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Abstract

We introduce a new universal model of computation called MDPL that generalizes other functional
models like the lambda calculus and combinatory logic. This model leads naturally to a new type of
programming language that combines the key strengths of imperative and functional languages for
development and analysis of programs. These strengths have particular relevance for rapid analysis
of large-scale engineering design problems.

MDPL uses a novel approach to provide not only the flexibility to easily change relationships
among elements in a program (as in imperative languages), but also the power to easily reuse and
redeploy existing structures of such relationships in new places within a program (as in functional
languages). The core formalism of MDPL is highly structured, but can be operated on by a family of
formally defined algorithmic transformations that can automatically modify the structure of MDPL
programs in useful ways to alter the relationships between essentially arbitrary program elements.
These operations change the structure of a program to either change its functional interpretation, or
to provide a different representation with the same interpretation, which may be used to make further
changes. These algorithmic transformations play a critical role in rapid, incremental development
of MDPL programs.

We describe a prototype implementation of an MDPL-based graphical programming environment
targeted at engineering modeling tasks. This environment is used to conduct an experimental case
study comparing the performance of the MDPL-based environment with a mainstream spreadsheet-
based environment in the hands of engineers addressing a space systems design analysis task in a
time-critical setting. The results of the case study illustrate some of the practical advantages of
MDPL and confirm the intuition behind its design. We also discuss the theoretical capabilities of
MDPL in relation to general-purpose computer programming, and explain how it captures or super-
sedes many of the important features of existing programming languages from multiple paradigms.

Finally, we discuss opportunities for future research and development, including: efficient im-
plementation of the MDPL formalism; an effective graphical user interface for programming in
MDPL-based languages; and potential extensions to MDPL for specialized application areas.

Thesis Supervisor: Annalisa L. Weigel
Title: Assistant Professor
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"Technology is not neutral. Each technology has properties-affordances-
that make it easier to do some activities, harder to do others: The easier
ones get done, the harder ones neglected. Each has its constraints, precon-
ditions, and side effects that impose requirements and changes on the things
with which it interacts, be they other technology, people, or human society
at large. Finally, each technology poses a mind-set, a way of thinking about
it and the activities to which it is relevant, a mind-set that soon pervades
those touched by it, often unwittingly, often unwillingly. The more success-
ful and widespread the technology, the greater its impact upon the thought
patterns of those who use it, and consequently, the greater its impact upon
all of society. Technology is not neutral, it dominates."

-Donald Norman, Things that Make Us Smart
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Nomenclature

Notation Meaning

equivalence (noncontextual)

= equality (contextual)

+-- assignment (temporary)

0 undefined

unspecified

named sets

named tuples

named sets of sets

named sets of tuples

named tuples of sets

named matrices

set with elements v, w,... a

[v, w,...] tuple (list) with ordered elements v, w,... b

matrix [[v11, V12, ... , [v21, V22, ...], ...

( ,V, ... ) tuple [V1, V2,..., Vj ,V 1, W tW2,... w, ...]

adefined as in Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC) [78, 27, 611: see Jech [341
bdefined based on the Wiener-Kuratowski ordered pair construction [77, 43]

V, W,...

V, W,...

V, M,
V,W,...

{v,w,... I



iVV matrix [V, W,...] where Vl = IwI

(V W .. ) matrix [(V1,W1,...), (V2 ,W2 , . . .), . . .] where IV = IWI =

W imatrix [Vi, V2 ,..., VIVI, W1, W2 , WIWIl,.] where IVT IWTI -

V11  V12  ...

V21 V22 ...

(V)

(V)

(n)

(-n)

n)

V" V12 .

matrix ( V21 22 ...

set of all elements of V: {Vi i((,)) where n = V1

sets of elements of elements of V: { (V)}vev

tuple [1,2,...,n] where n E N

tuple [-1, -2,..., -n] where n E N

tuple ([0], (n))

((ný)

C, R, A, Q, Z

Z
o

Z*

Z+ or (oo)) or N

Z- or ((-oo))

B

Sp

0

0

V E V

set {1, 2,..., n} where n eN

set of all complexes, reals, algebraics, rationals, integers, respectively c

set of all nonzero integers: {z C Z I z x 0} C

set of all nonnegative integers: {z C Z I z > 0} C

set of all positive integers (natural numbers): {z E Z I z > 0} c

set of all negative integers: {z C Z I z < 0} c

set of all booleans: {T, I}

set of all p-permutations: {f C NN If : ((p) * ((p))}

empty set: {}

matrix [[O]jm(,)]~i(,) for soine m,n E Z*

v is an element of V a

Cdefined as in standard complex analysis: see Rudin [581
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Notation Meaning

f(v) image f(v) E W of v E V under f V -- W where f C {[v, f(v)]}vv, e

f(v, w,...) image f([v, w,...]) E 27 of [v, w,...] EU 93under f : F1 93 -- 2D

f(U) or {f(u)}uEU image f(U) C Wof UCV under f : V : - W: {wE W I 3u, f(u) = w}

f (V) or [f (v)]v image W C W of V C V under f V -~ W such that ViE(n) Wi = f(Vi) where

IW = IV = n

fo composition of f and g: function f o g : U -+W where g : U - V, f : V --- W,

and VuEU f o g(u) = f(g(u))
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Chapter 1

Introduction

This work is motivated by challenges facing the conceptual design engineering of large space sys-

tems, activities with huge leverage in technological advancement and business development for many

aerospace enterprises. To address these challenges, we begin by rethinking fundamental approaches

to computer programming, creating a new programming language combining the flexibility and

power of approaches that exist only separately today. Implementing this language involves apply-

ing a number of methods from technical computing together in novel ways to create a streamlined

environment for conceptual design analysis.

1.1 Frontiers of Engineering Design

The conceptual design phase of engineering projects offers a tremendous opportunity for emerging

information technologies to impact the successful completion of engineering projects. The conceptual

design phase of a typical engineering project commits a substantial fraction of its lifecycle cost;

however, the resources expended in conceptual design constitute a tiny fraction of this cost (Figure 1-

1). As the spacecraft industry becomes more competitive, aerospace industry organizations are

recognizing that more effective conceptual design processes are essential to maintaining their future

business. Organizations able to explore more mission concepts more accurately in less time are

better able to target business opportunities and win proposals.

With modern technology, competitive conceptual design efforts in the spacecraft industry require

performing rapid analysis (on the order of days to weeks from concept formulation to proposal) with

rather large design models (containing up to tens of thousands of variable parameters) [62, 60, 32,

4, 1]. These scale and time constraints pose steep challenges for automated tradespace exploration,

and demand tight guidance from human engineers in the conceptual design process 155, 57, 75]. To

take advantage of combined interdisciplinary expertise, aerospace companies have created integrated

design centers like JPL's Team X that bring together engineers across the organization for intense
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Figure 1-1: The conceptual design phase commits a large fraction of the total resources of an
engineering project based on a relatively small initial investment in design effort 125]
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Figure 1-2: Integrated design teams like JPL's Team X conduct rapid conceptual design studies for
spacecraft missions using models incorporating thousands of variable parameters [12]

design sessions working in real time with a homegrown family of modeling tools. Ideally, the design

engineers are both users and developers of the modeling tools, creating continuous improvement in

the organization's conceptual design capabilities.

The current state-of-the-art conceptual design centers in the spacecraft industry rely on large

modeling tools built on networked versions of the Microsoft® Excel® spreadsheet software [52, 49,

12]. These modeling environments provide certain user interface advantages essential for dealing

with large-scale models in rapid, collaborative settings: in particular, the values of many parameters

at once are easily visible and changeable, providing each engineer an immediate picture of the current

state of the system design. Some changes can be made on the fly to functions implementing parts

of the model; however, these functions are not as easily visible and changeable, and moreover, the

structure of their relationships is quite rigidly tied to the layout of the spreadsheet. Hence, while

it is straightforward to explore changes to values of parameters within the model, it is much more

difficult to explore structural changes to the model, as might correspond to alternative architecture

options.

The limited architectural flexibility of modeling tools, combined with the pressure of rapid,

I



resource-constrained conceptual design efforts, leads to an inevitable strategy for industrial design

centers. These centers invest substantial resources developing tools that span a certain space of

system architectures closely aligned with the organization's core competencies (e.g., Earth-orbiting

satellites). They then streamline these tools to optimize the conceptual design process for that

space of architectures, which serves most needs of the organization well. Over time, they may

pursue additional tool development projects to expand the center's capabilities into new architecture

areas (e.g., optical instrument payloads), often creating new corresponding design teams. However,

such tool development projects must be separately budgeted and cannot make use of the everyday

operational resources of the design center. This strategy discourages design engineers from making

changes to models on the fly, and reinforces the inindset that the tools are static entities, further

eroding a key advantage of integrated design teams.

Moreover, inflexible modeling tools lead to problems at the boundaries of an organization's

conceptual design capability, precisely where design centers have the greatest opportunity for a

competitive edge. For example, the author observed a study at one industry design center analyzing

a mission concept employing multiple probes that would jettison from a primary spacecraft after

reaching a target area. The design center's models were built to deal with single-spacecraft missions,

and while they had the necessary functionality to model all aspects of a dumb probe (trajectory,

power, structure, communications, etc.), the structure of the model could not simultaneously ac-

commodate multiple vehicles sharing additional design relationships between them. In the end, the

design team performed a serial analysis in which the primary spacecraft was modeled first, then the

models were reset and filled out with different parameters to effectively analyze the spacecraft-like

probes. However, this serial approach impeded the ability to explore systemn-level design options

affecting both the primary spacecraft and the probes.

To fully realize the potential of integrated design teams in the conceptual design process, these

teams need modeling tools with greater inherent flexibility, that allow them to easily make changes

not only to the values of parameters ill a model, but to the structure of the model itself. This

will enable teams to explore system architecture options as quickly as they explore system design

options within a predefined architecture, and take better advantage of the intuition and expertise of

the design engineers working to develop new mission concepts.

Exercising this kind of control effectively requires engineers to become programmers working

with large programs under tight schedules, and demands new ways of interacting with programs

beyond traditional programming languages. This thesis builds the foundations of a new type of

programming language called MDPL, that gives engineers new forms of access and control over the

functions relating the parameters within their models, as they now have over the parameters fed

into their models. MDPL addresses fundamental challenges in the theory and practice of computing

that have affected the development of programming languages since their inception.



1.2 Computer Programming

Computer programming was pioneered by two styles of programming languages, commonly called

"imperative" and "functional" styles. Each resembles one of the two models of computation put

forward in 1936 to answer Hilbert's Entscheidungsproblem, the Turing machine of Alan Turing, and

the lambda calculus of Alonzo Church [67, 111. The imperative languages represent computation as

the execution of a series of commands on a set of memory registers, resembling a Turing machine

with a "random-access" tape. The functional languages represent computation as the evaluation

of expressions consisting of nested functions, resembling a version of the lambda calculus. The

canonical imperative languages are the assembly languages of microprocessors, while the canonical

functional languages are pure LISP and its close relatives 148].

Over time, new languages have evolved that merge aspects of imperative and functional lan-

guages. Even languages that are considered representative of one style incorporate aspects of the

other. For instance, the C language, generally considered an imperative language, allows one to

write a statement containing nested mathematical expressions, and to define a function executing

a set of statements based on the arguments of the function [39]. On the other hand, the common

LISP language, generally considered a functional language, allows one to make assignments to named

variables that persist across the boundaries of function evaluation 163]. More recent languages have

combined these aspects even more freely: the "object-oriented" languages represent computation by

evaluation of localized functions (functional style) of objects that execute commands on the objects'

local data (imperative style) [19, 18].

Imperative and functional styles each have advantages and disadvantages for the development

and analysis of programs. Here "development" refers to the construction of programs by a program-

mer, often involving a great deal of iteration: the development process benefits from the ability

to accomplish desirable changes to a program with minimal effort. In contrast, "analysis" refers to

the understanding of existing programs, either by a programmer or a machine (e.g., a compiler):

the analysis process benefits from the ability to easily determine useful properties of a program's

behavior (e.g., to improve the efficiency of its compilation).

In development, the imperative style gives the programmer more flexibility in that s/he may

anywhere call upon and/or modify any value in memory, whereas the functional style limits the

programmer's access to values that have been passed to the function at hand, possibly requiring

that s/he rewrite an unbounded number of neighboring functions in order to access to the one

desired. On the other hand, the functional style gives the programmer more power in that s/he

may define an arbitrarily large expression as a function and pass it to be evaluated anywhere,

perhaps repeatedly, whereas the imperative style requires the programmer to delicately construct an

arbitrarily large series of commands, perhaps temporarily reassigning an arbitrarily large number of

values in memory, to take advantage of a sequence of operations defined elsewhere.



In analysis, the imperative style is more straightforward to translate into lower-level commands

for machine execution, since its representation more closely resembles that used in typical machine

hardware. Historically, this has facilitated development of compilers for imperative languages oin a

wide variety of machines, an important reason for their popularity. However, the purely functional

style (due to its lack of flexibility) places many more constraints on the structure of programs, which

can greatly aid both human and machine comprehension. In the past two decades, compilers have

emerged for pure functional languages that take advantage of these constraints to automatically

verify, optimize, and parallelize these programs for greater reliability and efficiency.

These advantages and disadvantages are familiar in programming practice. Imperative languages

are well-suited to writing small, very efficient routines for high-performance computing. On the

other hand, they can be intensely painful to debug, and unless carefully written, depend heavily on

sophisticated compilers with advanced analysis capabilities for their efficiency. In contrast, functional

languages are well-suited for prototyping large or mathematically involved systems quickly without

much effort in debugging. But traditionally, they have made high efficiency difficult to achieve.

To the extent that languages merge aspects of the imperative and functional styles, they tend

to lose the advantages of one or the other. In development, an imperative program containing

large functional expressions or modules cannot anywhere access elements of those expressions or

modules without rewriting those portions of the program, while a functional program containing

commands that break functional boundaries cannot call upon that functionality elsewhere without

going through the same difficulties as those faced by an imperative program. In analysis, imperative

languages must be augmented with more advanced compilers to gain powerful functional features

like passing functions, while impure functional languages incorporating imperative features quickly

break the simplifying constraints on which they depend for their advantages. In spite of this, the

most common languages combine aspects of both styles, often interleaving them with one another,

perhaps to give the programmer freedom to approach any task with the most appropriate style

within a "single" language.

The recent rise in popularity of pure functional languages is the combined result of ongoing

research and ever-increasing computing resources. A steady decline in the cost of computing has

long been responsible for the incoporation of more and more aspects of functional style into the

most popular languages, as the financial trade-off between efficient development and efficient execu-

tion increasingly favors the former. At the same time, research into automated type-checking and

compilation (among other areas) has produced a new breed of pure functional languages with all

the advantages of the functional style but with strong software tools for automated verification and

optimization. These advances are beginning to address the disadvantages of functional languages on

the side of analysis.

However, even the most modern pure functional languages cannot match all the advantages of



imperative programming on the side of development: the structure imposed by the functional style

still impedes the expression of algorithms. Languages like Haskell have developed some very sophis-

ticated techniques to deal with some specific issues (for instance, monads for sequencing operations

on state variables), but these do not approach the generic flexibility of the imperative style.

The MDPL language developed herein combines the advantages of the functional and imperative

styles by representing programs in a purely functional way, but providing general algorithmic trans-

formations that replicate the flexibility one finds in imperative programming (Chapter 4). These

transformations allow the programmer immediate access to any value anywhere in the program,

automatically modifying the functional structure of the program as necessary to achieve the desired

effect. Moreover, the transformations permit the functional boundaries of elements of the program

to be modified just as easily, so that the powerful features of the functional style can be immediately

exploited anywhere in the program without prior effort. MDPL thus combines the creative flexibility

of the imperative style with the intuitive and tractable structure of the functional style.

MDPL's use of a native graphical representation (§3.2) enables it to avoid the problems associated

with named variables in symbolic languages, achieving some of the same advantages of so-called "tacit

programming" in "function-level" programming languages like J 13]. These languages, like MDPL,

resemble combinatory logic more closely than lambda calculus, since they eschew abstraction of

named variables in favor of combining function structures directly to define new functions. Such

languages have no need for the scoping rules analogous to a-conversion in lambda calculus, which

allows them to avoid interpretation issues like the well-known FUNARG problem for traditional

functional languages [51]. MDPL similarly avoids these issues while retaining the flexibility that

named variables provide in program development.

In conceptual design, the structure provided by MDPL allows engineers to better understand the

character of the architecture they are modeling and identify components of it that may be redeployed

to change the architecture. The flexibility provided by MDPL allows them to quickly analyze those

changes using elements of the model they have already developed. With an appropriate interface,

engineers can perform these kinds of programming tasks as part of the normal process of design

analysis, even under severe time constraints (Chapter 5). While we focus on engineering design

tasks, these same benefits may apply to general computer programming.

1.3 Related Work

The methods developed herein bear some similarities to methods used elsewhere in the literature

and in practice, some in active areas of research. We summarize here some related work in various

domains.



Graphical Programming MDPL makes use of a graphical representation (§3.2) of programs

based on hierarchical acyclic digraphs (§2.2.2), in which vertices represent the MDPL equivalent

of functions, and edges represent values passed between functions. In fact, the rules governing the

model of computation on which MDPL is based (Chapter 3) are most easily explained using this

representation. Similar graphical representations have been used epistemologically to explain other

models of computation such as the lambda calculus [38].

Graphical languages have been developed for decades in a variety of programming styles, and

MDPL takes full advantage of the generic benefits of reading and writing programs in visual rather

than symbolic form. These include rapid interpretation of the structure of a program, real-time

verification of some aspects of syntactic correctness, and ease of selecting and manipulating logically

distinct elements of a program [56]. However, the graphical representation of MDPL, combined with

the features of the underlying language, provides capabilities well beyond those of existing graphical

languages.

Graphical languages in the functional style have not seen widespread use. Multiple authors

have developed graphical versions of LISP that provide some of the generic benefits above (along

with some challenges in visual display and user interface) [231. Because of the functional style

of the underlying language, these representations bear some similarity to that of MDPL in that

functions are represented as visual objects and connections between functions indicate the passing

of values between them. However, these representations are not used to enhance or augment the

structure of the LISP language. In particular, like all symbolic functional languages they restrict

structural relationships to strict expression trees (Figure 5-2) rather than the more general nested

acyclic digraphs of MDPL, and lack the transformations that MDPL provides to facilitate structural

changes to programs.

In the imperative style, the best known graphical language is the G language used in the

LabVIEW® software from National Instruments [30, 311. Like common symbolic imperative lan-

guages, this language incorporates some functional elements like user-defined functions; however,

its representation of programs emphasizes the serial execution of commands on data rather than

the evaluation of structured expressions. Hence, while the representation uses visual objects and

connections to indicate functions and passing of values, respectively, connections also indicate the

control flow of execution within a program. Moreover, the facilities for manipulating functional

elements have limitations similar to those of symbolic imperative languages: user-defined functions

are not handled like other data values as in functional languages, but must be separately defined

and called by name. Besides limiting expressive power, this makes the miain facilities of graphical

programming irrelevant to manipulating the functional structure of programns as in MDPL.

Graphical languages have also been developed for some special-purpose applications relevant to

engineering design. In the area of system modeling, some integration tools like ModelCenter® from



Phoenix Integration use graphical languages in a more functional style to pass values between user-

defined functions including external programs [46]. In engineering, these higher-level programs are

used to perform trade analysis on parameter values within a statically defined system architecture,

addressing some of the same applications as MDPL. However, such tools rely on external programs

as "black boxes" to provide the computationally sophisticated elements of system models, and cannot

take advantage of their underlying mathematical structure to perform trade analysis, as can MDPL

(§4.3). Moreover, lacking the function manipulation facilities of a complete functional programming

language, such tools do not provide the capability to easily explore variations in system architecture.

In the area of simulation, graphical languages like Simulink® from The MathWorks facilitate

encoding simulation programs using nested digraphs, a visual representation even more general than

the nested acyclic digraphs of MDPL [47]. However, the interpretation of such a representation

is entirely different, since connections represent unbounded time-dependent data streams rather

than finite data values. Such programs are executed by solving corresponding systems of discrete-

continuous differential equations rather than evaluating functional expressions. They have a more

specialized role within the domain of general computer programming addressed by MDPL.

Acyclic digraph representations similar to that of MDPL's visual representation have also been

used indirectly in the compilation of other programming languages. The graph data structures used

in compiling some modern pure functional languages are closely analogous to the graphs generated

in the evaluation of MDPL programs (§3.3) [741. Similar data structures are often used in compiler

analysis for optimizing imperative-language programs based on static single assignment form 116].

By using such structures in its native representation, MDPL can naturally take advantage of these

approaches for machine execution (§6.2).

Computer Algebra The partial inversion transformation (§4.3) used to interchange the role of

function inputs and outputs in certain classes of MDPL programs makes use of multiple techniques

related to existing methods in computer algebra. These techniques are combined in novel ways to

provide a more efficient, integrated, scalable approach to partial inversion than that available in

existing tools.

The acyclic digraph representation of MDPL programs can encode many useful classes of math-

ematical functions more compactly than the more constrained expression trees of traditional func-

tional languages, which leads to more efficient execution of results. For instance, the solutions of

univariate polynomial systems have a very compact representation in MDPL compared with the

corresponding functional expressions (Figures 5-1 & 5-2 show the case of cubic polynomials). Such

compact representations are similar to the optimized encodings generated by methods like common

subexpression elimination and tree height reduction in compiler and hardware design [44, 8, 45, 9].

These often have the added benefit of increased numerical stability [53].



The partial inversion transformation relies on a general form of sparse matrix block triangular

decomposition to identify components of MDPL programs that must be solved simultaneously. This

approach has seen widespread use in linear system solvers 159], but is not typically used in routines

for solving nonlinear equations, which can easily lead to computational intractability in large sys-

tems. In addition, the MDPL environment implemented in Chapter 5 dynamically maintains the

block triangular decomposition corresponding to the program under development by incrementally

applying subroutines within the well-known block triangularization algorithm, leading to tremen-

dous savings over multiple partial inversion transformations compared with a black-box approach.

To the author's knowledge, the latter approach has not been previously applied elsewhere.

In algebraically intractable cases, the partial inversion transformation relies on seininumerical

techniques that use known solutions for initial values of equation variables to propagate solutions

for other variable values based on error tolerances computed from numerical derivatives. These

techniques involve methods similar to those used in computer algebra for initializing partially de-

termnined systems, as common, for instance, in numerical solvers for systems of differential-algebraic

equations. This is a very active area of research: some relevant recent investigations are discussed

in §6.3.

1.4 Overview

This work introduces a new model of computation closely related to other functional models like the

lambda calculus and comnbinatory logic. This model leads naturally to a new type of programming

language called MDPL, which combines the key strengths of imperative and functional languages for

development and analysis of programs. These strengths have particular relevance for rapid analysis

of large-scale engineering design problems.

Chapter 3 gives the formal specification of MDPL. We describe the correspondence between

MDPL programs (called mnodels) and computable functions by defining the evaluation of MDPL

models in terms of normalizing transformation rules. Finally, we show that MDPL is universal (in

the Church-Turing sense), and therefore capable of expressing all computable functions.

Chapter 4 defines a family of algorithmic transformations that can be used to automatically

modify the structure of MDPL models in certain ways. These operations change the structure

of a model to either change the functional interpretation of a model, or to provide a different

representation with the same interpretation, which may be used to make further changes. Model

transformations play a critical role in powerful, rapid development of programs.

Chapter 5 describes a prototype implementation of an MDPL modeling environment, with some

extensions to the core language to aid engineering design work. We present an experimental case

study comparing the performance of the MDPL environment with current design analysis tools in



the hands of engineers addressing a real-world space systems design task in a time-critical setting.

Finally, we discuss the theoretical significance of MDPL's unique feature set, and speculate on its

benefits for general-purpose computer programming.

Chapter 6 discusses some directions for future research and development relevant to MDPL.

We sketch some approaches for the practical and efficient implementation of the MDPL language

based on current and ongoing research in other programming languages and software tools. We also

describe some practical extensions that will facilitate user interaction in an MDPL programming

environment, some of which require further mathematical research and/or software development.

We also refer the reader to ongoing research in mathematics and computer science that may further

improve the techniques presented for the partial inversion transformation in (§4.3). Finally, we

discuss the historical significance of MDPL among existing programming languages and modeling

tools, and the potential for future extensions to the language and its capabilities.



Chapter 2

Background

This chapter introduces some theoretical background material underlying the remainder of the text.

Our main purpose is to provide unambiguous terminology for ideas whose definitions or notation

vary in the existing literature. The results presented here derive from the works of other authors,

though the presentation may differ.

2.1 Polynomial Algebra

Some key results from polynomial algebra are important in the specialization of the partial inversion

transformation to polynomial equations, discussed in §4.3.

2.1.1 Monomials and Polynomials

A monomial in the variables X = {xi lie (n) for n E N is a product of the form In 1 xi- for K E (Z*)".

The set of all monoonials in the variables X is denoted X'. A polynomial of degree m c Z* in the

variable x over a field K is a sum of the form •rlclm) akZk where the coefficients ak E K for each k.

The set of polynomials of degree m in x over K over all rn C Z* is denoted by K[N].

A polynomial of total degree m C Z* in the variables X is a sum of monomnials in X of the

form EZc(z) IZ K•U•:•_im alc H- n I xF' where the coefficients a•c E K for each KC. Each summand

aK 11' x= in the preceding summation is called a term of the resulting polynomial. The set of

polynomials of total degree m in X over K over all m E Z* is denoted K[X] = K[x][x 2] ... [X ]. In

what follows, we may omit the variables in which or field over which polynomials are specified, with

the understanding that a consistent set of variables and field of coefficients is assumed.

A polynomial ideal in X over K is a set H C K[X] that is closed under imultiplication by poly-

nomnials in K[X], VPEK[XIVQEH P - Q E H. For a set M of polynomials in X over K, the ideal

'(PM) - UPEK(X{P Q}QEM is called the ideal generated by M, and M is called a basis of T(M).



When the set M is finite, [MI < oo, the ideal T(M) is called finitely generated.

2.1.2 Grabner Bases

A monomial order on the variables X is a well order < on X' for which VuEx.VvEXoVwEX* U < V =
M M

U - W < V - W. The lexicographic order on X is the monomial order < that orders monomials by
M L

the exponent of xl, then the exponent of x2, and so on, so that U < V for monomials U = Z=1 xi'L

and V = Hn 1 x when 3iE(n) Ii < Ji A ViE(i-1) Zj = Jj.

The head temrn T< (P) of a polynomial P with respect to a monomial order < is the term of P
M M

whose corresponding monomial is greatest under <. The polynomial Q in X is called reducible by
M

the polynomial P in X with respect to < when Q contains a term whose corresponding monomial
M

V = W -T< (P) for some monomial W in X. In this case, the polynomial R = Q - W - P is called
M

the reduction of Q by P, denoted Q + R. In what follows, we may omit the monomial order with

respect to which reductions are specified, with the understanding that a consistent monomial order

is assumed.

For a set M of polynomials in X, Q is called reducible by M when Q is reducible by some
P M M

polynomial in M, 3pEM Q - R, and we write Q -+ R. We write Q -* R when Q can be reduced to
M M M M

R by a finite number of reduction steps, Q - - -R. We write Q -- R when Q -- R and R is not

reducible by M, in which case R is called an M-normal form of Q.

A Gribner basis in X over K is a finite set of polynomials G C K[X], JGJ < 00, for which the
G G

G-normal form of every polynomial in X is unique, VpEK[X] P - Q A P ~ R = Q = R. The

Grbbner basis G with respect to the lexicographic order < has the property that the subset of the
L

ideal generated by G containing only polynomials in a subset Xp = {xi}iE(p) C X of the variables X,

called its pth elimination ideal ip,(G) =- I(G) n K[X,], is equal to the ideal generated by the subset

of G containing only Xp, Ip(G) = 'I(G n K[Xp]). In other words, G n K[Xp1 is a basis for %,(G).

Given a set M of polynomials in X over K, there exist algorithms to compute a Grdbner basis

G with respect to < satisfying I(G) = T(M) [6]. When the polynomials M have finitely many
L

common roots over K, the set G can be used to calculate these roots as follows: The roots of xi in

M are the roots of Ti(M) = Ti(G), which are the roots of the basis G n K[Xi]. The basis G n K[X1]

consists of univariate polynomials in xl, whose roots can be calculated by standard methods, and

substituted into G n K[X 2j to obtain sets of univariate polynomials in x2, whose roots are substituted

into G n K[X 3] and so on, yielding the complete set of roots of M in X.

2.2 Graph Theory

Graph theory is used throughout the text to formalize the structural relationships between elements

of MDPL models in Chapters 3 and 4, and to describe algorithmic components of the partial inversion



transformation in §4.3.

2.2.1 Graphs and Digraphs

A (simple) undirected graph or graph is a tuple 6 = [V, E] on vertices V with edges E where each

edge joins two distinct vertices, E C P 2 (V). Similarly, a (simple) directed graph or digraph is a tuple

S5 = [V, E] on vertices V with edges £ where each edge joins two distinct vertices in a particular

order, £ C V®, so that each edge has a direction. Herein we tacitly assume any (di)graph to be

finite, IVI < oo, unless otherwise specified.

In a graph 0 = [V, E] or digraph bj = [V, E], a vertex v E E or v c E joined by an edge E E E

or £E E is called incident on E or £, respectively. Similarly, the edges {E E E I v E E} or

{I E I v E £} joining a vertex v E V are called incident on v. These relationships are commonly

represented diagrammatically, where a vertex v E V appears as a point (.), an undirected edge

{v, w} E E appears as a line (-) connecting v and w, and a directed edge [v, w] E £ appears as an

arrow (--+) from v to w.

Two graphs 5 = [V, E] and 0' = [V', E'] are called isomorphic, 0 0 (', when there is a bijective

function g : V ~-+ V' such that the connections in each graph between corresponding vertices under

g are identical, E' = {g(E)}EEE. Similarly, two digraphs b = [V,C] and Si' = [V', '] are called

isomorphic, S5 S ', when there exists h: V t V' satisfying E' = {h(£)}EEE.

A subgraph of a graph 5 = [V, E] is a graph 0' = [V', E'] containing a subset of its edges E' C E.

When 0' contains all edges in 0 incident on its vertices, E' = P 2 (V') n E, we call 6' the subgraph

of ( (vertex-)induced by V', denoted O[V']. When 0' contains only vertices incident on its edges,

V' = UE', we call it the subgraph (edge-)induced by E', denoted O[E']. Similarly, a subgraph of

a digraph 4j = [V, E] is a digraph bi' = [V', 6'] where E' C E, which is called the vertex-induced

subgraph b [V'] when E' = V'® n and the edge-induced subgraph Sb[E'] when V' = UE•e (E).

The disorientation of a digraph S4 = [V, E] is the undirected graph b [V, E] where the directed

edges in £ are replaced by their corresponding undirected edges in C {(£)}CEE. In contrast, an

orientation of an undirected graph ( = [V, E] is a directed graph 0 = IV, E] where each edge in E

is given a single direction in E, so that E = E and IE[ = IEl. We have (5 = 0 for any orientation

. of 5.

2.2.2 Paths and Cycles

In a graph 5 = [V, E], a vertex w E V is called a neighbor of (or adjacent to) another vertex

v C V when there is an edge {v, w} E E incident on both. The set of neighbors of v is called the

neighborhood of v, N (v) = {w E V I {v, w} E E}. The neighborhood of a subset of vertices U C V

includes all vertices in the neighborhoods of the vertices in U, No (U) E Ue N (u). Similarly, a



k-neighbor of v is a vertex in the k-neighborhood of v defined by N (v) Ui ,k) Nk(v). We define

Noks(v) {v} UN(v).

In a digraph S5 = [V, C], a vertex w E V is called a parent of v E V when there is an edge

[w, v] E 6 from w to v, and a child of v when there is an edge [v, w] E £ from v to w. The

set of parents of v is called the in-neighborhood of v, N (v) {w E V I [w, v] E .}, and the

set of children of v is called the out-neighborhood of v, N j(v) w E V I [v, w] e '}. Either

a parent or child of v is called a neighbor of v. Hence the neighborhood in a digraph includes

both the in-neighborhood and out-neighborhood, N1,(v) - N (v) U N+(v) - N-(v). The k-

neighbors and -neighborhoods are defined as above for undirected graphs, and likewise the k-in-

neighborhood N - (v) Ui (k) Ný k (v) and k-out-neighborhood Nk+ (v) -UiE(k) N k(v). We define

Nk+(v) {v} UN +(v) and Nko(v) {v} U N,-(v). A vertex w E N,-(v) is called a predecessor

of v, while a vertex w E Nof+ (v) is called a successor of v.

In the graph 0, the size of the neighborhood of the vertex v is called the degree of v, IvIl

IN0 (v)I. Likewise, the degree of a subset U c V of vertices is |UO =_ IN (U)I. Similarly, in

the digraph b, the sizes of the in-neighborhood and out-neighborhood of the vertex v are called

the indegree and outdegree, IvI1 INH(v)l and IvI - IN (v), respectively, and likewise IUI- -

NH (U) and U IN-- ~-(U)I for U C V.

In the graph 0, given a list P C V of n + 1 vertices, I1| = n + 1, n E N, consecutively connected

by edges, ViE (,) Pi+1 E No (Pi), the set of connecting edges P = { {p, Pi+1 }}iE(n), is called a walk

of length n from Pi to Pn+1, and the vertices P are called the steps of P. Similarly, in the digraph

b, given ViE(n) Pi+ 1 E N (Pi), the set of connecting edges P = {[9,Pi+1]}iE(n), is called a walk

of length n from P7 to Pn+1, and the vertices P are called the steps of P. When P7+ 1 = P 1, the

walk P is called a tour. If the vertices P are all distinct, P _ (P), the walk P or P is called a path.

If the vertices P are distinct except that Pn+• = P1, the walk P or P is called a cycle of length n.

The k-neighborhood and k-out-neighborhood of v E V are the sets of vertices to which there is a

walk of length k, or a path of length n < k, from v in 0 and b3, respectively.

The graph Q is called connected when there is a path from a vertex v to any other vertex,

3vEv No' (v) = V, or equivalently, from any vertex to any other vertex, Vev No" (v) = V. The

connected component of the vertex v is the connected subgraph O[No~ (v)] of 0 induced by v and

the vertices to which there is a path from v. The subgraphs {6[No (v)]}Evy that are connected

components of some vertex in 0 are called the connected components of 0. Hence 0 is connected

when it is the only connected component of itself.

The digraph 4 is called weakly connected when E5 is connected. The weakly connected components

of 4 are the connected components of S5. The digraph b is called strongly connected when there is a

path from any vertex to any other vertex, V,Ev No + (v) = V. The strongly connected component of

the vertex v is the strongly connected subgraph b[No~- (v) n No + (v)] of Si induced by the vertices
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for which there is a path to and from v. The subgraphs {l[NO- (v)nNo'+ (v)]}VEV that are strongly

connected components of some vertex in b£ are called the strongly connected components of Si. Hence

b3 is strongly connected when it is the only strongly connected component of itself.

For the digraph S5, we define v w - w >- v w E N,' + (v) - v E N,- (w) for any two vertices

v, w E V, and say that v precedes w while w succeeds v. We write v -< w to indicate that either

v = w or v -< w.

A digraph with no cycles is called an acyclic digraph or directed acyclic graph (DAG). When Y) is

a DAG, a vertex w cannot both precede and succeed another vertex v, since this would imply that

b contains both a path from w to v and a path from v to w, and hence at least one cycle. Hence

the relation -< is a partial order on V, where v -< w = v 1 w. In other words, each vertex is in its

own strongly connected component.

A graph with no cycles is called a forest. A connected forest is called a tree, in which there is

exactly one path from any vertex to any other vertex. A weakly connected (acyclic) digraph AC for

which 35 is a tree is called a directed tree (or rooted tree) when there is a vertex u E V called the

root that precedes all others, VvEV u -< v. When 6 is a tree, for each vertex u E V there is a unique
-45

orientation 0 that is a directed tree with u as the root.

2.2.3 Partite Graphs and Matrices

The digraph bi = [V, E] or graph -) is called bipartite on {X, Y} when its vertices can be partitioned

into two disjoint sets X, Y, V = X U Y, so that each edge joins one vertex in X and one vertex

in Y, C C X x Y UL Y x X. Equivalently, no two vertices in X or two vertices in Y are adjacent,

X n N\ %(X) = Y n Ns5 (Y) = 0. More generally, S5 or 43 is called n-partite on X for n E N when its

vertices can be partitioned into n disjoint sets X = {Xi}ie(n), V = U X, so that each edge joins two

vertices in different sets, E C U]xEcx XI. Equivalently, no two vertices in a single Xi are adjacent,

ViE(n) Xi n Ns(Xi) = 0. A 3-partite (di)graph is called tripartite.

A bigraph is a tuple 6 = [X, Y, E] such that [X U Y, E] is a bipartite graph on {X, Y}. Here the

elements of X and Y are called vertices of 0, the elements of E are called edges of 0, and other

definitions of graph theory are analogous. A vertex x E X is called a row vertex of Q, while a vertex

y E Y is called a column vertex of Q5. An ordering of 6 is an ordered bigraph [X, y, E] where X c X

and Y C Y. All orderings of 0 are isomorphic to one another. Each ordering [X, y, E] of the bigraph

0 has a corresponding binary matrix A E {0, 1 }mxn in which the row vertices of Q5 correspond to

rows of A, m = AIA, the column vertices of Q5 correspond to columns of A, n = IYI, and the edges of

Q5 correspond to the nonzero entries of A, ViE(m)VjC(n) [Xi, Yj] EE -E ý Aij = 0.

A p-permutation is a function a : (p)) - ((p) reordering the integers 1, 2,..., p. The set of all

p-permutations is denoted Sp. A permutation of a p-tuple V, p = IVJ, is a tuple V,((p)) rearranging

its elements according to a p-permutation a E Sp. A permutation A,((m)) of a matrix Amxn for



a E Sm is called a row permutation of A, while a matrix ((AT),((n"))T for a E Sn is called a column

permutation of A. A row-column permutation of A is a row permutation of a column permutation

of A, or equivalently, a column permutation of a row permutation of A. All matrices of orderings of

a bigraph ( are row-column permutations of one another.

2.2.4 Bigraph Decomposition

In a bigraph ( = [X, Y, E], a matching is a subset M C E of edges such that no two edges in M are

incident on the same vertex, U M. A vertex v E U M incident on an edge in M is called matched

under M, otherwise v V U M is called unmatched under M. The matching M is called maximum

in 6 when no matching in 0 has more edges, VNEP(E) I UN INjI IMI. The matching M is called

row-perfect when every row vertex of ( is matched, X C UL M, column-perfect when every column

vertex of 6 is matched, Y C U M, and perfect when every vertex is matched, X u Y C U M.

A binary matrix A corresponding to an ordering of ( is said to have a perfect, row-perfect,

or column-perfect matching whenever (5 has a perfect, row-perfect, or column-perfect matching,

respectively. A matrix A is called underdetermined or horizontal when it has fewer rows than

columns, IAI < IA'T, well determined or square when it has the same number of rows and columns,

IAl = -IA', and overdetermined or vertical when it has more rows than columns, IAI > IATI. A square

matrix A is called structurally nonsingular when it has a perfect matching, and structurally singular

when it does not.

An alternating path in ( with respect to M is a path P in 6 from v E X U Y to w E X U Y in

which alternating edges along P are in M, U P \{v, w} C U P n M. Similarly, an alternating cycle

or alternating tour in 0 with respect to M is a cycle or tour Q in 0, respectively, satisfying U Q =

U Q n M. When the alternating path P begins and ends with unmatched vertices, UP \{v, w} =

U P n M, it is called an augmenting path in 0 with respect to M.

Berge [51 showed that M is maximum in (5 if and only if there is no augmenting path in 0 with

respect to M. The best known algorithms for finding maximum matchings in graphs repeatedly

search for an augmenting path P with respect to a known matching M and compute a larger

matching M' = MEP with IM'I = IMI +1. Galil 128] gives a detailed discussion of these algorithms.

For general bigraphs, the lowest worst-case complexity bound known is that of the Hopcroft-Karp

algorithm 1331].

The Dulmage-Mendelsohn decomposition 122, 36J of ( with corresponding binary matrix A and

a maximum matching M consists of row-subsets [Xh, X,, X,] of X and column-subsets [Yh, Ys, Y,]

of Y, where: Xh U Yh and X, U Y, contain those vertices w E X U Y equal to, or to which there

is an alternating path in ( with respect to M firom, an unmatched row vertex v E X\ U M or

column vertex v E Y\ U M, respectively; and X, = X\(Xh U X,) and Y, = Y\(Yh U Yv) contain

the remaining row and column vertices, respectively. We define A,, -= Axv, for x, y E {h, s, v} and



Ahsv = Axy for X C [Xh, X,, X] and Y = [Yh, Y,, Y,]. The Dulmage-Mendelsohn decomposition

has the following properties 154]:

1. The row- and column-subsets of the decomposition are pairwise disjoint, X = Xh U Xs U X,

and Y = Yh U Ys U Y,.

2. The submatrices Ahh, Ass, and A,, are horizontal, square, and vertical, respectively, IXhI <

IYhl, JXsl = JYsl, IXvl > JIYv.

3. The matching M matches only vertices in corresponding row- and column-subsets, M C

UzE{h,s,v}(Xz x Y,).

4. The matching M perfectly matches the row vertices X, to the column vertices Y,, X, U Y, C

UM.

5. The edges E do not join any row vertices X, to column vertices Yh or row vertices X, to

column vertices Yh U Y,,
Ahh Ahs Ahv,

Ahsv = 0 Ass Asv

O 0 A,,

6. The decomposition is identical for any maximum matching M of 05.

Given the last property, the Dulmage-Mendelsohn decomposition of 3 is well defined without spec-

ifying the matching M. The row- and column-subsets of this decomposition can be further de-

composed to yield a block triangular decomposition of 0 consisting of row-subsets [Xzi]iEh(p) and

column-subsets [YziliE(p.) for z E {h, s, v} such that:

1. The induced subgraphs {I3[Xi UYazi]iE(p)} are the connected components of 05[X Li Y,] for

z E {h,v}.

2. The row-subsets {Xsi}iE(psy are the equivalence classes of the equivalence relation on X,

such that v - w for two row vertices v, w E Xs whenever there is an alternating tour P in 0

with respect to M containing them, v, w E UP.

3. The column-subsets {Ysi}ir(p,) consist of the column vertices matched to the corresponding

row-subsets, ViE(ps) Ysi = Ys n {E c M I E n Xsi # 0}.

4. The row-subsets and column-subsets {Xi, YsiliE(ps) are ordered so that Ax,y, is in block upper

triangular form, where X, C [Xsi]iE(p,, and y, C [Ysi]iE(p,), ViE(ps)VjE(ps) (Xsi x Yj) nE #



Like the Dulmage-Mendelsohn decomposition, a block triangular decomposition of 5 is independent

of the choice of M. However, the ordering of row-subsets [XziliE(p.) and column-subsets [YzliE(Pz)

is arbitrary for z E {h, v}. The row-subsets {Xsi}iE(ps) are the vertex sets of the strongly connected

components of the digraph Sj, = [Xs, E8] defined by orienting the edges of O[X8, U Y,] from column

vertices to row vertices and then merging the column vertices into the corresponding row vertices to

which they are matched, ,s = {[u, w] E X? I 3vEY, {u, v} E M A {v, w} c E} [54]. Hence a block

triangular decomposition can be found from the Dulmage-Mendelsohn decomposition by finding the

connected components of O[Xz U Yz] for z E {h, v}, finding the strongly connected components of

I,, and ordering the latter in block upper triangular form.

2.3 Theory of Computation

Some key ideas in the theory of computation are used to formalize the arguments presented in §3.4

on the computational expressivity of MDPL. Much of the terminology herein is nonstandard, but

provides a clarification of otherwise ambiguous notions.

2.3.1 Grammars

In computer science, a string is a linear arrangement of distinguishable symbols. For example, a

string consisting of the symbol a followed by the symbol b is written ab. The symbol e denotes

the empty string, a string containing no symbols. Where applicable, a symbol may be considered a

string consisting of a single symbol.

The concatenation ST of two strings S and T is the string containing the symbols of one followed

by the symbols of the other. Concatenation can be applied to multiple strings. For example, the

concatenation of the string S, the string ab, and the symbol c is the string Sabc. Concatenation

can also be applied over sets of strings. For example, the concatenation of the set of symbols {a, b}

with the string S is the set of strings {aS, bS}. Given a set of strings V, defining Vo = {e} and

Vi+l = ViV for i E Z*, the set of all strings that can be constructed by concatenating strings in V

is the Kleene closure of V defined by V* U- iE Vi'

A grammar [10] is a tuple [S, T, U, s] where S is a finite set of symbols called nonterminals, T is a

finite set of symbols called terminals, S and T are disjoint (S U T), s E S is a particular nonterminal

called the start symbol, and U is a finite set of production rules, where each production rule U >-* V

relates a string of (non)terminals U E (S U T)* S (S U T)* containing at least one nonterminal to

another string of (non)terminals V E (S U T)*. The notation U >- { V, W,...} or U - V I W - -

indicates several production rules U >-- V, U - W, ....

Example 2.3.1. g = [{s, t}, {a, b, c,>}, {s - t I s > s, t - a I b I c}, s] is a grammar.



An application of a production rule U - V to a string SUT is the string SVT, where S and

T are strings. A production in a grammar g = [S, T, U, s] is defined recursively as either the start

symbol s of 9 or any application of a production rule u E U to a production in G. A statement

in ! is a production consisting only of terminals in G. The set of all statements in 9 is called the

language of 9, denoted A(g).

Example 2.3.2. The strings a, b>a, and a>ct>a are statements in g, hence {a, b>a, a>c>a} C A(9).

2.3.2 Translators

A pattern in a grammar 0 is a string consisting of terminals and nonterminals of 0 together with a

finite number of symbols called schematic variables. An instantiation of patterns S, T,... in ! is the

corresponding strings S', T', ... that result when all instances of each distinct schematic variable in

S, T,... are replaced by an identical statement in 9. A statement pattern in 0 is a pattern S such

that any instantiation of S is a statement in G.

A translation rule V c4-- W between a grammar 0 and a grammar R consists of a statement

pattern V in 0 and a statement pattern W in 7 containing the same schematic variables. For any

instantiation V', W' of V, W in both 0 and R, any application of the production rule V' - W'

to a string S is called an application of V - W to S. As with production rules, we indicate

multiple translation rules U +-~ V, U -+ W,... by U c-* {V, W,...} and V e-- U, W +-" U,... by

{V, W, . ..} - U.

Example 2.3.3. S > T <-" T < S is a translation rule I from 0 to 7t = [{s, t}, {a, b, c, <}, {s • t I

s , s, t .a I b I c}, s]. Applications of i to the string a > b > c include both a > c a b and b < a > c.

A partial translation of a statement S E A(0) under a set L of translation rules between 9 and 7

is defined recursively as either S or an application of a translation rule 1 IL to a partial translation

of S. A statement T C A(R7-) that is a partial translation of S under L is called an translation of

S in 7 under L, in which case we write S -- T. Similarly, we write V -~ W to indicate that each
L L

statement V E V C A(9) has at least one translation W in 7 under L and that W E W C A(7-) for

any such translation W.

The set L is called a translator from 9 to R when A(9) -'+ A(7-). When such a set L exists,
L

we say that 9 and 7 are equivalent under translation. The set L = {VN - Wi}iE(n) for some

n E N is called a translator between grammars 0 and 7- when L is a translator from 0 to 7- and

L - 1 - {Wi - Vi}iE(n) is a translator from H to 0. Then we write V --+ W to indicate that V -- W
L L

and W -+ V.
L-1

When L is a translator from 0 to R such that each statement S E A(9) has only one translation

in - under L, we can define the translation function L: A(0) -- A(7) of L such that £(S) is the

translation of S in 7 under L. A translator may be defined in terms of its translation function, given



recursively by declarations of the form £(V) = W for translation rules V *-+ W between g and 7-,

where W is the translation of V in 7 after any schematic variables in W have been substituted and

any expressions £(-) in W have been evaluated. In this case £ is called a translation function from

g to t.

Example 2.3.4. The set L = {}) is a translator between g and 7k. The translation function 2 of

L may be defined by L(S > T)= = (T) 4,C(S).



Chapter 3

The MDPL Language

This chapter gives the formal specification of the MDPL language. The basic entity representing

a computable function in MDPL is called a model, described in §3.1. MDPL models have an

intuitive visual representation introduced in §3.2 that clarifies their functional interpretation. This

interpretation is made explicit by rules for evaluating MDPL models given in §3.3. Finally, §3.4

shows that all computable functions can be expressed by MDPL models, that is, MDPL is universal.

3.1 Formal Definition

The basic entity in MDPL is a model M over a countable set P of primitives, defined recursively by

M - [M, rA, SM, 'M, VM, 7rM, PM] consisting of

* a set QM of models called submodels

* a symbol rM called the root node

* a set SM of symbols called subnodes

* a function imM : U -* Z* where zM (s) is called the

called the coarity of M

* a function VM : U -U- Z* where vU (s) is called the

is called the arity of M

arity of s E SM and nM =IM (rM) is

coarity of s E SM and mM = v-(rM)

* a function rM : U -- PU QM UUM UXM U {0} with lrM(rM) C UM UXX U {0} and

QM C wim (SM) where lrM (s) is called the applicand of the node s E UM

* a function PM : YM --- P UM U XM U {0} where pM (s, k) is called the argument of the

sink [s, k] E Ym



where

* U~ M SM U {rM} is called the set of nodes

* Xm [, UsEU {s} x ((vm(s)) is called the set of sources

* YM US EU, {s} x ((- M(s))) is called the set of sinks

SXM: XM -- UM maps sources to their nodes, XM (s, k) s

* M : Y• -- U maps sinks to their nodes, M (s, k) -- s

* wM :XM UYM -- ((v (s))) U((-lp (s))) maps sources and sinks to their indices, wM (s, k)

k

* £iM is a digraph called the link digraph with vertices VyM = P LU Q U UM U XM U Ym and

edges such that

- primitives and submodels have no parents, NH (P) = Nýj (QM) = 0

- nodes are children of their applicands and sinks, VsEUj N~M (s) = {•M (s)} U { Y G YM

OM (Y) = s}

- sources are children of their nodes, VXEX, N. (X) = {xM(X)}

- sinks are children of their arguments, VyEy, NJ (Y) = {pM (y)}

satisfying the following:

Causality Condition. All cycles in S5 M contain rM, that is, the restricted link graph _M =

-jM[VM\{rj}] is a DAG.

In §3.3 we define the interpretation of MDPL models as programs. There the above definitions

can be interpreted intuitively as follows:

* each model M defines a computable function

* the primitives P represent distinguishable atomic entities (constants)

* the submodels QM represent subfunctions defined within M

* the root node rM represents the function of M

* the subnodes SM represents function calls within M

* the arity mm and coarity n~ represent the number of inputs and outputs of M, respectively

* the functions im and IM additionally define the number of inputs supplied to and outputs

collected from the functions called at each subnode s E SM, respectively



* the sources XM refer to the inputs collected from r. and the outputs collected from each

sE SM

* the sinks YM refer to the inputs supplied to each s E SM and the outputs supplied to rM

* the function -rM defines the function called at each node s E UM

* the function PM defines the value supplied to each sink, which may be undefined

* the digraph )5M indicates the dependencies in the evaluation of M.

The causality condition may then be interpreted as stating that no part of the definition of M is

dependent upon itself in the evaluation of M.

The formalism of MDPL is more complicated than that of many theoretical models of computa-

tion studied in computer science. However, it permits many kinds of operations on programs to be

performed in a simple way, which would be much more complicated in simpler theoretical models.

By building a programming language on MDPL, we avoid the need for many additional features

required to compensate for the weaknesses of programming languages and environments built on

simpler foundations. Indeed, many capabilities useful in the iterative development of programs arise

naturally in MDPL (Chapter 5). At the same time, the difficulties of the MDPL formalism can

be managed through a combination of visual representation (§3.2) and algorithmic transformations

(Chapter 4) of MDPL models.

3.2 Visual Representation

We now introduce a visual representation of a model M, in which:

* the root node rM is represented by a rectangle

* each subnode s E SM is represented by a smaller rectangle inside the rectangle of rA

* the mM sources of the root node, [rM, ], ... , [rM, m ], are represented by

brackets from the left side of its rectangle from top to bottom

* the nr sinks of the root node, [rM,-1],.. ., [r,-nM], are represented by

brackets to the right side of its rectangle from top to bottom

* the jPM(s) sinks of each s E S , [s, -1],..., [s, -pj (s)], are represented by

brackets to the left side of its rectangle from top to bottom

* the vM(s) sources of each s E SM, [, [s,1],...,[s, M(s)], are represented by

brackets from the right side of its rectangle from top to bottom

a sequence of

a sequence of

a sequence of

a sequence of

Li

LIL



* a primitive p E P is represented by a rectangle labeled with its symbol, with a single bracket

on its right side DIf

* a submodel or primitive applicand S E P U QM of s E SM, •r•(s) = S, is indicated by

superimposing the visual representation of S on the rectangle of s when S E QM (see below),

or by labeling the rectangle of s with its symbol

* a node applicand a E UM of s E UM, -r(s) = a, is indicated by an arrow from the top or

bottom of the rectangle of a to the top or bottom of the rectangle of s

* a source applicand X E XM of s E SM, 7rM (s) = X, is indicated by an arrow from the bracket

of x to the top or bottom of the rectangle of s

* a primitive argument p E P of Y E YM, PM (Y) = p, is indicated by an arrow from the bracket

of the rectangle of p into the bracket of y

* a node argument a E UM of Y E YM, PM(Y) = a, is indicated by an arrow from the top or

bottom of the rectangle of a into the bracket of y

* a source argument X E XM of y E Y~ , PM(Y) = X, is indicated by an arrow from the

bracket of x into the bracket of y.

When the visual representation of a submodel S E QM is superimposed on the rectangle of a

subnode s E SM:

* the rectangle of rs coincides with the rectangle of s L]
* the first W brackets on their left sides are aligned from top to bottom, where m = min{Im (s), ms},

with the remaining brackets appearing below

* the first ýi brackets on their right sides are aligned from top to bottom, where 7 = min{vM (s), ns},

with the remaining brackets appearing below

* when a sink [s, -i] E YM of M for i E (m) is defined, pm (s, -i) $ 0, the bracket of [s, -i] is

omitted, and the arrow into it is drawn into the bracket of the source [rs, i] E Xs of S

* when a sink [rs, -j] E Ys of S for j E (T) is defined, ps(rs, -j) # 0, the bracket of [rs, -j]

is omitted, and the arrow into it is drawn into the bracket of the source [s, j] E XM of M E

* when an applicand of the root node of S is defined, 1•s(rs) f 0, the head of the arrow to the

rectangle of rs is aligned with the tail of any arrow from the rectangle of s in M T



Figure 3-1: An MDPL model representing the extended GCD function

Example 3.2.1. The MDPL model in Figure 3-1 represents the extended GCD function: given two

nonzero integers a, b E Zo, it returns two integers x, y E Z such that a x + b- y = GCD(a, b), where

GCD(a, b) is the greatest common divisor of a and b. In this interpretation, the submodels in the

definition represent:

* the integer division function: given an integer u E Z and a nonzero integer v E Zo, it returns

two integers q, r E Z such that q = J is the integer quotient of u and v and r = u - q -v is

the integer remainder of u and v

* the integer multiplication function: given two integers u, v E Z, it returns their product u-v C Z

* the integer subtraction function: given two integers u, v C Z, it returns their difference u-v C Z

* the zero condition function: given three inputs x, y, z, it returns y when x $ 0 and z when

x=0

and the primitives in the definition represent:

* the integer constant 0 L01
* the integer constant 1.

The definition of the model is based on the extended Euclidean algorithm [731. Note the following

interpretations made in evaluating the model (see §3.3):

* currying: the zero condition function of three arguments with one defined argument specifies

a function of two arguments, which is applied to two of the subnodes in the model, where the

remaining two arguments are defined independently in each case

* recursion: the root node is the applicand of one of the subnodes in the model, indicating that

the function of the model should be applied recursively at that subnode

Explicit recursion is not strictly necessary to implement recursive functions (see §3.4.3), but this

example demonstrates how it can facilitate expression in MDPL, as in most modern programming

languages.



3.3 Model Evaluation

The interpretation of MDPL models as computable functions is defined by a set of transformation

rules in §3.3.1 that can be applied to a model to yield another model. We will write M -- AK to

indicate that the model NA is obtained from the model M by applying one of the transformations.

We write M -- AN to indicate that KA is obtained from M by repeatedly applying zero or more

transformations. That is, -- is the reflexive, transitive closure of -.

The argument outlined in §3.3.2 shows that the relation -- is confluent, that is, if M -- JA and

M -- N', then there exists a model R such that Kf -s- R and N' -- R. It follows that there is an

equivalence relation -~*- on models called normalization, defined by KA -w- AN' when there exists

R such that KN -- 7R and N' -, R. For if M -•)(- M' -•)- M", there exist KA, A' such that

M, M' -- AK and M', M" -* A', so the preceding implies there exists R such that N, N' -2- R,

which implies M -*- M".

A normal form is a model R to which none of the transformation rules can be applied, that is,

where Kf - R if and only if Kf = R. For two normal forms 7, R', this means 7 -~- 7' if and

only if 7 = 7', that is, each equivalence class under normalization contains at most one unique

normal form, so every model can be normalized to at most one normal form. As shown in §3.3.3,

any model equivalent to a normal form can be transformed to that normal form by a terminating

algorithm repeatedly applying the transformation rules: we call this process normal form reduction.

This defines a consistent functional interpretation of MDPL models.

3.3.1 The Normalization Transformations

An internal model M of a model Kf is defined recursively as either AN or an internal model of some

submodel S E Qg. We indicate the set of all internal models of M by 7ZM. Under each of the

following headers, we define a model M' based on a given model M satisfying certain conditions.

For each case, when M E Z•hg is an internal model of KA, we declare KA -+ N' where N' is the model

obtained from KA by replacing a particular instance of M by M'. To indicate a specific transforma-

tion XYZ, we write A --+ K'. These transformations completely define the normalization relation
XYZ

for MDPL models.

For convenience, we introduce an extension of PM defined by 73M (s, k) PM (s, k) k E (-M (s))

10 otherwise

for s E UM, k E Z-, that is explicitly undefined for all negative indices k for which there are no

corresponding sinks. We can then define QM(s,k) - I{l E (k) I Mi(s,l) = 0}1, which counts

the number of indices 1, up to the given index k, for which p~(s, l) is undefined. We abbreviate

eM(s) - QM(s, -tM(s)) to indicate the total number of sinks of s E UM with undefined arguments.



Subnode Elimination (SNL) The model M has a subnode a E SM such that no source of a nor

a itself is an applicand or argument of any node or sink in M, that is, a W MrM (UM) U pM (YM) U

XM(pm(YM) n XM).

Then the model M' in AN' = 7SNL(Ar) is constructed by removing the subnode a from M,

M', = 7r (Sm\{a}) n Qm

SrM'
SM,

- r4

= SM\{a}

mM'(S) = tAM(S)
LVM,(S) = VM(S)
IrM'(S) = 7T (S)

PM',(Y) = PM(Y),

leaving the remaining nodes unchanged. This transformation effectively removes the subnode a

when it has no effect on the functional interpretation of M. Hence we say that it eliminates a. In

the visual representation, the rectangle of a is removed along with its contents and any adjoining

(incoming) arrows to it or sinks on its outside.

Subnode Expansion (SNX) The model M has a subnode a E SM for which there is either

1. a subnode t E S with applicand rM (t) = a, or

2. a sink T E YM with argument PM (T) = a.

Then the model M' in N' = 1SNX(JN) or N' =

subnode a' to M,

TSNX(N) is constructed by adding an additional

QM' = QM

rM, = rM

S/, = SMU {a'},

where either

1. the subnode a' has the same arity, coarity, applicand, and arguments as a, and the subnode t



has applicand a',

IIM'(S) AfM(a) s=a'

/LM (s) otherwise

M, (S) = M (a) s = a'
vM(s) otherwise

a' s=t
lrM'(S) = -7rM(a) s=a'

Ir7M (s) otherwise

PM (s, k) = pm(a,k) s= a'{PM (s, k) otherwise

or

2. the subnode a' has zero arity/coarity and applicand a, and the sink T has argument a',

pm (s) otherwise

0 s = a/

vYM(s) otherwise

7rJ,(s) 5= a'

r7 I(s) otherwise

S() PM (Y) otherwise

respectively. This transformation effectively duplicates the subnode a as a', where a' takes the place

of a as the applicand or argument to some subnode or sink, respectively. Hence we say it expands

a with respect to t or T (respectively) as a'. In the visual representation, either the rectangle of a

is duplicated along with its contents and any incoming arrows to it or sinks on its outside to form

the rectangle of a', or the outgoing arrow from the rectangle of a is redirected to the new empty

rectangle of a'; and the tail of the outgoing arrow from the rectangle of a to the rectangle of t or

one of the sinks on its outside is transferred from the rectangle of a to the rectangle of a'.



Subnode Application (SNA) The model M has a subnode t E S§ with subnode applicand

7rM(t) = a E SM, and either

1. the applicand of a is a submodel 7rM (a) = S E QM whose root node has a defined applicand

7rs(rs) : 0 or

2. the applicand of a is not a node or source, 7rM (a) ý UM u XM.

Then the model M' in K' = rtSNA(N) is constructed by reassigning the arguments of sinks of t

in M' to be the arguments obtained by "filling" the sinks of a with the arguments of sinks of t:

beginning with the arguments of sinks of a, successively replacing those undefined with arguments

of sinks of t, and then successively appending the remaining arguments of sinks of t as arguments

of additional sinks of a,

QM' = QM

TM' = rm

SM, = SM

M(s)= { LM(a) + max{O,,M(t) - QM(a)} s = t

1M (s) otherwise

and by reassigning the applicand of t in M' to be the applicand of a, and either

1. reassigning arguments and applicands equal to sources of t to the corresponding sources of t

beyond those corresponding to sinks of rs,

VMM(S) = vM(t) +ns s=t

VM (s) otherwise

[t, 1 + ns] rM (s) = [t, 1] E Xm

7rM•(S) = M(a) s=t

rM (s) otherwise

[t, I + ns] PM (s, k) = [t, ] E XM

p, (s, k) "~ ~(M(t, -QM(a,k)) pM(a,k)= 0 s = t

PM (a, k) otherwise

PM (s, k) otherwise

or



2. making no additional changes,

VM'(S) = VM(S)

= (rM(a) 
s=t

I.rM (s) otherwise

s=t

pM,(s, k) = PM(a, k) otherwise

PM (s, k) otherwise

This transformation effectively assigns the subfunction called at t to be the same as that of its

applicand a with the substitution of arguments from a, consistent with the functional interpretation

of M. Hence we say it applies a to t. In the visual representation, the rectangle of t and its contents

are replaced by a duplicate of the rectangle of a with its contents and any incoming arrows to it or

sinks on its outside, and the incoming arrows to t are adjoined to the unjoined sinks on the rectangle

of a, with excess arrows adjoined to additional sinks; and when the applicand of a is a submodel

whose root node has an applicand other than itself, the arrows to the sources on the outside of the

rectangle of t are shifted downwards to sources below the new corresponding sinks on the inside of

the rectangle of t.

Root Node Expansion (RNX) The model M has either

1. a node t C UM with applicand 7rM(t) = rM

2. a sink T E Y.M with argument PM (T) = rA.

Then the model M' in N' = -RNX (N) or JV = ~Nx N f) is constructed by either



1. adding the model M as a submodel applicand of a new subnode applicand a of t,

QM' = QMU{M}

rM, = TM

SM' = SMU{a}

0 s = a

p I(s) otherwise

0 s = a
VM, (s) =

vM (s) otherwise

M s=a

7rM I(s) = a s=t

J•M (s) otherwise

PM'(Y) = pM(Y),

or

2. adding a subnode a to M with applicand rT and zero arity/coarity as the argument of T,

SM, = SM. L{a}

•M'(S) = O s=a0 s = a
pl (s) otherwise

J0 s= a
7MI 

(S) 
=

vrM (s) otherwise

M{M(S) otherwise

Pm',(Y) = a  y=T

S PM (Y) otherwise

respectively. This transformation effectively either duplicates the functional interpretation of rM

within the subnode t to which the root node is applicand, or creates such a node as the argument

of the sink T with argument rM, respectively. Hence we say it expands rM with respect to t or T,



respectively. In the visual representation, either the contents of the rectangle of M are duplicated

inside the rectangle of t, or there is drawn an arrow from the rectangle of the root node rj to the

rectangle of a new subnode a, and the tail of the arrow from the rectangle of rM to the sink T is

transferred to the rectangle of a.

Submodel Application (SMA) The model M has a subnode a E SM with a submodel applicand

7rf (a) = S E QM in which the root node rs is neither the applicand of any node nor the argument

of any sink in S, rs V irs(Us) U ps(Ys). We distinguish the cases where

1. the applicand rM (rM) = a and a is neither the applicand of any subnode nor the argument

of any sink in M, a ý lrM (SM) L pM (YM), or

2. the applicand 7rM (rM) $ a, and either a is neither the applicand of any subnode nor the

argument of any sink in M, a V• rM (SM) U PM (YM), or the arity ms = 0,

where in each case either

(a) the applicand of rs is undefined, irs(rs) = 0, or

(b) the applicand of rs is a subnode or source of S, lrs(rs) E Ss U Xs.

Then the model M' in 'r = rSMA(NA) is constructed by combining the subnodes of S with the

subnodes of M,

rM, = TM

SM, = SMUSs,

where subnodes are relabeled as needed so that SM U Ss, and either

1. filling any undefined sinks of a with new sources of rM and

(a) reassigning the applicands and arguments of S that are sources of rs to be the arguments

of the corresponding sinks of a, and reassigning the applicands and arguments of M that



are sources of a to be the arguments of the corresponding sinks of rs,

QM' =Qm

M'(S) s(s) E Ss

m M(s) otherwise

mM + QM(a,ms) s = rM

VMI(S) = s(s) s Ss

VM (s) otherwise

7[M, (s) = {M,s (a, is (s)) s Ss

yM,s(a, rM (s)) otherwise

am (a, k) s = a
PM'(s,k) = O3M,s(a, ps(s, k)) sE Ss

YM,s(a, pM(s, k)) otherwise

where

a (s, k) [r l, mM + e (s, -k)] P(s, k) = 0
pm (s, k) otherwise

M,s (s, U) a(S, -1) u = [rs, 1] E Xs

u otherwise

YM,S (s, U 1) J1M,s(s,p•(rs,-h)) u= [s, h] C X

u otherwise

or

(b) in addition to the above, reassigning arguments and applicands so that the sources and

sinks of a in M' correspond to those in M without corresponding sinks and sources of



rs, and reassigning the applicand of a to be the applicand of rs,

QM' = (rM(SM\{a}) n QM)U Qs

max{O, pm(a) - ms} s=a

AMI(S) = As(S) s Ss

Am (s) otherwise

max{ 0, vz (a) - us} s = a

mM + eM(a,ms) s = rM

us(s) sE Ss

VM (s) otherwise

OM,s(a, rs(rs)) s = a

rM'(s) = 1M,s(a,rs(s)) s E Ss

S2M,s(a, lrM(s)) otherwise

PM (a, k - ms) s=a

PM'(s, k) = OM,s(a, ps(s, k)) s E Ss

1yYM,s(a, pm (s, k)) otherwise

where

OM~,s(s, s(rs, -h)) hE (ns)

YM,s(s, u) - [s, h - ns] otherwise

u otherwise

or

2. defining M' as above, but without filling undefined sinks of a with new sources of rM: that

is, replacing a by & in the equations above where

M(S,k) - T(s,k),

respectively. This transformation effectively embeds the submodel S into the definition of M, and

modifies the subnode a to yield a functional interpretation in M consistent with the applicands of rs

in S and rM in M, carrying over the sinks and sources of a in M not corresponding to sources and

sinks of S, respectively. Hence we say it applies the submodel S at a. In the visual representation,

the original rectangle of a (but not its contents) is removed and the arrows adjoined to sinks and



sources on its outside are joined with the arrows adjoined to the corresponding sources and sinks

on its inside, and the rectangle of a is duplicated with either its contents and any incoming or

outgoing arrows to it or sinks and sources on its outside, or the original incoming arrow to it and

any incoming or outgoing arrows to sinks and sources on its outside that have no corresponding

sources and sinks on its inside, to form the new rectangle of a. In typical cases, together with

the other transformation rules above, this rule is equivalent to simply removing the rectangle of a

and joining all aligned interior and exterior arrows adjoined to it or to the sources and sinks on its

boundary.

The above set of normalization transformations is chosen to provide a straightforward description

of the functional interpretation of MDPL models. It is not the only possible set of normalization

transformations that can describe this interpretation, nor is it maximally restrictive in the trans-

formation operations it permits. Note that in typical usage, the transformation equations reduce

to quite simple expressions, since the full power of the language is scarcely required to define most

ordinary functions.

For practical implementation, a programming language based on MDPL would typically augment

the normalization transformations above with special normalization rules for certain primitives P.

Such rules would effectively define the behavior of "primitive functions" that can be most efficiently

implemented directly (for instance, in hardware) external to the language. For example, practical

programming languages based on the lambda calculus typically implement numbers and arithmetic

operations directly using hardware instructions in whatever microprocessor is the target of compi-

lation, rather than employing the relatively inefficient encoding of Church numerals and associated

arithmetic operations in lambda calculus. Our prototype implementation of MDPL introduced in

§5.1 uses some predefined primitives implemented directly in the prototype platform.

3.3.2 Confluence of the Normalization Transformations

Here we outline an argument establishing the confluence of the -* relation, that is: if M -* An and

M -- Q, then there exists a model R such that KN -•* R and Q --* R. This result is analogous

to the Church-Rosser Theorem for A calculus, though the argument is not, since the normalization

transformations are entirely different. To simplify matters, we will onlit the RNX transformation

from the discussion, since it is not necessary for the core formalism of MDPL (see §3.4.3).

Let C(n) be the proposition that such an 1Z exists whenever M -* Mn and M -> Qe, where
n

M --+ n denotes M-+ - -JV for n E N, and suppose C(1) holds. Now suppose C(q) holds for
n

n times

some q E N. Let KA be any model such that M --+ K, hence there is a model M' such that M -* M'
q+l1 q

and M' -- AK. From C(q), we know that when M -- M' and M -- Q, there exists R' for which
q

71 --)?+R' and Q --* V'. From C(1), we know that when M' -+ A and M' -** V?, there exists 1?



such that N -R and R' -* R. Thus given M -- AN and M Q, we have N - Z and Q - R,
q+1

hence C(q + 1). By induction on the number of transformations q, C(1) implies C(n) for all n E N,

which proves the confluence of the -- relation. Hence we need only verify C(1): if M --, Kf and

M -* Q, then there exists a model R such that NA -* tR and Q -- R.

To prove C(1), we consider each transformation XYZ among the normalization transformations,

and suppose M -ý AN for an arbitrary model M, in each possible way. In each of these cases,
XYZ

we consider each possible transformation M -- M', and show that there are corresponding trans-

formations KA -* N' (independent of the original XYZ transformation) such that M' -- A'. By a

similar induction on the number of transformations, we establish the same holds for an arbitrarily

long sequence of transformations M -* M', which establishes C(1).

For a subset T C SM of the subnodes of some model M, consider a sequence of SNX transforma-

tions M --, -. - -- M' where each transformation expands some subnode s E T, no transformation
SNX SNX

creates a subnode that can be eliminated by the SNL transformation, and no SNX transformation

can expand a subnode s E T in M' without creating such a subnode. We will say that this sequence

of transformations fully expands the subnodes T.

For a given transformation M N K, the outline of the argument is as follows:
XYZ

1. if the transformation M -- M' is identical to the transformation M -* N, then A = M'
xYZ

and we are done. This is the trivial case; otherwise:

2. if the transformation M -4 M' maintains all values of pI, vM, rM, pM changed by M N ,
XYZ

transform KA -, N' by the same transformation as M --, M', then M' -- N' by the same
XYZ

transformation as M -- AN. This includes the cases where the transformations M -- Kf
XYZ XYZ

and M -+ M' occur in different submodels, or occur in the same submodel but do not interact;

otherwise:

3. if M -4 Kf, then proceed as in case (2) except when M -+ M' changes the applicand of the
SNL SNA

subnode eliminated in M -4 K, in which case let N' = Kf, and then M' -+ K' by the same
SNL SNL

transformation as M - VK;
SNL

4. if M --* n, then proceed as in case (2) except when M - AN expands a subnode a with
SNX SNX

respect to a subnode t (or a sink of t, which we will call by the same name) as a' and:

(a) M -- M' eliminates t, in which case transform A - K ' --, n' to eliminate both t and
SNL SNL SNL

a', and then M' --+ A' by eliminating a'; or
SNL

(b) M -+ M' expands t as t', in which case transform N - --- N' to expand t as t'
SNX SNX SNX

as in M -- M' and expand a' with respect to t' as a", and then M' - Al ' by
SNX SNX SNX

expanding a with respect to t as a' and expanding a with respect to t' as a"; or



(c) M -- M' applies a to t, in which case transform A -• - - '+ to apply a' to t and
SNA SNA SNL

eliminate a', and then M' = A'; or

(d) M -+ M' applies the submodel S at a, in which case transform nA -, -•
SMA SMA SMA SNX

- --, A• to apply the submodel S at a and the submodel S' of a' at a' and fully expand
SNX

the subnodes Ss U Ss, U {a, a'}, and then M' --+ -- N' by fully expanding the
SNX SNX

subnodes Ss U {a}; or

(e) M -- M' applies the submodel U at t, in which case transform K --, -- ... -- A'
SMA SMA SNX SNX

to apply the submodel U at t and fully expand a', and then M' -+ -* - --+ N' by fully
SNX SNX

expanding a;

5. if M -, A, then proceed as in case (2) except when M --+ KA applies a subnode a to a
SNA SNA

subnode t and:

(a) M -- M' eliminates t, in which case transform nA -+, to eliminate t, and then
SNL SNL

M' = KA'; or

(b) M -- M' expands a with respect to t as a', in which case let N' = KA, and then
SNX

M' --~+ --+ ' by applying a' to t and eliminating a'; or
SNA SNL

(c) M -- M' expands t as t', in which case transform nA -+ N' to expand t, and then
SNX SNX

M' -, -- A' by applying a to t and applying a to t'; or
SNA SNA

(d) M -+ M' applies the submodel S at a, in which case transform KA -~ -A
SMA SMA SMA SNX

•- -+ KA' to apply S at a and apply the submodel S' of t at t and fully expand the
SNX

subnodes Ss USs, U{a, t}, and then M' -~ -- -• ... - - NA' by applying a to t and
SNA SMA SNX SNX

applying the subinodel S" of t at t and fully expanding the subnodes Ss U Ss", U {a, t};

6. if M --+ K, then proceed as in case (2) except when M -- KA applies a submodel S at a
SMA SMA

subnode a and:

(a) M -* M' eliminates a, in which case transform A -*V -. N' to eliminate the
SNL SNL SNL

subnodes Ss U {a}, and then M' = K'; or

(b) M -- M' expands a as a', in which case transform N -~ -- - N' to fully expand
SNX SNX SNX

the subnodes Ss U {a}, and then M' -- - - -~ -f-4 j' by applying S at a and
SMA SMA SNX SNX

the submodel S' of a' at a' and fully expanding the subnodes Ss U Ss, U {a, a'}; or

(c) M -* M' applies a to a subnode t, in which case transform A -> - --+ ..- - - -+
SNA SNA SNX SNX

to apply a to t and fully expand the subnodes Ss u {a, t}, and then M' -S4 -- + - -+
SMA SMA SNX

--- •K ' by applying S at a and applying the subinodel S' of t at t and fully expanding
SNX

the subnodes Ss U Ss, U {a, t}.



The above argument could be formalized by an exhaustive analysis for each of the above cases

demonstrating that the given transformation sequences yield the results claimed for any possible

model. The RNX transformation can be handled with no particular difficulty: its treatment is

similar to that of both SNX and SNA. Intuitively, the above argument shows why the normalization

transformations in §3.3.1 constitute a consistent functional interpretation of MDPL models. The

next section shows that this interpretation can be practically implemented.

3.3.3 Termination of Normal Form Reduction

Clearly there exist models to which infinite sequences of normalization transformations can be ap-

plied: for instance, a model with at least one applicand equal to a subnode admits infinitely many

applications of the SNX transformation. Here we give a deterministic algorithm for applying the

normalization transformations to an arbitrary model M that will produce a normal form of M if

one exists. The process of applying this algorithm to a model M is called normal order reduction.

The algorithm for normal order reduction of M consists of applying the following procedure

repeatedly until the result is a normal form:

1. If there is a subnode a E SM to which SNL can be applied, let M - TaSNL(M) and return M.

2. If there is a subnode t E SM to which SNA can be applied, let M r 7SNA(M) and return M.

3. If there is a subnode a E SM such that there are multiple subnodes t E SM or sinks T E

YM with 7rM(t) = a or PM(T) = a, respectively, let M _- TrSNX(M) or M +- NX(M ),

respectively, and return M.

4. If there is a subnode a E SM to which SMA can be applied, let M - 7aSMA(M) and return

M.

5. If there is a node t E UMor sink T E YM to which RNX can be applied, let M +- rtRNX(M)

or M +-- rNX(M), respectively, and return M.

6. If M has a subnode s E SM with a submodel applicand 7rM(s) = Q E QM, apply the above

steps once to Q and return the resulting M.

The argument for termination of normal order reduction runs as follows. To show that the algorithm

produces a normal form when one exists, we must show that the algorithm does not proceed for an

infinite number of steps when a finite number of steps would reach a normal form, that is, when

M is normalizing. Clearly neither SNL nor SNA can be applied for an infinite number of steps.

The SNX transformation is only applied until all subnodes are singular applicands or arguments,

hence also cannot be applied for an infinite number of steps. The SMA transformation applied to

a subnode could introduce a non-normalizing model as the applicand of a subnode of M, but if M



is normalizing, the subnode in question will be removed by the SNL transformation. Similarly, the

RNX transformation can be applied for an infinite number of steps, but if M is normalizing, there

will be some step at which all nodes to which it could be applied have been removed by SNL (and

all sinks to which it could be applied it has already been applied). Normal order reduction forms

the theoretical basis of implementations of MDPL, though more intelligent procedures are required

to achieve efficient reductions (§6.2).

3.4 Universal Computation

We now show that MDPL is universal (in the Church-Turing sense) by demonstrating an imple-

nentation of combinatory logic in MDPL. Since the sk combinator calculus is universal [15], an

implementation of sk calculus in MDPL establishes the universality of MDPL. Such an implemen-

tation requires a procedure for constructing an MDPL model corresponding to an arbitrary sk-

expression, and a procedure for constructing the normal form of the sk-expression from the normal

form reduction of the MDPL model, neither procedure requiring universal computation.

3.4.1 Translation from sk Combinator Calculus to MDPL

We assume without loss of generality that the primitives P in the formulation of sk correspond

directly with primitives P in the formulation of MDPL. Otherwise, the translation can be augmented

by a mapping from primitives in sk to primitives in MDPL. The grammar of the sk calculus with

primitives P can be written as

sk = [{e}, PU {s,k,(,)}, {e )-P, e >-4s I k (ee)},e].

Clearly we can construct a translator from 9sk to the grammar of MDPL by defining a translation

function £ on the four statement patterns p, k, s, (FE), where the first is actually a statement

pattern schema over all p E P, and the last has schematic variables F and E. The translation

of (F E) of course depends recursively on the translations L(F) and L(E). Since this translation

operates directly on the right-hand sides of the production rules in the context-free grammar gsk, it

can be carried out by a pushdown automaton, hence respects the limits on the computational power

of the construction.

We define L using the visual representation for MDPL, representing the translation £(T) of a

statement pattern T in QSk by a thick rectangle labeled by T, as shown. The visual representation of

the model £(T) is understood to be superimposed on this rectangle wherever it appears, in the sense

of §3.2. The translation function L is then defined by the declarations represented in Figure 3-2,

where p E P.



(F E)

Figure 3-2: The translation function L from the sk combinator calculus to MDPL

3.4.2 Correspondence of Normal Form Reduction in sk and MDPL

We now show that the translation of a statement in sk calculus and the translation of its normal

form have essentially the same normal form in MDPL. We verify this by showing that the action of

the two normal form reduction rules in sk calculus is essentially emulated under translation by the

normalization transformations in MDPL.

For convenience, we define r*X Y z (NK) = nA when the transformation XYZ cannot be applied to

KA. Note from the form of the translations in Figure 3-2 and the normalization transformations that

no internal model in the reduction of a translation of an sk-expression will ever have a node or sink

with applicand or argument (respectively) equal to its root node, hence the RNX transformation is

irrelevant to our discussion here (see §3.4.3).

k Reduction The k reduction rule in sk calculus can be written ((k X) Y) --+ X for statement
k

patterns X, Y. Figure 3-3 shows a partial normal form reduction of the translation of ((k X) Y) in

MDPL to the model 9 second from the right. The full reduction cannot be obtained without a

definition for N = £(X) on the far right. However, if Irg(r,) = t E SN, we can reduce 9 and A

to identical models as follows:

1. Reduce K -* K' by applying SMA to its only subnode: J' = 7N MA A).

1~3>1
.... ... .... ..

.. ... ..El't
.. ............ ...... ....... ....



........ .. ... .> - nX
s .. ..

Figure 3-3: Normalization of the MDPL translation of ((k X) Y)

2. Reduce ' -- K" by applying SNA to t and its applicand: i" = SNA ().

3. Reduce R" -i f '" by applying SNL to the former applicand a = r., (t): K'" = t N (RK ).

Then A'" = N.

If wrg(rv) E Xg, the reduction in step 2 (and following) is not applicable, and if 7rN(rg) = 0,

the reduction in step 1 (and following) is not applicable, and K and K are not strictly equivalent

under normalization. However, they are still extensionally equivalent under normalization: that

is, substituting one for the other as a submodel of an internal model of some model M does not

change the normal form of M. This relation is indicated by the dashed -t-- symbol in Figure 3-3.

It can be formally verified by explicitly constructing the relevant reduction procedures as we have

done for the case above. Intuitively, since mi = n = = 0, the sources and sinks of f will become

corresponding sources and sinks of N under SMA, and any sinks or nodes with applicand f will

be assigned applicand KA under SMA. Since either SMA or SNL can eventually be applied to any

subnodes with applicand f or NV, they will always lead to identical normal forms.

The above equivalence could be made strict by augmenting the set of normalization transforma-

tions while retaining their essential properties; however, as we shall see, only extensional equivalence

is necessary to establish the implementation of sk in MDPL.

s Reduction The s reduction rule in sk calculus can be written (((s X) Y) Z) - ((X Z) (Y Z))

for statement patterns X, Y, Z. Figure ?? shows partial normal form reductions of the translations

of (((s X) Y) Z) and ((X Z) (Y Z)) in MDPL. The resulting normal forms in this case are identical.

To complete the implementation of sk calculus in MDPL, we require a procedure yielding the

normal forms of sk-expressions from the normal form reductions of their translations under £ in

MDPL. This is slightly more involved than the translation L, since the MDPL normal form of the

translation of an arbitrary sk-expression may not correspond directly to a right-hand side of one of

the equations defining L. However, it does have a characteristic form evident from the definition

of L and the normalization transformations: the root node has a subnode applicand and no sinks,

subnodes have no sources and have subnode applicands, and sinks have arguments that are either

subnodes or sources of the root node.

By essentially reversing the transformation carried out in the partial reduction of ((X Z) (Y Z))

in the bottom of Figure ??, we can construct a model with the same normal form in which each
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Figure 3-5: Abbreviated normal order reduction of the MDPL translation of ((s k) k).

internal model either matches the translation of the statement pattern (F E), or is the normal form

of the translation of a minimal normal-form sk-expression (one that does not contain a normal-form

sk-expression as a subexpression). The minimal normal-form sk-expressions involving only s and k

are k, s, (k k), (k s), (s k), (s s), ((s k) k), and ((s k) s), to which we must add those involving our

particular primitives P. For example, Figure 3-5 shows the MDPL normal form of the translation

of ((s k) k), which can be interpreted as the identity function. By replacing models matching the

translation of (F E) by (F E) and recursively replacing the normal forms of translations of minimal

normal-form sk-expressions with said sk-expressions, we obtain the normal form of the original

sk-expression with the normal form of whose translation we began.

It should now be clear why merely extensional equivalence of k reduction under translationi

in MDPL suffices for our implementation: When the result of the partial reduction in Figure 3-3

appears as a submodel, it yields an identical normal form as the direct translation of the normal

form of the sk-expression. Hence any model that is an MDPL normal form will be identical to the

normal form of the translation of the normal form of the sk-expression, but for the model itself

(irrespective of its submodels). The latter case can be trivially recognized as an extension of the

above procedure for recovering the normal-form sk-expression we desire.

3.4.3 Recursive Functions in MDPL

As noted above, the RNX transformation plays no role in the above implementation of sk calculus,

since no internal models in the implementation have nodes or sinks with applicands or arguments

(respectively) equal to their root nodes. Though we have seen in §3.2 that this is the most direct

expression of functional recursion in MDPL, it is not necessary for expressing general recursive

functions, since there are universal fixpoint models in MDPL analogous to the fixpoint combinators

in the A anid sk calculi. Figure 3-6 shows one such fixpoint model (highlighted): a model (top)

that applies it to an arbitrary submodel S has the same normal form as a second model (bottom)

that applies S to the first model. Note this fixpoint model is substantially simpler than the direct

translation of the simplest fixpoint model (((s s) k) (s (k ((s s) (s ((s s) k)))) k)) in sk calculus {66].

The existence of a fixpoint model means that for any model in MDPL, there is another model
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M with the same normal form that employs no explicit recursion: 7rs(Us) U {rs} for every internal

model S E RM. Hence the MDPL language could be simplified without loss of computational power

by restricting 7rM : U -- + PU QM USM U XM U {0} and pm : Y~ -- PUSM UXM U {0}

in the specification of §3.1, and removing RNX from the normalization transformations of §3.3.1.

However, this would require more cumbersome definitions for most practical recursive functions.

In this chapter, we have laid the theoretical foundations for the MDPL formalism and its con-

sistent, practical interpretation as a model for all computable functions. The formal encoding of

MDPL substantially generalizes those of related models of computation such as the lambda calculus

anid combinatory logic, but preserves some of the same functional ideas. However, the expressivity

of the MDPL formalism makes the visual representation of §3.2 essential in performing intuitive

operations on MDPL models, as we have seen in the figures above.



Chapter 4

Model Transformations

In Chapter 3, we saw that the MDPL language and its functional interpretation can consistently

describe and execute all computable functions. While important, this property does not distinguish

MDPL from most common programming languages, and says nothing about its practical facilities. In

this chapter, we describe a number of transformations oil MDPL models that have practical utility

for developing programs expressed in the language. When implemented through an appropriate

interface (Chapter 5), these transformations replace and supercede many of the functions grafted

onto existing programming languages through extensions and development environments.

The next three sections describe three different types of transformations. The semantic trans-

formations (§4.1) are used to change the functional interpretation of a model, and generally alter its

normal form. The syntactic transformations (§4.2) are used to change the apparent structure of a

model without altering its normal form. Finally, the partial inversion transformation (§4.3) changes

the functional interpretation of a model and its normal form, but preserves the mathematical rela-

tions between each element of the model.

We define the submodel graph eM of a model M as the bipartite DAG on all internal models

and nodes {JZM, UscEM Us} of M with edges such that

* nodes are children of the models in which they appear, VSE~?r VSEUs N, (s) = {S}

* (sub)nodes are parents of their submodel applicands, VSEF',VsEUs N +  (s) = {irs(s)} In Qs.

The submodel graph reflects the hierarchical nesting of submodels within subnodes. In the visual

representation of M, we have s -< t when the representation of t is somewhere inside the represen-
eB

tation of s.

We define the node graph 91M of a model M as the DAG on all nodes, sources, sinks, and

primitives UJSECa U s Xs U Ys U P of internal models of M, with edges such that

* nodes are children of their applicands or root nodes of submodel applicands, and subnodes are



children of their sinks, VSEAVsE1E NEM (s) = {lrs(s) I rs(s) E U UXs UP}U {rQ 17rs(s) =

QC Qs}U {yE Ys I s(Y)= s Ss}

* sources of subnodes are children of their subnodes and of corresponding sinks of root nodes of

submodel applicands of their subnodes, VsE-R,VsssVkE(vs(s)) N (s, k) = {s} U {[rQ, -k]

7rs(s) = Q E Qs A k C (pQ(rQ))}

* sources of root nodes are children of corresponding sinks of subnodes to which their model is

applicand, VSE~,VkE(ms) Ný (rs,k) = UR.E• m {[s, -k] I r-R(s) = S A k E (•Ua(s))}sEIu

* sinks are children of their arguments, VSE MVYEvs N9 ,. (y) = {ps(Y) s(Y) E UsUXs UP}.

The node graph 9'M is a refinement of the link graphs {f}i'RE• that reflects structural depen-

dencies in evaluation among the nodes, sources, and sinks of M and its internal models. In the

visual representation of M, the edges of 9mM are reflected by arrows, junctions of arrows to top or

bottom sides of rectangles, and junctions of arrows to each another across left and right sides of

rectangles.

We define the restricted node graph ••M of M like fiM, except that some edges are removed so

that

* subnodes are not children of their sinks, VsE7RVSEUs Nj (s) = N-, (s)\{Y E Ys I s(Y) =

s E Ss}

* sources of subnodes are not children of their subnodes, VsE1ZVs1ssVkE(vs(s)) Ný (s, k) =

Ný (s, k)\{s}.

We define the applicand graph %QM of a model M as the digraph oil the nodes Us EM Us of all inter-

nal models of M whose edges join each node to the nodes succeeding it via only sources and sinks in

2 iM , VSE'.VSEUs N+ (s) = {u E VM,i I ýtEVM,, u E VM,t} where VM,s = N` (s) n Ljse Us.
The applicand graph reflects the inheritance of arguments among nodes: if the argument structure

of one node is changed, this change must be reflected in any nodes succeeding it in the applicand

graph to preserve the relationships of arguments in the functional interpretation of these nodes. In

the visual representation of M, the edges of 2 tM are reflected by continuous paths connecting top

or bottom sides of rectangles to each other, made by arrows and junctions of arrows across left and

right sides of rectangles.

For a node s E UM, we define IM,s l U {X E XM I XM(X) = s} to consist of the node and

its corresponding sources, and JJM,s E {s} U {y E Y• I ~M(Y) = s} to consist of the node and its

corresponding sources. In the visual representation of M, there is an arrow from somewhere on the

rectangle of s E UM to somewhere on the rectangle of t E UM when N+ (kM,s) n JM,t •0. We

define iM,s• lR,s\{s} and JM, JJM,s\{s}.



4.1 Semantic Transformations

The semantic transformations involve reassigning or removing elements of a model that generally

alter the model's normal form, and hence its functional interpretation. These transformations can be

used to build up models from the null model Z, the simplest possible model, defined by Qz = Sz = 0

and mz = nz = 0, whose visual representation is an empty rectangle; or to destroy part or all of

any model.

As in §3.3.1, for each of the following transformations XYZ, we define a model M' based on a

given model M satisfying certain conditions. For each case, when M is an internal model of NA, we

declare A -- + A' where N' is the model obtained from KA by replacing a particular instance of M
XYZ

by M'.

Subnode Deletion (DLS) The model M has a subnode a E Sm. Then the model M' in N' =

vDLS(A ) is constructed by removing the subnode a from M and undefining any applicands and

arguments equal to a or sources of a,

QM' = 7rM(SM\{a}) nf

rMI= rm

7rM (s) otherwise

pm,(Y) = 0 PM(Y)E CIM,a

1PM(y) otherwise

leaving the remaining nodes unchanged. This transformation effectively removes the subnode a and

leaves its results undefined. In the visual representation, the rectangle of a and its contents are

removed, along with any arrows to or from it.

Source Reassignment (RSX) The model M has a node a E UM with coarity vi (a) = n. Then

the model M' in N' = v, (NA) for i, j E N is constructed by adding, removing, or reordering

sources of a and the arguments or applicands equal to them so that the ith source of a becomes the



jth source of a, where a new source is added when i > n, and a source is removed when i < n < j,

QM' = QM

rM I

SM'

IMM'(S)

UM, (S)

7M, (s)

PM,'(Y)

where

= SM

IIM(S)

n + max{1,J - n}
= n - 1

n

SM (rrM(s),a,i,j)

6A4 (pM (Y),a,i,j),

i>n

i<n<j

i,j <n

6m (u,a,i,j)=

[a,l]
[a,±+ 1]

[a,l]
0

[a,1- 1]

[a,l ]

[a,j]

[a,i]

S<j

1 j

l<i

i>n

l=i i<n<j

l>i

i,j < n

with n = vM (a). This transformation effectively inserts, deletes, or permutes one source of a without

changing the external connections to existing sources of a that remain. In the visual representation,

one bracket on the right side of the rectangle of a is added, removed, or moved to a different position

on the side of the rectangle along with the tail of any arrows out of it.

Sink Reassignment (RSY) The model M has a node aE UM with arity pma (a) = m. Then the

model M' in N' = v,(,j  ) for i,j E N is constructed by adding, removing, or reordering sinks of

a and their arguments so that the ith sink of a becomes the jth sink of a, where a new sink is added

U = [a, 1] E [M'a

l=j

otherwise



when i > m, and a sink is removed when i < m < j,

QM' = QM

rm, = rM

SM, = SM

m+max{1,j-m} i>m

,(s) = --1 i<m<j s=a

m i,j < m

ALM (s) otherwise

VM,(S) = VM(S)
n I(S) = -7r (8)

PM,(Y) = EM(Y,a,i,j),

where

0 l= j i>m

pm(a,- < i<m<j y=[a,-l]GJMa
PM (a, - 1 -1) l >j

PM(a,-l) 17 i,j

PM(a,-j) 1 = i i,j m

PM (a, -i) 1=j

PM (Y) otherwise

with m = pm (a). This transformation effectively inserts, deletes, or permutes one sink of a without

changing the external connections to existing sinks of a that remain. In the visual representation,

one bracket on the left side of the rectangle of a is added, removed, or moved to a different position

on the side of the rectangle along with the head of any arrow into it.

Argument Reassignment (RSR) The model M has instances of an internal model A E IZM

with a node or source x E ]IA,a for some a E UA and of an internal model T E IZM with a sink

IC E J for some t E UT, hence M -< a and M -< t; there is no submodel Q E QM for which

Q -< a and Q -< t; and we have Y- 7 where d, E UM and d -< a aand < t. Alternatively,

we may take x to be primitive, x E P, or undefined, x = 0, with A = T = M.

CM (Y, a, i, j) =- A



If A = M and T = M, then the model M' in K' = v R,(A) is constructed by assigning x to

be the argument of IC,

QM' = QM

rM4 = rM

SM( = SM

M•,(S) = IM(S)
vM'(S) = yM(S)

PM(Y) () otherwise

leaving the other nodes unchanged; otherwise if A # M and T = M, then the model M' is

constructed by replacing the submodel applicand A = 7rM (d) of [i by a new submodel A' applying

the RSR transformation to x and a new sink of rA-, and assigning a new corresponding source of i

to be the argument of 1C,

Q•M = (rM(S•\{f})z QM) )U {}

TrM = TrM

SM' = SM

,M',(S) = AM(S)

,MI (S) = vM(a)+1 s=a
•M (s) otherwise

S=a
7rM, (s) =

6m (rM (s), -, v (-) + 1, n-X+ 1) otherwise

PM,'(Y) =
5 M(pM(Y), Z, vM 4() + 1, n- + 1) otherwise

where A = rM (U) and X = v R s R  n+Rs ,nY+i (A)) with U = [r=, -nr - 1] E Y.; otherwise

if T = M, then the model M' = v jSR(M") where V = [, -my - 1] and M" is constructed by

applying the RSR transformation to x and a new sink of i in the model M" constructed by applying



the RSR transformation to a new corresponding source of the root node of i and to KC,

QM,, = (,rM(Sm\{})n•) Q) U {f'}
TMa" = rM

SM" = SM

/IlM" (S) = {IM(t)+1 s=t

L'M (s) otherwise

VM"(S) = VM(S)

IrM ' s=(
) = rM(s) otherwise

PM",,(Y) = EM(Y,t,M(t)) + 1,m 7 + 1),

where T = iM(i) and T' = vy(v ( ,y+1,m+1 -()) with W = [ry, m7 + 1]. This transforma-

tion effectively assigns the argument of K: to be x by adding new sources and sinks connected by

arguments and applicands to the intervening internal models of M. In the visual representation, a

new continuous path is formed connecting x to the bracket of KC, made by arrows and junctions of

arrows across left and right sides of the rectangles containing x or KC.

Applicand Reassignment (RSP) The model M has instances of an internal model A E RMM

with a node or source x E IA,a for some a E UA and of an internal model T E 7ZM with a node

t eUT, hence M -< a and M -< t; there is no submodel Q E M9 for which Q -< a and Q -< t;

and we have d 4 t where a, t E UM and U -< a and t - t. Alternatively, we may take x to be

primitive, x E P, or undefined, x = 0, with A = T = M.

If A = M and T = M, then the model M' in N' = tSP (J\) is constructed by assigning x to

be the applicand of t,

QM' = 7M(SM\{t}) n QM

rM, = TM

SM' = SM

mM'(s) = IM(S)
,MI(S) = VM(S)

•r•,(s) = / •  s=t

M'(S) (s) otherwise

PM',(Y) = pM(Y),



leaving the other nodes unchanged; otherwise if A = M and T = M, then the model M' is

constructed by replacing the submodel applicand A = 7=rM (-) of a by a new submodel A' applying

the RSR transformation to x and a new sink of r7, and assigning a new corresponding source of a

to be the applicand of t,

QM, = (.rM(SM\{,t})l•nQM)U{A'}

rM, = r7

SM' = SM

PM/,(s) = M(S)

VM (s) = vM()+ 1 s=5
VM (s) otherwise

x S

rM' (s) = [a, n +1 s=t

6 M ('rM (s),-, v.M(a) + 1, ný+ 1) otherwise

PM' (Y) = M(pM (Y),,, VM (a) + 1, nA +1),

where A = -M () and A' = v ( n-+1,n -X (A)) with U = [rA, -n - 1] E c,; otherwise if

T $ M, then the model M' = v RSR(M"ll\) where V = , -m - 1] is constructed by applying the

RSR transformation to x and a new sink of t in the model M" constructed by applying the RSP

transformation to a new corresponding source of the root node of t and to t,

QM,, = (7rM(SM\{j})n QM) u {'}

rM,, = rj

SM" = SM

A'M"(S) ={IM(t)+1 s=t
I AM(s) otherwise

'MI(S) = iM(S)
) T '  s=S

I 7m (s) otherwise

PM"(y) = CM(y,, PM(1) + 1,m7 + 1),

where = M (i) and ' =v (v s-,M-+I,m-+I (T)) with W = [r,, my + 1]. This transformation

effectively assigns the applicand of t to be x by adding new sources and sinks connected by argu-



ments and applicands to the intervening internal models of M. In the visual representation, a new

continuous path is formed connecting x to the top or bottom side of the rectangle of t, made by

arrows and junctions of arrows across left and right sides of the rectangles containing x or t.

4.2 Syntactic Transformations

The syntactic transformations involve rearranging elements of a model while preserving the model's

normal form, and hence its functional interpretation. These transformations can be used to reorga-

nize the elements of a model, often to facilitate meaningful changes to the model using the semantic

transformations of §4.1.

As in the previous section, for each of the following transformations XYZ, we define a model

M' based on a given model M satisfying certain preconditions. For each case, when M is an

internal model of KN, we declare K -- + N' where N' is the model obtained from Kr by replacing a
XYZ

particular instance of M by M'. Herein we adopt the convention that a transformation XYZ leaves

.unchanged, vxYz(N) = N, when the preconditions of XYZ on M do not hold.

Subnode Relocation (RLS) The model M has instances of an internal model A E Rl with

a subnode a E SA and of an internal model T E RM, hence M < A and M - T; there is no
Cm 6M

submodel Q E QM for which Q -< A and Q - T; and we have that

* if any node of a model succeeding M and preceding or equal to A in the submodel graph of

M:

- precedes a in the node graph of M, ]SEXmIM -< s -S A3sEUss -< a, then we have either

T = M or ~ ' t where d,t E UM and -- Aand i -< T
AM 6M 6M

- succeeds a in the node graph of M, 3SE•• IM -< s - A38EUss 8 a, then we have either
aM 

5
M 91m

T = M or a ý t where a,t E UM and i - A and -< T

* any node of a model preceding T in the submodel graph of M that:

- succeeds a in the node graph of M does not precede in the restricted link graph of its model

any subnode preceding T in the submodel graph of M, VSEMl IS -< VsUsEls >- atESs lt -< 7

t

- precedes a in the node graph of M does not succeed in the restricted link graph of its model

any subnode preceding T in the submodel graph of M, VsE IS - TVEUsE s -< aVtESs It -< •s S

If A = M and T = M, then the model M' in N' = v~LS () is unchanged, M' = M.
= = = v~~~~~a,7- (/)i ncagd M



Otherwise if A = 7rm (a) where j E Um and T = M, then M' is constructed as follows: first

form M" from M by replacing A = 7rM (U) by a model A with the same functional interpretation

constructed by embedding A as the submodel of a single subnode =,

Q• = {A}

(A *MA s = a

vA-i(S) = {mA S =A

= 7 Zm s = ar

7ra-(s) = otherwise

pA(s, -k)= [=, k] s=

[-,k] s=a

then construct M"' from M" by replacing A with the model A' constructed by moving the subnode

a out of the submodel A as a second subnode of ' and rearranging sources and sinks and reassigning



arguments and applicands to preserve the functional interpretation of A,

, I = {A'} U ({IA(a)} nQA)

~S = {a,a}

max{Ijp(a),mA} - l-I + li

max{f(a),nA} - V-IV + V

S'(s) v-A(a)

7-,i(s) A' s = a

(w,A(7r, s, a, a, s) otherwise

A(=a, -k - w(U-, k))

p-,(s,-k) Uk-mA+IU-

p(~(, -k + U- I-I+l)

i,A (P , [s, -k], a, a, s)

,A (, u, a, a, s) -

{A(u)
[a, n - Iv- + V+ I]

PA (rA, -1)
[a, I - L(v-, 1)]

[E, - I-I + IV'+I

O(u)

211 s2=
s=a

otherwise

'+l s=

S = a

otherwise

k E (mA - IU-)

k - mA + I-I (I+I) s=a

otherwise

otherwise

0A(,U) QA

CA(u)= [rA, ] G -A,ra,

otherwise

[rA, -1] E V-

1 e (n•)\((V-)) _(u) = [~, I] ~C,=a

otherwise

otherwise

U- C {X C _A,,A N+Z(X) c JJA,a}

'- Cf y C IAr N INNl(Y) c_ 'IA, a}

1 ~ {X G fA,a N N(X) P

v 1{ C JIA,a NA(Y) ~ IAr,}

where

s= a

otherwise

with



and

w(U+, k)
w(V+,k)

where A' is defined by

QA',

TA'

SA,

PI (s))

= I{X E uI WA(X) < k}I

= {Y E V I -•A(Y) k}l,

(s) = nA-IV-I+ IV+I s= rA

VA(s) otherwise

,(s) = 7M,AA(7A(s),a)

A(r A( A,-k- w(V,k)) k
-k) = pA(vk_-n+•v-I) o

1/M,A(PA(S, -k), a)

[rA, - U(U-, 1)]
7M,A.(u,a)- [rA,• - IU-I + IU+,]

LU

C (nA - IV-i)

therwise
s = rA

otherwise

u = [TA, 1]E IA,rA

U E IA,a

otherwise

then construct M"" from M"' by duplicating the subnodes a and a in A' as a' and i' in M""

and reassigning arguments and applicands so that the latter functionally replace the sources of the

= lr(SA\{a}) n QA

rA

= SA\{a}

= m - lU- + IU+lS = TA

otherwise

VA

PA' (S,

where



= QM"' U Qge

= SM",,, U {a','}

~, (a) s = a'
-I

= ,,(E) s=a-I M"' (s) otherwiseIz, (a) s =a'
-I(=) s =a

vM,,, (s) otherwise

{M/,,,7,(7r,(a),a, ,, a) s=a'

A s=a

r..,i"' (s) otherwise

9M,,,1, (p (a, -k),, , a, a')

.,- a, -k), , =U-, a, a'

~M,,,"i, (pP',(a, - k) , a, a') oth

PM"' (s, -k)

S = a'

s=a

'M."" (s)

AMIIII (S)

VM .... (S)

71•A.". (S)

PM"" (s, -k)
PM".. (S, -k) = [, 1] E lC"M a

otherwise

where

u uE QA

9MA(u,a,a,a,a) a =

a u a

[a',] = [E, l] E 1_,x

then if the subnode E is not an applicand or argument in M"", i ý irM .... (UM ....) U PM". (YM....),

we remove it via M' = 'S"NL(M/ ), otherwise we construct M' = v•RSP RSP(Ml"") wherewereoe tvi M TU ,a rAl X

{ Ir A

7r4 .... (a')

rA(a) QA

otherwise

former,

(r l,-se )

erwise



by reassigning the applicands of a and : to be the root nodes of the submodel applicands of a' and

a , respectively, or in the case of a', possibly the non-submodel applicand of a'. We then rename a'

as a.

Otherwise if M - A - A and T = M, then M' ' = vRS( s(M)) is constructed by first

moving the subnode a outside A into the submodel A as in the previous case, then recursively

applying the transformation to move a successively outward into M.

Otherwise if A = M and M -< T, we can define a construction similar to the above, moving
GM

the subnode a successively inward into T. Finally, if M -< A and M -< T, we can combine the
GM 6M

outward procedure followed by the inward procedure.

This transformation effectively moves the subnode a somewhere in the internal models of M

and rearranges sources and sinks and reassigns arguments and applicands to preserve the functional

interpretation of M. In the visual representation, the subnode a and its contents are moved from

inside the representation of A to inside the representation of T, and brackets and arrows throughout

are added, removed, or relocated across the rectangle boundaries between the two locations. An

additional subnode may also appear to preserve the submodel applicand of the original subnode

containing a, when the latter is an applicand or argument of another node or sink.

Subnode Emersion (EMS) The model M has a subset W C SM of its subnodes that is closed in

the sense that there are no nodes of M that precede one element of W and succeed another element

of W in the node graph of M, AsEU, 3tEw]3uE t -< s -' u.
MM 

9
1M

Then the model M' in K' = vw(A() is constructed as follows: first form M" by creating a

new subnode in M with zero arity and coarity and null model applicand S = Z,

QM"1 = QM U {S}

TM" = TM

SM, = SMU{t}

0 s= t
iM" (s) = I-A• (s) otherwise

0 s-t

vM (s) otherwise

SSS s=t
7rMl "(S) =

I7rM(s) otherwise

PM"(Y) = PM(Y),



then form a linear extension W C W of W with respect to the partial order -< and form M' =

OtEWVLS (M") by relocating the subnodes W into M" (our notation supposes that the modified

submodel S is relabeled S after each application of RLS). This transformation effectively encapsu-

lates the subnodes W within the submodel applicand of a new subnode, rearranging arguments and

applicands to leave the functional interpretation of M unchanged. In the visual representation, the

rectangles of the subnodes W are enclosed in a new rectangle, and arrows crossing the boundary of

the new rectangle are split by junctions across new brackets on its boundary. Note that the operator

vEMS simply creates a new "empty" subnode within the model M.

Subnode Immersion (IMS) The model M has a subnode a E SM with a submodel applicand

7rM (a) = S E QM, and either a is neither the applicand of any subnode nor the argument of any

sink in M, a 0 xrM(SM) U pm(YM), or the applicand 7rM(rM) k a and the arity ms = 0.

Then the model M' in NA' = vIMS(N) is constructed as follows: first form M" by effectively

expanding the root node rs where applicable, so that M" = M if rs irs (Us) Ups(Ys), otherwise

7rT (a) = S is replaced in M" by S', defined by

Qs, = Qs U {S}

rs' = rs

Ss, = Ss U {a'}

0 s = a'
s/(s8) = AIs (s) otherwise

0 s = a'
Vs, (S) =

{vs(s) otherwise

S s = a'

rs, (s) = a' s (s) = rs

WTs(s) otherwise

Ps(Y) = a' Ps(Y) = rs

ps(Y) otherwise

then form M"' = vSMA(M") by applying the submodel applicand of a at a; finally, form M'

by eliminating the subnode a if applicable, so that M' = M"' if a E 7rM(UM) U PM(YM) U

XM (PM (YM) n XM), otherwise M' = vSNL (Mt').



Source Rearrangement (RRX) The model M has an instance of an internal model A with a

node a C UA with coarity vA(a) = n that does not precede or succeed the root node r. or one of

its sources or sinks in the restricted node graph of M, N' (a) n (IM,, U JM

Then the model M' in h' = v," R~ j (A) for i,j E N is constructed by adding, removing, or

reordering sources of a and the arguments or applicands equal to them, along with corresponding

sources anid sinks of successors or predecessors of a in the restricted node graph EMy, so that the

ith source of a becomes the jth source of a, where a new source is added when i > n, and a

source is removed when i < n < j. In the latter case, we additionally require that if the applicand

rA(a) = Q E QA is a submnodel, then the argument of the sink of rQ corresponding to the removed

source is undefined, pQ(rQ, -i) = 0; and if the node a = rA, then the removed source is not the

applicand or argument of any node or sink in A, [a, i] ý IrA (UA) U PA(YA).

We construct the model M' as follows: first form the model M" = RSX (M) by reassigning the=,ij (M//) by reassigning the

sources of a; then

1. if a = rA is a root node, then: if A has an immediate predecessor a E NJ (A) in the submodel

graph of M, form M"' = v~,i -(vPj (v•Y (M"))) by rearranging the corresponding sinks

of a and corresponding sources or sinks of its successors and predecessors in the applicand

graph QtM, otherwise let M"' = M"; then form M' = v,+j (vR - "')) by rearranging

the corresponding sources or sinks of the successors and predecessors of a in tMy; otherwise

2. if a E SA is a subnode, then: if 7rA(a) = Q QA, form M"' = vRRY+ (RRY- RSY ( )))

by rearranging the corresponding sinks of the root node rQ and its successors and predecessors

in the applicand graph 21 ~, otherwise let M"'/ = M"; then form M' = v (vX+ a,i,jX- (M ))

by rearranging the corresponding sources or sinks of the successors and predecessors of a in

where

SRRX+ V X Y Z  RY s = rs
Sthe model VR +(M) OSe, OseUvnN (a) Vs++ +XYv (M), with XYZ = RR s s

(M RRX scSs

and k + = k - PA(a, -k) for k E {i, j}, is defined recursively to rearrange the corresponding

sources of subnodes and corresponding sinks of root nodes among successors of a in Q.M

* the model vRRX-(M) - OSE'M OsEUfsnN (a)V R X -R oVx z -(M), with XYZ = RRY s=rs
ai M si-,J- s,-,- RRX sE Ss

and k- such that ps(s, -k-) = k for k E {i,j}, is defined similarly for the predecessors of a

in 2.M

where in the above, we additionally require that the preconditions on RRX are satisfied for each

recursive application of RRX+ anid RRX-, and similarly for RRY.



This transformation effectively inserts, deletes, or permutes one source of a without changing the

external connections to existing sources of a that remain, and propagates this rearrangement to the

sources and sinks of related nodes of internal models of M to preserve the functional interpretation

of M. In the visual representation, one bracket on the right side (left side) of the rectangle of the

subnode (root node) a is added, removed, or moved to a different position on the side of the rectangle

along with the tail of any arrows out of it, and similar changes are made to nodes that precede or

succeed a in the restricted node graph 9tM.

Sink Rearrangement (RRY) The model M has an instance of an internal model A with a node

a E UA with arity AA (a) = m that does not precede or succeed the root node rM or one of its

sources or sinks in the restricted node graph of M, NI_ (a) n (IM,rM U J M,rm) = 0.

Then the model M' in N' = vI" (K) for i,j E N is constructed by adding, removing, or

reordering sinks of a and their arguments, along with corresponding sources and sinks of successors

or predecessors of a in the restricted node graph 2 1 , so that the ith sink of a becomes the jth sink

of a, where a new sink is added when i > m, and a sink is removed when i < m < j. In the latter

case, we additionally require that if the applicand 7rA(a) = Q E Qa is a submodel, then the source

of rQ corresponding to the removed sink is not the applicand or argument of any node or sink in

Q, [rQ, i] 0 7rQ(UQ) U pQ(YQ); and if the node a = rA, then the argument of the removed sink is

undefined, PA(a, -i) = 0.

We construct the model M' similarly to the analogous construction for RRX above, generally by

substituting RRY for RRX and vice versa. The additional preconditions discussed above apply in

an analogous fashion. The interpretation is analogous, substituting sinks for sources, and the visual

representation is analogous, substituting the left side of a rectangle for the right side and vice versa.

Argument/Applicand Rearrangement (RRP) The model M has instances of an internal

model A E RM with a node a E UM and of an internal model T E RM, and either

1. a node or source x E IM,a or

2. a node or sink C E JM,a-

Then the model M' in N' = vRRP+ () or N' = vRRP- () is constructed by

1. forming the model M" by undefining any arguments and applicands of nodes or sinks

KeC t f E ue U7rM (u) = x}t U {YE Y p MIpM(y) = x}

equal to x and forming a new subnode t with a submodel applicand S functionally restoring



these arguments and applicands,

QM" = QM U{6

rM/, = r

/ML"1(S) = IPM(s))

S VM(S)

S

PM" (Y) = [t, IClKy

I PM(Y)

where

Qs

rs

Ss

us(rs)

vs (rs)

rs(rs)

ps(rs, k)

s=t

otherwise

s=t

otherwise

s=t

otherwise

S= [t, -1]

] PM(Y)= x

otherwise

0
rs

0

KI
1

0

[rs, 11,

2. forming the model M" by undefining the argument or applicand of ; and forming a new



subnode t with a submodel applicand S functionally restoring this argument or applicand,

QM". = QM U {S}

rM = rM

'AA

V.A

'rA

PM

SM = SM u {t}

i1(S) ={VM (S)

4u (S) = a { (s)

PM,(s)
(s) [t,1]

PM (Y)

s=t

otherwise

s= t

otherwise

s=t

otherwise

'E UM

cEY•
y= [t, -1

otherwise

where

Qs = 0

rs = rs

Ss = 0

As (rs)
vs (rs)

7s(rs)

ps(rs, -1)

= 1

= 1

= 0

= [rs, ,

then relocating t into T and immersing it in T, M' = vIMS(v RS(M")). This transformation

effectively moves a portion of the path of the connection(s) represented by the argument(s) or appli-

cand(s) of ; or equal to x into the internal model T. In the visual representation, the midpoint(s)

of the corresponding arrow(s) are moved into the representation of T, with the connecting path(s)

preserved by arrows and junctions of arrows across left and right sides of rectangles.



One may verify by methods similar to those in §3.3.2 that the syntactic transformations defined

above do not alter the normal form of models to which they are applied.

4.3 Partial Inversion Transformation

The partial inversion transformation interchanges the roles of root node sources and sinks (func-

tionally, inputs and outputs) in a model, changing the model's normal form but preserving certain

mathematical relationships between its elements. Partial inversion captures the operations that

would normally be performed in engineering design activities through offline equation solving (man-

ually or by computer algebra) or numerical iteration, but can often provide more useful results in

practice (§5.3).

In its most general form, a partial inversion of a model KA with irr(rAr) = rA by a permutation

a : ((-mAr)) U ((ng) t ((-mg)} U ((nrg) is a model iV' such that the model M defined by

Qm = {MN, N'}

rT

SM

ILM(S)

VM (S)

nM (s)

- rM

= {a,a'}

nAr

miv

s = rM

otherwise

otherwise

S = ra

s=a

s = a'

PM(S, -k) =

[a', k]

[rM, k]

[rM, -u(-k)]
[a, o,(-k)]

o(-k) E (-mg)

a(-k) E (nvV)

8s = ra

s=a



has the same normal form as the model M' defined by

QM, = {K}

rM' = TM'

SM, = {a}

M(sG) = { n-r s = r',

mg otherwise

VM, (S) = m =M'

ngm otherwise

m) = s 

8 = 

rf,
/r(S) s=a

8 - r h

PM,' (s, -k) = [a, u(k)] a(k) E (nAr)

[rM',,k] s= a

In the functional interpretation, this roughly corresponds to the statement that, under certain con-

ditions, when N takes inputs {xi}iE(-mg) and gives outputs {xi}iE(nr), then N' gives outputs

{Xi }isa((ng)) when given inputs {xi}i E((mv)). There is no algorithm to compute a partial inversion

of a model NA in the general case; we describe an algorithm for computing partial inversions in some

special cases useful in engineering design.

We begin with the case with primitives P = C U {+, .}, with the natural auxiliary normalization

rules corresponding to the n-ary addition and multiplication operators, with the restriction that A

is mathematically well-formed in its functional interpretation, C n HgA = 0 and VsERxVsEuS s E

Hg = (1,s, U Js) n Hg = 0, where Hg User,{ x E US UXs U YsU 3 PE{+,.)p -

x V 3U•s~1E U,: -<U s} consists of the elements of the restricted node graph 2~M associated

with polynomial operators in the functional interpretation. This restriction yields models whose

functional interpretations are polynomial functions with complex coefficients.

We can compute partial inversions of n by permutations a that rearrange only those sources

and sinks that do not correspond to operators, V[r,-kjE(I,,uj ,.)nH, a(k) = k, subject to

certain conditions discussed below. In the functional interpretation, this amounts to solving the

corresponding polynomial systems for certain variables in terms of others. For our purposes, we also

assume that the polynomial systems are initialized to certain values of the variables. Such partial

inversions of K are computed by the following approach:

1. Construct a bigraph B on the set (XA U YA) n HN of sources and sinks not corresponding to



operators and the set Sg of subnodes, in which the edges join subnodes to their sources and

sinks. This bigraph is continually maintained through incremental updates as the model Kf is

modified by transformations.

2. Compute the block triangular decomposition of ýB (§2.2.4). If it has horizontal components,

the partial inversion does not exist. If it has vertical components, discard an arbitrary subset

of rows in the corresponding binary matrix to make these components square, then check

consistency at the end (step 4). This block triangular decomposition is also incrementally

maintained at each step of updating the bigraph 8, by iterating the augmentation step in the

maximum matching subroutine and recomputing those strongly connected components in the

corresponding digraph whose boundary or interior has been changed.

3. For each component of the block triangular decomposition:

(a) If the component consists of a single subnode with a subinodel applicand, recursively

compute the partial inversion of the submnodel corresponding to the desired permutation

and move to the next component; otherwise, compute the corresponding polynomial

system of the subnode.

(b) Compute the Gr6bner basis of the polynomial system corresponding to the component

and extract the roots in successive variables in terms of prior variables (§2.1.2), using a

compact representation of univariate roots (§5.1). Select the root functions corresponding

to the current initialization of the variables.

(c) The new subnodes corresponding to this component correspond to the selected root func-

tions, with links corresponding to each variable in the polynomial system.

4. Combine the new subnodes generated from each component and add links between them as

indicated in ý3 to construct the partial inversion of iV. Check consistency of any discarded

rows of 8: if they are consistent, the partial inversion exists, otherwise it does not.

The above approach completely solves the partial inversion transformation in the polynomial case.

For the miore general case where models correspond to arbitrary invertible functions, the approach

is unchanged except for step 3(b). Here the Gr6bner basis approach can be applied for some gener-

alizations of polynomial systems, such as nonlinear integer programming (7]. In more general cases,

with certain special functions, one can apply cylindrical algebraic decomposition, though this can

quickly become computationally intractable for large models [2, 14j. When models correspond to

Lipschitz-continuous functions, this approach can be augmented with semninumerical methods to

obtain primitive subroutines substituting for some or all partial inversions.

We explain this approach in more detail by example, via the case study in §5.2. Some of the

constituent algorithms and their efficient implementation are the subject of much active research:



§6.3 summarizes some recent developments. However, the overall procedure described here has

several generic benefits in the context of engineering design, as discussed later oil.

The model transformations presented in this chapter provide the practical counterpart to the

structured representation of MDPL models introduced in Chapter 3. It is the constrained structure

of MDPL that gives the language its expressive power to create and manipulate large programmatic

constructs. By itself, it would pose serious challenges to a programmer wishing to change the

relationship between distant elements of a model. The model transformations automatically navigate

and preserve the model structure in order to make such changes possible with a single operation.



Chapter 5

Theoretical & Experimental Results

We now discuss the practical use of MDPL to solve real-world engineering problems, and its ad-

vantages as the basis of a general-purpose programming language. In §5.1 we describe a prototype

environment implementing the core formalism of MDPL, with some additional features to make

it more readily applicable to engineering problems. This prototype environment has been used in

an experimental case study comparing its performance with that of a traditional spreadsheet en-

vironment in helping real users perform a nontrivial conceptual design analysis task, reported in

§5.2. This case study brings out some of the practical advantages of MDPL as an engineering tool,

which we discuss further in §5.3 along with broader consideration of their theoretical significance.

The case study also highlights some opportunities for further research and development, which we

discuss along with past and current related work in Chapter 6.

5.1 Prototype Development Environment

The prototype MDPL environment used in the experiment of §5.2 provides a crude graphical user

interface (GUI) to a single MDPL model A (termed the "current" model), including the ability to

specify and execute the model transformations in Chapter 4 on N, and to evaluate N to its normal

form as described in Chapter 3. It also provides certain primitives with predefined normalization

rules that make the language more readily applicable to engineering problems. Finally, it provides

some features for translating traditional mathematical syntax into MDPL models; this helps to

overcome some limitations of the immature user interface in creating large models from scratch.

This prototype environment is implemented in Mathematica 6, making extensive use of its extensive

symbolic language and user interface capabilities.

The GUI represents the current model using a version the visual representation described in §3.2,

limited by the effort invested in software development to date. At any one time, the viewing area

shows either the entire model, or one of its internal models, termed the "focused" model F. All



subnodes of F are identified only by labels that may be assigned to them: no submodel applicand

is visible until the user focuses on it. For any subnode in F with a submodel applicand, the user

may focus on that submodel by double-clicking the pointer on the subnode. For an instance of an

internal model of the current model that is the applicand of a subnode of a "parent" model, the

user may focus on the parent model by holding down the SHIFT key and double-clicking the pointer

anywhere in the window.

To apply one of the model transformations in Chapter 4, the user may select certain elements of F

(nodes, sources, or sinks) by clicking on their visual representations with the pointer. The user may

select multiple elements simultaneously by holding down the CTRL key while clicking. If an element

is selected in F, all selected elements in any other internal model of the current model are deselected.

The user may deselect all elements by clicking the pointer in an area outside the representation of

any element of F, termed clicking "in" F. Once certain elements are selected in a model M, the

user may perform certain keyboard or pointer actions to apply the desired transformation. The

transformations performed by various user interface actions are summarized in Table 5.1, where

U* C UM is the set of selected nodes, X* C XMis the set of selected sources, and Y* c YM is the

set of selected sinks.

Some user interface actions apply multiple transformations in a compound fashion, reducing

the number of operations required to complete some common tasks. For instance, applying the

UP ARROW or DOWN ARROW keys to multiple sources and sinks moves all selected sources and

sinks up or down in the source/sink orderings of their corresponding subnodes (where applicable).

Similarly, the DELETE and ENTER keys remove all selected subnodes, sources, and sinks, or add

new sources and sinks below all selected sources and sinks, respectively. Combining the CTRL key

with the previous keys applies the syntactic transformations RRX and RRY in place of the semantic

transformations RSX and RSY. Right-clicking on a source or node generates paths of arrows from

it to all selected nodes and sinks. Right-clicking in M encapsulates the selected subnodes via EMS

(when applicable), while right-clicking in FT # M relocates the selected subnodes to F via RLS.

The remaining transformations can be applied similarly to all applicable selected elements of M.

Where possible, the set of selected elements of each type persists after a transformation is applied,

unless specifically cleared by the user. This allows multiple related transformations to be applied

quickly to the same element or group of elements. The last column of Table 5.1 indicates when

certain types of elements must be cleared from the selection by the application of a transformation,

in order to maintain the restriction of the selection to elements of a single model. It may prove

useful in future MDPL interfaces to relax this restriction in some cases. Certainly there is much

room for improvement upon this interface design, which was limited by the time available for software

development. Some ideas from participants in the case study of §5.2 are described later on.

The prototype environment used in the case study of §5.2 provides some additional built-in



Table 5.1: Model transformations applied by user interface actions in the prototype environment

UI action Change to model A/ Selection subsets cleared

DE -- OsEins, uDLS o OsEs (OkE(•,(s)) [s,k]EX* 'v,k,,"(s)+1 °  U X* *
DELETE OL [ '

1
R S Y

OkEk ) (s)+( [s,--k]EY* s,k,A (s)+l1

UP A'RROW OsGS (Oke(vK(s))lk>1A[s,k]X*Vskk 1o(
UP ARROW RSY

OkcE(py(s)) k>1A[s,-k]Y*V skk-1
RSX

DNWN A- OES (Ok--v•(s)--1ý(-v•(s))Ik<,VA(s)A[s,k]EX*Vs,k,k+l
DOWN ARROW RSY R

Ok- l(s)-1E(-pm(s))Ik<pA(s)A[s,-k]EY* Vsk, k+1) )

NENTER Os k--vm(s)-lc(-Kv(s))Ik<vlm(s)A[s,k]EX*sR,2.~X (s),k+l1

Ok--p (s)--CE(--i-(s))Ik<tLM(s)A[S,-k]E'Y* s,2.VM(s),k+l) (Ar)

nr *- OsEU-nsm DLS v OsESQ (Oke(A.(s)Vl[s,kslX* s kvm(s)+lO

CTRL+DELETE U*, X*,
A RRY

O kE(/•.(s)) l [s,-k]EY* s,k,RLY (s)+l (1 )

SRRX
A W- OsEsm (OkcE(vm(s))jk>1A[s,k]EX* s,,k -1

CTRL+UP ARROW RRY
Oke( 1 (s))Ik>1A[s,-k]EVY*Vskk 1) (Ar)

RRX

NAr OsRsS (Ok-vmy(s)-lE(-vv(s)) Ik<vY(s)A[s,k]X* Vs,k,k+1O
CTRL+DOWN ARROW RRY

Ok-iml(s)-le(ý- (s))Ik<1Am(s)A[s,-k]EY* Vsk,k+1) (
(URRX

CT ENTE Os (Ok-vm(s)-lc(-vl(s))mIk<V(s)A[s,k]EX* L,2.~v(s),k+10

CTRL+ENTER RR Y  )

Ok-p>t(s)-lE(-tm (S)lIk<t.t (s)A[S,-k]E'Y*~ ,2.~ (s),k+ (A
RSPRSR

right-click on x i U), X A -J Os<*uvssP o OyvE vsy J(Ar)

right-click in F # M *- OEU vS (Ar) x*, Y*

right-click in F = M Ar- Es, (AN) U*, X*, Y*

SHIFT +right-click in F = M A - OsEU* nsl MS () U*

CTRL+left-click in T ArN OREU* R RRP-(

CTRL+right-click in F Anr - OAe*uxr* (;,P( )



features that make the environment more readily applicable to engineering design tasks. Many

of these features take the form of predefined primitives that can be applied to subnodes to provide

certain functions, discussed below. The prototype environment makes each of these available through

a button that inserts a new subnode in the focused model with the corresponding primitive as

applicand.

Table 5.2 shows a number of predefined primitives used for performing operations on lists: these

kinds of operations are standard elements of most functional programming languages, and parallel

some of the capabilities in the spreadsheet environment used for comparison in the case study. The

second column of the table gives intuitive mathematical representations of the inputs that would

be passed to the sinks on the left-hand sides of subnodes applying these primitives, while the third

column gives the corresponding outputs that would be obtained from their sources. The last column

of the table indicates how they may be implemented in MDPL; these encodings bear some similarities

to typical implementations in symbolic functional languages.

Another predefined primitive provides a simple plotting function that accepts an MDPL model

and plots its first output over a supplied range of values for its first input. To simplify the tasks in

the case study, the version of the plotting function in the prototype environment generates "log-log"

plots that are logarithmically scaled in both variables. With appropriate inputs, the environment

normalizes these primitives to a graphical form displaying the plot, which appears like any other

primitive in the MDPL user interface.

Finally, the prototype environment provides primitives representing some basic mathematical

operations familiar in any common programming language. These are indicated with their usual

symbols. Note that the addition and multiplication primitives used as applicands can accept any

number of arguments and return the sum or product of all. Subtraction and division are carried out

by first multiplying one of the arguments by -1 or raising it to the -1 power, then applying the

addition or multiplication operator, respectively.

The acyclic digraph representation used for MDPL models offers much more compact representa-

tions of certain mathematical functions than the traditional expression trees of symbolic functional

languages. For instance, Figure 5-1 shows an MDPL model representing the three roots of a cubic

polynomial equation in terms of primitive mathematical operators, while Figure 5-2 shows the same

three roots in the more restrictive expression tree form, such as would be returned by a computer

algebra system. The prototype environment uses precomputed versions of compact representations

like that in Figure 5-1 when supplying submodels for univariate polynomial roots in the partial

inversion transformation, which substantially reduces the size of the resulting models.

Compact visual representations of MDPL models like the ones in Chapter 3 are extremely chal-

lenging to draw algorithmically, and such layout problems constitute a research topic in themselves.

The prototype environment uses a hybrid algorithm for drawing MDPL models, which uses poly-



Table 5.2: Definitions and interpretations of MDPL
prototype environment

primitives for list operations available in the

Name Inputs Outputs Label Definition

Expend [La, -. , an] Lai, .. Ln-1i, ua

T "_ r1

I, , 1 rIlk

List az, a2, - * -s On 81, - - - a On

A _ _- 1 ] EIIIVII
Apply f, [ax,...,an] f(ax,...,an)

Mn f Fa a 1 n ((n 1
J , I l, , * n I I . J. I ' n

Def6npd? a. *q. i C
Defined? a ast

2

A,' dl [• [r n 1
ppen ax,...,as, as 1 ax,...,anan+1

0 >
n=0~=



Figure 5-1: MDPL model computing the three roots of the cubic polynomial ax3 + bx2 + cx + d over the complex numbers from the coefficients b, c,
a, and d (in order from top to bottom), where i denotes the complex unit Vi and a superscript n denotes taking the nth power
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Figure 5-2: Expression trees corresponding to the three roots of the cubic polynomial ax 3+bx 2 +cx+d

over the complex numbers in terms of coefficients a, b, c, and d, where i denotes the complex
combination u + iv of its two subelements u and v



nomial interpolation to merge global positioning and routing of nodes and arrows generated by

layered digraph drawing algorithms [29] with local positioning and routing rules around subnodes

determined by aesthetic considerations. Figure 5-1 shows an example of a layout generated by this

approach. While leaving much room for improvement, this method for automated layout proved

adequate for practical use in the case study of §5.2.

5.2 Case Study: Space Telescope Architecture Analysis

The case study described here derives from an engineering design exercise given to students in the

16.89 graduate space systems engineering course at MIT in 2007 [201. While small enough to be

analyzed in detail, it is sufficiently complicated to benefit substantially from the capabilities enabled

by MDPL. Moreover, it reflects a real-world conceptual design problem relevant to major decisions

in NASA's space exploration program. The results of this case study indicate some key strengths

of MDPL, and suggest that these strengths will become increasingly important as the scale and

complexity of design tasks increases.

The case study assesses the benefits of using an MDPL-based analysis tool on the performance

of a design task. The design task analyzes rough trade-offs in performance and cost for astronomical

telescopes observing different wavelengths (radio frequency, infrared, and visible) at different loca-

tions (on the Earth's surface, on the Moon's surface, or in space at the Earth-Sun Lagrange point

ESL 2 ). This type of analysis may impact the architecture of the next major space telescope after

the James Webb Space Telescope (JWST), and potentially the architecture of the lunar exploration

program, though of course a rigorous analysis must account for differences in key technologies and

noise environments not captured in this design task.

To experimentally evaluate the practical impact of using MDPL, the author randomly assigned

nine volunteers from the 16.89 class to one of two groups. All participants were given the docu-

ment in §5.2.1 describing the design task and including the relevant domain knowledge necessary to

generate solutions. One group of five participants was assigned to complete the design task using

the Microsoft@ Excel@ spreadsheet environment, which is currently used in the leading integrated

design centers of the aerospace industry [12]. The other group of four participants was assigned to

complete the design task using the prototype MDPL environment described in §5.1. Participants in

the first group were all familiar with Excel, and were given a brief review to confirm their familiarity

with relevant features; participants in the second group were given a brief introduction to the MDPL

environment covering the features described earlier.

The design task used in the experiment differed from that given in the class assignment in three

key ways. First, participants were previously familiar with the overall task from their experience in

the 16.89 class, as one might similarly expect of experts addressing a design problem in their field.



Second, the version in the experiment provided the necessary domain knowledge in a readily usable

form, as one might similarly expect a professional engineer to have relevant references close at hand.

Finally, the version in the experiment requested specific analytical results different from those in the

original exercise, based on the same underlying relationships between design parameters.

The first two changes were made to better reflect the characteristics of a professional engineer-

ing environment, and to allow the task to be performed in a single 90-minute session with each

participant. The final change was made to limit the effect of participants' previous efforts in the

class exercise on their performance in the experiment, and to better explore some of the capabilities

enabled by MDPL.

The following section replicates the document given to experiment participants describing the

design task. To summarize:

1. Part I presents a mathematical model of an astronomical telescope and a family of initial design

parameters as initial inputs to the model, and asks participants to calculate the values of the

remaining design parameters according to the model.3 The former are among the key physical

and environment parameters of an astronomical telescope, while the latter are among the key

performance parameters. This calculation drives the participant to effectively implement the

model described by the domain knowledge provided.

2. Part II asks participants to assess two bivariate trade-offs between two different pairs of de-

sign parameters, while holding certain system parameters constant and allowing other design

parameters to vary. The first of these trades system cost against integration time; the latter de-

termines the number of targets observable in a given period of operations. The second of these

trades integration time against signal-to-noise ratio for the extraterrestrial locations within a

mass cap imposed by the largest available space launch vehicle. These roughly describe the

major trade-offs facing designers of a new state-of-the-art single-aperture telescope, and drive

the participant to conduct comparative analysis using the model under different constraints.

3. Part III asks participants to consider a modified architecture employing two single-aperture

telescopes separated between one terrestrial and one extraterrestrial location for use as an

interferomieter. It proposes a crude model for evaluating the performance of the two options

for this architecture, to illuminate the competing factors in the model, and drive the participant

to reuse elements of the original model in a new way.

Note that participants were given Part II only after completing Part I, and Part III only after

completing Part II: as in real engineering design work, this prevented them from anticipating the

specific questions they might later wish to address when constructing their initial implementation.
3 Note: this usage of "model" is distinct from "MDPL model" - we use the latter when necessary to avoid ambiguity.



Participants who could not complete all parts of the design task were asked to spend -5 minutes at

the end to speculate on the approach they would pursue with more time to complete the task using

their environment.

5.2.1 Design Task

This design task is divided into 3 parts. You will receive each part of the task upon completion of

the previous part. This is intended not to frustrate you, but rather to represent the unanticipated

changes in direction often encountered in real design studies.

Since time is a major factor in the assessment of results from this experiment, you are asked to

complete the tasks in each part as quickly as you can. You should feel free to ask any questions of

the experimenter, though the experimenter may choose not to answer some questions.

Part I: Model Construction This part asks you to construct a quantitative model representing

a family of astronomical telescopes using the modeling environment.

Please use only the parameters and relationships provided below to construct your model. Do

not worry about the underlying correctness of the model or the information given.

Table 5.4 describes the parameters whose values are given as inputs in Part I. Table 5.6 describes

the parameters you will need to calculate using the model.

Your model should cover telescopes at three frequency bands (RF, IR, VIS) and three locations

(Earth, ESL2 , Moon). Some of the input parameters may vary according to frequency band and/or

location, as indicated in Table 5.4.

The final outputs of your model in Part I should be angular resolution (Or), signal-to-noise ratio

(SNR), and total cost (CT).



Table 5.4: Parameters with given values in Part I

Parameter Symbol Value Units

instantaneous field of view IFOV 7.272 x 10- 5  rad

target distance r 9.257 x 1019 im

2.1 x 10-1

1.0 x 10- 5  m

5.0 x 10- 7

detector pixel width d 3.0 x 10- 5  in

quality factor Q 1.1

Rayleigh factor p 1.220

Boltzmann constant k 1.381 x 10-23 J/K

target blackbody temperature T 5785 K

Planck constant h 6.626 x 10- 34  J/s

light speed c 2.998 x 108  mI/s

Earth ESL2  Moon

RF 1.00 1.00 1.00
atmospheric transmission factor Tx

IR 0.80 1.00 1.00

VIS 0.98 1.00 1.00

bandwidth AA 2.0 x 10-6 Im

target radius R 6.96 x 108 m

Earth ESL2  Moon
net velocity change for orbital maneuvers AV Earth ESL2 Mo /s

0 12800 15400

Earth surface gravitational acceleration g 9.8 m/s 2

rocket fuel specific impulse IsP 450 s

specific transport cost ct 1163 $/kg

telescope mass scale factor ms 1175 kg/m 2

quantum efficiency QE 0.5

readout noise electron count Nr 25

optical transmission factor T0  0.75

observation integration time Ti 30 s

Earth ESL2  Moon

RF 50 000 500 000 100 000
primary aperture cost scale factor RF 50000 500000 100$/n 3

IR 500000 1000000 1000000

96 VIS 500 000 1 000 000 1 000 000



Table 5.6: Parameters with computed values in Part I

Parameter Symbol Expression Units

target pixel resolution Y = IFOV - r m

focal length f = In

primary aperture diameter D = 2-p.AQ md- d

angular resolution rr - rad

telescope mass mt = m- D 2  kg

transport mass mi mt exp( kg

primary aperture cost Co - a. D 3  $

total cost CT CD + ct mi $

target spectral irradiance H = 2rh expc2  1 W/m 3

target intensity L = R2 H . \ - AA W/sr

sensor input power Pin = 7r (D)2 L W

integrated energy Hi - Pin 7 -Ti J

available photon count Np = A

signal-to-noise ratio SNR = Np.QE
/N+N..QE

Tasks:

I.1. Using the modeling environment, build a model capturing the parameter values and relation-

ships indicated below. Your model should be capable of accepting any reasonable value for

any of the input parameters.

1.2. For each frequency band and location, compute the angular resolution (0,), signal-to-noise

ratio (SNR), and total cost (CT) for the telescope system described by your model for the

given input values. Record these values in the form of Table 5.8.

Table 5.8: Results from the model in Part I

angular resolution 0r trad] signal-to-noise ratio SNR [-] total cost CT [$]

Earth ESL 2  Moon Earth ESL2  Moon Earth ESL 2  Moon

RF RF RF

IR IR IR

VIS VIS VIS



Part II: Trade Analysis This part asks you to manipulate your model to answer certain questions

of interest to telescope designers. Please do each of the following for each frequency band and each

location where applicable.

Tasks:

II.1. Allow the instantaneous field of view (IFOV) and the single-observation integration time

(Ti) to vary. Assume a fixed signal-to-noise ratio (SNR) of 10. Create a plot of the single-

observation integration time (Ti) on the vertical axis versus total cost (CT) on the horizontal

axis, with the total cost (CT) on a logarithmic scale from $106 to $1010, with values at successive

multiples of 10.

11.2. Start from the model you constructed in the previous step. Now consider only the space

locations (ESL2 and Moon). Allow the operating wavelength (A) to vary, and assume the fixed

values a = 1000000 $/m3 and Tx = 1.00. Assume that the transport mass (mi) is fixed at

60 000 kg by the launch vehicle. Create a plot of the total cost (CT) on the vertical axis versus

single-observation integration time (Ti) on the horizontal axis, with the single-observation

integration time (Ti) on a logarithmic scale from 100 to 104 seconds, with values at successive

multiples of 10.

Part III: Model Extension This part asks you to extend your model to compare options for

a modified architecture for radioastronomical observations. Instead of a single-aperture radio tele-

scope, the modified architecture employs two single-aperture radio telescopes in different locations,

combining their observations to perform very long baseline interferometry (VLBI). In order to achieve

a long baseline for a low cost, the two telescopes are to be located either at the Earth and the Moon,

or at the Earth and ESL 2 . As a very crude starting point, model the two-telescope system with the

following assumptions:

* the telescope performance model from Parts I-II applies individually to each of the two tele-

scopes in the system

* the two telescopes both operate at radio frequency (RF) wavelengths

* the net cost of the system is the sum of the costs of the individual telescopes, CT = CT, + CT2

* the net angular resolution of the system is that obtained by an individual telescope with a

diameter equal to the baseline I with values in Table 5.9, 0, = j-:

* the net signal-to-noise ratio is the ratio of the sum of the signal photon counts from both tele-

scopes to the sum of the noise photon counts from both telescopes, SNR = (N 1 ±+Np 2 )-QE
2-N'+(Np, +Np 2 )-QE



Table 5.9: Additional parameter values in Part III

Parameter Symbol Value Units

baseline (synthetic aperture diameter) Earth-ESL2  Earth-Moon m
1 500 000 380 000

Please do each of the following for each of the two system options.

Tasks:

III.1. Let each telescope have the initial values given for all parameters listed in Table 5.4. Modify

the original model from Part I to calculate the net system angular resolution (Or), signal-to-

noise ratio (SNR), and total cost (CT) as described above. Record these values in the form

of Table 5.11.

111.2. Start from the model you constructed in the previous step. Allow the instantaneous field of

view of both telescopes (IFOV1 , IFOV2 ) to vary. Assume a fixed cost (CT) equal to the value

you found in the previous step. Create a plot of the diameter of the extraterrestrial telescope

(D2) on the vertical axis versus the diameter of the terrestrial telescope (D1) on the horizontal

axis, with the diameter D 1 on a logarithmic scale from 10-1 to 103 m, with values at successive

multiples of 10.

Table 5.11: Results from the model in Part III

angular resolution Or [rad] signal-to-noise ratio SNR [-] total cost CT [$]

Earth-ESL2  Earth-Moon Earth-ESL2  Earth-Moon Earth-ESL 2  Earth-Moon

5.2.2 Task Analysis

Before discussing the results of the experiment in §5.2.3, we describe here the reasoning process

required to complete the above design task, and the basic steps of its realization in each experi-

mental environment. Both environments offer considerable flexibility in implementation: here we

discuss only one approach specific to each environment, while §5.2.3 discusses alternative approaches

observed in the experiment.

Part I: Model Construction Figure 5-3 shows a visual representation of the binary matrix

whose rows correspond to values provided in Table 5.4 and equations provided in Table 5.6, whose



columns correspond to the variables in the model, and whose entries indicate which variables relate

to a particular value or equation. The information represented here is immediately apparent to the

engineer from looking at Tables 5.4 & 5.6 and the symbols contained in each equation, and the

engineer need not explicitly construct this matrix.

In the block triangular decomposition of the above matrix, all row- and column-subsets consist

of a single row and column (Figure 5-4). This indicates that values for all variables can be found

by finding an equation with a single variable whose value is unknown, computing the value of

that variable by solving for it in the equation, and repeating this procedure until values have been

computed for all variables. The order in which equations are used is given by the ordering of rows

in the block triangular decomposition. In this particular case, no equation solving is required, since

in each step the unknown variable is already isolated on one side of the equation.

The above properties may not be immediately apparent to the engineer, however, they may

suspect as much from their prior experience with the model used in the design task. Models for

conceptual design are often initially formulated with these properties, since preserving them at each

step in the construction of the model provides a simple check that the model is well determined.

In engineering design, models in this form often accept physical design parameters as inputs and

yield performance design parameters as outputs. A model satisfying these properties can be used

fairly easily to calculate its output parameters, since individual parameters can be computed one by

one using individual equations. This makes the implementation of such a model in the spreadsheet

environment straightforward, where each equation is entered as a one-line formula (Figure 5-5). In

the corresponding MDPL model generated from the model equations (Figure 5-6), it is reflected in

that each subnode, representing one equation, has a single source (Figure 5-7).

To incorporate different families of initial values for the variable parameters of telescope wave-

length and location, each environment offers multiple approaches. In the spreadsheet environment,

with two variable parameters, the design parameters dependent on one variable are allocated mul-

tiple corresponding horizontally adjacent cells, and those dependent on the other variable are al-

located multiple corresponding vertically adjacent cells, while those dependent on both variables

are allocated an array of cells spanning multiple rows and columns (Figure 5-8). An array for a

parameter with given values is filled with the corresponding values, while an array for a parameter

with computed values is filled by modifying the original formula to identify constituent parameters'

non-dependencies on either variable (using the '$' character in Excel®), and then copying the re-

sulting formula across all cells in the array. This approach requires modifying multiple references in

nearly every formula of the model, and copying nearly every formula over multiple cells (which must

be redone whenever formulas are changed later on). This type of approach fails in the case of more

than two variable parameters, and generalizing it requires even more extensive manual changes to

references in cell formulas.
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A B C D E F G H J
IFOVI 7.272E-005 Y 6.732E+015

r 9.257E+019 fI 4.125E-001.

a 2.m100E-00I D 7,751 E+003

1.000E-005i theta r 3,305E-005
5.000E-007 m t 7.059E+010.

d 3.000E-005 m 1 7.059E+010O

01 1.IOE+OOO C_D 2.328E+016

rho 1.220E+a000 C T 2.336E+016;

k 1.381t E HJ lambda=2*Pl1 t BlI B12A2AB3A5/(EXP(B12*B1 1/(B9*B1O*B\})

T 5.785E+ L 1.874E+004

h 6.626E Pn 1.032E-028

c 2.998E+ HI 2.322E-027

tau lamtbda 1 .OOEf+00O Np 2.455E-003

Delta lambda 2.000E-006 SNR. 4.909E-005

R 6.960E+008i

Delta V 0.000E+000

g 9.807E+000

I sL 4.500E+002

c t 1.163E+003

. + ....... ....... . . . ... ... . .. ...... ....... ....... . ... . ................................................m s¶ 1.175Et003
tauO0 7.0soE-0o1

TI 3.000E+001

alpha 5.000E+004

Figure 5-5: Spreadsheet implementation of the initial telescope model in Part I, where the highlighted
formula corresponds to the equation H = 2r exp( -, and values shown are for the initial

Earth-based RF design
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Figure 5-6: MDPL implementation of the initial telescope model in Part I, where subnodes shown
have submodel applicands implementing equations in the model corresponding to their labels
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Figure 5-7: MDPL submodel applicand of the rightmost subnode in Figure 5-6, corresponding to
the equation SNR = Np.QE

,N2+ Np-QE

The MDPL environment offers several different approaches: the one shown in Figure 5-9 uses

some of the built-in primitives described in §5.1 that provide functionality for handling arrays. (Note

that in order to display the submodel applicand of the uppermost subnode in this model, Figure 5-9

is a drawing rather than the visualization provided by the prototype GUI.) After values for the

parameters in Table 5.4 have been entered as primitives, those except AV, a, A, and -T are linked

to the corresponding sinks on the model of Figure 5-6. Applying EMS to the result creates the

subnode in the upper right of Figure 5-9. The remainder of the model is constructed by creating

new subnodes via EMS and using RSR and RSP to build up the model as shown. Though the

result is somewhat messy, the number of user interface operations is fairly small. Note that many

operations are saved by defining the applicands of the second and third large subnodes using the

first one. This approach requires forming several new subnodes, arguments, and applicands, but

does not require any modifications to the original telescope model. Moreover, this type of approach

extends naturally to handle more variable parameters with minimal additional effort.

The values of the output design parameters for Part I can be read directly from the corresponding

cells in the spreadsheet environment, or from the neatly arranged lists of numeric primitives in the

normal form model produced by the MDPL environment. The latter representation is adequate for

this case study, though future MDPL environments may offer a special compact display format to

better facilitate examining large results in the form of arrays.

Part II: Trade Analysis In Part II.1, the model must be modified so that SNR and CT are input

parameters while Ti is an output parameter. In the MDPL environment, this is done by applying

the partial inversion transformation, using a permutation that swaps SNR and CT with IFOV and

Ti. In the spreadsheet environment, it requires considerable effort.

Figure 5-10 shows the block triangular decomposition for this case, in the style of Figure 5-4. This

shows that the row- and column-subsets no longer consist strictly of single rows and single columns:
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A I B i C: D E G I H
IFOV 7.272E-005

rI 9.257E+019
lambda' 2.OOE-001

1.000E-005

5.000E-007

d' 3.000E-005
Q 1.100E+000

rho' 1.220E+000

k 1.381E-023
................. ......... . . ..

T 5.785E+003.

h 6.626E4-034

c 2.998E+0086

tau lambtxa I.000E+00i 1.000E

8.000E-001 1.OOOE...... .................. .. E o .
9.8BOE-00 001 00.E

Delta lambda 2.000E-006:
R 6.960E+008

Delta V 0.000E+0W 1.280E
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1.163E+003.

1.175E+003;

5.000E-001.

2.500E+001I

7.500E-001

3.000E+001

5.000E+004

5.000E+005

5.000E

1.OODE

1.000EI .0 ...........

Y 6.732E+015

f: 4.125E-001

D0 7.751E+003:

3.691 E-O01

1.845E-002

theta r 3.305E-005:

3.305E-005

3.305E-005

mt 7.059E+01O
1.601 E+002

4.002E-001

m_ =$FS"EXP(B$18/($B.$ *$B$20))

+000 1 .00E+E000 1 601E+E002: 2.910E+003 5.246E+003:
+00D) 1.000E+000 4.002E-001 7.276E+000 1.311E+001)

+00) 1.000E+000 CD 2.328E+016 2.328E+017 4.656E+016.

2.514E+004 5.026E+004 5.028E+004

3.142E+000 6.285E+000! 6.285E+000.

+004 1.540E+0.D4. CT 2.336E+016 2.343E+017 4.925E+016:

2.113E+005 3.435E+006 6.151E+006

4.685E+002 8.468E+003 1.526E+0D4

H lambda 7.736E-00O

1.326E+010

8.347E+013

L 1.874E+i004 1.874E+004 1.674E+O04i

2.568E+021 3.211E+021 3.211E+021

1.981E+025: 2.022E+025 2.022E+025

+005, 1.000E+005) P in: 1.032E--28 1,032E-0282 1.032E-82

+006 1 .OOOE+0D6. 3.207E-020 4.009SE-20 4.O09E-020

+006i 1.000E+O06 6 184E-019 6.310E-019 6.310E-0191

H _I 2•322E-027 2,322E-027 2.322E-027

7.215E-019 9,019E-019 9.019E-019

1 391E-017 1.420E-017 1.420E-017

Njp 2A45E-003 2,455E-003 2.455E-0083

3.632E+001 4.540E+001 4.S40E+001

3.502E+001 3.574E+001 3.574E+001

SNR 4,909E-005 4,909E-005 4.909E-005

7.161E-001 8.920E-001 8.920E-001

6&909E-001 7.048E-001 7.048E-001

Figure 5-8: Spreadsheet expanding the implementation of Figure 5-5 over multiple wavelengths and
locations
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Figure 5-9: MDPL model applying the model in Figure 5-6 to multiple wavelengths and locations
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one pair of corresponding row- and column-subsets involve four rows and four columns. This indicates

that the corresponding equations must be solved simultaneously to express the parameters CD,

D, mi, and mt in terms of the parameters a, ct, CT, g, Isp, mi, and AV. In the spreadsheet

environment, with no built-in capacity to analyze the model structure, determining this fact requires

careful analysis.

The solution of the equations poses additional challenges to the engineer using the spreadsheet

environment. Computing the solution by hand or (more likely) with a computer algebra system

yields a very large result: for instance, the first two solutions for CD alone, even after algebraic

simplification, span nearly a page below; the third solution is similar in form to the second. For each

of the parameters CD, D, mi, and mt, the engineer must then check which is the desired solution by

substituting in the initial values for the known parameters from the previous implementation of the

model. (The numerical solver in the Excel® software does not consistently converge to the correct

solution, aind cannot be reliably used for this task.) Finally, the engineer must encode these new

formulas for each of the parameters into the spreadsheet. Here the engineer must decide whether

to overwrite the existing formulas of the original model to maintain the same layout (requiring

additional effort to recover them for Part 11.2 anid Part III), to do the same after copying the

original model (leading to the aforementioned pitfalls of copying), or to create new cells for the

modified formulas (creating a complicated branched layout less amenable to further manipulations).

1 AV 2AVco D CT - e I'P ctms 6e'- Ip 2m2

4AV

25 /3 e 9g p C4 4

( 3V 3 )2/3
(2eg + •'P3 +3 m -+ 27aCT+ 2CT (27a2CT - 4e9cm ) )3 m3

3AV

4 /Ze cym%

- 2 j(27-C cm CT + 4 c3m)

± -2e-cmC3 + 27a2 CT + 3V3 a2CT (272CT - 4e cm 3)t t 5
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Figure 5-10: Block triangular decomposition of the binary matrix relating parameters to values and equations in Part II.1
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Clearly there is a good deal of structure in the above solutions, which is preserved in the MDPL

implementation using tile partial inversion transformatioin, yielding more usable results. The trans-

formation first creates a new subnode via EMS with submodel applicand containing the original

subnodes within the component of the block triangular decomposition (Figure 5-11). Applying itself

recursively, it then extracts the equations corresponding to the subnodes' submodels, yielding the

polynomials

CoD - D3C

AV

mi - e -~'"p mt
me - D 2ms

for which to find common roots. The recursive application of the partial inversion transformation

to the subnodes here essentially amounts to substituting intermediate parameters for constant ex-
AV

pressions: in this case, letting rm = e '·p in the third equation. The environment then computes
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Figure 5-11: Submodel created by the partial inversion transformation containing the subnodes
within a single component of the block triangular decomposition in Figure 5-10
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the Gr6bner basis of the polynomials, yielding the set of polynomials

mi - mtrm

D2ms - mt

CD - CT + ctmtrm

aD 3 - CT + ctmtrm

-CTm, + ctmtrmms + Dacmt

-DCTm + Dctmtrmm2 + am 2

mr -c t Ct rmms + DaC+m -_2 2

-CmT - c mt 2mm ± 2ctCymtrmm + S
2m 3

The last polynomial above contains only the parameter mt among the parameters to be solved

for, so its roots are computed using the compact representation for cubic roots in Figure 5-1 as

a submodel. The appropriate root (among three possibilities) is selected by checking against the

substitution of the initial values already encoded in the MDPL model. The other parameters mi, D,

and CD are similarly computed by solving for the roots of the first, second, and third polynomials

above, respectively. Though only D is strictly required to provide a complete partial inversion, the

prototype implementation includes the other parameters in case the engineer wishes to use them

elsewhere: in this sense, information is always preserved at the same level of the submodel hierarchy

as it existed before. The resulting subnodes are linked together to form the submodel shown in

Figure 5-12, which replaces that in Figure 5-11.

Looking again at the block triangular decomposition in Figure 5-10, we find that several other

equations are used to determine variables that are not isolated on their left-hand sides, as was the

case in Part I. The recursive application of the partial inversion transformation to the corresponding

subnodes of these equations yields subnodes with submodel applicands corresponding to the solved

forms of these equations,

2.p.A.Q-f D-d
D= -- f =

d 2-p -A-Q
r-d r-d

f = -- + Y =
Y f

Y
Y = IFOV r --. IFOV =-

r

N SNR. (SNR + SNR2 + 4.N 2 )

SNR= -- + Np =-
2N2 + N -QE 2 QE

Hi-A Np h c
h-c A

Hi = Pin . To -Ti -- Ti =
Pin - TO
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Figure 5-12: Submodel replacing that in Figure 5-11 after partial inversion
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as indicated in Figure 5-13. The model obtained has SNR and CT as input parameters and Ti as

an output parameter.

Our main purpose is not to compare the plotting facilities of the two environments, but we briefly

describe the plotting process in each environment. In the MDPL environment, the resulting MDPL

model above is passed to a subnode with the plotting primitive discussed in §5.1 as its applicand,

along with numerical primitives specifying the range of the plot. In the spreadsheet environment,

the engineer must substitute values into the appropriately modified model and accumulate these

values to assemble a data table from which to generate the plot. However, this does not take much

time, and hence does not distort the relevance of the experiment's results to its main purpose.

In Part 11.2, the model must be modified so that mi and Ti are input parameters while CT and A

are output parameters. In the MDPL environment, the engineer again applies the partial inversion

transformation, using a permutation that swaps the new input parameters with the new output

parameters. The engineer in the spreadsheet environment now faces different issues in altering the

model.

Figure 5-14 shows the block triangular decomposition for this case, which contains one component

involving five equations and five variables. The submnodel of the new subnode replacing this set of

subnodes in the final model must have output parameters L, A, Hi, HA, and Pi, and input parameters

in terms of the parameters c, D, h, k, r, R, T, AA, Np, Ti, 70, and -\. In this case, the equations

cannot be solved for the desired output parameters in terms of elementary functions: eliminating

the variables L, Hi, HA, and Pi,, we find the system of equations reduces to the transcendental

equation 8 (1 - e' ) r 2 NA 4 - 7r2cD 2 R2 AAT0oT-r = 0 in the parameter A.

As before, purely numeric methods cannot reliably converge to the desired solution: in fact,

this particular equation is quite pathological over the ranges of parameter values in the problem,

and standard numerical methods may not yield any accurate solutions without a well-selected can-

didate solution to start from. Hence the partial inversion transformation applies a seminumeric

method using the initial values already in the model from the previous step: it replaces the subn-

odes corresponding to the coupled equations above by a new subnode with a new primitive applicand

dynamically implementing the following approach.

Consider the case for an IR telescope at ESL2 (in this case, the cost scale factor a = 1000 000

$/mn3 , which is the value used in Part 11.2). Figure 5-15 shows a plot of the left-hand side of the above

equation as a function of A, using the initial values remaining from Part II.1, that is, all parameters

except IFOV and A have the values given in Table 5.4, while SNR is fixed at 10. The equation

has two roots even over positive values of A, so merely constraining the domain of A to "reasonable"

values is not sufficient to identify the desired solution. It can be identified by the environment only

because it is already known from the initialization left from Part II.1.

In Part 11.2, we fix the value of mi while freeing A. Consider the surface shown in Figure 5-16:
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Figure 5-13: Partial inversion of the model in Figure 5-6 by a permutation swapping IFOV and Ti
for SNR and CT
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Figure 5-15: Log-linear plot of 8 (1 - ek-X) r 2Np• 4 +,r 2cD 2 R2 AATirr versus A with initial values

from the model in Part II.1: the rightmost root A = 1.0 x 10- 5 is the desired one

it shows how the plot of Figure 5-15 varies as mi varies from its initial value of 39 174 kg to its new

value of 60000 kg, and how the desired root of A moves with it. The primitive generated by the

partial inversion transformation employs an iterative refinement method using tolerances based on

bounds of numerical derivatives of the surface moving outward from the initial solution, to effectively

trace the root locus of A indicated by the black arrow in Figure 5-16 and converge on the correct

root of A for the new value of mi. Later, when the value of Ti is varied to generate the plots in Part

1.2, it tracks a similar root locus through variations in Ti. As with any seminumeric method, this

approach can fail for sufficiently pathological functions; however, the functions encountered in the

case study provide considerable testament to its robustness.

Part III: Model Extension In Part III.1, the engineer must apply the existing telescope model

from Part I to two different sets of values for the input parameters, then combine these results,

along with the new input parameter 1, to create a model of a two-telescope system. Because both

telescopes operate at the RF wavelength, and one of the two telescopes is always Earth-based, all

the input parameters in Table 5.4 have the same values for both telescopes except for AV and a.

Furthermore, the new calculations pertaining to the two-telescope system depend only on the input

parameters p, A, and N,.

Taking advantage of these simplifications, the engineer using MDPL can first create a model

encompassing all elements of the original telescope model except SNR along with all the input

parameters except for AV, a, p, A, and Nr, and pass the values of p, A (common to both telescopes)

to an instance of this model. S/he can then apply this model to two new subnodes, passing the

corresponding values of AV and a for each of the two telescopes to one of the two subnodes. Finally,

s/he can combine the results from these two subnodes using the existing submodel from Part I

implementing the SNR equation along with some primitive mathematical operators, as shown in
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Figure 5-17: Model in Part III applying the original telescope model in two places to model a two-
telescope system; note that despite the layout of the diagram, both subnodes on the bottom left are
applicands of the same subnode above

Figure 5-17. This is only one possible way of structuring the two-telescope system, but it represents

one with very little incremental effort.

In the spreadsheet environment, the only straightforward approach is to make multiple copies of

the entire model from Part I in a new area of the spreadsheet, then fill out different copies with the

different possible input parameters, and add separate copies of the new calculations for each of the

two-telescope options. The simplification of the input parameters in Part III makes this approach

simple enough to be feasible, but it causes even greater difficulties in Part III.2 than those faced in

Part II, since all copies of each calculation must be separately replaced to reorder the dependencies

among parameters.

In contrast, the MDPL implementation of Part 111.2 proceeds using the same methods as in Part

II: here the new variable to be solved for (D2) must be moved through multiple nested layers to make

it an input of the top-level model in order to perform the desired partial inversion transformation.
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However, the seamless operation of the RLS transformation across multiple layers of the submodel

hierarchy makes this no more difficult than the model transformations performed in Part II.

5.2.3 Experimental Results

The challenges of the design task and the advantages of the MDPL environment discussed in the

previous section were clearly visible in the results of the experiment, though secondary differences

also played a significant role in task performance. Of the five participants using the spreadsheet

environment, only one produced substantive results in Part II, which he did by devoting additional

time to the task beyond the 90-minute period allocated for the experiment, and none had time to

begin Part III. In contrast, all but one participant using the MDPL environment produced substan-

tive results in all parts of the design task. We now discuss the results of each part of the experiment

in detail.

Part I: Model Construction All participants completed Part I of the design task. This part

required roughly 45 minutes for users of both environments, though one user of the spreadsheet

environment took over an hour to complete it. Participants encountered different challenges along

the way that occupied their time.

Users of the spreadsheet environment spent some time organizing the parameters in the model

into the tabular layout of the spreadsheet, including labeling the parameters and the values of the

location and wavelength variables corresponding to different cells. Most chose to essentially copy

the layout of Table 5.4, arranging values with corresponding dependencies on location or wavelength

along corresponding axes of the cell table. One participant did not follow this pattern, and as a

result was forced to make more manual edits to the formulas in later calculations rather than taking

full advantage of the '$' operator.

The main challenge for spreadsheet users in Part I was to write the formulas computing param-

eters in Table 5.6 with the correct references to other parameters and correct dependencies on the

layout of parameters dependent on location or wavelength. The formula entry process was time-

consuming and error-prone, since participants had to visually locate constituent parameters in their

existing cell table, enter location references to these parameters, and manually edit these references

to exhibit the correct dependency on location and wavelength variables (typically, adding '$' to one

or both axes of the reference before copying). All errors observed in the Part I spreadsheet calcu-

lations involved mistakes in entering formulas, and almost all of these involved incorrect references.

As a result of such errors, only one participant using the spreadsheet environment obtained entirely

correct results in Part I, while others had error rates of 20-90%. Multiple participants noted that it

was very difficult to catch errors in entering formulas.

Users of the MDPL environment had fewer difficulties with formulas, since they could construct
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the entire single-telescope model simply by entering in the equations as they appeared on the instruc-

tion sheet. The correctness of references in this model was fairly easy to verify, since subnodes were

automatically labeled with the corresponding variable names and the connections explicitly shown.

The formulas themselves were hidden from the top-level view in this prototype environment, but

could be quickly and intuitively inspected for those who chose to do so. The only error in the Part

I results among MDPL users derived from one participant who entered an equation with incorrect

grouping of parentheses. (This type of syntax error might not occur at all with a fluid interface for

direct entry of formulas as MDPL models.)

The main challenge for MDPL users in Part I was to enter and link given values for the parameters

in Table 5.4 to the model using the graphical user interface of the prototype environment. Rather

than simply copying the table of values as written on the instruction sheet, entering each parameter

required creating a numeric primitive, entering the number in the field, and then linking the primitive

to the corresponding lists. This task was still feasible due to the relatively small number of distinct

parameter values used in the model, but clearly larger modeling tasks could benefit from improved

mechanisms for data entry, particularly of tabular data.

MDPL users took some time figuring out how to assemble the parameters of Table 5.4 into

lists and apply the telescope model to them all together, as in the construction of Figure 5-9.

Most initially inquired about a way to "copy" the model, as one would approach the problem in

a spreadsheet environment. Each eventually developed a slightly different method to apply the

model across all locations and wavelengths without copying, illustrating the flexibility of the MDPL

language.

Overall, the advantages of the spreadsheet environment in rapid data entry and the advantages

of the MDPL environment in rapid formula entry resulted in a wash in terms of task completion

time. However, the automation of variable references in the MDPL environment appears to have

contributed to reduced error rates in model construction.

Part II: Trade Analysis All participants had sufficient time to comprehend the challenges of

Part II. The users of the MDPL environment typically completed Part II in about 20 minutes

(though one participant required nearly 40 minutes), and all produced results of the intended form.

In contrast, none of the users of the spreadsheet environment obtained results for either task in Part

II within the allotted time period: their accomplishments varied from no observable progress to the

solution of some of the less challenging equations to be solved in Part II.1. One participant using

the spreadsheet environment devoted an additional 37 minutes beyond the experiment period to

produce some plots providing the essential information requested in Part II.1, though in a different

form.

The main challenge for MDPL users in Part II was to insert new primitives for generating plots



and supplying values for the new input parameters, and connect these primitives to the appropriate

places in the model after applying the partial inversion transformation to the original submodel

describing the telescope. All users succeeded in incorporating the plotting function into the model

containing the telescope submodel, which was then mapped over the location and wavelength vari-

ables without any further modifications, producing a normal form consisting of a matrix of plots

corresponding to the different location and wavelength values. As in Part I, most of users' time was

spent creating and linking new numerical values in the model. Most suggestions addressed the dif-

ficulties of the user interface: multiple users complained about the messy visual layout of the larger

models and the need for a great deal of scrolling when they could not fit entirely on one screen.

Most users of the spreadsheet environment succeeded in determining the variables for which each

equation should be solved to complete Part II.1. One participant even drew directed graphs on

paper showing the modified relationships between variables through equations based on the desired

permutation of inputs and outputs (Figure 5-18), conceptually similar to the graphical representation

of the corresponding MDPL model after partial inversion. Though entirely unaware of the MDPL

language and representation, he speculated that a "tool with small graphs showing the input and

output for each equation would be useful."

Most participants succeeded in solving the quadratic equation SNR = Np-QE by hand for
N2+Np'QE

Np = SNRS QE NR+SNR2+4N (though at least two made mistakes in solving it the first time),N -2.QE

along with several of the simpler equations. One attempted to combine multiple simpler equations

to eliminate variables, though any success using this approach was not apparent. However, no

participant made substantive progress in solving the cubic equations for CD, D, mi, and mt discussed

above. At least two tried using the numerical solver in Excel) but did not succeed in obtaining

usable results, even when used incrementally on single equations. When asked what facilities would

improve their capability to execute the design task, multiple participants suggested tools that would

"backtrace the equations for you" like the partial inversion transformation in MDPL.

The participant in the spreadsheet group who produced plots in Part II.1 after additional time

did so by plotting total cost CT for particular values of Ti rather than the other way around. He

then manually adjusted the range of Ti values to correspond to the requested range of CT values in

the task description. This produced a plot expressing the same relationship between variables as the

one requested (Figure 5-19), and avoided the need to solve cubic equations to express other variables

in terms of CT. This approach produced an effective result in this particular case, but becomes less

likely to succeed as models grow in their number of parameters and equations.

Altogether, participants using the spreadsheet environment faced challenges in identifying the

modifications necessary to express the model in terms of new input variables, and encountered

insurimountable difficulties in computing these modifications either numerically or algebraically by

hand. As one participant put it, "I think that if I had know[n] task number two beforehand I [would
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Figure 5-18: Notes made by one participant using the spreadsheet environment in Part II.1, including
diagrams similar to those automatically generated by the graphical representation of models in the
MDPL environment
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Earth RF Cost Vs TI

Figure 5-19: Log-log plot of Earth-based RF telescope total cost (CT) versus integration time (Ti)
by the only participant using the spreadsheet environment to produce plots in Part II.1

have set up] the problem in a different manner. However, [I would have] been facing the same

difficulty if the parameters to study would change."

It is possible that the brief introduction to the features of the MDPL environment helped to guide

these participants thinking in a way that aided their completion of the design task. However, while

users of the MDPL environment were provided reminders upon request about the functionality of

various built-in features of the environment, they were not given any guidance about how to proceed

in solving the task. Moreover, the additional features built in to the environment over and above

the language itself merely provided conceptually similar functionality to the Excel® environment

for interpreting mathematical syntax and assembling lists or tables of data. Hence we attribute

the observed differences in performance on Part II mainly to the inherent facilities of the MDPL

language.

Part III: Model Extension No participants using the spreadsheet environment had time to

begin Part III within the experiment period. All but one of those using the MDPL environment

produced results for Part III, these taking roughly 30 minutes to do so; the remaining participant

had spent nearly 40 minutes in Part II, and did not have time to make substantial progress on Part

III. Some participants went over the allotted 90-minute period by a few minutes in order to complete

the task, while others stopped after completing the initial model in Part III.1. These participants

felt that Part 111.2 would be straightforward to complete using the approach they had been through

already in Part II.
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Part III required more time than Part II, mainly due to the mechanical challenges of constructing

the two-telescope model. It took a few minutes for participants to realize which intermediate results

were dependent on which variables, and how to make most efficient use of the existing telescope

model. However, most of the time was spent restructuring the model and adding primitives and

connections for the new calculations.

The main challenges again pertained largely to user interface issues. Participants felt it cum-

bersome to perform model transformations by selecting elements in one model and then executing

actions after moving up or down the submodel hierarchy to another model, at which time the original

selection was no longer visible. Multiple participants suggested a continuously zoomable interface in

which the visibility of elements would be limited only by their size, and in which elements could be

dragged from one submodel to another even across multiple levels in the hierarchy. This approach

was considered in the development of the prototype environment, but was abandoned due to the

limited time available for software development.

Overall, participants were able to make use of the MDPL model transformations as they were

intended to be used, resulting in a substantially cleaner approach to Part III than would be possible

in the spreadsheet environment. Some felt that symbolic programming languages like MATLAB

would be preferable for making these types of modifications to a mathematical model, but agreed

that the clear layout provided by the visual representation in MDPL helped them to structure their

approach to the tasks in Part III. Besides the automation of structural changes to programs, this

may well be one of the principal advantages of the MDPL language.

5.3 General Features of the MDPL Language

The case study in the previous section provided some insight into how MDPL improves users'

ability to develop and modify programs to address engineering design tasks. Here we consider the

broader advantages of MDPL for general-purpose computer programming. While the case study

compared the MDPL language environment with that of the common spreadsheet, here we consider

comparisons with several other programming paradigms. In a number of areas, we will describe how

MDPL captures, and in some cases supersedes, well-known features of other families of languages.

The introduction in §1.2 already discussed how MDPL combines the strengths of procedural and

functional language approaches, providing the flexibility of the former with the structural properties

of the latter. Under each of the following headings, we describe a capability provided by explicit

features of existing languages and show how it arises naturally, sometimes in a more general form,

in MDPL. These capabilities cover a large subset of the important features emphasized in modern

programming languages.
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Reference Calls Most languages provide mechanisms for referring to values elsewhere in a pro-

gram without copying them: this ensures that changes are propagated to other parts of the program

that make use of the values, and avoids the inefficiency of duplicating them. This functionality is

commonly implemented as "call by reference" or "pointers" in procedural languages, and by main-

taining a symbol table in functional languages. MDPL provides this functionality by displaying

intuitively in the visual representation the flow of values through the program, and by providing an

instantaneous mechanism (through model transformations) to pass any value to any valid location

in the program, including values that represent entire models. At the same time, an efficient imple-

mentation of MDPL (§6.2) will automatically avoid the inefficiencies of copying where possible by

analyzing the link graphs of the MDPL models it evaluates.

Closures Several functional programming languages provide a mechanism to define an inner func-

tion within an outer function so that the values of the outer function's arguments when it is executed

are preserved in the definition of the inner function, even when the inner function is passed else-

where in the program. This avoids the need in symbolic functional languages to explicitly pass all

relevant parameters of the outer function as arguments to the inner function, and avoids some of

the difficulties in modifying functional structure that we have described earlier. In MDPL, with no

symbolic variables, an explicit feature analogous to closures is unnecessary: the desired behavior

occurs naturally when interior models receiving parameters from their parent models are passed

elsewhere, and with essentially no overhead to modifying argument structures of models (thanks to

model transformations), parameters are simply passed explicitly wherever they are needed.

Macros In the sense of functional programming languages, macros essentially provide a mechanism

to define functions that control the evaluation of their arguments so that, for example, arguments

that are not well-defined are not evaluated. We have seen an example of this approach in MDPL with

the "Defined?" model in Table 5.2. Such models are generally implemented based on primitives with

special evaluation rules: these can be extended with controlled evaluation by "wrapping" expressions

not to be evaluated inside new submodels, passing those submodels as values, and applying them

to other subnodes to extract their contents when desired. With a non-symbolic syntax, MDPL also

helps prevent common pitfalls of macros in symbolic languages like multiple evaluation and variable

name clashes.

Function-Level Programming As described briefly in the introduction, function-level program-

ming is an approach emphasizing the construction of functions by applying function-level operators

to existing functions, without explicitly describing operations performed on primitive values. This

approach encourages programmers to build a more generally applicable 'algebra' of functions within

their programs that can be used to quickly generate new functionality. MDPL supports this approach
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through its ability to build models that operate on other models; moreover, it allows a great deal

of flexibility in building function algebras by permitting multiple inputs and outputs of functions to

be connected in any possible way.

Symbolic Programming Languages like LISP are often used for symbolic programming, an

approach based on building up large symbolic expressions and applying transformations to them with

a program. This approach is particularly important in advanced applications like computer algebra

and language processing, and can also facilitate efficient implementation of recursive functions by

limiting the stack depth of recursive calls and enabling memoization. It is made possible by the ability

to build up large structures in a language and treat them as values in the same manner as primitive

objects. This is naturally possible in MDPL, since one can construct large models that are normal

forms (hence have their structure preserved under the normalization transformations) and can easily

manipulate them like primitives. In fact, because of the more general form of MDPL expressions

relative to common symbolic languages (acyclic digraphs rather than strict trees), MDPL allows

expressions to be entered in a way that more easily takes advantage of their functional structure.

Object-Oriented Programming Many modern languages encourage an approach in which re-

lated data and functions are grouped together as "objects" of which multiple instances can be con-

structed with different parameter values, and in which new classes of objects can be defined that

inherit some or all the elements of existing classes of objects. Like closures, MDPL naturally im-

plements objects as models with multiple outputs representing the data or function elements of the

object, of which instances are constructed by passing parameters to subnodes applying the defining

model. Different object models can share elements in the manner of inheritance by defining an exter-

nal model applicand representing the shared elements and specializing it via the currying approach

described in §3.2.

Introspection It is often important for a program to be able to monitor and analyze its own

internal behavior, whether for user-level debugging or some form of algorithmic feedback. Procedural

languages often fulfill this function using global variables that span an entire program, and can

easily become confusing to manage; purely functional languages typically make this cumbersome,

since accessing a value deeply nested within the function hierarchy requires rewriting the argument

structures of the surrounding functions, and often paying an efficiency penalty to create more copies

of the values in question. The model transformations of MDPL make it trivial to access values

from deep within a model, while automatically preserving the functional structure of the model

and encoding this structure in a way that a compiler can easily take advantage of to avoid needless

copying.
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Sequencing Procedural languages natively operate in terms of sequenced operations, but func-

tional languages (based on evaluation of expressions) do not provide an explicit mechanism for

specifying the sequencing of operations. Control of operations sequencing can be important for

features like input/output with external users or programs, or keeping track of changes in state vari-

ables. Implementing these in a rudimentary functional language requires passing the relevant values

in and out of every function in which they are modified (sometimes through many nested layers of

surrounding functions) to control the order in which these modifications take place. Some modern

functional languages have implemented advanced features like monads to help facilitate this process

without requiring such extensive modification of syntax; however, because of inherent limitations of

the syntax of symbolic functional languages, monads are tricky and error-prone to use. MDPL eases

the burden of passing values throughout the function structure of a program, obviating entirely the

need for monads or other workarounds for sequencing operations.

The above examples indicate how the generic power and flexibility of the MDPL language provide

a wide range of capabilities that other languages address with specialized features or design choices.

Certainly there are syntactic features, such as list comprehensions paralleling mathematical set

definitions, that cannot be directly realized in MDPL. However, the above examples capture a

large portion of the fundamental features that largely determine the ease of writing programs in a

particular language.
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Chapter 6

Future Research & Development

This work has emphasized the theoretical foundations of the MDPL formalism and described some

of the practical features of the -resulting language, particularly with respect to engineering design

analysis. However, a great many issues remain to be resolved to implement these ideas in robust

engineering tools or, ultimately, general-purpose programming platforms. Some of these issues are

the subject of active research in other domains, and can take advantage of ongoing work in these

areas. In addition, the core ideas of MDPL suggest possible extensions to other application areas

not yet explored.

6.1 User Interface Development

The experience of users in the case study of S5.2 has indicated the importance of user interface

design for a practical MDPL implementation. Some of the opportunities for improvement in this

area include:

Automated Visual Layout of MDPL Models This problem addresses many of the same

challenges facing layout algorithms for general digraphs and acyclic digraphs, but differs in certain

key respects. Unlike ordinary acyclic digraphs, MDPL diagrams intuitively contain multiple factors

of directional "flow," one dealing with passing of inputs and outputs, the other with application of

nodes to one another; of course, these two can be mixed (source applicands or node arguments),

further complicating the realization of intuitive layout. MDPL diagrams are also challenging in

that subnodes should ultimately have different sizes reflecting their contents or labels and their

argument structures. Additionally, the local structure of arrows around subnodes matters a great

deal to unambiguous, aesthetic layout, so the layout algorithm must combine both global and local

routing constraints, as the prototype environment attempts to do. Ideally, a layout algorithm would

recognize certain types of symmetry in the structure of a model and reflect these symmetries in the
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visual layout. Finally, the hierarchical nesting of models and the connections of sources/sinks and

applicands across their boundaries imposes additional layout constraints within which to optimize

the layout of individual models. Advanced layout algorithms for MDPL will probably adopt a

recursive decomposition approach like those used for large graph layouts, but the structure of the

constraint space for MDPL models is much more complicated, and will likely require strong heuristic

methods imitating the behavior of human drawing methods.

Intuitive Mechanisms for Navigating Models Perhaps even more than visual layout, users

of the prototype environment wished for better ways to navigate MDPL models. Improved layout

will help to fit more information on a single screen, reducing the need for scrolling, but navigating

selections is still important for facilitating rapid entry of model data. Participants in the case

study suggested a zoomable view capable of showing multiple levels of the submodel hierarchy at

once, which seems a reasonable approach: indeed, this was the original intention of the visual

representation as specified in §3.2. Such a view would require hiding elements of submodels when

they reached a certain size threshold, and making them reappear once large enough to manipulate.

Keyboard shortcuts could also be useful in navigating models: one can imagine quickly moving

among the nodes, sources, and sinks of a model using arrow keys to make selections and even enter

primitives by name, rather than the mouse-intensive GUI of the prototype environment.

Auxiliary Information Attached to Models Much like integrated development environments

(IDEs) for symbolic languages that augment the sparse code of the language with a richer environ-

ment for the programmer, MDPL models could benefit from a number of non-essential enhancements

to their basic encoding. The prototype environment already provides labels for sources and sinks

based on the variable names in equations automatically translated into MDPL models. Future envi-

ronments could give users control over labels on sources and sinks, and even on subnodes and arrows.

The environment could even infer labels automatically from the labels of model elements connected

to them by the user. Combined with the intuitive visual layout of models, such labels could serve

as extremely useful documentation features. To aid programming, sinks of standard MDPL models

known to the development environment could be enhanced with dropdown menus providing common

choices of inputs for the corresponding arguments. For models with many possible inputs or outputs,

some sinks or sources could be hidden by default and made visible by the user as necessary; some

of these could have initial values created along with them when a standard model is instantiated,

providing "default" values for "optional" arguments like some symbolic languages.

Collaborative Environments for Team-Based Programming The formalism and visual rep-

resentation of MDPL together offer a unique opportunity for fluid automated management of collab-

orative programming. Collaborative software development in symbolic languages generally involves
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file-by-file management of large blocks of code, with one user restricted to edit one file at a time. This

often results in resource conflicts, and requires frequent reorganizations of code to avoid individual

files becoming large enough to inhibit collaboration or small enough to inhibit user development.

The hierarchically nested structure of MDPL models suggests a different approach, based on dy-

namic resource locking of submodels according to a user's current work region in a model. In this

approach, an entire team of people could edit the same model at the same time, provided that (for

instance) no two people made edits to the same submodel at the same time; the assignment of users

to submodels would be determined by the current view within each user's interface window and a

priority system for allocating ownership. In such a system, users could still observe other users'

changes to any part of the model in real time, greatly enhancing the speed of communication in

software through the project.

6.2 Efficient Implementation

Considering the strong relationship between the MDPL formalism and that of combinatory logic, it is

logical to consider compilation strategies based on reduction to simple combinator calculi. This type

of strategy has been successfully developed for modern functional languages, and has the advantage

that combinator reduction rules can be implemented substantially faster in machine code than the

symbolic transformations analogous to f-reduction in the lambda calculus 170, 69].

Efficient evaluation of MDPL models faces many of the same challenges as those faced by symbolic

functional languages. The normalization transformations of MDPL, like normal order reduction in

lambda calculus, naturally lead to so-called "lazy evaluation," which creates copying inefficiencies if

applied in a brute-force approach. The solution developed for this problem in symbolic functional

languages is "normal graph reduction," in which the copying of terms is imitated by the interpreter

using acyclic digraphs, with multiple pointers to single addresses in memory [741. This approach is

natural for MDPL, whose native representation already follows this form. This approach can also

support an efficient form of recursion by introducing cycles in the graph where fixpoint models are

applied, as implemented in languages like SASL and Miranda [68, 71].

For implementation on machine hardware, it is useful to tailor the choice of low-level combinators

and associated reduction rules to correspond to the functions appearing in the program being com-

piled. This idea has been extensively developed for symbolic languages based on lambda calculus

in the form of "A-lifting" 137]. A similar mapping from MDPL graph reductions to a conventional

hardware architecture may enable highly efficient compilation of MDPL models.

The use of MDPL for time-critical engineering design tasks will necessitate efforts toward op-

timizations beyond those of traditional compilation that can take full advantage of the computing

resources available to design teams. Automated decomposition of MDPL graph reductions using



existing algorithms can provide opportunities for parallelization across mnany processors, which can

be particularly advantageous in performing trade studies over a space of design parameter values. In

an interactive environment, it may also be possible to perform intelligent automated memoization

of key intermediate results (for instance, based on typical computation times) to maximize the use

of memory resources available. Additional optimizations may apply to specific types of tasks, and

will most likely parallel many of the developments for symbolic languages.

6.3 Algebraic Transformations

We have given a high-level description of the implementation of the partial inversion transforma-

tion through the description in §4.3 and the demonstration in §5.2.2. However, the details of the

implementation touch on many areas of active research in symbolic and numeric computation, and

will likely evolve as research in these areas progresses. The prototype environment of §5.1 makes

use of many internal algorithms of the Mathematica platform, and thus we cannot even give a com-

plete characterization of the methods used here. However, some recent developments will certainly

influence the efficiency and generality achievable in the partial inversion transformation.

In the case of polynomial and related systems of equations, methods for efficiently computing

Grdbner bases continue to advance. Of particular interest are "Gr6bner walk" methods that can

be used to generate GIrbner bases with respect to the lexicographic monomial orderings useful in

equation solving from more easily computed bases with respect to alternative monomial orderings

[13j. For certain monomial orderings, research has made steady improvements in heuristics for

variable ordering, which can often take advantage of specialized structure in the problems to be

solved [171. In addition, numerical implementations of Gr6bner basis methods based on significance

arithmetic have substantially increased the size of polynomial systems for which Grdbner bases can

be feasibly computed 1761.

In the case of equations without algebraic solutions, the efficient implementation of seminumerical

substitutes based on initial solutions remains a key challenge. There is a natural trade-off between

efficiency and robustness influenced by the management of error tolerances in selecting from among

multiple solutions, and a good deal of application-specific calibration may be necessary to achieve

the right balance. For particularly difficult cases, it may be useful to pursue an approach based

on polynomial approximation (e.g., Pad6 approximations) combined with robust numerical solvers

for polynomial systems 126, 351. However, engineers' intuition typically tends to focus the design

tradespace on areas where the functions relating design variables are relatively well-behaved.
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6.4 Core Language Extensions

Considerable effort has gone into developing a tight yet expressive formalism for the MDPL language.

However, certain augmentations of this formalism may enable the main ideas of the MDPL language

to be applied to more specialized areas with additional requirements. Here we discuss a few ideas

for extensions of the core language with their associated interpretations and applications:

Dynamic MDPL In real-time systems, changes in input values often change more rapidly than

the desired results of these changes can be fully evaluated. This occurs in applications as mundane as

user interfaces and as critical as flight control software. When updates must be managed according

to available processing power, one often wishes to ensure that certain updates are completed based

on information from a consistent point in time. In MDPL, it is natural that certain subnodes (for

instance, those sending signals to actuators) should wish to enforce the time-consistency of their

relevant inputs: hence the core language could be augmented by indicators of tolerances in the

asynchronization of inputs to particular subnodes. These could be applied in a nested fashion in

order to manage tolerances throughout the function hierarchy, and enforced in the code generated

by a real-time compiler.

Typed MDPL Some software engineering practices encourage enforcement of type consistency

to reduce the potential for catastrophic errors in execution. Such practices are frequently used for

critical systems in many aerospace applications. To enforce a strong type system, one must either

give up the goal of universal computation, or augment the language with a mechanism for explicit

recursion [72]. MDPL has the latter mechanism in the form of the RNX transformation, meaning

that it can easily be adapted into a universal typed language. A type system may have advantages

for collaborative software development in engineering design, since it may encourage a more modular

approach based on consistent mathematical structures. Such a type system could be implemented

as a partially ordered hierarchy of increasingly specialized types, with functions defined in terms of

minimally restricted types as inputs. This would encourage a relatively small family of functions to

span common mathematical operations across a wide range of applications.

MDPL for Simulation The Simulink® language was mentioned in the introduction for its appli-

cation of a similar formalism to the MDPL language in a different domain, that of continuous-time

signal processing. MDPL could be adapted to provide an even more general language for this domain

by adding a primitive to the formalism representing the application of a time derivative from input

to output, and allowing cycles in the link graphs of MDPL models. In the interpretation of this

formalism for simulation, the arrows of the diagram would then represent continuous functions of

time rather than finite values, as in Simnulink®. However, the resulting structure of the language
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would lead to a more general domain of problems paralleling that expressed by modular modeling

and simulation languages like Modelica 1241. The advantages of the MDPL representation and model

transformations could prove extremely useful in this domain for modifying the physical architecture

of systems being simulated. The implementation of such a language would require the solution of

systems of differential-algebraic equations (DAEs) rather than simply ordinary differential equations

(ODEs), and would demand the application of relatively recent algebraic methods in DAE index

reduction 142). The resulting environment could be an important counterpart to the parametric

analysis tools for engineering design analysis emphasized in this work.
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Chapter 7

Conclusion

This work introduces a new formal model of computation called MDPL, which forms the basis

of a new kind of programming language combining the major strengths of existing programming

paradigms. Foremost among these strengths are the flexibility to change relationships among ele-

ments in a program, and the power to reuse and redeploy existing structures of such relationships

in new places within a program. While existing languages generally trade one of these capabilities

for the other, the MDPL language combines these capabilities by using a highly structured rep-

resentation augmented with algorithmic transformations on the representation. The former allows

program structures to be easily identified and reused in a way that enables efficient implementation;

the latter provide an immediate mechanism for making certain useful kinds of changes to a program

while maintaining the constraints of the representation.

The unique combination of programming capabilities offered by the MDPL language, combined

with appropriate infrastructure, allows engineers to address time-critical design analysis tasks more

effectively than they are able to do with existing modeling tools. The MDPL programming environ-

ment allows engineers to quickly modify models to explore new architecture options, while at the

same time quickly expressing these new options in terms of existing models. In addition, the MDPL

formalism appears to offer a clear and intuitive representation of program structure that helps guide

engineers' thinking about a design analysis task.

This work demonstrates that the MDPL formalism has the theoretical properties necessary to

define a consistent, practical interpretation of MDPL models as computable functions. We formally

define such an interpretation as a reduction algorithm applying various normalization transforma-

tions, which will reduce any normalizing MDPL model to its normal form in a finite number of steps.

We also demonstrate that this interpretation makes the MDPL language universal, hence capable

of implementing all computable funtions. Finally, we formally define the additional transformations

on MDPL models that alter the structure of these models in useful ways, and allow programmers to
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build new models from existing ones.

This work also demonstrates empirically some benefits of an MDPL-based modeling environment

relative to the spreadsheet-based environment that currently dominates conceptual design centers

in the aerospace industry. An experimental case study compares these two approaches to modeling

trade-offs in a small but real design analysis task evaluating architectures for ground- and space-

based telescopes. The results of this case study indicate that while the robust deployment of MDPL

in industrial-scale engineering design tools faces some challenges in user interface development, some

simple approaches to these problems provide a starting point sufficient to give engineers a substantial

advantage in using MDPL. In the discussion, we explain how MDPL captures many of the important

features of existing programming languages within its system of model representation and model

transformations.

The key technical contributions of this work are the following:

* formal definition of a new model of computation, the MDPL model, that generalizes some

aspects of existing models like the lambda calculus and combinatory logic;

* theoretical justification for important practical properties of the MDPL formalism, primarily

the confluence of its normalization transformations and existence of normal order reduction;

* formal definition of transformations that preserve the structural constraints and/or normal

forms of MDPL models while allowing flexible changes to the relationships of elements within

models;

* a structured algorithmic approach to recursive hierarchical symbolic/numeric permutation of

intialized input/output variables in models representing functions with certain restrictions

typically satisfied in engineering design.

In addition, this work has touched on a number of important secondary problems, including the

intuitive visual representation of complex engineering models, compact representations of specialized

mathematical functions, and the architecture of user interfaces for the MDPL language. Solutions

to these problems will play a critical role in the future deployment of MDPL in engineering practice.
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