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Abstract:

Microstructural conversion mechanisms under hot forging process (at temperatures ranging from 750
°C to 1050 °C and strain rates ranging from 103s 1 to 1 s’l) of a Ti-5Al-2Sn-2Zr-4Mo-4Cr (Ti-17)
alloy with a lamellar starting microstructure were experimentally identified in this work. After that,
constitutive formulae for predicting the microstructural evolution were established followed by
calculation using finite-element (FEM) analysis. In the o phase, a lamellae kinking is the dominant
mode in the higher strain rate region and dynamic globularization frequently occurs at higher
temperatures. On the other hand, continuous dynamic recrystallization is the dominant mode below the
transition temperature, TP (880~890 °C) in the B phase. And, at conditions of lower strain rates and
higher temperatures, dynamic recovery tends to be more active. For microstructural prediction, a set of
constitutive equations modeling the microstructural evolution and forging properties are established by
optimizing the experimental data followed by implementation in the DEFORM-3D software package.
Herein, microstructural evolution on dynamic globularization process, dynamic recrystallization
behavior are predicted according to both approaches of physical model and artificial neural network
model followed by FEM simulation. In these calculated results, there is a satisfactory agreement
between the experimental and simulated results, indicating that the established series of constitutive
models can be used to reliably predict the properties of a Ti-17 alloy after forging.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Ti-5A1-2Sn-2Zr-4Mo-4Cr (Ti-17) alloy, a near-B-type (a+P) alloy with high strength, superior
fracture toughness, and excellent creep property, was first developed by GE Aviation,[1] which is
being widely used to manufacture fan blades and compressor disks in aircraft engines. For hot
deformation of metallic alloys, dynamic recovery (DRV) and dynamic recrystallization (DRX) occur
and result in microstructural conversion. [2] Herein, the DRX processes include (1) discontinuous
dynamic recrystallization (DDRX), in which new grains are formed by heterogeneous nucleation and
growth processes, and (2) continuous dynamic recrystallization (CDRX), in which subgrains with low-
angle boundaries are formed that subsequently evolve into grains with a high fraction of high-angle
boundaries, with increasing plastic strain. It is well recognized that the DRV or CDRX is reported to
be dominant for the hot deformation of near a and (a+p) Ti alloys. [3] Furthermore, under hot working
of Ti alloys, dynamic microstructural changes such as grain size evolution, change in a phase fraction
and dynamic globularization (DG) of a phase also occur. These microstructural evolutions strongly
affect the mechanical properties of Ti-products. The dynamic microstructural changes, which occur
during deformation, are dependent on strain rate, temperature, applied strain and material initial
microstructure. [4] In order to explore and understand the deformation behavior, involved
microstructural evolution and optimization of deformation process, a series of models for accurate
microstructural prediction should be established. The present work focuses on the microstructural
predictions (DG behavior of a phase and DRX behavior of B phase) and prediction of a Vickers
hardness for the forging of a Ti-17 alloy with a lamellar (o+f) starting microstructure. Initially, the
microstructural conversion mechanism for the hot forging of the Ti-17 alloy with a lamellar (a+p)
starting microstructure were examined through detailed microstructural observations and analysis of
deformation kinetics according to Ref. [S5]. Later, constitutive formulae on the physical model were
established on the basis of the experimental results and the classical Johnson-Mehl-Avrami-
Kolmogorov (JMAK) formulation which enables us to predict the DRX behavior of Ti alloys. [6-8]
Additionally, this work also applied an artificial neural network (ANN) model to predict the
microstructure and Vickers hardness. The ANN model cannot identify the deformation and
microstructural evolution mechanisms, whereas it has a relatively high precision for prediction owing
to the advanced statistical approach. These constitutive formulae of physical model and ANN model
were implemented in the finite-element method (FEM) software (DEFORM-3D, v.10.2) followed by
simulation of microstructures and Vickers hardness.

2. Experimental procedure

A Ti-17 alloy with a chemical composition (wt.%) of Ti-4.89A1-2.00Sn-1.92Zr-3.82Cr-3.93Mo-
(0.09F¢-0.014Si-0.1020-0.01C) was used in this work. Initial microstructure before hot forging is a
lamellar (a+p) microstructure as shown in Fig. 1(a). From Fig. 1(a), the black and white phases
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correspond to o phase and B phase, respectively. Isothermal forging tests were performed at the
process temperatures of 750 °C, 800 °C, 850 °C, 900 °C, 950 °C, and 1050 °C, and the strain rates
ranging from 103 st to 1 s7L. The specimens (5 mm diameter and 7.5 mm height) used for the
forging test were fabricated by electron discharge machining. The forging test was conducted at a
constant strain rate and a height true strain of approximately 0.75. The obtained stress-strain curves
were corrected by the friction correction and adiabatic correction methods according to Refs. [9-11] in
order to obtain accurate stress-strain curves. Microstructure was analyzed with a field emission
scanning electron microscope (FE-SEM) fitted with an electron back-scattering diffraction (EBSD).
The forging characteristics of the Ti-17 alloy with sizes of 120 mm — h 240mm were analyzed by
FEM with a DEFORM-3D software (v. 10.2) using a user-defined subroutine (for the physical and
ANN models).

3. Results and discussion
3-1. Microstructures before and after forging

Figure 1 shows (a) the initial microstructure of a Ti-17 alloy before forging and the some typical
deformed microstructures forged at (b) 750°C-102 s°!, (c) 850°C-10"! 57!, (d) 850°C-1073 571, (e)
1050°C-10"" s7! and (f) 1050°C-1073 s™!. The microstructures are shown by SEM-BSE images, black
and grey regions correspond to the o and B phases, respectively. A fine (a+f) lamellar microstructure
is seen in the starting microstructure [Fig. 1(a)]. Additionally, it is seen from the result of optical
microscopy that the lamellar microstructure is formed in the coarse prior B grained microstructure
(with an average grain size of approximately 1 mm). For forged specimens, we can observe from Fig.
1(b) for testing at 750 °C that a lamellae kinking behavior in which the o phase exhibits a bending is
enhanced. The observed lamellae kinking results in a flow instability during deformation. For the
forging at 850°C-10"! s! and 103 5! as shown in Figs. 1(c)(d), the decrease in a fraction as compared
to the initial microstructure and the enhanced dynamic globularization are observed. Herein,
globularization is seen to be enhanced at the lower strain rate of 107 s’ than at 107" s7l. The
nucleation sites for globularization are at the kinks in the lamellae as well as at some of B grain
boundaries. [12] This type of microstructural conversion is recognized as the geometric dynamic
recrystallization behavior. With respect to microstructural conversion of the f phase, DRV or CDRX is
a dominant mode. When the testing temperature is above 7 (880~890 °C), a heterogeneous B grained
microstructure composed of deformed coarse prior B-grains and fine equiaxed B-grains formed at the
boundaries of the coarse B-grains is observed for the forged specimen tested at 1050°C-10"! s°! [Fig.
1(e)]. On the other hand, a finer equiaxed B-grained microstructure with sizes less than the initial grain
size of prior B grains (approximately 1 mm) is revealed from Fig. 1(f), indicating that CDRX is the
dominant microstructural conversion mode in the B phase at lower strain rate region.
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Fig. 1 SEM-BSE images showing (a) the initial microstructure with an (o+f) lamellar microstructure and
the forged microstructures tested at (b) 750°C-1073 571, (c) 850°C-10" 57!, (d) 850°C-103 51, (e) 1050°C-10
15l and (f) 1050°C-103 571,

3-2. Flow behavior under forging

Figure 2 shows the true stress- true strain curves of (a) the (a+p) region (750°C ~ 850°C) and (b) the
B region (900°C~1050°C). Herein, the corrected curves are expressed by dotted lines. The corrections
of friction and increasing temperatures were carried out according to the reports [9-11]. From Fig. 2,
extensive flow softening is clearly observed at higher strain rates in the (a+f) region, while almost
steady state flow behaviors are seen for the forged specimens at lower strain rates in the (o+f}) region
and for the forged specimens in the B region. Additionally, a quite dissimilar stress value before and
after correction is revealed especially at higher strain rates in the (a+ B) region [Fig. 2(a)], which is
mainly due to the effect of adiabatic heating during the deformation at high strain rates. A lamellae
kinking observed for forged specimen at high strain rates in the (a+f) region is also deduced to affect
the extensive flow softening (resulting in flow instability). According to the results of microstructure,
a steady state stress behavior observed in forging conditions at higher temperatures and lower strain
rates is attributable to dominant microstructural conversion mode by either DRV or CDRX of f§ phase.
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Fig. 2 True stress — true strain curves (experimentally obtained curves and corrected curves) of the Ti-17
alloy tested in (a) (a+p) region and (b) p region.

3-3. Microstructural conversion mode

Figure 3 shows the relationship between the DRX B-grain size and Zener-Hollomon (Z) parameter (in
log scale) in the (a+f) and B regions. Here, Z parameter is expressed as shown in equation (1)

Z = cexp(Q/RT) (1)

where R is the universal gas constant [8.314 J/(mol * K)], T is the absolute temperature, and Q is the
apparent activation energy for deformation. Here, the Q are 365.4 kJ/mol [in (a+f) region] and 172.8
kJ/mol (in B region), respectively. From Fig. 3, linear relationships are observed clearly, indicating that
the grain size itself is dependent on the thermally activated controlling the fine grain formation.

Figure 4 shows the summary of microstructural conversion mode of (a) the a phase and (b) the B
phase after forging at a height true strain of approximately 0.75. For the a phase, a lamellae kinking is
dominant mode in the higher strain rate region and dynamic globularization is more enhanced with
increasing temperature. On the other hand, from Fig. 4(b) showing the result of B phase, CDRX is
dominant mode below the 7, and DRV is further enhanced with increasing temperature (above 7)

and strain rate. That is, for the forging above 7, CDRX frequently occurs especially at lower strain
rate region.
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Fig. 3 Relationship between the DRX grain size of § phase and Z parameter in log — log scale.
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Fig. 4 Microstructural evolution modes experimentally determined of (a) a phase and (b) p phase as

functions of temperature and strain rate.
3-4. Prediction of microstructure and hardness according to physical modeling and neural network

In this study, the characteristics of dynamic globularization behavior of a phase and DRX of 8 phase
are described by physical model of Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. [13]

For dynamic globularization fraction (fp¢) of the o phase, it is defined as follows
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Jpg=1 —exp[— kpg * ('5' —£pg CTEDG] 2

where fp¢ is the dynamic globularization fraction, kpg and npg are material constants, ¢ is the true
strain, and ¢ is the critical strain for the onset of dynamic globularization. The ¢ is calculated as

&pi_c = 0.0149exp(49.27 - 55 _p) 3)

in which epg p corresponds to the true strain at peak stress in flow curve (which is experimentally
identified) and expressed as follows

&pg_p =0.0035.Z°0% 4)

where Z is the Zener-Hollomon parameter as expressed in Eq.(1).

The parameter kpg (in Eq.(2)), which denotes the reaction rate, is calculated using the following

equation, in which the effect of strain rate has been considered.

(o (3)
kpe =kpen™ exp| — —1
pe = Kpent p\. RT)

On the other hand, the DRX behavior of 4 phase according to JMAK equation is as follows:

T%‘ (e2éprx o) (6)
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where fpgy is the DRX fraction, by and nppgy are material constants, ¢ is the true strain, and epRrx ¢
is the critical strain for DRX initiation. The epgry (.5 is calculated as:
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where £ is the strain rate, and a;, nj, m;, npgy, O 03, and fpRx () are material constants. The term
dp (mm) is the initial grain size before deformation. The critical strain (¢pRx () is determined by the

peak strain (epRx " p) (which is experimentally identified) as follows:
&pry ~0.8%&ppr, (9)

The material constants in the above equations were determined on the basis of the minimization of
the sum of errors between the experimental and the calculated data. Herein, the material constants
were optimized and determined by non-linear regression analysis.

The microstructural evolution model as stated above has been implemented into the FEM software of
DEFORM-3D (v.10.2) through a user-subroutine followed by simulation of isothermal forging. Here,
the incremental form of the equation was developed expressed in Eq. (10) to Eq. (13). Thanks to this
incremental form, it enables to accumulate small changes of temperatures and strain rate at each step
in FEM analysis during forging process.

Ser =" +d{iae Yt (10)

d(fDG)”:%J:de+ of daDH_C+%deG (11)

-

C€pry ¢ DG

fDRXn_l = forr +4(fpax)" (12)
B C@H de + — orx Foe ﬁ”&dgw_c + Cf; DRY g (13)
' '

C€pry 03 Cépry ¢

On the other hand, the artificial neural network (ANN) is an information treatment system with the
characteristics of adaptive learning, which is suitable for treating non-linear phenomena and complex
relationships. [14] The ANN is essentially an operation linking input to output data, by using a
particular set of non-linear basis functions. The advantage of ANN is their ability to learn or adapt to
changing conditions. The architecture of the ANN refers to the number of the layers in the ANN and
the number of the neurons in each layer. This work set the one or two layers and three neurons in each
layer for ANN calculation. Figure 5 (a) represents the schematic structure of ANN in this work. Here,
DG fraction of o phase, DRX fraction of B phase and Vickers hardness for the forged specimen are
calculated through the ANN model with the input data of temperature, effective strain rate, effective
strain and cooling rate after forging.

Figure 5(b)(c)(d) summarizes the comparison between the experimental data and the calculated data
(according to physical model and ANN model) of (b) DG fraction of a phase in the forged specimens
in (a+p) region and (c) DRX fraction of B phase in the forged specimen in B region and (d) Vickers
hardness of the forged specimen. For both predicted results of physical model and ANN model, we
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can observe good correlation between the experimental and predicted results. Relatively, it can be
noted that the predicted result according to the ANN model exhibits more close value with the
experimental result. This result indicates that both models of the physical and the ANN approaches are
able to predict the microstructures and hardness successfully.
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Fig. 5 (a) Architecture of the ANN model and comparison of calculated data (for the physical and ANN
models) and experimental data of (b) dynamic globularization fraction of o phase [obtained in (a+f)

region|, (c) dynamic recrystallization fraction of f phase (obtained in B region) and (d) Vickers hardness.

The physical models established in this work and the ANN model were implemented in the
DEFORM-3D (ver.10.2) FEM software through a user-defined subroutine followed by the simulation
of isothermal forging. Figure 6 shows the distributions of (a)(b) DG fraction of a phase, (c)(d) DRX
fraction of § phase and (e) Vickers hardness according to calculation by (a)(c) physical model and (b)
(d)(e) ANN model for the forged specimen across the cross-section. Here, forging conditions are (a)(b)
800°C-0.03 s!, (c)(d)(e) 910°C-0.03 s7! and a height reduction of 75%. We can observe from the
heterogeneous distributions in Figs. 6(a)-(d) that DG and DRX are locally enhanced especially in the
vicinity of central region. Such heterogeneous distributions of the forging property are also observed
with respect to the effective strain, the effective strain rate and temperature, resulting in the
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heterogeneity of microstructures and Vickers hardness as shown in Fig. 6. From the distribution of
Vickers hardness [Fig. 6(e)], a higher hardness is observed in the dead-zone region (corresponding to
upper region in forged specimen) than in the central region where DRX of B phase is enhanced. This
result is attributable to the difference in o precipitation behavior under cooling, which is dependent on
location of the forged specimen. Thus, mechanical property (Vickers hardness focused in this work)
exhibits complicated heterogeneous distribution which is owing to the difference in microstructural
conversion behaviors (DRX of B phase and a precipitation) depending on location of forged specimen.
Compared to the distributions of physical model results and ANN results from Figs. 6(a)-(d), we can
observe the wider region that the fractions of DG and DRX exhibit high for the distributions of
physical model. As abovementioned for Fig. 5, the ANN model result exhibits more close value with
the experimental result, pointing out that modification of constitutive physical model is further
required for an accurate prediction. During the hot deformation of near o and (a+p) Ti alloys, DRV or
CDRX is reported to be dominant.[3] The constitutive physical model in this work followed IMAK
law that was suitable for discontinuous typed behavior. Therefore, for additional, highly accurate
prediction of the microstructure, a further direction of this study will be to focus on the modification
of constitutive physical models considering the continuous typed microstructural evolution mode and
the appropriate combination of the physical and ANN models.

DG Physical model (b) DG ANN model (C)

DRX Physical model

Fig. 6 Distributions from the FEM analysis for (a)(b) dynamic globularization fraction of a phase, (c)(d)
dynamic recrystallization fraction of p phase and (e) Vickers hardness according to (a)(c) the physical

10
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model and (b)(d)(e) the ANN model. Forging conditions are at (a)(b) 800°C-0.03 sl and (c)(d)(e)
910°C-0.03 5”1, respectively.

4. Conclusions

The microstructural evolution under hot forging of the Ti-17 alloy reveals that lamellae kinking is the
dominant mode for the a phase at higher strain rates; dynamic globularization of the o phase
frequently occurs at high temperatures. Regarding the B phase, CDRX is the dominant mode at
temperatures below 7. Herein, DRV also occurs at lower strain rates. At testing temperatures above
T, deformation associated with the occurrence of DRV is exhibited, while CDRX also frequently
occurred with decreasing the strain rate.

The behaviors of dynamic globularization of o phase and dynamic recrystallization of B phase were
modeled into constitutive formulae expressed in terms of the JMAK equation followed by
implementation in FEM analysis. Additionally, the microstructural prediction according to an ANN
model was also carried out. It is found that both approaches of the physical and ANN models provide
an approximate agreement with the experimental results. Thus, this work indicates the possibility of a
reliable prediction of microstructures and mechanical property of the forged Ti-17 alloy.
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