more complex geometries were also produced. Curved geometries were built into 10mm diameter
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cylinders with either a concave or convex radius at the bonding surface before also having threads

added as shown in Figure 1b+c.

 

Figure 1 Illustration of bonding specimens, a) flat geometry, b) concave geometry, c) convex geometry

Gas atomised Ti-6-4 powder 15-45µm in diameter, utilised for the interlayers was supplied by LPW

Technology Ltd is shown in Figure 2.

 

Figure 2 Ti-6Al-4V powder particles used to create powder interlayers

Powder interlayers were created by combining Ti-6-4 powder with cellulose powder, glycerol and

deionised water to create a paste. Powder used to create interlayers for the curved geometry bonds was

sieved through a 32µm mesh before mixing into a paste.  Both parts to be bonded were ultrasonically

cleaned in industrial acetone for 30 minutes before the powder paste was applied.  The paste was

applied to one of the flat surfaces or in the case of curved geometries to the surface of the concave

specimen, so that the paste protruded above the specimen edge by less than 400µm, Two N type

thermocouples were then attached to the other specimen within 1mm of the faying surface and

connected to a calibrated Fluke 54 II thermometer. 

Both specimens being bonded were attached via collets to the rods of a servo-hydraulic rig.  Faying

surfaces were then brought in to contact and held at a small compressive stress of 2.5MPa.  Bonding

was performed in an argon environment, shielding the fusion zone of both parts. An induction coil was

used to supply a heating rate of approximately 6oC sec to bring the bond region temperature up to

900oC, before a secondary heating rate of 0.5oC sec was employed to achieve the final temperature in

the α + β region. The bonding temperature was held (+/- 5oC) for 60 minutes.  On completion of the

bonding cycle the joined specimens were air cooled to room temperature. 

Completed bonds were sectioned and mounted in conductive Bakelite, then prepared via a standard

grinding and polishing procedure, before being etched with Krolls Reagent to allow for metallographic

analysis.
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The microstructural characterisation was performed using an Hitachi SU3500 scanning electron

microscope (SEM). The mean linear intercept (M.L.I.) method was used to calculate the average grain

size.

Tensile specimens illustrated in Figure 3a, were machined from the bonded test pieces for subsequent

mechanical testing.  Room temperature tensile tests were performed in accordance with BS EN 2002-

1:2005.  This standard, common in the engineering industry allows the use of dual strain rates; where a

relatively low strain rate is utilised during the elastic regime and through yield, followed by a higher

rate to encourage failure. The changeover between strain rates prompts a step increase in the induced

stress response.  Nominal values of the strain reported were measured via actuator displacement. Low

cycle fatigue (LCF) test specimens illustrated in Figure 3b were also machined from bonded test

pieces.  LCF tests were performed at room temperature, with a trapezoidal waveform at 0.25Hz and at

an R-Ratio of 0.01.

 

 

Figure 3 Illustration of test specimens, a) tensile, b) fatigue

3. Results

The microstructure of the AM material in the as received (AR) condition is illustrated in Figure 4a,

displaying a columnar grain structure, with a β grain size of approximately 150 µm in width along the

height of the cylinders.  This structure is characteristic of the DMLS manufacturing process where

partial remelting of the previous layers occurs [18]. The structure contains both aligned α and

Widmanstatten α type colonies, with grains typically containing a few α colonies.

The PIB process had a significant effect on the microstructure through the bond region of the flat

geometry specimens as illustrated in Figure 4b, producing a duplex microstructure consisting of

equiaxed αp grains contained in a transformed β matrix.  The bond line was found to be ~ 100µm thick

through the centre region of the bond, containing ~35% αp volume fraction with an average αp grain
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size of ~ 8µm.  A limited amount of non-fusion porosity is witnessed throughout the bond line, with

maximum pore size found to be below 5µm in diameter. The PIB process had a similar effect on the

microstructure of both the curved geometries.  Bond line thickness was found to be between 20-35µm

through the centre region of the bond (Figure 5a+b). The αp volume fraction and average αp grain size

stayed consistent at ~35% and ~8µm respectively.  Again, some non-fusion porosity was seen through

the bond region, with maximum pore sizes found to be below 15µm in diameter. 

           

Figure 4 Microstructures of a) as received additive manufactured Ti-6-4, b) bond line of PIB flat geometry

 

Figure 5 Microstructures of a) bond line of PIB 0.1mm curved geometry b) bond line of PIB 0.5mm curved
geometry

The room temperature tensile results for the AR AM material and PIB bonds are shown in Figure 6.  A

very strong response is seen for the AR AM material with comparable strength values and higher

ductility than previously reported results[18] for Ti-6-4 material built via the selective laser melting

process. A reduction in UTS and ductility of ~14% and ~1.5% respectively is seen for the flat

geometry PIB specimens (15-45µm powder) when compared to the AR material.  The curved

geometry specimens provide almost the same level of strength as the flat geometry with a reduction of

~15% compared to the AR material, ductility remained consistent with the flat geometry with ~1.5%

reduction compared to AR material.

 

Figure 6 Tensile curves for as received additive manufactured Ti-6-4 and PIB specimens

Figure 7 illustrates the low cycle fatigue (LCF) results for the AR AM and curved geometry

materials.  From the data displayed it is clear that the PIB curved geometry specimens provide an

increase in LCF performance over the AR AM material.  Although no run out data was recorded, both

curved geometries outperform the AR material throughout the fatigue curve.  At 750MPa the 0.1mm
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Figure 7 illustrates the low cycle fatigue (LCF) results for the AR AM and curved geometry

materials.  From the data displayed it is clear that the PIB curved geometry specimens provide an
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Figure 7 LCF results for as received additive manufactured Ti-6-4 and PIB specimens

4. Discussion

The change in microstructure seen in the PIB specimens occurred due to the combination of

temperature and force applied during the bonding cycle.  The bond region was heated well into the α +

β phase field during the process, combined with the applied force, enough energy is retained to enable

recrystallisation to proceed during the latter stages of the bonding cycle.  Previous work[2] has shown

that the PIB process is akin to the sintering process; where it can be thought of as three distinct

phases.  Initially a small amount of deformation occurs as bonding takes place between powder

particles, forming necks at the contact points. The necks grow as diffusion progresses and pores

between the powders start to shrink[19].  The bulk of the deformation happens as the process

continues through the intermediate phase where pores become isolated.  This period is followed by the

final phase where densification, and pore elimination occurs alongside the recrystallisation. 

The PIB process altered the microstructure over a distance of a few millimetres from the bond line as

illustrated in Figure 8. The images show that traces of a duplex structure extend ~5mm away from the

bond region.  Beyond this distance the structure can be said to be fully lamellar, however as Figure 9

illustrates, even at 10mm from the bond there is coarsening of the α laths compared to the AR

material. 

 

Figure 8 Illustration of the effect of the PIB process on the microstructure ~5mm away from the bond
region
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Figure 9 Illustration of the effect of the PIB process on the microstructure ~10mm away from the bond
region

The scale of the decrease in strength seen for the PIB specimens when compared to the AR AM

material is somewhat surprising. Earlier work[2] has shown that the PIB process retains over 90% of

the strength of forged Ti-6-4 material.  In fact, the results illustrate that both strength and ductility are

almost identical to those recorded for the PIB forged material.  The larger reduction in strength seen in

the PIB AM specimens appears to be a consequence of the very high strength levels attained by the

AR material, where both the UTS and proof strength seem exceptionally high.  It is also possible that

an increase in the effective slip length resulting from the coarsening of the lamellar structure

contributed to a larger than expected reduction in strength.  

The superior LCF performance of the PIB curved geometry specimens compared to the AR material

can largely be attributed to the duplex structure through the bond region and HAZ caused by the PIB

process.  It is recognised that duplex structures have superior LCF performance compared to lamellar

structures due to their improved resistance to crack nucleation and microcrack propagation[19].

 

5. Conclusions

 

The PIB process demonstrated it is capable of producing high integrity bonds in additive

manufacturing Ti-6-4 material

High levels of strength and ductility are retained in the material post bonding

The LCF performance of PIB material exceeds that of the base additive manufacturing Ti-6-4

material

6. References

[1]        S. Ackert, “Engine Maintenance Concepts for Financiers,” Aircr. Monit., no. 2, p. 30, 2011.
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