
Platform Leadership through System Interfaces: A Study of
Application Programming Interfaces for Mobile Operating Systems

by

Ashok Chakravarthy Mandala

Bachelor of Engineering, Computer Science

Birla Institute of Technology and Science, Pilani, India

Submitted to the System Design and Management Program

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management

at the

Massachusetts Institute of Technology

February 2007

© 2007 Ashok Mandala
All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in part.

Signature of Auiithnr

Ashok Mandala
System Design and Management Program

February 2007

Certified by
Michael A. Cusumano

Thesis Supervisor
Sloan School of Management

Certified by

MASSACHUSETTS INSTITUT
OF TEO-NOLOGY

MAY 0 6 2008

LIBRARIES

Patrick Hale
Director

System Design and Management Program

ARCHGES

-





Platform Leadership through System Interfaces: A Study
of Application Programming Interfaces for Mobile

Operating Systems

By

Ashok C. Mandala

Submitted to the System Design and Management
Program on January 19, 2007 in Partial Fulfillment

of the Requirements for the Degree of Master of
Science in Engineering and Management

ABSTRACT
The Smart Mobile device industry is witnessing rapid growth with the increased
convergence of voice-centric mobile phones and data-centric personal digital assistant
systems. Improving capabilities in device hardware have allowed development of
complex user interfaces, multimedia and communication capabilities on these devices.
Modem Mobile Operating Systems manage this complexity in the mobile device by
administering hardware resources and providing a platform for development of new
consumer and enterprise applications. This thesis studies the architecture, design goals
and services offered by the three major mobile operating systems - Palm OS, Symbian
OS and Windows Mobile.

The Mobile Operating Systems studied in this thesis differ in their architectures, services
and programming interfaces offered to application software developers, independent
hardware vendors and OEM licensees. Their design reflects the OS vendor's strategy
toward the mobile platform which is decipherable based on a study of the OS architecture
and application programming interface. Three conclusions are made based on this study -
each of them suggests a strategy that the vendor has attempted to use to gain platform
leadership through product architecture and degree of openness of interfaces.

Thesis Supervisor: Michael A. Cusumano
Title: Sloan Management Review Distinguished Professor of Management,
Technological Innovation & Entrepreneurship.

-1-



Table of Contents

TA BLE O F C O N TEN TS ............................................................................................................................. 2

LIST O F FIG U R ES ...................................................................................................................................... 4

C H A PTER 1 .................................................................................................................................................. 5

1.1 INTRODUCTION ..................................................................................................................................... 5
1.2 O RGANIZATION OF THE THESIS ............................................................................................................. 6

C H A PTER 2 .................................................................................................................................................. 7

2.1 PALM OPERATING SYSTEM - HIGH LEVEL ARCHITECTURE ............................................................... 7
User Interface.......................................................................................................... ..................... 8
M em ory M anagem ent.............................................................................................. ........................ 10
O bject Exchange ................................................................................................................................. 13
Infrared (IR) Library ........................................................................................................................... 13
Serial Com m unications .......... ............................................................................................................ 14
Bluetooth ............................................................................................................................................. 14
N etwork Library .................................................................................................................................. 15
Telephony ............................................................................................................................................ 16

2.2 SYMBIAN OPERATING SYSTEM - HIGH LEVEL ARCHITECTURE ................................. ....................... 17
Base API................................................................................................................ .......................... 20
H andles ............................................................................................ ............................................ 21
Inter-Process Com m unication............................................................................................................. 22
Sym bian Client-Server Fram ework..................................................................................................... 24
M em ory M anagem ent.............................................................................................. ........................ 24
Process M odel........................................................................................................ ......................... 26
File System .......................................................................................................................................... 27
Bluetooth ............................................................................................................................................. 27
Communications Infrastructure................................... ..................... 28
Infrared Com m unications.................................................................................................................... 29
M essaging ........................................................................................................................................... 30
Graphics................................................... ......................................................... 30
M ultim edia .......................................................................................................................................... 33
Security............................................................................................................. 34
Telephony ............................................................................................................................................ 35
Application Engines ............................................................................................................................ 37
Text H andling................................................................................................................................... 37
Base UI Fram ework............................................................................................................................ 37

2.3 WINDOWS MOBILE OPERATING SYSTEM - HIGH LEVEL ARCHITECTURE............................................ 38
K ernel.............................................................................................................. 41
M em ory M anagem ent.............................................................................................. ........................ 43
User Interface................................................................................................................................... 45
N etworking .......................................................................................................................................... 48
Infrared Com m unications .............................................................. ........................... 50
Bluetooth ............................................................................................................................................. 51
Telephony ............................................................................................................................................ 52
Security.................................................. ........................................................... 53

C H A PTER 3 ................................................................................................................................................ 55

3.1 PALM O S EVOLUTION ................................ ........................................................ ........................ 55
3.2 SYM BIAN O S EVOLUTION ................................ ................................................................................... 62
3.3 W INDOW S CE EVOLUTION ................................ ................................................................................. 68
3.4 A NALYSIS ........................................................................................................................................... 75

-2-



C onnectivity ............................................................................................................. ................... 75
Security............................................................ ................................................ 76
User Interface..................................................................... 77
Core OS (Kernel) Features ................................................................................................................. 77

CHAPTER 4 ................................................................................................................................................ 79

4.1 INTERFACE DESIGN ................................................................... ................................ 81
Application Programming Interface.................................................................................................... 81
Service Provider Interface................................................................................................................... 83
Documentation...................................................................... 84

4.2 ARCHITECTURE .................................................................................................. ............................. 85
API Documentation............................................................................................................................. 87
Platform Framework for Application Development and Service Provision........................................ 88
Plug-in Architecture for Service Provision...................... .......................................................... 91
E volution ............................................................................................................. ........................... 92
Security............................................................ ................................................ 93

CHAPTER 5 ................................................................................................................................................ 94

CONCLUSION ............................................................................................................................................ 94

BIBLIOGRAPHY ....................................................................................................................................... 98

-3-



List of Figures

FIG. 1 HIGH LEVEL ARCHITECTURE OF PALM OS.......................................................................................... 8
FIG. 2 EVENT DRIVEN PROCESSING OF A PALM OS APPLICATION ........................................ ....................... 10
FIG. 3 MEMORY ARCHITECTURE IN PALM OS ......................... ............................................................. 11
FIG. 4 PALM OS APPLICATION MEMORY INTERFACE ...................................................... 12
FIG. 5 EXCHANGE MANAGER COMMUNICATION PATH .......................................................... ........................ 13

FIG. 6 SERIAL COMMUNICATIONS ARCHITECTURE ................................................................ ........................ 14
FIG. 7 SSL LIBRARY ARCHITECTURE AND NETWORK LIBRARY INTERFACE ................................................... 16
FIG. 8 SYMBIAN OS KERNEL AND E32 BOUNDARY ................................................................ ........................ 18
FIG. 9 USER INTERFACE LAYERS BASED ON SYMBIAN OS .......................................................................... 19
FIG. 10 SUBSYSTEMS IN SYMBIAN OS ........................................................................................................... 20
FIG. 11 SYM BIAN O S H ANDLES ...................................................................................................................... 21

FIG. 12 ACTIVE-OBJECT FRAMEWORK IN SYMBIAN................................... .............................. 23

FIG. 13 SYM BIAN W INDOW SERVER .............................................................................................................. 31
FIG. 14 SYMBIAN UI CONTROL FRAMEWORK....................................................................... ........................ 32
FIG. 15 SYMBIAN M ULTI M EDIA FRAMEW ORK..................................................................... ......................... 34
FIG. 16 SYMBIAN PHONEBOOK SERVER AND CONTACTS MODEL ARCHITECTURE......................................... 36
FIG. 17 FAMILY OF WINDOWS OPERATING SYSTEMS ............................................................ ........................ 38
FIG. 18 WINDOWS CE OPERATING SYSTEM ARCHITECTURE............................................. ......................... 41

FIG. 19 W INDOWS CE KERNEL INTERFACE .................................................. ......................... ........................ 42
FIG. 20 WINDOWS CE COMMUNICATIONS AND NETWORKING ARCHITECTURE.............................................49

FIG. 21 WINDOWS CE IRDA STACK ARCHITECTURE............................................................ ......................... 50
FIG. 22 WINDOWS CE BLUETOOTH STACK ARCHITECTURE ............................................... ........................ 51

FIG. 23 WINDOWS CE TAPI 2.0 ARCHITECTURE.................................................................. ......................... 52

FIG. 24 WINDOWS CE SECURITY SERVICES ARCHITECTURE ......................................................... 54

FIG. 25 EVOLUTIONARY TIMELINE OF PALM OS...................................................... 56
FIG. 26 EVOLUTIONARY TIMELINE OF SYMBIAN OS............................................................................. 62
FIG. 27 EVOLUTIONARY TIMELINE OF WINDOWS CE OS ............................................................................ 69
FIG. 28 MOBILE PLATFORM Eco-SYSTEM ............................................................................. ........................ 80

FIG. 29 OPERATING SYSTEM INTERFACES - API AND SPI.............................................................................. 83
FIG. 30 PLATFORM EVOLUTION ...................................................................................................................... 92

-4-



Chapter I

1.1 Introduction

Many of today's products are complex - consisting of multiple independent pieces

interfacing and interacting with each other to achieve the product function. The

independence of the components allows suppliers of those components to innovate

independently of the others. For participants of a product system wherein there is no

single vertically integrated manufacturer, innovation cannot happen in isolation.

Innovation in such systems requires an architectural vision and strategy to carry together

innovations in each of the subsystems for a coherent evolution of the product platform.

Organizations strive to drive innovation in their industry in a direction that is more

beneficial to them than their competition i.e. they aspire to become Platform leaders. A

four-lever framework to design a strategy for achieving platform leadership has been

proposed by Cusumano and Gawer1 . The second lever in this framework is Product

technology and it signifies the degree of openness of a product's architecture, interface

and intellectual property that a Company is ready to reveal to other component makers of

the Platform. Open interfaces spur the development of complementary innovative

products, Open architectures allow designers of the complementary products to take

advantage of the architecture to ensure optimal platform performance.

Mobile Operating Systems are interesting because of the huge growth of the mobile

device market, primarily in smartphones and the variety of devices being innovated. The

operating system dictates the user experience on a mobile device, its versatility in terms

of availability of third party applications and stability and robustness of the device. This

thesis will examine the architecture and programming interfaces to three major mobile

1 Platform Leadership: How Intel, Microsoft and Cisco drive Industry Innovation, 2002, Cusumano and
Gawer

-5-



operating systems - The Palm Operating System, Symbian Operating System and the

Windows Mobile Operating System.

The Mobile Operating Systems studied in this thesis differ in their architecture, their core

design goals, and services offered to users and device manufacturers. Their design

reflects the OS vendor's strategy toward the mobile platform and is decipherable based

on a study of its architecture and application programming interface

1.2 Organization of the Thesis

This Thesis will be organized on the central theme of the Operating System Architecture

and Application Programming Interfaces to the three major handheld operating systems -

Palm, Windows and Symbian.

Chapter 2 discusses the general architecture of each of the operating systems consisting

of the major modules and their interactions.

Chapter 3 discusses the evolution of the three Operating Systems, tracing the services and

features added in each major release. The Symbian and Windows Operating Systems

show a gradual evolution built on an original architecture that provides the platform. The

Palm Operating System underwent a major architectural change with the release of Palm

OS Cobalt signifying its availability on ARM processors.

Chapter 4 analyzes each of the Operating Systems, comparing their architectures and

programming interfaces in terms of evolving a strategy to build a mobile Platform.

Chapter 5 closes by making three conclusions that each suggests a strategy for

organizations to gain platform leadership through product architecture and degree of

openness of interfaces.

-6-



Chapter 2

2.1 Palm Operating System - High Level Architecture

This section discusses the architecture of the Palm Operating System based on a study of

the developer API documentation in the "Palm OS 68K API Documentation, Volume I

and Volume II". The architecture described here is a summarization of the Core Palm OS

concepts found in the official documentation. The official Palm OS API documentation

provides a more detailed explanation of this architecture. This section uses the same

terminology and description as the official Palm OS documentation of the several

subsystems and components that make up the Operating System. This documentation is

available for download at http://www.access-

company.com/developers/documents/palmos/palmos.html.

The Palm Operating system is a 32-bit operating system supporting 8, 16 and 32-bit

internal data types and 32-bit addresses allowing for a large address space for storing

code and data. It is a single-threaded, event driven operating system where only one

application runs at a time2" Palm Operating Systems starting with Palm OS vl.0 and

ending with Palm OS Garnet have been targeted to run on Motorola 68K processors.

These versions of the Operating Systems are single-threaded and have retained the basic

architecture since version 1.0. Palm OS Cobalt (version 6.x) is a complete rewrite of the

original Palm OS and is designed to run on ARM processors. It comes with a new OS

architecture providing multi-threading support. Palm OS Cobalt retains compatibility

with existing Palm OS 68K applications by including a run-time environment called Palm

Application Compatibility Environment (PACE).

This thesis will discuss the architecture of Palm OS Garnet family (version 5.x) since

they have the most installed base and availability of third-party applications. The entry

point of a Palm application is the PilotMain function which accepts a "launch code" as

2 Palm OS Programmer's companion: Volume 1, Chapter 1

-7-



one of its parameters. This launch code is a hint to the application from the OS on how it

should execute. Different launch codes are issued to wake up the application to respond

to an alarm, to query for a search string from a global find or more typically to just start

up and display its UI to the user, accept input and perform actions.

Using the
Palm OS API

Direct access
to the processor

Fig. 1 High Level Architecture of Palm OS3

Palm specifies "Palm OS User Interface Guidelines" for application developers to

conform to and develop well behaved Palm OS applications that provide a user interface

consistent with the rest of the Palm OS built-in applications. The Application

Programming Interface to the Operating System consists of multiple "managers" which

are groups of functions that implement a particular feature - applications use these

managers to perform their tasks. The following sections will explain the architecture of

the Palm OS managers and their interactions.

User Interface

The Palm OS represents individual UI elements comprising the User Interface as a

resource structure within the Operating System - the resource defines the element's

3 http://www.usenix.org/events/sec0l/full_papers/kingpin/kingpin html/arch.gif (accessed Oct 2006)

-8-

Application

Operating System

Hardware DriversSoftware API

Hardware

I



appearance and location on screen4 . The UI element is a compact C structure and

applications can manipulate it programmatically though a reference to the structure. The

following are the different Palm OS UI Managers.

Event Manager - Interface between the Operating System and Application executing

tasks in response to user actions. The Event Manager is the higher level manager of event

operations and uses the following lower level managers to generate events and send them

to the application.

Graffiti Manager - handles user input in the form of letters, numbers and symbols from

the input area and generates events.

Key Manager - handles user input in the form of hardware button presses and generates

events.

Pen Manager - handles user input in the form of user taps on a control in the main

display area and generates events.

Keyboard Dialog Manager - displays an on-screen keyboard that will allow user to

input text. The dialog is automatically displayed in the context of a text field that requires

text input. It can be displayed programmatically too.

Menu Manager - handles taps that display a menu and also taps that select a menu.

Form Manager - handles all drawing operations to render UI objects contained on a

form to the screen, dispatches events to that are not already handled by the system and

application to event handlers of active forms.

Window Manager - The Form Manager handles drawing of predefined UI controls on

the screen, but if any custom drawing is needed e.g. for animation or creation of a custom

gadget, the Window manager can be called to handle these drawing operations. The

Window manager supports APIs to draw lines, rectangles, characters, bitmaps and pixels.

The operations it supports are Draw, Fill, Erase, Invert and Paint. The Window manager

provides comprehensive drawing operations including using bitmap patterns for filling

shapes. Off-screen windows used for double buffering to smooth animations and reduce

flickering are also created using the Window Manager functions.

Alert Manager - functions to display an alert dialog to screen.

4 Palm OS Programmer's Companion, Volume I

-9-



Progress Manager - functions to display a progress dialog and respond to progress

events.

System Manager - Collection of Palm OS functions to interact with the core operating

system and invoke OS level functionality etc. Launching applications, sending

notifications to other applications, displaying the system keyboard, default event handling

etc.

Application
Event Loop
(EvtGetEvent API
call) Interfac-

I ntera e .

II

I . . . . .

A
F

I Manager Event PropagationEvent Propagation

Fig. 2 Event Driven processing of a Palm OS application.

Memory Management

All memory on a Palm OS device resides on a memory module called a "card" - a card is

a logical construct and is not the same as a storage/expansion card 5. A Palm OS card can

5 Pam OS Programmer's Companion, Volume I

-10-

r·-·-·-·-··

I



store ROM, RAM or both. All available RAM on a card is divided into a storage heap

which allows applications to store non-volatile data (memory region that is not erased on

a soft-reset. On a hard-reset of the device, the storage and dynamic RAM regions are

reset, but ROM storage is not) and a dynamic heap to store volatile data (RAM memory

region that is erased on a soft-reset of the device) like application local & global

variables, stack etc. Applications access and manipulate memory through the Memory

Manager which allocates variable sized chunks of contiguous memory. The Palm OS

memory manager relocates chunks to compact memory to avoid fragmentation.

Applications use handles to refer to these re-locatable chunks - they lock a chunk to

make it non-moveable and acquire a pointer to manipulate that chunk.

A Palm OS card (memory module)

Fig. 3 Memory Architecture in Palm OS

The Application uses Memory Manager API for dynamic memory allocations and the

Data Manager API for allocations in the storage memory. The Data Manager in turn uses

the low-level API calls of the Memory Manager to manipulate storage memory. Unlike a

desktop operating system that transfers data from disk to RAM, manipulates data in RAM

and then writes back to disk, Palm OS manipulates memory in place. The OS also

provides a standard C file streaming interface to the Data Manager which is meant for

applications accessing or manipulating large amounts of data. Applications requiring

- 11 -



access to secondary storage on expansion cards (SD or CF memory cards etc.) use the

VFS (Virtual File System) manager to uniformly access the various file systems that

could be present on the different expansion cards. The Expansion manager supports

expansion cards by managing the slot drivers for individual slots on a Palm OS device

and provides application access to these media by mounting card resident volumes using

file system libraries.

Dynamic Heap

Global variables
Storage Heap Local variables

Application Stack

Non-volatile user Application
data dynamic memory
(appointments, allocation
to-do lists, System dynamic
memos, address allocation
lists etc.) (TCP/IP, Irda etc.)•F

appLcaulon I

Moveable
chunks

Expansion Cards

Fig. 4 Palm OS Application Memory Interface

- 12-

Non-
Moveable
chunks

Dynamic
Memory
Allocatio

I m



Object Exchange

The Exchange manager in Palm OS allows applications running on the same or different

devices to exchange or communicate typed data with each other. Typed data is any

arbitrary data along with header information indicating some information about the data6.

Applications interact with the exchange manager through a standard API that is transport

agnostic. The exchange manager uses different exchange libraries that implement the

actual transport like IR, SMS, Bluetooth which the application can choose from.

Fig. 5 Exchange Manager Communication Path6

Infrared (IR) Library

Palm OS applications use the Exchange Manager to beam and receive information from

other devices through IR communications. Palm OS also provides a more direct interface

to the IR library for applications that need to access IR directly instead of going through

the exchange manager. Applications can also use the Serial Manager to access IR

capabilities.

6 Palm OS 68K API Documentation, Volume II

- 13 -



Serial Communications

The Serial Manager in Palm OS provides the high level API to interface with the serial

communications hardware including byte-level serial I/O, packet based 1/O with CRC 16,

reliable transport with retries and acknowledgements and connection management. The

Serial manager is responsible for control of RS-232, IR, Bluetooth and USB signals.

Applications

Libraries/system code

Serial Manager API

68328 16C650A Other
Serial Serial UART Virtual Other Serial
Driver Driver Devices Drivers Comm Devices

Fig. 6 Serial Communications Architecture7

The Connection Manager in Palm OS is used by application to access connection profiles

that specify connection preferences for different connection types. A connection profile

specifies information such as port, baud rate, flow control etc. to connect with devices

such as mobile phones and Bluetooth devices.

Bluetooth

The Bluetooth API provides an interface for applications to use the Palm OS Bluetooth

system. The Bluetooth system facilitates device discovery and authentication, serial port

emulation and object exchange. Applications use Exchange Manager in conjunction with

the Bluetooth exchange library to support Object Push and Generic Object Exchange

profiles. They can also use the Serial Manager API in conjunction with the Bluetooth

7 Palm OS 68K API Documentation, Vol II

-14-

7 

Palm OS 68K API Documentation, Vol II



Virtual Serial Driver to perform serial communications on a serial port abstraction.

Applications can also use the Bluetooth API directly for more flexible, fine grained

access to the Bluetooth functionality.

Network Library

The Palm OS provides two different network libraries for networked applications - the

netLib library for low level TCP/UDP socket API calls and the Internet Library for

socket-like API calls to higher level protocols like HTTP. The Internet library uses the

netLib calls to implement its functionality. The network library consists of two

components - the netlib interface for applications that runs in the application's task and

the protocol stack implementing TCP/IP that runs as a separate task. The two components

interact using an operating system mailbox queue. This scheme allows multiple

applications to wait for data from network without blocking each other and doing other

tasks while waiting for data to arrive8 .

The network library consists of two application programming interfaces to sockets - a

Berkley sockets API and the network library's native API. The Berkley sockets API is a

standard API to socket programming in UNIX systems and is well understood and

familiar to network programmers. The Berkley sockets API implementation on Palm OS

is actually a wrapper around the native API. The higher-level Internet library provides

applications with an easy way to access internet web pages by encapsulating the internals

of socket communication. It provides API calls to replace the typical User Interface Event

Loop's EvtGetEvent calls to retrieve web data asynchronously - this allows application

user interfaces to be responsive to user actions and not block waiting for data over slow

internet connections.

Palm OS also provides a SSL (Secure Sockets Layer) Library for applications that need

secure communications. The SSL library provides a SSL and non-SSL I/O interface to

applications. It uses the network library for low level communication transport and

8 Palm OS Programmer's Companion, Vol. II: Communications

- 15 -



implements SSL processing to encrypt and MAC data before passing it onto the network

library.

------------- IReadWrkie RPecrds
-------------

ReadAWrit Buffers
-------------------- I

Data flow

Fig. 7 SSL library architecture and Network Library interface9

Telephony

The Palm OS provides a set of APIs through the Telephony manager to access the

telephony functionalities in a smartphone. These APIs are categorized into subsets called

service sets where each service set represents a particular feature - not all features are

present on all devices. The API provides macros to verify the presence of a feature on a

device before an application can attempt to use it. The Telephony manager library is a

9 Palm OS 68K API Documentation, Vol II

-16-



shared library that is loaded only when required by the application. A unique feature of

Palm OS's telephony library is the ability to call any of the telephony functions

synchronously or asynchronously. A Palm OS application can also register for telephony

notifications like receiving incoming calls or SMS messages when it is not the currently

running application. The OS will notify and run the application to handle such events

when they occur through the normal notification message mechanism.

2.2 Symbian Operating System - High Level Architecture

This Section discusses the architecture of the Symbian Operating System based on a

study of the Symbian OS guide at http://www.symbian.com/developer/techlib/v9.1docs

and the book "Symbian OS C++ for Mobile Phones" by Harrison. The architecture

described here is a summarization of the Core Symbian OS concepts found in the official

documentation which provides a more detailed explanation. This section uses the same

terminology and description for the several subsystems as the official Symbian guide.

The Symbian Operating System is a multi-threaded, event-based, object oriented and

preemptive Operating system written in C++. The primary design goals of the operating

system according to its designers have been flexibility, customizability, efficiency,

robustness and communications-centric. In addition, modeling the Programming Interface

using object oriented constructs provides application developers and OS licensees with a

powerful tool to help customization and ensure rapid application development. Symbian

OS has a micro-kernel based architecture where the OS kernel is light-weight consisting

of core system functionality like scheduler and a base user library that execute in

privileged-mode. This requires hardware supported privilege execution mode control.

The file system and graphical windowing system and implemented by servers running as

processes in user-mode.

-17-



Fig. 8 Symbian OS Kernel and E32 b

User Mode
Code

SKernel

oundary

Symbian OS provides the fundamental operating system features including graphical,

communication and application frameworks. A framework is a collection of abstract and

concrete classes - the abstract classes are designed for extension by being implemented

and customized by the application. Depending on the features of the target machine - size

/ aspect ratio of the screen, keyboard or stylus based input, and voice/data centric features

- an additional GUI layer to support device specific customization is supported. The base

Symbian OS provided UI layer is called Uikon. The additional GUI layers available for

UI customization are currently - UIQ (Sony Ericsson P800, P900, and Motorola A1000),

Series 60 (Nokia N70, N90, Panasonic X800) , Series 80(Nokia Communicator 9300,

9500) and NTT DoCoMo Platform (NTT DoCoMo FOMA F205)'o. These customizable

user interfaces are implemented as a graphical framework layer on top of the base Uikon

- for instance, the UIQ user interface is implemented by the Qikon interface on top of

Uikon.

10 ohttp://www.symbian.com/phones/index.html

-18-

File Window Application
Server Server

User Library (euser.dll)

Kernel Executive Kernel Server
(runs privileged (core kernel

code in user functionality)
thread context)



Sony Ericsson Nokia 7650
P800 running running Series
UIQ UI 60 UI1

Nokia 9210
running Series
80 UI

Fig. 9 User Interface Layers based on Symbian OS11

The Phone specific UI layers also include their own APIs for application programs to use.

Thus the UIQ library has its own SDK on top of the Symbian OS API that programmers

targeting the UIQ platform can use. Application programs that are designed to work on

multiple Symbian platforms have to be developed in such a way that they abstract the UI

platform specific features into separate recognizable modules that can be easily ported to

the various UI platforms - rest of the code that uses the common Symbian OS API will

work without conversion. This thesis will not cover the UI platform specific APIs like

UIQ - it will study the Symbian OS API common across all platforms.

Symbian OS consists of a large set of interface libraries consisting of over 600

components and 2500 header files 12. The components can be grouped at a higher-level

based on functionality into around 20 major subsystems comprising the Symbian system.

" http://www.i-symbian.com/forum/articles.php?action=viewarticle&artid=38 (accessed Nov. 2006)
12 Symbian OS v9.1 Guide available at http://www.symbian.com/developer/techlib/v9.1 docs

-19-



These subsystems can be represented as in the diagram below. The discussion on the

subsystems further on is based on the latest stable Symbian Operating System as of this

writing, Symbian OS v9.3.

Fig. 10 Subsystems in Symbian OS13

Base API

The Base API provides basic programming types and interfaces over which all other

subsystems and application programs are built. The Base API provides C++ types that are

designed and optimized for mobile devices - definitions of basic data types like integer to

guarantee their size and type on any Symbian platform, utility classes like strings, arrays

and lists in place of the C++ Standard Template Library. It also includes a lightweight

version of exception handling tailored to the Symbian platform. In addition the Base API

provides access to Core OS resources like processes, threads and memory management.

13http://www.symbian.com/developer/techlib/v9.1 docs/doc_source/guide/N 1001A/SubsystemsAndAPIs.gu
ide.html#devguides%2eSubsystems%2estart (accessed Nov, 2006)

-20-



Handles

Application programs use handles that encapsulate handle-numbers to refer to objects or

resources owned and managed by a different process - The Symbian OS kernel mediates

interactions between the holder of the handle and the object referred to by the handle.

Handles can be thread or process level - a thread-relative handle is accessible only to the

thread creating it and its lifetime is limited to the thread lifetime whereas a process-

relative handle is accessible to all threads running in that process and its lifetime is the

lifetime of the process. Handles can also be local or global - the thread that creates the

handle determines its scope. A local handle is accessible only to the thread creating it

whereas a global handle is accessible to all threads in all processes. A global handle could

thus be used to share resources across processes.

. .

CreateGlobalO
or equivalent

Cnoe runn.ngintiead A i

OpenGlobalo
or equivalent

Code running
in thead B

Fig. 11 Symbian OS Handles 14

14 http://www.symbian.com/developer/techlib/v9.1 docs/doc_source/guide/Base-subsystem-

guide/N10086/Handles/HandlesLocalGlobal.gif (accessed Nov. 2006)

-21-

-p

: rn. sIU e$•

-

$i

:: : :



Inter-Process Communication

Symbian OS API for Inter Process Communication is fundamental to Symbian

programming and provides the encapsulation for the underlying active-object framework

used by Symbian applications. It is the mechanism used by Client Applications to make

service requests on other service providers like the windowing or telephony system

servers. The Inter-Process Communication API calls are wrapped in the client-server

architecture framework which in turn is used as the base framework for active-objects.

The mode of communication is asynchronous - thus, a request made to a service provider

returns immediately to indicate the request was received and completion of the service is

signaled to the requestor asynchronously. Two methods of asynchronous service handling
-15exist5 :

* Low-level service handling APIs provide basic API calls using which the caller

can request asynchronous service and be indicated of the service completion

though a thread-request semaphore.

* High-level service handling is accomplished through use of the active-object

framework. The framework consists of the active-object which implements the

client-side interface used to make asynchronous service requests on the service

provider and to handle completion of those requests and the active-scheduler that

implements a wait-loop to wait on the service-requestor thread's request

semaphore waiting for outstanding requests to complete.

15 Symbian OS v9.1 Guide at http://www.symbian.com/developer/techlib/v9.1docs

- 22 -



create & install active scheduler

:create active objects

call active object to issue request
" .Issue Requestfunction- o set object's iStatu=]oequestPendiag

stairt active scheduler

Alettere Schedulmcr
waitfor completed object

-b (when iActive==trueand
iStatus I=KRequstPending

Ac~tts' Objact

calleogled B rs lo may resneadule request
or stop adive scheduler

sets iActive true

schedule service to run

gO

CD
. . . ..

2

(0

.. do procmi1ng...

signal completion (altering object's iStatus)

cleanup and terminate 4

Fig. 12 Active-Object framework in Symbian 16

A client program can issue asynchronous service requests to four kinds of service

providers - kernel service provider, device driver service provider, user-side service

provider and a service-provider in the same user thread. The last type is used to

implement a long-running task by an application thread by dividing the task into multiple

shorter tasks and scheduling them in sequence, thus allowing running longer tasks

without needing to start new threads. Symbian also provides Message Queues to enable

communication between different threads within a process or across processes. Another

way for threads to communicate is through sharing a common heap that will be discussed

further in Memory Management later on.

16 http://www.symbian.con/developer/techlib/v9. I docs/doc_source/guide/Base-subsystem-

guide/N10086/InterProcessCommunication/AsynchronousServicesGuide/AsynchronousServicesGuide3/Lif
eCycleModel.gif (accessed Nov, 2006)

-23 -

c i onjecrs ) -- nayrescneaLwe requesntion:.;- : ;" .i istoaLct3iUescheuOe

i i:



Symbian Client-Server Framework

Symbian provides several system-level APIs to build a client-server framework to

provide services to client programs. Using a client-server framework enables isolation of

functionalities and prevents malfunctioning clients from corrupting system resources,

enables asynchronous service requests and enables managing and sharing resources from

a central service provider. System servers like the Windowing server, File server and

messaging server use the client-server framework architecture to provide services to

applications and other system programs. Servers provide a client API that clients can use

to request services through a messaging protocol that flows through the Operating System

Kernel. The Key concepts involved in the Symbian Client-Server framework are: server,

session, sub-session and message 17. The server handles connection requests from clients

and establishes sessions representing a channel of communication between client and

server. Multiple sub-sessions can be created to enable simultaneous uses of a server by

the same client-thread. Messages are the unit of communication between client and server

and convey information about the request including the request code and arguments to

the request.

Memory Management

Symbian integrated memory management and cleanup APIs into its application

programming interface architecture to provide programmers for the Symbian system with

an efficient and effective tool to manage memory and handle error conditions. This

support is built into the Core API through virtual destructors in the base class, CBase, and

using a lightweight exception handling mechanism - User::Leaveo to throw an

exception, TRAP and TRAPD to setup a trap harness to catch the exception. Objects

allocated on the heap after the trap harness has been setup and until the exception is

raised are pushed onto a CleanupStack that tracks these memory allocations. If an

exception is raised and the stack unwound, memory allocations that have been pushed

onto the stack are automatically freed and memory leaks thus prevented. The Uikon

17 Symbian OS v9.1 Guide at http://www.symbian.com/developer/techlib/v9.1does

-24-



Interface framework makes effective use of the memory management and exception

handling support from the Operating System to provide the basic infrastructure for well

behaved memory handling to User Interface programs.

The Symbian platform has been designed to serve as the operating system for mobile

phones and this is reflected in its memory architecture - ROM is the read-only memory

area of the phone that supplies the operating system and built-in applications from the

factory. RAM is the dynamic region of memory used to load programs (from the storage

card) and allocate memory for program needs. Code for programs in ROM are not loaded

into RAM for execution - RAM is only used for their execution stack and dynamic

allocations.

Programs in Symbian run as individual processes, each containing one or more threads of

execution, in user-privilege mode and have their own virtual private address space. The

Kernel is the only process that runs in supervisor-privilege mode and contains two

threads - one is the kernel server thread that implements memory allocation/deallocation

on the kernel heap and the other is the null thread that places the processor in idle mode

to conserve power and runs when there is no other process thread to run' . The address

space of a process consists of several chunks - a chunk is a contiguous area of RAM.

These chunks are one of three types - stack/heap chunk that contains the program stack

and dynamic memory allocations, code stack that contains program code for programs

loaded from the storage card and the data chunk that contains static program data. Each

new thread gets its own stack/heap chunk. Processes can share data using Global chunks

- Global chunks are named to identify the chunk to another process that wishes to use it.

It is important to note that processes have a virtual address space that is linear - the

operating system takes care of mapping the virtual address into a physical RAM address.

This is not the same as the disk-backed virtual memory scheme used by desktop

operating systems since mobile phones do not have large capacity hard disks in them.

18 "Memory Management" section of Symbian OS v9.1 Guide at
http://www.symbian.com/developer/techlib/v9.1does

-25 -



This is a key motivation for the memory cleanup and exception handling framework

supported by Symbian for application programs.

Process Model

Application Programs run as individual processes in their own virtual private address

space in Symbian OS. The operating system supporting multi-threading and a process can

have multiple threads of execution though this is frequently not necessary - Symbian

provides an active-object, event driven framework wherein Applications perform actions

in response to specific events' 9. The basic unit of execution in Symbian OS is a thread.

The OS kernel schedules threads preemptively - at any time the highest priority thread in

running. If a thread with a higher priority than the currently running thread becomes

ready, the kernel suspends the current one and schedules the higher priority thread.

Threads having the same priority are scheduled on a round robin basis in fixed time

slices. Context switching between threads is expensive because the current thread's

execution state has to be saved and a different context loaded by the Kernel. To avoid

these multi-tasking costs, Symbian provides users with the active object framework to

run multiple tasks in a non pre-emptive manner. All threads running in the same process

share the same address space of the process and thus can access each other's data. This

gives rise to the classic resource sharing and protection issues - Symbian provides API

support for Semaphores, Mutexes and Critical Sections to ensure mutually exclusive

access to resources and ensure resource integrity. Critical Sections are used to serialize

access to resources across threads running within the same process whereas Mutexes can

serialize resource access across threads in different processes. In addition, the Operating

system provides comprehensive APIs for Process and Thread management.

19 "Thread and Process Management" section of Symbian OS v9.1 Guide at

http://www.symbian.com/developer/techlib/v9.1 docs

-26-



File System

The Symbian Operating System provides desktop compatible, VFAT file system through

the File Server - a system server running in user-mode 20. The File server manages

input/output activity, resource contention, file sharing and locking. The File Server

provides a comprehensive client API to access the file system by managing ROM, RAM

and storage card memory regions and exposing a file interface to those memory areas. In

addition, the File Server exposes an interface to allow dynamically installable file

systems. The Stores API defines a Stream Stores interface layered over the File System

for applications to use - this provides a more natural byte stream interface to file

reading/writing. A Store is a collection of streams and implements persistence of objects.

The ROM area which contains the operating system code is mapped to drive z:, RAM is

dynamically allocated and mapped to drive c:, removable storage cards are mapped to

remaining drive letters.

Symbian provides an interface to relational databases with transaction support and SQL

views through the DBMS API for applications that require database functionality. Two

DBMS implementations and API are provided - a client side implementation for

applications that require a datastore for their internal usage that is lightweight and

efficient, and a client-server implementation for applications that run as a server and

provide DB access to their clients. The database implementation uses the File Stores API

for the underlying data storage.

Bluetooth

Bluetooth is a short range radio communications technology to enable independent,

different types of devices to communicate with each other using a common protocol. It is

implemented as a hierarchy of functionally isolated components constituting a Bluetooth

stack. Symbian provides access to the Bluetooth communication capabilities through a

20 "File Server (F32) API" in Symbian OS v9.1 Guide at
http://www.symbian.com/developer/techlib/v9.1does

-27-



socket API which encapsulates access to the L2CAP (Logical Link Control and

Adaptation Protocol - controls access of multiple users to a link, handles packet

segmentation and reassembly) and RFCOMM (adapts the Bluetooth connection as a
* * 21serial connection)21.

The Symbian Operating System implements SDP (Service Discovery Protocol) using the

Bluetooth Service Discovery Database to enable remote devices to discover device

presence and services offered and the Bluetooth Service Discovery Agent to discover

services available on remote devices and the attributes of those services. The Symbian

Operating system also provides the Bluetooth Security Manager to set security

requirements for incoming connections (authorization, authentication and encryption) and

a User Interface for users to select devices and their services. Symbian provides a

comprehensive Bluetooth client API to enable applications to programmatically

determine services from remote devices and provide filtered selections for the user based

on pre-configured user preferences and capabilities offered by the remote device. An API

to perform low-level Bluetooth configuration using HCI commands, L2CAP options

RFCOMM commands and options is also provided.

Communications Infrastructure

Symbian provides a Communications Database where all communications related

settings are stored by the control panel applets. These settings are globally accessible to

all programs requiring communications functionality like Networking, Telephony, and

WAP etc. A series of tables are stored in a relational database managed by CommDb

which provides the Client API to access these settings for other communications

subsystems and hides the DBMS functionality underneath.

Symbian provides a generic sockets interface modeled after the Berkeley Sockets API for

applications programs to use. A socket is a communication endpoint that a program uses

to transmit and receive data. The socket infrastructure in Symbian follows the standard

21 Symbian OS v9.1 Bluetooth API at http://www.symbian.com/developer/techlib/v9.1docs

-28-



Symbian Server framework - Socket services are implemented by a generic socket server

to which protocol modules for different transports (TCP/IP, IrDA) can be plugged in as

dynamically loaded libraries. The socket server exposes a Client API to list available

protocols and for clients to access socket services. The socket client API provided by the

Symbian library ESOCK allows applications to open connections, read/write data, close

connections, hostname and service resolution. The socket client API communicates with

the socket server asynchronously, which in turn communicates with the various protocol

modules that provide the communication implementation. The Symbian ESOCK API

also provides interface to network databases such as LM-IAS with IrDA (Infra-red). An

API to set QoS (Quality of Service) on a communication channel to control service

parameters is also provided.

Secure Communications over a public network is supported through the Secure Sockets

API. It is provided as a plug-in architecture with a generic client interface to which

various protocol modules can be added. Plug-ins for SSL (Secure Sockets Layer) v3.0

and TLS (Transport Layer Security) vl.0 are provided as part of the secure sockets

library.

Infrared Communications

Symbian OS provides IR support through the implementation of the IrDA (Infrared Data

Association) stack. It allows applications to search for other IR devices in range, query

services offered and use a reliable/unreliable data protocol to transfer data22. Symbian

provides access to IR facilities through a Sockets interface or by emulating the serial port

over IR. The serial interface is provided through the Symbian OS Serial Communication

Server API. The Serial Communications Server implements a plug-in architecture for

modules providing serial communications over different transports - the Serial IR

module (IrCOMM) plugs into this server. IR facilities can also be used through the

Sockets Client Interface to the Socket Server. In this case, IrDA Sockets is the plug-in

module to the Socket Server which clients access through the generic Sockets Client API.

22 Symbian OS v9.1 Serial Comms (C32) API Guide

-29-



Client programs can use the sockets interface to access IR specific configurations -

IrTinyTP for reliable transport, IrMUX for unreliable datagram service, IrDA discovery

and for device discovery, and for access to IrDA IAS (Information Access Service).

Messaging

Symbian provides an extensible mechanism for messaging applications through a

framework for supporting new messaging protocols that can be plugged into the

architecture. A plug-in module is made from several components called Message Type

Module (MTM) that interacts with the lower level communication protocols like TCP/IP.

Messaging applications like SMTP, POP3, SMS and Fax are implemented as MTMs and

use the Messaging architecture. The messaging architecture is designed to allow client

applications to dynamically discover new messaging types from the installed MTM

modules and allow users to select those messaging facilities. This open architecture and

interface specification allows client applications to use new messaging types and offer

them for user selection dynamically.

Graphics

Symbian abstracts the low level drawing operations to screens and printers to provide an

abstract graphical device interface for higher level functionality like the window server. It

also provides the font and bitmap server that manages device fonts and bitmaps and

provides access to client threads23. By centralizing fonts and bitmaps in a server that

provides a shared memory area accessible to the window server and its clients, the

Symbian graphics architecture enables smooth and efficient rendering of graphics and

animations. Drawing operations are buffered by the Window Server Client API in

application program memory and flushed at specified times to the Window Server - this

helps in reducing number of context switches between the different processes and

enhances system performance.

23 "Graphics", "Font and Bitmap Server (FBSERV)" sections of the Symbian OS v9.1 Guide

-30-



The central and most important component in the Symbian Operating System is the

Window server which manages access to the device screen and keyboard by running

applications. It runs as the highest priority user thread to enable quick response to client

application requests and dispatching events. It allows applications to control their

drawing area, request for events and handle them when they occur and draw to their

display region using the windows graphics context provided by the graphics device. The

windows server also allows dynamic extensibility by providing a plug-in architecture to

load third-party animation dynamically loaded libraries.

Fig. 13 Symbian Window Server 24

The application user interface framework is built over three layers: Uikon and UI variants

provide the concrete user interface classes constitute the top layer which applications use.

The abstract middle layer constitutes the control framework which provides the

framework to create user interface controls, handle user interface events and environment

utilities to access windowing functionality. The lowest level consists of the window

server providing basic windowing functionality using device independent graphics and

servicing device interrupts to generate events. The active-object framework that

24 http://www.symbian.com/developer/techlib/v9.1 docs/doc_source/guide/Graphics-subsystem-

guide/N100B6/WindowServerGuidel 1/wsintro-server.gif

-31-

46



application programs for the Symbian OS typically use for GUI functionality encapsulate

the low-level asynchronous service API provided by the Window server. Using active

objects, applications handle streams of events from the Window server.

Fig. 14 Symbian UI Control Framework25

Abstraction of the User Interface functionality through creation of the UI Control

Framework middle layer allows device manufacturers to develop different concrete User

Interface control libraries at the top layer to customize and differentiate their devices

based on device capabilities - pen/keyboard based input, display size/resolution etc. The

UI Control Framework layer (also called CONE for Control Environment) simplifies

access to the Window Server by implementing the common idioms to work with the

Window server in the CCoeEnv class, as well as providing a reference framework for

creation of new concrete UI libraries at the top layer.

The Uikon layer provides the top level and fundamental framework used by all Symbian

applications. The Uikon library is common to all Symbian based phones. Other UI

libraries like UIQ and Series 60 provide controls derived from Uikon that implement look

25 http://www.symbian.com/developer/techlib/v9.1 docs/doc source/guide/Application-framework-

subsystem-guide/N10046/UIControlFrameworkGuidel/cointro-apiarch.gif (accessed Nov, 2006)

- 32-



and feel specific to those platforms. Uikon integrates the Application Architecture

Framework and the middle level UI Control Framework to provide the framework for

standard application design. Applications and UI variant libraries use the Uikon

framework libraries as the basis for implementation of their functionality.

Multimedia

The Multi Media Framework client API provided by Symbian encapsulates a plug-in

architecture to create, play and convert audio and video files, stream audio and play

tones. The plug-in architecture enables installation of controller plug-ins that can be used

by the audio, video recorder and player interfaces as well as the audio converter interface.

The output from the plug-ins can be directed to a file, screen or low level audio device

driver. Audio streaming and tone playing interfaces do not require any encoding or

decoding and thus interface directly with the device driver instead of going through the

framework. The multi media framework supports extensibility by support of the

interfaces to add controller plug-ins capable of playing/recording new media formats,

format encoder/decoder plug-ins to read/write new media data formats, codec plug-ins for

media conversions between different encodings and source/sink plug-ins to handle

reading from/writing to sources/sinks of media data.

-33-



Fig. 15 Symbian Multi Media Framework2 6

An API to communicate using RTP (Real Time Protocol) protocol utilizing the Socket

Server Interface is supported by Symbian. RTP is a multi media protocol built on UDP
and used for transporting interactive audio and video for web-conferencing and VolP

applications. Symbian also provides an extensible Camera API that allows application

programs to control and use the on-board camera of the device as well as allow hardware

manufacturers to extend the API to provide proprietary extensions. APIs to perform

bitmap transformations, image manipulation and conversion

Security

The platform security architecture on the Symbian Operating System addresses security
threats from the distribution of malicious applications by preventing unauthorized access
to user data and system services. It achieves this by establishing a firewall for protection

26 http://www.symbian.com/developer/techlib/v9.1 docs/doc_source/guide/Multimedia-subsystem-
guide/N100EA/MMFClientOverview.gif (accessed Nov. 2006)

- 34-



of systems servers through a capability-based access control model and creating a

protected part of the file system that rogue applications won't be able to access. To

ensure robust platform security, Symbian uses the concept of a Trusted Computing Base

- the smallest set of architectural components that cannot be subverted and whose

integrity is guaranteed2 7. On the Symbian platform this consists of the Kernel and E32

user library which are system-wide trusted and have full access to the device. A Trusted

Computing Environment consisting of specific accesses granted to specific system

servers (telephony, windowing, certificate management) is built on top of the Trusted

Computing Base. Each component of the Trusted Computing Environment is given only

specific capabilities it requires and nothing more - this limits the extent of damage that

can be caused by vulnerability or misuse of privileges.

Certificate Management is used to trust software from third parties at installation stage -

their certificates are verified against appropriate root certificates and required capabilities

for their functionality are granted.

Telephony

Symbian provides an interface to the telephony subsystem on the phone through the

CTelephony API. The API provides comprehensive information about the phone, current

in-progress calls, carrier and network information and ability for applications to originate

and answer calls. The API also enables applications to control a single or two voice calls

at once. Various details about the call like start time, duration, status (dialing, ringing, on-

hold), caller-id and called number, phone capabilities and settings are all provided

through the API. Function calls made to the Telephony API are asynchronous and

applications use the Symbian Active Object framework to control the API calls.

27 Symbian Security Architecture document at
http://www.symbian.com/developer/techlib/v9.1docs/doc_source/guide/N10022/SGL.SM0007.013_Rev2.0
SymbianOSSecurity_Architecture.doc (accessed Nov. 2006)

- 35 -



An Advanced Telephony API to the Operating System is exposed to phone manufacturers

who require more advanced telephony services. This interface is not available to

application programmers to prevent malicious use of the phone system. The basic

Telephony API available through the CTelephony class also provides applications with

the ability to be notified about changes in the phone's environments - battery, signal

strength, call status etc. Symbian OS also provides an API for applications to send and

receive faxes using the ETEL fax API and use contacts from the phone's Contacts'

Database using the Phonebook Synchronizer server API. Alternatively, applications can

use the Contacts Model API to store, manipulate and retrieve contact data.

App Proceass Locrk S P••e
&"tkead

fI

(contains common mobile +O GSM + CDMA) SThEaer J -
Core ETel API Thread

I 3ETEL SERVER

II Tsy

C, 3 2 Fr t s

roc~ss

Fig. 16 Symbian Phonebook Server and Contacts Model Architecture28

28 http://www.symbian.com/developer/techlib/v9.1 docs/doc_source/guide/Telephony-subsystem-

guide/N10142/phbk-architecture.gif (accessed Nov, 2006)

-36-

--------------------------------. . --------------------
I

----------------------t L-Ontads --------------------1

PO)tat syn " u94n:

5- i::--,,,,,,.



Application Engines

Application Engines is an API for applications to integrate seamlessly with and use data

from built-in core applications like Contacts, Agenda. Other subsystems provide their

own APIs for other applications to use their core data. This provides for a holistic user

experience on the Symbian platform for the user that is consistent across all applications.

Text Handling

Symbian OS uses its own version of String libraries that are lighter than C++ strings and

easier to use and maintain than C strings. It uses descriptors as the common interface to

text and binary data in the program binary, process stack or heap. Descriptors prevent

buffer overflow errors, but leave memory management issues to the application for

efficient memory usage. Symbian uses the Unicode character set format to represent

characters and provides APIs to convert between Unicode and other character sets. The

API also allows installation new of plug-in modules to implement conversion between

Unicode and character sets not already in the system.

Base UI Framework

Like other GUI operating systems, Symbian is event-based. Symbian applications

perform actions in response to user or system generated events. Symbian provides OS

level support for an event framework. The Symbian UI framework includes an active-

scheduler that receives events and dispatches them to handlers of those events called

active-objects. Thus, at a high level a Symbian application can be considered as a set of

active objects performing tasks in response to events fed to it by the active scheduler.

Applications conform to and provide implementations that adhere to the Symbian

Application framework requirements - the Kernel uses this framework to handle

application launch and creates the initial set of framework objects to launch the User

Interface. This framework includes CONE - Control Environment consisting of base UI

classes and APPARC - Application architecture and application data classes.

-37-



2.3 Windows Mobile Operating System - High Level Architecture

Windows Mobile is the operating system for Mobile devices developed by Microsoft and

is found in three different flavors based on device capabilities - Pocket PC, Pocket PC

Phone Edition and Smartphone. Pocket PC and Pocket PC Phone Edition devices are

typical handheld devices akin to Palm devices and come with larger display areas and

touch screen capability. They also have more powerful processors and come with mobile

versions of Microsoft Office Applications - Word Mobile, Excel Mobile and PowerPoint

Mobile. They might also come with WiFi hardware to enable users to connect to the

Internet at Wireless Hotspots. Pocket PC Phone Edition powered devices come with all

the capabilities and features of Pocket PC devices and add cellular phone capabilities.

Windows Mobile Pocket PC Phone Edition devices are able to place/receive calls on a

cellular network and also able to connect to the internet wirelessly over the cellular

service provider's network. Windows Mobile Smartphone platform is geared toward

typical cell phone devices - it is designed to be more compact, run on slower processors

and interact with users on a smaller screen with no touch screen capability. Smartphone

powered devices also don't come bundled with Mobile versions of the Windows Office

Applications but third-party applications to provide these capabilities are available for the

Smartphone platform.

Fig. 17 Family of Windows Operating Systems 2 9

29 http://www.pocketpcmag.com/ archives/JunO6/images/JunO6 p56 1.jpg (accessed Dec 2006)

-38-

I



Windows Mobile is based on the Windows CE embedded operating system which has

been designed to be a compact, ROM-based operating system incorporating a subset of

the Win32 API used to program all Microsoft Windows Operating Systems - Windows

95, NT, Me, XP etc. Windows CE has been designed from the ground up to be a

lightweight, low power consuming, multi-threaded, multi-tasking operating system with

an optional user interface and adaptable to run on different hardware with different

capabilities and run time environments. Another chief aim of the designers of Windows

CE was to allow Win32 programmers of the desktop Windows Operating Systems to

continue using the same APIs and programming paradigms - messages loops, event

handling frameworks on the smaller Windows CE platform. The small footprint of

Windows CE also required pruning the comprehensive set of Win32 APIs to suit the CE

platform while adding a few new ones specific to embedded programming.

Existing frameworks for Windows development like MFC - Microsoft Foundation

Classes can be used to develop Windows CE applications. Windows CE includes the

MFC runtime library in ROM to reduce the footprint of applications developed using

MFC. Although MFC programming is possible, Microsoft has stopped development work

on this framework - instead, .NET is the development environment of choice on the

Windows platform. The .NET environment consists of hardware independent, type safe

run-time environment to run code in a secure way - applications are compiled into an

intermediate language called Common Intermediate Language (CIL) that is compiled into

machine language at run time called Just-in-Time (JIT) compilation. This enables

applications to be written and compiled once, but still run on a variety of hardware

supporting the .NET environment. Code that runs and makes calls within the .NET

environment is called managed code while code that invokes calls directly on the

operating system to access functionality not available within the .NET runtime is called

unmanaged code. Microsoft has developed a limited version of the .NET environment for

Windows CE called the .NET compact framework. Thus, application developers for the

Windows Mobile platforms have the option to use the .NET runtime for development

apart from using the Win32 API directly.

-39-



To summarize the Windows Platform for Mobile devices, Windows CE is the embedded

operating system serving as the base for a host of consumer and industrial devices

requiring a real-time, small foot-print operating system with a deterministic response to

interrupts. A Windows Mobile device is Windows CE based, with a custom shell, user

interface and a set of mobile productivity applications provided by Microsoft. Windows

Mobile branded devices are certified by Microsoft to conform to a set of hardware and

software standards and specifications. Three variants of Windows Mobile devices exist -

Pocket PC, Pocket PC Phone edition and Smartphone. Since Windows CE is the base

operating system for all Windows Mobile devices, it will be the subject of further

discussion - its architecture, components, their major functionalities and programming

interfaces.

This thesis will use the latest shipping version of Windows CE, version 5.0 as the basis

for further study. Windows CE provides the Platform Builder which is a comprehensive

set of tools to enable device OEMs to design, create, build and test a Windows CE based

customized Operating System for specific target devices. Windows CE also includes the

OEM Adaptation Layer (OAL) to enable OEMs to develop a customized Operating

System using its Componentization support through code libraries, production quality

device drivers and centralized configuration files to achieve consistent architecture across
30processor families and hardware platforms3

This Section discusses the architecture of the Windows CE Operating System based on a

study of the MSDN Windows CE API documentation at http://msdn.microsoft.com and

the book "Programming Windows CE .NET" by Boling. The architecture described here

is a summarization of the Core OS concepts found in the official documentation which

provides a more detailed explanation. This section uses the same terminology and

description for the subsystems and components as the official API documentation.

30 Microsoft Developer Network: Windows CE 5.0 Platform Builder online documentation at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/wceintro5/html/wce5OoriWelcomeToWindowsCE.asp (accessed Dec 2006)

- 40 -



Fig. 18 Windows CE Operating System Architecture31

Kernel

The Kernel provides the core functionality for the Witidows CE Operating System

consisting of process/thread management and memory management. It exposes this

functionality to applications through a comprehensive set of core Win32 APIs which are

a subset of the APIs to Windows XP. This is because Windows CE doesn't support all

process and memory management features that Windows XP supports - an example of

this is the lack of environment variables and environment related APIs in Windows CE.

Windows CE is a multitasking (running multiple processes), multi-threading (running

multiple threads of execution within a process), pre-emptive operating system where each

31 http://msdn.microsoft.com/library/en-us/wceintro5/html/windowscearchitecture.gif (accessed Dec.
2006)

-41-



process runs in a private virtual address space. Windows CE enforces a system limit of 32
processes active at any time. Each process runs a primary thread that can create any
number of threads within the process - it is limited only by the RAM available and the

process virtual address space. The Core Windows CE processes are NK.exe providing

kernel services, FileSys.exe providing file system services, GWES.exe providing the GUI

services and Device.exe that loads device drivers.

DLL Interface
..F ....unction............. cal... ..Function call :

o cess Interface

T.~. I

Fig. 19 Windows CE Kernel Interface32

In order to provide real-time application capability, Windows CE implements thread
priority levels with priority inheritance; deterministic pre-emptive thread scheduling that
always runs the highest priority thread ready-to-run (i.e. not blocked on something) and
round-robins among threads with equal priority for a configurable period of thread
quantum or time-slice. If a thread of higher priority becomes unblocked when a thread of

32 http://msdn.microsoft.com/librarv/en-us/wcecoreos5/html/coreos.gif (accessed Dec. 2006)

-42 -

I

GWE S Device Services.exe *



lower priority is running, the lower priority thread is immediately suspended and the

higher priority thread scheduled for execution.

Windows CE supports the entire set of Win32 synchronization objects provided by

Windows XP (with the exception of file change notifications and waitable timers) that

applications can use to coordinate multiple threads. These synchronization objects

include Event objects (dual state objects - signaled or not-signaled that are used to signal

task completion to another thread or process waiting on that task), Semaphores (to

synchronize access to a resource from multiple threads), Mutexes (to co-ordinate access

to resources across multiple threads) and Critical Sections (to protect blocks of code from

being executed by two or more threads at the same time). Windows CE also provides

applications with API calls for inter-process communication - this include Named

Memory Mapped Objects (shared block of memory accessible to both processes at the

same time) and Message Queues (First-in-First-out, unidirectional data queues used for

sending data from one process to another).

Memory Management

Windows CE based devices use ROM to contain the Operating System image and built-in

applications and RAM to use as the file system and program dynamic memory. The

RAM based file system is called the object store and behaves as a permanent virtual

RAM disk - it retains files stored in it even when the power is turned off and through soft

resets. The program memory section of RAM is called the system heap and is used to

store program heaps, stacks and executable code for running applications. The system

heap area of RAM is reinitialized on soft resets.

ROM based, uncompressed programs that are marked XIP (Execute-in-Place) are run

directly from ROM conserving memory space in RAM. All other object store and storage

card based programs are loaded into RAM before execution. Windows CE implements a

paged, virtual memory management system similar to Windows XP, but unlike XP that

assigns a 2GB virtual address space to every process, the virtual address space of a

-43 -



Windows CE process is 32 MB 33 . In a paged memory management system, the smallest

unit of memory managed by the microprocessor is a page - a page is 1024 or 4096 bytes

depending on the microprocessor architecture. Virtual Memory addresses accessed by an

application in a page are translated to a physical page in RAM by the microprocessor.

Windows CE provides APIs for applications to directly manipulate Virtual Memory

allocations in the application's virtual memory space - this is useful for applications

requiring large blocks of memory. Applications that don't need the low level control of

the Virtual Memory APIs can also rely on Windows CE APIs to manipulate the system

provided default heap for dynamic allocations. Applications can also create their own

separate heaps instead of using the OS provided default local heap - this is useful to

avoid memory fragmentation. The Operating System also provides APIs for applications

to retrieve direct pointers to static data contained in ROM - this conserves memory

because data need not be copied to RAM.

The Windows CE file system implementation diverges most from the other Windows

Operating System products. The RAM based compressed file system is implemented as a

database containing files, system registry and other Windows CE databases. The API to

the file system though is still the standard Win32 API whose implementation hides the

file system details from the application programmer. The Operating System also supports

multiple installable file systems through the installable file system (IFS) API to support

plug-in storage cards or devices - it incorporates an IFS driver for the FAT file system to

access ATA flash cards and hard disks.

Windows CE also supports most of the standard I/O functions in the Win32 API found in

Windows XP. It also provides API support for creating and accessing memory mapped

files, navigating and managing the file system and accessing the system registry.

Windows CE provides a unique database API to store and organize simple groups of data

that is on top of the standard Win32 API. The database functionality provided is not

comparable to the enterprise SQL databases, but is sufficient for most mobile

33 "Programming Windows CE .NET" by Boling, 2003, Microsoft Press.

-44 -



applications that need to store and manage simple data lists. The functionality includes

database creation, records with multiple columns and data types, record insertion/deletion

and query, sorting and record access.

User Interface

The Graphical Windowing and Events Subsystem (GWES) is the central component in

Windows CE acting as the interface between the user, the application and the kernel.

GWES is a combination of the Win32 API, User Interface consisting of predefined

controls (Windows Controls like Buttons, Edit Controls, Lists, Scroll bars and Static

Controls) and the extended set of Common Controls (provided as a Common Control

Library DLL and includes Command bar, Data/Time picker, Calendar Control, Progress

bar, Tooltip, Tab and Tree Controls), and the Graphics Device Interface (GDI) libraries.

The Windows CE Operating System uses a Shell to define a consistent look and feel for

the user interface on the device. It provides users with an interface to manage objects

(such as files and folders, remote network drives) necessary for running applications and

also manages the Operating System. The Shell provides the basic framework for a user

interface that can be customized for a specific device. This is an important feature and

allows OEMs to use the Windows CE Shell architecture to implement a variety of shells

- this facility is used to provide the custom shells that define the look and feel for Pocket

PC and Smartphone devices that are based on the same Windows CE platform. Microsoft

provides the source code for presentation and user interface aspects of the Standard Shell

(also known as the HPC shell) available to OS design developers for customization.

Windows CE supports the development of Custom User Interfaces also known as Skins

to customize the appearance of controls and other UI elements. It accomplishes this by

separating the drawing code for controls and non-client area windows from other code

that implements their behavior. By tailoring the UI to conform to a specific form factor

along with modifications to the shell, OEMs can develop User Interface that can

differentiate their devices from others. Windows CE provides two skins by default that

-45 -



OS designers can use - a Windows 95 skin that replicates the Windows 95 desktop UI

appearance and a Windows XP skin to display a XP like UI.

Windows CE also enables OS designers to customize the appearance and behavior of

specific UI components or replace them. It also enables customization of behavioral

response to out-of-memory conditions, system startup windows device calibration of the

touch screen. The size and location of message boxes and other dialog controls in the

User Interface can also be customized through setting values for the system registry keys.

The system registry also enables OS designers to customize the colors of the User

Interface display elements. The Notification mechanism to notify registered applications

of the occurrence of interesting events is also customizable and can be tailored to the

hardware requirements of the target device.

A Windows CE application program is written and operates the same way as a traditional

Windows desktop application program. It uses a subset of the Win32 API that the

desktop application uses, but the API syntax and semantics are the same. Also, it contains

the same message loop to receive event messages and reacts to those messages similarly

with some differences. A major difference is that Windows Mobile application

requirements specify that only one instance of a program should run at any time. If the

user chooses to run a second instance, the second instance should check for the

occurrence of a previous instance and bring it the foreground before it itself quits. This

behavior is not enforced by the Operating System, but is a behavioral requirement that all

bundled Microsoft applications for the Mobile platform implement.

The Graphics Device Interface (GDI) component of GWES provides the low-level

painting support. It abstracts the device graphics capabilities and provides application

programs with a display device context to which they draw34 . Windows then transfers

from the pixels from the virtual drawing area to the display device. The drawing

functions provided under Windows CE are identical to those provided under Windows

XP - these include drawing text, lines, curves, closed shapes and bitmap images. GDI

34 "Programming Windows CE .NET" by Boling, 2003, Microsoft Press.

-46 -



under Windows CE does lose a few functions from the desktop versions - these include

drawing of complex shapes like Arc, Chord and Pie as well as all drawing functions using

the current point.

Windows CE provides the same set of predefined window controls as other versions of

Windows. It also provides complex controls through the common control library. The set

of standard controls implement a tightly defined user and programming interface.

Standard controls include Push Buttons, Check Boxes, Radio Buttons, Group Boxes, Edit

Controls, List Box and Combo Box Controls, Static Controls (Labels) and Scroll Bars.

Menu Controls in Windows CE are implemented differently than in other Windows

versions. They are not part of the standard top-level window, instead they appear attached

to a command bar or menu bar control that is manually created for the window. Windows

CE also provides complex controls consisting of Toolbar, Status bar, Trackbar,

Command bar, Date/Time Picker, Calendar, Progress bar, Tab and Tree controls through

the common control library DLL. These common controls have been adapted for the

small form factor displays of devices using Windows CE.

Windows CE supports a subset of the common dialog library provided with other desktop

versions of Windows OS. A Dialog box provides the user with a predefined window class

and window behavior and helps in reducing duplication of code. It hides the complexity

involved in creating and managing user interface controls. The Dialog manager in GWES

creates dialog boxes using an application provided template and implements default

functionality for switching focus between controls and default actions for the Enter and

Escape Keys. The common dialog library controls provided in Windows CE are the File

Open/Save, Color and Print dialogs which are reformatted for the smaller display on

Windows CE devices 35

35 "Programming Windows CE .NET" by Boling, 2003, Microsoft Press.

-47 -



Networking

Windows CE provides Connectivity APIs for Serial, IR, Bluetooth communications as

well as Networking APIs to connect to other computers over a TCP/IP network. The

Windows CE Networking API is a subset of the vast number of networking functions

provided with Windows XP. The Network Communication services provided with

Windows CE can be classified into three broad categories - Local Area Networking

(LAN) services, Personal Area Networking (PAN) services, Wide Area Networking

(WAN) services, General Networking features and Servers.

The set of Windows CE network drivers, protocols and APIs enable three different

entities to contribute toward the platform - OEMs to create network enabled devices such

as Pocket PCs and SmartPhones, Application developers to create network-centric

applications and services, and Hardware vendors to create networking hardware and

drivers using the open Network Driver Interface Specification (NDIS) such as for 802.11,

Bluetooth, CDMA and GPRS protocols. The Windows CE networking services

architecture includes built-in support for wireless networking (Bluetooth and 802.11),

Servers (FTP, Telnet, HTTP, PPTP etc.) and an updated implementation of the TCP/IP

stack and Network Driver Interface Specification 5.1.

-48 -



. Applications I

I

Fig. 20 Windows CE Communications and Networking Architecture36

The Windows Networking API is a provider and implementation independent interface to

network resources - the WNet API calls are translated into network commands for a

particular network protocol. The Windows Sockets API, WinSock provides a sockets

interface to the underlying communications layer which could be IrDA, Bluetooth or

TCP/IP. The Winsock API in Windows CE leaves out the asynchronous function calls to

reduce the library size, but includes support for stream and datagram connections.

36 http://msdn2.microsoft.com/en-us/library/ms880996.cmcommunicationarchitecture(en-usMSDN. 10).gif
(accessed Dec. 2006)

-49-

: ---------- - ----- ---- I---·--------------------------------1··---·----------------------

II



Infrared Communications

Windows CE provides the IrSock API which is a socket-like API built on top of the IrDA

stack used for infrared communications. The IrSock API differs from Winsock in terms

of addressing, datagram and security support. IrSock provides APIs to query devices

ready to communicate over an infrared port while the IrDA stack handles signal collision,

interruption and remote device detection 37. The IrDA stack implementation in Windows

CE implements Infrared Link Management Protocol (IrLMP) to manage multiple

connections and per-connection flow control, Information Access Service (IAS) and the

lowest level IrDA Infrared Link Access Protocol (IrLAP) that is responsible for device

detection, link establishment and data delivery between two devices. A serial connection

to the IR port is simulated using IRCOMM which is configured transparently using

IrSock. Using IRCOMM requires exclusive access to the IR link. The Serial IR Miniport

driver is the interface between the IrDA stack and the serial driver and converts NDIS

requests from the IrDA protocol driver into Serial port requests.

Fig. 21 Windows CE IrDA Stack Architecture38

37 Windows CE 5.0 documentation at MSDN. http://msdn.microsoft.com
38 http://msdn2.microsoft.com/en-us/library/ms900378.irstack(en-us,MSDN. 10).gif (accessed Nov, 2006)

- 50-

"ARM



Bluetooth

Windows CE provides integrated support for the Bluetooth protocol. Even so, some

OEMs use third party Bluetooth software on their devices instead of the built-in stack.

Windows CE supports the Dial-Up networking, LAN access, Object Push and File

Transfer Bluetooth profiles and lets OEMs add the capability to support additional

profiles. The Windows CE Bluetooth protocol stack implements the functionality for

devices to locate each other and establish a connection. The lower two layers in the

Bluetooth stack in the diagram below are implemented in hardware, the rest are provided

by Windows CE. Applications interact with the Bluetooth stack through one of two

interfaces - the Winsock API and virtual serial ports.

Appli cations

Fig. 22 Windows CE Bluetooth Stack Architecture39

39 http://msdn2.microsoft.com/en-us/library/ms890956.btstackarch(en-us,MSDN. 10).gif (accessed Nov.
2006)

-51-



Telephony

Windows CE implements a subset of the Microsoft Telephony Application Programming

Interface (TAPI). TAPI is a set of APIs that abstracts the call control functionality

implemented in different communication protocols using Telephony Service Providers

(TSP) and provides a consistent programming interface to applications to make telephony

connections 40. This abstraction of the complexity involved in making connections with

different telephony protocols and the use of TSP modules makes TAPI extensible for

service providers and uniform to use for application developers. The Telephony Service

Provider Interface (TSPI) in TAPI translates TAPI service requests into commands

understood by the telephony hardware. Windows CE ships with the Unimodem service

provider module and supports installable service providers such as VolP, ISDN, CDMA

etc. from independent software and hardware vendors and OEMs.

1

LI
1-r

Fig. 23 Windows CE TAPI 2.0 Architecture41

TAPI implements comprehensive call control for both data and voice with support for

supplementary services like call hold, forward, conferencing etc. It also provides support

for call center management by associating data with calls, predictive port and queue

management. The Pocket PC Phone edition and Smartphone shells provided by Microsoft

add shell specific telephony APIs to simplify access to telephony functionality for

applications. These APIs are limited in their functionality and work by wrapping the

complex Windows TAPI calls, but are sufficient for simple applications that need to dial

a number, view call records, and access the Short Message Service (SMS) subsystem.

40 Windows CE 5.0 documentation at MSDN. http://msdn.microsoft.com
41 http://msdn2.microsoft.com/en-us/library/ms881883.telephy(en-us,MSDN. 10).gif (accessed Nov. 2006)

- 52 -

I :



Security

Windows CE provides a comprehensive toolkit consisting of service providers, APIs and

cryptographic libraries for application programs that can be used to secure

communications, user applications and data stores. An optional module level security

model is implemented by OEMs that designates modules as trusted or un-trusted.

Windows CE doesn't support the thread and process-level security models supported by

Windows XP42. The Windows CE security model is based on modules - .exe and .dll

executable code - that are marked either trusted or un-trusted based on validation from

the OEM Abstraction Layer (OAL). This validation is obtained when the operating

systems loads the module. If the module is trusted, it can access anything in the system,

else it is refused access to a few protected functions and registry keys. By leaving the

mechanism to certify modules about their trustworthiness to OEMs, Windows CE lets

OEMs choose an appropriate module verification scheme and implement a trusted

environment for applications to run.

The Authentication Services provided by Windows CE include user authentication,

credential management and message protection. This is implemented using the Security

Service Provider Interface (SSPI) that allows addition of security packages implementing

different authentication and cryptographic schemes like Kerberos and NTLM43. With

SSPI, application programs can use the different security models without changing their

interface to the security system. The Operating System also includes a Credential

Manager to provide a single point to track and manage authentication information on the

device and Passport Authentication to interact with Microsoft's Passport infrastructure.

42 "Programming Windows CE .NET" by Boling, 2003, Microsoft Press.
43 Security Overview in Windows CE 5.0 documentation at MSDN. http://msdn.microsoft.com

- 53 -



C 1t rottcteed store
ddIAll) II API or DPAP I

Fig. 24 Windows CE Security Services Architecture44

The Cryptographic services provided with Windows CE include pluggable Cryptography
service providers (CSP), Cryptography APIs through CryptoAPI, certificate management,
and development of customizable public-key infrastructures. CryptoAPI is a set of APIs
that allow application developers to encrypt/decrypt data using both PKI and symmetric
key cryptography, authenticate and manage digital certificates. Windows CE also
implements the Smartcard Cryptographic Service Provider (CSP) for the smartcard
subsystem. This is compatible with the Smartcard CSP for desktop Windows OS and
provides applications to use CryptoAPI for the Smartcard subsystem.

"44http://msdn2.microsoft.com/en-us/library/ms925958.security(en-us,MSDN. 10).gif (accessed Nov, 2006)

- 54-



Chapter 3

Evolution of the Mobile Platforms

This chapter will discuss the evolution of the Palm, Symbian and Windows CE Operating

System Platforms over the years since their inception. Studying their evolution is

interesting because it indicates the different architectures, technologies and subsystems

that the Organizations decided to enhance or focus on. This in turn points to the vision

into the future of the Organization at that point in time as well as their strategy to capture

platform leadership through architectural enhancements of their platforms.

3.1 Palm OS Evolution

The Palm Operating System is a compact, 32-bit operating system designed specifically

for handheld computers. A major theme of the development objectives since the first

release of the operating system was to keep the user interface simple and the operating

system extensible to licensees. The core of the operating system is kept compact to

prevent feature bloat and enable it to run in environments with limited resources while its

extensibility allows licensees to add differentiated features depending on their hardware.

Palm Operating Systems starting with Palm OS vl.0 and ending with Palm OS Garnet

have been targeted to run on Motorola 68K processors. These versions of the Operating

Systems are single-threaded and have retained the basic architecture since the original

release. Palm OS Cobalt (version 6.x) is a complete rewrite of the original Palm OS

designed to run on faster ARM processors, comes with a new OS architecture providing

multi-threading support and a set of new APIs for multimedia and communications. Palm

OS Cobalt retains compatibility with existing Palm OS 68K applications by including a

run-time environment called Palm Application Compatibility Environment (PACE).

-55-



The different versions of Palm OS and their year of release are chronicled in the diagram

below.

1996 1997 1998 1999 1999 1999 2000 2001 2002 2004 2004

vl.0 v2.0 v3.0 v3.1 v3.2 v3.3 v3.5 v4.0 v5.0 Garnet Cobalt

Fig. 25 Evolutionary Timeline of Palm OS

A study of new features added in each release of the Palm OS was done using the

archived copies of web pages for http://www.palm.com using the internet archives web

site http://www.archive.org. A study of various press releases since 1997 is available at

the Palm web site, http://www.palm.com. Also, Palm maintains documentation regarding

the developer SDKs and Operating System overviews at

http://www.palmos.com/dev/tech/oses/. A historical timeline and changes in each Palm

OS version starting from Palm OS v2.0 is provided in the book "Professional Palm OS

Programming" by Foster. The following table is a compilation from the above sources

and provides an understanding of the evolution Palm OS went through since its original

release, Palm OS vl.0 in 1996

OS Version Release Features

Year

Palm OS vl.0 1996 * Releases Pilot 1000 and Pilot 5000 using the same

Palm OS vl.0 designed for one-button access and

desktop integration.

* Stylus based touch-screen input with Graffiti

handwriting recognition software and available on-

screen keyboard.

* Integrates with Microsoft Schedule+ and Lotus

- 56-



Palm OS v2.0

Palm OS v3.0

1997

1998

* TCP/IP support added.

* GUI enhancements including addition of scroll bars.

* New launch codes to enable integration with third-

party applications e.g. for phone number lookup from

Address Book application.

* String manipulation and IEEE floating-point math

functions added.

* GUI enhancements including addition of bold and

custom fonts and Progress dialog manager.

* IR beaming added.

* API changes to include dynamic user interface

functions.

* Inclusion of unique device ID on hardware with flash

ROM.

* Dynamic heap memory increased to 96K

* Memory architecture changes to configure storage

RAM as single heap instead of multiple heaps.

* Support for standard MIDI files and asynchronous

-57-

Organizer.

* "Open" system - third-party applications can be

added.

* Expandable memory.

* Includes Personal Information Manager (PIM)

software with five applications.

* Data storage using a database model with small

chunks of memory that can be relocated anywhere.

No file system available to minimize overhead.

* 160x160 available display resolution.

* Supports Metrowerks CodeWarrior as tool for

application development.

1998



Palm OS v3.1

Palm OS v3.2

Palm OS v3.3

Palm OS v3.5

1999

1999

1999

2000

sound playback.

* Support for contrast adjustment dialog box on Palm

devices.

* Support for Motorola Dragonball EZ processor.

* Unicode support - characters are stored in two bytes.

* GUI enhancements for text fields.

* Clipboard API changes.

* Alert dialog box to display application runtime errors.

* Serial Connection Manager added to support flexible

serial connection capabilities. Implementation of

IRCOMM standard to support serial connections over

IR. Desktop synchronization (HotSync) can be done

over IR.

* Improved connectivity options to connect to remote

systems.

* Includes the full functionality of OS versions 3.1, 3.2

and 3.3 which are not supersets of each other.

* Dynamic heap changes based on memory available to

the system.

* Support for 1, 2, 4 and 8-bit color and grayscale and

APIs to support Color.

* Addition of Notification Manager for the system to

notify registered applications about events in which

they are interested.

* Several GUI enhancements including addition of

Command bars, Slider and Graphical controls,

enhanced Gadget (custom widgets) support, Color

Picker dialog, look and feel changes with displaying

menu items.

* Enhancements to support localization of applications

- 58-



Palm OS v4.0

Palm OS v5.0

2001

2002

without recompilation.

-59-

* Support for Dragonball VZ processor.

* Virtual File System (VFS) API introduced to support

for a variety of storage schemes with a consistent

interface.

* Telephony API added to abstract differences between

different phones and provides a network protocol

independent common programming interface.

* Ships with a GSM phone driver to support GSM

phones.

* Several enhancements to the web clipping application

to support color, cookies and ability to download

binary files.

* Exchange manager enhanced to register exchange

libraries and provide a common API for developers

and UI for users to choose new transports such as

SMS and Bluetooth.

* Support for ARM processors that improve execution

speed and application capability.

* Existing Palm 4.0 and earlier based applications can

still run on Palm OS 5.0 based ARM devices with the

help of Palm Application Compatibility Environment

(PACE).

* Support for double density displays with resolution

up to 320x320 pixel mode.

* Enhanced sound support with new APIs to play and

record sampled sound.

* Inclusion of Web Browser 2.0 for rich wireless

content and direct internet access without going

through Palm.Net proxies for transcoding. Wireless



Palm OS

Garnet (v5.4)

Palm OS

Cobalt

2004

2004

download and installation of Palm applications is also

supported.

* Enhanced security with addition of encryption /

decryption routines and APIs including 128 bit RC4,

SHA1, RSA verify and SSL 3.0 / TLS 1.0 services.

* COM support for Palm Desktop to allow developers

to integrate with and extend Palm Desktop Software.

* Palm OS Garnet (v5.4) is primarily a maintenance

release consolidating all changes in Palm OS v5.2 and

Palm OS v5.3 in several international languages.

* Support for Graffiti 2 handwriting software through

acquisition of Jot product from Communications

Intelligence Corporation (CIC) - this has been

available since OS v5.2.

* Support for QVGA (Quarter VGA) or resolutions of

240x240. This is in addition to the double density

(320x320) that was available since Palm OS v5.0 -

available since OS v5.3.

* API enhancements to Text Manager.

* Support for Dynamic Input Area (stylus input area

that can be minimized for application display or

brought forward when handwriting recognition is

needed, thus increasing available display area for

applications).

* Integrated Bluetooth and Bluetooth Manager UI

features.

* ARM-native application development.

* Complete rewrite of Operating System.

* Uses Frameworks based architecture with improved

componentization and modularity for licensees to

- 60-



I

-61-

provide customized solutions.

* Support multi-threading, private virtual address

spaces for applications for increased robustness and

application flexibility.

* Increases supported memory to 256MB for ROM and

RAM.

* Finally moves to GDI support to isolate OS drawing

operations from low level graphics hardware.

* Support for Dynamic Input Area (stylus input area

that can be minimized for application display or

brought forward when handwriting recognition is

needed, thus increasing available display area for

applications).

* Multimedia enhancements to support a flexible

architecture for audio and video - support for

ADPCM/PCM, MP3 and MPEG1/MPEG4 becomes

standard.

* Comprehensive security enhancements through

inclusion of authentication, authorization managers

and pluggable security providers. Enables end-to-end

secure communications through SSL/TLS and

enhances application security through code-signing

and secure desktop synchronization.

* API changes include replacement of Palm-specific

Net library with standard Berkeley sockets API.

* Integrated Bluetooth support and new APIs for

telephony call management.

* Improved graphics for 2D rendering, complex

drawing and anti-aliasing.



3.2 Symbian OS Evolution

The Symbian Operating System is a flexible and scalable operating system designed

specifically for mobile phones. In order to cater to a wide variety of phone equipment

with different form factors from a variety of manufacturers, the core of the operating

system is separated from the user interface. This allows manufacturers to develop the

right User Interface for their variety of devices and target different market segments.

Currently four different user interfaces are provided - UIQ, Series 60, Series 80 and

FOMA SW Platform. This thesis will trace the evolution of the Symbian OS itself and

not the UI layer that has an evolutionary path of its own.

The different versions of Symbian OS and their year of release are chronicled in the

diagram below.

1999 2000 2003 2004 2005

Symbian Symbian Symbian Symbian Symbian
OS 5.x OS 6.x OS 7.x OS 8.x OS 9.x

Fig. 26 Evolutionary Timeline of Symbian OS

The following table chronicles the technologies and features included with each new

release of the Symbian Operating System. The table is compiled by analyzing the product

functional descriptions starting from v8.0 onward at

http://www.symbian.com/symbianos/releases/symbianosreleases.html and the combing

archived internet pages for symbian.com at http://www.archive.org. This thesis traces the

evolution of the Symbian OS itself and not the EPOC operating system from Psion that

forms the basis for the first Symbian release. The first Symbian release v5.0 was in 1999

and was also called EPOC Release 5 or ER5. The current stable release of the Operating

- 62 -



System is v9.3 released in July, 2006. The release year in the table indicates the year the

first major release of that version.

OS Version

Symbian OS v5.x

Release

Year

June

1999

Features

* First release of Symbian OS 5 or ER5 is

delivered as a set of components to device

manufacturers. It consists of Base (runtime and

tools for building ROM, emulator and Windows

Utility package), Engine (component with any

user interface which is used by application

engines), Graphics (components for drawing,

printing, fonts and views), and System GUI

(GUI, System shell, control panel and other

components that define look and feel).

* Runs on ARM based CPUs

* Provides a full multi-tasking infrastructure with

process scheduling, memory and power

management, timers, file system, keyboard, PC

card, CF-removable media.

* Development tools are provided as EPOC C++

SDK and OEM Adaptation Kit (OAK) for

building ROM images for new devices.

* Operating System is developed in C++ and

application programming interface to the OS is

exposed using C++ constructs. Provides a EPOC

C Standard library with many of ANSI C

facilities including string, file i/o, TCP/IP

sockets, processes, pipes and blocking i/o.

* EIKON is provided as the native GUI framework

-63 -



Symbian OS v6.x 2000

which is replaceable by device manufacturers

with their own customized User Interface.

* Designed for devices with color or grayscale

displays with 640x240 screen sizes,

alphanumeric keypads, and pen input via screen

digitizer.

* Connectivity options include TCP/IP, dial-up,

telephony API with call control and phonebook

support.

* PC Connectivity for synchronization and IR

support for data communication with other

devices is included.

* Releases two reference designs for device

manufacturers

* Quartz is a tablet size, palm form factor with pen

operation, 240x320 color screen, tablet design

specific GUI and navigation, handwriting

recognition and an integrated task-based

application suite

* Crystal is a powerful, keyboard-based wireless

information device for professional and power

users with keyboard operation, 640x200 screen

with soft keys, GUI evolved from earlier

communicator based versions and a

comprehensive application suite.

* Both reference designs use the same generic

technology components - multi-tasking kernel,

data management, graphics, communications,

multimedia, and security.

* Data synchronization with PC and server-based

- 64 -



Symbian OS v7.x 2003

data.

* Application development options include EPOC

C++, Java, WAP and HTML.

* Integrated wireless telephony for

Communicators and Smartphones that combine

data and voice seamlessly.

* Integrated Bluetooth, WAP and GPRS based

packet data.

* Security options include full-strength encryption

and certificate management, secure

communications (HTTPS, SSL and TLS) and

validating application installations.

* Implementation of PersonalJava 3.0 and

JavaPhone 1.0.

* PC Connectivity enhanced through Symbian

Connect connectivity package.

* GUI subsystem componentized from single

library to ease implementation of multiple

reference designs.

* Support for several audio and image formats

through media server.

* Improves code reusability by introducing the

ECom plug-in architecture. This is a generic

framework for specifying plug-in interfaces,

calling and writing plug-ins.

* New transport framework architecture that

provides a common interface to HTTP and

WAP.

* Support for IPv6 and simplified API to use

secure sockets.

-65 -



Symbian OS v8.x 2004

* Media support and API to handle streaming

audio, support for 2D hardware graphics

accelerators.

* Metrowerks CodeWarrior is supported for

Symbian C++ development.

* Support for Sun's Java MIDP APIs that are

specialized for mobile phones.

* Support for Multi-Media Messaging (MMS) that

supports sending multimedia messages in a SMS

fashion.

* Network Adaptor Framework specified for

licensees and third parties to use for development

of adaptors for various network interfaces.

* Support for SyncML client API to enable data

synchronization with standards based SyncML

server.

* New telephony APIs to provide a common

interface to multiple air interfaces including

GSM, CDMA and WCDMA.

* Support for USB, Multimedia card and hardware

accelerator support added to base operating

system.

* Releases two application compatible variants of

the Operating System with different kernels -

EKAl is the legacy kernel evolving from v7.0

and EKA2 is the new hard real-time kernel with

improved real-time capabilities.

* Provides a Device management framework using

OMA SyncML 1.1 to enable network operators

and enterprises to remotely manage and

- 66 -



Symbian OS v9.x 2005 * Includes RTP (Real time Transfer Protocol)

stack natively.

* Additional Device Management capabilities

including support for OMA Device management

to enable enterprises and operators to manage

phones in the field.

* Includes a capability based security model to

enhance platform security against malware. Also

includes support for application specific, private

secure data stores.

* Native support for WLAN 802.11 and High

speed downlink data access (a 3G wireless

protocol) added.

- 67 -

configure Symbian OS phones reducing in-

market deployment and management costs.

* Adds Media Device Framework (MDF) to

provide a hardware abstraction layer for

multimedia hardware acceleration to deliver high

performance multimedia applications such as

video streaming.

* Enhanced support of Java to allow developers to

access native functionality of Symbian OS and

become fully compliant with network operator

Java requirements and Java Community

standards.

* Support for SDIO standard to allow licensees to

incorporate SD memory and I/O cards.



3.3 Windows CE Evolution

Windows CE is Microsoft's operating system for resource constrained embedded devices

like industrial controllers, GPS devices, handhelds and home equipment. It is the base

operating system for Windows Mobile devices that include Pocket PC, Pocket PC Phone

Edition and Smartphone devices. The first release of Windows CE, version 1.0 was in

1996. It was primarily meant for handheld devices (smaller laptop-like devices without

less memory and CPU power than traditional notebook computers) and shipped with

lighter versions of Excel, Word, and Internet Explorer with reduced functionality to

minimize code size. The current, stable version of Windows CE is version 5.0 and is the

base operating system for the Windows Mobile family of devices. Windows Mobile 5 has

faster, better productivity tools reflecting the higher CPU power and memory capabilities

of current mobile device hardware. It has better graphics capabilities including

implementation of Direct3D for gaming and multimedia applications, Digital Rights

Management (DRM) integration, and default storage of user and application data in

persistent, non-volatile storage.

The different versions of Windows CE and their year of release are chronicled in the

diagram below.

- 68 -



Windows CE Timeline
Source: A ref story of W slo CF (htip/ww.hpdacfo.codmppmwws, HPCFa rWeeved February 2, 2006

19901101 -1997-11.01 1997-11.01 -2O-0419
CE 1,0(Pegamus) CE 2,0 (Mercuy)

1998-10-08

CE 2,12
Handheld PC 3.1

199949-28

CE 2 12 (Golden
Auto PC 1999• .28

Hendheld PC (HIPC)

Pahidweld PC, Pocket PC (PIPC) and S&nWlOO*e

2000419 2002-01-07
CE 3.0 (Cedar)

200241-07 -20004-0
CE 4.0 (Talieker)

Packet PC 2000 (Rai Pocket PC 2002 (Meri)
200004-19 2001-1044

eye)

Fig. 27 Evolutionary timeline of Windows CE OS45

The following table indicates the technologies and features included with each release of

Windows CE Operating System. This addition is incremental and application programs

are backward compatible with the previous release of the Operating System. The table is

an aggregation of data using analysis of the readme files provided with each developer

SDK release corresponding to the release version of the Windows CE Operating System

and a study of the comprehensive historical timeline maintained at

http://www.hpcfactor.com/support/windowsce.

45 http://upload.wikimedia.org/wikipedia/commons/c/cb/Windows CE Timeline.png (accessed Nov. 2006)

- 69 -

200407-•9 200.02.01
CE 5.0 (WcOaWe

u20051-Windro Auomtive4-.2
2000428

NoverN



OS Version

Windows CE 1.0

Windows CE 2.x

Release

Year

Late 1996

Fall 1997

Features

* Simple "Organizer" Operating System.

* Low power hardware mandated on OEMs.

* 32-bit Operating System.

* Mandated displays to be half-VGA or 480x240

with 4 grayscales and 2 bits per pixel

* Windows 95 like interface.

* Unicode used throughout OS to target

international markets.

* Terminal Emulation and Point-to-Point

Protocol for e-mail.

* Remote Networking and Remote Access

Service Support

* PC Sync client

* Shipped with mobile versions of Excel, Word,

Internet Explorer, Outlook and Microsoft

Personal Information Manager (PIM).

* Modularization of the Handheld Operating

System to be called Microsoft's first

Embedded Operating System. OEMs could

take different parts of the scalable, low

footprint Windows CE OS and create diverse

range of devices based on it using the

Windows CE Embedded Toolkit (ETK).

* Support for Color

(640x480) with 24

Type Fonts.

* Internet Explorer,

half-VGA and

bits per pixel

full-VGA

and True

Word, Outlook, Pocket

- 70 -



Windows CE 3.x Mid 2000 * Complete User Interface rework of the Palm-

size, keyboard-less, Windows CE based

devices to compete directly with Palm OS. The

Windows CE, Palm-size devices started to be

-71-

Access and PowerPoint were bundled with the

OS.

* Kernel and NDIS miniport driver model

support for a broad range of peripheral devices

including Ethernet adaptors, modems, IR,

GSM.

* Support for VGA adaptors and PCMCIA/CF

memory modules.

* Object store size increased to 16MB and

support for Microsoft Message Queue added.

* COM support for in-proc servers.

* FAT32 file system and installable file system

support

* Software Input Panel (SIP) to display virtual

keyboard.

* Fast IR and USB support

* Inclusion of the C runtime library in the

Operating System to reduce the size of the OS

and application programs.

* Release of the first "Palm PC" based on

Windows CE 2.01 without Pocket Office and

Explorer. (Later renamed to "Palm-size PC"

after a trademark infringement suit by 3com).

* Includes "ActiveSync" for desktop

synchronization.



Windows CE

.NET

Early 2002

- 72 -

called Pocket PCs.

* Pocket PC based devices replaced the

Windows 95 like CE Shell with a Pocket PC

shell reflecting the Microsoft's differentiation

strategy for Pocket PC.

* Core Performance enhancements including

better real-time support, increased number of

thread priorities (256), adjustable thread

quantum, nested interrupt service routines and

reduced kernel latencies - this led to

development of enterprise class applications.

* Adoption and development of Handheld PC

devices started trailing off while Microsoft's

entire marketing started to get Pocket PC

oriented - the distinctiveness of a Handheld PC

providing the Office Suite of productivity

applications diminished with the increased

functionality of the Pocket PC class of devices.

* Full COM out-of-proc and DCOM support.

* Object Store increased to support 256MB of

RAM.

* File Size limits increased to 32MB per file.

* Improved multimedia support through media

player.

* Networking support for XML, PPTP

(Tunneling protocol), ICS and remote desktop

display.

* DirectX API for graphics added.

* Changes in virtual memory management which

resulted in doubling of available virtual



Windows CE 5.0 Mid 2004

-73-

memory per application.

* New Driver loading model and system services

support.

* Bluetooth, 1394 (Firewire) and 802.11 wireless

networking support.

* Support for IPv6, Winsock 2 API addition,

Power management.

* Support for running managed applications

through inclusion of Microsoft's .NET runtime

in the form of .NET Compact Framework.

* Pocket PC Shell APIs and other functionality

supporting menu bars, soft input panel (SIP -

the virtual keyboard) were moved to the base

OS - Windows CE to enable OEMs using

Windows CE to support running PocketPC

applications.

* Support for Networked Media Device (NMD)

to allow audio and video playback on home

networks.

* Supports Windows media DRM (Digital

Rights Management) to allow Windows CE

based devices to access protected media

content.

* Digital Video Recorder (DVR) functionality

added to support creation of set top boxes.

* Increased support for Platform Builder tools

including Production Quality OEM

Abstraction Layer (OAL) for certain hardware

platform Board Support Packages and

Production Quality device drivers to simplify



- 74 -

and bring faster-to-market custom, embedded

OS designs.

* 32-bit Cardbus support for PCMCIA.

* Support for Direct3D Mobile - a subset of

Direct3D API on desktop systems - to provide

drawing services for Direct3D middleware.

This enables better graphics support for games

and multimedia applications.

* Additional functionality and managed code

APIs added to .NET compact framework.

* Improved connectivity with Microsoft

Exchange Server and Active Directory Server

to enable tighter desktop integration.

* Inclusion of Windows Messenger.

* Improved WLAN support for 802.11 to build

native WLAN Access Points and Stations.

* Keyboard Layout and Input Method Editors for

Multiple languages.

* Security support for applications enhanced -

added security APIs for cryptography and

authentication libraries. Adds Local

authentication system for modular device locks

like smart card plug-ins.



3.4 Analysis

The chronology of Palm OS evolution shows the incremental features being added to the

OS to support evolution in the device hardware itself. The original Palm OS architecture

changed little since the first release in OS until 2004, when support for ARM processors

led to complete restructuring of the OS in the form of Palm OS 6.x or Cobalt. In contrast,

the original Symbian architecture supported ARM in 1999 along with multitasking and

virtual memory for increased OS stability. This original architecture has changed little,

but evolved consistently with additional features to support new device capabilities

adhering to the same plug-in architecture. The first release of Windows CE was based on

the original Win32 architecture from Windows 95 and has retained that basic

architecture. It has evolved from pure handheld (HPC) support in 1996 to current

Smartphone and Pocket PC shell support based on the same base Operating System.

Since the first release of Windows CE in 1996, the focus of Microsoft's innovations for

the mobile device market seems to be in branding - or specifying - a set of standards and

specifications in hardware and user interfaces for device manufacturers. This seems to

reflect Microsoft's desire for device users to see a standard Windows-like interface on

their devices, as an extension to their Windows OS desktop.

Connectivity

Palm OS Connectivity support evolved from initial desktop PC synchronization (1996),

through TCP/IP (1997) and IR (1998). Palm OS v2.0 added TCP/IP support for Palm

devices to connect to the Internet, but internet browsing support was in the form of

transcoded HTML for Palm specific device displays using Web Clipping. Direct

connectivity without going through Palm.Net came only in Palm OS v5.0 in 2002. Palm

OS telephony API support came with v4.0 in 2001 and integrated Bluetooth support came

with v5.0 in 2004. Symbian support for TCP/IP, dialup telephony, telephony API for call

control, IR and desktop synchronization came with the very first Symbian OS release in

1999. The second Symbian OS release in 2000 added integrated support for Bluetooth,

WAP and GPRS. The very first release of Windows CE in 1996 had PPP (Point-to-Point

- 75 -



Protocol) to access email, remote access and remote networking support. In order to

support a broad range of peripheral hardware, Windows CE adopted a NDIS miniport

driver model with the second Windows CE release in 1997. Fast IR and USB support

came in the same release. Integrated Bluetooth, Firewire and WLAN (802.11) support

came in 2002. The release of Windows CE 5.0 in 2004 included support for devices to

participate as a networked media device for home media connectivity.

Symbian OS has provided the most open and standards based architecture for external

connectivity and communication since its original release, whereas Microsoft relies on

using the same standard Windows-like interface to communications and interfacing to

external devices. Palm OS has the greatest increase in communications and connectivity

capabilities since its first release. This seems to reflect a desire on the part of the OS

developers and designers to stay true to the "simple OS" philosophy and see a Palm OS

device as a basic personal organization device.

Security

Palm OS added comprehensive API support for security including addition of

cryptographic libraries for encrypting/decrypting came in ver5.0 in 2002. The second

release of Symbian OS in 2000 added integrated support for high strength cryptographic

libraries for encryption/decryption and certificate management. Symbian OS v9.1 in 2005

added a capability based security model with installation of Symbian-signed applications

to protect against malware. Windows CE 5.0 in 2004 added OS support for security with

built-in cryptographic and authentication libraries.

All three Mobile Operating Systems have similar levels of security support with built-in

cryptographic and authentication libraries and application programming interfaces to

these libraries. Symbian was the earliest to add this support and Windows CE the last.

-76-



User Interface

The first User Interface in Palm OS used innovate display controls specific to the small

screen available in handhelds. The next big step in innovation came with Color support in

Palm OS 3.5 in 2000. This release also added several User Interface controls and GUI

enhancements and APIs to support color. Several Multimedia enhancements including

enhanced sound support and double density displays appeared in Palm OS v5.0 in 2002.

Symbian OS supported color natively in its very first release in 1999. The second release,

in 2000 added support for different display resolutions and screen sizes, stylus or

keyboard based input in two reference designs for device manufacturers. Extended

graphical support including 2D hardware accelerators, streaming audio and

synchronization using open-standards based SyncML was also added in 2003. Evolution

of Multimedia support continued with releases in 2004 and 2005 to support video

streaming including addition of a media device framework to provide hardware

abstraction for multimedia hardware acceleration. The first Windows CE release in 1996

had a Windows 95 shell and reflected Microsoft's desire for the Handheld PC (HPC) to

be seen as a desktop extension. The second release in 1997 added full VGA color

support. This release also heralded Microsoft's strategy for a small, real-time OS for

embedded devices - the Operating system was repackaged and re-componentized for

device manufacturers to adapt for their specific use. It was thus, no longer a phone or

handheld operating system, but a base for a wider family of consumer devices. Reflecting

the growing availability of Pocket PC applications, Microsoft folded Pocket PC shell

specific APIs into the base Windows CE OS to allow different device manufacturers to

run the same Pocket PC applications. Windows CE 5.0, released in 2004 has native

support for Direct3D to enable development of highly functional games and multimedia

applications.

Core OS (Kernel) Features

Multi-threading support, virtual memory and framework architecture with

componentization for application programming came only with Palm OS Cobalt (v6.x) in

-77-



2004. This was also the first release with improved multimedia support including 2D

graphics rendering, complex drawing with anti-aliasing, and advanced audio.

Abstraction of API interfaces to support multiple implementations transparent to client

applications started with Palm OS v4.0 in 2001 - it included VFS API to provide a

storage-independent interface to the file system and exchange manager to support a

transport independent messaging interface.

The very first release of Symbian OS in 1999 had the foundation for modem mobile

operating system architecture. This release had a microkemrnel with multithreading and

virtual memory support, abstraction and separation of windowing layer from the core OS

to allow UI customization, and core device services running in user mode to support

robustness. A plug-in architecture to improve code-reusability with a generic framework

for specifying services and using them was added in 2003 with the ECom plug-in

architecture.

The Windows CE Operating System has been designed since its first release to be a

compact, real time operating system incorporating a subset of the Win32 API used to

program desktop Microsoft Windows Operating Systems. It is a multi-threaded, multi-

tasking operating system with virtual memory to separate application processes from

tripping on each other's memory and ensures OS robustness. The chief aim of the

designers of Windows CE was to allow Win32 programmers of the desktop Windows

Operating Systems to continue using the same APIs and programming paradigms -

messages loops, event handling frameworks on the smaller Windows CE platform.

Palm OS and Symbian OS support Java applications by providing a Java runtime and

ensure compatibility with Java community standards. In contrast, Windows CE uses

.NET as the technology to provide hardware independent, type safe run-time environment

to run code in a secure way.

- 78 -



Chapter 4

Platform Analysis of Mobile Operating Systems

The Mobile Operating Systems studied in this thesis have a common theme - they have

all been specifically designed for mobile, small form factor, computing devices with a

display interface that provide communication and data organization capabilities. These

Operating Systems differ in their architecture, their core design goals, and services

offered to users and device manufacturers.

The Mobile device ecosystem consists primarily of three different entities - Consumers,

Device Manufacturers and Operating System providers. The reality of voice and data

integration along with the rapid increase in computational power offered in small form

factor has led to increasing convergence of voice-centric mobile devices like cell phones

and data-centric mobile devices like Personal Digital Assistants (PDAs). Network

Service Providers and Operators like NTT DoCoMo play an important role in shaping the

complete wireless connectivity experience with added applications and services for end

users. Thus, they also constitute another important entity in this ecosystem. An Operating

System vendor needs to address the needs of all these entities through innovation and

evolve the mobile communication platform.

-79-



Device
Manufacturers

Network Service
Providers

Application
Developers

Fig. 28 Mobile Platform Eco-System

Competition among device manufacturers in the mobile device space has resulted in

increasing device functionality offered to customers and thus to complexity in the

Operating System software that manages the hardware and interfaces with end users.

Improved connectivity and multimedia capabilities of these devices has allowed Network

Operators and third-party service providers to develop value added service offerings for

end users. Separation of concerns is becoming increasingly necessary in this environment

to compete effectively - no longer can device manufacturers make their own Operating

Systems for their devices as was the case in the days of the early personal organizer

devices.

Mobile Operating System providers play an important role in the Mobile device

ecosystem as they control the interface to the users and provide the platform for

application developers of value added services. The OS providers aspire to gain platform

leadership in this industry through innovation, an architectural vision and a strategy to

carry together innovations in each of the other entities of the ecosystem for a coherent

platform evolution. Using the second lever - product technology and architecture - in the

Platform leadership framework proposed by Cusumano and Gawer, this thesis studies the

degree of openness of a product's architecture, interface and intellectual property that a

Company is ready to reveal to other component makers of the Platform.

-80-



4.1 Interface Design

Programming Interfaces are sets of interface descriptions such as function signatures or

types of messages that can be received and accepted by a module. A Programming

Interface provides for separation of concerns between two parties - the developers of the

interface and its functionality, and the developers wishing to use it to build their own

different functionalities 46. Implementation of the functionality behind the interface can be

changed as needed while keeping the interface provided stable. Thus, it results in a

written contract between two parties and enables their communication. A modern

programming interface consists of the following components:

* Function signature - Name of the function, number and type of arguments

* Interface constants - Numbers and Names used to give a uniform meaning and

context, for both the interface developer and user

* Protocols - A specific paradigm or pattern whose intent is well understood by the

interface user and used correctly for proper application execution. This also

includes assigning a uniform meaning to system resources like files and

environment variables.

Application Programming Interface

An important characteristic of an API specification is that once specified and released for

public usage, it is to be maintained and supported for a long time. This is done so that the

API user investments in learning the API and usage are preserved. Thus, addition of new

interfaces to the API specification can and should occur, but removal is not allowed. Still,

a mechanism to evolve the API to accommodate enhancements in functionality and

performance is to be needed. This requires development of an API specification that

hides implementation details of the functionality behind the interface and provides tools

and features that enable evolution of the API.

46 How to Design a Module (API) - Netbeans API Tutorial at http://openide.netbeans.org/tutorial/api-

design.html (accessed Nov, 2006)

-81 -



Usability studies play a key role in measuring effectiveness of the API specification and

help provide a framework for making design decisions. By comparing usability

differences in API design choices while controlling biases toward a particular API,

implementers can make decisions on the design of APIs that use these patterns47. API

specifications also ensure portability by requiring all implementers of the API to conform

to the common interface points. Applications written using the specified API should run

without issue on all systems implementing the API. In a way, the API specification helps

in setting a standard to which all implementations conform.

The Symbian OS API has been designed around providing application frameworks to

developers. The native C++ interface to the Operating System which itself has been

developed in C++ and uses these frameworks, results in an easy learning curve for

developers interested in developing for the Symbian platform. Also, use of application

frameworks and Symbian OS specific idioms helps in creating efficient, reliable and

complex program implementations.

Microsoft's strategy for its API is to make it easy for legions of existing Win32

developers to develop applications for the Windows CE platform. The Windows CE API

is a subset of the desktop Win32 APIs with the same syntax and programming idioms.

Most of the existing desktop Win32 applications can be easily ported to run on Windows

CE through adaptation to the smaller display size of Mobile devices.

The Palm Operating System has been written in the C programming language and has a C

language API to access the system functionalities. The Palm OS API reflects the

designers' motivation to give priority to lower program memory requirements than speed

and efficiency of execution. Consequently, 16-bit integers are preferred to 32-bit integers,

unwieldy bit fields are used to conserve memory and Palm's own implementation of

standard ANSI C functions with different signatures (StrCopy instead of strcpy for

47 Informing API Design through Usability Studies of API Design Choices: Stylos. J, IEEE Visual
Languages and Human-Centric Computing, 0-7695-2586-5/06

- 82-



instance) are used. The choice of the C programming language for application interface

description means that Application programs have to simulate object oriented

programming patterns without the native language support 48. Thus, the Palm API

designers had to use struct instead of class and use a type indicator inside the struct to

hint about the type of object when the struct is a union of different types of objects.

Providing a native C++ API, with the system interfaces modeled as classes and objects

using Object Oriented techniques would provide a more natural interface to the Operating

System, especially a GUI intensive OS like Palm.

Service Provider Interface

Another related interface specification provided by a platform developer that intends its

product to be used by different vendors is the Service Provider Interface (SPI). An

example of the SPI is the Device implementation side of the Serial Manager API

provided by the Palm OS. The SPI is the common interface provided by the Operating

System to implementers providing hardware or software services that in turn are used by

Application programs.

User
Application 1

User
Application n

Operating

System

Service
Provider 1

Service
Provider 2

Service
Provider n

Fig. 29 Operating System Interfaces - API and SPI

48 An application with variations as used in teaching a Palm programming course: Maurer, D. May 2003.
Journal of Computing Sciences in Colleges, Volume 18 Issue 5

-83-



The SPI interface provided by Symbian follows the framework methodology it uses for

application development. Symbian implements common service provider architecture

with pluggable modules that OEMs use to adapt for their hardware. The most significant

differentiated architecture that Symbian provides is the abstraction of the User Interface

functionality through creation of the UI Control Framework middle layer. This allows

device manufacturers to develop different concrete User Interface control libraries at the

top layer to customize and differentiate their devices based on device capabilities -

pen/keyboard based input, display size/resolution etc. Windows CE and Palm OS provide

a similar Service Provider Interface for licensees to use for device customization.

Microsoft specifies and imposes certain hardware and software look-and-feel

requirements for its licensees to use the Pocket PC or Smartphone branding - thus, OEMs

can't differentiate their devices on the basis of primary User Interface. All Pocket PC or

Smartphone devices are required to have the same User Interface developed by

Microsoft. Palm OS licensees can customize the User Interface provided on their Palm

powered devices there is no architectural support in the Operating System to achieve this.

Documentation

Documentation is another key aspect of an API specification. It provides details in plain

text to the API user of what the programming interface is supposed to provide as

functionality. To be useful, the documentation should also include code examples,

conceptual overviews, and definition of terms, programming guidelines, known bugs and

workarounds 49.

Symbian, Windows and Palm provide comprehensive documentation of their APIs and

OS architecture. This is delivered through their Software Development Kits (SDKs) as

well as online on their web sites. Microsoft uses the wide availability of Win32

documentation to its advantage by using a subset of the Win32 API for Windows CE

programming.

49 API Documentation from Source Code Comments: A Case Study of Javadoc by Kramer, D. Oct 1999,
Proceedings of the 17th annual international conference on Computer documentation

- 84 -



4.2 Architecture

Operating Systems designed for mobile devices have key characteristics that are quite

different from those required for a general purpose desktop OS. There are a lot of

differences among mobile devices - in terms of screen size, method of interaction (touch

screen, keyboard, and voice activation), voice and data centric applications and

capabilities. Adapting a desktop operating system for a mobile device by scaling down

features and service causes fundamental design compromises in the mobile operating

system. A good design follows from function and hence a mobile operating system

should be architected keeping in mind the key characteristics of mobile devices - limited

user interface - both input (keyboard) and output (display), connectivity (to different

wireless infrastructures incorporating different technologies deployed by various

operators), extensibility (by third party hardware and software vendors) and

differentiability (to target markets and by licensing OEMs).

Mobile applications are a fast growing market and Organizations developing business

and consumer applications are adapting their products and services so they can take

advantage of opportunities in these markets - by adapting their existing product for

mobile use, providing a mobile interface to their product, or developing new mobile

products with characteristics specific for mobile use.

Successful Application development for the mobile device needs 50

* Understanding of challenges in User Interface design for small screens

* Context of the environment in which the application is used - mobile tasks are

generally short and quick. The interface should be easy to grasp and interaction

with user be quick.

50 Driving Devices: Lessons Learned in the Business of Designing Mobile Uls: Frank, B. ACM,
Interactions, July & August, 2006. ACM 1072-5220/06/0700

- 85 -



* Development of mobile application is a) Context or use oriented b) Rapid for

quick implementation and deployment, because the mobile landscape changes

very fast

* A mobile application cannot be a clone of a desktop application. It uses the

mobile device primarily as a communication medium to interact with a server and

display information of interest to the user in an intelligent interface.

The Symbian Operating system has been designed for flexibility, customizability,

efficiency, robustness, and communications-centric. It has been implemented as a multi-

threaded, event-based, object oriented and preemptive Operating system written in C++.

The Operating System has micro-kernel based architecture with core system functionality

like scheduler and base user library that execute in privileged-mode and a file system and

graphical windowing system running as processes in user-mode.

Palm specifies a similar event based architecture for application programs where the

fundamental structure for the application is an event loop that receives events - generated

externally or internally by the application - which the application interprets and performs

actions in response to those events. Applications access the functionality of the Palm

Operating System through the several different system function calls in the C

programming language. These groups of function calls that work together to implement a

feature are categorized as Palm OS Managers.

Windows Mobile has been architected to be a lightweight, low power consuming, multi-

threaded, multi-tasking operating system based on the Windows CE embedded operating

system. It is a real-time, small foot-print operating system with a deterministic response

to interrupts and incorporates a subset of the Win32 API used to program all Microsoft

Windows Operating Systems. A chief aim of the designers of Windows CE was to allow

Win32 programmers of the desktop Windows Operating Systems to continue using the

same APIs and programming paradigms - messages loops, event handling frameworks on

the smaller Windows CE platform. Existing frameworks for Windows development like

MFC - Microsoft Foundation Classes can be used to develop Windows CE applications.

- 86-



Since Microsoft promotes .NET is the development environment of choice on the

Windows platform, it has developed a limited version of the .NET environment for

Windows CE called the .NET compact framework. Application developers for the

Windows Mobile platforms have the option to use the .NET runtime for development

apart from using the Win32 API directly.

API Documentation

Documentation of an API does not just include a reference to all the functions and data

variables exposed by the Operating System. Documentation should also include well

written tutorials explaining programming for the system from the ground-up, explanation

of programming paradigms and patterns to be followed for development of application

programs for the system as well as provision of an extensive library of program code

demonstrating working applications on the system.

Palm does a good job on this front by providing users with the actual code used for all the

built-in Palm applications. This code is not the simple hello-world variety provided in the

documentation by various Platform APIs. The Palm application code is sufficiently

complex that many production applications can be developed by understanding and

isolating the structural parts from the Palm code. The Symbian documentation is more

comprehensive and structured than Palm. It prepares developers for Symbian

programming by explaining the architectural constructs and programming frameworks

that Symbian developers using for developing the Operating System. Since several core

services of the Symbian OS - windowing server, file server, messaging server are

implemented as user-side services instead of kernel modules, the same service provider-

consumer pattern can be taught and easily applied to application programming. Since the

operating system has been written in C++ and the API itself is exposed through C++

classes, the documentation lends itself well to UML modeling. Complex relationships

between different classes constituting the API can thus be well understood with the UML

class diagrams that Symbian provides in its API documentation. The Windows CE

method of documentation follows the well understood and familiar Windows platform

-87-



documentation using MSDN. The MSDN web site provides a common web interface to

obtaining API reference documentation for all Microsoft products. Use of the standard

Win32 API for Windows CE application programming interface as well as support of the

.NET runtime on the Windows CE platform allows developers to reuse their Windows

programming skills on the Windows CE platform. Books and sample code from other

Windows projects can be adapted for use on the CE platform though production quality

sample code for the built-in applications (as with Palm) is not available.

Platform Framework for Application Development and Service Provision

Object Oriented Programming is a programming paradigm wherein a computer program

can be expressed more naturally using objects from the problem domain. This allows for

the design and development of small to large, complex programs that can be maintained

and evolved easily. An object oriented software system uses encapsulation for

information hiding with explicit public interfaces, inheritance and polymorphism as

powerful tools to explain relationships among objects.

Symbian OS is designed and implemented using Object Oriented Concepts in the C++

programming language. The Programming Interface to the Operating System uses the

same idioms and frameworks which allow Symbian application developers to design and

develop complex programs that are maintainable and evolvable. The Windows CE API is

a subset of the desktop Win32 APIs with the same syntax and programming idioms that

allow existing desktop Win32 applications to be easily ported to run on Windows CE.

Object Oriented Programming using the MFC framework is possible, but not promoted

by Microsoft. OO Programming can be accomplished using the .NET runtime, but the

abstraction caused the .NET environment running on low-power mobile hardware is not

conducive for complex application development requiring deterministic runtime

capabilities. The Palm OS API reflects the designers' motivation to give priority to lower

program memory requirements than speed and efficiency of execution. The choice of the

C programming language for application interface description means that Application

-88 -



programs have to simulate object oriented programming patterns without the native

language support.

Event Handling

Symbian provides the Active-Object framework which is an encapsulation of the low-

level Asynchronous Service Handling API. This framework allows application programs

to be written to use a well-understood, more natural event framework for requesting

services from the Operating System (or other programs) and perform actions based on

request completion. The active-object framework is at the heart of Symbian programming

- UI applications as well as complex applications performing extemrnal communications

can be quickly developed using the framework. The active-object framework includes

two components - the active-object encapsulating the service request mechanism

including making the request and handling the response and the active-scheduler which

implements the wait-loop for waiting for response to requests and dispatching them to the

event-handlers. The Symbian active-object framework results in a non pre-emptive

multiprocessing system without the overhead of multi-processing using threads. Even

tasks requiring long processing times can be split up into reasonable fixed-size work

chunks with the task scheduling itself with the active scheduler after completing a chunk

of work. This results in light-weight multi-tasking since it avoids the costs of

synchronization required for thread-based multi-processing as well as the kernel costs for

launching/destroying threads. With active-objects, A Symbian application becomes a

collection of co-operating objects than co-operating threads.

Client-Server Architecture for processing OS service requests

The Symbian Operating System is based on micro-kernel architecture with the kemrnel

running in privileged mode and providing only a few key services - thread scheduling,

message passing etc and the System servers running in user-mode - Windowing server,

File Server etc. providing other key services to applications. This architecture yields

better security - functionality is isolated to specific servers and security flaws in them

-89-



can't affect the entire system. The implementers of a Symbian OS on a device are also

given the flexibility of packaging the service provider threads into different processes of

their choice based on their requirements of performance, security and economy.

Memory Management

Symbian provides interfaces for application programs to manage their program heaps. It

provides convenient APIs so threads within a process can have their own separate heaps

or share specific heaps. Symbian provides APIs so that individual threads in different

processes can also share memory chunks. In addition to this, Symbian also provides low

level APIs for effective heap management. Threads can create a new memory heap and

walk through their heap of allocated and unallocated cells and determine that the heap is

in a consistent state and not corrupt. These interfaces provide quite an open interface into

Symbian's memory management architecture and provide a pretty low level API for

application programs to effectively manage their memory.

Installable File systems

Symbian provides the DOS-like VFAT file system natively through the File Server's

client API. In addition, it provides the ability for other file systems to be implemented

and installed dynamically without reboot - the only requirement is that these file systems

present a Symbian native interface to client programs on the device. This allows device

implementers to provide new file systems like access to remote systems like Unix servers

or IBM mainframes to distinguish their particular device.

The File Server provides a comprehensive API to access the file system functionality

including opening, reading/writing files, listing drives, volumes and directories, parsing

pathnames, deleting and moving files and directories, scanning and searching for file and

directory names. Symbian also provides a notification mechanism to indicate file system

and disk space changes.

- 90-



Symbian also provides a stream store API to manipulate data in files as byte streams. A

database manager built on the stream store that provides a file-based, high performance,

relational database is also part of the Symbian platform.

Communications

In the Socket Communications API, Symbian provides support for multihoming that

allows for multiple Circuit or Packet switched data connections to be active at a time.

This allows for Symbian to support technologies such as W-CDMA and GPRS later

releases that allow for establishing multiple sub-connections within a connection. This is

achieved through the RConnection class which also provides applications with the ability

to monitor the progress of a connection. This is especially useful for connections that take

a lengthy setup time like Dial-up networking. The Symbian Socket Server API allows for

dynamic installation of protocol modules while providing the same Socket Client API for

application programs. New protocol families (a collection of related protocols - TCP/IP

family includes UDP, IP and TCP, IrDA family includes IrMUX and TinyTP) providing

different communication transports can thus be added to the sockets API while remaining

transparent to client programs.

Plug-in Architecture for Service Provision

Providing an extensible framework for dynamic service deployment allows mobile

operating systems to support evolution of applications and services. This requires support

of a mechanism wherein standard interfaces can be specified, services implementing

those interfaces are implemented and registered with an existing programming

framework, and client programs can call those interfaces by dynamically selecting the

appropriate implementation for the interface. This open architecture to dynamic

deployment of service implementations provides an ideal platform for application

developers and network service operators. It also supports device customization and

differentiation desired by many OEMs licensing the Operating System.

-91 -



Symbian provides a plug-in architecture for service deployment through its ECom

framework. It provides an instantiation mechanism that forms the framework backbone

and provides the services to identify and load the current run-time implementation.

Evolution

The Symbian OS provides advantages to both the phone manufacturer desiring to using

Symbian OS on his phone while also enhancing the UI with proprietary features and to

the application developer who wishes his application to run on a wide variety of phones

from different manufacturers. This combination of compatibility (with application

programs) and customizability (by device manufacturers) means that the Operating

System has to maintain binary compatibility with its APIs while allowing derived

platforms to add innovative and differentiating functionality to customize the OS. This is

a challenge because there are three different evolutionary paths possible in such an

environment:

1. Symbian Operating System evolves

2. UI layer and Other device customizations from the manufacturer evolve

3. Application program and functionality evolve

basedlon basedlon

Fig. 30 Platform evolution 5 1

51 http://www.symbian.com/developer/techlib/v9.1docs/doc source/guide/N1001E/extensiondll.html
(accessed, Nov. 2006)

- 92-

evolution
--



Symbian uses the extension DLL pattern as a method to allow licensees to extend the API

while not introducing binary compatibility problems.

Security

Building the right security architecture in its platform can create competitive advantage

for the Firm. Licensees and Application Developers for the platform would trust the

Operating System as low risk option for deployment. Device manufacturers licensing the

platform have a greater incentive to adopt the most secure platform because of the risk to

their reputation from security breaches and violations. Tracing the evolution of all three

Mobile Operating System in Chapter 3 shows that all three - Symbian, Microsoft and

Palm have included security as a central component in their OS architectures. All three

provide authentication and authorization services through interfaces to certificate

management and cryptographic libraries for encryption/decryption.

The platform security architecture on the Symbian Operating System addresses security

threats from the distribution of malicious applications by preventing unauthorized access

to user data and system services. Windows CE supports an optional module level security

model to be implemented by OEMs - the OS designates modules as trusted or un-trusted

based on validation from the OEM Abstraction Layer (OAL).

- 93-



Chapter 5

Conclusion

The Smart Mobile device market is experiencing rapid growth with the increased

convergence of voice and data centric applications. This is being fueled by improvements

in low-power, faster processing CPUs and advancements in flash and dynamic memory

units. This improvement in hardware capabilities has allowed development of complex

user interfaces, multimedia and communication capabilities on mobile devices. Modem

Mobile Operating Systems manage this complexity in the mobile device by administering

hardware resources and providing a platform for development of communication and

multimedia applications.

The Mobile Operating Systems studied in this thesis differ in their architecture, their core

design goals, and services offered to users and device manufacturers. Their design

reflects the OS vendor's strategy toward the mobile platform and is decipherable based

on a study of its architecture and application programming interface. Three conclusions

can be made based on this study - each of them suggests a strategy to use to gain

platform leadership through product architecture and degree of openness of interfaces.

1. Design as a generic platform for extreme customization: This is essentially the

core principle followed in the design of Symbian OS. The Operating system is

based on micro-kernel architecture with the OS providing only a few core

services. User Interface, file and device management are implemented as user

services in a pluggable infrastructure that permits new service implementations

conforming to a generic interface to be added or replaced. OEMs licensing

Symbian OS add their specific User Interfaces on top of the reference UI layer

provided by Symbian - this aids in device customization and differentiation.

- 94-



2. Design to complement a broader platform: Microsoft has designed the

Windows CE platform to serve as the Operating System for smaller, limited

resource, hardware environments while keeping the user interface familiar to

Windows Users. Windows Mobile branded devices based on Windows CE are

certified by Microsoft to conform to a set of hardware and software standards and

specifications - this ensures that all Windows Mobile devices have the same

Microsoft specified interface. Application developers for the platform use a subset

of the Win32 API to program for Windows CE. Microsoft has even implemented

the .NET runtime for Windows CE to allow developers to program in its type-

safe, hardware independent runtime environment.

3. Design as a platform for extensibility: The Palm Operating System is a

compact operating system designed specifically for handheld computing devices.

It evolved over time to support phone specific features on handheld devices.

Major design objectives since the first release of the operating system have been

to keep the user interface simple and the operating system extensible to licensees

and application developers. Developers have low level access to hardware

bypassing the OS interface provided through its API - this allows developers to

have direct control of processor, memory and interrupt hardware to develop

extended functionality. With the increasing complexity in modem application

programs and services, this original Palm OS architecture supporting handheld

specific development became untenable. This has led to development of Palm OS

Cobalt (or v6) which is a completely new architecture with multi-tasking support.

This architecture is still PDA device specific with phone features added in, as

opposed to the Symbian OS architecture which is mobile phones specific, with

extended data organization capabilities.

The three mobile operating systems studied have each followed a different strategy for

their product architecture. The Symbian Operating System has been designed to be open

and extensible for a wide range of mobile phone devices. The architecture is "licensee-

- 95 -



focused" to enable phone manufacturers to provide differentiated services including

phone-specific User Interfaces and custom hardware capabilities. The User Interface is

designed as an extensible layer which provides basic interaction and display capabilities

appropriate for small screen and limited input possibilities. Symbian uses industry

standard SyncML for device synchronization and Java for application deployment.

The support for SyncML in the Operating System reflects Symbian's understanding of

the needs of mobile phone network providers to remotely manage and configure Symbian

OS phones to reduce in-market deployment and management costs. Support for Java by

implementing all Java Community standards in the Operating System and providing

native access to OS features from Java programs allows Java application developers to

program rich, highly functional applications for the Symbian platform.

The Palm Operating System, on the other hand was designed specifically for handheld

organizer devices. It hasn't evolved much since the original release in terms of serving as

a platform for mobile devices - phone specific features are "add-ons" to the core

operating system, application programming support is limited (no advanced programming

frameworks, error handling support ) and no OS support for multi-tasking or virtual

memory for process address space separation. The Palm Operating System architecture is

based on simplicity and efficiency - the User Interface is designed to be simple and

intuitive, and APIs are sufficiently low-level for applications to gain performance

efficiencies.

The Windows CE Operating System has been designed to serve as a base for a wide

range of consumer devices, not just mobile phones or handheld organizers. Microsoft

supplies a Platform Builder toolkit for OEMs to customize and package the Operating

System components for their specific device. The Windows Mobile family of mobile

Operating Systems uses Windows CE OS components as the base, but specifies a set of

user interface and hardware capabilities for devices to be branded as Pocket PC or

Smartphone devices. The Operating System architecture supports rich, functional

application development using a subset of the Win32 APIs from desktop Windows OS.

- 96-



Microsoft has also implemented a version of the .NET runtime instead of Java, for

Windows CE to run .NET applications for hardware independence.

Symbian has designed the Operating System exclusively for mobile phones with

integrated telephony support to seamlessly connect with other subsystems. The User

interface is adaptable to both touch-screen and keypad based devices. Symbian's strategy

for a mobile platform seems to be limited to phones - the architecture, design goals and

implementation are all specific to mobile phone devices. The Palm Operating System

architecture and implementation seems to be handheld organizer specific - it is only

adaptable to devices with a touch screen. Phone support is an additional, but not core

feature of the Operating System. The Windows CE Operating System serves as a

platform for the broadest class of devices among all the three mobile Operating Systems

studied. As an extension to the desktop Windows XP Operating System and base

platform for embedded, consumer devices, Windows CE is a "component platform" in

Microsoft's grand strategy of Operating System platforms for generic computing devices.

Microsoft's platform approach to Mobile Operating Systems seems to be the best among

the three - it views mobile devices as a "class" and not specific devices providing

particular functions. It provides a base Operating System that could be componentized

and adapted for specific devices. Symbian focuses on a Mobile Operating System as

voice communication specific - with network providers, operators and phone

manufacturers. The design of the Symbian Operating System fits these goals very well -

the application programming frameworks and plug-in architecture for phone device

customizations are well suited for this.

The current architectures and evolution over time of the three Mobile Operating Systems

studied, Symbian, Palm and Windows CE, truly reflect their vendor's strategy for a

mobile device platform - mobile phone, handheld organizer or both.

-97 -



Bibliography

Foster, L. Palm OS (Wireless + Mobile) Programming. IDG Books, 2002. ISBN 81-265-

0173-1

Foster, L and Bachmann G. Professional Palm OS Programming. Wiley Publishing,

2005. ISBN 0-7645-7373-X

Harrison, R. Symbian OS C++ for Mobile Phones. Symbian Press, 2003. ISBN 81-265-

0476-5

Boling, D. Programming Microsoft Windows CE .NET. Microsoft Press, 2003. ISBN 0-

7356-1884-4

Cusumano, M and Gawer, A. Platform Leadership: How Intel, Microsoft and Cisco drive

Industry Innovation. Harvard Business School Press, 2002. ISBN 1-57851-514-9

Rechtin, E and Maier, M. The Art of System Architecting. CRC Press, 2000. ISBN 0-

8493-0440-7

Palm OS 68K API Documentation. Volume I and Volume II available as SDK download

from http://www.palmos.com/dev/dl/. Accessed Aug 2006.

Symbian OS API Guide. Available at

http://www.symbian.com/developer/techlib/v9.1ldocs/doc source/index.html. Accessed

Oct 2006.

Windows CE Reference. Available through the MSDN web site at

http://msdn2.microsoft.com/en-us/default.aspx. Accessed Nov 2006.

- 98-


