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Abstract

The emergence of composite material application in major commercial aircraft design,

represented by the Boeing 787 and Airbus A350-XWB, signals a new era in the aerospace

industry. The high stiffness to weight ratio of continuous fiber composites (CFC) makes CFCs

one of the most important materials to be introduced in modern aircraft industry. In addition to

inherent strength (per given weight) of CFCs, they also offer the unusual opportunity to design

the structure and material concurrently. The directional properties (and the ability to change

these properties through the design process) of composite materials can be used in

aeroelastically tailored wings, the fuselage and other critical areas. Due to the longer lifecycle

(25-30 years) of a commercial airliner and the tools and processes developed for the airplane of

previous product development cycles, new technology often ends up being deployed less

effectively because of the mismatch in the technical potential (what can be done) vs. design

tools and processes (what was done before). Tools and processes need to be current to take

advantage of latest technology, and this thesis will describe one possible approach in primary

composite structural design area using integrated structural analysis.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

Continuous fiber reinforced composite laminates offer several superior attributes when

compared to metals on a pound for pound basis. Because of this, these laminates are

increasingly utilized in weight critical aerospace applications. Although the utilization of

composite laminates in structural application is relatively recent, the concepts and basic ideas

that are central to the notion that a composite material exhibits superior properties than the

constituents by themselves are as old as the straw-reinforced clay bricks in ancient Egypt.

In more recent times, iron rods were used to reinforce masonry in the nineteenth century,

leading to steel-reinforced concrete. Phenolic resin reinforced with asbestos fibers was

introduced in the beginning of the twentieth century. The first fiberglass application was made

in 1942, and reinforced plastics were also used in aircraft and electrical components. Filament

winding was invented in 1946 and incorporated into the manufacturing of missiles applications

in the 1950s. The first boron and high strength carbon fibers were introduced in the early

1960s, with applications of advanced composites to aircraft components by 1968. Metal matrix

composites such as boron/aluminum were introduced in 1970. DuPont developed Kevlar

(aramid) fibers in 1973. Starting in the late 1970s, applications of composites expanded widely

to the aircraft, automotive, sporting goods, and biomedical industries.

Continuous fiber composites (CFCs) are one of the most important materials to be

introduced into aircraft structures in the last 30 years. CFCs consist of strong fibers set in a

matrix of epoxy resin that is mechanically and chemically protective. They were developed at

the RAE Farnborough and announced in 1966. Not only do CFC's possess excellent

strength/weight and stiffness but also they offer the unusual opportunity to design the

structure and the material simultaneously. The directional properties of composite materials

can be used to aeroelastically tailored wing structures in order to obtain, under load, specified
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twist and camber. This has beneficial effects on aerodynamic drag, control effectiveness and air

load distribution, leading to increases in range capability and load carrying capacity. Such

tailoring can be used to obtain a lower weight design that satisfies all of the applicable design

constrains such as strength, flutter and divergence. Compared to 2000 and 7000 series

aluminum alloys, CFC's offer weight savings of 20%. A further advantage is the ability to mould

complex shapes.

Still, CFC material remains expensive and requires labor intensive structural fabrication

methods. Further drawbacks include significantly reduced strength when there is undetected

damage, reparability problems, and environmental difficulties. The first major application of

CFC was demonstrated in the design of AV-8B Harrier 11 by the then McDonnell Douglas

(Boeing) and British Aerospace. It took about 10 years to get CFC's into the production cycle.

Carbon fiber based CFC's have been used extensively in recent aerospace applications.

Many airplane surface components are being replaced by CFC material except in primary load

bearing members (landing gear, main spar), or thermal resistance members (engine mount,

nozzle, firewall, etc). The most aggressive application of composite structure in an aerospace

vehicle can be seen at Scaled Composite Corporation [Ref. 1.7], where all composite vehicles

are being developed and tested. Typical CFC-metal main wing structure along with conventional

types is shown in Figure 1.1. Shown (e) is the main wing of the British Aerospace Experimental

Aircraft Prototype. Dark areas illustrate the use of CFC and light areas show metal usage,

including three titanium-made wing attachment joints.

~~~~~~~1
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Figure 1.1 Evolution of wing structure in chronological order (a)-(e) (Ref. 1.2)



One particular accomplishment in how the CFC application to structures could be stretched

in aero-vehicle design was the Boeing-Sikorski RAH-66 Comanche helicopter (Figure 1.2). In

addition to conventional composite application to save weight in secondary, non-load-bearing

structures, the Comanche airframe had load-bearing members made of Hercules IM7 graphite

in thermosetting epoxy resin.

-77

46.85 ft

Figure 1.2 RAH66 Comanche (Ref. 1.2)

The RAH-66 was built around a composite box (Figure 1.3) beam running the length of the

forward fuselage. The beam also provides space for the fuel. Composites also had opened new

opportunities for crashworthy design. Cockpit floors had frangible panels to let the crew seats

stroke down in a crash, and the entire tail boom was designed to break away when impacts

greater than 20 ft per second occur, to relieve crash loads on the retractable landing gear. The

main rotor was an all-composite bearingless design.

Figure 1.3 CFC Fuselage member of RAH66 (Ref. 1.2)
10



In the commercial aircraft industry, composite application in primary load bearing structure

has been spearheaded by gas turbine engine industry. The latest GeNX engine for the 787

Dreamliner has composite fan blades as well as a composite fan case (Figure 1.4), and airframe

companies are not far behind in taking advantage of composite material. Figure 1.5 and 1.6 are

showing various composite applications in their latest aircraft design (A-380 & 787).

Figure 1.4 GeNX Composite blades and fan case (Ref. 1.3)

Uppr Dock Flow 2a1ow

Wng OW

Wingng

Center Wng Box

flop track paneft Reai

40"tal TO plane

1-771M%
IL

N Alk

Pressure, Sulkho*d

INIIIIIIIIIII

*A I RBUS
Figure 1.5 A-380 Composite Applications (Ref. 1.4)
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Materials used In 787 body
. Fiberglass U Carbon laminate composite Total materials used

E Aluminum X Carbon sandwich composite By weight
Alwuinunisteelltitanium

Steel 5% Composites
10% 50%

15%

Aluminum
20%

By comparison, the 777 uses 12 percent
composites and 50 percent aluminum.

Figure 1.6 787 Composite Applications (Ref. 1.5)

In this paper, the overall design process of aircraft systems will be investigated to lay the

foundation for the following research work in Chapter 2. Chapter 3 will present a generic

composite material overview. Chapter 4 will discuss in detail the current design process for

aircraft structure and 'proposed' design and analysis procedures for composite primary

structures. Chapter 5 will discuss on organizational perspective to achieve tighter design

integration team followed by example case. Chapter 6 includes a summary of the contribution

from this thesis, with recommendation for future investigations.
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CHAPTER 2

THE COMMERCIAL AIRLINER INDUSTRY AND PRODUCT DEVELOPMENT PROCESS

2.1. Aircraft Design Process

The commercial airliner product development process generally takes about 48 months

from the authority to proceed (ATP) to initial delivery. The general process of overall product

design is shown in Figure 2.1.

TIME

RESEARCH, DEVELOPMENT, AND MARKETING

CONCEPTUAL DESIGN

PRELIMINARY DESIGN

GO- AHEAD APPROVAL (ATP)

MISSION REOMT DETAILED DESIGN

TOOL DESIGN AND FABRICATION

MANUFACTURING PLANNING & 1st ARTICLE BUILD SERIAL PRODUCTION

LABORATORY TEST

FLIGHT TEST

INITIAL DELIVERY

TRAINING, PUBLICATIONS. PRODUCT SUPPORT

Figure 2.1. Aircraft Product Development Process (Ref. 2.3)

Prerequisites for product development are ongoing R&D and marketing (economics)

activities. Especially for the commercial airliner industry, economic validity of new product to a

target market segment is such a crucial aspect of a delivering a successful new airplane (which

requiries maintaining a continuous dialog with airline planning in order to keep current
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regarding projected future market needs) that it will be discussed in separate section of this

chapter. R&D activities in important technological areas such as aerodynamics, structures,

materials, propulsion, avionics and integration of the aircraft as a system are categorized

according to their 'technical readiness' for insertion of new technologies and decisions are

made for incorporation in a new aircraft design according to their 'maturity level'.

Mission specification is a statement of the basic performance objectives and related criteria

which should be met by the new design. The mission specification consists of the following

typical information;

1. Objectives of the aircraft

2. Design payload, range and radius

3. Normal cruise / maximum speed and normal operational altitude

4. take off / landing distance at maximum weight

5. direct operating cost / flight

6. airport noise levels

Mission specifications can come from difference sources, for commercial airliner industry,

they come directly from an airline in collaboration with aircraft manufacturers, where internal

studies of future operation creates new concept (mission) for new aircraft. Once mission

specification is frozen, the starting point of designing new aircraft is a design mission

specification with representative mission profile.

cruise phase

oce

distanco

Figure 2.2. Mission Profile for Commercial Aircraft (Ref. 2.3)
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Purpose: Competitive altemative to MD-90, A-320, and B 737-400

Payload: 150 passengers at 175 lbs each plus 30 lbs of baggage each

Crew 2 pilots at 175 lbs each plus baggage at 30 lbs each
3 cabin attendants at 130 bs each plus baggage at 30 lbs each

Range: 1500 nautical miles

Reserve fuel: 150 nautical mile flight to alternate, followed by 45 minute loiter

Cruise Altitude: 35,000 feet

Cruise Speed: Mach number = 0.82

Climb: Direct to 35,000 feet at maximum takeoff weight

Takeoff Field Length: 5.000 feet at sea level, 90F, at maximum takeoff weight

Landing Field Length: 4,500 feet at sea level, 900F, at maximum landing weight

Powerplants: 2Turbofans

Pressurization: 5,000 foot cabin altitude at 35,000 feet

Certification Basis: FAR Part 25

Mission Profile:

5. Cruise

8. Lollar

F 4CH~b6. Dewcent

7. Fly to Aflama

3. Takeoff L 9. Landing

2. TaxI out Taxi inShutdown
1. Engine Start and Warmup

Figure 2.3. Design Mission Profile for Commercial Airliner (Ref. 2.3)

The resulting design mission profile above will become the starting point of

conceptual/preliminary design for a new airplane. After the basic requirements have been set,
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it is in the conceptual design phase that the basic questions of configuration arrangement, size

and weight, and performance are answered.

Conceptual Design Phase answers following questions;

1. Will it work?

2. What does it look like?

3. What requirements drive the design?

4. What trade-offs should be considered?

5. What should it weigh and cost?

Each time a design iteration is analyzed, design parameters such as gross weight, fuel

weight, wing size, engine size and overall arrangements should be refined and updated. The

preliminary design phase starts when the major changes are not seen in succeeding iterations.

The basic configuration arrangement can be expected to remain stable. During preliminary

design, the designers in areas such as structures, landing gear, and control systems will design

and analyze their portions of the aircraft. Testing is initiated in areas such as aerodynamics,

propulsion, structure, stability and control. A key activity during preliminary design is lofting,

which is the mathematical modeling of the outside skin of the aircraft with sufficient accuracy

to insure proper fit between its different parts. The ultimate objective of preliminary design is

to ready the company for the execution of detail design stage (full scale development proposal:

ATP), with confidence that major issues have been exposed and settled prior to the major

investments in full scale development.

Preliminary Design output and boundaries;

1. Configuration (architecture?) Freeze

2. Lofting Development

3. Test and Analysis Baseline

4. Design Major Items

5. Cost Estimates

The economics of a new aircraft for a specified mission profile are a key factor for successful

design. Next chapter will describe the basic concepts of commercial aircraft economics.
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2.2. Economics of Commercial Aircraft

An airliner's Productivity is defined as its capability to produce useful and profitable

transportation in a specific operational situation. The productivity can be expressed in revenue

dollars per seat-km, passenger-km, and ton-km.

Productivity = Payload (Revenue) x Block Speed x Block Hours

Block speed is average speed for the block distance. A common trend is that total

productivity is reduced for short flight, when each of the three factors suffers as stage lengths

become shorter.

Utilization refers to the time that an aircraft is employed in revenue flights. It is not related

to how well the capacity of aircraft is filled in with revenue passengers (load factor). It may be

poor managements to have all flights with high utilization but low Load Factors. Flight

scheduling plays a central role in the optimal use of an airline's resources. For each segment to

be flown, scheduler must consider how large a market is expected and how it will fluctuate by

the day of the week and hour of the day. Aircraft must be scheduled to end its day's flying at

the point of origin of the next day's flight, and that pattern must bring the aircraft into

maintenance shops on a predetermined schedule. Aircraft depreciation is severe, and it applies

whether the aircraft is flying or idle. At the end of route it often has to lay-over, because

passengers want departures and arrivals during certain periods of the day. Experience shows 9-

10hr utilization per day over 25-year lifetime of a long range airliner is good.

Passenger Load Factor is the measure of an operator's skill (aircraft choice, pricing, pricing

and general service quality). Load Factor is the percentage of available seat-km converted to

revenue paying passenger-km (US cent/seat-km). The break-even load factor must be exceeded

at the end of the year if the aircraft to be profitable. Because profitable passenger load factor

alone is not enough, and most of commercial airliners carry some cargo/mail, the total unit of

production is often described in terms of capacity tonne-km.

Fares may be divided into two concepts; one is the 'value' of the service, the other is the

'cost' of the service. The value of the long range flight is greater than short one, and business

travel is more valuable than tourist flight, and business flight is less sensitive to fare change.

18



With all above variables defined, it is possible to convert productivity into actual revenue

required to overcome operating cost. The breakup of cost is in table 1.

Direct Operating Cost (DOC) Indirect Operating Cost (IOC)

Fixed Cost

1. Interest 1. Airport / baggage handling fee (~20%)
2. Depreciation 2. Passenger service (- 10%)3. Insurance (2 -5%)

Variable Cost 3. Ticketing & Sales (~15%)

1. Fuel (30 %- 50 %) 4. Administration (-5%)

2. Crew (2 - 5%)
3. Maintenance and Overhaul (~15%)
4. Landing and Maintenance Fees (~11%)

Table2.1. Total Operating Cost (Ref. 2.1)

Since the appearance of the jet transport, the impact of technological advances on

operating costs has come not from faster aircraft but from efficiency improvement through

increased aircraft size and higher bypass ratio turbofan engines. Improvement of airframe and

engine technology extended the period between maintenance and overhauls. Improved

reservation systems, maintenance equipment and other airplane operations and customer

service related technologies has also reduced the operations costs of airline industry.

Selection of new aircraft (types and numbers) by airliner industry is more delicate art than

science. Out of many considerations to make a selection of new plane, the representative 5

factors are; price, performance, after-sales support, residual value and transition costs.

Performance characteristics must be matched against the carrier's existing and future routes,

the stage lengths and the projected flow of current and future traffic. The aircraft must meet

the airworthiness standards with respect to safety, noise, and air pollution, and should have

passenger appeal. Fleet planning models, prepared by airlines' research personnel with the

airframe manufacturer, should answer the following question at the end of day; how many

seat-km will it deliver per kg of fuel? This is the decisive factor in selecting new aircraft, since

most other factors will lie in a narrow band for any good design.
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CHAPTER 3

CHARACTERISTICS OF COMPOSITE MATERIALS AND IMPACT ON AIRCRAFT

DESIGN

3.1. Impact of New Materials in Aerospace Application

Weight saving through increased specific strength or stiffness is a major driver for the

development of materials for aircraft structures. A crucial issue in changing to a new material,

even when there are performance benefits such as weight savings to be gained, is affordability.

Affordability includes procurement cost and life cycle support cost (ownership, maintenance

and repair). Thus the benefits of weight savings must be balanced against the costs.

* Weight Reduction * Improved Performance

- increased range - smoother, more aerodynamic form

- reduced fuel cost - special aeroelastic properties

- higher payload - improved damage tolerance

- increased maneuverability

* Reduced Acquisition Cost * Reduced Life Cycle Cost

- reduced fabrication cost - improved fatigue and corrosion

- reduced assembly cost resistance

- improved damage tolerance

Table 3.1 Drivers for Improved Material for Aerospace Application (Ref. 3.1)

The cost benefit on weight savings is particularly sensitive in aerospace applications; 1 % of

saving on empty weight usually generates about 5 % or so maximum takeoff weight (MTOW)

savings, which is directly proportional to overall life cycle operating cost. Approximate values
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that may be placed on saving 1 kilogram of weight on a range of aircraft types are listed in Table

3.2.

" Small Civil: $80 9 Advanced Fighter: $500

* Civil Helicopter: $80 - $200 9 VTOL: $800

* Military Helicopter: $400 * SST: $1500

* Large Transport: $300 * Space Shuttle: $45,000

* Large Commercial: $500

Table 3.2 Approximate Actual (US $/kg) Values of Saving One Unit of Weight: (Ref. 3.1)

In choosing new materials for airframe applications, it is essential to ensure that there are

no compromises in the levels of safety achievable with conventional alloys. Retention of high

levels of residual strength in the presence of typical damage for the particular material is a

critical issue for (damage tolerance). Durability, the resistance to cyclic stress or environmental

degradation and damage through the service life is also a major factor in determining through-

life support costs. The rate of damage growth (for example, crack propagation) and tolerance to

damage determine the frequency and cost of inspections and the need for repairs throughout

the life of structure.

3.2. Carbon Fiber Composites (CFC)

CFC is comprised of strong, high-modulus small diameter fibers set in a matrix of epoxy

resin that is mechanically and chemically protective. The fibers provide the basic strength, while

the matrix stabilizes the fibers and acts to redistribute the load in shear between fibers in the

case of fiber failure. At the level of design strains for these materials (- 0.4 %), fatigue is not a

problem, and designs are based on their static properties. CFC offers weight savings of 20% or

more even when allowances are made for hot/wet conditions and notch effects, compared

with 2000- and 7000- series aluminum alloys. However, the resulting structures have been

much more expensive than their metal counterparts, due in part to the expensive raw material

and the fact that the major emphasis is on maximum weight reduction. To accomplish this

objective the design approaches have concentrated on structural simplification, reduced part

count and the elimination of costly design features. The ability to mould complex shapes
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reduces waste material and reduces the parts by a factor of three, thereby reducing joining

costs.

For composites to become more competitive with traditional aluminum alloys, the costs of

using them must drop significantly. Central to cutting those costs will be improvements in

maintainability, reliability and reparability. The performance benefits can be outweighed by the

higher cost of manufacturing and maintenance in the field. They have a better initial service

record, mainly because of their corrosion resistance and fatigue properties, but composites are

more prone to impact damage, the economic repair of which has typically been limited to

minor damage. Current evidence shows that repair costs for composite structures can exceed

those for conventional metal by a factor of at least two. Parts with substantial damage must be

replaced, with the cost and out-of-service time for such work, which, combined with special

facilities required, makes major repairs impractical. In the event of the need to replace entire

items with significant damage, the reinvestment required to replace the damaged item does

not appear to offset the relatively small fuel-burn reduction. Environmental consideration in

disposal of carbon fiber components and fire hazard also come into equation.

Characteristics Composite Metal

Fatigue Much better than metals Problems

Corrosion Much better than metals Problems

Load/Strain relationship Linear strain to failure Yield before failure

Failure Mode Many Few

Transverse Properties Anisotropic (weak) Isotropic (same)

Notch Sensitivity/ Static Fatigue More sensitive/less sensitive Sensitive / Very Sensitive

Mechanical Properties Variation High, in compression/transverse Normal
direction

Sensitivity to hygrothermal environment Sensitive to hot/wet condition Less sensitive

Through-thickness crack growth Growth/no growth Slow growth

Delamination Problem No problem

Initial and in-service flaw/damage size Not well defined Defined

Damage inspectability Problem Adequate

Table 3.3. Composite vs. Metal (Ref. 3.5)
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3.3. Impact on Aircraft Design

The use of composites has a significant impact on the aircraft design process. Metal parts

start as a solid piece, then are machined down to a specified size, shape and thickness. Multiple

parts are fastened or riveted together to form structure. Using composite, a designer has much

greater flexibility because the strength and stiffness of structures can be tailored. The material

can be stacked in various layup angles to tailor thickness and stiffness according to design

requirement of specific parts.

To increase strength or stiffness in a localized area, a larger number of plies may be

overlaid, each with a different shape and orientation. Tailorable strength enables designers to

optimize aerodynamics such as in forward-swept wing aircraft design. By manipulating the

anisotropic nature of composite material, local stiffness/strength can be tailored to meet the

specific requirement of aeroelasticity (vibration, flutter).

Fiber reinforced thermoplastic composites produced by molding CFCs to complex shapes

under high pressure are highly resistant to damage and can be reshaped and quickly fabricated.

Compared to carbon epoxy, fiber-reinforced thermoplastics are equal in density, equivalent in

strength and part production is less expensive. Other area where composites have a significant

advantage over metallic structures is in radar cross-section reduction. Aircraft can be formed

with smoother lines, fewer areas where different materials merge and into the complex shapes

required for reduced RADAR signature.

Arrival of the 787 in the commercial aircraft industry has established a new standard in

terms of composite application in primary structure and a full composite fuselage in segmented

barrel structure brings composite application to about 50% of airframe weight. Although it has

already been an early success as an aircraft program, the long-term success of the program will

depend on validated cost savings in maintenance and overall operating cost. It is worth noting

that the Airbus counterpart A350XWB is not following the same design path chosen by Boeing

for a composite barrel fuselage, but is using an evolutionary approach in designing a section-

based metal/composite hybrid fuselage and new materials (above 60 %), promising 30 %

reduction in maintenance cost.
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Overall, the composite material technology is still relatively young (the first CFC was

announced in 1966 by RAE Farnborough), and the properties achieved so far are modest

compared with theoretical full potential. The general lack of sufficient toughness and damage

tolerance is still a major problem for most of composites. The improvements in resin material,

fiber material, fiber/matrix architecture and general design process (in next chapter) are

continuing in all aerospace fields.
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CHAPTER 4

INTEGRATED ANALYSIS PROCESS OF AIRFRAME COMPOSITE STRUCTURE &

ORGANIZATION ASPECTS

4.1. Integrated Design Process using Continuous Load/Design Refinement

In previous chapters, effect of composite material on traditional aircraft design was

described. In this chapter, a detailed process changes for composite structural design and

analysis will be explained, followed by an example of composite bolted joint analysis in the next

chapter. As discussed in chapter 3, having composite material as a design object calls for an

integrated, multi-disciplinary perspective. Material no longer arrives in given, pre-existing

condition and properties, but becomes a variable of structural design itself. Starting from

simple lamina plies, the design process includes tailoring the composite material itself by

controlling number of plies, ply angle, selection of fiber and matrix as well as general

optimization of structural design to meet structural requirement of components, sub-systems,

and the entire system (durability, strength, weight under loading requirement).

The traditional aircraft design process started with aeroelasticity studies (after

requirements definition, general configuration, and initial sizing process) for aerodynamic

loading analyses to define the overall loading requirement (rigid aerodynamic body and/or

simplified [beam and plate] compliant aircraft model based), and this aerodynamic loading

(external loading in general term) definition is mapped into aircraft system structural models

(internal loading) to define loading of system/sub-system (fuselage section, wing section,

landing gear, etc) structures. Once this loading data requirement is defined, each design team's

leader initiates the design process to satisfy design target weight while meeting all loading

requirements (strength, toughness, durability, fatigue, corrosion etc, Figure 4.1).
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Figure 4.1. Traditional Structural Design Process

Figure 4.1 indicates a typical design process employed to meet the requirements. Optimum,

over, and under design are the status of the initial design points (on target, overweight, and

underweight). All the design effort is to be on target (arrow) while meeting cost and schedule.

There may be a requirement refinement (more accurate loading refinement, typically lowering

the initial study requirements 1-2 times before flight testing), but largely the requirements are

a fixed target and each design evolves given that target requirement. This approach has been

generally acceptable because of the nature of the module based assembly process of metal

airframe structure (bolted assembly and system), and experience accumulated throughout

metal aircraft design history (large commercial airliners -- around 50 years since De Havilland

Comet). Weight reduction (design improvement) effort can be incorporated later stages

relatively easily by revising the design, maintaining the interface (bolted/riveted joints), and

inserting the improved design features into the system.

This approach presents a particular problem in designing composite aircraft, where the

design configuration is integrated in nature (fewer components, bigger, integrated one-piece

components). The conventional 'Let's over-design first and cut weight later' type of trial and

error approach will not work as well as it does in designing metal aircraft. Previous experiences
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in metal design mixed with new composites in aircraft have sometimes yielded weight savings

far less than hoped for, even to the extent of increases in weight in some extreme cases. From

the initial aerodynamic loading calculations, which are done based on equivalent stiffness

flutter models (wind tunnel testing, flutter analysis), the correlation relationship (scale factor)

gained from existing metal design process will not work, and more unknowns generally calls for

more conservative nature of loading estimation. The analyses and models are built around

assumptions which do not hold true for composite designs. Therefore, to use these models,

more frequent system loading requirement updates during design phase are necessary, as well

as more (and more frequent) system design reviews. Composite structure has a lot of

advantages over traditional metal design, but it requires more precise analyses and design

processes because it is harder to adjust and revise design after a baseline is established due to

the high interdependencies of the composite structural properties. Trial and error would work

only given unlimited time and resources, at the expense of cost and weight penalties.

e Loadinq Etwelope keeps evotvingj as design
refines

Figure 4.2. Integrated ading / Design Refinement Process
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As shown in Figure 4.2, continuous (or at the least more frequent than before) load revision

as design evolves, and concurrent design refinement with updated- loading, would minimize

overdesigning the system under unrealistically high loading requirements. Overdesigned

components can be further optimized given updated loading condition (usually lower than

before), and designs not meeting original loading requirement will have more room to improve

than before.

Current design iteration efforts (at the IPT level) should be able to communicate to the

loads group (external/internal load team) to refine loading based on new design information

(Figure 4.3), represented by higher resolution structural analysis models.

Figure 4.3. New Load Regeneration Model using updated Design

Usually, the more design information is available, the mapped external load to internal

loading model yields lower requirements because of the compliant nature (more information as

design evolves) of higher resolution models (Figure 4.4). After completing first pass design

based on original loading, it can be further optimized if the process of using re-mapped internal

loading based on latest design at the IPT level is applied. The ideal scenario would be that the

loads group is more tightly involved in module-level IPT, providing the latest internal load

information as design milestone (preliminary-phase 1-phase 2-final design etc) and following

the IPT schedule, instead of working as independent organization. In this scenario, changes to

the loading information flow down less frequently.
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Figure 4.4. Loading Reduction as Design Evolution

The process of improving design by employing concurrently refined loading information

needs to be established to optimize design during component level design stage instead of

waiting for updated loading flow down later (Figure 4.5) Drag
Pressures/lLoads Str ge ight

GeomettylDisplacements TOGW,

Figure 4.5. Traditional Design Process vs. Integrated Design Process (Ref. 4.5)
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4.2. Organizational Perspectives

To have a design team which can perform the tasks describe in previous section, seamless

integration between design and structural analysis teams is critical. The nature of integration in

composite structure calls for more frequent design-structural analysis interaction in addition to

refined loading information. The traditional stress analyst, who assesses 'finished' design based

on a 'given' loading condition, in isolation, is not going to be effective, and neither is the

designer who works on refinements based on that feedback; both are attempting to apply

iterative discrete process to a tightly-coupled, near continuous design evolution. In the

conventional scenario, the designer will over-design to pass stress checks, and the analyst will

say 'ok' for it during this design pass. Weight will become higher than target, and by following

this process, the necessary degree of design improvement cannot be achieved in time.

In a more 'integrated' composite design team, basic stress checks will be performed by

designer using integrated structural analysis tools (most of the latest design software includes

an integrated stress analysis module), and the structural analyst will perform design

optimization under refined loading from the start. Design tools (CATIA, Unigraphics, AutoCad,

etc) will import design optimization results from structural analysis tools (NASTRAN, ABAQUS,

LSDYNA, etc), and the resulting continuous update/revision of design with updated loading

results in faster, more agile design evolving process. The basic requirement is for the

organization to have integrated composite design team -- the following objectives should be

achieved:

1. Merging design / structural analysis disciplines (Designer/Structural Analyst becomes

one)

2. Analysis tool modernization: when design community is using fully digitized CATIA

system, the traditional hand-calculation methodology will not be fast enough.

3. Common models between design and structural analysis communities (or at the least,

seamlessly compatible)

4. Team work environment as in "Wolf Pack", not like a "Baseball Team"
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CHAPTER 5

INTEGRATED ANALYSIS APPLICATION (COMPOSITE BOLTED JOINT)

5.1. Introduction

Mechanical fastening is still the primary means of joining multiple components in modern

aircraft structures. Smaller, more aggressive technology-driven fields such as military aircraft

and UAVs are taking full advantage of integrated nature of composite material using all in one

piece structure and bonded joints. However, the first generation all composite fuselage aircraft

such as 787 and A-350 XWB are still using mechanical fastening to join major structures

(fuselage skin-frame-stringer, wing to body joint, empennage joint, etc), the same as metal-

based aircraft, indicating the hybrid, evolutionary nature of airframe design (metal design

procedures with metal replaced by composite materials). Current industry design methods are

largely based on design charts and stress handbooks. Advanced 3D Finite Element Analysis

(FEA) plays a limited role, indicating the technology gap between last major civil airliner

development (Airbus A310 (80s), A320 (80s), A330 (90s), A340 (90s) & Boeing 737 (60s), 747

(60s), 757/767 (80s), 777 (90s)), when computation mechanics (FEA) was still relatively new to

the industry. Boeing (between 777 & 787) and Airbus (A350 & A380) have around 14 years of

development gap since the last major twin aisle airliner development programs.

Based on these facts, development problems currently experienced in the Boeing 787

program (weight, fastener problems and supply chain issues) and A-380 (weight and

production) demonstrate how difficult it is to establish new design procedures while developing

new product at the same time. In this chapter, most fundamental design procedures for

mechanical fasteners in composite structures will be described and proposed new

design/analysis procedures will be presented.
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5.2. Composite Bolted Joint design

Composite materials, if properly used, offer many advantages over metal alternatives.

Examples of such advantages are: high strength and high stiffness-to-weight ratio, good fatigue

strength, corrosion resistance and low thermal expansion. Nevertheless, conventional

composites made of tape or fabric also have some disadvantages, such as poor transverse

properties, inability to yield elastically and sensitivity to moisture and high temperatures, which

must be accounted for during design process.

Among the most important elements in aircraft structures in general and in composite

structures in particular are mechanically fastened joints. Improper design of joints may lead to

structural problems or overly conservative design, leading to overweight and high life-cycle cost

of the aircraft. Typical examples of mechanically fastened joints in composite aircraft structures

are: the skin-to-spar/rib connections in wing structures, the wing-to-fuselage (main,

empennage) connection and attachment of fittings, fuselage stringer frame-to-fuselage skin.

SIn to spar atthment ing to fuselage attachment

CFCCskiFs

Klee

CFC -skin
CFC-spar 40

Figure 5.1. Bolted Joint in Wing structure (Ref. 5-1)
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All the structural parts are designed to be able to withstand a high level of structural loads in order

to provide efficient aircraft design; major structural parts are joined by means of mechanically fastened

joints to provide an equally efficient assembly method. Although there are many different joint

configurations available, their applications are driven by service requirements applied to the particular

structures to be joined. A key advantage of mechanically fastened bolted joints is enabling the

connected structural components to be disassembled to access to the interior of the structure for

inspection and repair purposes, in contrast to bonded joints. The functioning principle of the bolted joint

is based on micro and macroscopic mechanical interference such as friction between joined parts, shear

or tensile transfer forces in fasteners, and contact forces between the joined components with similar or

dissimilar materials. Mechanical joining is used extensively in the aircraft industry to join titanium or

aluminum components with composite structures. For example, in the F-22 fighter (Figure 5.2), the

upper composite wing skin is attached by mechanical fastening to the internal wing sub-structure, which

is in the form of composite and titanium spars.

Figure 5.2. F/A-22 Wing Structure

Although there are several advantages, mechanically fastened joints have several disadvantages.

The major joints introduce high stress concentration around the bolt hole, often becoming the starting

point for damage initiation. Secondly, aluminium and stainless steel fasteners result in potential for

galvanic corrosion when installed in carbon fiber based laminates. Hole generation requires specific

drilling techniques, taking into account the possibility of mechanically and thermally induced defects and,

finally, numerous metal fasteners and surrounding area reinforcement to join aircraft structural

components result in large weight penalty. Because of this conflicting aspect of good and bad facts

about bolted joints, extra careful consideration should be put into their design process.
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a) Net-section failure

Q

b) Bearing failure c) Shear-out failure

d) Fastener failure

Figure 5.3. Failure Modes of Composite Bolted Joints (Ref. 5.1)

5.3. Design Process Improvement

Traditional composite bolted joint design is based on late 1980s research work (also the time of 777

and 330 development periods) at NASA, mainly focusing on failure modes in the 2D plane using bypass-

bearing load breakup (Ref. 5.3). Bearing-Bypass load break up based design procedure assumes that the

composite joint fails by a unique combination of bearing/bypass load, where bearing load is contact

force due to bolt interaction, and bypass load is the loading passing through net section area (Figure 5.4).

0000
0 0 0 OL

001010)
0000Kro r

Bypass load

.. Bearing load

Applied load

(b) Single-fastener coupon.

(a) Multi-fastener Joint.

Figure 5.4. Bearing/Bypass loading definition (Ref. 5.3)
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Using this approach, engineers were able to isolate particular 'unit-cell' joint sections from various,

multiple fastener configurations, which can be tested (single fastener coupon based tension test)

relatively easily. Once break-up and remapping back to original configuration scheme is defined, the

next step is to generate the failure envelope by performing test on various loading and different hole

size, composite layup configurations (Fieurp .5-

Hydraulic cylinder
Upper

Load call servo-control..
system

Griprm %-'v ww , S
GrpSpecimen eN Mo

Bolt Bearing-reaction plate* b
BoltInput 

-a
Bearing load signal

call generator

300

Grip,-
Lower NT

Load col .e---------- t soLodsyBstem ypass stre Sm we W

Hydraulic cylinder""

Figure 5.5. Configuration for Bearing/Bypass Test (Ref. 5.3)

Once the data are collected and the failure envelope is defined for particular set of configurations,

engineers can calculate the bearing/bypass loading of each and every 'unit-cell' of composite joint

structure, compare it with the failure envelope from the test results, and generate a margin of safety for

each joint. The process is shown in Figure 5.6 illustrates this typical design process. The component is

isolated and boundary loading is calculated (a. load Path analysis), then individual unit cells are broken

up to calculate bearing/bypass load of each unit cell (b. joint load share analysis), and then each unit

cell bearing/bypass loading is compared with pre-determined design curve (Figure 5.5) to generate the

margin of safety (c. margin of safety calculation). This process is the brief summary of traditional

composite bolted joint design, which is the combination of three individually separated procedures.

The new composite design approach starts from the premise that the composite bolted joint

problem is a part of the whole, a system problem, instead of looking at it as a linear combination of

bearing and bypass loading breakup. Composite material does not differentiate the loading

combination at the far field edge of "unit cell" but only responds to the local stress field directly applied

to the area of failure initiation. Complex 3D stress behavior for a random design configuration of

37



composite bolted joints cannot be accurately described using 2D stress field, classical laminated theory

and linear superposition based bearing/bypass loading approach.

/
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Figure 5.6. Typical Bolted Joint Analysis Process (Ref. 5.7)

The new procedure begins with the same global analysis model for load extraction of sub-system

level components (Figure 5.7), however there are no steps b and c of bearing-bypass breakup analysis.

Global Model Rive t s imulation for
lap-joint load trans fer

Local Model Rivet Model
S tiff spring

- Rive t Spring

Lod dto n wauwySLm

Figure 5.7. FEA based Bolted Joint Analysis Process (Ref.5.2 & 5.4)
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Composite joints are no longer treated as independent problems where whole sets of failure

envelopes need to be established for each and every design configuration from test, but are rather

treated as another composite material problem with different sets of boundary conditions and loading

conditions (though more complex and difficult). If the joint configuration behaves the certain way that

the local stress field is exceeding failure load of particular mechanism of composite material, it is

declared as 'failed'. There is no longer isolation of 'unit cell' from multiple fastener configurations -- the

entire design is analyzed to assess the integrity of the design as a system, not just sum of individual unit

cells (Figure 5.8).

Figure 5.8. Stress Field of Multiple Fastener Configurations

The reason this system-level approach to solving composite joints problems is not being used is

partially due to the time gap from 1980s bearing-bypass approach to 2000s environment, with several

orders of magnitude increase in computation power and latest development of modern FEA based

design and analysis tools. Production life cycle of airliners is usually 20-30 years, and hence the new

product development project happens in about the same time (15-20 yrs between major product

developments). Also, long product life cycles (20-30 years) and the conservative nature of the aerospace

industry usually means that a new product development project is using tools and processes established

during 'last' major product development cycle, which is 20 years behind for most of the case. The new

initiative in analyzing composite bolted joint is currently being proposed and demonstrated within

Boeing technology organizations.

In summary, the new composite bolted joint analysis procedure states:
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1. It is a "composite" joint system problem with bolted joint boundary conditions, not independent
'composite bolted joint' problems.

2. Composite material does not have an 'intelligence' of breaking up bearing/bypass load at the far
field edge, then fail according to pre-defined far field loading combination, but it just fails when
local stress field reaches failure stress/strain for most susceptible failure mechanism (material
property).

3. Load share and failure analysis should be performed as single problem, because failure progress
and load share state keeps interacting each other (Figure 5.9)

4. The entire joint configuration with multiple fasteners should be looked at, not just single
fastener of test coupon configuration (Fig. 5.7). It is not the problem of failure of single bolt, but
degradation of system stiffness as a whole.
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Figure 5.9. Integrated Composite Bolted Joint Analysis
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CHAPTER 6

CONCLUSION

6.1. Solving today's problem using yesterday's knowhow

Almost all new products in aerospace industry are evolutionary improvements on previous

developments. A few exceptional breakthroughs in technology such as the jet engine (turbo jet,

turbo fan, turbo prop engines), supersonic aerodynamics (swept wing), stability and control (Fly

by Wire, Relaxed Stability), Material (semi-monocock, Aluminium, Titanium, Carbon Fiber

Composite) and avionics boosted aircraft performance and economy. However, the overall

system configuration remained the same after World War II, especially in commercial airliner

sector, starting from the ground breaking De Havilland Comet and Boeing 707. Long product

lifecycles (around 30 years) and fluctuation of airline industry economics means all new

development effort comes in 15-20 year intervals, depending on remaining life for current

products and market/competitive pressure. During these intervals, the industry is largely in

'production mode', providing derivative (stretched, shortened, new avionics, new cabin

arrangement, new engines etc) aircraft to answer market demand. When new product demand

arises within 5 years from the first increment of in-service aircraft reaching end of lifecycle, the

manufacturer starts developing new airliners, gathering all current available technology,

predicting market demand, perform initial sizing based on those specifications, and initiates a

new product development cycle.

Once the development project goes into high gear in the detail design stage, the technology

gap between old generation processes based on previous product development project

(baseline) and current design requirement becomes the problem. Most of the sizing

relationships, engineering organizational structure, task division and integration aspects of the

entire system, valuable 'lessons learned', and, most importantly, technical leadership structures

are all based on the 'last operational' airframe project experience. Combined with lack of
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market competition (there are two in commercial airframe, 2 in commercial jet engine industry,

and 3 in military aircraft sector), complacency acts as a barrier to technology insertion for the

new design.

Figure 6.1. Typical Design Process of Commercial Aircraft Product

Solving today's problem, which requires faster, more efficient, leaner and more integrated

processes with the old processes creates a new set of challenges (in addition to technical

challenges associated with solving new problems never before attempted). Current problems

experienced in the Airbus A-380 (integration, production issue), A-400M (engine program

delay), Boeing 787 (supply channel, fastener problem), KC-767 (integration issues) are in effect,

the outcome of trying to solve new problems using old procedures and mindset. Aggressive

scheduling, ambitious technology insertion (20 years in-between product, lots of new

technology available), and impressive business models and slogans (lean, global sourcing, JIT,

six sigma, kaizen, ACE, etc) are ahead, largely lead by management and semi-technical leaders,

but on the actual battlefront, the tools and processes are outdated, and people executing them

are equally behind in conceptual frameworks.
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Changing engineering resources and organizations accustomed to 'evolutionary design' task

into 'revolutionary breakthrough design' teams and methods is not something that can be

achieved overnight, let alone through buzzwords and management slogans. Something else

must be done within the engineering community to cope with new tasks and challenge for the

21st century engineering projects.

6.2. Integrated Analysis solving today's problem

As described in previous chapter, the traditional aerospace design processes (from gas

turbine and airframe industry experience) are based on each firm's last projects. One of the

biggest changes between engineering environment in the late 80s, early 90s and late 90-2000s

is the extreme advancement in computer aided engineering tools and methods with advent of

high speed computation power. For example, the Author's first PC in 1987 was an 'amazing' 33

MHz Intel 486 CPU, 16 MB video memory, 100 MB main memory, and 100 MB hard disk, and

current (2007) PC is a little 'outdated' 2.16 GHz Intel Core Duo (4.32 GHz thorough output), 256

MB video memory, 2GB RAM, and 1 Terabytes (1000 GB = 1000 x 1000 MB) hard disk space. It

was taking days to run my research problem in 1999 using Finite Element Analysis solver, and

now the same problem takes less than an hour to finish.

Advances in computational performance and especially structural analysis solver

technologies since the late 1990s made it possible to perform not only larger scale analysis, but

also to solve multidisciplinary, multi-domain problem in a single set of analyses. Traditional

structural analysis categories are:

1. External Loading Analysis: Aeroelasticity, Flutter Analysis

2. Internal Loading Mapping: Linear Static, Linear Dynamic (Modal Superposition)

3. Durability/Strength/Stability: Linear Static, Nonlinear Static, Buckling, Post Buckling,

Fatigue, Damage Tolerance Analysis

4. Kinematics, Motion Solution: Rigid Body Dynamics

5. Numerous hand calculation procedure based on pre-FEA era (pre-80s) for analysis

category 1-4
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Each category of problems will further be divided according to assigned sub-system

(fuselage, empennage, wing, landing gear, propulsion, control and internal subsystem [interior,

fuel, electronics, etc]), solving the same class of problem, but for different design objects.

Usually different analysis models and processes are executed for different classes of problems

(model size and resolution), resulting in numerous analysis models representing same design

components, but solving different problems.

Using an integrated analysis approach, many traditional analysis work breakdown structures

can be streamlined as sub-system and system level analyses consisting of many components,

dispersing component level structural analyses as separate tasks. Sub-system level analysis is

based on larger, higher resolution system analysis models with enough resolution to generate

the required information for detailed component analysis.

Assumed determinant system only, conservative, overdesign

No

Yes -

Figure 6.2. Typical Design Iteration Process for Sub-System Level Analysis
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Each component level analysis points to separate structural analyses to answer individual

component requirements. Once the integration/streamlining completed, the process becomes

as Figure 6.3.

At tl*F 0ex8Ady Motlac - FE Anoysis No

Stvs /Fatiem?
stren~h?

Yes

Next 0eIgnPhese

Figure 6.3. Design Process based on Integrated Analysis Model

Advantages of this approach can be summarized as follows:

1. Eliminates the boundaries between traditional load generation system analysis and FE

based structural analysis.
2. Minimizes tendency to overdesign by performing one analysis with minimum system

decoupling, which would usually require separate analyses with separate load

calculations (additional resources), hence reduces successive additions of analyst

'conservatism'
3. One system analysis model will provide all design information (structural integrity) of

most of components within particular system.
Exuwplei (' conponecnts:~ ; anaf yaia: a; reslta )

FEnn.......ng.dEays(n....ny

Figure 6.4. Integrated FE Analysis (one model, one analysis, 5 components
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The same approach can be applied in composite bolted joint design analysis by solving the problem

as a whole instead of breaking up individual components as is done for the current process, which was

shown in chapter 5. One drawback of this approach is that the analyst who is working on this approach

must be exceptionally skilled to correctly set up the model. Systematic training of engineering resource

to become fully capable of performing larger system level analysis takes some time (6 months to 1 year).
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6.3. Preparing for the next Challenge

Considering the time gap from the last product development cycle of the aerospace

industry, particularly in the airframe sector, it is understandable to see the general culture of

resistance to change. "This is how we did it", "If it worked well before, why change?", "We

know how to do this, you don't", and "It takes too much time and resource to implement

change" were the typical response from senior technical leadership, especially in the company

doing well or formerly dominant. Only when there is a serious risk emerging does the

engineering community mobilize a task force to resolve problems with whatever it takes.

However, once the product finally settles in and stable maturing stage starts, the program

lapses into 'supporting production' mode, providing derivative product from time to time for

the next 30 years of program lifecycle. As the development cycle gets longer and with fewer

competitors in the overall aerospace industry sector, this tendency has grown even worse.

The US aerospace industry in defense sector is still dominant in the world, but in the

commercial aircraft industry, especially large airliner manufacturers, only Boeing remains in the

U.S.. The A-380 from EADS appears to be under control, and the 787 will eventually become a

successful product. While Boeing and Airbus swap position in each market segment (very large

aircraft to Airbus A380, 767 sector to 787), the next big competition will come in the form of A-

350 900/1000, 787-10 or 777 derivative. Japanese manufacturers will unlikely stay as a loyal

supplier (partners) as all of them are developing regional airliners in the segment of 737/A-320.

China is developing their own regional airliners, as well as Bombardier of Canada, and the

Sukhoi super 100 program will challenge the market position of two market leaders (Boeing &

EADS).

The engineering community in the aerospace industry should start streamlining their

processes to respond to challenges from all market segments instead of growing complacent in

the 787 and its derivative products, which is in the medium size double aisle commercial airliner

market segment. Without establishing more agile and efficient engineering processes, it will be

very difficult to develop multiple platforms in relatively short period of time, forcing the
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company to form an alliance (Japan, China, etc), resulting in concession of our market leading

position. No, brilliant management will not fix the inefficient engineering processes -- it's an

engineering communities responsibility to win the competition in the form of superior and

most efficient product in the final product performance and competitive engineering execution

to make it happen.
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Appendix

Composite Failure Modeling and Analysis (CFMA)

using FEA (V.10)

Background, Theory, Framework and Application
Junghyun Ahn, Ph.D., M. Sci.,SD+M

o 2008 by Junghyun Ahn. All rights reserved. No part of this publication may be
reproduced or transmitted ia any form or by any means, electronically or
mechanically, including photocopying, recording or any information storage or
ferieal system without written permission of the author. 51
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Some Thoughts....

Technical leading/managing consists with 'being technical' first and then

'managing' because;

- You can not hire good technical engineers if you do not know technical detail.

- You can not train new engineers if you do not know the detail.

- You can not transfer procedure if you do not know the detail.

- You can not outsource task you do not know how to execute.

- You can not delegate task you do not know how to.

- You can not integrate stuff if you do not know the detail.

" You can not 'lean out' unless you are willing to break out your 'comfort zone.

- Talking about 'LEAN' has nothing to do with "Being LEAN"

- "Shooting in the dark, Hoping for the best" approach works well, as long as one

can afford and customers are patient.....but money is limited and customers are

not patient...
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Background of CFMA

- Failure analysis of composite material using Finite Element Analysis

- High end FE based stress analysis is given (No Excel, Not Hand Caic, No Linear Static)

- Test data is used for initial model definition, calibration and validation

- It is not fully deterministic (no need test data) predictive analysis

- Initial Model is calibrated (correlated) against simple set of test configurations, then

robustness is tested using complex configuration. Established model is

(aka predict)' to generate data for realistic condition using "similarity"

Junghyun Ahn
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Composite Material
Revisiting Generalized Hook's Law

If following strain energy density function exists,
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Composite Material
- Orthotropic Material
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Displacement, Strain, Compatibility & Equilibrium
Displacement (3 variables) u1 ,u 2 ,u3

Strain (6 equations, 3 unknowns)
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Equilibrium, Plane Stress and Plane Strain Condition

Equilibrium Condition

...
y ,j
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Plane Stress (thin plate)

All out-of-plane stress components are zero.

Plane Strain (thick late)
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All out-of-plane strain components are zero.

x

Generalized Plane Problem (Lekhnitskii. 1963)

Stresses and strains do not vary along prescribed direction (z)
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Coordinate Transformation (plane stress condition)

Transformed Compliance Matrix
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Classical Lamination Theory

- The laminate consists of perfectly bonded layers (laminae)

- Each lamina is a homogeneous material with known effective properties

- Individual lamina can be isotropic, orthotropic, or transversely isotropic

* Each lamina is in a state of plane stress (stress in z is zero)

- Laminate deforms according to the "Kirchhoff-Love Assumptions" for

bending and stretching of thin plates:

- Normals to the midplane remain straight and normal to the deformed midplane

after deformation (out of plane shear stresses are zero)

- Normals to the midplane do not change length (z displacement is a function of

(x,y) only)

- Essentially linear plate theory (pg. 17), which is itself extension of linear

beam (Euler beam) theory (pg. 15)
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Classical Lamination Theory (continues)
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Classical Lamination Theory (continus

-IY M
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[A]: in-plane stiffness matrix

[B]: Bending Stretching Coupling Matrix

[D]: Bending Stiffness Matrix

- [A] is a function of layer thickness, independent of stacking sequence

- [B], [D] is dependent on the stacking sequence
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Classical Lamination Theory (continues)
Classical Orthotropic Laminates
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Failure Mechanisms of Composite

a) Fiber Fractures

d) Fiber/Matrix Debonds,

b) Fiber Pullout

e) Fiber Kinking

c) Matrix Cracking

Interface

Fiber
Split

Interface
Crack

f) Radial Interface Cracks
and Fiber Splitting

- Fiber Fracture (a): maximum tensile fiber
strength

- Fiber Pullout (b): Fiber Fracture (a) + Debond (d)
* Matrix Cracking (c): Matrix strength exceeds

- Fiber Kink (e): Microbuckling due to
fiber/matrix/interface interaction (material +

geometry)

- Fiber Splitting and radial interface cracks (f)
occur when the transverse or hoop stresses in
the fiber or interphase region between the fiber
and matrix reaches its ultimate value

At the laminate level, micro-level mechanisms manifest
themselves as lamina failures in the form of transverse cracks
in planes parallel to the fibers fiber dominated failures in
planes perpendicular to the fibers and delaminations
between layers of the laminate

(a) kMx
Fig. 2. Traovem crack ini~tit from fiber, matrix hinfatihav.

One laminate
Another laminate

P

_ P

Adhesive or cocured interface

Stiffener web

Applied pressure

Stiffener flange ace
Adhesive or cocured interface

Delamination
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-Line of thought;

- Composite Failure is a function of interaction at the fiber and matrix length scale. Therefore

we model that length scale and analyze failure behavior, then translate failure effect to

larger length scale (lamina and laminate): Micromechanics based Failure Modeling

- Composite Failure can be modeled more efficiently if the failure can be represented in

Lamina level using homogenized (rule of mixture) lamina material property and

stress/strain components: Mesoscale, lamina level Failure Modeling

- Composite Failure is best modeled in Laminate level, which is same length scale as common

test configuration, so identify global failure using test data and/or resolve into lamina level

using CLT: Common Laminate Level Failure Analysis

- Usually trying to make one simpler, less cumbersome and elegant, such as Von-Mises Yield

Criteria

f 1,= f I,)= (E oc g (g-e=



lir
CFMA Framework (General Composites)

Update DamageState ()f

C. Damage Rearesentation (optional except BJ
problem)

- Contact Based
- Delamination Opening/Closure

- Void Elements
- EFM (elements are there, but no effective

stiffness)
- Script based (Python)

" Real Time Element Removal (tension/compression)

Junghyun Ahn



Corresponding Metal basis FEA Process

A. Yield1C<teriaA. Failure Initiation Criteria

I
I

C. Damage/Fracture Mechanics

Conventional Metal FEA

'ir

I-

CO

I
I

C. Damage Representation (rupture),

CFMA
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Defining Failure Initiation Criteria (A) (Lamina Length Scale)

There are 7 major failure mechanisms, and possibly more. Currently most of attempts

are focusing on representing few dominant failure modes manifesting in lamina level

(hence laminate), also known as Mesoscale failure description (accumulated effect of

Micro-Level failure modes (fiber-matrix length scale) as in pg. 40

- Fiber Tension (1), Fiber Compression (crushing, buckling) (2), and Fiber Shear (8), Interface

debonding (9)

- Matrix Transverse Failure (tension, compression)(3), Delamination (tension, compression)(4)

- Fiber/Matrix interface interaction (10)

- Out-of-plane Failure (direct loading in Z) (5)

- Pinching, Crushing within confined volume (6)

- Coupling with loading source (compliant loading source such as bolt, bird, blade, ice, etc) (7)

- Global buckling (geometry, loading dependant), followed by or initiated by composite failure

* (11)

- Typical Laminate Failure (in-plane, simple bending, smooth response): (1),(2),(3),(4)

- VCCT: (4)

- Typical BJ: (1),(2),(3),(4),(5),(6),(7)

- Ballistics Problem: (1),(2),(3),(4),(5),(6),(7),(11)
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Quadratic Failure Function, Tsai-Hill Family (A)
Represents an attempt to apply Hill's anisotropic plasticity to failure of homogeneous,
anisotropic materials (quadratic function)
- The quadratic criteria are based upon the mathematical premise that a second-order curve

has more parameters with which to fit experimental data, but not as complicated as higher
order approximation.

- These criteria is generally not based on physics of the failure mechanisms, but assumption
that composite will follow plasticity characteristics, and better/robust correlation feature.

- The sign of the normal stress components must be known before if the positive and negative
strengths are different

(G + H)c,2

-2F 2o- 3 +2L 2

3 pure shear cases yield;

3 Uniaxial cases yield;
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+2 2+
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Tensor Polynomial Failure Criteria, Tsai-Wu Family (A)

- To overcome original Tsai-Hill criteria, adding feature to
and compression

f = F a, + a-uO7 > 1

differentiate between tension

&+F +F+F 2 +F3U32 +44U4 F55 56 .ACI )= Fal + F2 2 + F0-3 + F111 +22C-F p+F2+F -+Fgn

+ 2F1 1U 2 + 2F30-3 + 2F2 3 2o 3 2 1

Plane stress (1-2) 3 =13 = 23 =0
Transversely Isotropic (Y=Z)

++F2 +F 2 +F6 + 2Fo o2 >1f ()= F1 1 + F2 U2

1 1 1 1
F 1 =-+-, F2 =- - -u=XF Ft It~;

+ j7 + (bia +

I
X~ X('

( Ixt xC

F- 1=

ar I ; Interaction Parameter, set to zero typical
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Strain Invariant Failure Theory (A
- Failure 'INITIATION' theory based on observation (compare with pg. 7) of continuous

fiber lamina failure.
- Damage initiation is defined as intra-lamina (within) and inter-lamina (between) crack

- Interlamina failure (out of plane opening) is dominated by volume increase of matrix
material, hence hydrostatic strain invariant: J, = e, +.6 + 6 = + 2

- Other failure initiation (distortion, deviatoric) follows by second deviatoric strain invariant

6
-6 

z)

4 Y y-z xzi> J

Lvm = 3J = 1/2. [(ej -62 )2 +(.6 - 3) + (2

- Von-Mises equivalent strain is tracking variable for deviatoric failure initiation
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- 3)2
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Hashin Family. Original (2D) (A)

- Break up each identified failure mode, based on observation that each failure modes
are competing each other during loading phase (1)^(7) and propose failure function of
each modes (Plane Stress Lamina)

- Originally incorporated failure function modes are;
2 /\2 A 2 2

+Ka 1 2 Ff, 0 Fiber Tension y s Fm, ( 2 2 0 Matrix Tension

2 T Ff , d5 0 Fiber Compression + - + 2 FS

longitudinal tensile strength;

longitudinal compressive strength;

transverse tensile strength;

transverse compressive strength;

longitudinal shear strength;

transverse shear strength;

the contribution of the shear stress to the fiber
tensile initiation criterion

FIBER MOOES

FAIL URE
PLANE 1

M

X2

A2 0 Matrix
7"22 Compression

aTfRIX MOOES!
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Hashin Family, Generalized 3D (A)

Original Hashin Theory extended to 3D (Stress Description)
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Hashin Family, Generalized 3D (A)

- Original Hashin Theory ex
Oniginal specimen

/vd

tended to 3D (Strain Description)
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Damage Accumulation. Progress Damage Modeling (B)
- Based on observed failure phenomena of certain system, how are we going to

describe this in mathematical form ?
- 2D laminate basis and full 3D solid composite basis length scale (Mesoscale), VCCT is

direct modeling of fracture interface (Microscale).
- Failure Initiation Criteria (A) is the process of 'detection', Damage accumulation

modeling (B) is the process of 'tracking' effect of (A) to the material using mapping
process (fI) and updating (A) by updating state (f2)

- (B) has specific length scale to be represented, and they are based on observation
and test result (1)"(11), under the setting of using FEA (AKA Generalized Hook's Law)
and 3D solid composite, variables representing damage are confined to use;

D pI D1 D3 0 0 0

D12 D22 D23  0 0 0

D13 D23 D33 0 0 0

D44 0 0

D66

'81

6 2 22

72 3 -723 U
713 713

712 712

- How do we incorporate effect of the system damage under above relationship
(equilibrium) ?

U2

U3"23

"13

{P} =[K(u,bc,E)]-{u}

\14

74



Damage Accumulation. Progress Damage Modeling (B)

0

0

0

0

1
(1- UI)Ea

-Vab

Ea

-va,-ac

Ea

0

0

0

0

0

0

0

0

1
'ba

Eb

1

(1- U2)Eb

-Vbc

Eb

0

0

0

E. =(I

w is a variable describing damage (DV)
w = 0, no damage
w = 1, complete damage

{ } Cdamage]{(}

{al = [Ddamage] {} = [Cdamage

lilir

,~
I/

0 ( 1
(1 -wGac

0 
1

(1-WZb)Gab

0

0

0

1

(l-t 4 )G,

1

(1-- 3)E,

0

0

0 0

damage

L
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Line of thouiht (B) on damage variable

- Linear degrading: make it drop as quickly as possible, constrained by solver
robustness (convergence issue when material degrades too fast for implicit solver)

- Quadratic degrading: use second order smoother degrading, which has more
'benign' characteristics using 'smoother decaying', again limited by solver
performance

- Script based, in-between increment material swapping does not require direct
material degradation during iteration, but with limit. Using Linear solver (NL FEA
implies stiffness update using iteration), while updating material (ok state and failed
state)

- EFM applies nodal force to affected elements, using linear solver, requires additional
mapping (explained later) using generalized micromechanics level library to resolve
failure criteria index into corresponding failure mode, and resolving into
corresponding nodal force

- Explicit solver based degradation does not have limitation of Implicit solver based
approach (full nonlinear solver by definition, any kind of degradation applicable
limited by stable time increment condition), however, Explicit solver has its own
advantages and disadvantages

- All DV implementation to FEA implies very high-end FEA deployment, which requires
significant care to establish process (Boeing VCCT level process maturity minimum)
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MLT, Continuum Damage Mechanics (B) in Works)

- Proposed by A. Matzenmiller, J. Lubliner, R.L Taylor

- Homogenized continuum is adopted for the constitutive theory of

anisotropic damage and elasticity.

- Exponential decay function is proposed, in which several 'degrading
characteristics' are treated as 'material property'

- Fiber damage behavior (brittle), in-plane

- Fiber crushing behavior (incompressible), out of plane

- Matrix damage behavior (compliant)

- All (included) failure(damage) state, provided by failure initiation criteria,
are evaluated in each increment, picking up the maximum damage

parameters to degrade corresponding material property.

0 l-Degradation Function (DF)

1- exp 1-r"j M oftening Variable

r Damage Threshold (DT)

j =Failure Modes
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MLT, Continuum Damage Mechanics (B) (in Works)

If the generalized Hashin criteria is used (j=1~'5)

j=1 -exp { 1

f -r =0,r1 1,1j 5

- How to map effect of 5 damage modes to 6 material coefficients ?

- f f3are fiber damage related

- f4 ~#f5 are matrix related, and coupled, therefore following mapping relation is
used

w,= max{q 1 },i=1.

[q] =

1

0

0

1

0

1

0

0

1

0

1 0 0

1 0

1 0

1
1

1

0

0

1

1

0

1 I 1 0 1

No Summation

mI'ir
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Additional Damage Characteristics to add(B) (in Works)

- When fiber fails in tension, affected material property degrades to zero

- After damage initiated in fiber compression, the residual compressive
strength will still take the load, compressed to down to very small volume in
FEA model

- Both matrix crack (transverse crack, delamination) are behaving differently
depends on 'opening' and 'closing/sliding' state

- This is common for all CFMA, as long as they are following;
- 3D solid/2D laminate Composite description
- Equilibrium condition (Hook's Law)

- Identify failure modes (A), then mapping(f2) damage effect(B) to compliance
(stiffness) matrix

Junghyun Ahn
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Element Failure Method, Tay, T.E. & Tsai (B), from Prof. Tav's slides

(

7-

A

4-

+

L

v

The process can be

programmed.

External applied
nodal forces

ge through
fnodalforces only. Net nodal forces

iatrix of the finiteofdjen of adjacent
elements in *

MMM
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Physical Representation of Damage (C)

- In tension failure, when effective material property of damaged elements

becomes zero or near zero (FEA elements likes to extend), as long as solver

can take it.

- In compression failure, when effective material property of damaged

elements becomes near zero, most of current solver/element (except

specialized zero thickness element such as cohesive zone element) does not

like it at all (zero/negative volume singularity situation).

- Most of simple lamina failure analysis such as simulating tension dominant,

failure initiation in compression does not need to concern much about this

domain.

- Problems when failure is governed by high bearing load and direct

penetration such as BJ and Thick Armor (hybrid composite armor of tank),
this can not be ignored.

Junghyun Ahn 81
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Composite Bolted Joints Modeling and Analysis

- Worst of all, BJ problem happens to have all the possible failure modes
acting up almost at the same time, competing each other.

- 3D out-of-plane mode is significant (bolt head/nut pinching)

- Crushing failure is there, manifested by contact interaction.

- Delamination type failure mode (blooming) is significant

- Bolt compliance (tension, bending, compression, shear) affects the entire
system, creating fully coupled analysis, by definition full Nonlinear problem.



Composite Bolted Joints Modeling and Analysis
C0onto ur Plot (Analysis system)
Stress(vonMises)

1 !500E+05
-1 400E+05

1 300E+05
I 200E+05
1 101 r+05

1 001 E+05
-9 009E+04

8 011E+04
-7.013E+04

6.01 4E+04

C-RUN1 2 MAT 152, MAT 81
Loadcase I lime = 115 000000

Fruve 24

z

Y

Junghyun Ahn
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Animation
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Comrosite Bolted Joints Modeling and Analysis

21 NINXC##FBR# vs. FEA
5000 -- - ------- -- -- -

4500

4000

3500

3000

2500

L 2000

1500 -Avg. Test Data (initial slack filtered)

- Load (C-10-B)
1000

500

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

Ext. Deflection (in)
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Governing Equation of Motion (Newtonian Mechanics)

[M] ii(X,t) + B [u(X,t) + K [u(X,t)J =[P(

[M] = Mass Matrix
[B] = Damping Matrix

[K] = Stiffness Matrix
U = Displacement

P External Force

External Force will be resolved into;
Inertia (mass x acceleration), Damping (velocity)
Internal Energy (Stiffness x Deformation)

Junghyun Ahn
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Generalized Hook's Law
2

- "The power of any springy is the same proportion with the extension" (1676)
"As the extension, so the force"

zx

C$2a

a
- - -------

aY

f Original specimen

dy

OYz

e~dx

X/ 
0crO

F=K-u

8zz

yz

86zx

82,-x,-

D,D4,

D,,

31

D
D51

-D61

D12

D22

D32

D42

D62
D62

D15

D2s5

D35

D45

D55

D65

D64

D24

D34

D44

D54

D64

[E] = [C]- [-]

D6

D26

D36

D46

D56

D66

CT

UYY

7zz

-xy-

Compliance Matrix

[E-] = [CJ -[eJ = [D .-[e]
Stiffness Matrix



Ductile Plasticity
Upper Ultimate
yield tensile stress
point

yield Fracturx
point stress

Strain, e
Uniform (a)

elongation

Slope-E Slope E Ultimate
- - - -- - tensile

Yield ' stress

Fracture 1
Slope= E stress

st
-4K'o-OW Strain,

(b)

(

iear Bands (below Tf)
Slip at 45 degree (max shear)
of stress direction

Slip
Plane

CrazinR (below TOl
Formation of micro-crack
bridged by polymer fibrils

Junghyun Ahn
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Deformation Theory (Hook's Law)
Stress tensor is a function of strain tensor

Flow Plasticity Theory (slippini)
Based on theory of dislocation (physically consistent)

Polymer Plasticity
Polymer chain sliding (above Tg)

b

4- 4- 4-

A

141-



failure Theorv (Plastidiy
- What is the condition under which plastic deformation or yielding occurs

under general state of combined stress ?

- Observation/Assumption: plastic deformation of crystalline materials are the
result of slip along atomic planes or twin glide displacement. The deformation
does not involve permanent changes in the in the distance between lattice
planes (shearing action), thus no volume change. Therefore, it can be assumed
that there will be no volume change in the solid due to plastic deformation (no
plastic deformation due to hydrostatic pressure).

- Declaration: The material will yield when the maximum shear stress reaches
critical value -> Maximum Shear-Stress Criterion for Yielding (Tresca Yield
Condition)

~Ta yed=max ju LJHI2ijqii -aj I ux -cil" 3D Stress State
2 2

)yield"

1 f11- 0~ Tresca Yield Surface

Junghyun Ahn
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Failure Theory (Plasticity), Continues

- What is the condition under which plastic deformation or yielding occurs

under general state of combined stress ?

- Observation/Assumption: Observation implies that the yield condition will

depend only on the distortion enerav and be independent of the dilatation

energy

- Declaration: Plastic flow will occur when the distortion-energy in the material

reaches the value corresponding to the yielding of a simple tensile specimen

(Huber-von Mises-Hencky or Mises-Hencky Theory)

0* = 1 (, -(II 

2 - I 2 + (,,, 1= 6G 2

E

2(1+v)

Mises-Hencky Yield Surface

Junghyun Ahn 91
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Generalized Failure Criteria (Hill's Stress Function)

- Extended Mises Stress Potential to allow anisotropic behavior

A -(o 1 -Or)2 +B-(C2 -a)3 +C-(- 33 -al) 2 +2D- +2E- 2+2F- a31

- Each coefficient can be generated based on testing value with controlled
loading condition

- Alternate Form; "Volume remains unchanged during plastic deformation"

d -f ( d-def =d d a

During plastic deformation, the ratio between plastic strain increment
and corresponding deviatoric stress components remains constant (dA
= positive scalar factor of proportionality)

f(u) = F(d2 - a33 )2 + G(a33 - a 1)2 + H(Oa1 - ff2)2 + 2Lo 232 + 2Ma31
2 + 2Nar,

F = '2( + - L)F- ' (

;2 2 ,

G = 2 ()

n1 u 2 32 41 "' T2 l '22

3 ( )

2 T23

3 ( o 2

N =( - )2
2 712'

dePL = dA ' =
Oa

dA

f'

-G(7 33 - (1) + H(CI - T22)

F(62 - e733) - H(MII- 12)

-F(o 22 - a33)+ G(a33 - al)

2Na2
2MA
2La2a

Junghyun Ahn
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Few Additional Relationship
Characteristic equation

3 1 C2 + ' C -3 = 0p p 2p 3

Stress Invariants I1 = aC + 2 + a3

Maximum Shear Stress

_ 1  -1  -a 3  3
= mx' I? ax _ 2 2

2 a1 2 + a2 + + a3 c+ 1

Characteristic equation

3 1 2+I G -I1
p IP p2p 3

=4)

Strain invariants

I = s +6 +& 8 = & + +&
1 xx yy 2 3

cvz
9y0;Z

9 Xxx

8

&X Xl & Xxxxy xz

yx yy yz

zx Zy Z7

Cx:
1&2 + &2&3 3&1

Maximum shear strain

?n ax =~ 2 C2~ E3 3 F1

2 2 2 2
S1 & 2

Junghyun Ahn
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xx xy

8 8
y*x yy

+
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Few Additional Relationship (Plasticity)

Under Maximum Distortion Energy Theory

(C )2

o-, =o/2+ (0-/2) 2 +(r) 2 , a,, = a/2- (/2) 2 +( 2

(-)2 +3(_)2 a( )2

-o-)2]- +( -+)2 ++(- +3 2 2

Deformation Theory

Etotal - elastic + '6plastic

de= ' _ 3 dc'

6-- 2

3 dii

2

2 2 E

A B C,

* A. Very ductile, soft metals at
room temperature, other metals,
polymers, glasses at high
temperature.

- B. Moderately ductile fracture,
typical for ductile metals

* C. Brittle fracture, cold metals,
ceramics.

dZ7P = {(dP -dv)| +(dZI -d) 2+(d7P -dI)]

mllir

6

4

v

CTVM= [(o

- F C (,)2 =(O)2
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Linear Elastic Fracture Mechanics (L.E.F.M. Damage Tolerance)

- Given initial damage (after fatigue crack initiation, manufacturing defect,

local damage due to certain event (impact for example), how much time

does it take for crack to become diverging (stable crack growth ?,

catastrophic failure ?, or no growth ?)

rb

origin at leadir.g
edge of crack

Pd5 = dU+Gda+dE, +dEk
Assumption
*Crack is already initiated
-Material is Linear Elastic (Hooks Law)
*Quasi-Static
oPlasticity zone near crack tip is very small

Gda = Pd8--d L

G= P -
2 da 2

= Pdo-I PdS
2

p2 d Pda
SP "/t

=_ 1
2

P2dC/da

G = Energy Release Rate
C = Compliance =6 / P

Mode 1, 11, l1l Energy Release Rate: G,, Gil Gill

z1-7II Kic2 = E* -Gc
E* = E

E* =E/ (1-- v 2 )

K = Fracture Toughness

Plain Stress

Plain Strain

Junghyun Ahn 95
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Linear Elastic Fracture Mechanics (L.E.F.M. Damage Tolerance)

- Stress field around crack tip described by K (stress intensity factor)

- Crack grows when stress field reaches critical dimension Kic (fracture
Toughness)

Crack Growth Rate Curve

-I

Phase

Phast I

K, i

I

Phase I

hase

tttft

Stress Intensity Equation

K = Ycn -t a

s reached

da = f(a,AK m) -dN

Then integrated to calculate cycle to critical crack
length

log(AK)

Phase I: Crack initiation
Phase II: Stable crack-growth

Phasc III: Unstabic crack-growth (fracturc)

lmlir
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Euler-Bernoulli Beam Theory (Simple Beam)

~t -p1

o is

- Long and thin (/ >> b, h), Loading in z-direction, no torsion/twist

- No stress in y-direction (YY, oa oY = 0), >> , G >> a

deformed state (capital letters)

W

at midplane
undeformed state (small etters)

- Plane sections remain plane and perpendicular to the mid-plane (Bernoulli-Euler Hypothesis)

dw
u(x,y, z) -zO5 -Z

v(x, y, z) = 0

o = EE, =-E-z-u'=-E-z-w"

beam
(F, , M found from stati)

F and II~u
M = EIw"

S a, b dz

M fh ,b dz

I - zabdz

I
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General Beam Theory (Timoshenko Beam)
- For shorter (deeper) beam, shearing deformation needs to be incorporated
- Deformed plane is no longer perpendicular to neutral axis

A z

D

-XiS '. 1/ d

A Uz y N

SD M Z
\CW X ---

/ (dX -" ------- \d
neutral axis B

dw
ux =-zy/(x) =-z d

dx
d 2

Oat =-Ez
x =

G(div div 0
dv d-)

dw
ux = -z g(x) # -z

dx

-Ez dy
dx

c =G ~+C =

Euler Beam Timoshenko Beam

- Shear Deformation is included, suitable for description of sandwich composite beams

I'ir

~~1

neutral

\dV

dw~G - ({x)+ddy
o G MIX+



Plate Theory (Classical, Kirchhoff's Plate Theory)

D

Thin plate theory

midplane

midplane (qfter
def mation)

I I
a

h
80 h

a
4CX+2 a4

+ 2 2

D Et'
12( - 2

a

- Linear, elastic, small-deflection theory for the bending of thin plates

* Slope of the deflected surface is small

* Plane normal to midplane remains normal and straight after deflection (no shear in xy & yz),

midplane surface remains unstrained

- as is small compared with other stress components

- Two dimensional generalization of beam theory

Junghyun Ahn
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Stability of Structure

[M]- [ii(X, t)] + [K] -[u(X, t)] = [P(X, t)]
- Conventional terms: (Global/Local) Buckling, Natural Frequency, Resonance, Flutter, etc

- Refers condition when there is no unique displacement solution for a given loading condition
(AKA Eigenvalue Problem)

[K]{u} = {P} [M] {ii} + [K] {u} =0

[A(-]]{u} = 0 ([K]-_]W2[[]]){u

det [A-A[]K=-I ) p 2M10}f =-0
det[ K] u - A [I 0 A- cr,i |]z f

- Solution for Eigenvalue (Linear Buckling Analysis) gives Eigenvalue Buckling Mode
(Mathematical, Anti-Conservative)

- Solution for Modal Analysis (Natural Frequency Analysis) gives Frequency Mode
(Mathemati I, Anti-Conservative)

- Force-Response and Full Nonlinear Stability Analysis give full solution of given system
response

1.0 ----------- A B

Load. P

Displacement
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Understanding FEA (solving for displacement)

IDEALIZATION DISCRETIZATION SOLUTION

Phtysical Mathematica FEM Discrete Discrete
system mo del model solu tion

Stion errorj
Discretization + solution error

Modeling + discretization + solution error

VERIFICATION & VALIDATION

[F] =[ KP-[u]

[u] = [K -1[F]

Junghyun Ahn 101



Linear FEA (solvina for disRlacementl

Linear Static

[F] = [KJ-[uJ

[uJ =[KJ] 

41]

fx2H

42~

43

fy.

Nodal
forces

Kx2xl

~x 1;
traxy

K Y

I'-

3

f4=

1 2

K 2 K KI, 2 Kx,,3

Kvyyl Ky3x2 Ky 2 Kp, 3

MaseKr Ktxgx
Xv,: K2x2 Kx2y Kv2

$2371 K K-1 K'y,
K, , K. Ky ,,

Master stiffness matrix

3

Li
-'II

i 0 mwZrnrna.u 0

12)

-F

A ~ v

3VL Eq4

ill -- J

I 2 d

EA -

F =kd =--d, F =A-
L

I1ale t
mog shiness

fxi
.f4A

0
0
0
0

L
0

-1
0

- d - -

-1 0 0,
0 0
1 0 1 ujl

i 0 O jL -yi -
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Kxly3 Uxi

K

Kx u

K2y3

K y u,_

Nodal
displacements
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Nonlinear FEA

- Nonlinear Static

P0

EZEc J

u (displacement)
P (external load)

K=K(u) (Spring stiffness)
Load

la

U Displacement

PU-
K
P

Linear Static

Nonlinear Static

Ka

a

Ko Ko is the initial stiff nesc

. --Ca

U0

Assuming smooth, small change in stiffness
Applying incremental force dP

Ua O + Ca

Ka = - - ai
K u a u

'a Ia(Ua)

Ra =P -a
Displacement

Ca = Displacement Correction

Ra is force residual
used as convergence
criteria

Junghyun Ahn 103
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P = K(u, 6, .... )- u

dP=K-du+u-dK
Needs to be solved Iterative (Newton-Raphson)

Load

P

P

. - -- - -- - - -

P S

ua
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Nonlinear FEA (Continues)

P a

aKa

I Load

UO Ua - ----
Rb

a - -- -- ------ --

K >

I s

Ua Ub Displacement

If Ra is not small, do second iteration

- Ka Cb= Ra
- New configuration of spring, ub

is based on cb

- The stiffness of updated
configuration Kb, and updated
spring force Ib

- New force residual Rb is then
calculated

Convergence criteria for equilibrium iteration is
based on residuals (specific number depends on
solver and/or can be specified: convergence
criteria is key pointer of solver robustness and
maturity), balance between accuracy and
computation cost (ABAQUS & MARC)

If the equilibrium iteration does not meet
convergence criteria after certain iteration,
incremental load dP is cutback in specified
scheme (solver maturity)

AP

t

F

Ua

-



Source of Nonlinearity (In Progress)

- Geometrical Nonlinearity
- Large Displacement

- Large Deformation

- Structural instability (buckling, post buckling, snap-through)

- Material Nonlinearity
- Plasticity, Hyperelasticity (rubber), Hypoelasticity

0-I

lninear Stress-Strain

- Creep

- Viscoelasticity
- Viscoplasticity

- Boundary Nonlinearity
- Gap

- Contact

- Follower Force

F

I

'p

Nonlinear Force-Displacement

Is there any "Linear Static Problem" in a real world ?
Everything is "Nonlinear Dynamic"
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Implicit Solver (ABAQUS Standard, MARC. NASTRAN. LS-DYNA ImDlicit)
- Newmark Integration Method

- Implicit (unconditionally stable)

8=1/ 4,7 =1/2

{}t+At ={a}, +At[(1-y){} Y{fit+A

{u}t+At = {u}, +At{z +At 2  -P {t}, +{it+Atj

{g}A ={a}, +1/2-At[{ai} i {, t+At]

{U}A =u}, + At {z}, + 1 / 4. At 2 [{ii} +a {UA]

[M] {i}t+At = P-[C]{u},A, -[K] {u}tAt

- Above equations are solved using Newton-Raphson Iteration to solve for displacement at each
time of increment. (expensive matrix inversion for tangential stiffness)

- Solution is unconditionally stable with any time step increase (advantage)
- Solution accuracy and time stepping is based on half-step residual control
* Does not mean the solution is accurate for extremely transient problem (AKA failure, impact)
* Additional error checking scheme in-between iteration is necessary to ensure solution

accuracy (analyst experience)

P. exact solution
calculated solution

e aa t

error at half step (half-step residual)

/,1



Explicit Solver (LS-DYNA. RADIOS. ABAQUS Explicit. MARC Explicit)

* Newmark Integration Method {}t+At = {a}, +At[(1-r){ii} +y{}i,,]

{u}t+At = {u}, +At{z}, +At 2 [ J6fIi4 +1{)}iit+j

- Explicit (conditionally stable), Central Difference Integration Rule

P =O,y=1/2
Ati b

Ut

-7<

At2
Utti

Ut-.

Alt

- I - - at

L +AL i
I

AtI .2

t -Ati/2 t +At2/2

{a}t+1/2 ={a}-/2 +At 2 {ii}]

{u}, 1 = {u}, + At2 {a} 112

[M1{ii},+ = P -[C]{u} 112 -[K]{u} 4

Assuming. [C] {a},+ ~[C] 11},+112
I+L

Explicit dynamics procedure does not require a

tangent stiffness matrix, therefore no iteration
or tolerance are associated to the process

- As long as conditional stability condition is met

(minimum time step), each time increment is

relatively inexpensive because there is no
solution necessary for a set of simultaneous
equations

* Most of computation expense is from element
nodal force calculation (1)

[M]{} = P - [C]{u} -[K]{u}

{1}, =[M]-' -(P - ) Calculate Acceleration at the
beginning of increment

General Form Mii+ 1= P BTr dV

B = [aO / ax] Element Shape Function
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Exlicit Solver, Stability Limit
jI

110 1/0 t0 =0 h=0

Computation of interna I
fu =fB cr d-

1c /

C

Computation of

(f"+

Kinematic
constraints

Time
h =0 5 (/n- + /in

+

ii =11

1,+I = ?2 + k+1

Before the * The explicit dynamics gives a solution only when the time
first increment (At)is less than the stable time increment (Atmi)

First time
step

4

The stability limit is defined as a function of highest
eigenvalue of the model and the fraction of damping in the
highest mode

At 2 1+{2
lumax

- The stable time increment is the minimum time that a
dilatational wave takes to move across any element in the
model (volume expansion/contraction)

E
Cd =

Element Characteristic Length

Atstable =
Le

Cd
- Smallest element size will govern system time step (takes

lot of time to get used to, and generating optimal model)
- Stiffer the material, stable time step reduces

* Heavier the material, stable time step increases
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Good FEA based Engineerin
Knowing how to use certain solver is about 10 % of the FEA work.

- FEA engineering experience is proportional to 'how many different/difficult
problems tried', not by 'how many years'

- Duplicatable, transferrable, solver (tool) independent, and flexible FEA procedure is
the ultimate outcome of FEA task, not isolated analyst doing individual analysis.

- Establish process how to produce desired deliverables for design requirement is the
key, not limiting procedure itself by tools (pre-post, solver, other in-house software).

FEA is an approximation of analytical solution, not exact solution such as test, but
cheaper and faster. Can be extremely effective when used carefully in conjunction of
test process (less, more efficient testing)

- Hardly deterministic prediction, mostly extrapolation using calibrated/correlated
baseline FEA process.

- Automation of certain portions of FE process (meshing, connecting, load application)
can significantly improve the productivity, reduce a chance of a modeling error, and
produce more repeatable results.

- 2 'ok' engineers working as a team is always better than one big shot doing analysis
alone (human error always happens)
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