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Abstract

There are multiple instances in science and engineering where quantities of interest are
evaluated by solving one or several nonlinear partial differential equations (PDEs) that
are parametrized in terms of a set of inputs. Even though well-established numerical
techniques exist for solving these problems, their computational cost often precludes
their use in cases where the outputs of interest must be evaluated repeatedly for
different values of the input parameters such as probabilistic analysis applications.

In this thesis we present a model reduction methodology that combines efficient
representation of the nonlinearities in the governing PDE with an efficient model-
constrained, greedy algorithm for sampling the input parameter space. The nonlin-
earities in the PDE are represented using a coefficient-function approximation that
enables the development of an efficient offline-online computational procedure where
the online computational cost is independent of the size of the original high-fidelity
model. The input space sampling algorithm used for generating the reduced space
basis adaptively improves the quality of the reduced order approximation by solving a
PDE-constrained continuous optimization problem that targets the output error be-
tween the reduced and full order models in order to determine the optimal sampling
point at every greedy cycle. The resulting model reduction methodology is applied to
a highly nonlinear combustion problem governed by a convection-diffusion-reaction
PDE with up to 3 input parameters. The reduced basis approximation developed for
this problem is up to 50, 000 times faster to solve than the original high-fidelity finite
element model with an average relative error in prediction of outputs of interest of
2.5 - 10-6 over the input parameter space.

The reduced order model developed in this thesis is used in a novel probabilistic
methodology for solving inverse problems. The extreme computational cost of the
Bayesian framework approach for inferring the values of the inputs that generated a

given set of empirically measured ouputs often precludes its use in practical applica-
tions. In this thesis we show that using a reduced order model for running the Markov
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Chain Monte Carlo simulations required by the Bayesian approach yields the same
results as the high-fidelity model while reducing the computational cost by several
orders of magnitude.

Thesis Supervisor: Karen E. Willcox
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

There are multiple instances in science and engineering where outputs of interest

are evaluated by solving one or several partial differential equations (PDEs) that

are parametrized in terms of a set of inputs. Recent years have seen significant

improvements in well-established, "classical" numerical techniques for solving PDEs

such as the finite element method (FEM), finite difference method (FDM) or boundary

element method (BEM). However, simulation of complex systems using PDEs usually

leads to very large numerical models that are computationally expensive to solve.

This poses significant challenges when the outputs of interest need to be evaluated

repeatedly for different values of the input parameters such as in optimal design

or probabilistic analysis applications (referred to as the "multiple-query" context

in [47]). Classical numerical techniques also face challenges that are often impossible

to overcome when the outputs of interest have to be evaluated as soon as the inputs

are available such as in control system applications (referred to as the "real-time"

context in [47]).

Model order reduction is a powerful technique that permits the construction of

simplified, cost-efficient representations of complex, large-scale systems while preserv-

ing their input-output behavior. Applying model order reduction methods to the large

systems of equations that result from the discretization of PDEs using classical tech-
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niques has proven to be a viable way of tackling the challenges posed by the multiple-

query and real-time applications mentioned earlier. Several model order reduction

methods exist, for example, modal truncation [60], proper orthogonal decomposi-

tion (POD) [28, 54], balanced truncation [39], Krylov-subspace methods [15, 18, 26],

reduced basis methods [45], and a quasi-convex optimization approach [56]. These

methods have been applied successfully to numerous disciplines in science and engi-

neering. However, there are still two main challenges that have not been fully ad-

dressed: the systematic sampling of high-dimensional input spaces and the efficient

representation of nonlinearities in the underlying PDEs.

The savings in computational cost that can be achieved when applying conven-

tional model order reduction techniques to nonlinear systems is often modest at best

because the operation count required for evaluating the nonlinear terms is a function

of the size of the full order model. At the same time, the task of reproducing the

input-output behavior of the high-fidelity, large-scale system over a wide range of

input parameter values is a challenging one because it requires an efficient sampling

algorithm that scales well with the number of parameters (the exponential scaling

associated with standard grid-based sampling methods is unacceptable for sampling

high-dimensional input spaces). In this thesis we present a methodology that com-

bines systematic sampling of the input parameter space with efficient representation

of the nonlinearities in the governing PDEs. This combination enables the applica-

tion of model order reduction to a class of problems that could not be previously

tackled. The development of efficient model order reduction techniques for this class

of high-dimensional, nonlinear problems in turn enables the application of the com-

putationally intensive probabilistic framework for solving inverse problems that are

intractable when using high-fidelity models.

The probabilistic approach to inverse problems has been applied successfully in

numerous settings including tomography [2, 29], geophysics [16, 51], error propaga-

tion [20] and contaminant transport models [35]. However, the extreme computational

cost required for exploring the input parameter domain using stochastic sampling

methods is an open issue that still remains unanswered. Recently, the use of lower-
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fidelity models has been proposed in order to decrease the cost of the probabilistic

methodology [2, 301. However, these low-fidelity models are not obtained via sys-

tematic model reduction methods; instead, they are built using traditional numerical

methods - i.e., FEM, FDM, BEM - but use meshes that are coarser than usual so

that the resulting problem becomes tractable. The limitations of this approach are

evident since the level of mesh coarsening required for decreasing the computational

cost of these problems to acceptable levels typically results in large errors that are

often hard to quantify or even yield unstable numerical schemes. In this thesis we

show that efficient reduced order models can be used for solving inverse problems

governed by nonlinear PDEs, yielding the same accuracy as high-fidelity models at a

computational cost that is several orders of magnitudes less than that of traditional

numerical techniques.

1.2 Application Considered in this Thesis: Non-

linear Convection-Diffusion-Reaction PDE

The methodology presented in this thesis is general and, therefore, valid for perform-

ing model order reduction of a wide range of nonlinear problems over high-dimensional

parametric input spaces. However, we have chosen to illustrate its performance by

applying it to a particular example instead of describing it in a more abstract manner.

The problem chosen in this thesis is a highly nonlinear combustion problem governed

by a convection-diffusion-reaction PDE which presents all the challenges discussed in

Section 1.1 for applying conventional model order reduction techniques (i.e., highly

nonlinear behavior and outputs of interest that must be evaluated over a wide range

of input parameters).

Modeling and simulation of reactive flows is an important issue in scientific com-

putation. In particular, modeling of combustion reactions presents several challenges

due to the extreme stiffness of these problems, which usually requires very fine spa-

tial and temporal discretizations. In general, obtaining a solution of a combustion
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problem requires significant computational effort, which means that the real-time

and many-query applications discussed in Section 1.1 often become intractable when

using "classical" numerical techniques (e.g., FEM/BEM/FDM). Furthermore, the ex-

ponential nonlinearities that appear in the underlying partial differential equations

have posed significant difficulties for applying any of the reduced order modeling

techniques mentioned in Section 1.1.

The model order reduction technique chosen in this thesis is the Reduced Basis

(RB) method. This method leads itself to an efficient offline-online implementation

that has been successfully used for obtaining rapid and reliable predictions of PDE-

induced input-output relationships in applications where the governing equations are

linear [25, 33, 47, 49] or, at most, quadratically nonlinear functions of the solution [44,

61, 62]. It has not been until very recently that Patera and co-workers have developed

a framework that allows the use of the RB methodology in problems with arbitrary

nonlinearities [24, 41, 43].

The estimation of reaction rates or Arrhenius parameters and the estimation of

diffusion coefficients in combustion reactions based on experimental measurements of

system conditions requires extensive exploration of parameter space (especially when

using the Bayesian framework for solving the inverse problem) and can therefore be

used as a typical example of the many-query context. For an overview of parameter

estimation problems in chemistry, we refer to the book by Englezos and Kaloger-

akis [14], which gives multiple applications of parameter identification in the frame-

work of ordinary differential equations. Parameter estimation problems for reactive

flows in one space dimension are treated, for instance, by Bock et al. [64]. Parameter

estimation for multidimensional computation of flames using finite element methods

has been performed by Becker et al. [4].

An example of the real-time context is found in optimal control problems of com-

bustion reactions where timeliness and reliability are critical for the efficient control

of the process. Model-based control of combustion dynamics is discussed for example

by Ghoniem et al. [631.

As discussed above, both the real-time and many-query contexts in combustion
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modeling present significant challenges to classical numerical techniques due to the

fact that these techniques use dense approximation subspaces for finding the solu-

tion to the underlying PDE. Even though Green and co-workers have developed the

"adaptive chemistry" methodology for reducing the complexity of combustion com-

putations [22, 461, performing fast and reliable reacting flow calculations remains a

very challenging task.

In this thesis we show that the reduced basis framework for nonlinear parame-

trized PDEs that was presented in [24, 41, 43] can be used in conjunction with an

efficient sampling methodology based on the algorithm developed in [8, 9] in order to

obtain a very efficient tool for satisfying the requirements of the real-time and many-

query contexts in combustion modeling while preserving the accuracy of classical (and

computationally expensive) numerical techniques. In particular, the efficient model

order reduction methodology presented in this thesis is applied to the solution and

uncertainty quantification of inverse combustion problems using a Bayesian approach.

This is a typical example of a many-query application that would be intractable if

classical techniques were used. Once again we emphasize that, even though the work

presented in this thesis deals with model order reduction and uncertainty quantifica-

tion in inverse problems of reactive flows, the methodology discussed herein is general

and can be applied to any nonlinear problem governed by a parametrized PDE.

1.3 The Reduced Basis Method

As discussed in Section 1.1, there are multiple examples in science and engineering

of systems that are modeled using input-parametrized PDEs. In general, the output

of interest is not the full field that is the solution of the PDE, but rather certain

outputs, which can be evaluated as functionals of this field. The input parameters

characterize the different system configurations. In order to compute the value of the

output that is generated by a particular value of the inputs one must compute the

field that relates inputs and outputs by solving the underlying PDE.

The solution to the PDE that governs the system behavior is usually expensive
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to compute. However, as discussed in Section 1.1, there are many situations that

require rapid, yet reliable, evaluation of the input-output relationships governed by

the underlying PDE. The reduced basis method is one of several possible model order

reduction tools that can be used for satisfying these requirements.

The reduced basis method takes advantage of the fact that, even though the

spaces used for computing the solution to the underlying PDE are generally of very

high dimension, the actual solution field resides in a parametrically induced manifold

which is typically of low dimension. In the reduced basis method, the low dimension

space where the solution to the PDE actually resides is approximated as the span

of precomputed solutions or "snapshots" as originally referred to by Sirovich [54].

Therefore, the reduced basis method tries to represent any solution to the PDE of

interest as a linear combination of solutions that have been precomputed using any

classical numerical technique. Efficient computation of snapshots for high-dimensional

input spaces is a challenging problem that is successfully addressed in this thesis.

The reader is referred to [47] for a historical perspective of the reduced basis

method and a detailed description of the methodology. As discussed in Section 1.2, the

traditional reduced basis method has been successfully applied to numerous problems

governed by linear PDEs that are affine in the parameter or nonlinear PDEs that

are at most quadratically nonlinear in the field variable. However, when applied

to highly nonlinear problems, such as combustion equations, the traditional reduced

basis methodology becomes inefficient and the achievable time savings do not justify

its use versus classical techniques.

In this thesis we use the extension of the traditional reduced basis method to

nonlinear problems proposed in [24, 41, 43]. The basic ingredient of this methodology

is the replacement of the nonlinear term by a coefficient-function approximation,

which can be built using the techniques described in [3] or [42]. This coefficient

function approximation allows to recover the low computational complexity associated

with the evaluation of the terms required during the online phase of the simulation.
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1.4 Thesis Scope

In this thesis, the governing PDE is a convection-diffusion-reaction equation that

includes an exponential Arrhenius term which is typically used for modeling com-

bustion processes. The field variable that is computed by solving the governing PDE

represents the molar concentration of fuel at every point inside the domain of interest,

typically a combustion chamber.

The Arrhenius term in the convection-diffusion-reaction equation comes from an

empirical law and the value of the parameters that appear in it are generally not

known a priori. Therefore, the underlying PDE is naturally parametrized in terms of

the Arrhenius parameters. Given a particular value for the Arrhenius parameters, the

molar concentration of fuel at every point inside the combustion chamber is computed.

The outputs of interest are the average concentrations of fuel along vertical lines

located throughout the computational domain, which model the location of laser

measurement sensors in the physical combustion chamber.

The reduced basis method, online-offline computational procedure and efficient

sampling algorithm with associated a posteriori error estimator for the PDE of inter-

est are developed in this thesis.

Finally, given a set of experimental measurements representing fuel concentrations

along lines in the combustion chamber, an inverse problem for determining the value

of the Arrhenius parameters associated with the combustion reaction that generated

those measurements is formulated. The inverse problem is formulated using both

a deterministic approach and the probabilistic Bayesian framework. The multiple

forward problem solutions required by the probabilistic methodology are computed

using the reduced basis approximation developed in earlier chapters, showing that the

use of a reduced order model for solving the inverse problem yields the same results

as a high-fidelity model at a fraction of the cost.
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1.5 Thesis Outline

In Chapter 2, the weak form of the convection-diffusion-reaction equation is presented

and the Streamline Upwind / Petrov-Galerkin method used for stabilizing the for-

mulation is derived. The finite element implementation and results are presented at

the end of the chapter. In Chapter 3, the reduced basis methodology and online-

offline computational algorithm are developed. In Chapter 4, a greedy algorithm for

selecting the reduced basis in an efficient manner is proposed and compared against

uniform grid sampling for problems with 2 and 3 parameters. The inverse problem

is formulated and solved in Chapter 5. Finally, Chapter 6 concludes the thesis with

suggestions for future work.
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Chapter 2

Mathematical Model and Finite

Element Solution

2.1 Governing Equation

In this thesis we consider the following stationary nonlinear convection-diffusion-

reaction equation for the field variable u in a domain Q C R2 with a divergence-free

velocity field U and a diffusion coefficient ri:

U -Vu - V(rVu) + s(u; [) = f, (2.1)

where f is a linear source term and, as is usual in combustion problems, the nonlinear

reaction term s(u; ti) is of Arrhenius type,

U)e 
-Es(u; /i) - Au(c - u~d-u (2.2)

where c, d are known constants and the system parameters i = (ln(A), E) can vary

within the system parameters domain D = [5.00, 7.25] x [0.05,0.15] C R2

We introduce a Dirichlet boundary condition that specifies the value of the field

variable u = UD at the inflow boundary i C ORQ, where aQ denotes the boundary
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of the domain Q:

U = UD On Fin. (2-3)

Finally we use a Neumann boundary condition to specify the diffusive flux on all

the other boundaries of the domain:

Vu - fi = 0 on Q \ TFn, (2.4)

In the reaction term, a represents the mole fraction of fuel, while the mole fraction

of the oxidizer is (c - u). Since the Arrhenius law is a heuristic law and cannot be

derived from first principles, parameters A and E are a priori unknown and have to

be calibrated. This parameter fitting is usually done by comparison of experimental

data and simulation results. Therefore, this example is well suited for the many-query

context described in Section 1.1. In general, the outputs of interest of our model will

be a set of computed quantities o(u) E IRNS that we will compare against an equivalent

set of empirical measurements 5 E RNs in order to estimate the values of A and E.

Typically, these empirical quantities are obtained by performing laser measurements

of mean concentrations along fixed lines inside the combustion chamber as shown in

Figure 2-1. Here, N, is the number of sensor locations in the combustion chamber.

2.2 Weak Form Without Stabilization

In what follows, we will use some notation borrowed from Patera and co-workers [23,

24, 41, 47]: the superindex "e" refers to the "exact" solution to the mathemat-

ical model given by equations (2.1) - (2.4). In Section 2.3 we will introduce a

"truth" approximation that will refer to the solution of the discretized weak form

of equations (2.1) - (2.4). The "truth" approximation will bear no superscript.

The "exact" weak form of the combustion model from the previous section can

be stated as follows: for any tt E D c R2 , find of4t) = 9 (ue4p)), 1 , N8

where Ue( ) E XD,e ={ u E H1(Q) I alr = UD } satisfies the weak form of the p-

28



parametrized nonlinear PDE (2.1)

a(ue (P), v) + j s(ue (t); 1P)v = f(v), Vv E Xe. (2.5)

In the weak form above, Xe = { v C H 1 (Q) I vIr. = 0 } and a(-,-) and f(.),

f'(-) are Xe-continuous bounded bilinear and linear functionals respectively. In our

model problem we will assume that the diffusivity r, is constant throughout the entire

domain Q. Therefore, the bilinear and linear functionals for our problem are given

by

a(w,v) = vU. VwdQ + j iVw -VvdQ, (2.6)

L(v) j vf dQ (2.7)

if (V) = v ds, i = 1, . .. , Ns. (2.8)

In this problem there are N, different outputs of interest that represent the average

value of the solution u over each of the measurement lines Fi, i = 1,... , N, shown in

Figure 2-1.

Also note that, since all Neumann boundary conditions (2.4) are homogeneous,

they do not contribute to the linear form e(v).

2.3 Weak Form Using Streamline Upwind / Petrov-

Galerkin Stabilization

2.3.1 "Truth" Approximation

After arriving at the weak form (2.5) one could think of discretizing it using a suffi-

ciently fine mesh in order to obtain a suitably accurate "truth" approximation to the

exact solution. As will be discussed later, a direct discretization of (2.5) is unstable

for low values of r, due to the convective nature of the governing PDE. However,

for now we shall proceed with a naive discretization in order to introduce the finite
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element triangulation and interpolation spaces that will be used later for obtaining

the stable version of the "truth" formulation.

The first step for obtaining the discretized version of (2.5) is to discretize the

domain Q into element domains. Let Th(Q) be a regular partition, also called trian-

gulation, of Q into Nelem subdomains Tk, k =, ... Neiem, such that each subdomain

has a piecewise smooth boundary Fh = &Th, and h is a characteristic mesh size

(diam(Th) h for all elements).

We can then introduce our fine reference finite element interpolation spaces,

X C X' and XD C XD,e of large dimension A(. In general, richer interpolation

spaces will produce more accurate "truth" approximations (i.e., closer to the exact

solution introduced in Section 2.2) but will also increase the cost of computing the

solution. Therefore, a compromise is needed between the accuracy of the "truth"

approximation and the computational resources required to obtain it. In Chapter 3

the RB approximation will be built upon the "truth" solution and all errors will be

measured with respect to this "truth" so A/ should be large enough that the "truth"

solution meets the accuracy requirements of our specific application. When using the

"truth" formulation for building a RB approximation it is common to err on the safe

side and use a conservatively large value of K since the online cost of computing the

RB approximation is independent of the dimension of the finite element interpolation

space and, therefore, the value of Af only increases the cost of the offline phase where

the reduced bases are constructed.

The finite element interpolation spaces X and XD used for computing the "truth"

approximation are defined as

X = { v E H 1 (Q) I vITh E Pm(Th), VTh E Th and v = 0 on Fin} (2.9)

XD = {u E H 1 (Q) I UlTh E P,(Th), Th ETh and U= UD on in (2.10)

where Pm is the finite element interpolation space (usually the set of polynomials

of total degree < m). In our problem we will use piecewise-linear finite element

interpolation spaces, thus m = 1. The "truth" approximation can therefore be stated
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as follows: given any M E D, evaluate

o(u) = £?(u(tt)), i = 1,... ,Ns, (2.11)

where u(M) E XD is the solution of

a(u(pu), v) + j s(uu(p); p) v dQ = f(v), Vv c X. (2.12)

Note that the linear and bilinear forms and the nonlinear term used in the "truth"

approximation have the same names as those used in the exact formulation (2.5).

Being rigorous, this implicitly assumes that all quadratures are exact: otherwise we

would need ae, e, se in Section 2.2 and a, f, s in the current section. In practice,

we will use approximate quadrature rules for discretizing all the terms that appear

in the "truth" approximation so there will be additional errors between the exact

solution and the "truth" used to build the RB approximation. In this thesis we

use the term "truth" to refer to a discrete approximation of the exact solution that

satisfies the accuracy requirements of our specific application. We do not imply any

level of accuracy by using the word "truth" and, in fact, the "truth" approximation

could be far from the exact solution as long as it is "good enough" for our needs.

2.3.2 Streamline Upwind / Petrov-Galerkin Stabilization

As mentioned at the beginning of the current section, if we tried to solve the dis-

cretized weak form (2.12) we would find that the solution is corrupted by non-physical

oscillations when the problem is dominated by convection (high flow velocities or low

diffusivities). As discussed in [13], this oscillatory behavior is caused by the negative

numerical diffusion inherent in the Galerkin finite element method. This phenomenon

is analogous to the spurious oscillations found in solutions to convection-dominated

problems when using central differences instead of upwinding schemes.

To characterize the relative importance of convective and diffusive terms in a given
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flow we introduce the mesh Peclet number

Pe = IUh (2.13)
2 r

where fl denotes the p2-norm, U is the convective flow velocity, h is the element size

and /- is the diffusivity as defined in previous sections. Note that, in general, the flow

velocity field and the element sizes will not be constant throughout the entire mesh.

Therefore, each element will have a different elemental Peclet number. In this thesis

we will refer to the mesh Peclet number as the most unfavorable of all the elemental

P~elet numbers. As shown in [131, the Galerkin solution is corrupted by spurious

oscillations when the Peclet number is larger than one. Therefore, we will define the

mesh Peclet number as the largest of the elemental P6eclet numbers.

Several methods exist for counterbalancing the negative numerical diffusion intro-

duced by the Galerkin approximation when the P6eclet number is greater than one.

Herein we use the Streamline-Upwind Petrov-Galerkin (SUPG) technique proposed

by Brooks and Hughes [6] where an extra term over the element interiors is added to

the Galerkin weak form. It is worth noting that the additional term is a function of

the full residual of the differential equation (not only the convective term) in order

to ensure consistency. The stabilized version of the weak form (2.12) is shown below

Nelem

a(u(pu), v) + s(u(p); u)v + E3 P (V) r R(U) = 1(V), VV E X, (2.14)
k==1 h

stabilization term

where R(u) is the residual of the differential equation as shown below

R(u) = U - Vu - , V 2 u + s(u; iA) - f (2.15)

Since the solution u(tz) in equation (2.14) already resides in our finite element

approximation space XD c XD,e, the residual R(u) is computed only for each element

interior. P(-) is a certain operator applied to the the test function and T is the

stabilization parameter. Equation (2.14) provides a general form for all consistent
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stabilization techniques. Each technique is characterized by a different definition of

the operator P(-). As discussed before, in this thesis we shall use the SUPG method,

which is defined by taking

P(v) = U- Vv (2.16)

For a general treatment of consistent stabilization methods of the form (2.14) we

refer to [10]. For the weak formulation given by (2.14), it can be shown that the

stabilization term has the effect of inducing numerical diffusion in the streamline di-

rection, which is equivalent to using an upwinding scheme or using modified weighting

functions such that the element upstream of a node is weighted more heavily than

the element downstream of a node. For a rigorous variational interpretation of the

SUPG method we refer to [55].

2.3.3 Stabilization Parameter

The weak form (2.14) contains a stabilization parameter, T, that is critical for the

proper convergence of the SUPG method. The literature contains several defini-

tions of r that can be proven to be optimal for simple, linear convection-diffusion

or convection-diffusion-reaction equations. However, no definition of the stabilization

parameter is readily available for the nonlinear PDE (2.1). Since none of the dif-

ferent definitions of T available in the literature have been validated for our specific

combustion equation, several of them are presented below in order to assess their

performance. The solver written to solve equation (2.1) is capable of using any of the

four implementations discussed in this section.

Definition by Brooks and Hughes [6]

This definition was originally derived based on the one-dimensional convection-diffusion

equation, for which it can be shown to achieve superconvergence in the form of

nodally exact results. Even though it was originally intended for the convection-

diffusion equation, it has been tested successfully on more complex problems such as

the Navier-Stokes equations. In this case, the stabilization parameter is defined as
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follows,

T = R(2.17)
11 U112

1-
R = 1|1 U1| h (2.18)

= coth(Pe) - (2.19)
Pe

It is worth noting once again that, in the most general case, each element of

the triangulation will have a different stabilization parameter. Generally, the flow

velocity used for computing the element-level P~elet number used in this definition is

computed at the barycenter of the element.

Definition by Tezduyar and Osawa [58]

Once again, this definition was derived in the context of the convection-diffusion

equation although an analogous definition was tested successfully on the unsteady,

incompressible Navier-Stokes equations.

The main advantage of this definition is that r is computed from element-level

matrices without separately computing local length scales (i.e. element sizes). For

the steady case, T is given by

T= + (2.20)
(Ts1 7S2

TS1 = (2.21)
||KSUPG II

TS2= Re . Ts, (2.22)

Re =1 Q2 upcJ (2.23)r, ||KSUPG I

where r is a positive integer and 1 -1 indicates any matrix norm. As shown by Donea

and Huerta [13], r = 2 has been tested successfully in different applications.

For each element in the mesh, the matrix K is the elemental matrix associated

with the convective term, fTh v U- Vu dQ and KsuPG is the elemental matrix associ-
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ated with the SUPG stabilization of the convective term, fT U -Vv U. Vu dQ.

Definition by Mizukami [38]

Mizukami provides a definition of the stabilization parameter that is specifically in-

tended to be used with triangular linear elements. In this case, r is a three-element

vector where each component corresponds to the stabilization parameter associated

with one node of the element. The definition of the stabilization parameter in this

case is given by

I Mi
Ti = - a +, = 1,2,3 (2.24)

where M is the element-level mass matrix and K' and K 2 are the convective and

diffusive parts of the elemental stiffness matrix corresponding to the element-level

integration of the terms fIT v U -Vu dQ and fTh KVu -Vv dQ respectively.

Definition by Codina [11] and Shakib [52]

The SUPG stabilization parameters proposed by Hughes, Tezduyar and Mizukami

were derived for the pure convection-diffusion case without a reaction term. The

obvious question that arises in our problem is how the presence of a reaction term may

affect the SUPG stabilization parameter. Codina [11] and Shakib and co-workers [52]

have proposed expressions for T that include the effect of linear reaction terms. The

linear convection-diffusion-reaction equation for which the expressions of T derived

by Codina and Shakib are strictly applicable is shown below

U. Vu - rV 2 + Ou =f (2.25)

where au is the linear reaction term. For equation (2.25), Codina proposes the fol-

lowing expression for computing T

T = 2U 1+ 1+ 2U)_ , (2.26)
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whereas Shakib and co-workers suggest using

T = h + 9+ (.) 2 (2.27)
2U Pe2 2U

In the previous equations U denotes the p2-norm of the velocity vector U. Based

on equations (2.26) and (2.27) it is easy to see that, for a given ratio U/h, the

maximum stabilization is required for very large P6clet numbers (highly convective

flows) and negative reaction rates. Large positive reaction rates tend to stabilize

the weak formulation whereas negative reaction rates require increased values of r in

order to achieve a stable scheme.

Recall that the nonlinear reaction term in our problem of interest is given by equa-

tion (2.2). A piecewise linear representation of s(u) can be obtained by performing a

Taylor series expansion about u = 0 and u = c. This piecewise linear representation,

denoted by 9(u) is given by

= {JcU, if 0 < U < uc; (2.28)

02 (U - c) if uc < U < c,

where

ui = Aced (2.29)

E
O2 = -Ace-d-c (2.30)

Uc = Ec (2.31)
1 + ed(dc)

Note that the reaction rates u1 and u2 given in equations (2.29) and (2.30) can now

be used in the definitions of T proposed by Codina and Shakib. The only difficulty

is that the stabilization parameters for all the elements must be calculated before a

solution is obtained, which means that one cannot evaluate the expression (2.28) in

order to determine which reaction rate corresponds to each element. An iterative

process would be required for computing T. Since the exact value of the stabilization
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parameter is not critical for obtaining a correct solution, the implementation of the

SUPG solver used in this thesis follows a conservative approach and uses the value

of o2 as the reaction rate. This may add additional stabilization in some regions but

its effect is negligible in the final solution.

We wish to emphasize that the linearization of the Arrhenius term is only per-

formed in order to account for reaction effects on the stabilization parameter when

using the definitions proposed by Codina and Shakib. The actual problem being

solved always contains the fully nonlinear exponential combustion term s(u) regard-

less of the stabilization method used for solving it.

Conclusions Regarding Stabilization Parameter

No suggestions were found in the literature for defining the SUPG stabilization pa-

rameter for our particular problem. Most of the expressions for r that are available

in the literature have been derived and tested on linear or, at most, quadratically

nonlinear problems so it was not clear how they would perform for stabilizing equa-

tion (2.1). Therefore, four different definitions were implemented in order to assess

their performance when used for solving a nonlinear combustion PDE.

After performing several tests, it was observed that the definitions by Brooks and

Hughes (see equation (2.17)) and Codina and Shakib (see equations (2.26) and (2.27))

provide the best stabilization for our particular problem. All the numerical results

included in this thesis have been computed using the definition by Brooks and Hughes

unless stated otherwise.

2.4 Finite Element Implementation and Solution

Method

2.4.1 Galerkin Projection

As discussed in section 2.3, in this thesis we use piecewise-linear finite element ap-

proximation spaces X and XD. The typical "hat" basis functions that span these
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spaces are defined as

Pi E X, Pi(xj) = ij, 1 <ij <N-.

For this particular case, the second order derivatives in the residual of the PDE (see

equation (2.15)) vanish so the "truth" approximation can be formulated as follows:

given any i E D, evaluate

(2.33)

where u(M) E XD is the solution of

a(u(u), v) +

Nelem

+ 
(Tk

k=1 fTh

s(u(p); p) v dQ

J - Vv) Tk [U -Vu(p) + s(u(p); p) - f] dQ = f(v), Vv E X, (2.34)

where the bilinear and linear forms a(., .), f(-) and fo(-) were defined in equations (2.6)-

(2.8).

2.4.2 Nonlinear System of Algebraic Equations

The weak form (2.34) yields the following nonlinear system of equations

Au(tp) + S (u(tt); tp) = F (2.35)

where the vector u E R' contains the nodal values of the solution u(x; i). The

stiffness matrix, A E RKXK, load vector F E RM and nonlinear reaction vector,

S (u(p); p) E RA are given by

Nelem

k= kT

Aij = a( y, oi) + (U - Vp,) Tk (U - Vrp) dQ 1 <i,j < N
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(2.36)

Oi (A) = fi (u W), i = 1, . .. , Ns,



Nelem

Fi = (p) + Zj (U -V7oi)T kf dQ I < i < (2.37)
k=1 Th

Si (U(fl); It) = s l sp;y pj dQ
j=1

Nelem /\

+ j(U ) TsZk s ujsP; ) dQ 1<i< (2.38)
k=1 Jh (j=1

The nonlinear system of equations (2.35) is solved using a Newton iterative scheme:

given a current iterate uP we find an increment AuP such that

OR
Au = -R (u(p); -)i, (2.39)

au up

where R (u&(t); M) is the residual of the algebraic system of equations, defined as

R (uP(tu); p) = Au" + S (u(IL); p) - F, (2.40)

and = J(u(p); .) E REx is the Jacobian of the residual evaluated at the

current iteration,
as

J (u"(p); p) = A + (2.41)
2.u4

where the term s can be evaluated using a suitable quadrature rule as follows

a s i ~ N e l e m N Q , ) k ( q q W k ( q q ' )

a u k=4 q=1 (2.42)

Eduq E(c < U )Uq }A e- c - 2u ~ q(U- d) 2

where NQ is the number of quadrature points in each element, ( , 2) are the coor-

dinates of quadrature point q in the master element, in the computational domain;

Wq is the weight associated with quadrature point q and Jf,('?, ) is determinant of

the Jacobian of the coordinate transformation between element k in physical space
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and the master element in the computational domain, evaluated at the quadrature

point. The expression uq, represents the value of the solution at Newton's iteration

p evaluated at the quadrature point q, which is given by

AF

U~gq = 1 2p(,Q (2.43)

Finally, Wk C R3 contains part of the contribution from the SUPG stabilization

term and is given by

2 = U 1< i < 3, 1 < k < Neem. (2.44)
j=1 n=1 Okn 9Xi'

where Hk represents the basis function associated to the local node i of element k

restricted to T: =PnodeiT. Note that here i refers to the local nodes of element

k (i = 1, 2, 3).

After solving the linear system of equations (2.39) we can update the solution

up" = up + AuP, (2.45)

and we iterate until the value of the residual is suitably small. Finally, we evaluate

the vector of outputs, o(p) E RN as

o(p) = L' u(p), (2.46)

where L 0 C RNxJ is given by

LO = j pj d', 1 < i < N, 1 < j A (2.47)

2.4.3 Implementation Remarks for Newton Solver

The PDE solved in this thesis is extremely stiff so a naive updating scheme like

the one presented in equation (2.45) will never converge. Different Newton solver
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implementations can be used to overcome this difficulty. Two of them are discussed

in this section and used in this thesis.

The first solver is a damped Newton solver where the size of the solution step

in every update is selected such that the norm of the residual decreases at every

iteration. The algorithm is summarized below

U = U0

while IlAu| > eu and IIR(u; y) 11 > ER

R= R(u; p)
j = t9R(u;p)

UL

Au = -J-'R

a = 1.0

while iRIi ;> IIR(u + Au; )I

a = 0.5ca

R = R(u + aAu; [t)

end

end

The second Newton solver incorporates a load stepping algorithm that limits the

nonlinearity in the case of nonconvergence. The philosophy is similar to the damped

Newton algorithm but, instead of limiting the size of the step used for updating

the solution, it limits the value of the nonlinear parameter vector yu such that the

problem becomes closer to linear (for a purely linear problem any Newton solver

obviously converges in just one step).

Both solvers offer similar performance. The damped solver was used for computing

all the results included in this thesis unless noted otherwise.
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2.5 Numerical Results

The domain of interest for our problem represents the interior of a combustion cham-

ber. The full combustion chamber is shown in Figure 2-1. The fuel is injected into

the chamber through the central pipe whereas the oxidizer is injected via the upper

and lower tubes. Once inside the chamber, both fuel and oxidizer diffuse and the

combustion reaction occurs.

Note that the computational domain only includes the part of the combustion

chamber downstream of the injection pipes (region inside the dotted rectangle in Fig-

ure 2-1). Since both reactants are isolated from each other while flowing through the

injection pipes, this region of the domain is not necessary for modeling the combustion

reaction.

Computational Domain Measurement Lines F1 ... P17

oxidizer 3m

fuel K3 mm 9 mm

oxidizer > n

x

mm -- -1 mm
(typ. for all lines)

18 mm

Figure 2-1: Reaction chamber configuration. Computational domain is enclosed inside
dash-dotted lines. Dashed vertical lines indicate the lines where measurements are
modeled.

Figure 2-1 also shows 17 vertical dashed lines spaced at uniform intervals of 1

mm. These are the lines along which laser measurements are taken in the physical

chamber in order to estimate the value of the Arrhenius parameters. Therefore, in

42



the computational model, the outputs of interest are the average value of the fuel

concentration along these lines.

The computational domain has an overall length of 18 mm and height of 9 mm.

The fixed parameters in the Arrhenius law (2.2) are c = 0.2 and d = 0.24. The

diffusivity has a value of 5 x 10-6 m 2 /s. A uniform convective velocity field given by

U= (0.2, 0) m/s is assumed inside the combustion chamber. It is worth noting that

this simplistic flow velocity field does not limit the generality of the reduced basis

method proposed in this thesis. A more realistic velocity field obtained from solving

the Navier-Stokes equations could be used without modifying the methodology.

Finally, the source term f in equation (2.1) is set to f = 0 and the Dirichlet

boundary conditions at the left vertical boundary of the domain are given by

0, if 0 < y < 3mm;

UD C, if 3mm < y < 6mm; (2.48)

0, if 6 mm < y < 9 mm;

All other boundaries have homogeneous Neumann boundary conditions as de-

scribed in Section 2.1.

The mesh for obtaining the "truth" solution was generated using a customized

version of Distmesh [48]. The mesh contains 6696 triangular elements and is refined in

the regions where the combustion fronts are expected to occur as shown in Figure 2-2.

The largest elements in the mesh have a P6eclet number of approximately 20, which

clearly requires some sort of stabilization in order to prevent oscillations.

Figures 2-3, 2-4 and 2-5 show the solution a computed at three corners of para-

meter space. Figure 2-3 corresponds to a combustion process with very low reaction

rates so the resulting solution is dominated by convection-diffusion. Figure 2-4 cor-

responds to the highest reaction rates considered in this study. In this case, a sharp

reaction front occurs and the resulting flame is confined to the region near the fuel

injector. This is the situation that corresponds to a fast-burning fuel. Finally, Fig-

ure 2-5 represents an intermediate situation. From these figures it is obvious that the
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reaction parameters A and E have a very significant effect on the field variable u so

the problem shows a high dependence on the nonlinear Arrhenius term.

0 2 4 6 8 10 12 14 16 18
x [mm]

Figure 2-2: Mesh used for computing "truth" solution.

44

9

8

6

E
E

S4

2

n
L



9

8

6

E
4

2

0
0 2 4 6 8 10 12 14 16 18

x [mm]

0 0.05 0.1 0.15 0.2

Figure 2-3: Molar fraction of fuel for (A, E) = (e5, 0.15).
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Figure 2-4: Molar fraction of fuel for (A, E) = (e725 , 0.05).
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Figure 2-5: Molar fraction of fuel for (A, E) = (e725, 0.15).
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Chapter 3

Reduced Basis Approximation

3.1 Introduction

In this chapter we develop the reduced basis approximation for the nonlinear convection-

diffusion-reaction equation presented in Section 2.1. For a more detailed explanation

of the reduced basis methodology and nomenclature used in this chapter, the reader

is referred to the work by Patera and co-workers, which is presented in detail in [47].

We start the chapter by introducing the proper orthogonal decomposition (POD)

procedure used to construct the low-dimensional approximation spaces required for

building the reduced basis approximation. Then, we continue by developing a naive

reduced basis approximation following the standard Galerkin reduced-order approach

and explain why the resulting approximation cannot be considered a true reduced-

order model since the operation count for evaluating the nonlinear term scales as

a function of M (size of the FE model developed in Chapter 2). Next, we devote

a section to developing the methodology for treating the inhomogeneous boundary

conditions found in our problem of interest.

In Section 3.5, we present the critical building blocks that are required for con-

structing an efficient reduced basis approximation with an online operation count

that is independent of Af, namely, the empirical interpolation method (EIM) and

best points interpolation method (BPIM) used for developing the coefficient-function

approximation of the nonlinear Arrhenius term.
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Finally, using all the building blocks presented throughout the chapter, we develop

an efficient offline-online algorithm for computing the outputs of interest given any

input p E D. The results obtained from the resulting reduced order model are shown

at the end of the chapter.

3.2 Proper Orthogonal Decomposition

In this chapter we use the proper orthogonal decomposition (POD) procedure, pre-

sented by Karhunen [31] and Loeve [32], for constructing a set of orthonormal basis

functions {I} give a set of snapshots {(k} . The set of basis functions gives

the best representation of the set of snapshots in the sense that each basis function

has the largest mean square projection on the set of snapshots. That is, for a given

N < K, the POD procedure consists in finding (n, 1 < n < N such that

N K

n<arg max ((n, k ,1 < n < N, (3.1)
((-,C(i)x=6nn, nl k =

1<n,n'<Nn= k=

where (., )x denotes the inner product associated to X. It is worth noting that

this inner product should induce a norm equivalent to the H 1 (Q) norm in order to

be consistent with the exact infinite-dimensional formulation derived in Chapter 2.

Since the bilinear form a(w, v) defined in equation (2.6) is coercive (positive definite)

but not symmetric we select the following definition of inner product

(w,v)X =as(w,v), Vw,vEX (3.2)

and hence, the induced norm is given by

liwlix = as(w, w), Vw E X, (3.3)

where as(w, v) = j (a(w, v) + a(v, w)) is the symmetric part of a. It is easy to prove

that equations (3.2) and (3.2) define indeed a valid inner product and norm. The
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reason for selecting this inner product and norm instead of the maybe more common

L2 -norm or its discrete 0 version resides in the fact that, even though all norms are

equivalent for a finite-dimensional space, the equivalence constants are dependent on

the dimension of the space and not necessarily bounded as M --+ oc. Therefore, a

norm that is inconsistent with the infinite-dimensional formulation will likely result in

ill-conditioned systems when the dimension of the space X is very large. This being

said, for the problem considered herein, one can replace the (-, .)x inner product and

induced X-norm by the standard Euclidean inner product and norm without any

noticeable impact on the numerical results.

Going back to the POD procedure, after expressing each basis function as a linear

combination of snapshots,

K

a(x) = ak (x), 1 <rn < N, (3.4)
k=1

it can be shown that problem (3.1) is equivalent to solving the following eigenvalue

problem

Ca = Aa, (3.5)

where C E KK is given by

Cij =j ( X4 7g, 1 < ij K, (3.6)

The eigenproblem (3.5) is then solved for the first N eigenvectors from which the

POD basis functions (n, 1 < n < N are constructed using (3.4).

Since the POD basis functions are obtained from solving the maximization prob-

lem (3.1), they provide the most accurate representation of the snapshot set {4} k1

in the mean square error sense.
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3.3 Standard Galerkin Reduced Basis Approxima-

tion

Let us recall the formulation of our problem of interest in the finite element approxi-

mation space that was introduced in Section 2.3: given any M E D, evaluate

o (p) = fiou(.4)), i = 1, ... , Ns, (3.7)

where u(p) E XD is the solution of

a(ui(p), v) + j s(u(tt); p) v dQ

Nelem

+ (U - Vv) Tk [U - Vu(p) + s(u(P); P)
k=1 h

where the bilinear and linear forms a(., .), f(.) and fo

(2.8).

- f] dQ = f(v), Vv E X. (3.8)

(-) were defined in equations (2.6)-

The objective of the reduced basis approximation is to obtain an approximation to

the output of interest oN([) at a much cheaper computational cost. Towards this end

we first introduce a sample set SK = {tLI E D, .. . , AK E D} with an associated set of

snapshots S = {W(x) = U(pk), Pk E SK, 1 < k < K}, where U(pk) is the solution

of (3.8) at A =P

The solutions of the reduced order model reside in the reduced basis space W2

nby W? = span { <, 1 < K N} where the functions (,, 1 K n < N, are com-

puted by applying the POD procedure upon the set of snapshots Sk. The standard

Galerkin reduced order model is then obtained by a standard Galerkin projection:

given any p E D, evaluate

(3.9)
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where usG(tL) E WD is the solution of

a(uG (), v) + s(uSG(,i) vdQ
J9

Nelem

+ (U Vv) Tk [U - VufG(,) + s(u' (t); p) - fl dQ = f(v),
k=1 h

Vv E WN, (3-10)

where
N

uSN (Ap)4 ( (3.11)
j=1

Note that in the series expansion (3.11), the function uSG () actually stands for

uG(x; ti) whereas the unknown coefficients usG(t), 1 i < N only depend on the

parameter [t. The dependence on the spatial variable x is introduced through the

basis functions (i(x), 1 < i < N. Note also that postulating that the reduced or-

der solution uSG(,i) is a linear combination of functions {}iN that live in WD is a

daring statement: in general, for problems with inhomogeneous boundary conditions

(U $ 0), the sum of two elements of W2 is not an element of WD, which means that

the solution uSG(p1 ) as written in (3.11) is only guaranteed to satisfy the boundary

conditions of the problem for the homogeneous case. We address this issue in Sec-

tion 3.4. First we shall discuss some more immediate problems associated with the

standard Galerkin formulation (3.10).

In the case of a linear, or weakly nonlinear, system it is possible to substitute (3.11)

into (3.10) in order to implement an efficient offline-online decomposition such that

the online stage requires the solution of an algebraic system of equations with an

operation count that is only a function of N.

Unfortunately, since in our case s is an exponential nonlinearity of u, it is not

possible to develop an efficient offline-online computational procedure following the

same methodology used for example in [25, 33, 44, 47, 49, 61, 62]. Using a stan-

dard Galerkin projection, the evaluation of the nonlinear terms fQ s(u' (p); M) v dQ

and f9 (U -Vv) r s(us (p); p) dQ will always scale as some power of K. Therefore,
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the reduction in computational cost achieved with the standard Galerkin projection

on highly nonlinear problems such as (3.8) is generally very modest and consider-

ing (3.10) a reduced order model is somewhat optimistic.

A true reduced order model should have an online evaluation cost that depends

only on the dimension of the reduced-basis approximation spaces and not on M. As

a side comment, it is worth noting that, in general, the online operation count of

a reduced order model also depends on the parametric complexity of the problem,

that is, the number of operations that are required to compute the p-dependent

coefficients in the reduced order model. However, for typical problems like the one

considered in this thesis, these coefficients can be computed by evaluating simple

algebraic expressions so the computational cost is negligible compared to the cost of

solving the model and will not be taken into consideration when discussing operation

counts.

In Section 3.6 we derive an efficient reduced basis approximation that overcomes

the limitations of the standard Galerkin projection proposed in this section. However,

first we need to address the issue of dealing with inhomogeneous Dirichlet boundary

conditions in a rigorous and efficient manner.

3.4 Treatment of Inhomogeneous Dirichlet Bound-

ary Conditions

As briefly discussed in the previous section, the fact that our problem of interest has

a portion of the inlet boundary with inhomogeneous boundary conditions requires

some attention. In this thesis we follow the methodology used in [50] for treating

inhomogeneous boundary conditions in the POD context.

Recall that in the finite element formulation we used two different interpolation

spaces: the first one, denoted by X, is composed of test functions and consists of

all piecewise linear functions over the computational domain Q, that vanish on the
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Dirichlet portion, Fin of the boundary. This space was defined as follows:

X = {v E H1 (Q) I vIT Pi(Th), VTh C Th and v = 0 on fil } (3.12)

The second space, XD contains the trial solutions, which are also piecewise linear

functions over Q but, as opposed to the test functions, they are required to satisfy

the actual Dirichlet conditions on Fim. Mathematically, this space is defined as

X = f{u E H(Q) I ulTh E P(Th), VTh Th andu = UDon Fin} (3-13)

We note that XD - X + ftD where UD is any function in H 1 (Q) such that

UDITh E P(Th), VTh E Eh and, UD =D on Fin. Clearly, since XD is actually a

translation of X, it is an affine space. These two spaces only coincide for problems

with homogeneous boundary conditions.

In the reduced basis context we define the reduced basis approximation space as

WN? span{n, 1 n < N}. Since this space is constructed using solutions of the

full-order problem for specific values of the parameters, it is clear that WD is an

N-dimensional subspace of XD. In general, it is not true that any linear combination

of basis functions of W is also a member of WND. This is only true if the coefficients

satisfy an additional constraint. For example, if we use snapshots of the solution

directly as basis functions, (I = U(pI), k = 1, . . . , N then a general function WN de-

fined as WN n= WNn (n would be a member of W if and only if Zn=1 WNn = 1-

Otherwise, WN ' W. For basis functions computed by applying Gram-Schmidt

orthonormalization or POD to a set of snapshots it is straightforward to derive an

equivalent condition that the coefficients WNn must satisfy such that WN E W.

The condition that the truth solution of the discrete full-order problem must

belong to XD is not imposed in the weak formulation. Instead, it is imposed strongly

while solving the system of equations (2.35). In order to impose that the reduced

basis approximation to our nonlinear problem UN(P) must reside in WA? following

an analogous strong formulation we would need to impose an additional equation

on the sum of the coefficients UNn(p) as discussed previously. Adding an additional
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equation to an already determined system poses some obvious difficulties.

In this thesis we solve the problem by taking advantage of the fact that there

exists a subspace of X, denoted by WN, such that WD is a translation of WN; that

is, WNA WN + 'UD, where UD is the same function that was already used for defining

the affine space XD. We now define our basis functions as members of WN to ex-

ploit the fact that any linear combination of functions that reside in WN also belongs

to WN. The process for building this approximation space is as follows: we first

introduce a sample set SK {/i E D, . . ., PK E D} with an associated set of snap-

shots S1 {(x) = U(pI) - ', p1 E SK, 1 k K}, where u(PM) is the solution

of (3.8) at A = pk and ii is given by

IK
= Z"U(p) (3.14)

k=1

Note that we could use any other definition of ii with the only condition that ii

must be a member of W. The reduced basis approximation is then given by

N

UN = U- uNi(p)(i, (3.15)
j=1

which is guaranteed to live in WND even though the basis functions (,, 1 < n < N

are now members of the space WN defined as WN = span{Cn, 1 <n < N}. Using

expression (3.15) for performing the Galerkin projection guarantees that the inhomo-

geneous boundary conditions are satisfied while eliminating the need for modifying

the discretized reduced order equations prior to solving them.

3.5 Coefficient-Function Approximation

In Section 3.3 we showed that a reduced basis approximation built using the stan-

dard Galerkin reduced order approach is inefficient due to the KN-dependent operation

count required for evaluating the nonlinear term during the online RB stage. In this

section we present two alternative methods for overcoming this limitation by devel-
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oping a coefficient-function approximation of the Arrhenius term prior to performing

the Galerkin projection on the reduced basis space.

3.5.1 Empirical Interpolation Method

The empirical interpolation method (EIM) was first introduced in [3] and applied

to the solution of nonaffine and nonlinear PDEs in [24]. Given a p-parametrized

function s(x; p) E L (Q) n Co(Q), VpI E D the EIM consists of a "greedy" selection

process for constructing an approximation space and a set of interpolation points that

can be used for building a coefficient-function expansion sM(x; p) that approximates

the original function for the entire domain of interest in parameter space, D. Here,

x = (X 1 , x 2 ) is a point of the physical domain Q E R2 , and D E RP is the parameter

space in which our P-tuple parameter vector tz = (pi, . . . , pp) resides (for our specific

application, P = 2).

In this thesis, the approximation space is spanned by M orthonormal basis func-

tions, 4bm = span { , m}, with (0i, #j) = Sij, 1 < i, j < M which are obtained

by applying the POD procedure described in Section 3.2 to a set of snapshots.

First, we introduce a sample in parameter space SK = {p, E D, . . , AK E D} and

an associated set of snapshots SK -_k s(, Ilk), 1 < k < K}. We then apply the

POD procedure to the snapshot set SK to construct M basis functions {m}fM and

define an associated approximation space 4 m = span {1, ... , 0M}.

We point out that in [3] and [24], the approximation space is built by applying a

greedy algorithm directly on the set of snapshots SK and then orthonormalizing the

selected snapshots using the Gram-Schmidt algorithm. Here we use POD instead of

a greedy algorithm for constructing the approximation space.

After obtaining the basis set {m}"-1, the empirical interpolation points {zm c Q}

associated with this set are computed as follows:
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zi = arg ess suplq 1 (x)f

L-f or L = 2, . .. , M

solve =i(zi)o - = #L(Zi), 1 < i < L - 1

L-1
T L-1IO XrL(X) - &(X) - ,O
j=1

ZL = arg ess suprL(X)I
XCQ

end

Given the sets of orthonormal basis functions {#m}m-1 and interpolation points

{ Zm}-1 we define the coefficient-function approximation as

M

SM(x; E = 3s(zm; A1)m(X), (3.16)
m=1

where the cardinal functions { /m}-1 are defined by 4'(zi) = 6 ij, and hence given

by
M

#i(X) =E (zj)O (X), 1<2< 5m. (3.17)
j=1

The sample in parameter space SK should obviously cover all the domain of inter-

est D and be suitably fine for this approximation to provide accurate results. For a

detailed derivation of the methodology including error estimates we refer the reader

to [3, 24].

3.5.2 Best Points Interpolation Method

The "best points" interpolation method (BPIM) was introduced in [42] as an efficient

method for approximating parametrized functions. The BPIM replaces the greedy

algorithm used in the EIM by an optimization problem which provides higher accuracy

at the cost of greater computational complexity. Its application to the reduced basis

approximation of nonaffine and nonlinear PDEs was described in [43]. Here, we

provide a brief description of the method; for a more detailed explanation of the

methodology we refer the reader to [42].
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The starting point for the BPIM is identical to that used for the EIM, namely,

given an approximation space spanned by M orthonormal basis functions, <m

span {#1,...,mj} (in our case this space is constructed by applying POD upon a

suitably fine set of snapshots), we seek a set of interpolation points {zm}m 1 such

that we can obtain an approximation to the original parametrized function as a linear

combination of pre-computed basis functions m(x), 1 < i M with coefficients that

are given by the values of the original function at the interpolation points,

M

SM(X; pt) = s(zm; i)m(X), (3-18)
m=1

where the basis functions {#m}-1 are defined by (3.17).

In order to find the set of best interpolation points we introduce the best approx-

imation to the elements in the snapshot set SK that resides in our approximation

space (Dm as

s*M(-;jpA)=arg min |Is(-;tpk)-wMl, 1<k<K. (3.19)
WME4M

Then, we postulate that the interpolation points {zm}m= are optimal if they

minimize the sum of the squared errors between the best approximation sg(-; k;)

and the coefficient-function approximation sM( -; p). That is, the best interpolation

points are the minimizer of the following problem,

K

ZEQmin E E||Is*M k Ak) - sM( '; k) 12 (.0
ziE~..,z EOk=1

From the orthonormality of the basis functions m(x), 1 < i K M and from the

definition of the coefficient-function approximation, it is clear that the best approxi-
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mation and the coefficient-function approximation in (3.20) can be expressed as

s*(- ; k) =

SM(.; 1k) =

M

>I amm(Ak)#m(X),

S1M m(k )m(X),
m= 1

I < k < K,

I < k < K,

where the coefficients of the series expansion for the best approximation are given by

CYem( Ak) = (#m, S( - ;) k)) , 1<m<M, 1<k<K,

and, by definition of the coefficient-function approximation, the coefficients of its

series expansion are computed as the solution of

lm(Zi)f3 m(pk) = (Zi; pk), 1 <i M, 1 < k < K,

We now substitute equations (3.21) through (3.24) into (3.20) and invoke ortho-

normality of {q#m}M~ to obtain the following least-squares minimization problem

K M

mi S (am(pk) -m(Z,... , ZM; Ak))
.zEO~k=1 m=1

(3.25)

M

E On(Zm)/
3 Mn(Z1... .ZM;/1P = SZ)A)

n=1

1 < M M, 1 < k < K.

The solution to problem (3.25) is computed using the Levenberg-Marquardt algo-

rithm [34]. Let t = (zz,... ZM), we write the objective in (3.25) as

F(t) = r(
q=1

(3.26)

where rq(t), 1 < q < Q = KM, are given by

rq (t) = aMm(/k) - OM m(t; pk), 1 < M < M, 1 < k < K.
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The gradient of the objective function can therefore be computed as

Q

q=1

where the Jacobian matrix J(t) is computed by differentiating both sides of the

constraint in the minimization problem (3.25) with respect to t and r(t) E RQ is

given by (3.27).

The Hessian can be approximated in terms of the Jacobian matrix J(t) as

v 2F(t) ~ (J(t))T J(t) (3.29)

Finally, it is necessary to mention that, as with any optimization algorithm, an

initial guess is required in order to run the Levenberg-Marquardt (LM) solver. In this

case we use the empirical interpolation points as initial guess for computing the best

points. Since running the optimization algorithm is relatively inexpensive, another

option would be to generate several sets of random initial guesses and keep the best

points that result from the initial guess with minimum value of the objective function

after running the LM algorithm.

3.5.3 Numerical Examples

In this section we use the EIM and BPIM described in Sections 3.5.1 and 3.5.2 to

interpolate the nonlinear reaction term in the convection-diffusion-reaction equation.

First, we define p"" (= ln Amin) = 5, m"ax (a InAmax) = 7.25, i" (= Emin)

0.05, /1max (= E" m) = 0.15, and then 11 [,min, ,,"ax] (= A [ [ln Am In Amax])

and 12 -[in max ]( E [Emin, Emax]) such that we can express our parameter

domain as D I x 12.
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We then introduce the set of L equi-spaced points between p"" and p",

GLrnpnax= {pp, .. ,Lp} (3.30)

P = P"in + l(p"ax - pmin) 1 j L.

These points are used to define a tensor product grid BK over D, !K C E c R2

as

= GL nin nax] x GL[ ]ax(.

where K = L2 . For our numerical example we will consider L = 14 to generate a

regular grid E196 over D. We then choose the sample set SK = {pi, - tI- as the

nodes of this grid and we generate our sample of solution snapshots,

Sk -- {( ) = u(g), M1 E SK, 1 < k < K} (3.32)

by solving the convection-diffusion-reaction PDE (2.1) at every point on the grid.

The set of snapshots of the nonlinear Arrhenius term is then computed as

Sk =-{(x) = s(U(X; M); pk), 1 k E SK, 1 < k < K} (3.33)

We then use the POD procedure outlined in Section 3.2 to compute the basis set

{qm} 1. Figure 3-1 shows the location of the best points and the EIM points for

M = 15. We observe that the interpolation points are distributed around the regions

where the reaction fronts occur in the solution (regions with highest reaction rates).

Figures 3-2 and 3-3 show the shape of the nonlinear Arrhenius term at the four

corners of the parameter space D. The EIM points (o) and BPIM points (o) for

M = 10 are overlaid on top of the reaction fields. Note that {z M EIM

whereas {zBPIM }=1 _ BPIM . These figures clearly show that, as expected,

the interpolation points are located in the regions where the reaction occurs. It is

worth noting that the nonlinear reaction field changes not only its shape but also its

magnitude throughout the parameter space. To illustrate this, Figure 3-2 uses the
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Figure 3-1: Distribution of the empirical interpolation points and best points on the
physical domain for M = 15.

same color scale to plot the reaction fields at all four corners of parameter space. Note

that the reaction term at point p = (5.0,0.15) is hardly visible when plotted using

the same scale used for plotting the reaction field at [L = (7.25, 0.05). Figure 3-3 plots

all four fields using different color scales for each of them in order to better show the

changes in shape.

In order to test the performance of the interpolation methods we introduce a

23 x 23 grid, -529 , which is finer and mostly noncoincident with the grid g196 used to

compute the approximation space <?M = span fq 1 ,-- , Om}, EIM points {zM M=1

and BPIM points {z } . We then define the maximum relative error, &M,max,rel

as

M, max, rel = max , (3.34)
529 11s(-, p |

where EM(p) = I1s(-, /) - sM(-, It)1. We wish to emphasize that represents the

continuous L 2 -norm as opposed to the discrete 2-norm or vector norm. Therefore,

the error EM is given by,

EM(II) (S (U(X; u); p) - sM(U(Xi t); t))2 dQ) (3.35)

For the results shown herein, the integrals used to compute the error norms have
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(a)

0 5 10

(c)

0 5 10

Figure 3-2: Nonlinear reaction field at

P14 =(5.0,0.15), (b) i = (5.0,0.05),
(7.25, 0.05). Same color scale is used in
nitude of the reaction term. EIM points
overlaid on top of the reaction fields.

0 5 10

(d)

0 5 10

the four corners of the grid :196: (a)

(c) A196 = (7.25,0.15) and (d) Ap183 =
all cases to illustrate the change in mag-
(o) and BPIM points (o) for M = 10 are
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(a)

0 0.2 0.4 0.6

(c)

0 1 2 3 4 5

0 0.5

(d)

0

Figure 3-3: Nonlinear reaction field at the four corners of the grid =196: (a)

14 = (5.0,0.15), (b) p, = (5.0,0.05), (c) pI196 = (7.25,0.15) and (d) A183 =

(7.25, 0.05). Each reaction field is plotted using a different color scale to illustrate the
change in shape. EIM points (o) and BPIM points (o) for M = 10 are overlaid on
top of the reaction fields.
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been computed using 4-point quadrature rules as shown below

(Nelem NQ 2

M() q -~ SM(U(, (U 22

k=1 q=1

(3.36)

where (q, q) are the coordinates of quadrature point q inside the master element in

the computational domain, Je q( ,q) is the determinant of the Jacobian of the co-

ordinate transformation between element k in physical space and the master element,

Wq gives the weight associated with quadrature point q and NQ is the total number

of quadrature points in the master element (4 in our specific application).

The maximum relative errors for the "best points" and "empirical" interpolation

methods as a function of the number of interpolation points are shown in Figure 3-4.

As expected, the maximum relative error decreases monotonically with M and the

error obtained using the BPIM is always less than the error of the EIM approximation.

For some values of M, the BPIM can achieve the same accuracy as the EIM with up to

6 fewer basis functions, which leads to a more economical reduced-order model. Since

the reduced order model is typically several orders of magnitude cheaper to evaluate

than the full-order model, a reduction of a few basis functions in the reduced-order

model may not seem significant. However, for time-critical applications where real

time input-output evaluations are required, the BPIM offers an important advantage

over the EIM.

Finally, it is worth noting that there are some values of M for which the im-

provement of the BPIM with respect to the EIM is not very significant. For these

points, the EIM gave an initial solution that was close to a local optimum so the

Levenberg-Marquardt algorithm used in the BPIM could not decrease the value of

the objective function significantly. It is possible that the BPIM could have obtained

better interpolation points by using a different initial guess instead of the EIM points.
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5 10 15 20 25 30 35
M

Figure 3-4: Maximum relative error norm EM, max, rel as a function of

and BPIM.
M for the EIM

3.6 Efficient Reduced Basis Approximation

3.6.1 Galerkin Projection

As discussed in Section 3.3, a true reduced order model should have an online evalu-

ation cost that is independent of fi. In order to construct such a model we use the

already existing set of snapshots of the solution S to compute a set of snapshots of

the nonlinear reaction term,

SS = {'(X) = s(u(X; Ak);h k), Ak E SK, 1 < k < K} (3.37)

We now apply the POD procedure to compute an approximation space associated

to this set of snapshots, <M = span {11, .. ., 0M and construct a set of interpolation

basis functions {k m} 1 and interpolation points {zm}m$- using either the EIM or

BPIM as outlined in Sections 3.5.1 and 3.5.2. Then, for any given function w E X,
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we can approximate s(w; /) by

M

M=1

(3.38)

In particular, we may now replace the nonlinear function s(uNG(x, tt); p) in (3.10)

with SANI (x; M). Then, the reduced basis approximation becomes: given any C 'D,

evaluate

ON,M i () = f2 UN,M(A)),

where UN,M (A) E WND is the solution of

i= 1, ... Ns, (3.39)

a(i, v) + a(uN,M(A), v) + 49
Nelem

+ JTk(U - V) k
k=1

sMN,M(Um (x;,) v dQ

(U.- VUN,M(/I) + U. Vii + sI' M (X; it) - f) dQ

= e(v), Vv E WN. (3-40)

where the series expansion of the reduced basis approximation is given by

N

UN,M(X;7 A) -=Ut(X) + E UN,M,(-) (71(X)
n=1

(3.41)

and the coefficient-function approximation is given by

s UN,M __ ) 1 s
M5 S(UN~,M~(Zm;7 p); Ai) 0.b(X)

M~=1

M
M=( s(Zm)

N

+ EUN,Mn(/) (n(Zm);7 A
n=1

3.6.2 Reduced System of Algebraic Equations

Choosing v = (,, 1 < n < N and substituting (3.41) and (3.42) into (3.40) yields

Ao + AN UN,M + (EN,M + GN,M) s(UM + DM,N UN,M; t) = FN, (3.43)
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where A 0 E RN, AN E INxN EN,M E RNxM N,M E RNxM, UM E RM, DMN E

RMxN and FN E RN are given below.

Nelei

Aon =a(i,(n)j+ (U .Vn) F, (U -VU) dQ
k=1 h

Ar r Nelem IV 'A

=a (tmYJ,(s + k U -V (iPi) Tk (u VEth(j dQ
(=E f = k=1 JTh i1j=1

A M M A Nelem

= E 'U(j(2a(p, Ws) +5>3 E E ( 1 (U - V9 ) Tk (U -V (p) dQ
i=1 j=1 i=1 j=1 k=1 Th

=(C")T A (i) , 1<5n<5N, (3.44)

Note that in the expression above, Qn, 1 < i < K refers to the nodal values of

the basis function C,(x), which can also be written in vector form as C . The same

naming convention is used for iij, 1 < j < M. We now introduce the "basis" matrix

Z E IRKxN, which contains the N basis vectors {N}N_, stored in columns,

Zin-=(tn, 1<5i < r, 1 5n<5N, (3.45)

so that AO can be written succinctly as

AO = ZT A. (3.46)

We now give the expressions for the other matrices in (3.43)

Nelem

ANnn'= a(n', (n) + E I (U -V(,) Tk (U -V(Q,) dQ
k=1 TT

A( A Nelem /V M

=a (jn'p,(in (i + E U - V (,i -Fk U-V E 'jn dQ

(j=1 i=1 k=1 fTh i= j=1

K K K K Neem

= (jn'( ,' (U -V pi) Tk (U -Vypj) dQ
i=1 j=1 i=1 j=1 k=1 T

(n)T A(n') , 1n, n'<N, (3.47)
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which can also be written in terms of the basis matrix Z as

AN ZTAZ. (3.48)

The expression for FN can be easily derived using the same process used for

arriving at AO and AN so we will simply give its final form:

FN i = i) 1 < i < N, (3.49)

which can be written as

FN = ZT F. (3.50)

Lastly, we define the matrices that appear in the nonlinear term of the reduced

equation (3.43),

jn bm dQ, 1 <nN,

Nelem

ElT TkU - V(n m dQ,
k=1 T,

After solving the nonlinear system of equations (3.43) it is possible to evaluate

the reduced order output as

ON,M L' UN,M(A) + LO (3.55)

where LN E RNSXN and LO E IRN, are given by

n dF,

Li j Et dF,
ijr,

1 < i < N,, 1 < n < N

1 < i < Ns,

(3.56)

(3.57)
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EN,Mnm =

GN,Mnm =

1 m M,

1 < n < N, 1 < m < M,

DM,Nmn = Cn(Zm),

iM m = (zm),

1< n < N 1 < M < M,

1< m < M.

(3.51)

(3.52)

(3.53)

(3.54)

LNin -f



which, in matrix form, reduce to

LO= L0 .

(3.58)

(3.59)

3.6.3 Solution Method

The nonlinear system of equations (3.43) is solved using the same damped Newton

algorithm implemented for solving the full-order problem obtained from the truth fi-

nite element discretization: given a current iterate UpM we find an increment AUpNM

such that

ORN

UNM upN'M

AUNM = -RN NM )

where RN(UM(t); ) is the residual of the nonlinear system of equations (3.43),

defined as

RN(U,M A + ANUN,M

+ (EN,M + GN,M) S(UM + DM,NUNM(P); P) - FN, (3.61)

and '9HN JN (NM(P); A) E INxN is the Jacobian of the residual evaluated
N,M

at the current iteration. The computation of this Jacobian must be performed at

every iteration using the expression below and has a cost of O(MN 2 ).

JN uN,M()p ) N +(EN,M+ GNM) LsMN ( N UN,M UPN,m

where SM ,
9Um UN,M

(3.62)

is given by
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&9SMm E __MZm
m ~~ InPzmAe N,M( m) c - 2UN,M(Zm)

UN,M

E (c - UN,M(Zm)) UN,M(Zm)

(UN,M(m)- d)2

1<m<M, 1<n<N, (3.63)

where

N

UN,M(Zm) (Zm) + ZUN,Mn (n(Zm). (3.64)
n=1

After solving the linear system of equations (3.60) at cost O(N 3 ), the solution is

updated,

UNM - N,M + N,M, (3.65)

where the damping coefficient a E [0, 1] is selected using the same algorithm described

in the finite element implementation.

3.6.4 Offline-Online Algorithm

Figures 3-5 and 3-6 show the offline-online decomposition of the reduced basis method-

ology proposed in this chapter.

In the offline stage we form the parameter-independent matrices and vectors that

will be used during the online stage. Note that the operation count for the offline

phase is K-dependent - and hence very expensive. The online phase, however, has

a computational cost of only O(MN 2 + N3 ) per Newton iteration. As will be shown

in the next section, N and M are usually low (typically 5-50) and the Newton solver

converges in a few iterations so the online phase is very inexpensive. We wish to

emphasize that the operation count during the online phase is independent of the

number of degrees of freedom of the original finite element model.
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Offline Stage

1. Compute the snapshot set S { (x) = U(Pk), 1 < k < K};

2. Compute the reduced basis set {}n_ using the POD procedure;
3. Compute the snapshot set S =- {U(x) = s(u(Pk) Pk), 1 < k < K};
4. Compute the set of interpolation basis functions {m}mM-1 using

the POD procedure as described in Section 3.5.1;

5. Compute the set of interpolation points {zm} , using either
EIM or BPIM.

6. Form and store the parameter-independent matrices A 0 , AN, EN,M,

GN,M, DM,N, UM, FN and LN following Section 3.6.

Figure 3-5: Offline phase: construction of the parameter-independent matrices.

Online Stage

1. Select the value of the parameter vector [t for which the output
will be computed;

2. Select initial guess fo,M(p),for example by solving the linear
convection-diffusion problem without a reaction term.

3. Iterate using Newton's method until convergence is reached. At every
Newton step it is necessary to:

3.1. Assemble Jacobian from (3.62) at cost O(MN 2 ) and

3.2. Solve linear system (3.60) at cost O(N 3 ).
4. Calculate output ON,M() = L' UN,M(/) at cost O(NN,)

Figure 3-6: Online phase: compute the value of the output for every value of the
parameter vector pI.

3.6.5 Implementation Remarks

There are a few important details that must be considered while assembling the

matrices EN,M and GN,M in order to guarantee that the reduced basis approximation

UN,M(P) will converge to the truth finite element solution u(M) as N, M -+ o0.

First, as discussed in Section 2.4, the Newton iterative scheme used to solve the

truth finite element solution computes the Jacobian of the nonlinear residual at every

iteration using a Gauss quadrature rule with NQ quadrature points in every element.

For consistency, matrices EN,M and GN,M should be computed using the same number
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of quadrature points that was used to compute the finite element solution:

EN,Mnm = jn bmdQ (3.66)

Nelem NQ

k=1 q=1

1 'n<N, 1 m M

and

Nelem

GN,Mnm F k UV ,m dQ, (3.67)
k=1

Nelem NQ

~W j( 7 e e( q, ) Tk U((?, q) 7(n ( q, q) Om ( , q)

k=1 q=1

1<n<N, 1<m<M

We wish to emphasize that, since the interpolation basis functions 0m(x), 1 <

m K M are nonlinear functions of u(x; p), it is not possible to compute their values

at quadrature points by linearly interpolating in between nodal values. Instead, we

use the set of snapshots of the solution, S {(x) (= U(k), 1 < k < K} to obtain

a set of snapshots of the nonlinear reaction term evaluated at the quadrature points,

X, 7 1 < j < NelemNQ, namely,

S = {CQP = s(u(X3; a k) Pk), 1 < k K K, 1 j NelemNQ}. (3.68)

Then, the set of basis functions {#m}-1 that span the interpolation space,

<bM = span {1,1 ... , #}, are computed at the quadrature points using the POD

coefficients a", 1 K k K K, 1 m K M obtained from solving the eigenvalue

problem (3.5),
K

' 1mKM, (3.69)
k=1

where OP 1 < m K M and sQp, I1< k < K are all vectors of length NelemNQ.
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Finally, the values of the cardinal functions {4m}mi at the Gauss quadrature

points are computed by solving the following system of equations,

M

q =E (zj)Qp 1 i M. (3.70)
j=1

The elements in each vector g4~", 1 < j < M give the values of the functions

4j(x) at each of the quadrature points. These are the values that are used for

evaluating the quadrature sums (3.66) and (3.67).

3.6.6 Numerical Results

In order to test the performance of the efficient reduced basis approximation we

introduce a regular test grid of 23 x 23 points over domain D, -te't. This is the same

grid that was used in Section 3.5.3 for evaluating the convergence of the EIM and

BPIM interpolation methods.

In Figure 3-7 we show a comparison between the solution field computed using

the efficient reduced basis approximation and the truth finite element solution for a

random point in Eit . The reconstructed field is virtually indistinguishable from the

original finite element solution. Note that reconstructing the solution field requires

computing the series expansion UN,M(X7 A) n=1 UN,Mn(/) (n(x), which

has an K-dependent operation count. Computing the approximate solution field

UN,M(x) is not required for evaluating the output of interest, ON,M(M) and, therefore,

this step is never performed during the online phase of the reduced basis algorithm.

The approximate field has been reconstructed here simply for visualization purposes

but we emphasize that this step should never be performed online because it requires

O(K) operations.

Figure 3-7 provides a nice visual comparison between the reduced basis approxi-

mation and the finite element solution at one test point in parameter space. However,

this is not by any means a rigorous measure of accuracy of the reduced basis approx-

imation. For the purpose of evaluating the accuracy of our reduced order model we
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0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

Figure 3-7: Comparison of truth finite element solution (a) and reconstructed solu-

tion using the efficient reduced basis approximation (b) with N = 40, M = 50 and

EIM interpolation. Solution corresponds to point 332 in Et, which is given by

A332 = (6.4318,0.1091).

define the average relative error norm of the output as

ENMave re1 = mean 110() ONM()H (3.71)

Figure 3-8 shows E, Maverel as a function of N and M for a reduced basis ap-

proximation that uses the EIM for interpolating the nonlinear reaction term. For a

given value of M, the error decreases as N is increased until a point is reached where

the convergence stalls: the error remains constant regardless of the number of basis

functions added to the approximation space. Convergence stalls when the error in the

solution is dominated by the error due to the approximation of the nonlinear reaction

term. At the point where the error curve levels off, it is necessary to increase the

number of interpolation functions M used in the coefficient-function approximation

in order to reduce the error further. That is, for a given value of N it is always

possible to find a sufficiently large value of M such that the error introduced by the

coefficient-function approximation does not have an appreciable effect on the total

output error.

Using EIM or BPIM for the coefficient-function approximation only has an effect

on the point where convergence stalls. That is, for a given value of M, the minimum
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Figure 3-8: Average relative error norm of the output Eiv,Mave,rej as a function of N

and M. The Empirical Interpolation Method was used for developing the coefficient-

function approximation for the nonlinear reaction term.

achievable error (for sufficiently large N) when using BPIM is less than when using

EIM. This is illustrated in Figure 3-9. Note that before the error curves level off both

methods provide almost identical results. The difference is that the error curves for

EIM level off sooner than those corresponding to BPIM for the same value of M.

Finally, in Table 3.1 we present a summary of the numerical results obtained with

the efficient reduced basis approximation presented in this chapter. In addition to

showing the maximum and average relative errors in the output over the test grid

529o, Table 3.1 also includes a comparison of the online computational time of the

reduced basis approximation versus the computational time required by the finite

element solver to compute the truth solution at A529 = (7.25, 0.05). Note that the

reduced basis approximation, ON,M(tp), can be computed more than 50, 000 times

faster than the truth solution o(tp) for all values of N and M shown in this table.

Furthermore, the convergence of the reduced basis approximation is excellent and

errors decrease rapidly as N is increased. As a concluding remark we note that the

offline stage required 196 "truth" finite element solutions for building the efficient
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Figure 3-9: Average relative error norm of the output E6 ,M ave,rel as a function of N

and M when coefficient-function approximation is built using EIM (solid lines) versus

BPIM (dashed lines).

reduced basis approximation developed in this chapter. The online cost of computing

a reduced basis solution after the reduced order model has been built is negligible so

one would need to compute at least 196 reduced order solutions in order to amor-

tize the computational cost of the offline stage. In practice, building a reduced basis

approximation of a complex nonlinear problem is not a completely straightforward

task (the reader has probably been able to appreciate this fact after going through

this chapter) so the upfront investment is only justified if the reduced order model

is used multiple times (significantly more than 196 times). In the real-time context,

however, building a reduced order model may be the only viable alternative for com-

puting results in the required amount of time so the cost of building a reduced basis

approximation can be justified without the need for calculating a break-even number

of reduced order computations.
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ERBA FEM
N M Avg. rel. error Max. rel. error Online time Comp. time

5 50 2.25 E - 02 9.73 E - 02 1.59 E - 05 1
10 50 3.03 E - 03 2.78 E - 02 1.61E - 05 1
20 50 1.18E - 04 2.00E - 03 1.63 E - 05 1
30 50 1.26 E - 05 4.48 E - 04 1.71 E - 05 1
40 50 2.47 E - 06 1.34E - 04 2.00 E - 05 1

Table 3.1: Maximum and average relative errors in the output of the efficient reduced

basis approximation (ERBA) over the test grid 'EBt and online computational time

required by the reduced order solver as a function of N for M = 50. Computational

times are normalized with respect to the time required by the finite element solver to

compute the truth solution at p529 = (7.25, 0.05).
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Chapter 4

Model-Constrained Greedy

Adaptive Sampling

4.1 Introduction

In Chapter 3 we presented the mathematical formulation for obtaining an efficient

reduced basis approximation of the nonlinear convection-diffusion-reaction problem

that was introduced in Chapter 2. It has been shown that, given an adequate set

of snapshots, it is possible to obtain an approximate reduced basis solution that is

arbitrarily close to the "truth" approximation. Furthermore, the online computation

of the reduced basis approximation is several orders of magnitude cheaper than the

corresponding finite element solution. However, there is a caveat that still needs to be

addressed: as we increase the number of basis functions and nonlinear interpolation

functions, the reduced basis approximation described in Chapter 3 is only guaranteed

to converge to the "truth" approximation for all values of the parameter vector A E 'D

if an adequate set of snapshots is used to build the reduced bases. In this chapter

we address the issue of how to obtain the required set of snapshots by sampling the

solution space in an efficient manner, especially when the dimension of the parameter

space becomes large.

The word "adequate" can be somewhat vague so we will start by defining what

constitutes an adequate set of snapshots. There are two main requirements that a set
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of snapshots should satisfy in order to be considered "adequate": first, the snapshots

should span the entire solution space such that any "truth" solution computed for

a particular value of the parameter vector tt E D can be represented as a linear

combination of snapshots. Second, the set of snapshots must be of reasonable size such

that the offline phase of the reduced basis method does not become computationally

intractable.

When the parameter domain D C RP is of low dimension one can easily generate

an adequate set of snapshots by defining a regular grid t"in over D and choos-

ing the sample set SK = {p, . , /K} as the nodes of this grid. The set of solu-

tion snapshots S {(X) = U(Pk), k E SK, 1 < k < K} is computed by solv-

ing the governing PDE at every grid point. The set of snapshots of the nonlinear

term is then obtained by evaluating the nonlinear field s(-; t) at every grid point:

{(x) = s(u(x; Pk);I k), 1 k E SK, 1 < k < K}. Recall that this is the pro-

cedure that was used in Chapter 3. It is clear that this sampling method satisfies

the first requirement for obtaining an adequate set of snapshots because it covers the

entire parameter domain of interest. For the particular case studied in Chapter 3

this method also satisfied the second requirement because the entire domain D was

covered with just a couple of hundred samples. However, the number of grid points

required for this sampling method grows exponentially as the dimension of the para-

meter domain, P, increases. Therefore, for P > 3 overlaying a uniform grid over the

parameter domain of interest becomes intractable.

For linear problems it is possible to compute a cheap and rigorous output error

bound following the same offline-online decomposition that is used for computing the

output of interest. This fact can be exploited in order to design a greedy algorithm

that adaptively selects snapshots by finding the location in a training parameter set

where the error bound is maximal. At every greedy cycle the algorithm evaluates

the error bound at every point in the training set, finds the location where the error

bound is maximal and updates the set of snapshots with the solution at this sample

point. A new reduced order model is then built using the updated set of snapshots

and the process is repeated until the desired accuracy is reached. For details regarding
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this greedy algorithm the reader is referred to [23, 24, 25, 41, 44, 47]. We emphasize

that this sampling method is still a grid-based method where the critical ingredient

is an error bound that can be computed without knowing the "truth" approximation

at every grid point. For general nonlinear problems, however, it is not possible to

compute an error bound without actually computing the "truth" finite element so-

lution. Therefore, determining the maximum error point in the training set requires

evaluating the very expensive finite element solution at every point in the grid and

this method becomes intractable as P increases.

Recently, a general model-constrained greedy algorithm has been proposed to

address the challenges of sampling a high-dimensional parameter space without having

to compute any error bounds or full-order solutions at every point in a discrete

training parameter set defined a priori [8, 9]. This gridless method determines the

location in parameter space where the error between the 'truth" approximation and

the reduced basis approximation is maximum by solving a continuous optimization

problem without the need for discretizing the parameter domain D. The greedy

optimization problem was formulated and tested in [8, 9] for steady and unsteady

problems that are linear in the state vector. Herein we extend this methodology to

nonlinear problems.

In this chapter we first present the model-constrained greedy adaptive sampling

methodology. Next, the mathematical formulation is derived for the same 2-parameter

problem that was presented in Chapter 2 and the numerical results are compared

against those obtained using grid sampling. Finally, the diffusivity r is added as a

third parameter to the nonlinear convection-diffusion-reaction PDE and we analyze

the performance of the model-constrained greedy sampling methodology for the case

where D C R3.
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4.2 Model-Constrained Greedy Sampling Method-

ology

In this section we describe the model-constrained greedy sampling methodology and

derive the formulation for sampling the parameter space D where the parameters of

the combustion PDE (2.1) reside. The reduced order model built using this greedy

sampling algorithm is then compared against the reduced basis approximation that

was obtained in Chapter 2 using uniform grid sampling.

4.2.1 General Greedy Adaptive Sampling Algorithm

The greedy algorithm described herein seeks to improve the accuracy of an existing

reduced order model by adaptively adding a new snapshot at every iteration. Every

new snapshot is sampled at the location in parameter space where the error between

the "truth" and reduced basis outputs is maximal. The main steps of the algorithm

are described below.

1. The set of sample points is initialized by arbitrarily choosing one point in pa-

rameter space Si = {pi E D}. One of the corners of the domain D is usually a

good option but any point can be chosen. We then generate the snapshot sets

S u ={ (x) = u(pi)} and Ss {=(x) = s(u(pLj); pi)}. Note that the initial

sets of snapshots can contain several snapshots instead of just one for example

by selecting all the corners of the parameter domain D or by overlaying a very

coarse initial grid over D. This will result in a more accurate initial reduced

order model so fewer greedy cycles will be required in order to obtain the desired

level of accuracy.

2. The offline stage outlined in Figure 3-5 is performed in order to obtain the

parameter-independent matrices A 0 , AN, EN,M, GN,M, DM,N, UM, FN and

LN for N = 1 and M = 1 (or N = Ninit andM= Minit if the initial sample set

contains more than one point).
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3. While the error between the reduced basis approximation and the truth output

is greater than a user-specified tolerance, the reduced order model is iteratively

improved by performing Steps 3a through 3d below:

(a) At iteration K we find the location in parameter space D where the er-

ror between the "truth" and reduced basis outputs outputs is maximal:

IL' = arg maxpe-D ll0(P) - ON,M(P)I1. Note that, in general, it is possible

to optimize the reduced basis space used to approximate the solution and

the interpolation space used to compute the nonlinear coefficient-function

approximation separately. This results in different sample points for com-

puting the snapshot of the solution (g(x) and the snapshot of the nonlinear

term A(x) at every iteration K. However, in this thesis we will always use

the output error as the only indicator for determining the optimal sampling

point. Therefore, the same point is used for sampling both the solution

space and the nonlinear reaction term space: M' - p'. Since both sample

points are identical at every iteration, they will bear no superscript.

(b) The sample set is then updated by adding the new point found in Step 3a:

SK = SK-1 U /K.

(c) The new solution and reaction snapshots are given by (u(x) = U(PK) and

G(x) = s(u(PK); 'PK) respectively and the sets of snapshots are updated

by adding these new snapshots to the existing ones: Sk = Sk 1 U u (x)

and Sk = Sk 1 U s (x).

(d) The parameter-independent matrices for the new reduced order model are

computed using the offline stage steps outlined in Figure 3-5.

The procedure outlined above is very general and can be implemented in different

ways, yielding different greedy algorithms that are efficient for treating various kinds

problems. The main differences between the different implementations reside in the

methodology used to determine the optimal sampling point at every cycle (Step 3a).

Patera and co-workers have extensively used a discrete version of the greedy adap-

tive sampling algorithm presented in this section for obtaining reduced basis approx-
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imations to linear or, at most, quadratically nonlinear problems in a very efficient

manner [23, 24, 25, 41, 44, 47]. For this version of the algorithm, a discrete training

parameter set 1rEain is generated by defining a suitably fine grid over the parameter

domain D. Note that this parameter set is defined a priori. The error between the

"truth" and reduced basis outputs is then maximized over the training set =tain at

every greedy cycle. The critical ingredient of this algorithm is an efficient error bound

AN(/I) for the reduced basis error IJo(i) - oN()II. The error bound must be "effi-

cient" in the sense that, in the limit of many evaluations, the cost to evaluate AN(p)

is independent of M (it is not necessary to compute the "truth" output at every point

in ,-ain in order to evaluate the error bound). This efficiency is accomplished by de-

riving an offline-online decomposition that is analogous to the one used to compute the

reduced basis output ON(p). The error bounds developed by Patera and co-workers

for multiple types of problems are also rigorous in the sense that AN(ii) is never less

than the true error and sharp, meaning that AN(A) is not too much greater than

the true error. In this version of the algorithm, the optimization problem in Step 3a,

AK = arg maxED 1 O(P) - ON(A) , is replaced by MK = arg maxtE4 AN(pu).

The reader has probably noticed that all the reduced basis quantities used while

discussing the discrete version of the greedy adaptive sampling algorithm only bear the

subscript N instead of the traditional subscript "N, M" that has been used through-

out this thesis to indicate that, in our problem, the reduced basis approximation

is not only a function of the number of basis functions used to span the reduced

solution space but also of the number of interpolation functions used to compute

the coefficient-function approximation of the nonlinear term. The omission of the

subindex M has been intentional in order to emphasize that the error bound AN(p,)

only maintains its efficiency when the problem is linear, or at most quadratic, in the

state variable and affine in the parameters. For general highly nonlinear or nonaffine

problems the error bound loses its efficiency - the computation of AN (tt) is no longer

independent of A. Thus, the discrete version of the greedy adaptive sampling algo-

rithm applied to the nonlinear combustion problem analyzed in this thesis requires

evaluating the "truth" output at every point in 7train at every greedy cycle, which
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clearly becomes intractable when sampling high dimensional parameter spaces (by

"high" we mean P > 3).

A recently proposed approach to address the shortcomings of the discrete greedy

algorithm when dealing with inefficient (A/-dependent) error bounds is the model-

constrained greedy-based adaptive sampling presented in [8, 91. In this methodol-

ogy, Step 3a of the greedy algorithm is formulated as an optimization problem that

searches for optimal parameter points in the continuous parameter space D. The

resulting PDE-constrained optimization problem is solved using standard optimiza-

tion techniques. Note that, in general, the objective function used to formulate the

optimization problem may have several local maxima so the optimization solver is

not guaranteed to converge to the global maximum. This means that the value of the

objective function at sample point AK computed during iteration K can no longer be

used as a rigorous error bound for the reduced basis approximation built using K - 1

snapshots. Therefore, the criterion for stopping the greedy algorithm in Step 3 is not

as clearly defined as in the discrete version where the parameter points at every itera-

tion were guaranteed to be globally optimal over t"ain. However, as discussed above,

the discrete version of the greedy algorithm becomes intractable for high-dimensional

nonlinear problems so we will willingly pay the price of less rigorous error indicators

in exchange for a more efficient method.

In [8, 9] the continuous model-constrained greedy-based sampling algorithm was

tested for steady and unsteady problems that were linear in the state variable. Here,

we apply it to the nonlinear combustion problem that was formulated in Chapter 2.

4.2.2 PDE-Constrained Optimization Problem for Greedy

Algorithm

In this section we formulate the problem to find a local maximum of the error between

the "truth" and reduced outputs at every greedy cycle. In this thesis we formulate

the maximization problem in terms of the true output error although we could also

use some type of error bound or error indicator if one was available.
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The PDE-constrained optimization problem is formulated in discrete form; that

is, we take advantage of the discretization of the full and reduced governing equations

that was performed in Chapters 2 and 3 prior to forming the Lagrangian function and

deriving the optimality conditions. Note that this is not the only way to formulate

the problem: it would also be possible to form the infinite-dimensional Lagrangian

and then write the infinite-dimensional optimality conditions in terms of the contin-

uous weak forms of the full and reduced governing PDEs of the problem of interest.

As discussed in [1], when these infinite-dimensional conditions are discretized, they

may result in different optimality conditions than those obtained by first discretizing

the PDE constraints and then differentiating the Lagrangian function. Since in our

case we already have the discrete version of the governing PDEs as well as efficient

solvers for the resulting nonlinear systems of equations we will follow the path of first

discretizing the constraints and then differentiating to form the optimality conditions.

We define the cost functional in terms of the P-norm of the true output error as

follows:
1

J(u, UN,M, A) 1l0 - ON,M 11 (4.1)
22

Given the reduced basis approximation at the current greedy cycle we find the

point in parameter space where the true output error is maximal by solving the

optimization problem

def 11
max 7(u,uN,M,A) -IIO-N,MI2 (4.2)

U,UN,M41

subject to RN(UN,M -A) 0

ON,M LN UN,M +
N 0

R(u; A) = 0

o = L o u

Amin P /5 Pmax

where u E 1kg, UN,M E RN are the "truth" and reduced state variables, A E RP is

the parameter vector or decision variable, J c R is the objective function, R E RA

86



RNE R N are the full and reduced discretized equations respectively and o E RNS,

ON,M G RN, are the "truth" and reduced linear outputs of interest, which are com-

puted using the matrices L 0 G RNxA, LN E RNxN, and Lo E RNS defined in

equations (2.47) and (3.56). The upper and lower bounds for the parameter vec-

tor are given by 1 max and P'min respectively. Recall that the parameter vector is

formed by the two parameters (P = 2) that control the combustion reaction; i.e.,

[= (log(A), E).

Substituting the output constraints into the objective function and transforming

the maximization problem into a minimization problem by changing the sign of the

objective function yields

min J(u, uN,M) u - NUN,M - L0II| (4.3)
U,UN,M,ll 2

subject to RN(UN,M A) 0

R(u;,i) = 0

Pmin P -< Amax

where the full state discretized equations, R E RA, were defined in (2.40) and the

reduced state discretized equations, RN E RN were defined in (3.61).

4.2.3 Solution of the PDE-Constrained Optimization Prob-

lem

The optimality conditions for the constrained optimization problem (4.3) are derived

by introducing the full and reduced adjoint variables, A E RA and AN E RN and

defining the Lagrangian function,

L(u, UN,M, A, A, AN) de J(u, UN,M)± ATR(u; p) A TRN(UN,M ) (4.4)

Note that the bound constraints are not included in the Lagrangian since they are

treated separately inside the optimization solver. The first order Karush-Kuhn-Tucker
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optimality conditions require stationarity of the Lagrangian - i.e., the gradient of

the Lagrangian must vanish:

OUL gu + JT A 0
& ~ ~ j 9UM J~ AN

UN,M ±UN,M NUN,M

&,IL JT A+ J AN 0 (4.5)

OXL R 0

NN N

where gu E R and gUN,M E RN are the gradients of J with respect to the full and

reduced state variables respectively:

= (LO)T(Lou - LoNUNM - LO) (4.6)

9UNM N (Lo)T(Lou - LoUNM - LO), (4-7)

Ju E REXA is the Jacobian of the full-order nonlinear problem as defined in (2.41)

and JNUN,M E RNxN is the Jacobian of the reduced basis equations which can be

computed using (3.62). Finally, J, G RKXP and JNy E RNxP are the Jacobians

of the full and reduced state equations with respect to the decision variables. Since

the last two Jacobians were not used in the problem formulation that was derived in

previous chapters, their definitions are included below for completeness.

For the two-parameter problem considered in this section the two columns of the

Jacobian of the full state equations with respect to the decision variables are given

by

- R2  Nelem NQ ,. (IqkFq (Wk(

k=1 q=1 (4.8)

- Q(C -- U )e ,-u 1 vs
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and

Nelem NQ (iq
19A , E WqJCj~ 1) 2w~~ 1) ± 1i 2

k-i q=1

. up c~ugAe d-uQ < <N
U - -71<<r
{UQA Q 1 J (49

where NQ is the number of quadrature points in each element; ( , 2) are the coor-

dinates of quadrature point q in the master element, Wq is the weight associated with

quadrature point q and JkT( q, ) is the determinant of the Jacobian of the coordi-

nate transformation between element k in physical space and the master element in

the computational domain, evaluated at the quadrature point q. The term Wk( ? q)

is given by equation (2.44) and uQ is the value of the "truth" solution at quadrature

point q, which is given by
K

Q = i Pi p((, 7j (4.10)
i=1

The two columns of the Jacobian of the reduced state equations with respect to

the decision variables, JNynl and JNjIn2 with 1 < n ; N, are given by

&RNn
JNynl =

M E(4.11)

=1 BN,Mnm (UN,M(Zm) (C - UN,M(Zm)) e d-uN,M(zm)

m= 1

and

= RNn
0112
M ( ) UNM(Zm d (4.12)

= BN,Mnm A UN,M(Zm) - -d UN,M(Zm) e -uN,M(zm)

m=1 ,

Here, UN,M(Zm) was defined in Section 3.6.3 and is given by

N

ULN,M(Zm) = f(Zm) + ELIN,Mn (n(Zm). (4.13)
n= 1
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and BN,M= EN,M± GN,M, where EN,M E RNxM, GN,M E RNxM are given by (3.66)

and (3.67) respectively.

Now that we have defined all the terms that appear in the optimality conditions

we can solve the nonlinear system of equations (4.5) using a Newton method. At every

Newton iteration we linearize the system of optimality conditions by formulating the

following linear system of equations

V2 L(u, UN,M, A, A, AN) ~A -L(u, UN,M, 1 ,A, AN) (4.14)

where V 2 L(u, UN,M, A, A, AN) c R (A+N+P)x(Ar+N+P) is the Hessian matrix of the

Lagrangian and can be block-partitioned according to the state, adjoint and decision

variables as follows:

WUU WUUN,M WU J ' 0

WUN,MU UN,MUN,M UN,M11 0 NUN,M

V 2 L= WAU WUNM jL L Ny (4.15)

Ju 0 J 0 0

0 JNUN,M JNp 0 0

A E RV+N+P gives the new search direction in the variables of the problem,

AU

AUN,M

A = A t (4.16)

AA

AAN

and VL(u, UN,M, A, A, AN) E R I+N+P is the gradient of the Lagrangian as shown

in (4.5). Refer to the next section of this chapter for the definitions of the nine blocks

of the Hessian matrix that have not been defined yet.

The linear system of equations (4.14) is commonly referred to as the Karush-

Kuhn-Tucker (KKT) system and its coefficient matrix (4.15) as the KKT matrix.
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The KKT system is generally very large and often very ill-conditioned so solving it

directly can be a daunting task. In this thesis we use the reduced space methodology

that can be found in [1, 5]. The basic idea of this methodology is to take advantage

of the existing PDE solvers developed in Chapters 2 and 3 to eliminate the state

and adjoint equations and variables from (4.14). Then the reduced Hessian system

is solved in the remaining decision space. This method, known as reduced Newton

method, is derived by performing block elimination on the KKT system (4.15). The

steps are detailed below.

Step 1. Given a value of the decision vector 1L at iteration k we can compute the

reduced gradient as follows:

1. Solve the nonlinear state equations

R(u; t) = 0, (4.17)

RN(UN,M; A) 0, (4.18)

using the same solvers that were developed in Chapters 2 and 3.

2. Use the state variables computed in the previous step to solve the adjoint

equations,

A = - gu, (4.19)

AN -NUN, MUN, M (4.20)

where (_)-T is an abbreviation for ((.)T)1

3. Substitute u, UN,M, A and AN from equations (4.17) through (4.20) into

the decision equation. The residual of this decision equation is the reduced

gradient, Vj; i.e., the gradient of the cost function while maintaining the

state satisfied,

Vp JTJu-g - JN/INUN,M 9UN,M
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Step 2. Incorporate the results from Step 1 into the right-hand side of the Newton

step (4.14); that is, substitute the results from Step 1 into the gradient of the

Lagrangian so that (4.14) reduces to

Wu

WUNMU WUNMUN,M

fL-u

JU

WUUN,M

W/UN,M

0

0 JNUN,M

WUIL JTwU, jT 0

UN,M I 0 NUN,M

W'4t jT TyAJ 1

J4

JNyL

o 0

0 0

Step 3. Eliminate Au from the fourth block of equations,

Au = -J-Jl, At,.

Step 4. Eliminate AUN,M from the last block of equations,

AUN,M = -J) 1N,M JNm AA-

Step 5. Eliminate AA from the first block of equations,

u =(J-TWUUJ1J + JJWUUN,M N N,M JN L j--T Wuf) A/p. (4.25)

Step 6. Eliminate AAN from the second block of equations,

AAN (JNUN,M N,MU< ± JUN,M UN,MUN,M JN NM JNy

(4.26)- NUN,M UN,ML

Step 7. Substitute the results from Steps 3 through 6 into the third block of (4.22)

and solve for A/i to get,

V2 7 Alt = -VJ (4.27)
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Att

AA

AAN

0

0

- vj

0

0

(4.22)

(4.23)

(4.24)



where V 2 J E RPP is a Schur complement of the linearized KKT conditions

with respect to the decision variables, referred to as the reduced Hessian. In our

problem, the reduced Hessian is given by

V27 _ W,.J.-J - W IUNM 'NNM JNy

+Wyt + JTJ-TW J-J

± JJ-WUUN,M JNN,M JNy

- TJ-TW + jT j-T W I- 1

-/ J JT Wu +IJUN,M L N,M UI

+J JNM uN,MuNM UN,M JNy

- J TJNMWUN,My (4.28)

Using the reduced space method outlined in Steps 1 through 7 we are able to

reduce the very large, ill-conditioned problem (4.14) and transform it into the small,

well-behaved Newton step (4.27). Note that assembling the reduced Hessian using

expression (4.28) is still a very expensive task. Instead of forming the reduced Hessian

explicitly, it is possible to solve the reduced Newton step (4.27) by a Krylov conjugate

gradients method (CG). Within every CG iteration we can then evaluate the action

of the reduced Hessian on a parameter space vector in a matrix-free manner; that

is, without ever assembling the reduced Hessian matrix. The cost of evaluating this

matrix-free Hessian-vector product is dominated by four full-order linear system solves

(four matrix factorizations if the systems of equations are solved to machine precision).

This method is commonly referred to as a reduced Newton conjugate gradient (RNCG)

method.

4.2.4 Computation of Hessian Blocks for PDE-Constrained

Optimization Problem

In this section we present the expressions for computing the nine Hessian blocks

Wuu E RxA, WuUNM E RAxN, Wut c RrxP, WUN,MU E RNxM, WUN,MUN,M

R NxNI W N,MI E RNxP, Wy4 E Rp, WPUN,M E RPxN and WAA E RpXP that
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appear in (4.28).

A( 02 R,
Wuuij = -LOL, + An, 1<i, j <

n=1 a

WuN,m ij = LL 1<i<A, 1< j<N

Ar 2 R
WUAj= An I < Z < g, 1 < J < P

n=1

WUN,M.ij = WUUN,M ji 1 < i < N, 1 < - < jr

WUNMUN,M 7 iLO3  S + a2RNn Ahn

n=1 NUN,M i 1UN,M j

N M a2Sn

WUN,Mij SBN,M nm * 2 SMm ANn 1 <i
1 1 

9 UN,M i Obn= m=

WA.iL = W-jJ 1 <

WtLUN,M i = WUN,MI.i

W .. = An
n=1

1i j < N

< N, 1 < j < P

i<P, 1<z'i<g

1<i<P, 1 <j<N
N M 2 SM

+5 BN,Mnm ANn, 1 Zj P-
n=1 m=1 at 0Jki

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

Here, all the terms that appear in equations (4.29) through (4.37) have already

been defined in Chapters 2 and 3. The only exception is matrix BN,M E RNxM, which

is given by BN,M= EN,M + GN,M, where ENM E RNxM and GNME RNxM were

defined in (3.66) and (3.67) respectively.

4.2.5 Different Implementations of the Solution Method for

the PDE-Constrained Optimization Problem

In this section we describe three different implementations of the reduced space method-

ology described in Section 4.2.3 for solving the PDE-constrained optimization prob-

lem (4.3). The first two are based on MATLAB's Optimization Toolbox [36] whereas

the third one uses the subspace trust region interior reflective Newton-CG method

for bound constrained optimization problems developed in [81.

The first implementation of the optimization solver used to solve the PDE-constrained
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minimization problem (4.3) utilizes a sequential quadratic programming (SQP) method

where a quadratic programming subproblem is solved at each iteration. An estimate

of the reduced Hessian is constructed at every iteration using the formula of Broy-

den [7], Fletcher [17], Goldfarb [21] and Shanno [53] (BFGS). The reduced gradient

information required by the BFGS formula is computed analytically using (4.21) by

following the procedure outlined in Step 1 of Section 4.2.3. Since the reduced Hessian

is computed approximately, only the reduced gradient is required by the optimization

solver so the Steps 3 through 7 described in Section 4.2.3 are not used.

The second implementation uses a large-scale version of a subspace trust region

method based on the interior-reflective Newton method described in [12], where the

resulting linear system at every iteration is solved using the method of preconditioned

conjugate gradients. The basic idea of a trust region method is to approximate the

objective function to be minimized with a simpler function that reflects the behavior

of the original function in a neighborhood of the current point in parameter space.

This neighborhood is the so-called trust region where the approximated function is

minimized. In the trust region method used in our solver, a quadratic approximation

of the objective function is defined by the first two terms of its Taylor series expansion

at the current point in parameter space. The trust region subproblem is then given

by

min, 1(AP)T _ V 2 7 -A t + (AtTVJ such that IIDA plII<; T (4.38)
ApAERE 4

where Ap is the updating step for the next iteration; VJ is the reduced gradi-

ent at the current point ti computed using (4.21); V 2 J is the reduced Hessian given

by (4.28), D is a diagonal scaling matrix and T is a positive scalar that gives the cur-

rent radius of the trust region. In order to avoid the inversion of the reduced Hessian

for solving (4.38), the trust region subproblem is restricted to a two-dimensional

subspace determined by using a conjugate gradient process. Therefore, only Hessian-

vector products are needed at every iteration instead of the full Hessian. Computing

the action of the reduced Hessian on a vector has the dominant cost of only four lin-
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earized full order solves as described in Section 4.2.3, which is clearly much cheaper

than computing the actual Hessian according to (4.28).

The third and final optimization solver tested in this thesis uses the subspace trust

region Newton solver STIRNCG described in [8].

Finally, it should be noted that all the methods described in this section require

an initial guess for finding the next sample point at every greedy cycle. Since the

objective function of the greedy problem - i.e., the output error between the reduced

and "truth" approximations - usually develops several local maxima as the greedy

algorithm progresses, the location of the initial guess usually determines which of

the local optima will be found by the optimization solver. Furthermore, if the initial

guess is close to an existing sample point, the value of the objective function and its

curvature will be very small and the solver may not be able to make any progress

towards finding an optimum. Therefore, the quality of the initial guesses is critical

for finding a good sampling point for generating each new snapshot. Developing an

efficient algorithm for computing initial guesses is a challenging task in its own right

and can be very problem-dependent.

The method used in this thesis for obtaining a suitable initial guess at every

greedy cycle is to generate random points until one is found that is sufficiently far

from existing sample points and where the gradient is significantly greater than the

tolerance specified for the optimization solver. Random initial guesses are preferably

located on the boundary of the parameter space D, especially during the first greedy

cycles. Since interpolating is generally more efficient than extrapolating, most adap-

tive sampling algorithms commonly used for generating efficient reduced basis tend to

sample the corners and boundaries of the parameter space. Therefore, it is usually a

reasonable idea to exploit this fact for generating initial guesses. Finally, we note that

identical initial guesses were used for testing the three optimization solvers described

in this section. Therefore, the differences in performance shown in Section 4.2.6 are

only due to the algorithms themselves and not to the quality of the initial guesses.
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4.2.6 Comparison of Greedy Sampling Versus Grid Sampling

In this section we present the reduced basis approximation built using the continuous

version of the greedy sampling algorithm introduced in Section 4.2.1 applied to the

2-parameter combustion problem that was presented in Chapter 2. The critical step

of finding the next sample location at every greedy cycle is formulated using the

PDE-constrained minimization problem (4.3) and solved using the three optimization

solvers discussed in Section 4.2.5.

The results of the greedy sampling method are compared against the results pro-

vided by a typical grid sampling approach based on the Latin hypercube sampling

methodology [37]. In this case we use the 14 x 14 regular grid z 196 over D that was

introduced in Section 3.5.3. The snapshots are added sequentially by running 6 Latin

hypercube cycles on "196 . At every Latin hypercube cycle 14 random samples are

added such that there is only one new sample in each row and each column of E196 .

After the first 6 Latin hypercube cycles, the remaining 112 sample points in 196 are

added using purely random sampling. Figure 4-1 shows the location of the first 56

samples which correspond to the first 4 Latin hypercube cycles.

The performance of the four different sampling methods tested in this section is

shown in Figure 4-2. The performance is measured in terms of the maximum relative

error of the reduced basis approximation, E"Mmaxre1, as a function of the number of

nonlinear full-order solves at each greedy cycle. Note that one nonlinear full-order

solve involves solving the nonlinear system of equations (4.17). The maximum relative

error at any greedy cycle is given by

max Io(P) - ON,M(I-L)II (4.39)eN,M max,rel = maX (t.s9

Note that the maximum relative error is computed over a 23 x 23 uniform grid,

=test which is finer and mostly non-coincident with the grid used for the grid-based

sampling. The performance of the different algorithms is measured in terms of the

number of full-order solves required to find the sample point at each greedy cycle be-

cause this is the dominant computational cost of the greedy algorithm. Note that the
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Figure 4-1: Location of the first 56 sample points using Latin hypercube sampling

on a regular 14 x 14 grid. Each of the four plots corresponds to a different Latin

hypercube cycle where 14 sample points are added such that there is only one new

point in each row and each column of the grid. In this figure the parameter vector is

given by (P 1, P2) = (log(A), E).
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cost of assembling the Hessian blocks and computing the Hessian-vector products re-

quired by the subspace trust region Newton solvers is significantly less than the cost of

performing each nonlinear full-order solve so it has not been taken into account when

evaluating the computational performance of the large-scale algorithms. Similarly,

the cost of approximating the Hessian using the BFGS formula in the medium-scale

SPQ algorithm has also been neglected.

Since the grid-based sampling selects the sample points randomly, it only requires

one full-order solve per sampling iteration. Therefore, the full grid is covered in 196

solves. The three PDE-constrained optimization algorithms require several solves

at each greedy cycle in order to arrive at a local optimum. The subspace trust

region method based on [36] (labeled "STIRNCG-1" in Figure 4-2) shows the most

efficient performance of the three optimization algorithms, requiring a total of 676

solves in order to achieve the same maximum relative error as the grid sampling over

7196. As expected, the SQP algorithm (labeled "SQP" in Figure 4-2) yields the worst

performance since it only uses an approximation of the reduced Hessian instead of the

exact reduced Hessian for solving the optimization problem (4.3). The performance

of the subspace trust region algorithm described in [8] (labeled "STIRNCG-2" in

Figure 4-2) is in between the previous two. This is probably due to the fact that this

algorithm was originally designed for tackling linear problems so its efficiency drops

when used for solving nonlinear problems where it is not possible to reuse the matrix

factorizations required for performing the different full-order solves.

We must point out that the grid-based sampling achieved the desired error by

sampling 196 grid points whereas the PDE-constrained optimization methods only

required 50 snapshots in order to obtain the same level of accuracy in the reduced

basis approximation. This, however, is not a major advantage since the snapshots

are compressed using POD prior to generating the reduced basis vectors, therefore

yielding reduced order models of very similar sizes.

The locations of the 50 sample points computed using the first subspace trust re-

gion Newton method are shown in Figure 4-3. As expected, most of the sample points

are located on the boundaries of the parameter space D, with a higher concentration
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Figure 4-2: Performance of the four different sampling methods in terms of the number

of nonlinear full-order solves required to find the next sampling point at each greedy
cycle.

in the region of higher nonlinearity (large values of A and small values of E).

4.2.7 A Posteriori Error Estimation

For a problem with only two parameters such as the one considered in this section,

it is relatively inexpensive to cover the entire parameter space using a grid of sample

points. Therefore, grid-based sampling methods are computationally cheaper than

PDE-constrained optimization methods as shown in Section 4.2.6. However, even for

low-dimensional parametric problems, the PDE-constrained optimization approach

offers a significant advantage over random-sampling, grid-based methods due to the

fact that it gives an error estimator for the reduced basis approximation at every

greedy cycle.

It has been shown throughout this thesis that the accuracy of the reduced basis

approximation depends greatly on the number of basis functions and interpolation

functions used to approximate the solution space and the nonlinear term respectively.
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Figure 4-3: Location of the 50 sample points computed using the first subspace trust
region Newton solver (STIRNCG-1).

Therefore, for any given application where a predetermined level of accuracy is re-

quired, it is critical to be able to compute an error indicator that will tell us when the

desired accuracy has been reached. Otherwise, it is impossible to determine whether

the dimension of the reduced basis spaces N and M are adequate for our needs. If N

and M are too small, the reduced basis error may be too large, which could potentially

have catastrophic effects when using the results of the reduced basis approximation

in a critical application. On the other hand, if N and M are too large, the reduced

basis results will be unnecessarily expensive to compute, therefore compromising the

real-time deployment of the the reduced order model.

It is clear that an error estimator is a critical ingredient for obtaining an efficient

reduced basis approximation that meets our accuracy requirements while minimizing

the size of the approximation spaces. Random grid-based sampling methods like

the Latin hypercube method introduced in Section 4.2.6 do not provide any kind of

error estimator so the stopping criterion for adding snapshots can only be based on

intuition, heuristics or simply on the computational resources available for generating
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snapshots. Clearly, this is not a satisfactory state of affairs when trying to construct

an efficient reduced order model.

The grid-based greedy sampling methods developed by Patera and co-workers [23,

24, 25, 41, 44, 47] do include a rigorous error bound such that the ratio of this error

bound over the actual error is always greater than unity for all A in D. However,

it has already been mentioned that it is not possible to derive an A/-independent

error bound for general nonlinear problems so this method becomes intractable for

high-dimensional nonlinear problems and is not considered here.

Here we propose the use of the error value computed by the PDE-constrained

optimization solver as a viable error estimator for estimating the accuracy of the

reduced order model at each greedy cycle. Note that this error estimator is not a

rigorous error bound due to the fact that the optimizer is not guaranteed to converge

to the global maximum. Figure 4-4 shows an example of how the optimization solver

can converge to a point that is not a global maximum of the objective function.

Since the objective function is non-convex, the maximum error found by the PDE-

constrained minimization algorithm is only guaranteed to be locally optimal but not

necessarily a global optimum over the entire parameter domain. Therefore, it is not

possible to certify that the reduced basis output error will be less than the error

estimator for all p in D. However, despite the lower standards of certainty associated

with this error estimator as opposed to a rigorous error bound, we believe it is still

a useful tool for obtaining an accurate order of magnitude of the reduced basis error

at each greedy cycle.

To quantify the merit of the error indicator proposed in this section we define its

effectivity as follows,

Thc (A-) Ak(,I*) (4.40)makx 11(p _ k-1 (A) II
Ax~es |o )- N,M

where k gives the current greedy cycle, ok1 (t) is the reduced basis output at point

tt using the reduced order model built in cycle k - 1, ti* is the value of the sample
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Figure 4-4: Example of optimization algorithm converging to a local optimum instead

of the global optimum. Plot corresponds to greedy cycle k = 28 using the first

subspace trust region Newton solver (STIRNCG-1). The 27 snapshots added prior to

the current cycle are indicated by diamonds (0). The location of the initial guess (0),
local maximum found by optimizer (U) and maximum error over -es () are also

shown on this plot. The intermediate steps computed by the optimizer in order to

get from the initial guess to the local optimum are indicated by triangles (A). Note

that the colormap gives the value of the relative output error at every point in -tg,

not the value of the objective function J.

point computed by the PDE-constrained optimization solver; i.e.,

A* = arg minJ(u(p), UN,M(9)) (4.41)

subject to RN(UN,M; A) 0

R(u; A) =0

Amin A Amax,

and Ak(A*) is the value of the output error between the "truth" solution and reduced

basis approximation computed by the optimization solver at greedy cycle k (this is

in fact our proposed error estimator). Ak(P*) is trivially related to the value of the
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objective function at sample point k by the following equation:

Ak(P*) = 1 u(u*),uN,M(pu)) (4.42)

Note that Ak(P*) is the result of solving a continuous optimization problem over

D whereas the denominator of (4.40) is only maximized over Etet. Therefore, when

the optimization solver converges to the global optimum the effectivity will be greater

than or equal to one (the equal case would correspond to the unlikely case where a

point in 3 test coincides exactly with the global maximum of the continuous output

error function).

From (4.40), it is apparent that a necessary condition for having a rigorous error

indicator at greedy iteration k is given by 1k(A) 1, Vp E =test (the sufficient

condition is given by %e(p) 1, Vp E D). Since the objective function is non-convex

neither the necessary nor the sufficient conditions can be achieved in general. Figure 4-

4 provides a clear example of a greedy iteration where the effectivity is less than unity.

In particular, for the case shown in Figure 4-4 we have that A28(p*) = 1.74 - 10-4

whereas maxesg 11o(t) - 02,M(p)ll = 4.06 - 10-4, which yields an efficiency of

'q2 7 (A) = 0.43 < 1.

Figure 4-5 shows the effectivity at every greedy iteration when using the subspace

trust region Newton solver STIRNCG-1. Since the test grid used in this case, :_12.',

is sufficiently fine, the necessary condition for rigor of the error indicator is also

sufficient so all points with effectivities greater than or equal to unity correspond

to greedy iterations where the optimization solver converged to the global maximum.

Conversely, effectivities below one correspond to greedy cycles where the sample point

did not match the global optimum of the objective function. Note that in all cases the

effectivity is greater than 0.2, which means that using the proposed error indicator

for estimating the reduced basis error would "only" underestimate the actual error by

a factor of approximately 5. Furthermore, in most cases the effectivity is significantly

closer to, or even greater than, unity which supports the use of the quantity A(tL*)

as a valid error indicator.
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Figure 4-5: Effectivity of error indicator at each greedy iteration when using the

subspace trust region Newton solver STIRNCG-1. All effectivity values equal to

or greater than unity indicate that the optimum found by the solver is the global

maximum. Effectivities less than unity indicate convergence to a local maximum.

4.3 Application of Greedy Sampling to 3-Parameter

Case

In this section we apply the PDE-constrained greedy sampling methodology developed

earlier to a combustion problem that is parametrized in terms of 3 parameters instead

of the usual 2 - A and E - that have been used throughout this thesis. We now

introduce the diffusivity r, as a third parameter in our model such that the parameter

vector t E R3 is given by (PI, A2, P3) = (ln(A), E, K). The system parameters can

vary within the domain D = [5.00,0.05, 5.5 - 10-6] x [6.90,0.15, 2.0 - 10-5] c R3.

The governing PDE for the combustion reaction is the same equation (2.1) that was

introduced in Chapter 2.

In this section we show that even for a relatively small number of parameters

(P = 3), the PDE-constrained optimization greedy sampling offers comparable per-

formance to grid-based sampling methods while maintaining the advantage of provid-
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ing a valid error indicator for estimating the accuracy of the resulting reduced basis

approximation at every greedy cycle.

4.3.1 Problem Formulation

The "truth" approximation in this case is formulated as follows: given any [t E D,

evaluate

oi (A) = f(U(p)), i = 1,... , Ns, (4.43)

where u(p) E XD is the solution of

Ze(,)a,(u(ti),
q=1

Nelem

+ 3 (t) J
k = I Th

v) + j s(u(p); tt) v dQ

(U - VV) (U - Vu(i) + s(u(p); p) - f) dQ =(v), Vv E X.

(4.44)

where eq : D --+ R, 1 q 3 are parameter-dependent functions given by

EI([t) = 1,

02 (t) = l,

0 3(11) = h
211 UJI (coth ( r, Ufl) IU]h)

(4.45)

(4.46)

(4.47)

and

a1(w,v) = f
a2 (w, v) = 4

vU- VwdQ

Vw - Vv dQ,

f(v) = jvf dQ

fo(V) = jvdl', . , Ns.

are parameter-independent bilinear and linear forms.
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It is worth noting that the stabilization term in (4.44) is not general for two rea-

sons: First, the definition by Brooks and Hughes has been used for computing the

stabilization parameter (refer to Section 2.3.3 for details). Second, and more impor-

tantly, the stabilization parameter has been assumed constant throughout the entire

domain Q. The latter is a severe limitation, since the SUPG stabilization parameter

T is, in general, different for every element in the mesh. The assumption of constant T

is only strictly valid for meshes of identical element sizes and problems with constant

flow velocity U. This is not exactly our case but we still make this assumption in order

to simplify the "truth" formulation and the subsequent reduced basis approximation.

If a general, element-dependent, formulation of the SUPG stabilization parameter

is used, then the stabilization term in (4.44) becomes nonaffine in K; that is, the

parametrized differential operator can no longer be expressed as a sum of products

of parameter-dependent functions and parameter-independent operators.

The nonaffine dependence of the stabilization term on r, can be treated by develop-

ing a coefficient-function approximation following an analogous procedure to the one

used in Chapter 3 for treating the nonlinear term s(u(pt); tt). However, the purpose

of this section is not to develop a perfect "truth" approximation but to illustrate the

application of our PDE-constrained greedy algorithm to a high-dimensional problem.

Therefore, we shall assume that the use of a constant stabilization parameter that

allows the affine decomposition shown in (4.44) yields a "truth" approximation that

is adequate for our accuracy requirements (we are admittedly using the word "truth"

in a very flexible way here).

The weak form (4.44) yields the following nonlinear system of equations:

Au(p) + S (u(p); p) = F, (4.52)

which is identical to the system of equations (2.35) derived in Chapter 2 except for

the fact that in this case the stiffness matrix, A E R-1 -X admits the following affine

decomposition for Q = 3:
Q

A = E8q(,i)Aq, (4.53)
q=1
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A, ij a,(po, ri),

A24 j= a2((pj, pi),

Nelem

A3 4 = (U -V>oJ) (U -V7 ) dQ
k=1 h

1i, j <A

1 5i, j<AfN

1 i, j <.N

The load vector F G RA and nonlinear reaction vector, S (u(tt); M) E R are

identical to those defined in Section 2.4 with the only difference that the SUPG sta-

bilization parameter is now given by 03 (A), which eliminates the element-dependence

and, therefore, the nonaffine dependence on P3.

The method for solving (4.52) is identical to that described in Chapter 2 for the 2-

parameter case. Figure 4-6 shows the "truth" solutions computed at the eight corners

of the parameter space D. As in the 2-parameter case, it can be observed that the

parameter vector yt has a very significant effect on the behavior of the solution.

4.3.2 Reduced Basis Approximation

The method for constructing the reduced basis approximation for the 3-parameter

problem is analogous to that used in Chapter 3 for the 2-parameter case. Using

the same coefficient-function approximation sM (x; t) for expanding the nonlinear

term in series of the interpolation functions allows us to formulate the reduced basis

approximation as follows: given any it E D, evaluate

ON,M( iA) = £i(UN,M(g)), i = 1, .. , Ns, (4.57)
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(a)

(C) (d)

(e) (f)

(g) (h)

Figure 4-6: "Truth" solutions computed at the eight corners of the parameter space

D. As usual, blue (outside region) corresponds to u = 0 whereas red (center region)

corresponds to u = c. The values of the parameter vector at each of the 8 corners

are: Pa = (5.0,0.15,5.5. 10-6), /b = (5.0, 0.15, 2.0 - 10-5), M, = (5.0, 0.05,55. 10-6),

Ad = (5.0, 0.05, 2.0 - 10-5), Pe = (6.9,0.15,5.5 - 10-6), pf = (6.9, 0.15,2.0 - 10-5),
11g (6.9, 0.05, 5.5- 10-6), Ph = (6.9, 0.05, 2.0 -10-5).
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where UN,M(/) c WN is the solution of

2) 2

YEq()aqia, v) + EEq(p)a(uN,M(P),v + js'N,M -) vdQ
=1 1L

Neiem

+E3(P) J

k =I Tk

(U - Vv) (U -VuN,M()+U-Vii-f) dQ

Nelem

+( 3(P) (U . VV) s'N,M (X; pt) dQ = f(v),
k=1h

VV E WN.

where the series expansion of the reduced basis approximation is given by

N

UN,M(X;/I) ii(X) + UN,Mn() (,(X)
n=1 1

and the coefficient-function approximation is given by

MS

m=1 (

N

+ 5 UN,Mn(/I) (n(Zm); A
n=1

Choosing v = (,, 1 ; n < N and substituting (4.59) and (4.60) into (4.58) yields

AO + AN UN,M + (EN,M + e3 (i) GN,M) s(UM + DM,N UN,M; 1) = FN (4.61)

where EN,M E ]RNxM GN,M 6 RNxM, UM EE RM, DM,N E RMxN and FN E

RN were defined in Section 3.6 (with the only difference that in this case Tk = I,

V k = 1,... , Neiem because the stabilization parameter is defined globally in terms of

6 3(4)). Here AO E RN and AN E RNxN, are given by

Q
Ao = 5EEq(,i)Aeq,

q= 1

Q
AN =

q=1

(4.62)

(4.63)Eq( /l)ANq,
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where

AO = ZT Aq U, 1 q < Q (4.64)

ANq ZT Aq Z, 1 q<Q. (4.65)

The offline-online decomposition for the 3-parameter case is the same as the one

shown in Figures 3-5 and 3-6 but in this case the parameter-independent matrices

that must be computed in the offline phase are Aoq, ANq, EN,M, GN,M, DM,N, fM,

FN and LO, 1 < q Q whereas AO, AN are formed in the online stage using (4.62)

and (4.63).

4.3.3 PDE-Constrained Greedy Sampling

The greedy sampling method for the 3-parameter case is identical to that presented

in Section 4.2 for the 2-parameter case. In this case we use the the first subspace trust

region Newton solver presented in 4.2.5 as the optimization solver of choice since it

provided the best results of the three solvers that were tested for the 2-parameter

case.

The samples selected by the PDE-constrained greedy sampling algorithm after 75

greedy iterations are shown in Figure 4-7. Note that most of the sample points are

located on the boundaries of the parameter domain, especially in the region of highest

nonlinearity (low diffusivity, high A and low E).

For the Latin hypercube grid-based sampling we define a uniform 12 x 12 x 12 grid

.train
1728 over D. Initially, sample points are selected using 6 Latin hypercube cycles over

172, and the remaining points are sampled using purely random sampling following

the same method used for the 2-parameter case.

The reduced order models built using the Latin hypercube grid-based sampling

and the PDE-constrained greedy sampling are tested on a uniform 17 x 17 x 17 grid

,47te which is finer and mostly non-coincident with zin. Figure 4-8 shows the max-

imum relative error of both reduced order models as a function of the number of

full-order solves required to build the models. If errors below 10-4 are required in
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Figure 4-7: Location of the first 75 sample points computed using the PDE-
constrained greedy sampling algorithm in the 3-parameter case. Points are colored
based on their location: black is used for interior points, red indicates that point is
located on the A = Am, or A = Amin surfaces, blue is used for points on the surfaces
given by K = Kma or n = Kmin and green is used for points where E = Emax or
E = Emin.

our application, then both the grid-based sampling and the PDE-constrained greedy

sampling algorithms offer similar performance in terms of full-order solves. If the

maximum allowable error is greater than 10- then grid-based sampling is cheaper.

Note that at the point where both algorithms start offering similar performance, the

greedy sampling approach has only added 75 snapshots to the reduced basis approx-

imation while the reduced order model built using the grid-based approach contains

over 1200 snapshots. Storing such a large number of snapshots poses potential mem-

ory management problems and raises concerns regarding the size of the grid-based

reduced order model when snapshots are orthonormalized using Gram-Schimdt. How-

ever, these problems can be easily overcome if snapshots are compressed using POD

after every sample is added.

As discussed in the 2-parameter case, one problem of the Latin hypercube grid-

based sampling that is not easy to overcome is the fact that it is not possible to get
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Figure 4-8: Maximum relative error over -*9 3 for the reduced order model built using

grid-based sampling (green) and the reduced order model built using PDE-constrained

greedy sampling (red).

an indication of the accuracy of the reduced order model after each new snapshot is

added. Therefore, it is not possible to establish a reliable criterion for determining

when the desired accuracy has been reached. The greedy sampling methodology

offers the error indicator Ak(p*) defined in Section 4.2.7. The effectivity of this error

indicator at every greedy cycle for the 3-parameter case is shown in Figure 4-9. Once

again, Ak(P*) gives a good order of magnitude of the maximum relative output error

N,Mmax,rel at every greedy iteration. In this case, however, there are more points

where the effectivity is significantly less than one, indicating that the optimization

solver converged to a local maximum of the objective function. This is probably

due to the fact that the objective function tends to become more multimodal as the

number of parameter increases.
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Figure 4-9: Effectivity of error indicator Ak(A*) for the 3-parameter problem.
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Chapter 5

Inverse Problem

5.1 Introduction

In previous chapters of this thesis we have extensively analyzed the forward problem

associated with the nonlinear combustion PDE that was introduced in Chapter 2:

given a known input parameter vector pt* E D we seek a reduced basis approximation

to the output of interest, ON,M([L*), that is arbitrarily close to the "truth" approxima-

tion o([t*). In this chapter we tackle the inverse problem of determining the unknown

value of the parameter vector [t* E D given a set of empirically measured outputs

5 E RN.

Two different approaches for determining the value of the unknown inputs given

a set of empirical measurements are presented in this chapter. First, we develop a

deterministic methodology that determines the "best" value of the parameter vector

by minimizing the discrepancy between the empirical measurements and the numer-

ical predictions provided by the reduced order model that was built in chapters 3

and 4. The deterministic approach builds upon the model-constrained optimization

methodology that was presented in Chapter 4 for sampling the parameter space D.

It is therefore relatively straightforward to implement and computationally efficient.

However, in the presence of experimental error and/or incomplete knowledge of the

problem due to sparse measurements, the results provided by this methodology are

usually insufficient and can in fact raise more questions than they answer: what is
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the uncertainty associated with the "best" estimate of p* predicted by the optimiza-

tion algorithm?. How do the experimental errors in the measured outputs propagate

through the numerical model used to solve the inverse problem?. These are important

questions that the deterministic approach is not capable of addressing and provide

motivation for the second approach presented in this chapter.

In a realistic setting where experimental errors are not negligible it is not possible

to determine the unknown parameter vector p* exactly. Therefore, a single value or

"best" estimate of it* is of no real use if it is not accompanied by an uncertainty that

gives the range of possible values of p* that are consistent with the provided mea-

surements. The second method presented in this chapter eliminates the shortcomings

of the deterministic approach by using Bayesian statistical inference in order to relate

the empirical measurements 5 E RNS with the theoretical predictions oN,M(t*) and

thus generate a probability density function for the parameter pf*.

For a general overview of this framework we refer the reader to [40, 57]. The

probabilistic approach to inverse problems has been applied successfully in numerous

settings including tomography [2, 29], geophysics [16, 51] and contaminant transport

models [35]. However, the extreme computational cost required for exploring the

input parameter domain using stochastic sampling methods is an open issue that still

remains unanswered.

The probabilistic approach presented herein uses Markov Chain Monte Carlo

(MCMC) simulations in order to sample the probability distributions of the input

parameters and requires tens of thousands of forward problem solutions. This is a

perfect example of the "multiple-query" context discussed in Section 1.1 where using

a traditional, high-fidelity, numerical technique such as the finite element method for

solving the forward problem would be computationally intractable. Recently, the use

of lower-fidelity models has been proposed in order to decrease the cost of the proba-

bilistic methodology [2, 30]. However, these low-fidelity models are not obtained via

systematic model reduction methods; instead, they are built using traditional numer-

ical methods - i.e., FEM, FDM, BEM - but use meshes that are coarser than usual

so that the resulting problem becomes tractable. The limitations of this approach are
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evident since the level of mesh coarsening required for decreasing the computational

cost of these problems to acceptable levels typically results in large errors that are

often hard to quantify or even yield unstable numerical schemes.

In this thesis we use the reduced basis approximation developed in chapters 3 and 4

as a critical ingredient that enables the successful implementation of the Bayesian

statistical inference approach for estimating the probability distribution of t1* given a

set of empirical measurements. To the author's knowledge, this is the first published

work where systematic model reduction is used in order to decrease the computational

cost of the probabilistic inverse problem approach by several orders of magnitude while

maintaining the accuracy and stability of the multiple forward solutions required by

the MCMC simulations.

5.2 Deterministic Approach

In this section we formulate the inverse problem in the deterministic sense by min-

imizing the discrepancy between a measured set of outputs, 5 E RNC, and the out-

puts predicted using the reduced basis approximation built in chapters 3 and 4,

ON,M(P*) E RN. The outputs of interest are average fuel concentrations measured

along vertical lines in the combustion chamber as shown in Figure 2-1. Instead of

using experimental data, we choose the input parameters to be = ite and re-

place the measurements with computations using the "truth" finite element solution:

5 = o(te). As a consequence, the "measurements" almost exactly match the nu-

merical predictions of the reduced basis approximation (the only difference between

the numerical results and the artificial measurements is the error of the reduced ba-

sis approximation with respect to the "truth" solution, which has been shown to be

negligible for reasonable values of N and M). Since the deterministic approach is

not well suited for handling experimental uncertainties, no empirical errors have been

added to the synthetic measurements. The reader is referred to the probabilistic ap-

proach to inverse problems presented in Section 5.3 for a rigorous derivation on how

to incorporate non-negligible empirical errors in the inverse problem formulation.
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5.2.1 Formulation Using Model-Constrained Optimization

Given a reduced order model and a measured output of interest we solve the inverse

problem by finding the point in parameter space where the f
2-norm of the difference

between the output predicted by the reduced order model and the actual measured

output is minimal,

min J(UN,M,A) -N,M -- C112
UN, M4 2

subject to RN(UN,M; t) = 0 (5. 1a)

ON,M =LUN,M + Lo (5.1b)

Amin I ( /max (5.1c)

where UN,M E RN' is the reduced state variable, it E RP is the parameter vector or

decision variable, J E R is the objective function, RN E RN are the reduced dis-

cretized equations as defined in (3.61), and 5 E RNS, ON,M E RNs are the "measured"

and reduced linear outputs of interest. The reduced basis output is computed using

the matrices LN c RNxN and Lo E RNS defined in equations (3.56) and (3.57). The

upper and lower bounds for the parameter vector are given by tmax and Amin respec-

tively. Recall that the parameter vector is formed by the two parameters (P = 2)

that control the combustion reaction; i.e., A = (log(A), E).

Note that the optimization problem (5.1) is formulated in terms of the reduced

basis output. If the "truth" FE model were used, the formulation would look the

same. One would simply need to replace constraint (5.1a) with the full discretized

equations, R(u; A) = 0, and (5.1b) with the FE output, o = Lou. The solution

method would be identical to that described in this section for the reduced basis

case. For the remainder of this section we will limit ourselves to the formulation

using the reduced order model since it is computationally more efficient and yields

practically the same accuracy. Substituting the output constraints into the objective
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function yields

min J(UN,M, -dJILNUNM + LO - 5Ii| (5.2)
UN,M, 2

subject to RN(UN,M; P) - 0

Imin A t'max

The optimality conditions for the model-constrained optimization problem (5.2)

are derived by defining the Lagrangian functional,

defT
L(UN,M, P, AN) J(UN,M) + \TNRN(UN,M; p) (5.3)

where AN E RN is the adjoint variable that enforces the reduced model equations.

As was done in Chapter 4, the bound constraints are treated separately inside the

optimization solver and, consequently, are not explicitly included in the Lagrangian.

The first order Karush-Kuhn-Tucker optimality conditions for this problem are given

by [ UN,M [UN,M ± uNM AN

&AL = [ RN = 0 (5.4)

where gUN,M RN is the gradient of J with respect to the reduced state variable:

M= ()T (LNUN,M + LO -6) (5.5)

JNUN,M E RNxN is the Jacobian of the reduced basis equations which can be computed

using (3.62) and JNy E RNxP is the Jacobian of the reduced state equations with

respect to the decision variables, which is given by (4.11) and (4.12).

The nonlinear system of equations (5.4) is solved using the reduced space frame-

work described in Section 4.2.3. Since the minimization problem (5.1) only involves

the reduced model equations, any reasonable optimization algorithm will converge

to the optimum with a very low computational cost. Therefore, instead of using
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the subspace trust region interior-reflective Newton method that requires computing

the reduced Hessian at every iteration, we use the simpler sequential quadratic pro-

gramming method that was also described in Section 4.2.5. Recall that this method

constructs an estimate of the reduced Hessian at every iteration using the BFGS

formula so only the reduced gradient is computed analytically.

The reduced gradient is computed at every iteration by first solving the reduced

state equations to find the reduced state variable UN,M, then solving the adjoint

equations to compute reduced adjoint variable AN and finally substituting the state

and adjoint variables into the decision equation. The residual of the decision equation

is the reduced gradient, VJ:

VJ= -J N, (5.6)

5.2.2 Numerical Results Using Deterministic Approach

In this section we present some numerical results for the inference of the Arrhenius

parameters i = (log(A), E) given a set of experimental measurements using the

deterministic framework described in Section 5.2.1. As discussed in the introduction,

the "measurements" are generated numerically by choosing a fixed value for the input

parameters, te = (log(Ae), Fe) and solving the forward problem using the "truth"

finite element model that was developed in Chapter 2. The inverse problem is solved

using a reduced basis approximation with N = 40 and M = 50 so the difference

between the "measurements" and the numerical outputs of interest is negligible (on

the order of 10-6).

For the numerical experiment presented in this section, the "measurements" are

generated using an input parameter vector given by (log(Ae), E,) = (7.147727,0.054545),

which corresponds to a reaction-dominated, highly nonlinear solution. The initial

guess for the sequential quadratic programming optimization algorithm is chosen as

(log(A)o, EO) = (5.00,0.15), which corresponds to a convection-dominated, weakly

nonlinear solution. Both the initial guess and the actual solution used to generate

the "measurements" are shown in Figure 5-1. The measurement lines are represented

120



(a) (b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 5-1: Initial guess for optimization algorithm (a) (to = (5.00,0.15)) and so-
lution used to generate "measurements" (b) (Me = (7.147727, 0.054545)). Measure-
ments are average fuel concentrations along dashed vertical lines. Line indices give
the x-coordinate of each measurement line in millimeters.

by vertical lines at equally spaced intervals along the combustion chamber. Note that

the initial guess differs significantly from the "truth" solution used to generate the

measurements (po and yw are almost in opposite corners of parameter space) so the

example chosen to illustrate this methodology is clearly a challenging one.

The number and location of the measurement lines chosen to infer the Arrhenius

parameters that generated a given set of outputs plays a critical role in the well-

posedness of the inverse problem. For example, in the case presented in this section,

the measurements along lines Flo through F1 7 are practically zero due to the fact

that the flame does not reach these lines. Therefore, if only these lines were used

to generate the measured outputs, the resulting inverse problem would be clearly

ill-posed. Using all 17 measurement lines is a safe option for obtaining a well-posed

problem since they cover the entire combustion chamber. When all lines are used,

the inverse problem is well-posed and, for this particular case, the resulting optimiza-

tion problem is convex so the same optimum is found regardless of the initial guess

used in the optimizer. Figure 5-2 shows the performance of the optimization solver

for the numerical example considered in this section using all 17 measurement lines

available in the model. The optimum is located at p* = (7.147728,0.054551) and

the optimization solver requires 15 iterations and 61 reduced order solves in order to

find it. Note that the solves required by the optimization algorithm only involve the

reduced order model so the computational cost required to find the optimum is negli-
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gible. Also note that the P-norm of the error between the inferred parameter vector

p* and the actual input vector Ie used to generate the synthetic measurements is

6.65- 10-6, which is of the same order of magnitude as the error between the reduced

basis approximation used to solve the inverse problem and the "truth" finite element

model used to compute the outputs.

x 10'

0.15-
12

0.13- 10

0.11 - 8

0.09 -

0.07-

0.05 -

5 5.25 5.5 5.75 6 6.25 6.5 6.75 7 7.25

I'1

Figure 5-2: Solution of inverse problem using sequential quadratic programming and

17 measurements. Colormap shows the value of the objective function J over the

entire parameter domain of interest D. Figure shows location of initial guess (0),
optimum (U), and intermediate steps after every iteration of the optimization solver

(A).

As discussed previously, selecting all 17 available measurements is a guarantee of

obtaining a well-posed inverse problem. However, it is also possible to select fewer

measurement lines and still be able to infer the value of the Arrhenius parameters

without a significant impact on the error. The advantage of selecting fewer measure-

ment locations for solving the inverse problem is twofold: first, in a realistic setting

where actual measurements are collected, it is always desirable to limit the number

of required measurements to a minimum in order to decrease the experimental cost

of the process. Second, the size of a reduced order model is generally related to
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Measurement Inverted Solution Error Number of reduced
lines used W* p_ |lpe - *2 order solves

All 7.147728 0.054551 6.65E - 06 61
1-6, 8, 10, 13 7.147894 0.054567 1.68 E - 04 69
1, 3, 5, 8, 13 7.147978 0.054576 2.53 E - 04 65

1, 3, 10 7.147257 0.054494 4.72 E - 04 76
1, 3 7.146442 0.054403 1.29 E - 03 53

Table 5.1: Inverse problem solutions using sequential quadratic programming opti-

mization algorithm. First column contains indices of measurement lines used in each
case (refer to Figure 5-1 for line locations). In all cases the synthetic measurements
were computed using the "truth" finite element model with /ye = (7.147727, 0.054545)
and a starting initial guess for the optimization algorithm given by JO = (5.00,0.15).
Error between the input parameter used to compute the "measurements", Ae and
inverse problem solution, p*, is given by error = 11e - A*112. The last column shows
the number of reduced basis solutions computed by the optimization solver in order
to reach the optimum p*. The reduced order model used by the optimizer contained
40 basis functions (N = 40) and 50 interpolation functions (M = 50).

the number of outputs that the model must compute accurately; fewer outputs of

interest usually require smaller reduced order models, which, in turn, decreases the

computational cost of both the offline and online phases of the reduced basis approx-

imation. Table 5.1 shows the effect of selecting fewer measurement lines for solving

the inverse problem. We note once again that care should be exercised in order to

select lines that provide measurements that are representative of the case of interest

i.e., measurements where the concentration of fuel is non-zero and which cover the

flame region as thoroughly as possible.

5.3 Probabilistic Approach

In this section we present a Bayesian statistics framework for inferring the input

parameters of interest, p* E R2 , given a set of sparse measurements, 6 E RIS

with non-negligible experimental error. We refer the reader to [40, 57] for a detailed

discussion on the probabilistic approach to inverse problems used herein.
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5.3.1 Bayesian Formulation

Given a known probability distribution for the experimental errors and a known input

parameter vector t*, it is possible to solve the forward problem using the reduced basis

approximation from chapters 3 and 4 in order to compute p(5jt*), the conditional

probability of the observed measurements given the input. This is called the forward

probability density. When solving the inverse problem we are interested in p(Z* 6),

which is the conditional probability of the possible inputs given that a certain set of

measurements has been collected. This is the inverse probability, which defines our

knowledge of the inputs after measuring the outputs.

Forward and inverse probabilities are related by Bayes' theorem as follows,

I
6W*5) = 1P(AI*)P(*) (5.7)

p(5)

where p(pz*) is the probability function that contains our knowledge of the parameter

yi before collecting any measurements. This is known as the prior probability. The

inverse probability p(pt*15), often called posterior probability, defines our knowledge

of the inputs given a set of measurements. Determining this probability distribution

is the goal of the probabilistic inverse problem framework. The forward probability

function, p(51,*), introduced before can be determined from the experimental errors

and our numerical reduced order model. Finally, the remaining factor, p(5)- 1, is de-

termined by normalization since the integral of the posterior probability distribution

over all possible inputs must be equal to one.

5.3.2 Problem Formulation Using Stochastic Simulation

Once again, the "measurements" in our problem are generated by setting the input

parameters to IL = 1pe and replacing the measurements with computations using the

"truth" finite element solution: 5 = o(pe). However, in this case we also introduce a

normally distributed measurement error such that the final vector of measurements,

6 E RNS, is given by

6i = Oi(Ie) + Ei, 1 < i < N, (5.8)
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where the measurement errors E&, 1 < i < N, are assumed to be normally distributed

with standard deviation - and zero mean. We note that this framework also allows

considering additional errors that may exist in any of the steps of the process used

to compute the outputs of interest given a set of inputs. In our case, for example,

we could consider incorporating the error between the "truth" finite element solution

and the reduced basis approximation used to solve the inverse problem into the error

vector e E RNS. The question that arises when doing this is the type of probability

distribution associated with the reduced basis error. Note that the reduced basis error

is non-uniform across the parameter domain D and clearly non-normal. In our case,

we use a very accurate reduced basis approximation with N = 40 and M = 50 so the

reduced basis error is negligible compared to the experimental error and is therefore

excluded from the formulation. However, incorporating the numerical error of the

reduced basis approximation in the probabilistic formulation is clearly an interesting

topic that should be considered when using small reduced order models (with large

numerical errors).

The only prior knowledge about the input parameter before making the measure-

ments is that it must reside in the input parameter domain D. Therefore, we assume

that the prior distribution of t* is uniform on p* E D,

ptp) (c 1, if p E D (5.9)

0, otherwise.

Since the measurement errors are normally distributed, the forward probability is

given by

N,

p(5 I p) = P(--i = - O (W))i==1 21(5.10)

=1 N(6i - Oi(pL)) 2 <(.0
oc exp , 12< i < N .

We now invoke Bayes' theorem to obtain the following posterior probability density
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for 1 < i < N,

exp - 2 _=1
p (uIi) Oc

i- -4 2] (5.11)
otherwise.

In order to sample from the posterior probability density function we use the

Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm [271. Using

this algorithm we can generate a Markov chain {Y}Nmi with equilibrium distrib-

ution (5.11). The algorithm is as follows:

Let Y. = (PI, [12), Y+1 is found by performing the following two steps,

1. Generation Step: Let r 1 and r2 be stochastic variables drawn from a uniform

distribution on [0,1] and wi, w2 be positive constants. Set

P[ = [p1 + wi(2r1 - 1)

P2 = P2 + w 2 (2r 2 - 1),

(5.12)

(5.13)

which means that the proposed density function for the generation step is given

by

4ww2

0

if Ii - piI < w1 and |p' - [21 < W2,

otherwise.
(5.14)

Note that g(1-4P''1,'2) 

2. Acceptance Step: With probability

min

[iN,
1, exp

2 2

(5.15)
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set Y.+1 = (t', /') (i.e., accept p'), otherwise set Y+1 = (Pi, A 2 ) (i.e., reject

I').

The samples in the Markov chain {Y,},,- are drawn from the posterior proba-

bility distribution so the distribution of {Y}4 1 converges to the actual posterior

probability distribution of y* as N, -+ oc. However, it is clear that for practical

purposes we need to choose a finite value for Nm (and hopefully not so large that

generating the Markov chain will become a computationally intractable task). In

general, we are interested in using the Markov chain for computing a statistic of in-

terest f(Y) so we need to select Nm such that our estimate of this statistic using a

specific realization of the chain is representative of the actual value of the statistic.

Let Y = y(O), y1 = Y( ... YNm - y(Nm) be a realization of a homogeneous and re-

versible Markov chain. In our case, {y(")} 1 is the output of the MCMC algorithm

outlined previously in this section. Let f(Y) be the statistic of interest; we can es-

timate the expected value of this statistic, referred to as (f(Y)), using the output

sample set {y(n) IN- by computing the quantity

fNm (fY n= f(n)) (5.16)
mn=1

where fNm({ =(ly}4Q) is called an estimator of (f(Y)). Since the samples {y(*)}Q 1

are realizations of random variables {Y}N 1 , our estimate, fNm ({y(n) J is itself

a random variable and, therefore, a different estimate will be obtained each time we

compute a realization {y(n)} Ym of the random variable {Yn} 1 .

In order to answer the question of how good of an estimator for (f(Y)) is fNm

we note that when Nm is large, fNm is normally distributed with mean (f) and some

variance, var(fNm). Therefore, using the central limit theorem we can say that the

limit of Nm (fNm - (f)) as N. -+ oc tends to a normal distribution with zero mean

and variance c independent of Nm as discussed in [19). Therefore, if {y(n)INm- were
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independent samples and fNm EN_ f(y()) then

var (f)
var(fNm) Nm (5.17)

However, since the samples {y(n)}N- are not independent, we should expect the

variance to decrease more slowly due to the presence of correlated samples. The

variance of our estimate is actually given by

7-f var (f)
var(fNm) v Nm (5.18)

where Ty > 0 is the integrated autocorrelation time that accounts for the existence of

correlated samples in the Markov chain. Note that if we are able to compute rf given

a particular realization of a Markov chain, then we can estimate the accuracy of our

estimate fNm by using (5.18) to compute its standard deviation (o-fN var(fNm)

and therefore give a confidence interval fNm o±qoyNm, q E N, for the statistic of interest.

The definition of rf is given by

Tf = 1 + 2 pff (s) (5.19)
S=1

where pjf(s) is the normalized autocovariance function at lag s, defined as follows

1
pf f(s) = var(f (Y,)) cov(f (Y), f(Yn+s)) (5.20)

The normalized autocovariance function pff(s) approaches zero as the lag s in-

creases (the random variables in the Markov chain become more uncorrelated as the

distance between them increases). However, since Nm is finite, the estimates of pff(S)

are noisy so there is a value Mm of s such that for s > Mm the values of pff(s) are

pure noise. Therefore, if we were to compute our estimate ;r for r by summing

over all s as shown in (5.19) the resulting estimate would be corrupted by noise. In

practice, we truncate the sum over pyf(s) at s = Mm where noise begins to dominate.

For our particular problem we will define the mean, (Y), and the variance, ((Y - (Y))2),

128



of the posterior probability distribution of p as our statistics of interest. The esti-

mator for the mean is given by

Nm

f1Nm I n(y="), (5.21)
Nm n=1

where fi (y) = y. The estimator of the variance is given by

1 Nm

f2Nf In=i -N Ef2 (y'")), (5.22)
mn=1

with fi(y) = (y - 9)2 and 9 = 1 Z m y(n).

The uncertainty associated with estimators f1Nn and f2 Nm is obtained by first

computing a Markov chain of length Nm, dropping the states from the start of the run,

and then estimating Tf, and Tf2 for the statistics fi(Y) and f 2 (Y) according to (5.19).

The variance associated with each estimator is computed using equation (5.18). The

standard deviation can then be computed as a1 iN = var( iNm),i = 1, 2. Finally,

a 95% confidence interval is reported for each statistic of interest by using the value

of the estimate and its standard deviation: [f --- 2aj7 , ~ 2u 1 N]

As a final remark, we note that the confidence intervals for the statistics of interest

developed above are only valid if the Markov chain has converged to its equilibrium

distribution. Since convergence of a Markov chain cannot be demonstrated in general,

it may appear that the methodology presented in this section is difficult to validate.

However, in practice, the following steps are sufficient for assessing the convergence

of the MCMC outputs of interest: first, it is necessary to check that Nm > max{Tf},

i = 1, 2, in order to guarantee that the chain is sufficiently long. Second, one should

verify that the realization of the chain, {y(n)}NiN-, does not show any obvious trend.

The final step to check convergence requires plotting the normalized autocovariance

functions of the statistics of interest against the lag s in order to check that they fall

off smoothly to zero and then oscillate randomly about the x-axis due to noise.
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Measurement FE output Set 1 Set 2 Set 3
line index O(pe) 50.5%(Pe) 51.5%(Ae) 62.5%(Ae)

1 0.5570 0.5565 0.5592 0.5646
2 0.5288 0.5269 0.5306 0.5328
3 0.4936 0.4938 0.4996 0.5006
4 0.4534 0.4538 0.4555 0.4463
5 0.4095 0.4082 0.4073 0.4094
6 0.3628 0.3642 0.3641 0.3618
7 0.3137 0.3151 0.3101 0.3042
8 0.2625 0.2625 0.2624 0.2640
9 0.2095 0.2099 0.2093 0.2033
10 0.1564 0.1566 0.1564 0.1647
11 0.1075 0.1073 0.1064 0.1028
12 0.0682 0.0690 0.0721 0.0713
13 0.0406 0.0399 0.0340 0.0419
14 0.0232 0.0257 0.0247 0.0177
15 0.0129 0.0127 0.0161 0.0001
16 0.0071 0.0072 0.0097 0.0067
17 0.0039 0.0051 0.0059 -0.0021

Table 5.2: Sets of measurements used to test performance of probabilistic approach.

First column contains the line index for each measurement (refer to Figure 5-1 for

line locations). The second column contains the exact output at each line, o(e),
computed using the FE model. The last three columns contain the three sets of

measurements generated by adding normally distributed measurement errors to the

exact outputs shown in the second column.

5.3.3 Numerical Examples

In this section we present numerical results for the posterior distribution of A* for

three different sets of measurements. These sets of measurements were generated

using expression (5.8) with 1Le = (6.7386, 0.0727) and normally distributed measure-

ment errors with standard deviations given by -o.5 % = 1.18. 10- 3 , l.1 5% = 3.54. 10-3

and U 2.5 % = 5.90 - 10-3. These standard deviations correspond to approximately

0.5%, 1.5% and 2.5% of the average fuel concentration over the seventeen output

measurements considered in this problem. Table 5.2 shows the exact outputs o(pe)

computed using the "truth" finite element model as well as the three sets of artificial

measurements obtained by drawing a sample from each distribution corresponding to

the actual solution plus the normally distributed experimental errors.
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IAC for *= log(A*) IAC for p* = E*
Meas. Set r , (mean) Ty, (variance) 304 (mean) Tf2 (variance)

M.S% (P e ) 223 304 222 2 99

O1.5%(Pe) 263 147 266 150

2.5% (Pe) 246 168 246 161

Table 5.3: Integrated autocorrelation time (IAC), Ty, for the two statistics of interest

(mean and variance) considered for each of the two unknown input parameters of the

problem, p* = log(A*), and p* = E*.

As described in Section 5.3.2, the statistics of interest are the mean and the

variance of the probability distributions of pu* = log(A*) and p = E* for each set of

measurements. The posterior distributions were sampled using the MCMC algorithm

outlined in Section 5.3.2 with 50, 000 samples for each Markov chain (Nm = 50, 000).

Table 5.3 shows the values of the integrated autocorrelation time for both statistics of

interest for the three sets of measurements. Note that in all cases Nm is much greater

than -Ff, which is the first practical check discussed in Section 5.3.2 for assessing

convergence of the Markov chain.

Figures 5-3 through 5-5 show the Markov chain samples for each of the three

sets of measurements. No obvious trend is observed in any of the sequences, which

is a valid indication of the fact that the chains are in equilibrium as discussed in

Section 5.3.2.

As a final check in order to assess the convergence of the Markov chains used to

compute the outputs presented in this section, Figures 5-6 and 5-7 show the nor-

malized autocovariance functions for the mean, pf 1if(s), and the variance, Pf2f 2 (s),

against the lag s for both input parameters and all three sets of measurements. In

all cases, the normalized autocovariance functions approach the x-axis smoothly and

then oscillate randomly due to noise.

After checking that Nm > max{Tf}, i = 1, 2 (see Table 5.3), verifying that the

realization of the chains, {y(n) } , do not show any obvious trend (see Figures 5-3

through 5-5) and plotting the normalized autocovariance functions of the statistics of

interest against the lag s in order to check that they fall off smoothly to zero and then

oscillate randomly about the x-axis due to noise (see Figures 5-6 and 5-7), we can

131



0 1 2 3 4 5
MCMC Updates x 10 4

2 3 4
MCMC Updates

5

x 104

Figure 5-3: Markov Chain samples from posterior probability distribution for the

Arrhenius parameters obtained from measurements 6O.5%(pe) (refer to Table 5.2 for

measurement values).
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Figure 5-4: Markov Chain samples from posterior probability distribution for the

Arrhenius parameters obtained from measurements 51.5%(pe) (refer to Table 5.2 for

measurement values).
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Figure 5-5: Markov Chain samples from posterior probability distribution for the
Arrhenius parameters obtained from measurements 52.5%(/Ie) (refer to Table 5.2 for
measurement values).

conclude that the Markov chains computed in this section are adequate for obtaining

reliable posterior probability distributions for the unknown input parameters of the

inverse problem.

Table 5.4 shows the 95% confidence intervals for the mean and standard deviation

of the input parameter p* for the three sets of measurements shown in Table 5.2.

The confidence intervals have been computed using the estimators fi zN, i = 1, 2 and

methodology described in Section 5.3.2.

The marginal posterior histograms for /p* = log(A*) and , = E* for each set

of measurements are shown in Figures 5-8 through 5-10. The increase in spread of

the three histograms shows that the uncertainty associated with P* increases as the

measurements become more inaccurate. It is also worth noting that the mean values

associated with the distribution of p* deviate from the original values of A, used to

generate the exact outputs as the measurement errors are increased. Note that if we

selected one measurement accuracy (say O1.5% = 3.54 -10-) and generated K sets of

measurements (with K >> 1) using this empirical error, the average of the resulting
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Figure 5-6: Normalized autocovariance functions (NACFs) for input parameter p* =
log(A*). Plots (a) and (b) show the NACFs for statistics (fi(Y)) (mean) and (f 2 (Y))

(variance) respectively computed using the Markov chain obtained for the first set
of empirical measurements, 0.5%(tte). Similarly, plots (c) and (d) correspond to the
NACFs of the mean and variance for the second set of measurements, 51.5%(APe),

and plots (e) and (f) show the NACFs of the mean and variance for the third set of
measurements, 52.5%(Ae).
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Figure 5-7: Normalized autocovariance functions (NACFs) for input parameter /4 =

E*. Plots (a) and (b) show the NACFs for statistics (fi(Y)) (mean) and (f 2(Y))

(variance) respectively computed using the Markov chain obtained for the first set
of empirical measurements, oo.5%(!L). Similarly, plots (c) and (d) correspond to the
NACFs of the mean and variance for the second set of measurements, 51.5% (Pe),

and plots (e) and (f) show the NACFs of the mean and variance for the third set of
measurements, 52.5%(Ape).
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Mean Standard Deviation
Meas. Set mean(p*) mean(0*4) std0.*) std(p4)
Ma0.5%(p) 6.720 0.004 0.0708 0.0005 0.030 0.003 0.0034 ± 0.0004
51._%(p_ ) 6.70 ± 0.013 0.068 ± 0.0015 0.086 ± 0.007 0.0095 ± 0.0007
52.5%(pe) 6.95 + 0.02 0.097 ± 0.0025 0.15 ± 0.01 0.017 ± 0.0012

Table 5.4: 95% confidence intervals for the mean and standard deviation of the pos-
terior probability distribution of the input parameter tz* for the three sets of mea-
surements shown in Table 5.2. Exact outputs (without measurement errors) were
computed using pe = (6.7386, 0.0727). In all cases, the Markov Chain used to infer
the posterior probability distribution of tL* contained 50, 000 samples.

predictions given by 1 Z I p* should coincide with tie (since the measurement

errors are normally distributed with zero mean). However, in this study we are only

considering a single set of measurements for each value of the empirical error so it is

not possible to estimate how close to Ite the predicted values of tt* should be (although

it seems reasonable to expect that large empirical errors will result in predicted values

that are further away from the original input tie used to generate the outputs).

As discussed previously, the Markov chains used to infer the posterior probability

distribution for p* contained 50, 000 samples. Therefore, generating the Markov

chains for each set of measurements required computing 50, 000 forward solves. It is

apparent that a reduced basis approximation is a critical ingredient of the probabilistic

approach presented in this section since computing 50, 000 "truth" FE forward solves

for every set of measurements is a daunting task. However, the use of a reduced

order model for computing the MCMC updates may raise some concerns regarding

the effect that the error between the reduced basis approximation and the "truth" FE

solution may have on the computed Markov chain and, consequently, on the statistics

of interest inferred from such chain. Herein we address this issue by using the "truth"

FE model in order to generate the Markov chain for the second set of measurements,

51.5%(pI), and comparing the resulting confidence intervals for the mean and standard

deviation of ft* with those predicted using the reduced order model. Since the FE

model is several orders of magnitude more expensive to run, the Markov chain in this

case is limited to 10, 000 samples instead of the 50, 000 samples computed for the
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reduced basis chains shown earlier in this section. Even after reducing the number

of samples, the FE chain took 4 - 105 seconds to compute whereas computing the RB

chain with 50, 000 samples only required 5. 102 seconds on the same machine. All the

convergence criteria discussed in Section 5.3.2 were applied to the FE chain in order

to guarantee its convergence to its equilibrium distribution prior to computing the

statistics of interest. The main effect of using only 10, 000 samples instead of 50, 000

is that the resulting confidence intervals for the mean and standard deviation of the

posterior distribution for pt* are wider than those obtained using the reduced basis

chains. However, the results are still valid for the purposes of assessing the validity

of the estimates obtained using the reduced basis Markov chains.

Table 5.5 shows the 95% confidence intervals for the mean and standard deviation

of the distribution of i* using the reduced basis chain and the "truth" FE chain. As

expected, the confidence intervals computed using the FE chain are wider than those

obtained from the RB chain due to the different number of samples used. However, the
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Mean Standard Deviation
Chain mean(p*) mean(p*) std(p*) std~p~)

FE 6.69 ± 0.036 0.067 i 0.004 0.083 ± 0.015 0.0092 ± 0.0016
RB 6.70 ± 0.013 0.068 ± 0.0015 0.086 ± 0.007 0.0095 ± 0.0007

Table 5.5: 95% confidence intervals for the mean and standard deviation of the pos-
terior probability distribution of the input parameter p* for the second set of mea-
surements shown in Table 5.2. First row corresponds to the confidence intervals
computed using a Markov chain with 10, 000 samples generated using the "truth"
FE model whereas second row contains the results from a Markov chain with 50, 000
samples generated using the reduced basis approximation. Note that computing the
FE chain required 4. 105 seconds versus only 5 - 102 seconds for the RB chain with 5
times more samples.

confidence intervals obtained from the RB chain are completely contained within the

FE intervals, indicating that the results from both MCMC simulations are statistically

identical. The results shown in Table 5.5 are plotted using error bars in Figures 5-11

and 5-12 for visualization purposes.

From Table 5.5 and Figures 5-11 and 5-12 we can conclude that the results ob-

tained using the reduced order model for running the MCMC simulations are sta-

tistically identical to those obtained using the "truth" FE model. Furthermore, the

reduced order model developed in this thesis is capable of achieving the same inverse

problem results as the FE model approximately 4000 times faster. This addresses the

issue of the high computational cost of high-fidelity models when implementing the

probabilistic framework for solving inverse problems and, therefore, opens the door

for dealing with a class of problems that could not be tackled until now.
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Chapter 6

Conclusions and Future Work

6.1 Summary

The main goal of this thesis is to develop an efficient model order reduction method-

ology for highly nonlinear parametrized partial differential equations (PDEs) and

demonstrate its application to the stochastic solution of inverse problems that are

computationally intractable when using traditional numerical techniques such as the

finite element method (FEM), finite difference method (FDM) or boundary element

method (BEM).

The model order reduction technique chosen in this thesis is the reduced basis

method. By using a coefficient-function approximation that represents the nonlinear

terms of the PDE, this method is well suited for obtaining an efficient offline-online

implementation where the operation count of the online stage is independent of the

number of degrees of freedom of the original high-fidelity model. The reduced basis

method seeks to represent any solution to the PDE of interest as a linear combina-

tion of solutions, often referred to as "snapshots", that have been precomputed using

any classical numerical technique. Efficient computation of snapshots such that the

resulting reduced basis approximation reproduces the input-output behavior of the

original high-fidelity, large-scale system over a wide range of input parameter values

without incurring in excessive offline cost is a challenging problem that is success-

fully addressed in this thesis. The input parameter space is sampled using a greedy
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algorithm that seeks to improve the accuracy of an existing reduced order model by

adaptively adding a new snapshot at every iteration. Every new snapshot is sampled

at the location in parameter space where the error between the "truth" and reduced

basis outputs is maximal. This location is found by solving a PDE-constrained opti-

mization problem in the continuous input parameter space. The optimization problem

is formulated using a reduced Newton method that scales well with the number of

input parameters.

The application used to demonstrate the performance of the efficient reduced

basis approximation and sampling algorithm is a combustion problem governed by a

two-dimensional convection-diffusion-reaction PDE which presents the challenges of

highly nonlinear behavior and outputs of interest that must be evaluated over a wide

range of input parameters.

The exponential Arrhenius term in the convection-diffusion-reaction equation con-

sidered in this thesis comes from an empirical law and the value of the parameters

that appear in it are generally not known a priori. Therefore, the underlying PDE

is naturally parametrized in terms of the Arrhenius parameters. Given a particular

value for the Arrhenius parameters, the field of molar concentrations of fuel inside

the combustion chamber is obtained by solving the governing PDE. The outputs of

interest are the average concentrations of fuel along vertical lines located throughout

the computational domain, which model the location of laser measurement sensors in

the physical combustion chamber.

The forward problem, which is tackled in the first part of this thesis, consists

in computing the outputs of interest given a know input vector of Arrhenius para-

meters. Chapter 6 of this thesis considers the more interesting inverse problem of

inferring the value of the Arrhenius parameters given a set of empirical measure-

ments obtained from a particular combustion reaction. The inverse problem is first

formulated using a deterministic approach which gives the most likely value of the

unknown input parameters by solving an optimization problem that minimizes the

discrepancy between the empirical observations and the numerical outputs predicted

by an analytical model. In a realistic setting where the knowledge of the solution
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field is incomplete due to sparsity of the measurements and presence of experimen-

tal errors, the deterministic approach is not capable of estimating the uncertainty

associated with the inverse problem solution, which clearly hampers the use of this

methodology in real applications. In order to overcome these limitations the inverse

problem is formulated using the probabilistic Bayesian framework. This methodology

samples the posterior probability distribution of the unknown input parameters using

Markov chain Monte Carlo simulations. Even though the probabilistic approach is

several orders of magnitude more expensive than the deterministic methodology, it is

capable of incorporating experimental errors into the solution process, therefore giv-

ing insight into the uncertainty associated with the inverse problem results. In this

thesis, the probabilistic approach is implemented using a reduced basis approximation

for computing the forward solves required by the algorithm, therefore dramatically

decreasing its computational complexity.

6.2 Conclusions

Several conclusions can be drawn from the forward problem results obtained in this

thesis. First, the use of a coefficient-function approximation yields a reduced or-

der model that is efficient even for high nonlinearities such as the ones found in

combustion problems. The reduced basis approximation developed in this thesis is

capable of computing results up to 50,000 times faster than the original high-fidelity

finite element model with average relative errors of magnitude 0(10-6). Second, the

model-constrained greedy adaptive sampling algorithm used for sampling the input

parameter space scales well as the number of parameters increases. Even though

the model-constrained greedy sampling method is more expensive than conventional

grid-based sampling for the two-parameter case, the performances of both methods

become comparable for the three-parameter case and the greedy sampling algorithm

is expected to be faster than grid-based methods for higher dimensional input spaces.

Furthermore, the model-constrained greedy sampling method offers the significant

advantage of providing an error estimate for the reduced order model at every greedy
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cycle whereas conventional grid-based sampling offers no error indication to ade-

quately size the reduced order model such that it meets our accuracy requirements

without incurring in excessive computational online cost. Third, even though in gen-

eral it is not possible to compute a rigorous error bound for nonlinear PDEs, the error

estimator proposed in this thesis provides an acceptable indication of the accuracy of

the reduced basis approximation at every greedy cycle.

Regarding the inverse problem results, the use of the model order reduction

methodology discussed in this thesis in order to compute the samples of the Markov

chains needed in the Bayesian framework enables the application of the probabilistic

approach to a class of inverse problems that could not be previously tackled. The

results obtained using the reduced order model for running the Markov chain Monte

Carlo simulations are 4, 000 faster to compute and statistically identical to those

obtained by running the simulations using a high-fidelity finite element model.

6.3 Future Work

The list below includes suggestions for improvements and extensions of the work

presented in this thesis to new applications.

1. Extend the reduced basis approximation and sampling algorithm used in this

thesis to systems of unsteady PDEs. Simulation of complex reactions with

multiple species is a challenging task in combustion modeling which could be

addressed by applying the same methodology used for solving the two-species,

steady PDE considered in this thesis.

2. Test the model-constrained greedy adaptive algorithm used in this thesis on

input spaces with more than three parameters. A particularly interesting appli-

cation would be the case where the nonlinear PDE contains an input parameter

defined as a continuous (infinite-dimensional) field.

3. Develop an efficient algorithm for generating initial guesses to be used by the

model-constrained greedy adaptive sampling algorithm. In this thesis, the sam-
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pling algorithm was initialized using an ad-hoc, problem-dependent process.

Since the initial guess used by the sampling algorithm has a significant impact

on the convergence of the optimization solver to the location of maximum out-

put error, it is important to develop a robust and efficient method for computing

adequate initial guesses.

4. Explore the use of an error estimator instead of the true output error in or-

der to reduce the computational cost of the model-constrained greedy adaptive

sampling algorithm. Defining an error estimator that is independent of the

high-fidelity finite element output will eliminate the need to compute full-order

solves at every greedy cycle, therefore increasing the speed of the algorithm.

5. Perform a thorough analysis to quantify the effect of the reduced basis errors

on the probabilistic inverse problem solution. Since an accurate reduced order

model was used in this thesis, the reduced basis errors were neglected in the

Bayesian formulation without affecting the final results. However, incorporating

this error in the formulation would be of paramount importance in situations

that required using a faster, and therefore less accurate, reduced order model.
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