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Abstract 
Coarse prior β grains exceeding 3 mm in diameter have been sporadically observed following β annealing of α+β forged titanium alloys. Recent work has

shown that the occurrence of coarse grains may be due in part to the stabilization of a {001}<110> texture during hot working that was further enhanced

in intensity at the expense of other texture components during the early stages of β annealing. With the majority of the material comprised of low

misorientation subgrains of a single texture component, the nuclei for coarse grains was the minority fraction of grains that were highly misoriented, and

therefore had boundaries with higher energy and mobility, compared to the average grain. In this work, Ti-6Al-4V bar was side-pressed to various

reductions in the α+β phase field to further investigate the role of texture and the effects of strain, strain-path, and deformation heating on the propensity

to form abnormally large grains during β-annealing. The experiments were interpreted in the context of a continuum finite element model and

viscoplastic self-consistent crystal plasticity simulations. Based on the results from experiment and modeling, we make recommendations with respect to

the α+β forging process to avoid the occurrence of excessively coarse β grains.

Introduction 
    A wide range of property combinations can be obtained in titanium alloys via judicious choice of thermomechanical processing (TMP) parameters.

Depending on overall design methodology, α/β titanium parts for rotating applications are typically fabricated by hot working and heat treatment in the α/

β field. By contrast, structural components for airframes are most often α/β worked followed by supertransus (β) annealing. Such TMP sequences lead to

prior β grains whose size is relatively large (~500 to 2500 µm) and which contain a transformation product of colony or Widmanstatten α whose fineness

is dependent on local cooling rate. These microstructures provide substantial benefits with regard to fatigue crack growth resistance and fracture

toughness at the expense of strength, ductility, and high-cycle-fatigue resistance [2-4]. 

    Because of the importance of prior β grain size with respect to the balance of properties in β-annealed titanium components, a large amount of research

has been devoted to understanding and modeling it [6-12]. These works show that crystallographic texture is a key contributor to the experimentally

observed variability in grain growth kinetics. In fact, texture effects were shown to have a first-order effect on grain growth and could lead to grain-

growth exponents in the range of 2 to 6, sequential periods of slow and rapid growth. To quantify the so-called texture-controlled grain-growth behavior,

Monte-Carlo (MC) modeling methods were developed and were successful in providing at least qualitative descriptions of the prior observations [13-14].

MC approaches have also been developed and applied to predict the occurrence of abnormal grain growth (AGG) during the annealing of single-phase

metallic materials [e.g., 15]. By this means, the importance of the intensity and breadth of a minor texture component on AGG have been demonstrated.

AGG has also been observed in two-phase (α/β) titanium alloys such as Ti-6Al-4V subjected to subtransus plane-strain hot working (e.g., plate rolling)

followed by β annealing [16]. The occurrence of AGG in these cases has been attributed to macroscopic variations in deformation texture across the

workpiece section. More recently, AGG has been observed during the β annealing of forgings whose prior (subtransus) deformation was also largely

plane strain in nature. Per the findings of Pilchak, et al. [17], the formation of grain-size heterogeneity in such cases may arise from the development of

texture heterogeneity on a relatively local scale prior to and during early times in the β-annealing process. As in the work of Ivasishin and coworkers [11-

15], the growth of a small volume fraction of grains associated with a minor texture component into those of a major texture component may be the
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source of AGG in these cases also.   

    The objective of the present research was to elucidate experimentally the mechanisms of the formation of coarse-grain regions in Ti-6Al-4V forgings

and interpret such occurrences in light of the evolution of non-uniform textures. We use the term “coarse grain” (CG) to describe this phenomenon as the

mechanism of formation is different than classical AGG mechanisms. To meet these goals, a series of Ti-6Al-4V bars were conventionally sidepressed to

produce a nominally plane-strain mode of deformation. Texture and grain structure development during subsequent β annealing were determined via

electron-backscatter diffraction (EBSD) and interpreted using continuum level FEM simulations of the macroscopic strain state, mesoscale (viscoplastic,

self-consistent) simulations of the accompanying deformation-texture evolution, and the concept of oriented growth during the early stages of annealing.

Materials and experiments 
In this work, Ti-6.29Al-3.8V-0.22Fe-0.17O bars each measuring 63.5 mm Ø  x 190.5 mm long were heated to 954 C, held for 90 minutes, and then

forged on 38 C dies in a side-pressed configuration with a ram speed of 25.4 mm/s to total reductions of 42.6%, 64.5%, and 69%. The forgings were

cross sectioned at the mid-span perpendicular to the bar axis and also sectioned longitudinally at the center of the forging in order to provide coupons for

quantitative texture analysis via electron backscatter diffraction (EBSD) and also for β annealing. The latter samples were heat treated by inserting into a

furnace at 538 C after which the furnace temperature was increased 149 C per hour to 1038 C (to simulate the slow heating rates encountered in large

structural forgings), soaking for 1 hr, and then air cooling. The samples were prepared with standard procedures involving grinding with successively

finer SiC papers (to 800 grit), intermediate polishing with diamond paste, and final polishing with colloidal silica. EBSD was performed in an FEI XL30

at an accelerating voltage of 20 kV at spot size 5 using a 100 µm final aperture resulting in ~22 nA current. Multi-tile scans were collected at step sizes of

0.2 µm and 5 µm in order to investigate the α and β phase textures. The EBSD data were analyzed using TSL OIM Analysis and MTEX [18]. 

A 3D finite element model (FEM) of the forging process, including transfer and resting, was developed in DEFORM™. The heat transfer (h) and friction

(m) coefficients were iteratively tuned until the model predicted the correct deformed shape and load-stroke behavior, finally arriving at m = 0.25 and h =

0.0020 BTU/sec/in2/F (h during the 3 s rest was 1/3 of this). The TMP histories of nine locations in the forging were extracted from the FEM, which had

100,000 elements.  Interpretation of the deformation textures in relation to the location-specific strain-paths were aided by viscoplastic self-consistent

(VPSC) crystal plasticity [19]. All simulations were performed with VPSC7d using the neff = 10 approximation which represents a middle ground

between the stiff isostrain-rate and compliant isostress approximations and assuming no hardening. The ratios of slip system strengths mirrored Dunst

and Mecking [20], {α_prism,α_basal,α_(pyr_a),α_(pyr_c+a)} = {1, 1.5, 1, 3} while pencil glide on {110}, {112}, and {123} was assumed in the β phase

at a ratio of 0.33 to prism slip. VPSC simulations were used to explore the effect of strain path and volume fraction αp on texture evolution. To this end,

simulations were performed to a true strain of 1.2 using steps of 0.025 imposing plane strain compression (PSC), axisymmetric compression, and strain-

paths intermediate to these. It is also noteworthy that the VPSC formulation considers grain morphology evolution and relaxed constraints are introduced

naturally as the beta grain shape becomes pancaked. 
 

Results and discussion 
The primary results from this research included observations of the as-forged and β-annealed microstructures and textures, assessment of local

thermomechanical histories in locations that did and did not exhibit CG formation, and interpretation of these results using the self-consistent crystal

plasticity formulation. 

The as forged bars and the corresponding deformed shapes predicted by the FE model are shown in Figure 1. At the midspan, the reduction in thickness

was accommodated entirely by extension in the PMFD. In contrast, lateral flow was restricted with increasing distance from the centerline (e.g. Figure

1a), which necessitated flow in the axial direction as well. This is also evident from the barreling at the ends of the original bar (Figure 1b). Polarized

light optical micrographs of mid-span cross-section of the as-forged and forged + heat treated microstructures of bars side pressed to 64.5% and 69% are

shown in Figure 2, which also contains the final locations of five tracked. No strong flow lines were evident in the as-forged condition, though subtle

variations in contrast were evident through thickness and they were symmetric about the midplane of the forging. The dead metal regions were noticeably

lighter than the center of the forging, which appeared much darker. A moderately sized region at the center of the 64.5% and 69% forging formed prior β

grains ~3-5x larger than the nominal microstructure. By contrast, no such gradients were observed in the forging reduced by 42.6% and no CGs were
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Figure 1: As-forged bars pressed to various total reductions and the corresponding deformed shape of the FE model. Note the decrease in lateral flow at location

(a) which necessitates a progressive increase in barreling at location (b). 
  

Figure 2: Polarized light optical micrographs of the as-forged and forged + beta-annealed conditions for reductions of 64.5% and 69%. Points 1-5 correspond to

regions that were point tracked in the FE model.

The α and β phase textures at the center of the 69% as-forged condition are shown in Figure 3. Due to the allotropic transformation on cooling, the α

phase texture is a mixture of deformation and transformation texture components with the latter arising from α orientations related to the β phase

deformation texture through the Burgers orientation relation, viz. (0001)||{110} and < >||<111>, hence the correspondence between the β 110 and α

0001 pole figures. The principal α and β phase deformation texture components were consistent with orientations known to form during PSC of single
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phase HCP and BCC metals [20,21], which is consistent with the strain-path predicted by the FEM in this location (ε_PMFD=2.1, ε_axial=0.1

ε_forging= -2.2). The α phase texture consisted largely of 0001 poles parallel to the axial direction of the billet and additional intensities in locations of

high intensity in the β phase 110 pole figure. The β phase deformation texture consisted primarily of orientations clustered near the ends of the <110> ||

PMFD partial fiber (also referred to as the α-fiber of typical BCC PSC or rolling textures [21]). Specifically, these were the rotated cube {001}<110> and

{110}<011> components (~18x and ~8x random in ODF, respectively, and expressed in terms of {forging plane}) and there was a notable absence of

orientations at {111}<110>. It is noteworthy that the rotated cube orientation has been previously identified as a contributor to accelerated grain growth

during the early stages of β annealing owing to its existence as a network of mostly low angle, low energy, and low mobility boundaries with a small

number of highly misoriented, high energy, and high mobility boundaries. These high mobility boundaries migrate rapidly to consume the stored work

associated with the low angle dislocation walls separating the subgrain boundaries [17].

  

Figure 3: Directly measured alpha and beta phase pole figures for the as-forged condition (69% reduction). Contours 1, 2, 3….max. Refeer to the reference

frame on the right hand side of the figure.

    One half of the remaining cross-sectioned forging was beta annealed and cut parallel to the original bar axis in order to assess the extent of CG

formation in the plane perpendicular to the primary metal flow direction (PMFD). As shown in Figure 4, CGs were observed at the midplane of the

forging from the mid-span up to approximately 42 mm from the edge of the barreled region at the top of the forging as shown in Figure 1. A

representative EBSD scan and the associated recalculated β phase orientations at location 8 are shown in Figure 5. This figure shows the β grains in the

center of the forging are at least 3x larger than the adjacent grains in the forging direction, and generally have low angle boundaries between them

resulting in a large single-crystal-like β grain in the axial and primary metal flow directions.

  

Figure 4: Polarized light optical micrograph of the forged + beta-annealed condition perpendicular the primary metal flow direction. Points 6-9 correspond to

regions that were point tracked in the FE model and the vertical white line corresponds to the extent of coarse grain formation. 
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Figure 5: Primary metal flow direction inverse pole figure maps showing the measured alpha and reconstructed beta phase orientations corresponding to

location 8 in the forging.

    The thermomechanical histories corresponding to five locations in and four locations outside of the CG region are compared in Figure 6a which show

the three principal strain components over the deformation history and also whether or not a particular location exhibited CGs upon β annealing. As

expected, strains were generally highest in the forging direction and these were largely balanced by nearly equal strain in the PMFD. Looking at the

forging and PMFD strains, we see essentially two classes – points 1-3 are in regions of the forgings that cool relatively quickly and hence increase in

flow stress and do not accumulate much strain at all. Points 4-9 experience much higher forging direction strains due to their position relative to the mid-

plane of the forging. Among these, point 6 is a unique outlier. It is the only location that achieved relatively high strain in both the primary metal flow

and forging directions yet did not exhibit CG growth following β annealing. Recall that the material is incompressible and hence ε ̇_PMFD+ε ̇_axial+ε

̇_forging=0. Hence, any difference in strain between the PMFD and forging direction must be accommodated by flow in the axial direction (along the

original bar axis) and this is the distinguishing feature of location 6. As illustrated later, these changes in strain-path alter the development of the rotated

cube deformation texture component, which is a necessary precursor for CG growth. The formation of such a texture is driven by the degree of PSC

deformation imposed at a particular location and hence it is convenient to look at the ratio  (Figure 6b). Perfect plane strain

compression occurs when   =-1 and there is no axial extension. In contrast, under axisymmetric compression metal flow is equal in

all directions perpendicular to the principle forging direction with magnitude equal to half the forging direction strain,  = -1/0.5 =-2.

Hence, from Figure 6b it is clear that 6 of 9 data points are subjected to PSC. All of these exhibited CG formation except for points 2 and 3, which

experienced peak axial strains of ~0.48 and 0.97, respectively. Point 1 is situated near the die/workpiece interface and hence experiences significant

chilling during transfer and resting which resulted in a locally elevated flow stress and very minimal strain accumulation (ε_forging = 0.05). Axial strain

initially accommodates ~15% of the deformation at points 6 and 7 and this fraction increases to ~51% and ~23%, respectively, with increasing reduction.

There was a notable absence and presence of CGs at these locations, respectively. The arrows in Figure 6a highlight the strain history for point 6 which

was among a group of points that achieved both high ε_forging and ε_PMFD yet did not form CGs. Hence, this may be due to the deviation from perfect

PSC that is afforded by the higher ε_axial at this location compared to the others. For example, the β phase deformation texture at this location (Figure 7)

reveals the presence of an 001 partial fiber aligned with the forging direction with some minor preferential alignment of <110> with the PMFD.

Consistent with the strain path at this location, such a texture can be described as a mixture of an axisymmetric compression and PSC deformation

textures with the 001 partial fiber and the alignment of <110> corresponding to the former and latter, respectively. In contrast, we also observed a

moderately strong rotated cube texture at location 5 which formed CGs upon β-annealing. These results further confirm the identification of the BCC

rotated cube texture as a precursor to CG formation [17]. 
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Figure 6: (a) Thermomechanical histories and (b) instantaneous ratio of forging-to-PMFD strain corresponding to points 1-9 in the forging . Vertical lines in (a)

and (b) correspond to intermediate reductions and strain ratios corresponding to PSC and axisymmetric compression (ASC) are shown for reference in (b). No

coarse grains were observed at any location in the forging reduced to 42.6%.  
 

Figure 7: Directly measured beta phase deformation texture at location 6 highlighting the predominance of the 001 partial-fiber over the rotated cube. Refeer to

the reference frame on the left hand side of the figure.

    We hypothesize that the change in local constraint and the additional ability to flow axially precludes the formation of the rotated cube texture, which

effectively shuts down CG formation. This hypothesis was investigated with a series of VPSC simulations (Vf αp = 25%) where we ease the plane strain

boundary condition and allow increasing fractions of ε_axial at the expense of ε_PMFD. The results (Figure 8) are shown on φ2 = 45o sections of the

orientation distribution function (ODF), which show the key features of PSC and axisymmetric deformation textures. There are a few key features of the

deformation texture and its evolution which can be interpreted in the context of fibers and specific orientations {hkl} that lie on them (Figure 9).  
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Figure 8: Effect of strain-path on the evolution of an initially random texture for an alpha vol. frac. of 25%. Velocity gradient (strain-rate) components in the

form ( L_11,_22, L_33) are shown and represent a transition from perfect plane strain compress (1,0,-1) to perfect axisymmetric compression (0.5,0.5,-1). No

shear strains were considered. All texures  are represented on  sections. 

  

Figure 9: Ideal BCC Plane Strain Compression Deformation Texture Components on the φ2 = 45o section of the ODF. {hkl} correspond to crystallographic

planes and directions parallel to the rolling plane and rolling direction, respectively.

    Under perfect PSC, we observe the formation of a weak, <5x random, 001 partial fiber that terminates into strong rotated cube orientations (~18x). In
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addition, we see moderate intensities along the γ-fiber (~10x) and a pathway where orientations are flowing from the γ-fiber along the α-fiber up to the

rotated cube orientation. As the PSC boundary conditions are eased and 10% of the strain is accommodated axially, we first see the pathway between the

α- and γ-fibers is eliminated and hence we observe a slight increase in the density of orientations on the γ-fiber. There is also a slight increase in the

intensities present along the 001 partial fiber. With 20% axial deformation, we see a continued redistribution of orientations along the 001 partial fiber

though there is still slight a preference for the rotated cube orientation and a notable intensity at {111}<110>. This preference diminishes and is

eliminated by 30% axial deformation where we see a relatively homogeneous distribution of orientations along the γ-fiber. Axisymmetric compression,

which occurs when the forging direction strain is equally accommodated by the principal strains perpendicular to it, produces a texture that is essentially

equivalent to that at 40% axial deformation. Both show well developed γ- and 001 partial fibers with high intensities (18~23x) present along the entire

fiber. It is worth mentioning that the VPSC simulations predict a γ-fiber which is notably absent from the experimental deformation texture in the 69%

as-forged condition. Simulations which used boundary conditions extracted from streamlines in the FEM, including rigid body rotation due to metal flow

and minor off-axis shears, do not predict the formation of the γ-fiber implying that it is relatively unstable compared to the α-fiber and the rotated cube

orientation. These simulations will be the subject of a future manuscript. 

    The deformation texture, however, does not provide a complete description of the texture present as the β transus temperature is exceeded during β

annealing, all primary α phase is dissolved and the β grain boundaries are unpinned. Because there are a wide range of orientations present in the

deformation texture, it is plausible that all of these orientations serve as sites for epitaxial growth of β phase as the α phase dissolves and hence we would

expect a variety of high angle grain boundaries to form as the β transus temperature is exceeded and normal, curvature-controlled grain growth to occur.

 This is not observed experimentally, however, as shown by recent short-duration annealing experiments on Ti-6Al-4V sheet [17]. These results show that

there is a dramatic increase in the volume fraction of rotated cube component during the early stages of annealing. So much so, in fact, that it overtakes

essentially all other texture components. The exact mechanism remains the subject of ongoing investigation, but it may be related to the phenomenon of

orientation-dependent stored work that has been observed in a number of BCC transition metals [22]. As a highly symmetric orientation, the rotated cube

requires only four active {110}<111> slip systems to stabilize it with respect to PSC and hence does not develop strong orientation gradients. In addition

to having a low Taylor factor, the dislocations that are present have very limited elastic interactions resulting in a very limited driving force for

recrystallization. All of these aspects may give the rotated cube orientation an advantage to grow and consume other β phase orientations that may be

encountered during the early stages of annealing.  

    Considering the experimental and computational results, it may be possible to eliminate CG formation by avoiding PSC, if possible, or by controlling

the amount of strain in a given step if it must be imposed in PSC. Specifically, the undesirable rotated cube texture can be avoided if one designs a

forging process that forces at least ~25% axial extension. If, on the other hand, PSC cannot be avoided due to other constraints, the true strain imposed in

the forging direction should not exceed 1.0. As a final strategy, Morris [23] showed that lower forging temperatures, which can be achieved through

lower preheat temperature or by using slower strain rates in cases where there is significant deformation heating, may reduce the propensity for CG

formation. Mechanistically, more strain will partition to the αp phase and hence slow the evolution of the β phase texture. Indeed, VPSC simulations

predict that the rotated cube is destabilized with increasing volume fraction of αp (Figure 10). 
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addition, we see moderate intensities along the γ-fiber (~10x) and a pathway where orientations are flowing from the γ-fiber along the α-fiber up to the

rotated cube orientation. As the PSC boundary conditions are eased and 10% of the strain is accommodated axially, we first see the pathway between the

α- and γ-fibers is eliminated and hence we observe a slight increase in the density of orientations on the γ-fiber. There is also a slight increase in the

intensities present along the 001 partial fiber. With 20% axial deformation, we see a continued redistribution of orientations along the 001 partial fiber

though there is still slight a preference for the rotated cube orientation and a notable intensity at {111}<110>. This preference diminishes and is

eliminated by 30% axial deformation where we see a relatively homogeneous distribution of orientations along the γ-fiber. Axisymmetric compression,

which occurs when the forging direction strain is equally accommodated by the principal strains perpendicular to it, produces a texture that is essentially

equivalent to that at 40% axial deformation. Both show well developed γ- and 001 partial fibers with high intensities (18~23x) present along the entire

fiber. It is worth mentioning that the VPSC simulations predict a γ-fiber which is notably absent from the experimental deformation texture in the 69%

as-forged condition. Simulations which used boundary conditions extracted from streamlines in the FEM, including rigid body rotation due to metal flow

and minor off-axis shears, do not predict the formation of the γ-fiber implying that it is relatively unstable compared to the α-fiber and the rotated cube

orientation. These simulations will be the subject of a future manuscript. 

    The deformation texture, however, does not provide a complete description of the texture present as the β transus temperature is exceeded during β

annealing, all primary α phase is dissolved and the β grain boundaries are unpinned. Because there are a wide range of orientations present in the

deformation texture, it is plausible that all of these orientations serve as sites for epitaxial growth of β phase as the α phase dissolves and hence we would

expect a variety of high angle grain boundaries to form as the β transus temperature is exceeded and normal, curvature-controlled grain growth to occur.

 This is not observed experimentally, however, as shown by recent short-duration annealing experiments on Ti-6Al-4V sheet [17]. These results show that

there is a dramatic increase in the volume fraction of rotated cube component during the early stages of annealing. So much so, in fact, that it overtakes

essentially all other texture components. The exact mechanism remains the subject of ongoing investigation, but it may be related to the phenomenon of

orientation-dependent stored work that has been observed in a number of BCC transition metals [22]. As a highly symmetric orientation, the rotated cube

requires only four active {110}<111> slip systems to stabilize it with respect to PSC and hence does not develop strong orientation gradients. In addition

to having a low Taylor factor, the dislocations that are present have very limited elastic interactions resulting in a very limited driving force for

recrystallization. All of these aspects may give the rotated cube orientation an advantage to grow and consume other β phase orientations that may be

encountered during the early stages of annealing.  

    Considering the experimental and computational results, it may be possible to eliminate CG formation by avoiding PSC, if possible, or by controlling

the amount of strain in a given step if it must be imposed in PSC. Specifically, the undesirable rotated cube texture can be avoided if one designs a

forging process that forces at least ~25% axial extension. If, on the other hand, PSC cannot be avoided due to other constraints, the true strain imposed in

the forging direction should not exceed 1.0. As a final strategy, Morris [23] showed that lower forging temperatures, which can be achieved through

lower preheat temperature or by using slower strain rates in cases where there is significant deformation heating, may reduce the propensity for CG

formation. Mechanistically, more strain will partition to the αp phase and hence slow the evolution of the β phase texture. Indeed, VPSC simulations

predict that the rotated cube is destabilized with increasing volume fraction of αp (Figure 10). 
  
 

Figure 10:Effect of primary alpha volume fraction on beta phase texture evolution after a true strain of 1.2 in PSC from an initially random texture. All texures 

are represented on  sections. 
 

Summary and conclusions 
    In summary, α+β side pressing Ti-6Al-4V bar followed by β-annealing led to the formation of coarse β grains in regions of the forging that

experienced primarily PSC deformation. The FEM indicated that locations with CGs had strain paths that closely approximated plane strain compression

and locations which deviated from PSC did not exhibit CGs. The PSC strain path was found experimentally and via crystal plasticity to promote the

rotated cube {001}<110> deformation texture, which confirmed a previously reported link between this orientation and the occurrence of CG formation

upon β annealing. VPSC simulations revealed that the rotated cube orientation the was strongest under PSC deformation and became increasingly less

prevalent as the PSC boundary conditions were eased toward axisymmetric deformation paths which afforded flow along the original bar axis.

Considering the experimental and computational results, the best strategy to avoid CGs in β-annealed forgings is to avoid imposing strains >1.0 in PSC

and striving for an intermediate strain-path where at least ~25% of the forging direction strain is accommodated by flow in the axial direction.    
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