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Abstract

Biomaterials and biomineralization have been successfully utilized in a broad vari-
ety of technical applications. Properties of natural biopolymers, such as the ability
to control the nucleation, growth, and organization of crystals, have been extended
to a much wider array of technologically applicable materials through combinatorial
selection techniques. However, detailed mechanisms of peptide adsorption on inor-
ganic surfaces have largely escaped characterization. This knowledge would open
new routes for the rational design of nanostructures and composite biomaterials. The
development of accurate and computationally efficient methods for the simulation of
biopolymer-inorganic surface adsorption could provide a more detailed understanding
of adsorption mechanisms. While simple models involving reduced solvent represen-
tations and polymer flexibility have found some success in limited applications, robust
performance for systems of varying size and composition can generally be expected
only through accurate inclusion of these key details. Fully atomistic representations
of biopolymer and surface are necessary for detailed molecular recognition, while
polymer flexibility is required to capture structural rearrangment and the resulting
free energy contributions. Finally, electrostatic interactions between the adsorbing
biopolymer and inorganic surface, as well as interactions of the polymer and surface
with the surrounding solvent environment will play a dominant role in the adsorption
process, and an accurate representation of the solvated system is inherently neces-
sary. Computational efficiency can be increased through the application of implicit
solvent models, which replace the numerous solvent molecules with a continuum di-
electric, and seek to capture the average effects of the statistical solvent environment.
The Poisson-Boltzmann model represents the most rigorous treatment of implicit sol-
vent. This model, however, requires the relatively expensive solution of a second
order eliptical differential equation over the space of the system. Here, a method
is presented which reduces the scale at which the Poisson-Boltzmann equation must
be solved. However, even when combined with an efficient multi-grid solver, the
Poisson-Boltzmann model represents a significant computational cost. The modified
Generalized Born model, GBr6 , based on an approximation to the Poisson-Boltzmann



model, offers a computationally efficient alternative. Generalized Born models, how-
ever, are often inaccurate in the case of charges positioned near an extended dielectric
interface, which is precisely the system we wish to investigate. Here, an analytical
integration of the approximate electric displacement is used to calculate Born radii,
and tested in application to surface adsorption studies. Replica-exchange Monte Carlo
simulations with modified Generalized Born implicit solvent environment is then used
to study the adsorption mechanism of a set of rationally designed sapphire-binding
peptides. Modulation of binding affinity is predicted to depend on multiple interac-
tions between basic amino acids and the negatively charged sapphire surface. The
proximity of charged residues to one another as well as the conformational ability of
each peptide to present functional groups towards the surface are shown to control
the relative binding affinities.

Thesis Supervisor: Angela M. Belcher
Title: Professor of Materials Science and Engineering
and Biological Engineering
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Chapter 1

Introduction

1.1 Biomineralization

Natural biopolymers, such as antifreeze and marine shell proteins, exhibit specific

recognition of inorganic materials as well as control over the nucleation, growth and

orientation of crystals[84, 91, 145, 146]. Protein systems are used in nature to both

encourage and inhibit the growth of crystalline inorganic materials. Antifreeze pro-

teins allow organisms to live in sub-freezing temperatures by binding to the surface

of intracellular ice, truncating the crystals and preventing further growth. Alterna-

tively, many organisms utilize proteins to nucleate and control the growth of inorganic

materials. This is exemplified in the bones and teeth of vertibrate animals, as well

as the mineral-protein composite found in many marine organism's protective shells.

Figure 1-1 illustrates the exquisite control over crystal growth elicited by natural

biopolymers[50]. Proteins from the gastropod mollusc abalone control the crystal

growth of calcium carbonate, inducing the formation of nanoscale tablets which then

stack to form the composite structure.

The general transfer of in vivo natural biomineralization processes to technologi-

cally applicable in vitro biomimetic mineralization techniques has been demonstrated

through isolation of these mollusc shell proteins[106]. Polyanionic proteins isolated

from calcite and aragonite phases of the abalone shell were demonstrated to nucle-

ate the corresponding crystal phase from a solution of mineral precursors. As for



Figure 1-1: Biomineralization in (a) abalone shell. Proteins from the abalone control
the crystal growth of calcium carbonate, forming a (b) "stack of coins" structure that
is many times stronger than the geological mineral[30, 50]

technological applications, however, this calcium carbonate system represents only

limited potential. In fact, the majority of naturual biomineralization systems consist

of carbonates and phsophates of alkaline earth metals or oxides of iron and silicon.

While iron and silicon oxides certainly have high technological applicability, it is de-

sirable to extend this biomimetic process to encompass a wider variety of materials.

To this end, a combinatorial selection process was developed[12] using commercially

available phage display libraries. This process, illustrated in Figure 1-2, utilizes a

repeated cycle of culling and amplification to select peptides which bind (specifically)

to the material of interest.

f & & -.

ýkkA

Figure 1-2: Biopanning for the selection of material specific peptides. Peptides are
selected from an initial library of approximately 109 individual sequences through a
repeated cycle of culling and amplification.
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The applications of this scheme are extensive, ranging from the imobilization of

proteins on crystalline substrates[10] to the further utilization of the self-assembly

properties of bacteriophage to provide a scaffold for the synthesis of high aspect ratio

crystalline structures (see Figure 1-3)[9]. However, detailed mechanisms of peptide

adsorption on inorganic surfaces have largely escaped experimental characterization.

Many surface sensitive techniques lack the flexibility to study a wide variety of inor-

ganic materials and it is often difficult to differentiate between high binding affinities

using traditional biochemical techniques. Detailed understanding of these interactions

would facilitate rationally designed biomaterials and self-assembly methods.

Figure 1-3: A biomineralization scheme which utilizes the self-assembled M13 bac-
tereophage virus capsid as a scaffold for the nucleation and growth of crystalline
nanowires from a wide array of materials. Nanoparticals are nucleated on the cap-
sid by material specific peptides, and the wires are then annealed to remove organic
material and fuse particles into single crystal wires.

The development of accurate and computationally efficient methods for the simula-

tion of adsorption of biopolymers at inorganic surfaces would provide a more detailed

understanding of the adsorption mechanisms which have largely escaped experimen-

tal characterization. This knowledge, in turn, would open new routes for the rational

design of nanostructures and composite biomaterials. The enormous number of pos-



sible arrangements of amino acids in even a short peptide represents the power of

biological systems and largely limits the experimenter to a small number of peptides

obtained from evolutionary selection from a combinatorial display library. Rational

design using detailed knowledge of adsorption mechanisms would eliminate much of

this barrier and allow for the fine-tuning of peptide binding properties.

1.2 Molecular Simulation of Biological Molecules

and Surface Adsorption

Biomolecule adsorption simulations range in detail from those focused on macroscopic,

colloidal representations[73, 87] which neglect the atomistic detail of electrostatic

and van der Waals interactions, to the common atomistic representation of rigid

molecular structures in docking simulations[36, 37, 129, 137, 1411, and more recently

fully flexible biopolymer adsorption simulations[40, 127]. Ignoring atomistic detail has

obvious implications for the fidelity of molecular recognition, while rigid molecular

representations cannot account for protein adaptive conformational changes during

adsorption as well as conformational entropic considerations. While. each of these

methods have found success in some applications, robust performance for systems of

varying size and composition can generally be expected only through the inclusion of

key details in the model.

Fully flexible, atomistically detailed simulation of protein-surface adsorption presents

several difficulties. Ab Initio quantum chemical methods are computationally ex-

pensive and applicable only for small molecules coupled with limited surface sizes.

Thus for larger peptide and protein systems molecular mechanics type force-fields

must be employed. There are a number of alternative force-fields, and these have

shown varying success in predicting peptide and protein structure[111]. There also

exist inter-atomic force-fields for a wide variety of mineral systems[53, 76]. However,

the interaction between organic and inorganic components may not follow a simple

combination of force-fields[34]. Therefore, it is necessary that force-fields specifically



intended for the organic-inorganic interactions be developed and validated[136].

The aqueous environment in which protein-surface adsorption occurs also plays a

critical role in the process and presents a distinct challenge to molecular simulation.

Water molecules screen electrostatic interactions, reorganize to drive hydrophobic

interactions, and must be displaced during the adsorption process. Detailed infor-

mation related to water structure gained by explicit inclusion of solvent molecules

comes at the cost of increasing system size, often by at least an order of magnitude.

Because of the large computational cost of explicit water, the average effects of wa-

ter are often included in molecular simulations through implicit solvent models[109].

These models replace the numerous atoms and corresponding degrees of freedom

with a continuum dielectric. Solvation energies are then calculated as the difference

in free energy for "charging" the molecule in solution and gas phase, plus non-polar

van der Waals and cavity formation energies. This process is illustrated in Figure

1-4. Distance-dependent dielectric functions represent a very simple implementa-

tion of implicit solvent and have been used with some success in protein adsorption

simulations[45, 46, 129]. However, these ad hoc functions likely oversimplify the

solvent environment and a more accurate description is desired for general molecu-

lar recognition applications. The Poisson-Boltzmann model[62] represents a rigorous

treatment of the electrostatic properties of charges in an inhomogeneous dielectric

environment. However, solution methods for the Poisson-Boltzmann model are still

relatively computationally demanding. The Generalized Born model[55] provides a

computationally convenient alternative that can produce accurate solvation energies

at a minimal increase in computational cost[70] compared to the distance-dependent

dielectric model.

1.3 Scope of Work

In this project, a simulation package based on computationally efficient methods is

developed and applied to the simulation of peptide adsorption at inorganic crys-

talline surfaces. The core of the simulation package is based on traditional Monte
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Figure 1-4: Schematic representation of the solvation process involving removal of

charge, transfer of molecular cavity into solution, and recharging of solute.

Carlo molecular mechanics, which have proven effective in the simulation of biolog-

ical molecules[140]. A parallel tempering algorithm[80] was added to the standard

Metropolis[138] procedure in order to increase sampling efficiency. Advancements to

the initialization procedures for Poisson-Boltzmann implicit solvent calculations[109]

involving the definition and handling of the molecular dielectric cavity, as well as

several alternatives for efficient solution of the Poisson-Boltzmann equation were

explored for incorporation into molecular mechanics simulations. Ultimately, the

Poisson-Boltzmann model was not considered computationally efficient enough for

use in the current applications. The modified Generalized Born model[147], termed

GBr 6, was adapted as an alternative to the more rigorous Poisson-Boltzmann calcula-

tions. An inconsistency with the handling of the molecular volume in the model was

resolved and shown to improve the model's accuracy. The combined replica-exchange

Monte Carlo/Generalized Born implicit solvent simulation was then utilized to study

the adsorption mechanism of a set of rationally designed sapphire binding peptides.



Relative binding affinities of this set of peptides was shown to depend on the proxim-

ity of charged residues to one another, as well as the conformational ability of each

peptide to present functional groups towards the surface.





Chapter 2

Poisson-Boltzmann Implicit

Solvent

2.1 Introduction

Implicit solvent models have become a valuable resource in the characterization of

biochemical and macromolecular systems[48, 109]. While explicit inclusion of sol-

vent molecules is ostensibly the most accurate method, implicit solvent models have

proven to reproduce the effects of solvent environments in many systems while increas-

ing computational efficiency[3, 60, 61, 64, 65, 99, 131, 135]. These models replace the

numerous solvent molecules with a continuum dielectric and seek to capture the av-

erage effects of the solution environment, greatly reducing the number of degrees of

freedom involved in a molecular simulation.

The most robust and rigorous treatment of continuum electrostatics is the Poisson-

Boltzmann equation (PBE) [62]. In the simplest case of charges in a uniform dielectric,

the electrostatic potential is given by Gauss' law

V2(r) -4 ) (2.1)

where b(r) is the electrostatic potential, p(r) is the charge distribution, e is the

dielectric, and r is the position. In an inhomogeneous dielectric, Poisson's equation



must be used to calculate the electrostatic potential

V. E(r) Vq(r) = -47rp(r) (2.2)

where the spatial dependence of the permittivity is now included in 6(r). In the

presence of a mobile charge distribution, such as in an ionic solution environment, the

total charge distribution is decomposed into fixed and mobile contributions. Solute

charges are assumed to be at a fixed position, while secondary ion charges are free to

react to the eletric field produced by the fixed solute charges.

p(r) = pf (r) + pm (r) (2.3)

At equilibrium, the chemical potential of each mobile ion species must be uniform

throughout the solution,

pi(r) = /p + ksBTn aj(r) + zieO(r)

= P + kT In a  (2.4)

where kB is the Boltzmann constant, T the absolute temperature, Pi is the chemical

potential of species i, po is the standard chemical potential, ai is the activity of species

i, ab is the activity in bulk solution where the electrostatic potential is zero, zi is the

charge of species i, and e is the elementary unit of charge.

Assuming that the activity coefficient is unity and independent of electrostatic

potential and concentration, or equivalently neglecting the mutual Debye-Hiickel in-

teraction, the activity can be equated with the concentration, a, = ci, and the above

relation can be rewritten as a Boltzmann expression

kBTln ci (r) - kT ln c -zieo(r) (2.5)

Rearrangement yields

c(r) = c exp(-zieO(r)/kBT) (2.6)



for the local concentration of a mobile ion species as a function of bulk concentration

and local electrostatic potential. Finally, by assuming a one-to-one stoichiometric

relationship between salt counterions and utilizing the relationship sinh(x) = 1(e" -

e-x), the mobile charge distribution can be combined with the fixed solute charge

distribution to yield the non-linear Poisson-Boltzmann equation

V. e(r)Vo(r) - 92(r) sinh[ ] = -4rp(r) (2.7)

where the potential has been replaced by the unitless potential, eo/kBT, for simplicity,

and -92 = 87re 2I/kT is a dielectric independent Debye-Hiickel parameter, with I the

ionic strength of mobile charges. In practical applications, the PBE is often linearized

by the assumption that the electrostatic potential is small in the ion-accessible region

outside of the molecular volume and distant from fixed solute charges. In this case,

the relationship, sinh(x) . x, yeilds the linear Poisson-Boltzmann equation (LPBE)

V. E(r)V¢(r) - 72 (r)¢(r) = -4irp(r) (2.8)

Once the electrostatic potential is known, the electrostatic free energy of the

system is obtained from the integral[62]

Gelec = J(pf - A - E -D/2)dv (2.9)

where the first term in the integral, pf , is the interaction of each fixed molecular

charge with the electric field and represents the largest contribution to the integral.

The remaining terms, (AI) and (E -D/2), are the excess osmotic pressure and the

electrostatic stress, respectively. In the case of the linearized PBE, the excess osmotic

pressure reduces to pmq/2, and the integral expression of Gauss' law, fE -D/2dv =

f pq/2dv, can be substituted into Equation 2.9 to yield

Ge-ec f pf /2dv (2.10)

27



The difference in electrostatic free energy between the inhomogeneous dielectric and

a reference calculation in homogeneous (usually vacuum) dielectric yields the electro-

static component of the free energy of hydration, also called the reaction field energy

or solvation energy. This energy is the free energy change involved in transferring

a molecule from vacuum into solution resulting from electrostatic contributions and

can be recast from Equation 2.10 as a "charging" integral

AGsolv = (Os(r) - v(r))dq (2.11)

where ¢, and ¢, are the calculated solvent and vacuum electrostatic potentials, re-

spectively. Assuming a linear charging response, this integral can be replaced by the

sum over individual charges, Qn,

1AG8 o0 , = -3 Qn (r)(¢ 8 (r) - Cv(r)) (2.12)

It is important to note that the calculated solvation energy is a free energy, as the bulk

properties its derivation is based upon, e.g. the dielectric constant, include both the

enthalpic interaction of charges and the entropic rearrangement of solvent molecules

in response to the electric field. In fact, the calculated energy represents the solvation

energy averaged over all possible configurations of solvent molecules. This calcula-

tion of pre-averaged energy gives implicit solvent models particular advantage in the

simulation of large systems, eliminating the necessity for computationally expensive

averaging of a multitude of solvent configurations.

Poisson-Boltzmann calculations, like all implicit solvent models, lack detail in the

structure of water, particularly important at the solute-solvent boundary. However,

they offer the most rigorous treatment of electrostatic effects in solvated systems,

as well as the basis upon which other implicit solvent models are constructed and

verified against[26, 47, 70].

In order to evaluate hydration free energies via the Poisson-Boltzmann model, the

electrostatic potential at the location of each charge must be known. However, there



exist only a limited number of analytical solutions for symmetrically shaped dielectric

cavities, such as a sphere, cylinder, or plane geometry. Therefore, the electrostatic

potential must be evaluated over the entire system through numerical methods.

2.2 Finite-Difference Poisson-Boltzmann Equation

In order to solve the Poisson-Boltzmann equation over the entire problem space-

domain, the molecular system is discretized onto a set of vertices spanning the volume

of the molecule and a surrounding solvent volume. The electrostatic potential can

then be calculated by a variety of methods, including finite-element[42] and finite-

difference (FD) techniques[59, 100], as well as through integral formulations of the

PBE[112]. In any discretized, numerical method utilized for the approximation of

continuous functions, there will inevitably be error introduced by the discretization,

particularly in quickly varying functions. Finite-element methods are attractive due

to the ability to utilize non-uniform tetrahedral grids. Grid point density can be

increased in areas of space where the electrostatic potential varies quickly, such as

the molecular surface and charge centers. In areas of space where the potential varies

slowly or is constant, grid density can be much lower, limiting the computational

resources necessary for the calculation. This principle has been utilized effectively

in both a priori[41] and adaptive[103] mesh generation. However, the computational

algorithm used in finite-element calculations is significantly inefficient in comparison

to other numerical methods, such as finite-difference[4].

Finite-difference methods are unable to effectively utilize a non-uniform grid and

instead rely upon a uniform, rectangular grid. For a continuous function discretized

on a set of evenly spaced vertices, the derivative of the function at vertex i is given

by
af(~) ' f (xi+) - f(x_) (2.13)

wx 2h

where h is the spacing of vertices, and x2 is the position of the ith vertex. Application



of this approximation to the PBE yields

E ci(ui - Uo) 2 sinh(uo) qo
h-(2.14)h2  h h3

where u is the potential, the sum is carried out over the six adjacent grid points, i,

in the x, y, and z directions, h is the grid spacing, and qo/h 3 is the charge density

contained in the cube surrouding each grid point. Rearrangement of this equation

leads directly to an iterative set of equations, which can be used to solve for the

electrostatic potential

k+1 E iu+O (2.15)/hU + h- 2g(uk) (2.15)

where uk is the kth estimate of the potential, and the function g(uo) = sinh(uo)/uo is

often approximated through a power series expansion as g(uo) = 1 +u /3! +u0/5! +...,

or simply g(uo) = 1 for the linearized PBE.

2.2.1 Solution Methods for FDPBE

The finite-difference approximation to the PBE represents a very sparse, banded

matrix and straightforward matrix inversion techniques offer a very inefficient solution

method. Cubic grid sizes often exceed millions of variables in practical applications,

the majority of which having zero direct influence on each other. Therefore, iterative

solution techniques are employed for PBE solution. These methods start from an

initial estimate of the solution (often u = 0), from which the error, or residual, is

calculated from Equation 2.15 as (uk - uk-1). The residual is then used to update the

current estimate, and a new residual is calculated. This process is repeated until a

pre-defined convergence criteria is reached. Many iterative solution techniques exist

for systems of linear equations.

Boundary conditions for the finite-difference grid must also be provided in order

to reach a solution. The development of the Poisson-Boltzmann equation relies on the

assumption that at large distances from the solute charges, the electrostatic potential

decays to zero. This represents one possible choice for boundary conditions, provided



that a large enough grid can be constructed such that the zero potential approximation

is valid. In practice this is not a viable option as the large grid results in exorbitant

computational costs. Grid boundaries are therefore often truncated and values for

the electrostatic potential are approximated as the Coulombic potential in zero ionic

strength and by the Debye-Hiickel potential for ionic solutions.

Jacobi Iterations

Jacobi iterations[108] are perhaps the most straightforward iterative technique and

often provide the most stable convergent properties. For a system of linear equations

Ax = b (2.16)

where A is an n x n matrix, and x and b are vectors of length n, the Jacobi iteration

is defined as

Xk+1 - D-l[-(L + U)xk + b] (2.17)

where D,L, and U are the matrix diagonal, lower, and upper decomposition of A,

respectively. Jacobi iterations are slowly, but stably convergent in application to

the PBE. A major limitation however, is the necessity to calculated fully the next

iteration of the estimated solution before updating the current estimate. This requires

computer memory allocation of twice the number of variables.

Gauss-Seidel Iterations

A variation on Jacobi iterations is the Gauss-Seidel iteration[2], defined as

xk+ 1 = (D - L)-1[-UXk + b] (2.18)

Gauss-Seidel iterations utilize the updated estimate of each variable as they are pro-

duced. This results in faster convergence, as corrections to the current estimate and

their effect on adjacent variables are immediately incorporated rather than waiting for

the entire residual to be calculated. Computationally, this also eliminates the neces-



sity to allocate memory to a temporary array at each iteration and subsequently copy

information back to the current estimation. The PBE offers a particularly efficient

application of Gauss-Seidel iterations, implemented through so-called "red-black" it-

erations. Since the value of the electrostatic potential depends only on the six adjacent

grid points directly, the current estimate of the potential can be effectively updated

by two separate "sweeps" through the finite-difference grid on alternating points.

Successive Over-Relaxation

Successive over-relaxation (SOR) [123] increases the convergence speed of Gauss-Seidel

iterations by over counting the residual error that is added back to the current esti-

mation of the solution

Xk + 1 = (D - wL)-l[(-wU + (1 - w)D)xk + wb] (2.19)

where w is the spectral radius of convergence and must be adjusted for optimal con-

vergence. SOR has been used effectively in PBE calculations, most notably in the

popular commercially available implementation Delphi[66].

Direct Inversion of the Iterative Subspace

Direct inversion of the iterative subspace (DIIS)[116] is an iterative technique widely

applied in quantum mechanical calculations[22, 23]. In this technique, iterations

proceed by the Jacobi method. However, instead of replacing the current estimate

and discarding the old, each estimate is saved and added to the so called "subspace".

The residual error associated with each estimate is also saved. The DIIS method

assumes that a good estimate to the solution, x', can be obtained from a linear

combination of the jacobi estimates

m

x'= cxi (2.20)
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where m is the number of vectors in the subspace. The coefficients c2 are determined

such that the linear combination of residuals, ri, approximates the zero vector,

r' = cir  (2.21)

also subject to the requirement that the sum of the coefficients satisfies

m

E ct = 1 (2.22)

Thus we seek to minimize the norm of the residual vector

< r'lr' >= > crc, < rjlri > (2.23)

Here, we utilize the Lagrangian multiplier, A, to define

m

r = ctBc - A(1 - E c) (2.24)
i

where Bij =< rilr j >. We can minimize F with respect to a coefficient ck to obtain

OF _

Ock ciBki -A= (2.25)

Finally, this set of equations is solved for the coefficients ci by inversion of the matrix

B. Matrix inversion typically scales poorly with matrix size. Therefore, the number

of previous estimates that should be kept in memory and used in DIIS calculations

must be optimized. Too few previous estimates does not provide an effective basis

set for a linear combination, while storing too many previous estimates results in

diminishing return on computational investment. Figure 2-1 demonstrates the opti-

mization of DIIS application to PBE calculations. Electrostatic energy calculations

were performed for blocked alanine (acetyl-alanine-methyl amide), with convergence

assumed when the energy changed by less than 1 x 10-6 kcal/mol, with varying DIIS

subspace sizes. Calculations were carried out on a 1.6 GHz AMD Athlon processor.



Jacobi iterations with no DIIS converged in 821 iterations and 45.063 seconds. Al-

though the number of iterations required to reach convergence continues to decrease

up to a subspace size of 20, the computational time reaches a minimum at a subspace

size of 5. At this size, convergence is reached in 52 iterations and 4.566 seconds.
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Figure 2-1: Optimization of DIIS subspace size. Matrix inversion scales poorly with
size and eventually results in longer convergence time in spite of decreased iterations.

In general, larger DIIS subspace sizes produce a more rapidly converging iteration

procedure. However, the decrease in iterations is offset by increased compuational

cost involved in each iteration. This balance can be leveraged by a modified DIIS

procedure in which the direct inversion of the retained subspace is carried out only

periodically, rather than after each underlying Jacobi iteration. The process begins

by following general Jacobi iterations until a given number of subspace vectors have

been retained. The subspace inversion then supplies the next estimate of the solution

vector, often with a significant decrease in error. The retained subspace is then

discarded and the process repeated. Figure 2-2 demonstrates the effectiveness of this

method. Periodic inversion of the subspace offers similar performace as a function
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of iterations as the traditional DIIS procedure, but without the necessity of costly

inversion at each iteration. This is not unexpected since the traditional DIIS method

involves linear combinations of linear combinations and is therefore in some senses,

redundant.

0
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Figure 2-2: Larger DIIS subspace size generally produces convergence in fewer it-
erations, but at the cost of greater computational time per iteration. This balance
can be leveraged by maintaining a large DIIS subspace without performing the direct
inversion at each iteration. The subspace is built over a set of Jacobi iterations until
a given subspace size is reached. The inversion routine produces the next approx-
imate solution as the linear combination of the subspace vectors. The subspace is
then discarded and rebuilt following more Jacobi iterations. Performace of periodic
inversions (DIIS 10P, DIIS 20P) is similar to inversions at each step (DIIS 10, DIIS
20) for subspace sizes of 10 and 20 vectors.

Multigrid Solution of the Poisson-Boltzmann Equation

The application of Poisson-Boltzmann calculations to molecular simulations is an en-

ticing prospect. Explicit inclusion of solvent in a biomolecule simulation can increase



the number of atoms and degrees of freedom which must be sampled by an order

of magnitude[130]. Not only does implicit representation of solvent eliminate costly

averaging calculations, but these models also have the effect of increasing sampling

efficiency in the biomolecule itself by removing viscocity related impedimants to the

biomolecule's motion[105]. However, PBE calculations still represent a significant

computational investment and significant efforts have been aimed at accelerating sol-

vation energy calculations. Perhaps the most successful of these efforts in application

to finite-difference techniques is the development of multi-grid methods[124].

Given some initial estimate to the Poisson-Boltzmann equation, u,

Lu + K l e - q~u/kT + f 0 (2.26)

where we have written the finite-difference operator defined in Equation 2.13 as L,

and the source term, -47rp, as f for clarity. There exists some correction vector, v,

to u that solves the equation, i.e.

O = L(u + v) + Ke - qi(u+v)/kT + f

= Lv + K e-qju/kT -qiv/kT + (Lu + f) (2.27)

which has the same form as the original PBE, namely

Lv + • Je - qiv/kT + r = 0

Ji = Kie- q iu / kT ,  r = Lu + f (2.28)

The multigrid method seeks to solve the correction term on a courser grid, interpolate

the solution back to the fine grid, and add the correction term back to the current

estimate, u. This method is not simply limited to two grids, one coarse and one fine.

The correction term can be treated analagously to the current estimate, and we can

thus calculate a correction to the correction at an even courser grid. In practice, this

process is repeated until the number of variables is small enough for direct inversion of



the finite-difference operator, L. Figure 2-3 demonstrates the improved convergence

of the multigrid method in comparison to Gauss-Seidel iterations for calculation of

blocked alanine electrostatic energy at 1 A grid spacing.
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Figure 2-3: Convergence of multigrid solution of the Poisson-Boltzmann equation in
comparison to Gauss-Seidel iterations

We can understand the effectiveness of the multigrid method by imagining the

decomposition of the solution of the PBE into a linear combination of sine and cosine

functions. At a given grid spacing, high frequency errors propogate quickly through

the grid, while the low frequency error is slow to converge. Frequency in the error,

however, is related to grid spacing, ie. low frequency error at a fine grid spacing

is high frequency error at a coarse grid spacing. By "restricting" the correction

calculation onto a courser grid where the low frequency errors propogate quickly, this

slow convergence is eliminated from iterations at the fine grid level. However, the

high frequency errors at the fine grid spacing are unresolvable at coarse grid scales,

and information is inevitably lost through multigrid correction cycles. Therefore,

multigrid cycles in practical application do not proceed straight from one grid scale

to the next, but are separated by smoothing iterations at each grid scale, by one of
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the methods listed above, most often Gauss-Seidel.

We attempted to combine the improved convergence properties of the DIIS method

with those of the multigrid technique. It was hoped that by applying DIIS to the

smoothing iterations that separate restriction and prolongation to coarser and finer

grids better current estimates of the solution would be transfered to the next grid.

Figure 2-4 illustrates the application of DIIS to multigrid calculations of Born ion

electrostatic energy at 0.5 A grid spacing. Initially, DIIS offers some improvement

on the rate of convergence. However, as the error is reduced, the DIIS subspace

for the coarse grids approches a linearly dependent set. Inversion of the subspace

challenges the limits of machine precision in standard double-precision computations

and results in the introduction of large error and an oscilating convergence pattern.

A switching from DIIS to Gauss-Seidel iterations at a predefined error criteria was

considered. However, the marginal improvement to convergence was not considered

sufficient to pursue such a solution, and further development focused only on Gauss-

Seidel iterations.

Poisson-Boltzmann Homogeneous Dielectric Reference Calculation

The ultimate goal of developing a Poisson-Boltzmann equation solver is incorporation

of the model into molecular simulation software. The OPLS-AA molecular mechan-

ics force-field[139] contains scaling factors utilized in the calculation of non-bonded

interactions. Therefore, in order to remain consistent with the existing force-field,

the solvation energy must be isolated from the total electrostatic free energy. This

total free energy calculated by solution of the PBE contains the coulombic interac-

tion of all charges, molecular solvation energy, and the self energy. The self energy

is the interaction of each charge with its own electric field. This term is analytically

infinite, but can be extracted computationally as finite. Thus a reference calculation

must also be carried out in uniform vacuum dielectric, as discussed in Section 2.1.

It has been demonstrated that this reference calculation can be replaced by a

direct coulombic interaction by accounting for effective grid distances[96]. More re-

cently, it was shown that solvation energies could be computed directly from a single
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Figure 2-4: Convergence properties of Gauss-Seidel, multigrid Gauss-Seidel, and
multigrid DIIS iterations. DIIS causes instability in multigrid calculations due to
nearly linear dependent subsequent estimates.

inhomogeneous dielectric calculation[67]. Solute charges induce polarization charges

at the dielectric boundary of the molecular surface. Reformulation of the PBE to

evaluate this charge and subsequent calculation of the coulombic interaction between

solute charges and polarization charges results in the solvation energy. This method,

however, was developed in the context of a discontinuous permittivity function at the

molecular surface and has not been shown to extend generally to smooth permittiv-

ity functions discussed below in Section 2.3.2. Effective grid distances are discussed

further in Section 2.5.

2.3 Error in Solvation Energy Calculations

Finite-difference Poisson-Boltzmann calculations are subject to several sources of

error[64]. Any iterative technique is of course reliant upon the convergence criteria

CI



employed. The convergence of iterative computational methods is often monitored by

the norm of the residual error vector or the maximum element of the residual vector.

In practical applications of PBE calculations, however, this source of error can be

better controlled by monitoring the convergence of the solvation energy. The energy

calculation is computationally simple, and thus offers a direct measure of the error

introduced into a molecular simulation. Limiting the convergence criteria to 10-2

kcal/mol certainly maintains solvation energy error within the uncertainty of typical

molecular mechanics force-fields.

A second source of error in implicit solvent models is based upon the loss of atomic

detail in the structure of water. When a molecular system is discretized for finite-

difference calculations, the molecular volume must be mapped onto the cartesian

grid. The region of space spanned by the molecular volume is assigned a molecular

dielectric (typically 1-4), while the solvent volume is assigned a solvent dielctric (r

80 for water). Large protein molecules often contain small regions of space embedded

in the molecular interior which fall outside of the molecular surface, but are not large

enough to accomadate a water molecule. These areas, called microdielectrics, are thus

assigned the highly polarizable solvent dielectric even though water is not present.

In fact, even areas large enough to accomodate a single or small number of water

molecules should not be considered so highly polarizable. However, it is not clear at

what size the transition to bulk dielectric properties should occur. This effect has led

to the development of so-called "re-entrant" molecular surfaces[67, 119], constructed

by rolling a probe sphere over the surface of the solvated molecule. This probe sphere

is usually defined with a radius of 1.4 A, half the average oxygen-oxygen separation

in liquid water.

The difficulty in describing the molecular surface and discretization of the molecu-

lar volume leads to a further complication in solvation energy calculation, particularly

in the application of PBE to molecular simulations. Imagine a molecular system with

an embedded microdielectric cavity just large enough to enclose the probe sphere

and thus assigned the solvent polarizability. A small conformational change which

results in constriction of the microdielctric and expulsion of the probe sphere causes



a drastic change in the dielectric of the region, and in turn, large changes in the elec-

trostatic potential and solvation energies. This effect turns out to have consequences

in nearly all translational, rotational, and conformational changes to the molecular

structure as charges and molecular surfaces move in relation to the discretized grid.

Stabilization of solvation energy with respect to molecular grid position turns out to

be one of the most challenging aspects of PBE calculations[18, 101, 110, 122, 132].

This complication has obvious implications for the application of PBE calculations

in physics-based molecular simulations. Significant effort has been aimed at model

definitions for charge and molecular volume discretization that decrease the grid po-

sitional and orientational dependence of solvation energy calculations.

2.3.1 Discretization of Charge

The simplest representation of atomic charge discretization would be to assign the

atomic charge to the grid point closest to the atom center. This model, however, is

obviously not continuously varying with respect to atom position and linear interpo-

lation methods have traditionally been employed to spread the charge over the eight

surrounding grid points. Improved stability has been achieved by uniform charge

distribution[18] and antialiasing[132] methods which distribute the charge over all

grid points contained within the molecular volume. The primary strength of these

methods is related to the self energy of each charge. If charge is distributed over

only eight points, the Coulombic interaction of these charges with each other as grid

scale is reduced becomes very large and challanges machine precision. If instead, the

charge is spread over the molecular volume, more grid points are incorporated as the

grid scale is reduced; the charge density and self energy remains constant. However,

distribution of charge over the whole of the molecular volume, especially at large grid

scales, results in the assignment of charge to grid points at or outside of the molecular

surface.

In the current efforts, a charge assignment method based on inverse quadratic

interpolation was used[110]. Charges are spread over the 3x3x3 cube of grid points,



partitioned by

11 1
qji1 = Q[ (-i+ -(X-i)2]8 2 2

3
qi = Q[- (X -i)4

11 1
gi+1 = Q[- + - - i) + -( - i)2 ] (2.29)

82 2

for 1 < x < i + for cell i, and Q is the atom charge. This method is continuously

varying over all grid translations while maintaining a localized charge density at the

atomic center as well as conserving dipole moment. The charge at a given node in

three dimensions is the product of the fractional partition for each dimension, i.e.

qi(±l)j(±l)k(±l) = Q qi(+l) X qj(il) X qk(±l) (2.30)

2.3.2 Smooth Permittivity Functions

In addition to the discretization of charge, electrostatic potential and solvation energy

are highly dependent on the discretized map of the molecular volume. The traditional

representation of the molecular volume produces a discontinuous step in the dielectric

at the molecular boundary. As grid vertices pass through the boundary, the abrupt

change in dielectric causes large fluctuations in the calculated solvation energy. Davis

and McCammon showed that the errors associated with the precipitous change in di-

electric could be alleviated by harmonically averaging the permittivity over the grid

line connecting two vertices, rather than solely taking the value at the midpoint[101].

This conclusion was inspired by matching finite-difference theory to the analytical

solution for the electrostatic potential in a parallel plate capacitor. The result can

also be obtained by the subdivision of a single grid line followed by application of

one-dimensional finite-difference approximations and elimination of variables. Ignor-

ing charge and non-linear terms and examining one dimension for clarity, the finite



difference approximation to the PBE yields

E_-U_1 + ½ut+1
o = 2 2

2 2

(2.31)

where u-1 and u+1 are the potential at neighboring grid points, and _ 1 and E+j are

the dielectric at the midpoint of the connecting grid lines, illustrated in Figure 2-5.

Extending the system to include two "virual" grid points at the midpoints of each

i -1 -1/2 0 +1/2 +1

Figure 2-5: 1D FD grid line, with grid points i = -1, 0, 1

grid line for five grid points total, the three internal grid points lead to the set of

equations

E-3U_ 2 + 6_1 UO
2 2

U0 =
C_1 + E+1

2 2

U+ I - 2 2

2 2 + 3
2 2

as illustrated in Figure 2-6. Combining equations and elimination of the variables

p W W 0 0 6
i -2 -1 0 +1 +2

Figure 2-6: 1D FD grid line, with grid points i = -2, -1, 0, 1, 2

u_ 1 and u+l yields

(E'_)U_ 2 + (E')u+2
o = (E + ) (2.33)

(2.32)



where E'+/_ is the effective dielectric over the grid line

S+ I÷1 + (2.34)
+ 1 _ ) ' +7 +½ )

Extending to n grid line subdivisions, the effective dielectric is the harmonic average

C' (zE 1/c (2.35)

As illustrated in the example of a parallel plate capacitor, this method becomes exact

in the limit of zero curvature in the dielectric boundary or equivalently, zero grid

spacing.

This averaging technique can be interpreted as an increase in the precision with

which the location of the dielectric boundary is defined, as more detailed information

about the permittivity function has been included. The traditional, binary repre-

sentation provides no further information than between which two grid points the

molecular surface lies. By averaging along the grid line, we gain more precise in-

formation of where the boundary falls between two grid points. This also produces

the effect of a smoothly varying dielectric at the molecular surface, resulting in im-

proved computational stability and convergence, although the fundamental model of

the molecular surface is unchanged.

Averaging has also been employed in a slightly altered manner to produce smooth

permittivity effects by weighted averaging of the dielectric over surrounding grid

points[132]. In contrast to the above described averaging method, this averaging

destroys information about the molecular surface. Averaging over grid lines includes

more information than is already present on the finite-difference grid. However, aver-

aging local grid values blurs the molecular surface and although a smoothly varying

dielectric is produced, it is not clear that this should result in improved accuracy.

I Alternatively, the model itself can be adapted to include a smoothly varying defi-

nition of the permittivity [110, 122]. Perhaps the most attractive and elegant of these

models is the Gaussian based atomic volume function. In this model the molecular



volume is described by a set of overlapping Gaussian functions. The Gaussian-based

density of an atom of nominal radius aA is given by

p9(r) = PA exp(--rrA/aA) (2.36)

where PA is a hieght factor, rA is the radial distance (r - rA) from atom A, and r, is

a dimensionless exponent. The volume integral is

VA dr 3P PA 3/2 (2.37)

where dr3 is the volume element and the integral is taken over all space. Consistency

with a physically realistic description of atomic volume is maintained by requiring

that the Gaussian volume equal that of a solid sphere

( 7 3/2 A

4 3

This relationship reduces the parameterization of the Gaussian function to a single

variable. Adapting the total molecular volume encompassed by a set of overlapping

spheres[128] to the set of overlapping Gaussians, the molecular volume is defined by

the Poincard sum, as

pmo,(r) = 1-fl(1-p9)
A

S p - PAPB + p9 pgp- . (2.39)
A A>B A>B>C

This equation represents the sum of each atom contribution to the molecular volume,

EA pA, plus correction terms to account for overcounting of overlapping volumes.

This formulation has been previously shown to produce excellent results for molecular

volumes and surface areas[115]. Linear mapping of this molecular volume function to

dielectric values produces a dielectric that increases far too rapidly towards solvent



values with distance from atomic centers. Instead, the permittivity is described as

6(r) = Esolute + (Esolvent - Esolute)e - A psum(r) (2.40)

Psum(r)= ZpAe--  /i (2.41)

where the sum is carried out over the atoms of the molecule and does not include

the overlap terms of Equation 2.39. The exponential in Equation 2.40 serves to

smooth out the dielectric in the molecular interior and provide a quicker transition to

solvent at the molecular surface. The dimensionless parameter, A, is determined for

each combination of dielectrics, (Esolute, esolvent), by fitting PB results to traditional

definitions of the molecular surface.

The Gaussian model imparts several benefits. Besides offering an arguably more

physically realistic basis, the atomic Gaussian molecular volume provides simpler

construction than the molecular surface. Differentiability with respect to atomic po-

sition allows for the direct calculation of solvent forces and subsequent incorporation

into molecular dynamics simulations. Also, similarly to the averaging technique,

this smoothly varying permittivity function provides computational stability and im-

proved convergence. Finally, there has been considerable debate of the proper value

for the polarizability of protein molecules. While internal molecular dielectrics can be

argued to be optimally set to a value of 2 [63], accurate results in protein systems often

require a molecular dielectric between 4-20, which can result from the microdielectric

effects discussed above. Interestingly, the Gaussian based model achieves accurate

results for these systems with internal dielectrics of 1-2. The tails of the Gaussian

functions overlap in the microdielectric regions to yield dielectric values intermediate

to the internal and external values.



2.3.3 Combining Smooth Permittivity Functions and Local

Dielectric Smoothing

Although smooth permittivity functions and local averaging both have the broader

result of smoothly varying dielectric, it is important to mark the distinction between

the atom-centered Gaussian function as a fundamental model of the solute-solvent

boundary and harmonic averaging as a technique to obtain more detailed information

of the discretized molecular surface at a given grid scale. Because of this distinction,

it is potentially applicable to combine these methods. To this end, the Gaussian

volume function is first evaluated at adjacent grid points i and i + 1 by Equation 2.40

to give pi and pi+l, respectively. With a continuous definition of the permittivity, the

harmonic average in Equation 2.35 is replaced by the analagous integral equation,

written as[82]

(pi+l - pi)

S~l dp[~solute + (Esolvent - Esolute)exp(-AP)]->

Esolute(Pi+i - Pi)
(Pi+i - Pi) - A-' n(+l/) (2.42)

where Ei is the dielectric evaluated by Equation 2.40 at the grid vertex. This method

retains the benefits of the physically appealing smooth permittivity function, while

also capitalizing on the increased positional stability of the harmonic averaging tech-

nique.

This method was tested through solvation energy calculations for a variety of

systems ranging from a single Born ion to large proteins. In all calculations, solute

and solvent dielectric constants were set to 1 and 80, respectively. Zero ionic strength

was assumed and convergence set as 1x10 - 6 kcal/mol. Finite-difference grid boundary

conditions were set according to the Coulombic potential.

The Born ion provides a simple, clear testing ground as the solvation energy of a

single ion with charge, q, and radius, a, is available analytically for comparison as

Sq2 1 1(2.43)AGBorn (2.43)AGBrn 8--60 E(solvent Esolute

47



In order to illustrate practical application of this method, solvation energy calcula-

tions were also performed on a set of small molecules and proteins from the Protein

Data Bank (http://www.rcsb.org/pdb). Finally, the solvation contribution to the

binding energy of a thrombin-NAPAP complex is used to demonstrate application to

computational binding simulations. In order to assess positional error, the solvation

energy of each ion or small molecule was calculated at 100 random positions relative

to the FD grid. Protein solvation energies were calculated at 20 random positions

relative to the FD grid. The standard deviation and range, defined as the difference

between the maximum and minimum values, of calculated solvation energies were

used to evaluate the positional stability of four dielectric models: the traditional

discontinuous molecular surface (MS), the harmonically averaged molecular surface

(MS-HA), the Gaussian based permittivity (GAUSS), and the harmonically averaged

Gaussian model (GAUSS-HA).

The solvation energy of a single ion with radius a = 2A and unit charge, q = 1 was

evaluated at 100 grid positions for grid spacings in the range of 0.1-1.0 A. Figure 2-7a

illustrates the average error in the Born ion solvation energy calculation over the range

of grid scales. Solvation energies are known to be highly sensitive to the description

of the molecular surface and therefore force-fields are often re-parameterized for op-

timum accuracy[70, 97, 98]. This is not a surprising result considering that solvation

energy in the continuum representation is equated with the build-up of induced polar-

ization charge at the dielectric interface. Smooth permittivity models represent the

region of induced polarization charge as a three-dimensioilal volume, whereas in the

discrete molecular surface model polarization charges exist only on a two-dimensional

surface. This difference in the definition of the dielectric boundary and position of

induced charges will considerably alter the solvation energy. It is apparent that this

is the case with the Gaussian based models, as both converge at fine grid scale to

a solvation energy of AG,,, 1 = -88.47 kcal/mol rather than the analytical value of

AGB,,n = -81.95 kcal/mol. Optimal re-parameterization has been demonstrated for

several popular force-fields by Swanson et al. [97, 98] by both the rescaling of current

force-field parameters as well as development of new parameter sets. In the absence



of this re-parameterization focus should instead be placed on the error relative to

the fine grid value for the Gaussian based models. The increased accuracy achieved

through harmonic averaging is very apparent in the MS models, and can also be seen

in the Gaussian based models at larger grid scales. The stabilizing benefits of har-

monic averaging are illustrated in Figures 2-7b and 2-7c by examining the standard

deviation and range of solvation energies, respectively, for the 100 repeated calcula-

tions at each grid scale. For a desired stability characterized by a standard deviation

of 10-2 kcal/mol, the MS-HA model requires a grid scale of 0.2 A, the GAUSS model

requires a grid scale of slightly less than 0.4 A, while the GAUSS-HA model achieves

this level of stability at a grid scale of 0.6 A, with an absolute error of less than

0.3 kcal/mol. This represents a powerful, yet straightforward means for accelerating

Poisson-Boltzmann calculations as cubic grid based methods typically scale as the

cube of the grid size.

The second test of combining Gaussian based permittivity functions and harmonic

averaging was the calculation of molecular solvation energies. A set of eight small

molecules and four proteins were used to test the accuracy and stability of the three

reference dielectric models and the new combined method. Atom charge and ra-

dius parameters were taken from the Optimized Parameters for Liquid Simulations

(OPLS) [140], with the exception of charged hydrogens whose radius was set as 0.8 A
rather than 0.0, as such a radius is inappropriate for a molecular volume based solva-

tion energy calculation. Interior and exterior dielectric constants were set to 1 and 80,

respectively, as consistent with the OPLS force-field. Table 2.1 shows the solvation

energy, standard deviation, and range of energies for each molecule calculated at a

relatively large grid spacing of 1 A. Solvation energies are similar between all methods,

although it is again apparent, particularly for the protein energies, that the Gaussian

models should be re-parameterized for optimal agreement with the molecular surface

models.

In these calculations, a large grid scale was chosen to emphasize the stability im-

parted by the combination of a smooth dielectric model and the averaging technique.

Accurate work normally requires a grid scale of 0.5 A or less. Even at a large grid
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Figure 2-7: Calculation of Born ion solvation energies as a function of grid spac-
ing for each of the four dielectric models: (0) Traditional molecular surface, (U)
Harmonically averaged molecular surface, (o) Gaussian atomic volume function, and
(.) Harmonically averaged Gaussian atomic volume function. (a) Ion solvation en-
ergy. Each point represents the average solvation energy calculated at 100 random
positions relative to the finite-difference grid. The horizontal line at -81.95 kcal/mol
represents the theoretical solvation energy of a 2 A Born ion in water (esov,=80),
while the horizontal line at -88.47 kcal/mol represents the fine grid solvation energy
for the Gaussian model and serves as a guide to the eye. (b) Standard deviation
of the calculated solvation energies. (c) Energy spread is the difference between the
maximum and minimum calculated solvation energies. Note that (b) and (c) are on
a logarithmic scale.

scale, the GAUSS-HA model produces standard deviations in small molecule solva-

tion energies of less than 0.35 kcal/mol. Also, the range of calculated energies for

each of the small molecules is comparable to the thermal energy, kBT; an important

comparison when considering Monte Carlo simulations, for example. Protein calcu-

lations are similarly stabilized, exemplified by the relative standard deviation of a

ferrodoxin protein (PDB 2FDN) solvation energy, which is limited to 0.03%.

Poisson-Boltzmann calculations have long been used to determine solvation forces[102,

104] and there have been significant recent efforts aimed at incorporation of PB mod-
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els into molecular dynamics simulation programs[105, 122, 130, 131]. Although the

majority of work contained here focuses on Monte Carlo simulation methods in which

only the solvation energy must be calculated, these methods are equally valid and

applicable to molecular mechanics force based simulations. A representative subset

of atoms from the list of small molecules in Table 2.1 was used to examine the ac-

curacy and stability of solvation forces evaluated through the GAUSS-HA method.

As demonstrated in Figure 2-8, harmonic averaging improves the accuracy at large

grid scales and dramatically stabilizes the Gaussian model even at very large grid

spacings.
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Figure 2-8: Solvation forces for a subset of atoms from the test structures listed in
Table 2.1 comparing coarse grid scale calculations (1.0 A) to forces calculated at a fine
grid scale (0.1 A). Data points represent the average force for each atom calculated
at 25 random molecular positions relative to the finite-difference grid, with standard
deviations represented by error bars, and the line (y = x) as a guide for the eye. (a)
MS model, (b) MS-HA model, (c) GAUSS model, (d) GAUSS-HA model.

Finally, the GAUSS-HA model was demonstrated in comparison to the other three

models in calculating the solvation contribution to the binding energy of the bovine



thrombin-NAPAP (Ne-(2-naphthyl-sulphonyl-glycyl)-D-p-amidino-phynylalanyl-piperidine)

complex[16]. The input structures were prepared fromt he Protein Data Bank file

(PDB lETS) by removing waters and ensuring neutrality of the thrombin protein.

This coagulation protein-inhibitor complex consists of 2652 atoms, and was chosen

as representative of general protein-ligand binding experiments. Atom and radius

parameters were again taken from the OPLS force-field, with interior and exterior

dielectric constants of 1 and 80. Solvation energy calculations were carried out at

20 random positions relative to the finite difference grid. The contribution to bind-

ing energy was calculated as the difference in mean solvation energies between the

complex and its component parts, and standard deviations were combined to yield

the standard deviation of the binding energy. Figure 2-9 shows the difference in sol-

vation energies over a range of grid spacings from 0.3 to 1.4 A for each dielectric

model. Once again, it is evident that the absolute energy calculated with the Gaus-

sian model differs from the molecular surface model when using the same atomic

parameters, and comparison should be made to the energies calculated at fine grid

spacing. The GAUSS model alone offers similar accuracy and stability at large grid

scales to the MS-HA model. Application of the averaging technique to the Gaussian

based permittivity functions further stabilizes the calculation, reducing the standard

deviation of the computed binding energies by a factor of 3-5 and absolute errors by

a factor of 2-3 over the range of grid scales.

Harmonic averaging in the MS-HA model adds a significant computational cost to

the grid initialization routine. For the thrombin-NAPAP complex on a 1.0 A grid, the

initialization CPU time for the MS model was 2.1 seconds on a single 2.4-GHz Intel

Xeon porcessor. Ten point subdivision of molecular surface-spanning grid lines and

harmonic averaging increased the initialization time to 14 seconds. However, in the

case of the Gaussian model, there was no increase in initialization time. Initialization

for the GAUSS model involves evaluation of the Gaussian volume and dielectric,

Equation 2.40, at the midpoint of each grid line. However, Equation 2.42 includes

the Gaussian volume and dielectric at the grid vertices only, and explicit subdivision

of grid lines is not necessary. Therefore, the minimal computational cost of evaluating
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Figure 2-9: Solvation energy contribution to bovine thrombin-NAPAP[16] binding
energy. Each point represents the difference in solvation energy between the complex
and its individual componenets, each averaged over 20 random positions relative to
the finite-difference grid. Error bars represent the standard deviation. From top
to bottom, (MS) the traditional molecular surface model, (MS-HA) harmonically
averaged molecular surface, (Gauss) Atomic Gaussian volume descriptors, (Gauss-
HA) harmonically averaged Gaussian volume descriptors.

the harmonic average is recovered by evaluating the Gaussian density and dielectric

at the grid vertices only, rather than at the midpoints of each grid line. Initialization

times were 2.2 and 2.1 seconds for the GAUSS and GAUSS-HA models, respectively.

2.4 Verification of Implementation

For this project, a Poisson-Boltzmann solver was independently developed rather

than application of existing software. The reason for this was two-fold: flexibility

in development of model definitions and computational algorithms and the necessity
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for an extremely fast implementation in order to feasibly accommodate the large sys-

tem size to be studied. Prior to implementation of the newly developed PBE solver,

the accuracy of solvation energy calculations must be verified against an established

version of the model. For this purpose, the commercially available and widely con-

sidered industry standard software Delphi was used. A series of peptide solvation

energies were calculated using the developed software, termed PBD, and Delphi. A

set of 60 random peptide sequences were generated ranging from 5 to 160 amino

acids, and atomic coordinates were generated using the pepz program distributed

with MCPRO[29]. This program builds full peptide structures from a predefined

database of atomic coordinates. Solvation energies from linearized PBE calculations

in implicit water, modeled as a continuum dielectric of e = 80 and 0 ionic strength

are compared against Delphi in Figure 2-10 for a grid spacing of 0.5 A, and a conver-

gence criteria of 10-3 kcal/mol. PBD solvation energies are nearly identical to Delphi

results over a wide range of solvation energies.
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Figure 2-10: Accuracy comparison of newly developed PBE solver in comparison to
the industry standard software Delphi for linear calculations with zero ionic strength
solution

In Figure 2-11, the accuracy of non-linear calculations in ionic solution environ-

ments is illustrated. In these plots, the solvation energy of each peptide used in the

linear comparison was calculated using the non-linear PBE at each ionic strength. The

54



reaction field energy in zero ionic strength water has been subtracted from each sol-

vation energy in order to more accurately compare the effects of secondary ions. PBD

again produces nearly identical results as Delphi over the range of ionic strengths.
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Figure 2-11: Accuracy comparison of newly developed PBE solver in comparison
to the industry standard software Delphi for non-linear calculations in varying salt
concentrations. Plotted energies are the difference in solvation energy from the zero
ionic strength calculation, representing the contribution of the secondary ions to the
total solvation energy.

Next, the computational efficiency of the new PBE implementation was assessed

in comparison to Delphi. In Figure 2-12, the average calculation time is examined as

a function of system size. Calculation times depend directly on the size of the finite-

difference grid, and therefore indirectly on the molecule size. Converged solvation

energies require approximately six times longer for linear and ten times longer for

non-linear calculations for Delphi in comparison to PBD.
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Figure 2-12: Poisson-Boltzmann calculation efficiency for PBD and Delphi. The
multigrid method of PBD significantly outperforms the SOR method used in Delphi

2.5 Effective Grid Deformation Error

Examining a two atom system rotating relative to the finite-difference grid reveals

an interesting consequence of the FD approximations. Luty et al. showed that the

reference solution of the PBE could be substituted with a direct sum of Coulombic

interactions by accounting for the effective distances imposed by the finite-difference

grid[96]. They demonstrated the Green's function for the electrostatic potential on a

cubic finite-difference grid in a uniform dielectric is

N-1
(i, j, kj, i j k') = Cs CS )CS

kx,kv,kz=1

x CS CS k,7rk CS k,7rk'N N N
x in2 ( + sin 2 (&7) + sin2 ( )] (2.44)

2N 2N \2N

where (i',j',k') is the grid point of the source charge (-N/2 < i',j',k' < N/2),

(i, j, k) is the grid point of observation, q is the charge, E is the dielectric constant,

h is the grid spacing, and N is the number of grid points. The function CS(kal) is



given by

CS(k cos(k0O) k, e odd

sin(ka0) ka E even

Without loss of generallity, placing the charge at the origin yields

$(Ai, Aj, Ak) = -. k,,N/,k,=

[(2kz-1)7rAi COS (2ky-1)raj COS (2k 2-1)-AkICO N [ N NCO

x (sin2 [(2k,-1)r] +siin 2 [(2k,1)7] + sin2 [(2k -1r]) (2.46)

and then letting the grid become infinite, i.e., limNy,,

(Ai, Aj, Ak) = q 3h jdx dy dz

cos(xAi) cos(yAj) cos(zAk)x (2.47)sin2 (1) + sin 2 (y) + sin 2 (z)

Writing this equation in a form which maintains the functional relationahip of Coulomb's

law gives

(Ai, Aj, Ak) = q(2.48)
47rEhdeff(Ai, Aj, Ak)

where,

def(Ai, Aj, Ak) - 1 = -I dx dy dz
= T2 f O0 0

cos(xAi) cos(yAj) cos(zAk)x (2.49)
sin2 (1) + sin2 (y) + sin2 (z)

The integrals in Equation 2.49 were evaluated by Gaussian quadrature and are

listed in Table 2.2. Distances parallel to the grid axes are effectively contracted,

while distances along the grid diagonals are effectively dilated. Figure 2-13 illustrates

this effective grid deformation in two dimensions. As long as spherical symmetry or

rotational orientation to the grid is maintained, this effective deformation of space

is not expected to have important consequences on the calculated solvation energy.

However, for an asymmetric system rotating relative to the FD grid, as might occur



in docking, for example, distances between atoms, charges and dielectric boundaries

are effectively changing and therefore altering the solvation energy.

Figure 2-13: Illustration of the effective grid deformation imposed by finite-difference
approximations. Distances parallel to the grid axes are effectively contracted, while
distances along the grid diagonal are effectively dilated.

In order to explore the size of this effect, a charged atom with q = 0.5e, was

placed at the origin of the FD grid and a second, uncharged atom was rotated around

it in the x-y plane. This system was chosen in order to isolate the effects of the

grid deformation from any changes in the mapping of charge on the grid. The finite-

difference grid was constructed with a spacing of 0.3 A and the atomic volumes were

mapped by Equation 2.42 with radii of 1.25 A. Figure 2-14 shows the deviation of

the solvation energy as a function of the rotation angle. The solvation energy varies

smoothly as the pair rotates, showing a period of 900 due to the symmetry of the

rectangular grid. Figure 2-15A shows the amplitude of the energy fluctuation as

a function of atomic separation for grid spacings of 0.40, 0.35, 0.30, and 0.25 A
and atomic radii of 2.25 A. Here, the amplitude is considered to be positive if the

solvation energy in the diagonal alignment is higher (more positive) than the parallel
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alignment and negative if it is lower (more negative). At small atomic separations,

the diagonal alignment is higher in energy, peaking at a separation approximately

equal to the atomic radius. At larger separations, the diagonal alignment is lower

in energy, peaking at a separation of approximately twice the atomic radius, or the

point of atomic contact. Finally, at very large separations, the amplitude returns to

zero as the effective deformation of the FD grid becomes small. Inset, the value of

the maximum at separation r = 2.25 A (marked by 3C) is a linear function of the

difference in effective distance Adeff(r = 2.25A) between the parallel and diagonal

directions for grid spacings 0.25-0.50 A.

Figures 2-15B and 2-15C show an overlay of the dielectric cavities formed by the

pair of atoms in the parallel (black) and diagonal (red) alignments for the separations

marked in Firure 2-15A. The difference between effective distances parallel and diag-

onally aligned to the grid causes some areas of the dielectric boundary to be closer to

the central atomic charge than others. At small atomic separation (2-15B), it is ap-

parent that the portion of the boundary belonging to the charged atom is on average

closer to the charge center in the parallel alignment than in the diagonal alignment.

Thus, molecular rotation results in an effective increase in radius and corresponding

increase in solvation energy. However, at larger separations the reverse is true. The

diagonal alignment shows a significantly higher penetration of water into the neck

region between the two atoms, and therefore a decrease in solvation energy as the

pair is rotated.

The deformation of the finite-difference grid is subtle, applying a systematic error

to energy calculations. The error is small in magnitude and was previously masked

by the more irregular errors associated with the discretized representation of the

dielectric boundary. In experimental applications, the case of highly overlapping

atoms in Figure 2-15B is representative of bonded pairs, while the case in Figure

2-15C is near the minimum in non-bonded van der Waals energy. Rotation of a

molecule produces relative rotations amongst each pair of its atoms, with effective

distance errors combining to produce a cumulative error of the molecule. One would

expect minimual implications for systems with roughly spherical symmetry, while
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Figure 2-14: Solvation energy fluctuation as an atom pair is rotated relative to the
finite-difference grid.

systems that are largely extended in one dimension, such as an extended peptide

conformation, may have larger errors. In a sample calculation with a grid spacing of

0.4 A, the dodecamer peptide (GK) 6 in a fully extended conformation (¢ = b = 180)

shows a preferred diagonal alignment by approximately 1 kcal/mol, while at a grid

spacing of 1.0 A, the diagonal alignment is favored by 5 kcal/mol. These errors

are similar in magnitude to thermal fluctuations at small grid spacings, but may be

important at larger grid scales.

Except for the special circumstance of a linear arrangement, the effective distances

cannot be corrected for more than two points without altering their geometry. The

deformation of the FD grid is local, directional, and relative to a central point. Thus,

while the effective position of charges and dielectric boundaries could be corrected

relative to one atom, the same adjustments will not apply arbitrarily to a second atom.

This is demonstrated in Figure 2-16 for a three point system. Attempting to correct

for the effective distances by shortening distances along the diagonal and lengthening

distances parallel to grid axes cannot, in general, be accomplished without altering
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Figure 2-15: (A) Dependence of the solvation energy fluctuation on grid size for
spacings of 0.40 (*), 0.35 (A), 0.30 (o), and 0.25 (E0) A shows a linear relation to the
difference in effective distance between the parallel and diagonal directions (inset).
(B&C) Overlay of dielectric boundaries based on effective distances for the parallel
(black) and diagonal (red) alignments at the separations marked in 3A.

the geometry of the system. Reduction of grid scale remains as a viable solution to

eliminate orientational error.

2.6 Conclusions

Poisson-Boltzmann solvent models represent the most rigorous of the implicit sol-

vent models. The ultimate goal of this project is the incorporation of the implicit

solvent model into a molecular mechanics simulation package. To this end, there

are two primary concerns; accuracy of the solvation model and speed of calculation.



Figure 2-16: In general the effective grid distances cannot be corrected in a simple
fashion. Considering the three point system shown here, the distance along the diag-
onal must be shortened to correct for of the effective dilation. However, the vertical
distance must be lengthened to correct for the effective contraction, which combined
with the previous correction alters the overall geometry of the three point system.
Only the linear case presents a straightforward scheme for approximate correction of
effective grid distances.

Through efficient multigrid calculations and the application of local averaging to

smooth permittivity functions, a Poisson-Boltzmann solver was developed with ex-

ceptional speed and accuracy. The implementation developed through this project is

considerably faster than commercially available software packages. Solvation energy

calculations were also shown to be more stable at larger grid scales further increasing

the computational efficiency by extending the range of grid scales which can be used.

However, in the process of removing errors associated with the discretization of molec-

ular volume, an underlying orientational error fundamental to the the finite-difference

approximations was uncovered.

This orientational error is incompattible with a molecular simulation. It is par-

ticularly damaging due to the deterministic nature of the orientational dependence.

Tests incorporating this model into Monte Carlo simulations revealed that molecular

position and orientation, as well as conformation, were affected by this error. Short

peptide systems preferrentially aligned themselves with the grid diagonal and were



prevented from conformational changes that would bring portions of the peptide out

of this alignment.

Grid scale reduction remains as an option for eliminating error in the solvation

energy calculations. However, limiting the error to a level appropriate within the

framework of a molecular mechanics simulation requires a grid scale that is not fea-

sible in the sense of computational efficiency. Monte Carlo simulations must average

properties over many conformations, each of which accompanied by a solvation energy

calculation. At even one second per solvation energy calculation, a one million step

Monte Carlo simulation will take on the order of 10 days. Limiting the diagonally

aligned preference to -0.5 kcal/mol results in a computational wall time for a single

solvation energy calculation of roughly 4 seconds. In the next chapter, we turn to ap-

proximations to the Poisson-Boltzmann equation which lead to greater computational

efficiency.



Table 2.1: Grid Stability in Solvation Energy Calculations. Solvation energies for each
small molecule were calculated at 100 random positions relative to the finite-difference
grid, while each protein was sampled at 20 random positions. All energies are reported
in kcal/mol and given as the mean +/- the standard deviation. Atomic parameters
were taken from the Optimized Parameters for Liquid Simulations (OPLS) [140], ex-
cept for charged hydrogens which have a radius of zero in the OPLS force field. Such
a radius is inappropriate for Poisson electrostatic calculations, and therefore has been
reset to 0.8 A. A grid spacing of 1.0 A and relative dielectric constants of 1 and 80
were used for the interior and exterior values, respectively, for all calculations. The
range is the difference between the maximum and minimum calculated solvation en-
ergies. C7eq-Ala, C5-Ala, and aR-Ala represent different conformations of the alanine
dipeptide, as described elsewhere[24].

MS MS-HA Gauss Gauss-HA

Molecule Esolv Range E 0soi Range Esolv Range Esolv Range

Methanol -10.26 ± 1.52 8.49 -8.70 ± 0.55 1.94 -8.47 i 0.60 2.24 -7.15 + 0.17 0.66

Ethanol -9.86 ± 1.46 5.79 -8.37 ± 0.30 1.43 -7.89 ± 0.48 1.75 -6.49 i 0.12 0.59

2-Propanol -9.80 ± 1.63 5.96 -8.25 ± 0.29 1.48 -7.78 4 0.62 2.68 -6.32 ± 0.15 0.65

Acetone -6.08 ± 0.90 4.16 -5.29 ± 0.11 0.55 -4.94 ± 0.37 1.64 -4.33 ± 0.06 0.23

Methyl Acetate -5.41 ± 0.79 3.44 -4.52 - 0.18 0.78 -4.18 ± 0.29 1.35 -3.53 + 0.12 0.43

Acetic Acid -96.75 ± 6.57 23.91 -90.77 ± 0.66 3.26 -90.54 ± 3.05 12.24 -85.09 ± 0.34 1.31

Acetamide -15.25 ± 1.18 5.59 -13.02 ± 0.32 1.51 -12.96 ± 0.53 2.41 -10.86 - 0.17 0.64

C7eq-Ala -20.84 ± 1.84 7.82 -17.82 - 0.39 1.87 -16.83 ± 0.71 3.11 -14.07 ± 0.16 0.67

C5-Ala -23.74 ± 1.93 7.24 -20.72 - 0.31 1.15 -19.44 ± 0.84 3.54 -16.95 ± 0.22 0.81

aR-Ala -24.50 ± 1.57 6.21 -21.76 ± 0.37 1.95 -20.62 ± 0.70 2.93 -18.22 ± 0.13 0.48

1GQV -3587.89 ± 23.89 98.97 -3273.0 - 9.27 48.92 -2837.55 ± 6.59 27.71 -2550.87 ± 1.60 6.33

1HJE -160.34 ± 4.95 22.69 -140.02 ± 1.91 8.85 -119.00 ± 1.96 9.02 -103.01 ± 0.41 1.81

1KCH -651.35 ± 9.71 46.10 -567.69 ± 4.47 19.92 -432.16 ± 1.74 7.91 -364.98 ± 0.59 2.43

2FDN -6641.30 ± 24.39 99.88 -6497.97 ± 4.93 23.10 -6367.31 ± 8.78 36.00 -6238.17 ± 1.84 7.25



Table 2.2: Values of effective grid distances deff(Ai, Aj, Ak).

Ai, AjAk
000
100
110
111
200
210
211
220
221
300
310
311
222
320
321
400
322
410
330
411
331
420
421
332
422
430
500

Value
0.31488
0.92464
1.44187
1.82612
1.85546
2.21476
2.48984
2.83690
3.04260
2.88944
3.11799
3.31138
3.51331
3.60502
3.76136
3.92243
4.15702
4.07658
4.25236
4.21765
4.37981
4.46023
4.58287
4.72241
4.91463
5.00555
4.94270

Distance
0.00000
1.00000
1.41421
1.73205
2.00000
2.23607
2.44949
2.82843
3.00000
3.00000
3.16228
3.31662
3.46410
3.60555
3.74166
4.00000
4.12311
4.12311
4.24264
4.24264
4.35890
4.47214
4.58258
4.69042
4.89898
5.00000
5.00000





Chapter 3

Generalized Born Implicit Solvent

Model

3.1 Introduction

Dealing with solvent in molecular simulations has been a perpetual problem in com-

putational chemistry. Explicit inclusion of solvent requires computationally expensive

averaging if one is to achieve converged results. Implicit solvent models have become a

popular alternative[48, 109] with the Poisson-Boltzmann equation, discussed in Chap-

ter 2, providing the standard of reference. However, Poisson-Boltzmann calculations

still represent a significant computational investment when grid-position stability is

required, as in the case of incorporation into a molecular mechanics simulation. In-

stability of the discretized calculation can preclude comparison of molecular solvation

energies following translational, rotational, or conformational changes. Therefore, fine

grid scales are required to stabilize the calculation which, in turn, greatly increases

the computational demands.

A popular approximation to the Poisson-Boltzmann model is the so called "Gen-

eralized Born" method[55]. The total electrostatic free energy, G,,, of a system of

separated, charged atoms in a medium of dielectric c is given by the sum of Coulombic



interactions and Born solvation energies

n-1 n qqn 2

Ge, = 332 - 166 1 (3.1)
i=1 j=i+1

where q is the atomic charge, rij is the interatomic separation, and ai is the atomic

radius. Expanding the Coulombic interaction energy into the vacuum Coulombic

energy and a term which accounts for the effect of the dielectric yields

n-1 n n- 1•n 2i

Ge = 332 - 332 - 166 1- - (3.2)
i=1 j=i+l (i i=1 j=i+i i

Finally, the similar form of the second and third terms prompts their combination to

give the polarization free energy of solvation

Gpo, = -166 1 - qqj (3.3)
i=1 j=1 fGB

where the function fGB is a non-uniquely defined function of ai and rij. The commonly

used form of this expression is

fGB = ( + e-r/4o-)1/2 (3.4)

where aij = •5/•. At zero separation, this function reduces to the Born radius, while

at large distances the function reduces to the separation distance. For a molecule con-

sisting of a set of partially overlapping atoms, the radius used in this model is not

simply the atomic radius, but is instead replaced by an effective radius which accounts

for the displacement of solvent by all other atoms in the molecule. Specifically, the

Born radius of atom i is the effective radius of a hypothetical spherical particle with

exactly the solvation energy of the molecule when only atom i is charged. In con-

trast to distance dependent dielectric models, the function in Equation 3.4 takes into

account the degree of solvent exposure in addition to atom separation. Given an ac-

curate Born radius for each atom in a given molecule, the empirical formula for fGB



produces very good agreement with more rigorous treatments[5, 43]. Strictly speak-

ing, the accurate computation of effective Born radii therefore requires the solution of

the Poisson-Boltzmann equation for each atom in the molecule. This, of course, does

not lead to any computational advantage, and methods for approximating these Born

radii has been the major focus of continuing efforts in the development of Generalized

Born methods. Many attempts have been made to parameterize Born radii, as any

other element of a molecular mechanics force-field, by fitting solvation energies to

experimental and explicit solvent simulations[69, 121]. However, this approach has

not produced sufficiently accurate results and it is apparent that a method taking

into account the effect of the molecular shape on Born radii is necessary[93].

3.2 Coulomb Field Approximation

The traditional method for approximation of Born radii relies on the Coulomb Field

Approximation (CFA)[25, 77]. The electrostatic energy of a solute consisting of N

atoms with charges, ql ... qN, can be evaluated by integration of the energy density

of the eletric field over all space, i.e.

Eel = 1 ven D2(r)dr + D2(r)dr (3.5)
87r solvent 87r6i lute

where D is the dielectric displacement, r is the position, e, and ci are the solvent and

solute dielectrics, respectively, and the integration over all space has been split into

the solvent and solute regions of space. By adding and subtracting the integral of

D 2/(87rc,) over the solute volume

Eel 1 D2(r)dr + D2 (r)dr (3.6)

where R3 represents the integration over all space, and 7 = 1/ci - 1/e,. In the first in-

tegral, the dielectric displacement is approximated by the Coulomb field, introducing

a relative error of only a few percent in the electrostatic energy[44]. This is justified by

observing that for a small solute, charges are highly exposed and deviation from the



Coulombic field is small, while for large solutes the integration over the solute volume

in the second integral will dominate the total electrostatic energy[77]. Integrating the

Coulomb field over all space yields the Coulomb interaction energy, qiqj/Esrij, in the

off-diagonal terms 2Di -Dj, and the Born self energy, qj2/2Esai, in the diagonal terms

D?. Distinguishing the self energy and Coulombic interaction energy terms in the

total electrostatic energy yields

Ee = Efer + E t (3.7)
i i<j

2

Eeelf =  qi + -T D2 (r)dr (3.8)
2 cEo 87r 'solute

E.t - qjrq + D -Dj(r)dr (3.9)
- s srij 47 solute

leaving only an integral over the finite volume of the solute. In order to evaluate this

integral over the solute volume, the Coulomb Field Approximation is again applied.

The dielectric displacement at point r due to charge i is approximated by the Coulomb

field, Di(r) = qi/r. This allows the integration of the dielectric displacement without

prior knowledge of the electrostatic potential. This approximation in effect ignores

the reaction field contribution to the dielectric displacement. Therefore, the CFA can

be expected to lead to an overestimation of the electrostatic energy.

The inverse relationship of the electrostatic energy to the Born radius leads to

1 1 dr' (3.10)
Soi 47r Jsolute,r'>ai r4

where Bi is the effective Born radius of atom i, and the integration of r -4 is taken

over the solute volume outside of atom i. The integration in Equation 3.10 can be

carried out numerically[71] or analytically[89], by considering the molecular volume

as the sum of overlapping atomic spheres.



3.3 Deficiency in the CFA

The Coulomb Field Approximation is exact for single charge located at the center of

a spherical cavity in a homogeneous dielectric. However, for nonspherical molecular

geometries and charge distributions, the CFA must be justified by the short range na-

ture of the electric field. The first solvation shell around an average atom accounts for

58% of the self-energy and solvation energy[77]. The maximum error of the CFA can

be exemplified by a single charge positioned at an infinite planar dielectric boundary.

For this geometry, the electric field can be solved analytically by the image charge

solution, and the self energy integral is overestimated by 59%. When the charge is

separated from the dielectric boundary by one atom layer, the error is reduced to

9.4%.

Since this type of system represents exactly the system of interest in application

to surface adsorption simulations, the traditional GB formulation based on the CFA

is not appropriate. Even the separated error estimate of 9.4% would produce a signif-

icant influence on surface adsorption of biopolymers at an inorganic-solvent interface.

Therefore, we must seek a correction to the GB-CFA model which better handles

charges at an extended dielectric boundary.

3.4 Alternative Calculations of Born Radii

Most corrections to the Coulomb Field Approximation take the form of a higher order

integration of the distance[49, 70, 71]. These methods add a corrective term to the

Coulomb integration, generally of the form

(1 1 1 1/

A3+,n- = n  47r olute,r>r r3+ndr)l (3.11)

The Born radii are then calculated as

S
Bi = + + D (3.12)

CoA4 + C1A71

71



where S, Co, C1, and D are adjustable parameters, and A 4 is the CFA integral.

These corrective terms are empirically designed and seek to correct the overestima-

tion of the long range effects of the dielectric displacement, hence the use of more

quickly decaying functions. The adjustable parameters in Equation 3.12 have no

physical meaning and must be optimized by comparison of solvation energies against

the Poisson-Boltzmann calculations we seek to approximate.

As a first implementation, the corrective integration term was included as the

integration of 1/r5 as suggested by Lee et al., (n = 1 in Equation 3.11). Equation 3.12

was parameterized as Co = -1, C1 = 2v2, S = 1, and D = -0.38. Integration over

the molecular volume was carried out numerically using a spherically symmetric grid

centered at each atom. The integration grid was constructed by equal division of the

radial coordinate up to a cut-off distance, and an on-the-fly adjustable division of the

angular coordinates. A maximum subdivision for the azimuthal angle is predefined,

and the zenith coordinate subdivision was calculated as (2N4 - 1)l sin j1 + 1. The

parameter No is adjusted to give some spatial uniformity to the grid points. Romberg

integration was used over the grid to give the value of the integrals in Equation 3.12.

The computational cost and relative error of the numerical integration were in-

vestigated to determine the optimal balance of grid density. Figure 3-1 illustrates the

time and error scaling with grid subdivision in the numerical integration routine for

a solvation energy calculation of blocked alanine. In Figure 3-1a, the time scaling

properties for increasing subdivision in the radial coordinate, Nr, for a constant sub-

division of the angular coordinate, No. Figure 3-1c shows a similar plot for increased

subdivision of the angular coordinate ¢ with constant radial subdivision, N,. Compu-

tational costs scale exponentially with each coordinate, however, the error calculated

solvation energies are significantly more dependent on the subdivision of the radial

coordinate, illustrated in Figure 3-1b and d. Therefore, all further Generalized Born

calculations using this numerical integration method utilize a fine radial grid spacing

of Nr = 125 grid points and a moderate angular distribution of NO = 16.

The accuracy of this model was further assessed by solvation energy calculations

for amino acids and short peptide molecules. Poisson-Boltzmann reaction field en-
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Figure 3-1: Time and error scaling with grid subdivision in numerical integration for
evaluation of Born radii (a) Time scaling for radial subdivision (NO = 16), (b) Error
assessment for radial subdivsion, (c) Time scaling for angular subdivision (Nr = 125),
and (d) Error assessment for angular subdivision

ergies were calculated with Delphi[66] using atomic parameters from the OPLS-AA

force field[140], with the exception of charged hydrogen atoms which have a radius

of 0.0 in the OPLS force field. Such a radius is inappropriate in the context of a

volume based solvation energy calculation and hydrogen radii were set to 1.0 A. Grid

spacing for PB calculations was set as 0.5 A and salt concentration was set to zero.

Correlation with PB solvation energies is excellent in the GB method for the twenty

naturally occuring amino acids, illustrated in Figure 3-2. The average error in these

calculations was 0.96%.

A similar analysis was carried out for a set of ten random dodecamer peptide se-

quences in order to verify applicability to the simulation of short peptide sequences.

The peptide sequences listed in Table 3.1 were generated using the pepz utility dis-

tributed with MCPRO[29]. This utility generates atomic coordinates from input
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Figure 3-2: Solvation energy calculation for the 20 naturally occuring amino acids,
comparing Generalized Born results with Delphi Poisson-Boltzmann reaction field
energies.

peptide sequences and a predefined library of residue coordinates in a fully extended

conformation (0 = 4 = 180). The peptides were then energy minimized in vacuo

using the conjugate gradient method of MCPRO. Solvation energies were calculated

for the energy minimized conformations using Delphi and the Generalized Born im-

plementation. Figure 3-3 illustrates the agreement between the GB implementation

and Poisson-Boltzmann reaction field energies. Average relative error for peptide

solvation energies was 1.30%.

Finally, the applicability of the GB implementation to surface adsorption simula-

tions was tested by positioning charged atoms near an extended dielectric boundary.

First, a dipole system consisting of a negative half-unit charge atom with a radius of

1.5 A embedded in the surface of a 4 nm2 dielectric slab, 1 nm in thickness and a

positive half-unit charge positioned outside of the slab in the solvent region. The rela-

tive solvent dielectric was set as 80 while the slab and atom relative dielectric was set

as 1. The solvation energy of the system was calculated for varying distances of the

positively charged atom from the surface, illustrated in Figure 3-4. Solvation energy

calculations reach a relative error of 30.4% at an atom separation of 3 A compared



Table 3.1: Randomly generated peptide sequences used to verify applicability of Gen-
eralized Born solvation energies to the simulation of short peptide sequences.

Peptide Sequence Charge
GAVLISTCMFYW 0
DNEQRHKPGAVL +1
ISTCMFYWDNEQ -2

WLACPHFSWQAC +1
RHCIVNSCPQYS +2

AVGILMFVVPGA 0
DNDHQTTYSREQ -1
CIETQHGHPPCY +1
TLGSYDCTEPIV -2

TFFMEPHGVTDR 0

to Poisson-Boltzmann reaction field energies.

This test was repeated for a quadrupole system in order to determine how the

interaction of more charges would effect the solvation energy calculation. In this test,

a dipole was embedded in the surface, while a second dipole was moved toward the

dielectric slab. Increasing the system charge only worsens the error in the Generalized

Born calculations. For a charged peptide consisting of hundreds of atoms and an ionic

crystalline surface, these errors would produce an unacceptable lack of precision and

a further refined Generalized Born model must be developed.

3.5 Analytical Integration of GBr 6 Model

An alternative modified Generalized Born method, termed GBr 6 [147], also relies on a

higher order integration of the distance. However, the GBr 6 method uses the higher

order function itself, rather than as a corrective term to the CFA. The Kirkwood

model[79] of biopolymer electrostatics gives the electrostatic free energy of a charge,

q, in a spherical dielectric cavity of radius a as

AGKM 1) - 2) (3.13)
87rEo Ei Es a(1-p 2

75
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Figure 3-3: Solvation energy calculation for the 10 random dodecamer peptides in a
gas phase energy minimized conformation, comparing Generalized Born results with
Delphi Poisson-Boltzmann reaction field energies.

where ej and Es are the molecular and solvent dielectrics, respectively, and p = d/a

is a dimensionless factor with d the distance of the charge from the center of the

spherical cavity. Comparison of this equation with the Born ion solvation energy

gives the effective Born radius as

B = a(1 - p2) (3.14)

The general form of the above relationship can be achieved through a single integra-

tion, and we see that

f 1 fl dcos6'dr = 21 dr00 d dcosr2

'solvent r6  a J- (r 2 +d2 - 2dr cos 0)3

2d d (r - d ( + d)4
ra( 3 a2 + 3d2

3 (a2 - d2)2  (a2 - d2)3

47a 1 4) 4 1-- ( -p2) 3- 4 1 (3.15)3 a(1 - 3 B3
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Figure 3-4: Testing the applicability of the Generalized Born solvent model for surface
adsorption simulations. A dipole system with one charge embedded in a low dielectric
surface. The Generalized Born implementation reaches an error of 30% at short
separation distances.

and therefore,

S= - ve dr) 3  (3.16)

which can then be converted into an integration over the volume of the molecule

as in Equation 3.10. This integration over the volume of the molecule can then be

approximated by the sum of contributions from each atom. In order to calculate the

Born radius of atom i, the integral is considered individually for each atom j over

the portion of the van der Waals sphere which does not overlap atom i. By this

decomposition, the integral Zji can be evaluated analytically following the method of

Gallicchio and Levy[89]. There are four possible cases[147]:
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Figure 3-5: Testing the applicability of the Generalized Born solvent model for surface
adsorption simulations. A quadrupole system with one dipole embedded in a low
dielectric surface.

1. Atoms i and j do not intersect, rij > aOi + 0"

Z 3Zi = (r? -a2) (3.17)

2. Atoms i and j intersect, but neither is completely occluded by the other,

(9i + l)2 > r (i -(j)2

3 1 1 )
Z 8r•- - (ri + aj)2) +

3(r?. - a )
16rij

1 1
a4 (rij + aj)3

i (rij + aj) 4 (3.18)
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3. Atom i is completely inside atom j, r2 < (, i - rj) 2 and aj > ai

1 a3

- = a - 2)3 (3.19)
i ( a ?•

4. Atom j is completely inside atom i, r. < (o i - gj)2 and aj < a. In this case,

atom j does not contribute to the descreening of atom i, and Zji = 0.

The sum of integrals over the van der Waals volume for each atom overestimates

the total integral due to overcounting of overlapping regions of space. This effect

is accounted for by scaling the volume integrals by the fractional self-volume, the

portion of the volume occupied exclusively by the atom in question. The volume of a

set of overlapping spheres is given by the Poincare inclusion-exclusion principle[115]

V = V -ZV V+ Z Vijk-... (3.20)
i j>i k>j>i

where Vi is the van der Waals volume of atom i, Vij is the intersection volume of

atoms i and j, and so forth. It follows that the volume belonging exclusively to atom

i, the self-volume is

1 1
Vi* = Vi Viy Z + Vijk (3.21)

j k>j

The self-volume of atom j calculated by Equation 3.21 includes all other atoms, and

therefore, the scaling of the integral over atom j outside of atom i must be modified

by adding back the overlap of atoms i and j. The scaling factor is therefore defined

as

sji = V (3.22)

This gives the fractional volume associated exclusively with atom j outside of atom

i and the correct result of sji = 1 when no other atoms intersect atom j. The

Born radius of atom i can then be evaluated by the sum of atomic integrals, each



appropriately scaled by the fractional self-volume

S= - ji Zj 1/3 (3.23)

It remains only to calculate the overlap volumes for the set of atoms. Describing the

molecular volume by a set of overlapping atomic Gaussian density functions provides

an efficient approach to calculating these volumes[89, 115]. According to this model,

the volume of each atom is described by

pi(r) = p e- (r-ri)2 (3.24)

where p and ci are adjustable parameters. The overlap volume of n spheres is then

approximated by the integral of the product of the n Gaussian functions

= 2...n d3rp(r)p2(r) .. Pn(r) (3.25)

which can be evaluated analytically as

V1
9
2...n = P12...ne-K12...n /2 (3.26)

A12...n

where

p12...n = pn (3.27)
n n

K12...n E cicjr j  (3.28)12...n i=1 j=i+1

A12...n = C c i  (3.29)
i=1

The Gaussian parameter is defined as ci = r/cO2 , where r. is a dimensionless parameter

which defines the diffuseness of the atomic volume. The parameters u, and p are related

by the equation
47[ (- r)3/2

p = (3.30)3 7r



which satisfies the requirement that the integral of the atomic volume over all space

produces the hard sphere volume 47ra3/3. The original model development sets the

value of n = 2.227, and therefore p = 2.5[115].

This approximation works well for the overlap volumes of heavy atoms[147]. How-

ever, hydrogen atoms are deeply buried into attached heavy atoms and the volume

overlap integral incurs significant error. The solution proposed by Gallicchio and Levy

is the neglect of hydrogen contributions to overlap volumes[89]. Extra care must also

be taken when calculating Born radii as occasional zero or negative values can be

produced. The empirical solution to this problem was the application of a switching

filter of the form

1 V1/b 2 +1/B 2  B >O
- = fb(Bi) = (3.31)11/b B <0

with the constant, b, set to some maximum cutoff for the Born radii. While these

empirical corrections effectively displace the integral error, as well as physically unre-

alistic Born radii, and manage to produce negligable error in large protein solvation

energy calculations, energies for small molecules can have large errors. By neglecting

the contribution of hydrogens to overlap volume, yet giving them their own total

van der Waals volume, the total calculated molecular volume is significantly overes-

timated. Disregarding certain overlap volumes also results ultimately in arbitrarily

setting Born radii to some large cutoff value due to a lack of a physically meaning-

ful radius. This may not be of much importance for an atom buried deep within a

protein interior and shielded from direct interaction with the solvent, but these inac-

curacies are critically important for small molecule solvation energies. For example,

the calculated solvation energy of lysine by the ignored hydrogen overlap volume ap-

proximation is -118.84 kcal/mol, compared to the Poisson equation value of -149.27

kcal/mol.

The inconsistency in the treatment of hydrogens, and all atoms as it turns out, can

be corrected more appropriately by normallization of the volume overlap integrals.

With fixed parameters p and n in Equation 3.24, overlap integrals do not produce the

required result that two coincident spheres of equal radius have the overlap volume



of the hard sphere equivalent 4ra3/3. Setting the overlap integral of n coincident

identical Gaussians of radius a equal to the hard sphere volume

rr = 3 (3.32)

and solving for K for each n gives

K2 
( 

7)1/3 
48V/2 

2/3

1/3  108v/2/6
64

1/3 216 2/9
128

1/3 405V5
2/12

256

K6  1 2 (3.33)512

up to n = 6. Generally, the form of Kn follows

Kn = 1/3 2/(2n3 () (3.34)

where the integer In follows the sequence {48, 108, 216,405, 729,...}. The values of

the constants K and p of the Gaussian volume function in Equation 3.24 evaluated by

Equations 3.34 and 3.30 such that the overlap volume of n atoms is normalized to the

hard sphere volume are listed in Table 3.2. Interestingly, the optimized values for K

and p using a single value for all overlap volumes are 2.227 and 2.5, respectively[115].

These values fall intermediate to the normalized values for overlaps of order two and

three, which would represent the largest contributions to the total overlap volume.

Higher order overlaps are both less common and usually represent smaller volumes. It

is therefore sensible that a single parameter optimzed for the total calculation would

be intermediate to the values of overlap orders two and three. Values of K and p were



not calculated for overlap order higher than 6, as this situation has not been observed

in any real molecular system studied to date.

Table 3.2: List of Gaussian volume parameters which normalize the overlap of two to
six coincident atoms to the hard sphere volume

Overlap order (n) Kn pn
2 2.418 2.828
3 2.094 2.279
4 1.919 2.000
5 1.808 1.829
6 1.730 1.712

This implementation was first tested through solvation energy calculations for a

set of proteins from the Protein Data Bank (http://www.rcsb.org/pdb). The solva-

tion energy for the proteins listed in Table 3.3 were calculated by Poisson-Boltzmann,

GB-CFA, GBr 6 exluding hydrogens in the self volume calculations, and GBr 6(mod)

with hydrogens included in the self volume calculation under the normalized overlap

integrals. The inaccuracy of the CFA method is apparent as solvation energies are

significantly underestimated and the correlation coefficient is approximately 0.9. The

GBr 6 model produces a stronger correlation with a fitted slope of 0.93, and a corre-

lation coefficient of 0.9988. The effects of neglecting hydrogens in protein solvation

energy calculations are small due to the large number of hydrogens buried within the

molecule having little direct interaction with the solvent. The normalized volume

overlap integrals produce a slightly better fit, with a slope of 1.002 and a correla-

tion coefficient of 0.9997. Small molecule solvation energy also correlates much more

strongly. The electrostatic hydration free energy of lysine calculated with the modi-

fied self volume calculations was -147.23 kcal/mol, compared to -118.84 kcal/mol for

the unmodified self-volume calculation, and -149.27 kcal/mol by the Poisson equation.

Incorporation of the solvation model into a molecular mechanics simulation re-

quires that the model be able to differentiate not only between solvation energies for

different molecules, but also between different conformations of the same molecule.

This was tested for two cases. First a stringent test of 100 conformations of blocked



Table 3.3: List of Proteins used for Generalized Born Model Verification. Solvation
Energies were computed by the traditional Coulomb Field Approximation and the
GBr6 model with and without inclusion of hydrogens in self-volume calculations

1AHO 1HJE 1P9G 1W6Z
1C75 1IJ4 1PQ7 1W71

1CEW 1KCH 1RO1 1WNU
1EJG 1KCJ 1SSW 1WY3
1ETL 1L9L 1SUP 1YK4
1F94 1MCA 1TQG 2BF9
1G66 1NA9 1TT8 2ERL

1GQV 1OK5 1UCS 2FDN

glycine (acetyl-glycine-methyl amide) saved from a short Monte Carlo simulation.

This small flexible molecule does not contain large partial charges and conforma-

tional changes should not result in large changes in solvation energy. Figure 3-7a

illustrates the correlation between the GBr 6 model, with and without the inclusion

of hydrogens in the self-volume calculation, to Poisson solvation energies. Neglect-

ing hydrogens again underestimates the solvation energy, although a strong linear

correlation is obtained. The normalized volume overlap integrals produce excellent

correlation to Poisson results between conformations of blocked glycine over the total

range of approximately 0.2 kcal/mol. In Figure 3-7b, a similar analysis of the GBr 6

model with the modified self-volume calculation is carried out for the dodecamer pep-

tide (GK) 6 . Again, strong linear correlation, with a slope of 1.063 and a correlation

coefficient of 0.9956 is obtained.

The modified Generalized Born method GBr6 agrees well with the more rigorous

Poisson-Boltzmann model for proteins, small molecules, and differing conformations

of the same molecule. By these criteria, the model can be incorporated into the

molecular mechanics simulation software with some confidence. However, it remains

to be tested whether accurate results can be obtained in the application to surface

adsorption simulations. Comparisons of implicit solvent models to density functional

theory/self consistent reaction field calculations in application to surface adsorption

simulations have revealed that the models vary significantly in energy calculations[83]
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Figure 3-6: Comparison of Generalized Born with Coulomb Field Approximation
(GB-CFA), modified Generalized Born GBr6 without hydrogens in self-volume calcu-
lations (GBr 6), and GBr 6 with hydrogens included in self-volume calculations through
normalized volume overlap integrals (GBr 6 mod).

although they may each produce acceptable results in isolated molecule calculations.

The GBr 6 model must therefore be verified in this specific application before imple-

mentation into the surface adsorption molecular mechanics simulation.

The desolvation effects of an extended surface on charges positioned near the

dielectric boundary were tested by monitoring the change in solvation energy of a

single lysine residue as the surface-lysine distance was decreased. The lysine residue

was positioned above a surface of uncharged atoms in the sapphire crystal structure.

Surface atoms were not charged in order to isolate the effects of the dielectric boundary

from any Coulombic interaction with the surface. The lysine residue was oriented

with the side chain axis parallel to the surface normal, as illustrate in Figure 3-8a, in

order to ensure optimal approach of the charged functional group to the surface. The

traditional Coulomb Field Approximation to the Generalized Born model significantly

overestimates the long range effects of the surface on the solvation energy of nearby

charges. However, the GBr 6 model reproduces Poisson-Boltzmann solvation energies
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of the peptide (GK) 6 saved from a short Monte Carlo simulation.

reasonably well.

3.6 Conclusions

Due to deficiencies relating to grid stability in finite-difference Poisson-Boltzmann

calculations and the resulting computational costs of limiting grid scale and hence,

grid related errors, methods approximating Poisson electrostatics must be employed.

Generalized Born based models offer an attractive alternative computationally due to

,

~



the pairwise sum in Equation 3.3. However, calculated solvation energies are highly

dependent on accurate evaluation of effective Born radii.

This is particularly true in the application to surface adsorption simulations. A

critical approximation in the derivation of the Generalized Born model relies on the

spherical symmetry of the molecular system. In practical application to isolated

molecular systems, this approximation often does not impact calculated energies to an

unacceptable degree. However, in the presence of an extended surface, the spherical

symmetry is distinctly broken. The traditional Coulomb field approximation used

to calculate effective Born radii significanly overestimates the screening of a charge

positioned near a dielectric boundary. In this case, the extended range of the surface

effectively descreens the charge in all directions, when in reality, the screening only

occurs in one direction.

By replacing the CFA with a higher order approximation to the electric field,

r - 6, based on the Kirkwood model of electrostatics[79], more accurate solvation ener-

gies can be obtained. An analytical treatment of the integration over the molecular

volume, based on separation of the volume into atomic contributions[147], has been

modified by normalization of the Gaussian overlap volumes. This model was veri-

fied by comparison to more rigorous Poisson electrostatics for solvation energies of

proteins, peptide conformational changes, and charges positioned near an extended

atomically modeled surface.
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Chapter 4

Simulation of Supramolecular

Assemblies

4.1 Incorporation of Peptides into Virus Capsid

Experimental Motivation (adapted from [9])

The reliance of future technologies on developing scalable and economic methods

for the fabrication of one-dimensional (1D) systems has spurred intense and rapid

progress in the area of materials synthesis. In particular, 1D materials have been

enthusiastically pursued for their applications in the study of electrical transport[31],

optical phenomena[113], and as functional units in nanocircuitry[90]. Pursuit of

"bottom-up" methods for the synthesis of semiconducting, metallic, and magnetic

nanowires has yielded strategies including, but not limited to, vapor liquid solid

(VLS), chemical, solvothermal, vapor phase, and template-directed fabrication. Al-

though each method developed for the production of nanowires has had success in

achieving high-quality materials, no distinct strategy to date has yielded monodis-

perse, crystalline nanowires of radically different compositions. The realization of

such a system would require the combination of substrate-specific ligands with the

predictability of self-assembly that is commonly found in nature. Biological systems

offer a high degree of organization, efficient chemical modifications, and a wide variety



of naturally occuring self-assembly motifs.

The ability to store information about a material, including composition, phase,

and crystallographic detail, within the genetic code of the M13 bacteriophage virus

DNA has proven to be a viable means of synthesizing and organizing materials on

the nanometer scale. The use of phage display techniques has led to the discovery of

material-specific peptides that have preferrential binding[12], control over nanoparti-

cle nucleation[8], and the ability to order on the basis of the inherent shape anisotropy

of the filamentous M13 virus[13]. Because the protein sequences responsible for these

attributes are gene linked and contained within the capsid of the virus, exact genetic

copies of the virus scaffold are easily reproduced by infection into its bacterial host.

Screening of ZnS, CdS, FePt, CoPt systems with commercially available bacterio-

phage libraries (New England Biolabs) expressing either a disulfide constrained (Cys-

Cys) heptapeptide or a linear dodecapeptide as a fusion to the gene product (gP) 3

protein located at the proximal tip of the virus has yielded nucleating peptides with

the sequences: CNNPMHQNC (termed A7; ZnS), SLTPLTTSHLRS (termed J140;

CdS), HNKHLPSTQPLA (termed FP12; FePt), and CNAGDHANC (termed CP7;

CoPt) [9]. The incorporation of these peptides into the highly ordered, self-assembled

capsid of the M13 bacteriophage virus provides a linear template that can simultane-

ously control particle phase and composition, while maintaining adaptability through

genetic tuning of the basic protein building blocks.

Capsid Structural Analysis

The M13 bacteriophage is comprised of five genetically modifiable proteins, termed

gP3, gP6, gP7, gP8, and gP9[144]. About 2700 copies of the gP8 protein, a 50 amino

acid alpha-helical protein, form the capsid of the wild-type virus. The gP8 protein

was genetically modified and expressed using a phagemid system, resulting in the

fusion of the substrate specific peptides to the N terminus of the protein, which is

displayed on the exterior of the assembled virus capsid. During assembly, stacking of

the gP8 unit cell results in a five-fold symmetry down the length (c axis) of the virus.

Figure 4-la demonstrates the assembled bacteriophage capsid with phagemid-altered



peptide fusion proteins incorporated at 20% of all gP8 copies. Although the symmetry

is apparently 10-fold in Figure 4-1b, there are in fact two fivefold symmetric unit cells

rotated 36 degrees relative to one another, as well as translated along the c-axis.

The phagemid system results in two distinct versions of the gene which encodes for

the gP8 protein; a wild type version included in the "helper-phage" as well as an

altered peptide-fusion version. The phagemid system encodes only the altered gP8,

and thus an inital stock of bacteriophage is necessary to provide the genes encoding

the remaining proteins. As a result, the assembled bacteriophage do not include a

peptide fusion in each copy of the gP8 capsid protein, but rather some (unknown)

percentage.

Figure 4-1: Visualization of the peptide fusion in the gP8 capsid protein of M13
bacteriophage. The virus assembly was reconstructed from the gP8 protein structure
obtained from the Protein Data Bank (number 1IFJ) by application of the appropriate
translation and rotation operations. A random number generator was used to real-
istically mimic the phagemid system and incorporate peptides at a given percentage
of the total assembly.

The formation of single crystal nanowires through an annealing reaction that re-

moves the organic virus material from the wire is facilitated by continuous coverage

of the virus capsid by nucleated material. As the organic material is removed, the

adjacent nanoparticles are able to fuse together into a continuous wire. With both

wild-type and modified peptide-fusion gP8 proteins expressed by the host bacteria,

one should not expect greater than 50% incorporation rate of the nucleating peptide.

In reality, limitations of the modified gP8 proteins to assemble into the virus cap-



sid likely restrict the incorporation rate considerably. Analysis of nearest neighbor

peptide separation along the virus capsid reveals that high incorporation rates are

not necessary for complete mineralization of the virus to occur. The average nearest-

neighbor distance between peptides decreases rapidly as incorporation is increased at

low rates. However, the distance quickly stabilizes to less than 4 nm at incorporation

rates above 20% (see Figure 4-2a). The density of incorporated peptides on the sur-

face of the virus capsid increases linearly (see Figure 4-2b), as one would expect and

serves to verify the randomly generated capsid assemblies.

0.2 0.4 0.6 0.8

0.0 0.2 0.4 0.6 0.8
Fractional Peptide Incorporation

Figure 4-2: An analysis of the peptide expression on the M13 virus capsid. (a)
Average nearest neighbor distances stabilize at approximately 3 nm at and above 20%
incorporation. Assuming a nanoparticle size of 3-4 nm, continuous mineralization of
the virus capsid can be achieved at incorporation rates much lower than 50%. (b)
Density of peptides increases linearly with incorporation.

The formation of single crystalline nanowires is also facilitated by the alignment
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of individual crystal orientations in the unannealed assembly. In order to explore

this ordering of nucleated particles, Monte Carlo simulations of the A7 peptide were

carried out in the presence of the capsid environment. A section of the virus capsid

surrounding a single A7 peptide fusion was isolated from a complete capsid assembly

by applying an inclusion cutoff at 30 A from the center of the A7 conformational loop.

Atoms further than the distance cutoff from the geometric center of the peptide were

excluded from the simulation in order to obtain a computationally efficient simula-

tion. The A7 peptide sits in a groove on the virus capsid created by parallel copies of

the gP8 protein (see Figure 4-3). Simulations were carried out using the Monte Carlo

software MCPRO[29], with implicit solvent included through the Poisson-Boltzmann

model described in Chapter 2. Conformational freedom of the peptide in the capsid

environment was compared to the solution phase free peptide by calculating the aver-

age standard deviation of the ensemble distributions for each of the peptide backbone

dihedrals (q,Y). Transfer of the peptide from isolation to the capsid environment re-

sulted in a decrease in conformational freedom of 21.2%. For comparison, breaking

the disulfide bond in the isolated peptide increases conformational freedom by 33.7%.

The restriction of conformational freedom imposed when the peptide is seated in the

groove between capsid proteins is similar in magnitude to the loop-constraint in the

heptamer peptide. The average standard deviation of backbone dihedrals is limited

to 14.27 degrees for the capsid incorporated peptide.

The ordering of the nucleated particles with regard to preferred crystallographic

orientation along the length of the virus is thus believed to be a result of the stability

of the peptide fusion and the symmetry of the virus coat. This nanocrystal ordering

promoted the single-crystal nature of annealed nanowires by satisfying the orienta-

tion requirements of the aggregation-based crystal growth mechanism[114]. Although

particles exhibiting orientations that are not coherent with that of the majority are

expected, these minority nanocrystals should rotate to adopt the preferred crystallo-

graphic orientation and merge with the majority during annealing to minimize inter-

facial and grain-boundary energies. Thus, the exploitation of the self-assembly motifs

employed by the M13 bacteriophage to produce a biological scaffold provides a means



Figure 4-3: Section of the virus capsid with peptide fusion used to explore the confor-
mational flexibility of the peptide in the capsid environment. Transfer of the peptide
from solution into the capsid environment results in a 21% decrease in conforma-
tional flexibility measured by the dihedral distributions of the peptide backbone (¢,
4). Peptide shown in green, gP8 proteins shown as ribbons.

of generating complex and highly ordered templates for the synthesis of single-crystal

nanowires.

4.2 Mechanical Properties of Viral Assembly

Experimental Motivation (adapted from [6])

The Ff class of filamentous bacteriophage, composed of the structureally akin species

fl, fd, and M13, has elicited the interest of many wide-ranging scientific communities

because of its self assembling nature. Protected and transported within the highly

organized, protein-based capsid is the structural and assembly information necessary

for its own production. This structural feature provides a direct and accessible link

between phenotype and genotype, which particularly in the case of M13 bacterio-



phage, has proven advantageous for numerous studies and applications. For instance,

combinatorial libraries of polypeptides can be fused to M13 coat proteins, in a tech-

nique known as phage display, as a means of screening binding candidates against

targets[144]. In addition to serving as the vehicle for displaying these ligands, the

unique structure of M13 itself has been exploited as a biological template for nanotech-

nology, such as in the directed synthesis of semiconducting and magnetic nanowires

and lithium ion battery electrodes[8, 9, 11]. Considering its utility as both a genetic

blueprint and stuctural backbone for materials and device architecture, a better un-

derstanding of its mechanical behavior and a novel means of actively assembling M13

can greatly advance the design of future M13-based materials.

Heterobifunctional phages were designed by displaying hexahistidine epitopes at

the remote tips and biotin molecules linked through selenocysteine residues at the

proximal tips. The modified phage particles were then suspended between antibody-

functionalized coverslips and streptavidin-coated polystyrene microspheres (see Fig-

ure 4-4). The polystyrene beads were trapped by the optical gradient forces of a

tightly focused laser beam and positioned a set height above the coverslip surface.

The piezo-electric stage was then translated laterally while bead displacements from

the trap center were recorded. With the necessary calibrations, these results were then

converted to force-displacement (F-x) measurements. Despite its hierarchical struc-

ture, M13 F-x behavior was reminiscent of typical worm-like-chain (WLC) biopolymer

stretching.

Modeling of Mechanical Properties

The mechanical properties and fluctuations of semiflexible polymers are well described

by the WLC theory[133]. Here, the configuration of a polymer is represented by a

space curve of fixed, zero tension contour length, Lo, with a bending energy that is

quadratic in the chain curvature. External forces stretching WLC polymers, therefore,

do work against the conformational entropy of the chain. With space curve, r(s),
parameterized by the polymer's arc length s, the chain's curvature is simply , =

102r(s)/0s 21 = 1Ot(s)/Osl, where t(s) is the unit vector tangent to the chain. The



Figure 4-4: Experimental measurement of the mechanical properties of M13 filamen-

tous bacteriophage. Heterobifunctional phage were designed by displaying hexahis-

tidine epitomes at the remote tip and biotin molecules at the proximal tip. These

modified phage particles were then suspended between antibody-functionalized cov-

erslips and streptavidin-coated polystyrene beads for laser trapping experiments

resulting elastic energy, E, of a WLC polymer being mechanically stretched by a

uniaxial force is
E 1 F

kBT - 2dS - kBT (4.1)

where x is the total extension of the chain, I, the persistence length, kB the Boltzmann

constant, T the absolute temperature, and F the force. The persistence length is the

characteristic scale over which thermal fluctuations begin to dominate the orientation

of the chain's tangent vectors, is material specific, and is independent of the contour

length, Lo0 .

One can imagine the experimental realization of single molecule force-extension

experiments taking two distinct forms[20]. First, the isometric experiment, in which

all points of the force-extension curve are characterized by the end-to-end separation

distance of the molecule being exactly constant. In this case, the location of the

trap center is adjusted by a feedback loop so as to cancel all fluctuations of the bead

position, modulating the force to maintain constant extension. At each distinct dis-



tance, x, the force, F, must be averaged for some appropriate period of time, resulting

in the mean force as a function of extension, (F) (x). Alternatively, the isotensional

experiment holds the force fixed while the extension is allowed to fluctuate. In this ex-

periment, the trap center is adjusted in order to keep the bead position fixed at some

distance from the trap center, and thus the force constant. Fluctuations in extension

are then averaged to yield a function of the applied force, (x) (F). Inverting the ex-

perimental results for this second experiment results in the function F((x)), closely

related to the isometric function (F)(x). These two alternative experiments represent

the application of the Gibbs (isometric) and Helmholtz (isotensional) ensembles in

evaluation of thermodynamic properties[125].

In the isometric experiment, the work performed on the molecule during extension

from 0 to x, often called the potential of mean force, V(x), is given by

V(x) = (F)(x')dx' (4.2)

In the presence of a fixed, external force, the isotensional energy of the molecule is

given by

W(x, F) = V(x) - Fx (4.3)

where V(x) is the isometric potential of mean force, and Fx is the work done by the

external force. The measured mean extension is then given statistically as

(x)(F) = E(F) - 1  xe( y(x -F)/kTdx (4.4)

where E is the partition function, . = fo e-(V(x)-F )/kBTdx. The free energy, U(F),

relative to the isometric experiment can then be defined as

U(F) = -kBTln (F)
q

= e-(V(x)-x))/kBT dx e-V(x)/IkTdx = (eFx/kBT) (4.5)

From Equations 4.4 and 4.5, we can then relate the free energy to the measured mean



extension as,

U(F) = - j (x)(F')dF' (4.6)

The Gibbs free energy, V(x), and Helmholtz free energy, U(F), are thus related by

a Laplace transform analagously to the relationship between canonical and grand

canonical ensemble partition functions, expressed as

e- U(F)/kBT = j e-V(x)/kBTeFx/kBTdx (4.7)

In general, the WLC model is difficult to solve for arbitrary boundary conditions.

However, an analytical solution is available for the equilibrium extension of polymers

with contour length on the order of, or shorter than, the persistence length (Lo < 21,).

In this fluctuating rod limit, the rod tangent vectors make only small deviations away

from the direction of the force and a harmonic approximation can be taken and the

generating functional method used to obtain the average extension[81]. This solution

was modified to include a stretching term that allows the modeling of the full range

of bacteriophage extensions. An effective stretching energy that is quadratic in the

polymer's elongation, Ee = fL 1/2K(s/so - 1) 2ds, was added to Equation 4.1. In the

case of small elongations, the resulting average extension is

(x)(F) = Lo BT Lo  coth Lo - 1 + F(4.8)

where A = 1pkT and K is an elastic stretching modulus[20]. Here the end tangent

vectors are assumed to be collinear with the force, consistent with the experimental

setup, where linkages were engineered from the proximal and remote tips (i.e., from

small, pivoting proteins as opposed to the crystalline gP8 capsid).

However, it is not clear whether the experimental setup is more accurately mod-

eled as an isometric or isotensional experiment, and thus whether the experimental

data should be fit to F((x)) or (F) (x). In the thermodynamic limit, Lo > lp, these

two quantities are equal, but in general will differ to some extent. Thus we wish to

predict the magnitude of this difference in order to determine whether it can be exper-



imentally resolved, and further, which model represents the appropriate relationship

for the experimental setup. To this end, the isotensional free energy was evaluated

by Equation 4.6 for the mean extension given by Equation 4.8. The inverse Laplace

transform, Equation 4.7, was then applied numerically to give the potential of mean

force, Equation 4.2. Finally, the derivative of the potential of mean force gives the iso-

metric force-extension curve. The isometric and isotensional force-extension curves

are plotted for Lollp = 0.5, 1.0, and 5.0 in Figure 4-5. Experimentally measured

values of Lo and 1, for the M13 bacteriophage from single molecule stretching experi-

ments were 939.7 ± 46.1 nm and 1,265.7 ± 220.4 nm. This Lollp ratio is intermediate

to the 0.5 and 1.0 plots in Figure 4-5.
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Figure 4-5: Isometric and isotensional force-extension curves for WLC biopolymer
stretching experiments. In the non-thermodynamic limit, (Lo > 1p), the ensembles
result in different force-extension curves.

The actual experimental setup was designed to reproduce neither isometric, nor

isotensional results. Rather, the experimental setup is likely intermediate to the

two extreme cases. However, the difference between the predicted isometric and

isotensional force-extension curves is not substantial enough to give a clear indication

as to the nature of the experimental setup. In fact, the differnce between the predicted

force-extension curves is not likely experimentally resolvable. Thus, the isotensional

mean extension model, Equation 4.8 can be used with confidence to fit data from

molecular stretching experiments.
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Chapter 5

Sapphire-Binding Peptides

5.1 Introduction

Recently, a set of dodecamer peptides was identified froma yeast surface display

library[10] with binding affinity for sapphire (a-A120 3). These peptides were shown to

interact with the sapphire surface through multiple basic amino acids. Further inves-

tigation of these interactions was carried out by the construction of designer peptides,

each of identical composition but differing in sequence. Three peptides, termed K1,

K2, and K3, each composed of six glycine and six lysine residues varying in sequence

order were used to demonstrate the importance of peptide sequence in binding affinity.

Binding assays of two additional peptides, cK1, and cysteine constrained circular ver-

sion of K1, and K1P, a version of K1 with three glycine residues replaced by proline,

demonstrated the importance of conformational flexibility in the adsorption process.

Molecular simulations of these peptides reveal the basis for sequence and structural

dependence of binding affinities.

Material Selection

Metal oxides have found increasing technological applications in sensitive gas sensors [28]

and promising new biosensors[92]. Materials such as alumina (A120 3) and silica

(SiO 2) are often used as substrates for biological assays due to their compatibility

with aqueous environments and lack of cytotoxicity. Single crystal alumina, or syn-
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thetic sapphire (a-Al20 3 ), is commonly used as a substrate for the epitaxial growth

of semiconductors[68, 94], and is widely available commercially. This material is often

used as a model metal oxide in the study of environmental adsorbents[l, 17], posess-

ing excellent chemical resistence and durability. Understanding the mechanism of

amino acid and peptide adsorption at this model metal oxide surface could facilitate

the development of many novel biological applications.

Experimental Identification of Peptides

Yeast surface display libraries[7] were used for biopanning experiments against three

synthetic sapphire crystal faces (C, A, and R)[10]. Peptides were selected from a

library of approximately 107 unique sequences. Although a concensus binding motif

was not identified from this selection process, comparison of sequence composition

for selected peptides against the naive library gives some insight into the adsorption

process. Basic amino acids were over-represented in selected peptides, populating

approximately 40% of the peptide compared to 10% of the naive library. Acidic amino

acids were under-represented, populating 2% of the peptide, compared to 7% in the

naive library. Finally, hydrophobic residues were also under-represented, populating

15% of the peptide compared to 40% in the naive library. This compositional analysis

reveals the importance of highly positively charged peptides in adsorption to sapphire

surfaces, with most of the selected peptides carrying a charge of +4 to +6, but is not

particularly informative regarding peptide sequence and structure dependence.

Rational Design of High Affinity Peptides

With the importance of basic amino acids established, the role of spacing of the

charges was investigated through the design and cloning of a set of identically com-

posed peptides based on lysine-glycine repeat units[10]. These peptides are listed in

Table 5.1 and form the basis of the computational simulations. A simple set of pep-

tides (K1, K2, and K3) efficiently explore the role of charge grouping in +6 charged

peptides. The peptide R1 explores the specific dependence on amino acid, while

the peptides, cK1 and K1P, explore the effects of structural limitations in otherwise
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identically composed peptides.

Experimental Interrogation of Peptides

Peptides were interrogated experimentally through both yeast surface display and

ELISA assays of peptide-protein fusions. Yeast surface display binding was charac-

terized optically by examining the crystalline surface and observing the cell binding

as the percent area coverage (PAC) of yeast cells. This was measured as the ratio of

cell area to total image area using image analysis software. Modified ELISA exper-

iments provide a slightly more quantitative measurement spectroscopically, and are

described in detail below.

5.2 Molecular Simulation of Peptides

5.2.1 Simulation Details

Thermodynamically favorable peptide adsorption occurs when the change in Gibbs

free energy, AGcds, of the system is negative for the adsorption process[57]. Therefore,

computational prediction of peptide-surface binding requires the calculation of this

change in free energy,

AGads = AHads - TASads (5.1)

where AHads is the change in enthalpy, ASa6d is the change in entropy, and T is

the absolute temperature. Within the model used here, the enthalpy and entropy of

adsorption each can be considered to be composed of two separable components: the

peptide-surface (P-S) internal and interaction contributions (AHps, ASP-s) and the

change in interaction with the surrounding solvent environment (AHwater, ASwater),

which includes solvent reorganization.

AHad8 = AHP-s + AHwater (5.2)

ASads = ASP-s + ASwater (5.3)
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Peptide internal energy and peptide-surface interaction energy were calculated us-

ing molecular mechanics with the OPLS-AA force-field in the program MCPRO[29],

capturing the enthalpic contribution to the peptide-surface interaction. Peptide de-

grees of freedom are sampled through Monte Carlo molecular mechanics following

the Metropolis algorithm[138], which aims to reproduce a Boltzmann weighting of

sampled conformational states. Generally, the Monte Carlo algorithm as applied to

molecular simulations relies on a computer's pseudo-random number generator to

produce a Markovian chain of configurational states[54]. The necessary requirement

that the limiting distribution is reached can be enforced through the requirement of

detailed balance

P(x)T(x - y) = P(y)T(y - x) (5.4)

where T(x -+ y) is the transition probability of reaching state y from state x, and

P(x) is the probability of realizing state x in the final distribution. The requirement

of detailed balance defines the ratio of transition probabilities for a desired Boltzmann

distribution non-uniquely as

T(x -- y) = e-P(E,-Ex) (5.5)
T(y - x)

Finally, accepting all moves to lower energy states, one arrives at the acceptance

criteria which drives the Metropolis Monte Carlo molecular simulation

acc(x --+ y) = min[1, e-
OAE(

x - y)] (5.6)

OPLS-AA Force-Field

The OPLS force-field[139, 140] is a molecular mechanics force-field developed with a

simple, efficient computational form and optimized to directly reproduce experimental

thermodynamic and structural data on fluids. Therefore, this force-field represents

an ideal parameter set for the solution phase simulation of peptides. Investigation of

the propensity of differing force-fields to form secondary structures in short peptides

has shown that the OPLS-AA force-field produces good agreement with experimental
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results[111]. The force-field consists of an all-atom molecular representation, where

the energy is calculated as

E = Ebnd + Eang + Edih + Enb (5.7)

where Ebnd and Eang are spring-like bond stretching and angle bending energies

Ebmd = K,(r - req)2  (5.8)
bonds

Eang = 1 Ke(8 - eeq)2  (5.9)
angles

where Kr and Ke are atom-type specific parameters and req and eeq are the experi-

mentally observed equilibrium bond lenths and angles. The torsional energy compo-

nent is evaluated by the Fourier series

V V2  V3
Edih = [1 + cos(2)] + [1 - cos(2¢)] + -[1 + cos(3¢)] (5.10)

dihedrals

where V1 , V2, V3 are atom-type specific parameters and 0 is the dihedral angle. Finally,

the non-bonded energy is evaluated by a pairwise sum over Coulombic interactions

between charged atoms and Lennard-Jones interactions

Enb += [4c - fUi (5.11)S rj rp p

where qi is the charge on atom i, and standard mixing rules are used such that

aij = V , and ai, Ei are the atom-type specific Lennard-Jones parameters. The

function fij is used to correct the non-bonded interactions in bonded and angle or

dihedral connected atoms, set as fij = 1.0 in general, but fij = 0.5 for atoms separated

by three or fewer bonds.
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Solvation Energy

As peptide adsorption occurs, water molecules are displaced from the region between

the peptide and surface into bulk solution, reducing the solvation of exposed molec-

ular surfaces. While explicit inclusion of water molecules would ostensibly be the

most accurate and detailed representation, the addition of explicit water greatly in-

creases the number of atoms and degrees of freedom to be sampled. For example,

adding explicit water molecules to the system composed of a dodecamer peptide and

six nanometer sapphire surface results in approximately 45,000 water molecules. The

computational resources necessary to equilibrate and achieve thorough averaging of

such as system are not currently available. Alternatively, implicit solvent models

have proven to effectivly reproduce solvation effects in a number of systems, as dis-

cussed in Chapters 2 and 3. These models replace the numerous solvent molecules

with a continuum dielectric, plus interfacial terms, and seek to capture the effects

of the statistical solvent environment. Hydration energies calculated by continuum

methods therefore contain both enthalpic and entropic contributions. These hydra-

tion free energy models are often decomposed into electrostatic (elec) contributions

resulting from the polarization of the solvent by solute charges, and non-polar (np)

interfacial contributions resulting from the changes in contact of water with the so-

lute surface[109]. Electrostatic solvation energies were calculated by the modified

Generalized Born method discussed in Chapter 3.

In additions to the description in Chapter 3, the solvation energy was refined by

scaling[148] with the function

f (Ein Ee) =ex (5.12)
1 + 2Ein/Eex

where (A = -1.63 x 10-31Q10.6 5 + 2.18 x 10- 6Ntom + 1.016), and (B = 3.31 x

10-21Q10. 65 - 4.77 x 10- 5Natom + 0.683), Q is the net charge of the molecule, and

Natom is the number of atoms in the molecule. This formula is an empirical fit

to the observation that solvation energy calculations do not scale generally for all

combinations of En, Eex, and improves the accuracy of the energy calculations.
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It is attractive and common to include the total electrostatic free energy from an

implicit solvent calculation in the molecular mechanics force-field, as this eliminates

the need to perform a reference calculation of the Coulombic electrostatic energy in

gas phase. However, in the case of the OPLS force-field, we must be careful due to the

scaling factor included in Equation 5.11. In addition to careful attention to the non-

bonded scaling factor, particular attention must be paid to the choice of molecular

dielectric constant. Although the common agreement of a physically realistic molec-

ular dielectric constant calls for a relative value of two, the OPLS-AA force-field was

developed with the assumption of a molecular relative dielectric of one. The effects

of the increased polarization implicit with a dielectric of two are instead included in

the parameterization of Lennard-Jones factors, and the incorporated implicit solvent

model should remain consistent with this parameterization.

In order to verify the accuracy of an included implicit solvent model in MCPRO,

Monte Carlo simulations were carried out on a dichloroethane-like hypothetical molecule

in explicit TIP4P water, as well as with implicit solvent[21] (see Figure 5-1). The im-

plicit solvent model was included with molecular dielectric constants of one and two,

and with and without the scaling function fij in Equation 5.11 applied to the Coulom-

bic interactions. Explicit solvent simulations were equilibrated for two million, and

averaged over ten million Monte Carlo steps. All simulations were carried out under

the NPT ensemble at 298 K. Implicit solvent simulations were equilibrated for one

hundred thousand, and averaged for two million Monte Carlo steps. Implicit solvent

simulations generally require far fewer steps due to the lack of solvent equilibration

time, as well as the lack of viscosity effects in sampling the molecular configuration

space. A molecular dielectric constant of one, and consistent inclusion of the OPLS

scaling function in Coulombic energy calculations results in excellent agreement with

explicit water simulations.

Non-polar hydration free energies are often modeled as the product of the molec-

ular surface area and a phenomenological surface tension. However, it has been

observed that more accurate correlation to experimental results can be obtained by

decomposition of the non-polar hydration free energy into cavity formation and van
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Figure 5-1: Comparison of explicit and implicit solvent in OPLS-AA Monte Carlo
simulation of a dichloroethane-like hypothetical molecule. As expected, the best
match to explicit water simulation is achieved by including the OPLS scaling function
in the Coulombic interaction energy and with a molecular dielectric constant of •j, =
1.

der Waals interaction terms[39, 89]

AGnp - AGcav + AGvdw (5.13)

The cavity formation energy represents displacement of water molecules from the

molecular volume and the accompanying reorganization, and is calculated by the

surface area model,

AGcav = iAi (5.14)

where 7i can be specific to each atom type, but in the current efforts is set as

7i = -y = 72 cal mol- 1 A- 2 [88], a value somewhat larger than other reported

implementations[19, 56]. However, these implementations are taken to include the
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van der Waals contribution to the non-polar solvation energy, which is generally fa-

vorable. Ai is the exposed surface area of each atom i. Exposed atomic surface areas

can be calculated efficiently as the derivative of the atomic volume with atomic radius

by employing the Gaussian molecular volume functions described in Chapters 2 and

3. av 2
A - 47rR (515)

where

OR = - R2 2An22 +Iri -r1 2... n12 V12...n (5.16)aRi Rý 2A12...n
n

A12...n (5.17)
1 n

r12...n 2 ri (5.18)
2.n j=1

The van der Waals energy term attmpts of capture the average interaction with all

the surrounding water molecules, a generally favorable energetic contribution. Here,

the Born radii, Bi, calculated for the electrostatic contribution to the solvation energy

are utilized again. The van der Waals energy, in the absense of critical overlaps, is

dominated by the same r-6 functional form used in Born radii evaluation. The van der

Waals energy is decomposed into contributions from each atom of the solute, and can

be approximated by integrating the attractive portion of the Lennard-Jones potential

over the solvent volume. Assuming a constant solvent density of p, = 0.33428 -3,

the van der Waals energy is

Uvdw(i) -E-4 aiPrent d3r (r- r (5.19)

and it follows that,

AGw a a (5.20)AGdw (B, + R1)3

where a{ is an adjustable dimensionless, atom-type specific parameter on the order
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of 1, R, is the radius of water, here set to 1.4 A, and

16
ai =- -3 pwf 6,, (5.21)

where oi, = ,Iuo and Eiw = / are the OPLS-AA force-field Lennard-Jones

interaction parameters for atom i with the oxygen of TIP4P water (aw = 3.15365 A,
E, = 0.155 kcal/mol).

Lekner Summation

In order to accurately represent the crystal surface as "infinite" in comparison to

the peptide, the simulation cell was modeled as a slab geometry. Periodic boundary

conditions were applied in the dimensions parallel to the crystal surface, while the

dimension parallel to the surface normal was considered to be of finite size. Coulombic

interactions in a periodic system are slowly converging and are often described by a

decomposition into multiple, quickly converging sums. Perhaps the most popular

example of this is the Ewald sum[38] which describes a three dimensional periodic

system, but has been extended to two dimensional cases[117]. However, the two

dimensional Ewald sum is not particularly fast to compute and other methods have

been developed for simulating periodic conditions in one[58] and two[85] dimensional

systems, although the error in such methods is not always optimal[33, 134]. The

Lekner summation method[85, 86] is particularly effective in both its efficiency and

accuracy. This method has been extended to arbitrary two dimensional systems[95,

143] and applied to molecular simulations of protein-membrane binding[142]. The

electrostatic interaction energy (excluding the factor 1/47rco) of a charge, qi, with a

second charge, qj, and all periodic images of qj in the x-y plane is given in the Lekner
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sum form by Ulfk as,

Uek 4q qj Oc X
E cos(27r n)

Lx L, LY Lx0( 2 2y (k)2( )2 ]1 /2 )qiLI ln(cosh(2wr-- z) - cos(2  y)) 1IqJ

where f = Ly/Lx and Ax = zi - xi, Ay = Yi - yj, Az = - zj, Lx and Ly are the

repeat lengths in the x and y dimensions, and Ko is the modified Bessel function

Ko(o) = - e-acosh(t)dt
2 -oo

Se-a (5.23)

At large z-separations the Lekner summation has the desired consequence in reducing

to the interaction energy of a charge, qi, with an infinite flat surface with a charge

density of a = qj/LLy,

1 U e qk  - d , d-- oo (5.24)
47c 0 o 2Co

The Coulombic peptide-surface interaction energy is evaluated as the sum of the

Lekner interaction energy for each peptide atom i and each crystal atom j. Since no

peptide atoms are considered bonded to the crystal surface, the electrostatic energy

can be evaluated directly without concern for the scaling factor in Equation 5.11.

Crystal atoms are fixed throughout the simulation, and therefore crystal surface in-

ternal Coulombic energy is constant and plays no role here. Single peptides were

considered in this work, and there are no periodic images of the peptides.

The Lekner sum is also utilized in the calculation of the GB electrostatic compo-

nent of the solvation energy. The distance dependent function, fij, in Equation 3.4

reduces to the inter-atomic separation at large distances. If the repeat lengths Lx

and LY are large, for only one instance of each periodic surface atom will the function
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fij differ significantly from the separation distance. Hence, the Lekner summation

was modified by replacing this nearest surface interaction with the GB interaction to

correctly account for the effect of the quasi-infinite surface on the peptide solvation

energy. Thus, we obtain

GB 1 1 1 lk_ qi + + q2(5.25)
AGelec•= '3 U r, fi j 2fij

where r' and fj are the separation distance and distance dependent function, Equa-

tion 3.4, for atom i and the nearest instance of atom j. The crystal atom Born

radii were only considered to vary in the central (nearest neighbor) simulation cell,

and pariwise contributions to the surface GB electrostatic solvation energy were only

considered with the nearest instance of each pair. Interactions of surface atoms with

their own periodic images again fall under the approximation that fij r rij and

these contributions to solvation free energy were therefore constant throughout the

simulation.

For comparative calculations, finite-difference Poisson-Boltzmann implicit solvent

calculations were also incorporated into MCPRO. The PB calculations were carried

out using the methods described in Chapter 2 with a grid spacing of 0.3 A, interior

and exterior relative dielectric constants of 1 and 80, respectively, and zero ionic

strength.

Expanded Ensemble Simulations

A necessary condition for efficient averaging in Monte Carlo molecular simulations is

that of ergodicity[118]. In systems characterized by local energy minima separated

by large potential energy barriers, Monte Carlo simulations can become frustrated,

or trapped in a local energy minimum. Average properties are then invalidated by

the lack of proper sampling of equilibrium populated states. For the simulation of

peptides bound tightly to inorganic surfaces, we expect precisely this situation. The

large binding energies are likely to prevent translational, rotational and many confor-

mational changes of surface bound peptides. This inefficiency can be circumvented
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by a variety of expanded ensemble sampling methods. These methods generally al-

ter the standard Metropolis Monte Carlo method in a manner which helps trapped

systems escape the local energy minimum. Popular alternatives include entropic

sampling[27, 107] and simulated tempering[15] methods. These methods, however,

have considerable computational expense as entropic sampling requires initial sim-

ulations to determine the entropy landscape as a function of conformational space

and simulated tempering methods require re-equilibration following each change in

temperature, during which averaging cannot be conducted.

An efficient alternative sampling method can be achieved through replica exchange

simulations[80], also known as parallel tempering. In this method, several copies of the

system of interest are sampled independently at differing temperatures. Occasionally,

the current configuration of a pair of adjacent temperature systems are exchanged.

The rigorous acceptance criteria for the exchange move is developed analagously to

the Metropolis algorithm, and is given by

acc(xpyp•' --+ yxx,) = min[1, eA~E] (5.26)

where 3 is the reciprical temperature, 1/kBT, and E is the energy. The replica

exchange method provides efficient sampling of rough energy landscapes. The high

temperature replicas escape local energy wells, while the low temperature replicas

efficiently explore the well minima. At the same time, the ensemble of configurations

at each temperature represents equilibrium throughout the simulation and therefore

extra computational resources are not required for expensive re-equilibrations. Also,

unlike some other alternative sampling methods, replica exchage rigorously satisfies

the condition of detailed balance and therefore gaurantees eventual convergence to

the desired distribution. No temperature dependence was included in our solvation

parameters, and thus only the ensemble at 298.15 K is of final interest.

The set of temperatures to be used must still be determined. The set of temper-

atures should be chosen such that the exchange rate is optimized. Temperatures too

close together results in a high exchange rate, but little tempering effect, while temper-
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atures too far apart results in good tempering, but low exchange rates. Generally, the

temperature set depends on the accessable conformational space at each temperature

and follows an exponential pattern[32]. Simulations of dodecamer peptides were opti-

mized to produce temperature exchange rates of approximately 40% in an eight replica

simulation, resulting in a temperature set of 298,323,350,379,410,444,481, 521 K.

The rate of attempted moves also must be optimizzed. Too short of a time between

attempted exchange moves, and the high temperature system is unable to significantly

move away from the low energy well. Too long between exchange attempts and the

tempering effects are diminished. In the current application, exchange moves were

attempted between two randomly chosen replicas every 100 Monte Carlo steps. In the

eight temperature setup, this averages an exchange attempt for temperatures one and

eight every 700 steps, and temperatures 2-7 every 350 steps since these temperatures

can exchange conformations with both higher and lower temperatures. At a 40%

acceptance rate for exchange moves, temperatures one and eight are able to exchange

conformations every 1750 steps on average, while temperatures 2-7 are involved in an

accepted exchange every 875 steps on average. Replica exchange was implemented

in MCPRO through the Message Passing Interface (MPI) and executed on an eight

processor computational cluster.

Peptides were constructed using the pepz[29] program included in the MCPRO

distribution, which builds peptides in a fully extended conformation (0 = V = 1800).

Each peptide was capped with acetyl and methyl amide groups at the N and C

termini, respectively, to ensure only amino acid side chains interact with the crystal

surface. Each simulation consisted of energy minimization in the gas phase, followed

by equilibration for 100,000 MC steps, at which point stable energies were confirmed.

Properties were then averaged for 106 MC steps.

Crystal Surface Construction

Atomic coordinates for the R-face (1T02) of crystalline a-Al2O3 were generated for

simulation of peptide adsorption. Bulk stoichiometric termination of the R-face dis-

plays a surface of mixed aluminum and oxygen composition. However, diffraction
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studies[120, 126] of hydrated alumina surfaces suggest significant relaxations in the

surface layers. The hydrated R-face is characterized by a relaxed surface with zero

occupancy for the first layer of aluminum atoms, and significant rearrangement of

atom layers near the surface (cf. Figure 5-2 and Figure 5-3). Rearrangement of the

surface layers results in a negatively charged surface, observed experimentally[35].

The relaxed surface coordinates were used to generate an extended crystalline surface

eight atom layers thick and extending approximately six nanometers in the x and y

dimensions by repeating the unit cell in the surface plane. The constructed surface

consisted of 2208 atoms total and stoichiometrically balanced charge.

r A# P

Figure 5-2: Crystal structure of a-A120 3. The three unique crystal faces, termed C
(0001), A (1120), and R (1102), shown here as the bulk stoichiometric truncation
(Oxygen atoms shown in red, Aluminum atoms in pink)

There exists a wide variety of force-fields for inorganic materials, developed under

an array of potential applications[51, 76]. However, the interaction between organic

and inorganic components often does not follow simple application or combination of

force-fields[34]. Therefore, it is necessary that force-fields specifically designed for the

organic-inorganic interaction be constructed and validated for each system. For the

current simulations, a set of non-bonded parameters were adapted from a previous

study involving alkane adsorption to alumina clusters[52, 53]. This force-field was

developed in relation to the OPLS united atom force-field, and is easily adapted to

the current simulations.

Crystal atoms were assumed spatially fixed throughout the simulation eliminat-

ing the necessity for intra-crystal bonded atom potential energy parameters. While

diffraction studies indicate some degree of mobility in the terminal hydroxyl surface

layer, the lack of higher level density functional theory considerations prevents the
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Figure 5-3: Rearrangement of the hydrated R-face (1102) of sapphire. The surface
is characterized by a zero occupancy aluminum (gray) surface layer and relaxation of
oxygen (red) layers

accurate inclusion of this mobility, and the surface is approximated as fixed.

5.3 Results

Monte Carlo simulations using the OPLS force-field have been shown to produce reli-

able results in peptide and protein structure and protein-ligand binding experiments[74].

Incorporation of implicit solvent models into molecular mechanics simulations has also

been demonstrated in test cases to reproduce protein structural properties in explicit

solvent simulations[131]. However, it has recently been demonstrated that implicit

solvent models vary significantly in their application to surface adsorption studies, but

that high quality results can be achieved through the choice of an accurate model[83].

As described in Chapter 3, the modified Generalized Born implicit solvent model used

in the current simulations was verified for discrimination between conformations of

model peptides, as well as in the direct application to surface adsorption simulations.
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5.3.1 Validation of Model

The practicality of the simulation as a predictive method was examined through the

simulation of six designer dodecamer peptides listed in Table 5.1[14]. These peptides

were previously interrogated through a series of experiments which revealed distinct

patterns of binding affinity[10]. Each peptide was engineered into the C-terminus of

the surface displayed protein Aga2 in S. cerevisiae strain EBY100 downstream from

a galactose based promoter. Regulated expression of this surface display was shown

to induce yeast cell binding on crystalline sapphire surfaces. Surfaces were examined

optically and differences in the percent area coverage (PAC) of yeast cells on the

surface were used to infer relative binding affinities of the peptides. We note that

the conversion of PAC numbers to binding energies is only approximate for several

reasons. Most importantly, we lack detailed knowledge of how many copies of the

peptide are interacting with the surface and what effect the yeast cell itself has on the

binding properties. Since these PAC numbers only represent relative populations, we

have normalized each relative affinity to the K1 peptide. The relative free energy of

adsorption of peptide j compared to K1, AGads - AG , is related to the populations,

P3 and PK1, by

AGj - AGK1 = -kBTln + kBT n K

= -kBT In P - kBT In (5.27)
- PK1 \--j* (~ ]2

where P* is the bulk solution phase population. Since each yeast binding experiment

began with a standardization of yeast cell concentration, the bulk concentration of

each peptide is a constant and the second term in Equation 5.27 is zero. For vali-

dation of our simulation method against experiment, each calculated peptide-surface

interaction free energy, < Gint >=< Gsr,,f+pep > - < Gpep > - < Gsurf >, was

first differenced against K1. < Gsurf > and < Ge p > are the simulation average free

energies of the isolated surface and peptide, respectively, and < Gurf+pep > is the

simulation average free energy of the surface-peptide complex (see Table 5.1). The
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number of peptides bound to the experimental surface in each case is unknown. This

number would, ideally, scale the free energy difference in Equation 5.27. Hence, the

relative free energies were further normalized against the total of the data set, (ie.

nAAGjad/ Ek nAAGcdS), where n is the number of peptides. For simulated peptides,

n = 1, while for experimental results n is unknown. We can then compare directly

to experimentally determined binding affinities.

Table 5.1: List of designer dodecamer peptides, and average interaction free en-
ergy with the R-face of crystalline Sapphire. a(G=glycine, K=lysine, C=cysteine,
P=proline), bAll sequences were capped by acetyl and methyl amide groups, cEnergies
in kcal/mol.

Name Sequenceab < Gint >c
K1 GKGKGKGKGKGK -8.754
K2 GGKKGGKKGGKK -5.590
K3 GGGKKKGGGKKK -2.494
R1 GRGRGRGRGRGR -0.895
cK1 CGKGKGKGKGKGKC -9.016
K1P GKPKGKPKGKPK -3.004

This direct comparison is illustrated in Figure 5-4 for the six designer peptides in

Table 5.1. The first three peptides, (K1, K2, and K3), show an interesting trend that

is quite effectively captured by the simulations. As the charged lysine residues are

grouped together, there is a significant reduction in binding affinity. This trend is well

predicted by the simulations. The peptide R1 is a mutation of the K1 peptide in which

all lysine residues have been altered to arginine. Experiments show that arginine binds

less strongly than lysine, and it is speculated that delocalization of charge over the

guanidinium group of arginine may reduce the interaction strength in comparison to

the primary amine of lysine. From the plot in Figure 5-4, it appears the oligopeptide

R1 is an outlier in its agreement between simulation and experiment. However, its

place among those simulated is consistent with the model, compared to the other

peptides. The OPLS-AA force-field represents the charge of the arginine guanidinium

as fully delocallized and evenly distributed between two NH 2 functional groups. The

delocalized charge would lessen the Coulombic interaction with an external charge
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source. In addition, the guanidinium functional group requires the displacement of a

larger volume of water from the hydrophillic sapphire surface than the smaller primary

amine of lysine. This results in a free energy penalty for the surface desolvation by

arginine relative to lysine. It is possible that the interaction of the guanidinium

group with the negative surface could induce a (partial) localization of the positive

charge on the arginine, resulting in increased Coulombic interactions and a smaller

surface approach volume. Since the OPLS force-field contains no electronic structure

calculations, this effect can not be investigated here, and the determination of the

validity of this or other possible explanations will need to be the topic of future

work. Higher level ab initio quantum chemical methods could be used to explore this

possibility for single conformations, but would be too compuationally intensive for

application in dynamical simulations. Thus, the examples below focus only on the

lysine based peptides, where direct comparisons based on sequence and structure can

be made without regard for functional group type.

Next, we consider two variations of the K1 peptide which can experimentally

demonstrate the importance of peptide structure and flexibility. The peptide cK1 is

a disulfide constrained, circular version of K1, while KlP has been altered by replacing

three glycine residues with proline to introduce rigid kinks in the peptide structure.

The constrained cK1 peptide shows (see Figure 5-4 and Table 5.1) little change in

binding affinity in both yeast surface display experiments and molecular simulations.

Analysis of the simulated (unconstrained) K1 end-to-end distance histogram reveals

that a loop-like conformation is highly populated (see below and Figure 5-8). Thus the

observed insensitivity in binding is sensible; constraining the peptide conformation in

this way would not have a large effect on structure. Hence, peptide cK1 is not included

in further discussion of structural differences between peptides. However, introduction

of proline kinks has a significant effect on peptide adsorption (see Figure 5-4 and Table

5.1). The K1, K2, and K3 peptides are fifty percent glycine by composition and

analysis of conformations from Monte Carlo simulations reveals high flexibility. This

reduction in binding affinity in the proline variant thus suggests that this flexiblity is

the key variable in binding.
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Figure 5-4: Comparison of adsorption simulation and experimental binding assay
for designer dodecamer peptides. Experimental binding free energies relative to the
K1 peptide are evaluated by Equation 5.27 from yeast cell populations bound to
crystalline sapphire. Each binding free energy is normalized against the whole data
set (ie. x 1/ Gj), since the number of peptides participating experimentally in
the yeast surface display is unknown. For ref6rence, if the binding were driven by a
single dodecamer polypeptide, the value of 0.1 on this scale would correspond to 2.28
kcal/mole of peptide

5.3.2 Sequence Dependence of Binding Affinity

The relationship between the peptides K1, K2, and K3 is interesting to analyze in

more depth. Each peptide is a flexible, linear combination of exactly identical compo-

sition. Each peptide contains six glycine residues, an amino acid noted for structural

flexibility due to a lack of steric hindrance from side-chain functional groups. This

high degree of flexibility suggests that binding does not occur as a result of a match-

ing of a well defined solution-phase structure, such as an alpha helix, with surface

site arrangements. There must be some other dependence on peptide sequence able

to modulate binding affinity. We are safe to assume that glycine residues do not in-

teract with the negatively charged surface in an appreciable way and that all binding
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is due to positively charged lysine residues. Therefore, sequence variation in this two

component system can reasonably be described by two closely contributing factors:

the space between adjacent lysines, and the grouping of lysines. It is convenient for

elucidation to consider these separately.

Three series of peptides, listed in Table 5.2, were modeled to directly interrogate

the effects of spacing and grouping of residues on the binding affinity of lysine based

peptides. First, a set of decamer peptides, each consisting of two lysine and eight

glycine residues were constructed with varying inter-lysine separations. A reference

peptide with a single lysine residue was also included and used to normalize the

binding free energies. Figure 5-5a shows the normalized (Gj/Gref) peptide-surface

interaction free energy for these di-lysine peptides as glycine spacers are inserted

between the lysine residues. For closely grouped lysines, there is little cooperativity,

with the interaction free energy approximately twice that of a single lysine. As glycine

spacers are inserted, there is anti-cooperativity, with the interaction decreasing to only

1.4 times the interaction free energy of a single lysine. The increased separation of

two lysine residues reduces the peptide-surface interaction towards that of a single

residue, as one might expect due to the entropy cost of binding the peptide chain.

Table 5.2: List of peptides for testing lysine cooperativity in binding. a(G=glycine,
K=lysine), bAll sequences were capped by acetyl and methyl amide groups.

di-Lysinesa' b Spaced Lysineso lb Grouped Lysinesa ,b

GGGGGKGGGG GGGGGGKGGGGG GGGGGGKGGGGG
GGGGKKGGGG GGGGGKGKGGGG GGGGGKKGGGGG
GGGGKGKGGG GGGGKGKGKGGG GGGGGKKKGGGG
GGGKGGKGGG GGGKGKGKGKGG GGGGKKKKGGGG
GGGKGGGKGG GGKGKGKGKGKG GGGGKKKKKGGG
GGKGGGGKGG GKGKGKGKGKGK GGGKKKKKKGGG
GGKGGGGGKG
GKGGGGGGKG

The remaining two series of peptides were used together to investigate the role of

grouping of charged residues by comparing the interaction free energy for alternating

lysine-glycine patterns, as exemplified by the K1 peptide, with closely grouped lysine

121



1.9-

*E 185-

S1.4-.*_
0 

1.6-1.5-
II 1.4-

.*... 1.3-

W 1.2-

1,1-

1.0-

I a

1 2 3 4 5 6
Inter-Lysine Spacing

C

C,
c

U)U)"o

a:

1 2 3 4 5 6

Number of Lysine Residues

Figure 5-5: Cooperative binding properties of lysine based peptides. (a) Decrease in
binding affinity as inter-lysine distance (in units of residue number) is increased, and
(b) Cooperativity for grouped vs. spaced lysines. Binding energies are normalized to
that of a single lysine residue in order to make clear the (anti-) cooperative nature of
multiple lysine binding.

residues. In Figure 5-5b the interaction free energy is again normalized to that of a

single lysine in order to make clear the cooperative nature of the binding process. Al-

though there is clear cooperativity in each series, the effect is much more pronounced

in the alternating sequences. For six lysine residues, the alternating sequence has a

53% higher interaction free energy than the grouped sequence. The binding of six

grouped lysines is clearly cooperative, with the effective binding strength of 10 indi-

vidual residues, while the alternating sequence produces with equivalent of over 15

times the binding free energy of a single lysine.

It is tempting to hypothesize that peptide adsorption in the sequence (K1, K2,
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K3) is modulated by the ability of these peptides to simultaneously present their

multiple positively charged lysine residues to the negatively charged sapphire surface.

Alternating sequences have all lysine residues on the same side of the linear peptide

chain, whereas gropued sequences will present some of their charged groups in opposite

directions. A cursory analysis based on this simple principle is illustrated in Figure

5-6 and would (incorrectly) predict the order of binding as KI>K3>K2.

K1

1 2 3 4 5 6

K2

1 2 3

K3

1 2 3 4

Figure 5-6: Structure of designed dodecamer peptides, indicating the naive expecta-
tions for an extended linear peptide's ability to present positively charged functional
groups to the negatively charged surface.

In Figure 5-7, the ability of each peptide to bind multiple lysine residues is exam-

ined by defining a pair-correlated density profile near the crystal surface as the vertical

position of the amine functional group of residue i when residue j = i is bound to the

surface. For this purpose, we define "bound" operationally as a separation distance
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of less than 4 A between the primary amine nitrogen of lysine and the plane through

the first surface layer of atoms in the sapphire crystal. This profile is plotted, along

with a schematic representation of the relavent inter-lysine spacings, for K1, K2, K3,

and K1P in Figure 5-7a-d, respectively. The legends in insets are numbered by amino

acid separation. For example, the sequence (KGK) represents a 1-3 spacing and

(KGGK) represents a 1-4 spacing. For a linear conformation, odd numbered interly-

sine spacings, such as 1-3, 1-5, and 1-7, have lysines facing the same direction from

the peptide backbone, while even numbered spacings 1-2, 1-4, and 1-6 face opposite

directions. The odd numbered spacings are highly localized at the surface in K1 and

K3, indicating a strong cooperativity, as expected from the analysis shown in Figure

5-6. Large inter-lysine spacings in K1 are influenced by the intermediate lysines and

do not show the separation dependence of Figure 5-5. However, this dependence is

apparent for K3, where the 1-7 separation is considerable less localized at the surface

than shorter inter-lysine spacings (see Figure 5-7c). The 1-2 spaced lysines in K3 are

localized away from the surface, uninvolved in surface binding, indicating a primary

reason for the decrease in affinity compared to K1. Analysis of these correlations for

K2 reveal that there is a small propensity for the peptide to turn on its side and bind

both residues in 1-2 spaced arrangements. For well separated residues, the peptide

apparently is increasingly able to twist to allow such even-spaced residues to interact

with the surface (see Figure 5-7b). While the even numbered spacings are largely

eliminated from binding in K3 (see Figure 5-7c), they are still able to interact sig-

nificantly with the surface in K2, leading to stronger binding than the naive analysis

in Figure 5-6 predicts. Finally, the profile for KIP (Figure 5-7d) demonstrates that

the rigid structural kinks imposed by the replacement of glycine residues with proline

results in the prevention of cooperative interaction with the surface. Although this

peptide contains the same sequential arrangement of lysine residues as K1, the lack

of flexibility in the peptide backbone precludes simultaneous presentation of these

residues to the surface (cf. Figure 5-7a and Figure 5-7d).

In Figure 5-8a-d, the peptide end-to-end distance is used to evaluate structural

change imposed by surface adsorption for peptides K1, K2, K3, and K1P, respectively.
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Figure 5-7: Pair correlation density profile for cooperative binding, and schematic
representation of important inter-lysine spacings (inset) for peptides (a) K1, (b) K2,
(c) K3, and (d) KIP. This function represents the relative density of the amine func-
tional group of residue i above the surface when residue j - i is bound to the surface.
"Bound" is defined opperationally here as a distance of less than 4 A between the
amine nitrogen and the first plane of crystal surface atoms. Binding is indicated by
localization near the surface, while structural limitations for multiple lysine binding
is manifest by localization away from the surface.

The K1 and K3 peptides present the lysine residues responsible for surface binding

from one side of the peptide backbone and undergo little change in end-to-end distance

upon adsorption (see Figure 5-8a,c). However, the K2 peptide shows a pronounced

structural change upon adsorption (Figure 5-8b). Twisting of the peptide to lay

flat at the surface causes an increase in the end-to-end distance. This effect is also

apparent in the KIP peptide, where structural changes must be accomodated for

maximal interaction with the surface (Figure 5-8d).

Representative peptide structures are presented in Figure 5-9. While previous

computational studies of material binding peptides and adsorption at solid surfaces
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Figure 5-8: End-to-end distance histograms for sapphire binding peptides (a) K1, (b)
K2, (c) K3, and (d) K1P. Differences in end-to-end distance indicate conformational
changes imposed by surface adsorption

have predicted a dependence on secondary structure[40, 72], the peptides studied

here generally form only random coil conformations. This is consistent with the

lack of secondary strucutre in poly(L-lysine) at physiological conditions[78] as well

as the large compositional fraction of glycine, an amino acid noted for its structural

flexibility. In this random coil conformation, the K1 peptide is able to efficiently

present many lysine residues to the sapphire surface (see Figure 5-9a) and forms a

highly populated loop-like structure in both the solution phase and surface bound

states (see Figure 5-8a and Figure 5-9b). The peptide K2 (Figure 5-9c), in contrast,

must twist around its backbone in order to present multiple residues to the sapphire

surface (see Figure 5-8b and Figure 5-9). The surface bound conformation of K2

shown here is largely linear along the peptide backbone, with only the glycine-glycine

terminal section curling back, and away from the surface. Finally, Figure 5-9e clearly
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shows the even-numbered-spacing lysine residue held away from the surface, while

the two lysines on the opposite side of the peptide backbone cooperatively bind to

the surface.

Figure 5-9: Representative conformations of bound peptides. (a,b) The surface bound
K1 peptide is able to simultaneously present many lysine residues to the surface and
forms a highly populated loop-like structure. (c,d) The surface bound K2 peptide
twists to present residues to the surface, resulting in a straightened backbone com-
pared to the solution phase ensemble. (e) The even spaced lysine residues are localized
away from the surface and do not participate in surface binding

In the following discussion, the set of rationally designed peptides (K1, K2, K3,

cK1, and KIP) will be referred to as the "Kx" series.
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5.3.3 Predictive Screening of Peptides

With the developed model demonstrating the ability to reproduce experimentally

observed differences in binding affinity, it is then desirable to use the model to make

predictions about experimentally unobserved peptide systems. In order to explore

the predictive capabilities of the model, a new set of identically composed peptides

were designed. The original application of the model was the binding of highly basic,

positively charged peptides to a negatively charged surface. While the differentiation

of binding affinities is the ultimate goal, and is reasonably well predicted, the binding

of highly and oppositely charged molecules does not represent the most challenging

system. Consistency is maintained in the choice of material in the crystal surface,

but to increase the level of challenge in the system, the new set of peptides were

constructed to be net neutral in charge. Each peptide consists of a random sequence

of four lysine, four glycine, and four glutamic acid residues. There are approximately

32,000 unique sequences (excluding reversed sequences) which can be composed from

this set of amino acids. A subset of 24 sequences were selected at random from this

list of possible sequences (see Table 5.3)

Table 5.3: Set of random, net neutrally charged peptides used in predictive screening
experiments. a(G=glycine, K=lysine, E=glutamic acid), bAll sequences were capped
by acetyl and methyl amide groups

Name Sequencea,b Name Sequencea,b
s01 EGKEGGGKKKEE s13 GKKGEGKKEEGE
s02 EKGKEKEKGGGE s14 KEGKGGGKEEKE
s03 EKGKKEKGEGGE s15 KGEEGKKEGGKE
s04 EKKEKGGKGEGE s16 KGEKKGGEEKEG
s05 GEGGKGKEEKKE s17 KGGEKEEGKKGE
s06 GEKKKGKEGEEG s18 KGGEKEKEGEGK
s07 GEKKKKEGEGEG s19 KGKEGKEKGEGE
s08 GGEGEKEGKKKE s20 KKEEGGEGKGKE
s09 GGKGKEKGEEKE s21 KKEKGKEEEGGG
sl0 GGKKEEGGKKEE s22 KKGEEEKGKGEG
sl1 GKEEKEKGGGKE s23 KKGGGEGKEEEK
s12 GKGEKKEGKGEE s24 KKKGGGEEEEKG
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Each peptide was computationally screened against the R-face (1102) face of hy-

drated sapphire. Calculated binding energies for each peptide are shown in Figure

5-10. Binding energies generally follow lysine spacing and grouping rules that were

discovered through the simulations of the Kx peptides. For example, the peptide s02

has optimal spacing of lysine residues, and is again predicted to be a strong binder

relative to the other peptides in the subset. However, the magnitude of the binding

free energy is significantly reduced through the limitation of four lysine residues, com-

pared to six in the Kx peptides, as well as by the introduction of negatively charged

glutamic acid residues. Similarly, the peptide s07, with lysine residues grouped at

positions three through six, represents a relatively weak binder.

o

0E

CID

._w90C

sO2 s04 s06 sO8 s10 s12 s14 s16 s18 s20 s22 s24

Sequence

Figure 5-10: Calculated binding
peptides listed in Table 5.3

energies for the predictive screening of the neutral

The consistency of the general binding rules based on grouping and spacing of

lysine residues was then further explored through sequence mutations to three of the

peptides from the list in Table 5.3. The peptide s02 has optimal spacing of lysines

and represents a strong binder. Mutations based on carriage shifts, and swapping of
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a single pair of amino acids were used to create eight new variants of the s02 peptide

(see Table 5.4). Each of these peptides was simulated under the same procedure

outlined for the Kx peptides. Binding energies for each of the s02 variants are shown

in Figure 5-11. Carriage shift mutations that position lysine residues towards the ends

of the peptide result in a slight increase in binding affinity (s02.1-s02.3). This can be

attributed to the ability to bind lysine residues while maintaining a higher entropic

contribution of the unbound end, as well as the freedom of glutamic acid residues to be

localized away from the surface at the unbound end of the peptide. Deliberate amino

acid pair swap mutations (s02.4-s02.8) aimed at increasing the grouping of lysine

residues has the effect of decreasing the predicted binding affinity, again following the

spacing/grouping rules discovered through the Kx peptides.

Table 5.4: Set of variants on the s02 peptide (see Table 5.3) based on carriage shift and
amino acid pair swap mutations used to test the ability to make deliberate mutations
to peptides. a(G=glycine, K=lysine, E=glutamic acid), bAll sequences were capped
by acetyl and methyl amide groups

Name Sequencea' b Name Sequencea' b
s02.1 GEEKGKEKEKGG s02.5 EKEKEKGKGGGE
s02.2 GGGEEKGKEKEK s02.6 EKGGEKEKKGGE
s02.3 EKGGGEEKGKEK s02.7 EKKKEGEKGGGE
s02.4 EKGKEGEKGKGE s02.8 EKKKEKEGGGGE

This experiment was repeated for a second strong binding peptide, s14, and a weak

binding peptide, s07. Sequece mutated variants for s07 and s14 are listed in Table 5.5

and Table 5.6, respectively. Binding free energies for s07 variants and s14 variants

are shown in Figure 5-12 and Figure 5-13, respectively. Deliberate mutations of the

strong binding peptide s14 that increase the grouping of lysine residues, as well as

mutations which place lysine residues amongst groups of glutamic acid residues have

the effect of decreasing binding affinity. In contrast, mutations of the s07 relatively

weak binding peptide that decrease the grouping of lysine residues generally increase

the binding affinity.

With a general set of predictive rules based simply on lysine spacing patterns, it
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Figure 5-11: Binding free energies for the mutated variants of peptide s02 (see Table
5.3 and Table 5.4). Deliberate mutations resulting in increased grouping of lysine
residues generally produce a decrease in predicted binding affinity

is desirable to develop a simple scoring function that could forego the computational

cost of molecular simulations. A similar set of mutated variant peptides was produced

for the s04, s10, s20, and s24 peptides, and a multiple regression fit was calculated to

the occurance of certain subsequence patterns for the entire set of 80 polypeptides.

Specifically, we wish to score peptide binding based on the lysine subsequence patterns

identified through the Kx rationally designed sequences. Each peptide was examined

for the occurance of "KK", "KXK", "KXXK", and "KXXXK" subsequences, here-

after referred to as K(1-2), K(1-3), K(1-4), and K(1-5), respectively. The variants

explored in the previous discussion also demonstrate a dependence on the proximity

of negatively charged glutamic acid residues to the positively charged lysine residues.

The sequences were therefore also examined for the occurance of the sequences "KE",

"KXE", "KXXE", and "KXXXE", hereafter referred to as E(1-2), E(1-3), E(1-4), and

E(1-5), respectively. The multiple regression fit gives parameters, in units of energy

(kcal/mol), that each of these subsequences contributes to the free energy of adsorp-

tion, FK(1-2) for the K(1-2) subsequence, and the scored free energy is calculated
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Table 5.5: Set of variants on the s07 peptide (see Table 5.3) based on carriage shift and
amino acid pair swap mutations used to test the ability to make deliberate mutations
to peptides. a(G=glycine, K=lysine, E=glutamic acid), bAll sequences were capped
by acetyl and methyl amide groups

Name Sequenceab Name Sequencea' b

s07.1 EGGEKKKKEGEG s07.5 KEKGKKEGEGEG
s07.2 EGEGGEKKKKEG s07.6 GGKKKKEGEGEE
s07.3 EGEGEGGEKKKK s07.7 GEKKKGEKEGEG
s07.4 GEKKGKEKEGEG s07.8 GEKGKKEGEGEK

Table 5.6: Set of variants on the s14 peptide (see Table 5.3) based on carriage shift and
amino acid pair swap mutations used to test the ability to make deliberate mutations
to peptides. a(G=glycine, K=lysine, E=glutamic acid), bAll sequences were capped
by acetyl and methyl amide groups

Name Sequencea,b Name Sequencea' b
s14.1 KEKEGKGGGKEE s14.5 KEKKGGGKEEGE
s14.2 EEKEKEGKGGGK s14.6 KEGKGGKKEEGE
s14.3 GKEEKEKEGKGG s14.7 KEKGGGGKEEKE
s14.4 KEGKGKGGEEKE s14.8 KEGGKGGKEEKE

as

XGads = FK(1-2)NK(1-2) +FK(1-3)NK(1-3) + FK(1-4)NK(1-4)

+ FK(1-5)NK(1-5) + FE(1-2)NE(1-2) FE(1-3)NE(1-3)

+ FE(1-4)NE(1-4) +FE(1-5)NE(1-5) (5.28)

where Nx(i-j) is the number of occurances of the subsequence X(i - j). Figure 5-14

shows a comparison between binding free energies calculated from molecular simu-

lation and those calculated using this simple scoring function. The scoring function

has only weak correlation to simulation results (R2=0.41), indicating that the factors

involved in modulation of the binding affinity have been oversimplified. However,

the energy parameters are generally consistent with the rules observed for lysine se-

quences in the Kx series and demonstrate a clear dependence on the proximity of
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Figure 5-12: Binding free energies for the mutated variants of peptide s07 (see Table
5.3 and Table 5.5). Deliberate mutations resulting in increased spacing of lysine
residues generally produce an increase in predicted binding affinity

glutamic acid residues to the binding lysines (see Table 5.7). Positive values are un-

favorable to binding, while negative values represent a favorable contribution. The

grouped lysine pattern, K(1-2) is highly unfavorable, consistent with the hypothesis

that this prevents interaction of one of the lysine residues with the crystal surface.

The optimally spaced lysine pattern, K(1-3), is the most favorable pattern, again

consistent with structural predictions. The K(1-4) pattern is small, but favorable,

while the K(1-5) pattern has a larger favorable impact. The proximity of glutamic

acid to binding lysine residues is always an unfavorable contribution, decreasing as

the distance between residues increases.

Maltose Binding Protein-Peptide Fusion

Finally, in order to explore the predictive capabilities of the computational model

for the binding of neutral peptides to crystalline sapphire, an alternative binding

assay was developed. Yeast display libraries showed that a high positive charge was

required for peptides to overcome the repulsion between the negatively charged yeast
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Figure 5-13: Binding free energies for the mutated variants of peptide s14 (see Table
5.3 and Table 5.6). Deliberate mutations resulting in increased grouping of lysine
residues generally produce a decrease in predicted binding affinity

surface and the hydrated sapphire surface. Thus, the neutral peptides explored here

are unlikely to induce yeast cell adsorption in the surface display experiments used

in the Kx series.

Each peptide was cloned onto the c-terminus of maltose binding protein (MBP) in

order to build a modified ELISA assay for peptide adsorption, following a previously

developed protocol[10]. A multiple digestion of the pMAL-c2x vector (New England

Biolabs, Beverly, MA), using EcoRI and HindIII allowed for the insertion of oligonu-

cleotides on the c-terminus end of the gene encoding cytoplasmically expressed MBP.

Complementray oligos with EcoRI and HindIII-compatible ends, encoding the s02

(MBP-s02), s07 (MBP-s07), s14 (MBP-sl4), K1 (MBP-K1), R1 (MBP-R1), and stop

codon (MBP*), were annealed and ligated into the digested pMAL-c2x vector. The

vector was then transformed into chemically competent TOP10 E. coli (Invitrogen)

and cloning success was verified through sequencing. DNA from successful clones was

then transformed into chemically competent TB1 E. coli for protein expression.

TB1 E. coli harboring the modified pMAL vectors were grown to mid-log phase in
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Figure 5-14: Comparison of binding free energies calculated from molecular simula-
tions and free energies calculated from the simple scoring function given in Equation
5.28. The scoring function has only weak correlation to simulation results, indicating
an oversimplification of involved parameters. However, the parameters used are con-
sistent with observed rules regarding the spacing of lysine and glutamic acid residues
(see Table 5.7).

Glucose-Rich Media plus ampicillin before induction with IPTG to a final concentra-

tion of 0.3 mM. After two hours of induction, cells were harvested by centrifugation

and frozen overnight at -20 degrees Celsius. The cells were then thawed in cold

water and lysed by probe sonication. The crude extract was separated from the in-

soluble cell matter by centrifugation and applied to an amylose resin column. The

bound MBP constructs were then eluted from the column with 20 mM maltose in 1 x

column buffer (20 mM Tris HC1, 1mM EDTA, 200 mM NaC1) and concentrated in

10,000 MWCO Centricon Plus-20 centrifugal filtration devices (Millipore, Billerica,

MA). Purification steps were monitored by SDS-PAGE and the final concentration of

protein was calculated by absorbance at 280 nm and referenced with a known MBP

standard from New England Biolabs.

MBP construct stocks were diluted down to the appropriate concentration in 1 x
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Table 5.7: Multiple regression fit parameters for scoring binding free energies based
on the occurance of subsequences of lysines

Subsequence Parameter (kcal/mol)
K(1-2) 1.694
K(1-3) -1.407
K(1-4) -0.159
K(1-5) -0.790
E(1-2) 0.934
E(1-3) 0.584
E(1-4) 0.523
E(1-5) 0.215

PBS containing 0.1% Tween-20 (PBST). Two hundred and fifty microliters of protein

solution were added to clean sapphire substrates in 48-well plates and incubated for 3

h under constant agitation on an orbital shaker. Substrates were washed twice, each

time transferring to new wells containing 400 puL PBST and agitating for 15 min.

Substrates were then transferred to wells containing a 2,000-fold dilution of stock HRP

conjugated anti-MBP monoclonal antibody (New England Biolabs) in PBS containing

5 mg/mL BSA (PBS-BSA) and agitated for 30 min. The substrates were washed

two times as before with PBS-BSA then transferred to a clean well containing 200

pL of chromogen solution (0.5 mg/mL ABTS (2,2'-Azino-di-(3-ethylbenz-thiazoline

Sulfonic Acid)), 0.03% hydrogen peroxide in 0.1 M citrate buffer, pH4.2) and agitated.

The absorbance of each well at 405 nm (A405) was then monitored on a UV/Vis plate

reader (SpectraMAX 250, Molecular Devices, Sunnyvale, CA).

MBP-K1 and MBP-R1 were first used to verify assay results consistent with the

yeast surface display experiments. Figure 5-15 shows the binding of the K1- and R1-

MBP fusion proteins in relation to the control stop codon MBP*. Binding strength is

generally consistent with yeast surface display experiments. Protein concentrations

were 1.0 pg/mL. The ELISA was then used to explore the binding strength of the

three neutral peptides s02, s07, and s14. Figure 5-16 demonstrates the relative bind-

ing affinities for these peptides. The higher concentration necessary for the much

weaker binding neutral peptides generally increases background signal, decreasing

136



reproducability. However, the general relation (s02, s14 strong binding - s07 weak

binding) is observed in the MBP modified ELISA assay.
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Figure 5-15: Modified ELISA assay for K1 and R1-MBP fusion proteins. Results are
generally consistent with yeast surface display experiments. Protein concentration
during incubation was 1 pg/mL.

5.4 Conclusions

In the preceding discussion we have focused on the interaction enthalpy and changes

in the free energy of hydration. The remaining term in Equation 5.2 represent-

ing peptide entropic contributions is difficult to calculate. For these relatively large

flexible molecules, it can be argued that entropic change due to the loss of transla-

tional and rotational degrees of freedom are offset in part by the introduction of new

vibrational degrees of freedom, and relatively small compared to internal peptide

conformational entropy. The adsorption process forces a restriction of the peptide

conformational space in comparison to the non-adsorbed state. Basalyga and Latour,

Jr. [75] present the argument that residue functional groups in the non-adsorbed

state already are subject to a considerable degree of restriction due to the presence of

adjacent functional groups. They propose the example of a five to ten-fold restriction

in conformational freedom, leading to a value of -TASad& of 1.0 to 1.5 kcal/mol. In
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Figure 5-16: Modified ELISA assay for the neutral peptides s02, s07, and s14. Protein
concentration during incubation was 1 mg/mL, 1000x the concentration used for K1,
while the adsorbance signal is significantly weaker. Binding strength is reduced due to
the presence of negatively charged residues and higher protein concentrations must be
used. The higher concentration of protein increases background signal and generally
reduces the reproducability of the experiment. However, the binding order of these
three peptides (s02, s14 strong binding - s07 weak binding) is predicted.

contrast, Mungikar and Forciniti[40] predict quite small, (and favorable) changes in

entropy for small alpha-helical peptides adsorbed to solid surfaces. For the purposes of

this study, the identically composed peptides can be assumed to have similar confor-

mational freedom in the non-adsorbed state. Changes on binding should be reflected

in conformational distributions. Analysis of the end-to-end distance for the K1 and

K3 peptides show little change in conformation on binding. While the K2 peptide

demonstrates a difference in average end-to-end distance upon adsorption, the width

of the distribution, and thus the conformational range, is similar. This suggests a sim-

ilarity between the conformational entropy of each of the three peptides, generally

consistent with the previous discussion in that experimentally observed differences in

binding affinity are reasonably well predicted by changes in adsorption enthalpy and

hydration free energies. In less favorable cases, a more complex simulation including

population exchange between bound and free states could directly account for this

term.
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Computational simulations of peptide and protein adsorption to inorganic surfaces

offers the potential to provide detailed mechanisms which have largely escaped ex-

perimental characterization. This work builds upon previous experimental studies in

rationally designed metal-oxide binding peptides, as well as previous computational

studies of amino acid and peptide adsorption to synthetic surfaces. The adsorption

properties of the peptide system demonstrated here are dependent on the adsorption

enthalpy and the interaction of the peptides with the polarizable solvent.

Experimental methods based on combinatorial libraries of peptides offer an effi-

ciency that cannot be approached in the forseeable future by computational screening

methods. For example, biopanning experiments often begin with libraries in excess

of 109 individual sequences and can reach a concensus binding motif in five or fewer

rounds of selection. For comparison, the binding simulations in this work took ~12

days each running on 2.4 GHz Intel Xeon processors. Sequentially screening a library

of only 1000 peptides would thus take 32 years of processor time, and it is not sug-

gested to make such an application of the currently developed computational model.

However, experimental biopanning methods are unable to provide information about

the surrounding sequence space, those sequences differing only slightly from that se-

lected, or the precise role of individual amino acids. This information is efficiently

provided by simulation, and it is here that the computational model can be applied in

providing guidance for deliberate and judicious mutations of experimentally selected

peptides.
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