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Abstract

Humans are sensitive to situational and semantic context when applying
labels to colors. This is especially challenging for algorithms which attempt
to replicate human categorization for communicative tasks. Additionally,
mismatched color models between dialog partners can lead to a back-and-
forth negotiation of terms to find common ground. This thesis presents a
color-classification algorithm that takes advantage of a dialog-like interac-
tion model to provide fast-adaptation for a specific exchange. The model
learned in each exchange is then integrated into the system as a whole. This
algorithm is an incremental meta-learner, leveraging a generic online-learner
and adding context-sensitivity. A human study is presented, assessing the
extent of semantic contextual effects on color naming. An evaluation of the
algorithm based on the corpus gathered in this experiment is then tendered.
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What does it mean to say A is black? Rather it was as if I were
discovering colors for the first time: red was quite cheerful, fire red,
but perhaps too strong. No, maybe yellow was stronger, like a light
suddenly switched on and pointed at my eyes. Green made me feel
peaceful. The difficulties arose with the other little squares. What's
this? Green, I said. But Gratarolo pressed me: what type of green,
how is it different from this one? Shrug. Paola explained that this
one was emerald green and the other was pea green. Emeralds are
gems, I said, and peas are vegetables that you eat. They are round
and they come in a long, lumpy pod. But I had never seen either
emeralds or peas. Don't worry, Gratarola said, in English they have
more than three thousand terms for different colors, yet most people
can name eight at best. The average person can recognize the colors
of the rainbow: red, orange, yellow, green, blue, indigo, and violet-
though people already begin to have trouble with indigo and violet. It
takes a lot of experience to learn to distinguish and name the various
shades, and a painter is better at it than, say, a taxi driver, who just
has to know the colors of traffic lights.

The Mysterious Flame of Queen Loana, Umberto Eco (p. 21)
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CHAPTER 1

I I
INTRODUCTION

Anjou Pear. Frolic. Capri. Bagel. Heartthrob. Camelback. Flip through

the catalog of paints at your local hardware store, and these are the kinds of

names you'll find, each a coding for a specific combination of inks. None of

these terms are universally used for the subtle hues of the spectrum. Calling

your mother and telling her that you're painting your bedroom "summer

day" won't quite convey the off-peach tone. Color, though, is one of the key

ways we refer to things in our world. What kind of wine would you like with

your sirloin? Describe the car that left the scene of the crime...

Somehow, through multiple layers of perception and cognition, we trans-

form a patch of light hitting our retinas into a label; a color name. And

what's more, that name is simultaneously stable to radical shifts in lighting,
and malleable to the situation. In the sciences, color has been a window
into the mind. By carefully controlling the light striking the light-sensitive

cells of the eye, we have learned about neural coding at the lowest levels of
perception. By surveying languages of the world, we have discovered univer-
sals in the categories of color and hypothesized about what these universals
mean for the evolution of language and of thought. Engineers have arrived
first from a different standpoint: how can colors be reproduced accurately.
How can we represent them compactly? Transmit them? And now, how can
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we categorize them?

This thesis touches on both the science of the human perception of color

and the engineering of distinguishing one color from another, and through

this investigation connects with a broader issue of classification with a frame

of reference: contextual dependence.

1.1 Context Sensitivity

Politicians complain that their words are quoted out of context; that a

phrase, removed from the particulars of situation, takes on meaning mismat-

ched-or worse yet, contradictory-to what was intended. Word meanings

are mutable to the context of their use. What's meant of "weight" when

comparing a heavy feather to a light bowling-ball? What of discipline when

a father speaks to his son or a warden to a prisoner? Any model of word

meaning must take context into account, but formulating a general model

is an enormous undertaking. Here, I grasp at one narrow manifestation of

a context's effect on meaning in the domain of color naming.

1.2 Motivation and Inspiration

The work presented here was initially motivated by a specific application in

linguistic grounding, the connection of words to the real world [34]. Trisk is

a robot at the MIT Media Lab designed to interact with objects placed on

a table before it, and to communicate about them with humans by speech.

Trisk visually identifies objects of interest by segmenting camera input based

on color.' We found this color segmentation fragile to changes in lighting

conditions, shadows, and the specular reflections of the objects in view. The

work of this thesis began in part as a venture to find a robust color-based

method of image segmentation. Trisk uses color terms to refer to objects

and can respond to imperatives such as "put the green one to the left of the

blue one." Like an art dealer describing a painting, Trisk must match color

iComputer vision is not the focus of the work presented in this thesis, though for those
interested, a survey of color-based segmentation techniques can be found in [8].

(14)
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to label. It's in this more direct use of color classification that the system

described here will likely find more immediate use.

The name of the context-sensitive classification system I developed is
Context Dreaming. The dreaming half of the name comes from one of the
most direct inspirations for the system. Daoyun Ji and Matthew Wilson of
the Picower Center for Learning and Memory at MIT recently published a
paper [18] supporting a proposal for memory consolidation. In this paper,
they report rats playing back memories while dreaming. Perhaps the kernel
of this notion of memory playback during an "off-line" time could be directly
implemented by a computer? 2 Thus came the two-phase interrogative learn-
ing model that Context Dreaming employs. Humans also appear to learn
by two different routes. There is a fast "in-context" system, and a slower

learning mechanism which consolidates and integrates multiple experiences
[25].

1.3 Straddling Two Worlds

This thesis spans both cognitive science and computer science. The contri-
bution to the cognitive sciences are the results of an experiment I performed
to assess semantic contextual influence on color categorization. These re-
sults confirm that even abstract context can affect low-level perception, and

raise questions about the mechanism that causes this effect. In the com-
puter sciences, I have designed a meta-classification algorithm which takes
advantage of a real-world interrogative interaction model and can transform
online-learners into context-sensitive online-learners.

1.4 Outline

The next six chapters describe the framework I designed to add context
sensitivity to online classifiers. The next chapter begins with a short review
of the science of color-its representation and partitioning--and describes

2The Context Dreaming algorithm shares the nomenclature of the wake-sleep algorithm
for neural-networks[17], but not the mechanics.

(15)
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the relevant work which frames this thesis. Chapter 3 describes in detail

the Context Dreaming algorithm. Next is a report of the experiment I

designed and performed to quantify some semantic context effects on color

naming. The corpus gathered in that experiment is used to evaluate the Con-

text Dreaming algorithm in Chapter 5. Finally, I conclude with a proposal

for future directions for this line of research.

( 16)



CHAPTER 2
I

BACKGROUND AND RELATED WORK

The study of how people select names for colors has a rich history. Color can
be seen as a window into cognition-a direct route to address at least one
aspect of the nature versus nurture debate. Are color labels independent of
language and tradition or do upbringing and culture directly shape percep-
tion? The goal of this chapter is to briefly introduce the key concepts which
frame this thesis, and provide context for the choices I have made. The first
part of this chapter discusses the science of color and its perception by hu-
mans, especially focusing on representations of color. It is on this substrate
that parts of this thesis are built. The second part of the chapter gives a con-
densed introduction to research on color-categorization, and describes some
related work on computational models of color-naming. The final part con-
siders some related work on context sensitivity and meta-classifiers. Those
familiar with these topics may skip the sections (or the chapter) entirely,
without losing critical information about Context Dreaming, its evaluation,
or the context-dependent findings discussed in Chapter 4.
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2.1 A Brief Introduction to the Science of Color

Imagine you are sitting at your kitchen table at dusk, a basket of fruit before

you. A clear sky outside illuminates the room dimly, while an incandescent

lamp overhead casts a pool of light upon the bowl. What happens when you

"see" the apple on your desk? Light from the sky and the lamp strike the

surface of the apple, where it is filtered and reflected into your eyes. There,

the light is absorbed by your retina and translated into signals which travel

to your brain. Somehow, you decide the color of the apple is red. I will use

this simple example to help introduce some key concepts which will take us

from the illuminant to the retina.

Light is a continuous spectrum of electromagnetic energy. The range of

the spectrum visible to the human eye are the wavelengths between 300nm

and 700nm. Purely spectral light-monochromatic light composed of one

particular wavelength-is, in a sense, a pure color. Rainbows are made

from these pure colors. Partitioning the visible spectrum into colors, we

see violet at 300nm range though deep red at the 700nm. Most sources of

light, though, radiate a distribution of the spectrum rather than a specific

wavelength, a bumpy but continuous spread of energy. The most idealized

case is that of a black-body, a material whose spectral radiation is defined

only by its temperature and related by Plank's Law:

2hc2  1
I(A, T) = hc 1

e AkT - 1

What we refer to as "white" light is a complex distribution across the

spectrum-in fact, there is no single standard for white light. The Interna-

tional Commission on Illumination (known more commonly by the acronym

for its French name, the Commission internationale de l'dclairage, CIE) has

defined a number of standard illuminants approximating common sources

of white light. Figure 2.1 shows the spectral distribution of a few of these

illuminants, including a black-body source. These standard illuminants are

the basis for the white points used by the color representation standards

discussed below.

( 18)
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Spectral Distributions of Some Standard Illuminants

Figure 2.1: The spectral distribu-
tion of a few common illuminants.
The smooth curve is the idealized
black-body radiation of a 65000K
source. The bumpy curves are exper-
imentally measured distributions of
the CIE standard D65 (sRGB and
television, western Europe daylight)
and A (incandescent) sources.

300 400 500 600 700 800 900
Wavelength (nm)

Humans compensate for the radical spectral differences of white light, a

phenomenon called color constancy. Once you've adjusted to the ambient

lighting, a sheet of paper looks white, whether seen at dusk or at noontime

on a sunny day. Color constancy is a perceptual effect. Computational color

constancy, sometimes called white-balancing, is a long-studied problem. See

[1] for a comparison of different algorithms.

The scene in the kitchen has two primary light sources: the sky, which

has a bluish tint, and the incandescent bulb with a yellowish tint. We

can model these light sources with the CIE illuminants D65 and A, respec-

tively. Light hitting the apple is a superposition of these sources. When

this light strikes the surface of the apple, it is selectively absorbed and

reflected-transforming the incident spectral distribution into the final one

which reaches your eyes.

2.1.1 Biological Basis

Light striking the human retina is absorbed by one of two types of light-

sensitive cells. One of these types, rods, are sensitive to dim light, but

not used to distinguish colors and will not be discussed here further. The

color-sensitive type, known as cone cells, come in three varieties, 1 each of

'Colorblindness is a genetic limitation in which only two types of cones are present.
There is some evidence of human tetrachomats (people with four types of cone cells, with
four distinct photopigments), but as of this writing, very few have been found.

( 19)

....... Blacody (6500 K)

. -- Blaclody (9300 K)
-- CIlE D65
- - -CIE A

I
S

'• .

.·· · , •·

30.

250

200

. 150

dr 100

50

oo

"""

Y



RONY DANIEL KUBAT A CONTEXT-SENSITIVE META-CLASSIFIER FOR COLOR-NAMING

which uses a distinct photopigment to selectively absorb light spectra. The

excitation of a cone cell is a function of both the incoming spectra and the

absorption of the cell's photopigment:

L(A) = /I(A)a(A)dA

where L(A) is the cell's response, I(A) is the spectral power of the incident

light and a(A) is the absorbance of the cone cell's photopigment. The human

visual response to color can thus be quantified by the rates of excitation of

the three types of cone cells. A consequence of this tristimulus representation

of color is metamerism: two distinct color spectra may result in the same

responses by the three cone types.

2.1.2 Oppositional Color Theory

The earliest models of color were split into two camps: Isaac Newton leading

from a physical substrate based on color spectra, and Johann Goethe from

empirical experiments on human perception. Goethe describes his theory in

Theory of Colours[41]. Introduced in the book is Goethe's color wheel, a

symmetric ring where colors are "arranged in a general way according to the

natural order, and the arrangement will be found to be directly applicable

[... ]; for the colours diametrically opposed to each other in this diagram are

those which reciprocally evoke each other in the eye." 2

Goethe's notion that colors are arranged in oppositional pairs anticipated

the opponent process model proposed by Ewald Hering [16], where colors are

encoded as the difference between tristimulus values. As a consequence, red

and green oppose each other, as do blue and yellow.

The debate between opponent models and tristimulus models carried

though the 1800s, with Hering and Hermann von Helmholtz as prominent

proponents of each respective theory. Today's consensus is a combination of

both theories, tristimulus tied to low-level perception and opponent colors

at higher levels of cognition.

2 paragraph #50

( 20)
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2.1.3 Color Spaces

The desire to faithfully capture and reproduce color gave rise to the question

of how to accurately and efficiently represent color. A color space is a method

of mathematically encoding color. The gamut of a color space is the set of

colors representable in that space. Discussed here are a few of the prominent

color spaces used for scientific and color reproduction purposes, all of which

are represented as a triple of numbers. Formulae for converting between the

color spaces described here can be found in [43].

LMS

The three types of cone cells in the human eye contain photopigments which,
at first approximation, absorb light in long, medium and short wavelengths.
The LMS (long-medium-short) color space gets its name from this fact.

LMS triples represent the excitation of the three types of cone cells and so

LMS space is most closely grounded to the physiological response of human

vision. Nevertheless, LMS is almost never used in either color capture or
reproduction due to mismatches in the sensitivity between the three types,

the linearity of their measure, and the difficulty relating LMS values to color

reproduction by screen or printing. LMS space is linearly related to XYZ

(see below). The LMS gamut spans all visible colors.

XYZ and its variants

In 1931, the International Commission on Illumination (CIE) formulated

a standard representation of color named XYZ. XYZ was one of the first

scientifically defined color representations and has remained the basis of

many of color spaces later developed. Each of the three components of XYZ

(which roughly correspond to red, green and blue) are linearly tied to the

human LMS tristimulus responses.

The XYZ standard is based on a color matching experiment in which
subjects were presented with two patches of color, separated by a screen.
On one side was a test color of fixed intensity; on the other, a combination
of three monochromatic sources whose brightness could be adjusted. By

(21)
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CIE 1931 2* standard observer functions CIE 1931 Standard Observer Chromaticity Diagram

a

Wavelength (nm) x

Figure 2.2: The CIE XYZ color matching functions and the xy chromaticity diagram
showing the sRGB gamut and white-point.

manipulating the primaries, subjects found a metameric color which could

be quantified by the intensities of the three primaries. From this data, CIE

created the standard observer color matching functions x, y and x, each of

which is a function over wavelength A. A color in the XYZ color space can

then be defined by the equations:

X = I(A)x(A)dA, Y = I(A))(A)dA, Z = I(A)2(A)dA
)0 0

Figure 2.2 shows the CIE XYZ color matching functions.

An XYZ triple encodes both the color of light as well as its intensity. A

standard decoupling normalizes x and y into a new space xyY defined as:

X Y
= X+Y+Z' y X+Y+Z

The two normalized chromaticity coordinates x and y encode color while

the third coordinate scales for intensity. The locus of monochromatic light,
swept through the spectrum of visible colors traces a horse-shoe shaped arc
whose inner area contains all colors visible to humans. Points outside this

arc represent ratios of excitation impossible for the three types of cone cells.

They are called imaginary colors.

( 22)
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RGB and its variant sRGB

The reproduction of color for television and computer displays is by com-
bination of three color primaries of red, green and blue. The brightness of
each primary can be represented as a normalized number in the range [0, 1].
The chromaticity of the three primary colors forms a triangle which defines

the gamut of the RGB space. One other factor completes an RGB space: a
white-point. This XYZ triple, corresponding to the "color" of white light,
provides a parameter to a transformation which can be used to adapt the
RGB space to the color temperature of the viewing environment.

Relevant to this thesis is one particular RGB standard named sRGB,
developed by Microsoft and HP to standardize monitors and printers. The
chromaticity of the sRGB primaries are based on standard phosphors for
CRT displays and the white-point set at CIE D65. Figure 2.2 shows the
spectral locus and the gamut and white-point of the sRGB standard.

Perceptually linear color spaces and CIE L*lIf

A problem with the color spaces described above, especially with regards to
color naming, is their perceptual non-linearity. Euclidean distance in XYZ

or RGB is not comparable to perceptual distance. For each visible color

in the xy chromaticity diagram, there is an ellipse of nearby colors which
are perceptually indistinguishable. The size of these MacAdam ellipses [23]

varies, smallest in the blues and growing larger toward the greens and reds.
There have been a number of attempts to define color spaces for which the
MacAdam ellipse stays approximately the same size throughout the color
space. Moreover, the goal of these color spaces is to make Euclidean distance
a parallel measure of perceptual distance gathered experimentally.

CIE ULa*b* was the CIE's 1976 attempt to define a color space that
balanced perceptual linearity with straightforward conversion to and from
XYZ. The three components of a CIE L*a*b* triple are luminance (a measure
of brightness) and two color-difference chromaticity values a* and b*, which
roughly encode differences between green and magenta, and blue and yellow,
respectively. In that sense, though a triple, CIE L*a*b can be considered

(23)
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an opponent color space. The * in CIE L*a*b* notes that each component

is converted from XYZ with an exponential-better matching human loga-

rithmic response. L* values vary between zero and one hundred; a* and b*

values vary in the range [-128, 128].

Although much closer to perceptually linear than XYZ, CIE L*a*b* is not

perfect. Other perceptually linear color spaces have been proposed, includ-

ing the OSA Uniform Color Scales Samples [31], CIE L*iflv, and NPP [22].

Mojsilovic describes a non-Euclidean distance metric which compensates for

irregularities in CIE L*a*b* [29].

2.2 Color Categorization

This section summaries some previous work in color categorization both in

the cognitive and computer sciences. In the cognitive sciences especially,

color classification has been an active field of research, perhaps because of

the ease with which experiments can be created and replicated as well as

the close connection between raw stimulus and semantic structure.

2.2.1 ... in the Cognitive Sciences

In 1969, Berlin and Kay published Basic Color Terms: Their Universality

and Evolution[3], a collection of their research about the naming of colors

across cultures and languages. In their key experiment, a standard palette of

color chips were named by participants speaking different native languages.

Language-specific aggregate mappings from colors to names were collated

from this data. Berlin and Kay put forth two hypotheses: that (1) there

is a restricted and universal catalog of color categories and (2) languages

add these categories in a constrained order. Languages with only two color

terms would have terms for black and white. Languages with three have

black, white and red. Those languages with four have terms for the former

three, plus green or yellow. The hierarchy for color terms proposed was:

(24)
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purple
white green pink

< red < < blue < brown <
black yellow orange

gray

Data collection for this experiment has continued through the World Color
Survey (WCS) [19] and a recent analysis of this data argues that the parti-
tioning of color categories follows an optimal partitioning of the space [33],
lending strength to the argument that human partitioning of color space

into categories is in large part bound to the physiology of human vision.
Low-level color perception, though, is influenced by higher levels of cogni-
tion, including memory [13]. By using swatches to present colors to study
subjects, the WCS researchers attempted to remove any contextual influ-

ences on color naming. John Lucy, in [14], though, argues that the three
dimensions of color presented in the WCS stimulus array are insufficient
for color naming. Namely, they were lacking in degrees of luminosity, re-
flectance and luster. Furthermore, he argues that color-naming can never

be fully detached from referential context and range.

Most natural kinds which people classify have distinct borders of mem-

bership. Not so with color. Children only start using color terms with their

full referential meaning between ages four and seven despite being able to

discriminate colors in dimensions of hue, saturation and brightness [4]. The
categorization we take for granted is a hard problem.

2.2.2 Computational Models

There have been a few computational models for color naming. Mojsilovic
in [29] describes a system to name an image's dominant colors. The image
is first segmented into regions by color and texture, then each color region is
named by taking the region's CIE L*a*b* color value and finding the closest
prototype in the ISCC-NBS3 dictionary [24] using a distance metric based
on Euclidean distance. Nurminen et al. [32] also name the dominant colors
of an image. Image pixel values are converted to CIE L*a*b* space, then

3The National Bureau of Standards Inter-Society Council

( 25)
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clustered by k-means and agglomerative clustering. Names are assigned to

cluster centers by using unmodified Euclidean distance metric to find the

nearest color prototype in a dictionary. An open-source javascript based

color naming tool by Chirag Mehta [26] uses a dictionary of color terms

combined from wikipedia, Crayola and others.4 The distance metric used

combines RGB values as well as hue, saturation and lightness.

Lammens [22] uses a Gaussian model to select the best color term in

a neurophysiologically-derived color space (NPP). He describes a way of

combining color labels near the border between color categories to make

complex color terms such as "reddish-yellow" and "somewhat blue".

Steele and Belpaeme's target article [39] about getting artificial agents to

coordinate color categories by communication (see also [2]) included a color-

naming model related to Lammens. The agents simulated in this experiment

categorized colors in CIE L*a*b* by using adaptive networks of locally reac-

tive units, a system similar to radial basis function networks. Units of a

network have a peak response at one specific color, with exponential decay

around it; the final output of a network is the sum of the individual units.

Each color category is represented by a network and a categorization made

by the network whose response is highest.

Recently, Mengaz et al. [28] demonstrated a model in which each point

in the gamut of the OSA uniform color samples is assigned fuzzy mem-

bership to the eleven basic color terms. Membership values were assigned

experimentally for the OSA samples and interpolated for other points in the

space.

One of the problems for all of the above computational color-naming

models is that none take into account human color-constancy. It can be

argued that white balancing can implemented as a preprocessing step before

submitting a color to be categorized, but the color representations chosen

for each of the above models attempt to lock colors to specific physiological

responses, so preprocessing the image in a sense betrays the impetus for each

respective color representation. An alternative representation is the CIE

4A list of different color name dictionaries can be found at
http: //wvw-swiss.ai.mit. edu/t jaf fer/Color/Dictionaries.html
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CAM color appearance model [30], which attempts to model the perceptual

effects of surround, adaptation, illumination and white-point, predicting the

appearance of a given color. Even with perceptual effects accounted for

by white-balancing or a color appearance model, none of the above color-

naming models take into account the semantic context of the color being

named, something this thesis hopes to address.

2.3 Concept Spaces, Context-Sensitivity and Linguis-
tic Hedges

Peter Giirdenfors proposes a three-layered model of cognition in [11] split
between Associationist (connectionist), Conceptual (geometric) and Sym-
bolic (propositional) representations. The central, geometric, component

Girdenfors names conceptual spaces. Abstract concepts, such as robin, can

be represented as a high-dimensional region in a geometric space with di-

mensions such as "can-fly" and "has-wings". The region representing robin

lies within the region for bird. Reasoning and inference about concepts can

then be transformed into a geometric problem where geometric algorithms

can be applied [12]. Conceptual spaces have been applied to both text [38]

and vision [7] problems.

In Gihrdenfors' model, context effects can be seen as a selective scaling

of the conceptual dimensions. On the farm, the concept for bird would scale

up the visual "has-wings" dimension, while at the dinner-table, the "tasty"

dimension would be emphasized. Applied to color-naming, the context of

wine would scale the salient color dimensions to bring a deep purple into

the region labeled "red".

To communicate about concepts in the word, we must have a shared

common ground with our conversational partner. Sometimes, though, it is

difficult to determine this shared conceptual space, especially if either the
two partners' models greatly differ, or if the word used refers to intangible
or invisible things. Arriving at a shared conceptual understanding is the
subject of linguistic and cognitive research [6, 15, 9]. Related to this work are
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linguistic hedges [21], using fuzzy terms like "somewhat brown" or "reddish"

to attenuate the meaning of a word or phrase. Hedges are frequently used in

referential negotiations. The Steele and Belpaeme target article mentioned

earlier connects many of the concepts discussed here: colors are classified by

independent artificial agents, who come to a shared understanding of color

terms through communication.

2.4 Meta-Classification Techniques

There is a fair body of research about techniques for combining classifiers

to increase their predictive power. This class of techniques, in which base

classifiers (sometimes called classifier stubs or weak learners) is called meta-

classification. The most straightforward of these techniques is voting [20],

wherein a number of stub classifiers each make an independent classification

and the majority class is chosen as a final result.

Stacking [42] is a generalization of voting where each stub classifier is

assigned a weight, and final classification is a result of the weighted vote of

the stubs. The weights assigned to the stubs are chosen to minimize error

in cross-validation. Stacking is a batch-learning technique due to the weight

selection by cross-validation. Bootstrap aggregation (Bagging) [5] creates

multiple copies of the training set by drawing samples with replacement.

These new training sets are used to create a cohort of stub classifiers whose

majority vote is reported as the final classification. Bagging is essentially

a smoothing technique, averaging stub classifiers whose decision boundaries

are sensitive to training data. Another technique which replicates data is

the Decorate algorithm [27]. In this approach, data with fuzzy class labels

is artificially generated from the training set. This artificial data is used to

train stub-classifiers which are combined by voting.

In boosting [36, 37]), each iteration of the algorithm adds a weak learner

trained on a weighted dataset, where those examples misclassified by the

previous iteration are more strongly weighted. There are a variety of algo-

rithmic variants of boosting, best known of which is perhaps AdaBoost [10].

All of the techniques mentioned above are batch learners. A labeled
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training set is processed to create a meta-classifier, which remains static for

all future classifications. To process new training data, these classifiers must

retain their entire original training set. The algorithm described in this

thesis does not suffer from this drawback-learning occurs incrementally
rather than in batch.
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CHAPTER 3

THE CONTEXT DREAMING ALGORITHM

This chapter describes the Context Dreaming algorithm in detail, discussing
its operation, critiquing its model, describing its theoretical performance and
discussing variants of the algorithm.

Context Dreaming is designed to take advantage of a particular interac-

tion model: one of discrete "interrogations." An example will help clarify

what I mean. Imagine an automatic telephone troubleshooter for a com-

puter company. A customer calls and describes a problem with a recently

purchased product. The automatic troubleshooter can be seen as a so-

phisticated classifier, asking questions of the customer and listening to the
complaints in order to find the most accurate classification of the problem.

Ideally, we'd want the automatic troubleshooter to learn from customers,
both within the bounds of a single call (by cup-holder, the customer means
compact disc tray) and by aggregating many calls (a whirring noise and
smell of burnt hair is likely a power-supply problem). Essentially, there is
local, in-dialog fast adaptation where joint definitions are negotiated ("The
cup-holder." "The CD tray?" "The thing that slides in and out." "Okay.")
and global learning, where the results of multiple conversations are aggre-
gated to help speed the diagnostic process and obtain more accurate results
in future dialogs.
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This interrogative interaction model is common in real life, and in fact

is critical whenever two parties are referring to a shared concept or item.

What you mean by "democracy" is likely subtly different from what I mean

by "democracy." If you use the term in a way I find surprising, I can ask you

to clarify and update my local definition for our conversation. My personal

interpretation can remain intact, but we can continue with a shared com-

mon understanding. The next time "democracy" comes up in conversation

between us, I can recall our shared meaning and proceed without confusion.

A more concrete example--one which motivates the evaluation described

later-is that of two parties negotiating the meaning of color terms. Imag-

ine you are sitting across a table from anther person. On the table are two

objects whose colors you would describe as cyan and purple. Your interrog-

ative partner says, "Hand me the blue one." Which one did he mean? For

you, there is no clear example of a "blue one" so you are forced to decide

between the two objects present. Let's say you hand him the cyan object

and get the reply, "Thanks." You've now learned that for purposes of this

interrogation (and perhaps for future conversations with this partner) colors

that you classify under the term "cyan" can also be classified as "blue." An

understanding of color has been negotiated.

The dialog model for classification is intimately tied to the functioning

of the Context Dreaming algorithm. There are two distinct phases of oper-

ation, one which occurs before and during a dialog, and one which occurs

afterward. The first, the online wake cycle, is analogous to the automated

troubleshooter's conversation with a single customer or the negotiation of

blue and cyan colors. This phase has a beginning and end, and its duration

is much shorter than the lifetime of the classifier (which can continue indef-

initely). During the second phase, the offline sleep cycle, knowledge learned

during a dialog is incorporated into the global model by replaying any new

training examples. For our earlier example, it's here that the troubleshooter

will generalize from "this customer calls the CD tray a cup-holder" to "some-

times, customers will call the CD tray a cup-holder."
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3.1 Context Dreaming as Meta-Classifier

There are a number of techniques that can be used to combine machine

classifiers in ways which improve performance, both in speed and accuracy.
Perhaps the simplest example is a voting classifier. In this meta-classifier, a

collection of sub-classifiers (either heterogeneous or homogeneous), examines

an incoming feature vector and performs a classification. The sub-classifiers

are sometimes called classifier stubs or stub-classifiers. For a given feature

set X, all the result classifications reported by the stubs are combined by

vote; typically, the majority class is considered the winner and final clas-
sification. If the component classifiers also produce confidence values with
their classifications, then the voting can be weighted accordingly, with more
confident classifiers having their votes count more toward the final result.
Likewise the contribution of each classifier to the final result can be weighted
by another heuristic.

The voting classifier is an example of a meta-classifier. Context Drea-

ming is such a classifier. By consequence, the performance of Context Drea-

ming is bound to the performance of the base learners within it. A better

performing stub classifier will result in a better performing Context Drea-

ming meta-classifier.

3.2 The 50,000 Foot View

A Context Dreaming classifier contains a library of context-classifier pairs,
where the contexts represent the "background information" for a dialog, and
the classifiers are any online learner (i.e. a stub classifier). These contexts
can be spare--capturing just a subset of relevant contextual clues-rich, or
empty. The classifier paired to each context in the library is trained for
circumstances appropriate for that context.

At the beginning of a dialog, the Context Dreaming classifier makes a
guess as to which classifier would be most appropriate for the given situation,
by finding the best context-match in the library for the situation's context.
That best-guess classifier is then used for classifications in the dialog. Fast
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adaptation occurs by heavily weighting new training examples.

If new training examples are offered during a dialog, that dialog's classi-

fier will be reshaped. How can this new knowledge be integrated back into

the master Context Dreaming classifier at the end of the dialog? The dia-

log's reshaped classifier is compared against all stub-classifiers in the library,
and the most similar match sequestered. If the highest similarity score is

above a threshold, then the training examples gathered during the dialog are

played back to the sequestered classifier and the situational context merged

with the sequestered-classifier's context. If, on the other hand, the score is

below the threshold, then the situation's context and the newly reshaped

classifier are added to the library.

3.3 Terminology, Parameters and Structure

A Context Dreaming classifier begins with a context c. It then takes a

feature vector X and classifies it into one of n classes C1 ... C,.

There are six parameters to the Context Dreaming algorithm: two num-

bers defining a threshold and weight, and four functions for classification,

comparison and context merging. These parameters are summarized in Ta-

ble 3.1. How these parameters are used is explained in the sections below.

The stub classifier which Context Dreaming uses is the first parameter to

the algorithm. This classifier must be an online (incremental) learner, and

must support weighted learning, where some examples are more important

than others. A simple way to add this weighting parameter to a classifier

which doesn't have it is to repeat training examples multiple times. In this

document, F will represent the class of classifier used as a stub, and f will

represent an instance of this stub.

Context Dreaming requires two comparator functions, one for compar-

ing contexts and one for comparing classifiers. Both comparator functions

return a similarity score ranging between zero and one, with zero being

completely dissimilar, and one being a perfect match.

Another function required by Context Dreaming is M, which merges two

contexts into a third.
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Label Function Constraint

F, f The stub classifier. f (Y) - C E {C 1 ,..., Cn}
f is an online learner

Sf A similarity metric comparing two stub classifiers. Sy(f, f') - [0,1]
Sc A similarity metric comparing two contexts. Sc(ci, cj) [0,1]
M Context merging function. M(ci, cj) -, c
y A threshold for classifier similarity. 0 < 7 < 1
w A reweighting parameter. 0 < w

Table 3.1: Parameters to the Context Dreaming algorithm and their constraints.

Finally, two numeric parameters complete a Context Dreaming classi-
fier. A number between zero and one serves as the threshold for classifier

similarity (7). A weighting parameter, w, sets the adaptation rate during
the wake phase.

Structure

A Context Dreaming classifier is a tuple (Sf, Sc, M, -y, w, L) where L is a set

of context and stub-classifier pairs, initialized to be empty. During oper-

ation, the library is filled with context-classifier pairs, each context in the

pair encapsulating the relevant components of the context which best match

the paired classifier.

The data structure which describes situational contexts can come in

many forms. The version implemented for this thesis is a key-value mapping,
where the key is some symbolic label, and the value is a set of strings. In
the phone-based troubleshooter example described above, one might choose
the context keys such as "caller area code", "time of day", "weeks since
product release" etc. For the color-naming experiment described in the
next chapter, the context included the participant's native language, age,
unique id, displayed image or word, etc. The relevance of any particular key
is discovered by the algorithm.
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Figure 3.1: Boxology of the Context Dreaming Wake cycle algorithm.

3.4 Phase I - The Wake Cycle

Each wake cycle covers an interrogation with constant context. The begin-

ning of the interrogation is marked by submitting a context data structure

to the classifier. This sets the internal state of Context Dreaming for the

duration of the interrogation. After submitting the context, any number of

classification or training requests can be made as long as the context remains

fixed. At the close of the interrogation, a signal is sent to the Context Drea-

ming classifier, ending the wake cycle. A single wake cycle corresponds to a

single interrogation.

The submission of a context (c) to Context Dreaming primes the clas-

sifier. First, Context Dreaming iterates over all the context-classifier pairs

in its library L, comparing them to the incoming context using the context

comparator Sc. The context receiving the highest score when compared to c

is selected along with its accompanying classifier. Call this pair (cmax, fmax).
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If the library is empty, then c is used as cax and the classifier prototype F

is used as fmax,

Next, a copy of this maximum scoring classifier is made (f'nax) and set

aside. The library L remains intact during the wake cycle. All classification

and training examples submitted to Context Dreaming for the duration of
the wake cycle are passed through fax. Training examples are submitted to

f'max with the weighting parameter w. They are also stored for replay during
the sleep cycle. It is by this means that a custom classifier is trained for
the duration of the interrogation. In analogy to the hypothetical example,
I learn what you mean by "democracy".

Algorithm 1 The Context Dreaming Wake Cycle Algorithm
On input (c):
if (L is empty) then

(cma., fma•) = (c, F)
else

(Cmaz, fm.a) = argmax (Sc(c, ci))
(c, Afi) EL

end if
f'nax copy(fmnax)
while (The interrogation is active) do

if (Request is for a classification) then
Return the result of f4,,(I)

else if (Request is a training example (Ci, x)) then
Train f'na with (w, C, x)
Store example (Ci, x-)

end if
end while

3.5 Phase II - The Sleep Cycle

At the end of an interrogative wake cycle, the Context Dreaming algorithm
incorporates what it learned for future use. During this phase, the stub
classifier fmax that was retrained over the course of the interrogation is in-
corporated into the library. The integration happens in two steps. First,
Context Dreaming uses the classifier comparator Sf to compare fmax (the
retrained classifier used during the wake cycle) against all classifiers cur-
rently in the library, L.
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Figure 3.2: Boxology of the Context Dreaming Sleep cycle algorithm.

Once the closest match is found, Context Dreaming completes the in-

tegration. Consider the library classifier and associated context with the

highest classifier similarity score s: (fi, ci)max. If the score s > -y then

the training examples gathered during the wake cycle are "replayed" for fi,

training fi using a weight of one. The two contexts ci (paired with the li-

brary classifier) and cfI (paired with the interrogation's context) are merged

together using M. This merged context is used as the new key for fi.

Otherwise, if s < -y then the fmax, and its associated context c, are

added to the library.

3.6 Expected Performance and the Effect of Parame-

ters

Making claims about the theoretical performance of a Context Dreaming

classifier is difficult because of the wide flexibility of choosing a stub classi-
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Algorithm 2 The Context Dreaming Sleep Cycle Algorithm
On input (cf , f.as) {Wake-cycle classifier flax and the interrogation context cf,}:
(fmatch,Cmatch) <-- argmax (Sf(fi, fM'na))

(fi,ci)EL
bestscore +- max (0, Sf(fmatch, fm/a))
if bestscore > 7 then

L.remove ((fmatch, Cmatch))
for Training example (C, x do

Train fmatch with (C, x- and weight 1
end for
cmerge +- M(c', Cmatch)
L.add ((cmerge, fmatch))

else
L.add ((cI, f ar))

end if

fier, context data type, comparators, and the numeric parameters. Never-

theless, some trends based on the effects of the parameters can be expected.

As with other meta-classifiers, the performance of Context Dreaming is de-

pendent on the performance of the stub classifier. We can expect that Con-

text Dreaming will perform as well as the stub, but this is not guaranteed.

In fact, if the y is set low, then no new stub classifier will be added to the

library--all training examples will be shunted to the prototype stub classi-

fier F. Essentially, when y is very small, then Context Dreaming reduces

to the stub classifier but with in-dialog fast adaptation. Over-fitting will

result if y is set too high. In that case, the library will fill with contexts and

classifiers that will be infrequently used.

The time-performance of Context Dreaming can be predicted as a func-

tion of the performances of the parameter functions. The startup time of

the wake cycle is O(ILI x O(Sc)) because of the single loop through each

of the library's contexts. Any classifications and training during the wake

cycle are O(fclassify) and O(ftrain) respectively: Context Dreaming merely
passes the feature vector to the selected stub-classifier or adds a constant-
time storage of training examples. Sleep-cycle time performance is not much
different: O (IL I x O(Sf) +m x (ftrain(4))) with m being the number of
training samples collected during the wake cycle. During this offline part,
there is a single loop through the library, comparing classifiers, followed by
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a training round looping once through the examples.

3.7 Algorithm Variants

The Context Dreaming algorithm provides fodder for a number of variants.

Three are discussed here, the first of which may address some concerns about

stability, the second scalability, and the third which can make more efficient

use of the training data under certain assumptions of the data's form. Many

other refinements to the algorithm can be imagined, whether conceptual or

in implementation.

3.7.1 Hedging Your Bets

The Context Dreaming algorithm makes a hard guess by selecting a single

stub classifier to take part in the wake cycle. If multiple contexts in the

library receive the same top score when compared against the situation's

context, there's no guarantee that the stub classifier Context Dreaming will

choose will be correct. One way to soften this hard guess, and effectively have

the meta-classifier hedge its bets is by choosing the top k context-classifier

pairs from the library. These top k classifiers would vote to decide on a

final classification for a feature vector Y. Voting could be weighted by each

classifier's respective context-similarity score and classification confidence (if

the stub classifier returns a confidence score.)

The sleep-cycle is also modified for this variant. Training examples gath-

ered during dialog are reclassified by each of the k stubs and used to get

a post-hoc evaluation of whether that classifier should have been included

in the voting cohort. Those stubs which score above a threshold would

be integrated into the library as described above. Those below would be

discarded.

This modification should make Context Dreaming more robust and re-

duce the variance of its classification error rate. The post-hoc assessment

decreases the chances that a stub classifier in the library would be trained

for a situation inappropriate for its context.
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3.7.2 Refined Context Intersection

The Context Dreaming algorithm is agnostic to the description of context as
long as the context comparator and intersection function match their respec-
tive constraints. The version implemented to demonstrate Context Drea-
ming operation though is limited by the context-merging and comparison
functions-merging is accomplished by returning a context containing the
intersection of the input contexts, and scoring is also based on amount of

overlap. Therefore, merged context can only represent joint existence in the
context ("ands"), with no way to represent alternatives ("ors"). The refined
context intersection described here is intended to overcome some of the first
iteration's limitations.

The refined context is represented as a key-value histogram. Each value
in the context is augmented with a count. Contexts are intersected by
summing the counts in the values.

image: (grapes: 1) text : (eggplant: 2)
language: (english: 1) and language: (english: 2, japanese: 1)

are merged into

image: (grapes: 1)
language : (english : (1 + 2),japanese : 1)

text: (eggplant : 2)
Using histograms for context values allows for better context similarity

scoring. The context comparator function can produce a fuzzy notion of
"and" as well as "or" using a relative entropy score such as the Kullback-
Leibler divergence.

3.7.3 Training a Filter

This variant of Context Dreaming allows training examples to be applied
to all contexts within the library and embraces Girdenfors' Conceptual
Spaces [12]. To accomplish this, the Context Dreaming classifier is modi-
fied, adding a parametric feature-transformer g(8, i) --+ ', where 0 are the
parameters of the transform. Furthermore, the library of context and stub-
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classifier pairs is replaced by a library of context and feature-transformer

pairs. The wake and sleep cycles are changed as follows:

In the wake phase, the best matching context is chosen as described

above. Any request for classification is first passed through the chosen

feature-transformer, then classified by the stub classifier F. Fast adapta-

tion for the duration of the wake phase comes by learning the parameter 0

(by hill climbing, simulated annealing or other such technique).

At the end of the interrogation, the newly trained feature transform is

integrated into the library as is described above. Rather than a classifier

comparator Sc, this variant uses a transform comparator So(Oi, Oj) -+ [0, 1]

to score transform similarities. The y parameter now applies to this similar-

ity score. Any training examples gathered during the wake cycle are played

back though g(0, ... ) and used to train the single stub classifier F.

3.8 Discussion

Comparing Context Dreaming to other machine learning algorithms can

yield the following critique: How is Context Dreaming different from other

mixed-data-type classifiers? Can't the contextual information be incorpo-

rated into a single feature vector? Essentially:

x = 1xl, • •xn} where

context = {x1, ... , xi} and

Xfeatures = {xi+1,., Xn}

My response is to focus on the particulars of the use of a Context Dreaming

classifier. Essentially, Context Dreaming should be considered within the

context of its use. Context Dreaming takes advantage of having a static

component (the context) and a dynamic one (i). The algorithm "locks in"

on a particular stub classifier for the duration of an interaction: this fact

allows for local adaptation to a particular interlocutor in a way that is not

possible with a more general classifier. Furthermore, as a system, Con-

text Dreaming is straightforward and flexible. It allows classifiers that use
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only one data type (e.g. numeric values) to be augmented with mixed data

types (e.g. symbolic contexts).
I conclude this chapter by summarizing the advantages of Context Drea-

ming and the ways it takes advantage of the dialog model it works in.

* Context Dreaming allows for fast adaptation during a dialog with fixed

context.

* The two phases of operation allow Context Dreaming to provide fast
answers during an online dialog, and shunt more computationally ex-

pensive procedures to the offline sleep cycle.

* Context Dreaming is well suited to interrogative tasks-situations

which frequently arise in dialogues where there is a negotiation of the

meanings of words.

* Classifiers accepting a single data type are transformed into mixed

data type classifiers.

The next two chapters describe a color naming experiment and an evaluation

of Context Dreaming on the corpus gathered.
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CHAPTER 4
I

CONTEXT EFFECTS ON COLOR NAMING

The words we use to label colors in the world are fluid. They are dependent
on lighting conditions, on the item being named, and on our surroundings.

The color stimulus you might label as "orange" in one context, you would
label "red" when talking about hair. Likewise, "black" becomes "red" when
talking about wine. The grass would still be called green when lit by a
red-tinted sunset. Although we intuitively know this context effect exists, I

wish to quantify it under controlled circumstances.

This chapter describes an experiment I designed in part to gather a cor-

pus on which to evaluate the Context Dreaming algorithm. The experiment

was built upon a particular color negotiation task described previously. A
colleague sitting across a table asks you to "pass the blue one." To your
eyes though, there's only a cyan object and a purple one. Which do you
choose? The experiment described here distills this task to its most primi-
tive components. Further discussion of the way the experiment encodes this
hypothetical scenario can be found in the next chapter, which describes the
application of the corpus on a Context Dreaming classifier.

The results of the experiment confirm that semantic context affects color
categorization, although sometimes in surprising ways. The first part of this
chapter describes the experiment performed, and the second discusses the
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sex # Min age Max age Mean age

Male 8 18 45 26.6
Female 15 18 63 43.3

Native language #

English 18
Chinese 3

Portuguese 1
Spanish 1

Table 4.1: Demographics of the study participants.

results and proposes a model which may account for the data.

4.1 Experiment

I designed an experiment to validate the hypothesis that situational and se-

mantic context affect the naming of colors. The experiment consists of three

color-related tasks: calibration, forced choice and naming. The calibration

task provides a baseline on which to evaluate the naming and forced choice

tasks. Both naming and forced choice parts evaluate contextual effects on

color categorization by presenting an ambiguous color stimulus and forcing

the experimental subject to make a categorical decision.

To prepare stimuli to be presented in this experiment, a separate stimulus-

selection data collection was run.

4.1.1 Participants

Thirty-six participants were solicited from the MIT community by email an-

nouncements and posters. Inclusion criteria was proficiency with the English

language. Participants were asked to provide their age, sex, native language

and any other languages they spoke fluently. Participants were compensated

for their time. From these, the first 13 were chosen to complete only the

stimulus-selection task.

4.1.2 Equipment

The experiment was performed in a windowless, dimly lit room illuminated

at approximately 32000K. Approximately ten minutes were spent adjusting
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Chromatic Achromatic

red black
green white
blue gray

yellow
orange
purple
brown
pink

Table 4.2: The eleven ba-
sic color terms of the English
language, as recorded by the
World Color Survey[19]. The
chromatic terms were used in
the color context experiment
described here.

to the ambient lighting in the room before any color-related tasks were
performed. Color stimulus was presented with custom-written software on

an Apple Macintosh computer and data recorded to a relational database. A
30-inch Apple Cinema Display was used as the display device. The monitor
was calibrated to the sRGB standard (D65, 2.2 Gamma) using a ColorVision
Spyder2Pro hardware color calibrator.

All color stimulus was presented against a neutral gray background.

4.1.3 Stimulus-selection

All of the experiment tasks described below share a common set of stimuli
colors chosen as follows: A pair of colors are selected from the eight basic
chromatic color terms of the English language (see Table 4.2). A third
color is chosen "in between" the first two. The idea is to make this mid-
point color as categorically ambiguous as possible so that a participant,
having to make a choice to fit the color to a basic color term would have the
most difficult time. Essentially, these mid-point colors lie on the decision
boundary between two color terms.

The ambiguous colors were chosen experimentally. Thirteen participants
were presented with pairs of color terms and asked to find the most ambigu-
ous mid-point color. Stimulus was presented under the same experimental
conditions as for the full experiment.
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The set of color terms C contains the focal colors for the eleven basic

color terms found in [19]. This set of CIE L*a*b* triples were taken from

the World Color Survey data archive. 1 For each color pair ((Ci, Cj)), a

rectangular swatch was presented flanked by color terms. On the left, the

term for color Ci; on the right, color Cj's term. The ambiguous color X

filled the center swatch. Below the swatch and color labels, a slider allowed

the participant to change the mix between the two colors. The CIE L*a*b*

value of the ambiguous center color was determined as:

= L*c + L*cP
L*x = 2

a*x = a*cc + (1 - a)dc

b*x = ab* c + (1 - a)b*cj

where a is the slider value, which ranges over [0, 1]. By allowing only vari-

ation in a and b, only the chromaticity of X varies. I chose to fix the

luminance of the ambiguous color in order to minimize biasing based on

perceived brightness and minimize perceptual contrast effects due to the

experimental stimuli being presented against a neutral gray background.

Values of a for each of the color pairs was gathered from thirteen partici-

pants. From this data, the mean (a,ij) and variance (o,2 ,ij) were calculated.

Trials for the full experiment described below used ambiguous colors derived

from the statistics pa, and ua2,,. Table 4.3 summarizes the statistics gath-

ered.

4.1.4 Color-Survey Task

The color-survey task consisted of two components similar to the tasks of

the World Color Survey: labeling focal colors and color-class membership.

In both cases, a palette of colors approximating the World Color Survey

stimulus was presented. For each of the eleven basic color terms of English,

participants were asked to select both the most representative color swatch

for that label as well as all color swatches covered by that label. CIE L*a*b*

lhttp://www.icsi.berkeley.edu/wcs/data.html
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Ci C, a c ci C, a aC

red green 0.470307 0.043355 blue orange 0.416461 0.051146
red blue 0.534923 0.074149 blue pink 0.617692 0.099827
red yellow 0.419846 0.200738 blue brown 0.545307 0.031639
red orange 0.396538 0.200362 blue purple 0.558076 0.047334
red pink 0.267307 0.157634 yellow orange 0.208461 0.190263
red brown 0.434461 0.102883 yellow pink 0.559230 0.091499
red purple 0.371615 0.098075 yellow brown 0.624846 0.384815

green blue 0.509307 0.051746 yellow purple 0.602615 0.057751
green yellow 0.512692 0.079417 orange pink 0.527846 0.094767
green orange 0.475153 0.068584 orange brown 0.565461 0.119777
green pink 0.554769 0.053107 orange purple 0.519076 0.059021
green brown 0.746384 0.072170 pink brown 0.540000 0.076685
green purple 0.580153 0.030303 pink purple 0.326769 0.133534
blue yellow 0.359923 0.047062 brown purple 0.465307 0.064446

Table 4.3: Results of the ambiguous-color calibration task.

values for each of the swatches were taken from the World Color Survey
data archive2 . Unfortunately, many of the colors of the WCS stimulus lie

outside the gamut of sRGB. Those colors were converted from CIE L*a*b* to
sRGB, then clipped at the maximum RGB value. 3 As a result, the stimulus

presented in this experiment is not a complete analogue to the WCS and

therefore direct comparison to the WCS data is problematic. Nevertheless,
the clipped values presented for this experiment are sufficiently spread across

sRGB space to provide a measurement of contextual effects on naming.

The choice to use the WCS stimulus set was made in part because of
the singular prominence of the WCS in color-naming research. Despite the
disparities between the sRGB stimulus presented in this experiment and the
swatches used in the WCS, comparing the data gathered against the WCS
data provides a certain degree of confidence that the participants in the
study are sufficiently "typical."

2http://www.icsi.berkeley.edu/wcs/data/cnum-maps/cnum-vhcm-lab-new.txt
3For the Context Dreaming evaluation, this clipped value was used.
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Figure 4.1: On the left, an example of a color-survey task. To the right, an example
of the naming task. The colors appearing here will vary from the stimulus due to color
variation in the printing or display of this figure.

4.1.5 Binary Forced Choice Task

In forced choice tasks, the participant is presented with a color stimulus in

the center of the screen and two color labels in black text on the left and

right. In order to proceed to the next screen, the participant must choose

which of the two labels better represents the center stimulus. Participants

were instructed to proceed as quickly as they believed they could make an

effective decision. Response time was recorded.

Figure 4.2: Examples of forced-choice tasks; the left image with a word context, the
right with an image context. Colors in this document vary from the stimulus due to
color variation in printing or display.

In order to help negate any perceptual saturation effects, each stimulus
was preceded with one second of the screen at neutral gray. Furthermore,
1500 milliseconds after becoming first visible, the stimulus disappeared, leav-
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ing only the color labels.

The three types of binary choice tasks are:

Context-free (Control): The ambiguous color stimulus is presented as a

200 x 200 pixel color swatch in the center of the screen.

Word context: The word context for a color pair was an extra-bold 96
point font. The color of the word was the ambiguous color X. This is

a variant of the Stroop task[40].

Image context: A high-contrast iconic image was used as a stencil when
presenting the ambiguous color. A different iconic image was used for
each of the eight color terms.

The forced choice tasks were performed on the color pairs shown in Table
4.4. Each pair (Ci, Cj) was presented with five different ambiguous center
colors, generated using aij = mpij ± faij where p E (0, 0.75, 1.5}. These five

colors were furthermore presented with the label for Ci on the right, the label
for Cj on the left, as well as the reverse. For the two tasks testing contexts,

the number of decisions was furthermore multiplied by two because contexts

for Ci and Cj were presented.
This brought the total number of samples for each color pair to ten for

the context-free (control) case, and twenty otherwise. The total number of

decisions per participant collected during the experiment was 400 (8 color

pairs, 10 or 20 decisions per pair, 3 tasks).

4.1.6 Naming Task (Surround Context)

This task was designed to determine any effect that color classifications of
surrounding objects may have on a naming task. It is similar in design to the
experiment described in [35]. The stimulus presented to the participant was
five square color swatches arranged on a three-by-three grid. The contextual
swatches were placed at the four corners of the grid. In the center square
was the target stimulus.

As in the previous tasks, two colors (A and B) were chosen from the
eight chromatic basic English color terms. Between these two colors, five
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Context
A Color B Color A word B word A image B image

Red Green Cherry Broccoli Cherry Leaf
Green Blue Broccoli Ocean Leaf Waves
Blue Red Ocean Cherry Waves Cherry
Pink Yellow Flamingo Schoolbus Flamingo Corn
Yellow Orange Schoolbus Carrot Corn Traffic Cone
Orange Purple Carrot Eggplant Traffic Cone Grapes
Purple Brown Eggplant Chocolate Grapes Log
Brown Pink Chocolate Flamingo Log Flamingo

Table 4.4: Color pairs used in the experiment and the word and image contexts used.
Prints of the images can be found in the appendix.

ambiguous colors were generated as above. One of the two colors (Lets say

A) was chosen to provide the context. The four corner colors of the stimulus

were filled with variants of A by rotating the hue of A by a fixed amount in

either direction. Two cases were tested; one with a maximum deviation of

1350 of hue, and one with a maximum deviation of 180 of hue.

At the bottom of the screen were buttons that the participant would

press in order to make a classification into one of the eleven basic color

terms. Response times were also measured for this task.

4.2 Results and Discussion

The results of the experiment largely confirmed the hypothesis that context

affects color categorization. There were some surprises, especially in the

binary forced choice tasks.

Color Foci and Classes:

As a measure of inter-rater agreement, I calculated average information

entropy for each color. For each sample swatch (Oi), I calculated pi(Li E C)

and pi(li = Fc), the probability that an annotator labeled it a member of

color class C, and the probability it would be labeled the focal color for class
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Mean color class size Class membership entropy Focal color entropy

black 1.48 0.00581 0.00000
red 6.04 0.03882 0.00881

gray 6.43 0.01990 0.01029
brown 8.43 0.05024 0.01054
white 10.26 0.08833 0.00156

orange 12.78 0.06934 0.01247
yellow 12.83 0.09403 0.00935

pink 16.74 0.11437 0.01408
purple 17.39 0.10167 0.01341
green 29.26 0.15477 0.01240
blue 50.91 0.17822 0.01368

Table 4.5: Mean color class size and
in the color foci and color class tasks.

average information entropy for color swatches

C. From this probability, I calculated the mean information entropy (H):

PE = pi(Oi E C) = niN' m
i=1

where N is the total number of participants. Table 4.2 collates the results.

The low entropy indicates strong agreement among the annotators.

Binary Forced-Choice Tasks:

Results from all three binary forced choice tasks are presented in Figure

4.3. Each grouping of five bars represents results for one color pair. For a

given color pair A-B, the fraction of times a participant chose the first of

the two colors (A) was tabulated and this fraction was averaged across all

participants who were qualified. Participants were disqualified if the control
case was unambiguous for a given color pair (i.e. the participant consistently
chose one of the two colors in the control case).

Consider the leftmost color pair, brown-purple, which had a strong con-
text effect. The bar for the control case shows the ambiguity of the stimulus
color. The next two bars show that participants deviated toward choosing
the brown category when either the word context was "chocolate" or the im-
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age was of a wooden log. They deviated toward purple when the text context

was "eggplant" or the image context was of grapes (the final two bars). An

effect was considered positive if an A-context caused A to be chosen more

frequently, or a B-context increased the likelihood of B being selected. Sim-

ilarly, an effect was termed negative if an A-context caused B to be more

frequently chosen, or a B-context increased A's likelihood. Positive context

effects occurred with five of the eight color pairs. Surprisingly, one color

pair (red-green) showed a strong negative context effect and two others-

green-blue and yellow-pink--showed slight negative effects. Response times

(Figure 4.4 for both context-sensitive tasks were almost identical to the con-

text free task, indicating the context did not introduce new task demands

or strategies for the participants.

Mean Response Times Figure 4.4: Average response times
Tor tne binary rorced cnoice tasKs ana
the surround context task. The nearly
identical mean response times for the
binary-choice tasks indicate that the
test was successful in capturing par-
ticipant's unedited responses. The in-
crease in response time for the sur-
round context task was most likely
due to the time required to select a
choice using the mouse. For the bi-

Times 1600.55 1662.03 1580.24 2652.35 nary choice, participants made their
selection by pressing one of two keys
on the keyboard.

I believe that the negative context effects observed with three of the color
pairs are caused by color category boundaries varying between context and
context-free prototypes, coupled with the specific choices of contexts for this
experiment. Consider the schematic in Figure 4.5, which shows hypothetical
class boundaries for two colors, A and B. The ambiguous color X is shown
approximately half-way between these boundaries along the line connecting
A and B's focal colors. The second boundary around the focal color for
A demarcates the the colors prototypical for the image context used for A.

(55 )
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This boundary is a small subset of the A color task, indicating that for

this specific choice of image context, only a small set of colors are deemed

typical. Under this set of circumstances, the ambiguous color X is closer to

the boundary of B-leading to a negative context effect. The negative effect

was observed weakly with color pairs green-blue, yellow-pink and strongly

with red-green.

This experiment used only one term for each color as text context and a

single iconic image for each color's image context. Two minor adjustments

to the experimental procedure would be able to confirm this hypothesis:

1. Adding to the color-survey task requests for the participant to select

all colors typical to a given context condition. For example: "Select all

the Flamingo colored swatches." Armed with this data, I hypothesize

that the distance between the ambiguous red-green color would be

closer to a red-class color than a broccoli-class color, and closer to a

green-class color than a cherry-class color.

2. Adding a larger variety of context primes to both text and image sets

should reverse the negative context effects. For example, context words

for green such as "grass" or "sprout" or "go", and for context words

for red such as "stoplight", "rose", or "blood".

Unfortunately, the current set of data can neither support or contradict the

proposed model. A future experiment including either or both of the above

procedural modifications is required.

Surround Context Effects:

Figure 4.6 shows results of the surround-context naming task. Data for each

color pair A-B was grouped into three categories. A participant's selection

for the ambiguous color's name falls into the congruent-choice category if it

matches the color name of the surround context. Likewise, it falls into the

contrast-choice category if the name matches the second term of the color

pair. If the participant selected a name matching neither color, then it is

categorized in the other category.
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b*

Dund

a*

Figure 4.5: Schematic for a model which may explain the binary forced-choice results.

As with the Binary Forced-Choice task, the surround context had a

strong effect on color naming, though surprisingly, the effect was sometimes

congruent, and sometimes contrasting. The ambiguous color of four of the

eight color pairs was most frequently named neither A nor B. Of the remain-

ing four color pairs, two showed a congruent context effect (brown-purple

and green-blue) and two showed a contrast context effect (pink-brown and

yellow-orange). I believe that these results may be explained by a per-

ceptual contrast effect. The luminosity of the color pairs with congruent

effects were equal, compared to the color pairs which showed a contrast

effect (AL* = 40.81 for pink-brown, AL* = 19.65 for yellow-orange).

( 57)
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Color Pairs

Figure 4.6: Results of the surround-context naming tasks, grouped by color-pair A-B. Results by each color pair are grouped into
congruent choice (Context A-Choice A, or Context B-Choice B) or contrast choice (Context A-Choice B, or Context B-Choice
A). The third category, "Other" includes all naming choices which were neither A nor B.



CHAPTER 5
I

EVALUATING CONTEXT DREAMING

How well does Context Dreaming perform? Can it predict human color-

naming responses? To evaluate the theoretical performance of Context Drea-

ming on real world data, I implemented Context Dreaming and used the

experimental data described in Chapter 4 to compare it against a baseline.

Finding an appropriate evaluation procedure is challenging because to the

best of my knowledge, there do not exist other online classification algo-

rithms specialized for the interrogative model Context Dreaming relies on.

To evaluate Context Dreaming, the idea was to find a bare-bones dataset

which encapsulates a problem of interrogatory learning while stripping away

all components not related to the classification task; speech recognition,
natural language processing, computer vision, etc., though necessary com-

ponents for a holistic system which can participate in dialog, are obscuring

factors when trying to evaluate the Context Dreaming classifier.

The problem which first prompted me to explore interrogative classifiers-

table-top color negotiation--serves as the evaluation corpus for Context Drea-

ming. This corpus is a subset of the data from the experiment described
in Chapter 4. The binary forced-choice task from the color context exper-
iment in particular provides a dataset which encapsulates table-top color
negotiation. How so? First, a brief recap of the task.
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Two people are at a table with two colored objects on it. Each person

has their own distinct (though similar) model for colors. In conversation,

the interlocutors refer to the objects by color label. Problems arise when the

color labels one person assigns the objects do not match the second person's

labels. To arrive at a shared understanding of color, they must learn new

mapping from tristimulus values to color categories-though these mappings

will in all likelihood be related to the mappings each party arrived with.

Returning to the evaluation scenario, consider a Context Dreaming clas-

sifier which takes the place of one of the interlocutors. At the table are

objects X and Y, both of ambiguous color when in a context-free scenario

(X between colors A and B, and Y between B and C). A request to "Hand

me the B colored one" is made. Using the context of the situation-the

category of the objects X and Y, the particular conversation partner, the

language being spoken, etc.-which should the classifier select?

The experiment's binary forced-choice task presents a similar problem.

An ambiguous color X, at the categorical junction of colors A and B, is

presented under a controlled context. The question can then be posed to

the classifier: is A or B a better label for X. If the classifier chooses B, and

the participant also chooses B, this is analogous to the classifier making the

correct decision in the table-top color negotiation task.

The rest of this chapter discusses the implemented Context Dreaming

classifier and its evaluation against the color-experiment corpus. The chap-

ter concludes with a discussion of lessons learned.

5.1 The Implemented System

A Context Dreaming classifier was implemented in Java. For this proof-

of-concept, all the components of the classifier-the context data type, the

stub classifier, and the similarity metrics-were made as simple as possible.
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Modified Hedging

The implemented system uses a modified version of the k-best bet-hedging

modification described in Section 3.7.1. When entering the wake cycle,
the classifier selects the k context-classifier pairs who scored best with S,.
For color triples to be classified, the k classifiers combined their results by
weighted voting. A stub-classifier's weight was equal to the context similar-
ity score between its paired library context and the situational context of

the wake cycle. When training on new examples, all k stubs were trained.

The sleep cycle remained almost identical. One modification was necessary

due to the bet-hedging: only the one stub-classifier with top context simi-

larity score was compared against the library classifiers and considered for

addition to the library (if its classifier-similarity was less than y, as per the

algorithm).

I chose to use this k-best variation because the choice of context data-

type and context-comparator made it likely that the top context-similarity

score would be shared by multiple context-classifier pairs. The effect of this

modification was to smooth the error rates reported below.

For the evaluation reported here, k was set to five.

Context

Contexts were represented as a sparse map of symbols. Keys in the map

were: unique participant id, participant sex, image context, word context,
and participant native language. Some context keys which had little or no
effect on color decisions, such as participant sex, were intentionally used as
confounding factors. The following is an example of a context:

id :10
sex : male

image : flamingo
language : english
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Stub Classifier

A histogram model was used as the stub classifier. Histogram models make

no strong claim on the form of the distribution they represent. Mengaz et al.

showed that some color categories in CIE L*a*b* are concave [28]. Histograms

can effectively capture that observation. Eight bins were used across each

dimension for a total of 512 bins.' Histograms were smoothed with a radial

Epanechnikov kernel spanning three bin widths.

A histogram bin typically contains the count of examples which fall into

it, though in order to incorporate weighted training (the w parameter) this

had to be modified. For this refashioned histogram, when an example is

added, a percentage of the total "count"2 in the histogram is added to the

bin. Explicitly: say the total "count" in the histogram is n and the "count"

in bin i is m. After adding an example to bin i with weight w, the new

"count" in that bin is m + max(l, i).

Colors were represented as CIE La*b* triples; and the distance be-

tween pairs was calculated as the Euclidean distance in CIE L*a*b* space.

Other color distance metrics have been proposed to linearize disparities in

CIE L*a*b*, notably Mojsilovic [29], though she did not report the param-

eters used in the metric. Classification in the histogram model was made by

calculating the likelihood of the target color triple for each color category,

and returning a set of category-confidence pairs, sorted by likelihood.

Context comparator, Sc

Context similarity between two contexts was equal to the fraction of inter-

secting items plus a small constant.

Ici n c,Sc(ci, cj) =E + ci U cjl

1The effective number of bins is less because some bins cover CIE L*a*b* values outside
of the gamut of sRGB. Those colors appear nowhere in the corpus.

21 use "count" in quotations here because for this modified histogram, the total in all
the bins no longer represents the number of examples encountered.
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In the evaluation, each context pair had the same set of keys, so the above

scoring metric is equivalent to

S,(ci, c,) = E + Ici n c Ij

The small constant was necessary in order to prevent similarity scores of zero

from ever occurring. Similarity scores were used to weight the contribution

of a stub classifier's categorization during a wake-cycle classification (see

below), so scores of zero would nullify the effect of the classifier.

Stub-classifier comparator, Sf

Histogram classifiers were compared against each other using a distance

metric AF(fr, f-) where fF is the histogram for category x in classifier fi.

The final classifier similarity was then computed as

1
s~(ilj> 1--S(s, fj) = 1 - AF(fI, fS)

xEc

Here, c represents the set of categories into which fi and fj can classify a

feature vector.

Context Merging, M(ci, cj)

Two contexts were merged by taking their intersection: keys and values
common to both contexts are included in the merged context; other are
discarded.

For example:

id :10 id :23
M sex male sex :female image :flamingo

image :flamingo image :flamingo language english
language :english language :english
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5.2 Procedure

Performance was evaluated using five-fold cross-validation which partitioned

the training and test data by participant. The more detailed parameter

space in Figure 5.2 was evaluated with leave-one-out cross-validation. A

separate test set was not held out because the number of participants was

small. Training proceeded in two phases. In the first phase, color categories

were primed using the context-free class-membership data gathered in the

experiment (Section 4.1.4). This training occurred in a single wake-phase.

The second training phase used the context-sensitive data from the binary

forced-choice task. Each wake phase in this training set contained the ten

data points gathered for each color pair, context, and participant.

The stub-classifier similarity threshold y was varied through a range of

[0.75,1.0]. The reweighting parameter w was varied from one to seventy.

Classifier accuracy was measured against the binary forced-choice data

of the held-out participants. Recall that each data point represents an am-

biguous color and the participant's category choice between two candidates.

A classification was marked correct if the classifier ranked the participant's

choice higher than the alternative color category.

5.3 Comparison Classifier

The baseline competitor compared against Context Dreaming was a histo-

gram-classifier with no incorporation of context. Context Dreaming should

be evaluated against the same type of online classifier used as its stub for

fair comparison. Results reported for the competitor were gathered by the

same procedure as for Context Dreaming.

5.4 Results and Discussion

The baseline histogram classifier correctly predicted a participant's responses

62.3% of the time. The peak score for the implemented Context Dreaming

was 66.7% (w = 3, - = 0.99), representing a 7.1% increase. Figures 5.1 and
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5.2 show the effects of w and y on classifier performance and library size.

Overall, classification results for Context Dreaming were disappointing.
As the figures indicate, the algorithm is highly sensitive to the w and -y
parameters, whose meaning, in turn, is entirely dependent on the imple-

mented context data-structure and the two comparator functions. With the
current implementation, the performance of the classifier drops below the
baseline outside a narrow window of parameter values. In the course of
implementing and testing the Context Dreaming framework, I learned that
the choice of context representation and comparator function Sc are of crit-
ical importance for performance. The implemented context data-type does
not balance the number of possible values each key can take. After a few
dialogs, intersected contexts would favor keys like "sex", which could take
only two possible values. Using this simple key-value mapping, there is no
way to score the relevance of any key. The importance of "sex" or "id" is
indistinguishable from "image" or "text" context keys. I believe that scoring
classifiers at the end of a wake cycle as was discussed in Section 3.7.1, and
augmenting key-value contexts with a key-relevance score, would be able
to mitigate this problem and allow the classifier to perform better with a
smaller library size.

The order in which a Context Dreaming classifier has dialogs and receives
training data will also greatly affect performance. Early training data has
a particularly pronounced effect. For this reason I believe the classifier
performance as a function of - and w was noisy, even with leave-one-out
cross-validation.

With the color experiment, I attempted to isolate an evaluation dataset
where contextual effects are simple in their representation yet large in their
magnitude. Unfortunately, I don't believe the dataset captures the rich-
ness of human experience that comes to bear on the color-naming problem;
in fact, it may mask critical dimensions. Humans are always processing in
context-we see this in the experimental data with the nearly-identical deci-
sion times of the forced-choice task. With only five color samples per combi-
nation of color pair, context and participant, the evaluation dataset is sparse
which may also be a factor in the algorithm's disappointing performance.
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CHAPTER 6 I

I CONCLUSION

Labeling our world is almost never as simple as finding the word in the dic-

tionary which matches the definition of what's being labeled. The world is

noisy, and the partitions of labels have strange boundaries. Putting an in-

tellectual framework on this gross task of categorization follows two paths.

From the ground up, we have attempted to build machines that can dis-

tinguish the metaphorical wheat from the chaff and split the world into

meaningful categories; and from the head down, the cognitive sciences have

attempted to elucidate the mechanisms within us that make categorization

seem like such an effortless task. This thesis attempts to add a small amount

of knowledge to both of these camps.

The primary contribution of this thesis is the Context Dreaming algo-

rithm, a classification mechanism bound to the real-life circumstances of

finding shared meaning in conversation. Context Dreaming is a framework,
a means with which classifiers of many sorts can gain sensitivity to context.
This classifier rapidly adapts to the context in which it's asked to make clas-

sifications. Moreover, the information it gains during this quick adaptation
is incorporated for future use. Context Dreaming is a straightforward algo-
rithm, adding little computational complexity. Finally, Context Dreaming
is a flexible system, fodder which gives many future avenues to explore.
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The other half of the balance I hope to strike with this work is an experi-

ment of human behaviour. Seeking to find a corpus on which I could evaluate

the context-sensitive classifier, I developed and executed a study designed

to quantify the some of the effects of semantic context on human catego-

rization of colors. By presenting ambiguous colors on the border between

two major color categories, then forcing a categorization between those color

candidates, I was able to amplify the context effect. The results were clear:

semantic context has a strong effect on color categorization. But the results

were also surprising: some pairs of colors had an effect in the opposite direc-

tion as was hypothesized. This result led to a verifiable model which would

explain the particular results.

Future Directions

Work on the ideas presented in this thesis has not come to an end, but

rather to a moment of pause, reflection and summary. In both the cognitive

science and computer science components of this work, there are elements

which I hope to refine. Regarding the implemented Context Dreaming sys-

tem: I hope to improve performance, both on synthetic and experimental

data. Despite the disappointing performance on the color-context corpus,

I believe that the core ideas of the algorithm are sound, and that further

refinements-perhaps just those mentioned in the chapter describing the

algorithm-will show my intuition to be fitting. Finally, to show that the

concepts behind the Context Dreaming algorithm are durable, the refined

implementation will need to be evaluated against a diverse collection of

datasets.

Balancing the refinements of the algorithm I hope to complete, the sur-

prises discovered in the context color-categorization experiment warrant fur-

ther investigation. Specifically, I believe that the two experiments proposed

in Chapter 4 will validate the hypothesis that the set of colors prototypical

of a context will skew a participant's classification in the way observed in

the collected data.
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In closing...

Words bend their meaning to situation and to the person using them. Con-

text matters. And perhaps not more so than in humor. What is funny?

Image building a joke classifier. 1 Would building such a classifier even begin

to be possible without taking context into account? Is a joke about subsump-

tion architecture funny when the context is an NFL stadium locker room?

I'm hardly making the claim that the Context Dreaming algorithm brings

us materially closer to an automated joke classifier, but rather that context

should be a critical constituent for many categorization problem-solvers.

We should start with a taxi-driver's knowledge of colors. Then maybe

move to a painter's knowledge. Jokes? Jokes will come later.

1Just such a classifier was imagined by Robert Heinlein in The Moon is a Harsh Mis-
tress. Early in the novel, a computer tries to classify between "funny once" and "funny
always" (page 17). The humor classification task finds many homes in science fiction. See
also the beloved episode of Star Trek: The Next Generation, "The Outrageous Okona",
where the android character Data seeks to understand the meaning of humor.
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APPENDIX A
_LIMAGE STIMULUS USED IN THE EXPERIMENT

The following image stencils were used when displaying ambiguous colors in
the image-context forced-choice task.
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APPENDIX B
I

I

RESULTS: COLOR SURVEY TASK

The following pages contain the results of the color-survey task from the
experiment described in chapter 4. Each number represents the count of
participant which selected that patch either as a focal color (the best exam-
ple of a color term) or as a class member (in the set covered by the color
term). The array of color swatches matched the Munsell array of the World
Color Survey, though constrained within the bounds of the sRGB gamut.
There were a total of twenty-three participants.

The following table includes the CIE L*a*b* and sRGB values used for
each swatch. RGB values are normalized to [0,1]. x and y are the coordinates
of the swatch in the stimulus.

x y L* a* b* R G B Clipped

0 0 96.00 -0.06 0.06 0.954 0.955 0.954
0 1 91.08 -0.05 0.06 0.899 0.900 0.899
1 1 91.08 5.53 2.22 0.950 0.885 0.884
2 1 91.08 5.51 3.28 0.953 0.885 0.876
3 1 91.08 5.54 4.46 0.957 0.885 0.867
4 1 91.08 5.43 5.64 0.960 0.885 0.858
5 1 91.08 5.21 7.67 0.964 0.885 0.843
6 1 91.08 4.30 10.08 0.965 0.886 0.825
7 1 91.08 3.14 12.37 0.962 0.889 0.808
8 1 91.08 1.28 14.41 0.954 0.893 0.792
9 1 91.08 -0.46 29.79 0.980 0.893 0.676

10 1 91.08 -5.25 45.24 0.977 0.902 0.556
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x y L* a* b* R G B Clipped

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
0
1
2
3
4
5
6
7

91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
91.08
81.35
81.35
81.35
81.35
81.35
81.35
81.35
81.35

-9.03
-12.17
-16.65
-14.67
-10.76
-12.29
-13.13
-13.24
-13.22
-12.96
-12.69
-11.94
-10.86

-9.69
-7.96
-6.32
-4.65
-3.48
-1.49
-0.37
1.12
2.19
2.95
3.36
4.31
4.70
5.04
5.27
5.41
5.44

-0.05
23.67
23.18
22.67
21.06
18.52
14.87
14.98

45.94
45.90
44.66
29.61
13.38
10.56
7.63
5.48
3.82
2.42
1.23

-0.27
-2.13
-3.22
-4.41
-5.08
-5.34
-5.55
-5.61
-5.58
-5.38
-4.93
-4.85
-4.24
-2.82
-2.00
-1.14
-0.10
0.74
1.50
0.06
9.47

13.11
17.48
22.40
26.72
30.96
47.04

0.952
0.929
0.894
0.874
0.858
0.836
0.819
0.810
0.804
0.801
0.798
0.799
0.800
0.806
0.816
0.828
0.841
0.850
0.867
0.876
0.889
0.899
0.906
0.911
0.924
0.930
0.935
0.940
0.944
0.947
0.792
0.986
0.991
0.997
0.996
0.988
0.972
0.998

0.910
0.917
0.927
0.926
0.921
0.925
0.927
0.928
0.928
0.928
0.928
0.927
0.925
0.923
0.919
0.916
0.912
0.909
0.905
0.902
0.899
0.896
0.894
0.893
0.890
0.889
0.888
0.887
0.886
0.886
0.793
0.728
0.729
0.729
0.732
0.739
0.748
0.744

0.549
0.549
0.558
0.675
0.798
0.819
0.841
0.857
0.869
0.880
0.889
0.900
0.914
0.922
0.931
0.937
0.939
0.940
0.941
0.941
0.940
0.936
0.936
0.932
0.921
0.915
0.909
0.901
0.895
0.889
0.792
0.727
0.701
0.669
0.633
0.601
0.569
0.446
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x y L* a* b* R G B Clipped

8 2 81.35
9 2 81.35

10 2 81.35
11 2 81.35
12 2 81.35
13 2 81.35
14 2 81.35
15 2 81.35
16 2 81.35
17 2 81.35
18 2 81.35
19 2 81.35
20 2 81.35
21 2 81.35
22 2 81.35
23 2 81.35
24 2 81.35
25 2 81.35
26 2 81.35
27 2 81.35
28 2 81.35
29 2 81.35
30 2 81.35
31 2 81.35
32 2 81.35
33 2 81.35
34 2 81.35
35 2 81.35
36 2 81.35
37 2 81.35
38 2 81.35
39 2 81.35
40 2 81.35

0 3 71.60
1 3 71.60
2 3 71.60
3 3 71.60
4 3 71.60

15.10
7.28

-3.69
-10.94
-17.25
-26.04
-30.49
-40.58
-38.45
-42.41
-33.80
-33.63
-33.04
-32.18
-21.19
-19.64
-18.27
-16.44
-13.22
-10.44
-6.82
-5.05
-0.24
3.22
5.82
8.19
9.68

18.74
21.03
22.62
23.53
23.82
23.74
-0.04
32.18
31.70
38.22
34.96

90.21
109.12
100.18
87.90
87.99
85.63
65.57
54.46
34.02
23.78
12.41
8.67
4.96
1.81

-1.35
-4.30
-7.01
-9.33

-11.59
-12.79
-13.92
-23.28
-24.03
-14.27
-13.42
-12.62
-11.26
-12.74
-9.69
-5.51
-0.96
2.52
6.18
0.05

12.57
17.23
29.22
37.54

1.000 0.739
0.998 0.759
0.928 0.786
0.875 0.803
0.833 0.816
0.771 0.834
0.716 0.844
0.613 0.863
0.578 0.862
0.497 0.870
0.539 0.858
0.522 0.859
0.508 0.858
0.500 0.858
0.602 0.838
0.603 0.836
0.603 0.834
0.609 0.831
0.629 0.825
0.650 0.819
0.678 0.812
0.645 0.811
0.687 0.801
0.764 0.789
0.789 0.783
0.811 0.777
0.827 0.772
0.890 0.749
0.916 0.742
0.940 0.736
0.959 0.732
0.970 0.730
0.979 0.729
0.688 0.688
0.932 0.598
0.938 0.598
0.994 0.573
0.986 0.583
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-0.000 *
-0.000 *
-0.000 *
-0.000 *
-0.000 *
-0.000 *
0.268
0.369
0.535
0.612
0.697
0.725
0.752
0.775
0.800
0.821
0.841
0.858
0.875
0.884
0.893
0.961
0.967
0.896
0.891
0.885
0.875
0.887
0.865
0.835
0.803
0.778
0.751
0.687
0.604
0.571
0.487
0.426
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x y L* a* b* R G B Clipped

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
0
1

71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
71.60
61.70
61.70

30.67
32.89
24.12
15.62
6.22

-2.30
-9.51

-15.98
-24.87
-34.49
-40.28
-46.70
-51.55
-41.95
-41.85
-41.54
-40.91
-39.21
-27.52
-25.13
-22.32
-18.37
-14.22
-12.05

-5.09
0.85
6.06

10.25
13.67
16.13
26.62
29.26
38.97
40.04
32.47
32.41
-0.04
49.42

44.56
77.02
84.39
90.72
81.95
85.64
87.14
87.62
85.15
79.15
53.23
41.31
27.69
14.43
9.77
5.41
1.15

-4.56
-7.11

-11.03
-14.67
-18.07
-19.90
-29.46
-30.75
-31.32
-22.71
-21.60
-19.66
-17.52
-18.32
-13.95
-10.98
-2.70
2.76
7.97
0.04

18.23

0.970
1.000
0.962
0.917
0.859
0.810
0.767
0.726
0.665
0.591
0.507
0.411
0.282
0.344
0.312
0.280
0.247
0.212
0.391
0.393
0.402
0.426
0.463
0.413
0.489
0.549
0.645
0.685
0.720
0.746
0.819
0.850
0.921
0.948
0.914
0.925
0.584
0.922

0.595
0.584
0.611
0.635
0.660
0.680
0.696
0.709
0.726
0.743
0.755
0.766
0.775
0.763
0.764
0.765
0.765
0.763
0.745
0.741
0.737
0.731
0.724
0.723
0.709
0.696
0.681
0.670
0.661
0.654
0.625
0.616
0.583
0.576
0.600
0.598
0.584
0.429

0.373
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
0.278
0.377
0.481
0.579
0.613
0.644
0.675
0.716
0.735
0.763
0.789
0.814
0.827
0.896
0.905
0.910
0.849
0.842
0.828
0.813
0.820
0.790
0.770
0.712
0.673
0.636
0.584
0.468
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x y L* a* b* R G B Clipped

61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70
61.70

48.53
46.38
49.15
44.69
29.38
22.09
14.45
5.87

-1.40
-7.92

-14.02
-21.81
-30.13
-46.97
-55.94
-51.58
-52.22
-52.09
-51.88
-41.11
-39.17
-36.77
-33.16
-29.22
-22.98
-16.81
-13.07
-4.52
2.64
9.58

15.28
20.07
23.29
34.47
37.10
38.67
40.07
49.38

25.92
35.47
56.82
79.79
64.40
71.31
76.93
68.59
71.61
73.21
73.17
70.54
65.11
64.65
49.19
26.30
16.26
10.63
5.51
0.19

-5.88
-10.90
-16.42
-21.27
-25.73
-28.31
-37.55
-39.18
-39.49
-30.64
-29.05
-26.92
-23.79
-24.03
-18.34
-11.63

-3.44
2.78

0.927
0.926
0.956
0.943
0.858
0.822
0.783
0.732
0.691
0.653
0.616
0.563
0.499
0.355
0.195
0.122

-0.000
-0.000
-0.000
0.006

-0.000
-0.000
-0.000
-0.000
0.097
0.224
0.139
0.303
0.398
0.530
0.586
0.632
0.668
0.743
0.778
0.806
0.833
0.898

0.431
0.437
0.422
0.439
0.495
0.517
0.538
0.560
0.576
0.590
0.603
0.617
0.632
0.657
0.671
0.668
0.670
0.671
0.672
0.658
0.657
0.654
0.650
0.646
0.637
0.627
0.623
0.607
0.592
0.573
0.558
0.545
0.534
0.501
0.489
0.481
0.473
0.434

0.416
0.349
0.185

-0.000
0.083

-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
0.208
0.393
0.465
0.504
0.540
0.578
0.621
0.656
0.694
0.728
0.760
0.778
0.843
0.855
0.857
0.796
0.786
0.772
0.750
0.753
0.714
0.669
0.613
0.573

(79)

RONY DANIEL KUBAT



A CONTEXT-SENSITIVE META-CLASSIFIER FOR COLOR-NAMING

x y L* a* Ib R G B Clipped

40 4 61.70 49.67 10.71 0.913 0.430 0.519
0 5 51.57 -0.03 0.04 0.482 0.482 0.482
1 5 51.57 59.36 19.67 0.852 0.268 0.363
2 5 51.57 58.01 30.52 0.856 0.273 0.292
3 5 51.57 55.76 42.05 0.853 0.283 0.211
4 5 51.57 55.20 68.32 0.861 0.283 -0.000 *
5 5 51.57 40.53 69.04 0.791 0.353 -0.000 *
6 5 51.57 29.45 64.44 0.735 0.394 -0.000 *
7 5 51.57 19.79 58.75 0.683 0.424 0.002
8 5 51.57 13.12 63.99 0.651 0.441 -0.000 *
9 5 51.57 5.33 54.90 0.604 0.461 0.054

10 5 51.57 -0.48 57.27 0.573 0.474 -0.000 *
11 5 51.57 -6.40 58.71 0.540 0.486 -0.000 *
12 5 51.57 -11.71 58.46 0.508 0.497 -0.000 *
13 5 51.57 -18.37 55.88 0.463 0.509 0.004
14 5 51.57 -25.02 50.55 0.412 0.520 0.093
15 5 51.57 -40.14 52.84 0.291 0.543 0.045
16 5 51.57 -56.86 49.22 -0.000 0.564 0.093 *
17 5 51.57 -63.28 28.95 -0.000 0.572 0.274 *
18 5 51.57 -52.87 15.46 -0.000 0.563 0.372 *
19 5 51.57 -52.69 9.70 -0.000 0.564 0.411 *
20 5 51.57 -51.99 4.46 -0.000 0.564 0.447 *
21 5 51.57 -51.20 -1.36 -0.000 0.564 0.486 *
22 5 51.57 -38.59 -7.00 -0.000 0.549 0.525 *
23 5 51.57 -36.19 -11.99 -0.000 0.547 0.558 *
24 5 51.57 -32.36 -17.71 -0.000 0.544 0.597 *
25 5 51.57 -27.95 -22.24 -0.000 0.538 0.628 *
26 5 51.57 -21.72 -26.63 -0.000 0.530 0.657 *
27 5 51.57 -15.72 -29.08 0.029 0.521 0.674
28 5 51.57 -11.88 -38.56 -0.000 0.518 0.739 *
29 5 51.57 -3.41 -48.08 -0.000 0.507 0.804 *
30 5 51.57 5.02 -48.35 0.200 0.490 0.807
31 5 51.57 14.19 -39.14 0.413 0.464 0.745
32 5 51.57 22.05 -37.02 0.494 0.442 0.731
33 5 51.57 27.40 -33.72 0.550 0.426 0.709
34 5 51.57 31.24 -29.94 0.592 0.412 0.684
35 5 51.57 35.21 -24.66 0.636 0.396 0.649
36 5 51.57 46.17 -23.40 0.706 0.354 0.642
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x y L* a* b* R G B Clipped

37 5 51.57
38 5 51.57
39 5 51.57
40 5 51.57

0 6 41.22
1 6 41.22
2 6 41.22
3 6 41.22
4 6 41.22
5 6 41.22
6 6 41.22
7 6 41.22
8 6 41.22
9 6 41.22

10 6 41.22
11 6 41.22
12 6 41.22
13 6 41.22
14 6 41.22
15 6 41.22
16 6 41.22
17 6 41.22
18 6 41.22
19 6 41.22
20 6 41.22
21 6 41.22
22 6 41.22
23 6 41.22
24 6 41.22
25 6 41.22
26 6 41.22
27 6 41.22
28 6 41.22
29 6 41.22
30 6 41.22
31 6 41.22
32 6 41.22
33 6 41.22

48.98
51.20
59.69
59.79
-0.03
61.40
59.50
56.60
51.06
32.37
22.15
17.04
9.31
4.42

-0.21
-4.87
-9.31

-14.57
-19.48
-33.18
-38.39
-53.57
-54.08
-53.43
-52.68
-41.21
-39.09
-36.33
-24.01
-20.46
-21.08
-14.67
-10.54
-2.09
7.17

20.81
24.29
29.49

-15.95 0.741 0.338 0.593
-5.84 0.775 0.323 0.527
1.53 0.831 0.274 0.481

10.72 0.844 0.269 0.421
0.03 0.381 0.381 0.381

17.92 0.735 0.116 0.280
30.17 0.736 0.131 0.202
40.99 0.728 0.155 0.128
58.81 0.709 0.193 -0.000 *
46.62 0.619 0.285 0.061
41.13 0.567 0.319 0.107
45.95 0.544 0.333 0.054
37.80 0.499 0.354 0.129
40.43 0.475 0.365 0.104
42.37 0.452 0.375 0.082
43.26 0.426 0.384 0.070
43.05 0.400 0.392 0.069
40.52 0.366 0.402 0.094
36.56 0.328 0.410 0.128
41.15 0.227 0.430 0.078
31.53 0.141 0.437 0.164
23.28 -0.000 0.455 0.221 *
14.27 -0.000 0.456 0.283 *
8.61 -0.000 0.457 0.320 *
3.36 -0.000 0.457 0.354 *

-2.07 -0.000 0.446 0.390 *
-8.33 -0.000 0.444 0.431 *

-13.61 -0.000 0.442 0.465 *
-14.24 -0.000 0.426 0.470 *
-17.64 -0.000 0.422 0.492 *
-28.21 -0.000 0.426 0.560 *
-30.69 -0.000 0.417 0.577 *
-39.65 -0.000 0.414 0.636 *
-40.81 -0.000 0.400 0.644 *
-48.94 0.003 0.385 0.698
-48.05 0.299 0.353 0.693
-38.02 0.399 0.337 0.627
-34.06 0.456 0.319 0.602
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A CONTEXT-SENSITIVE META-CLASSIFIER FOR COLOR-NAMING

x y L* a* b* R G B Clipped

34
35
36
37
38
39
40
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

41.22
41.22
41.22
41.22
41.22
41.22
41.22
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77
30.77

33.08
36.48
46.93
49.84
51.84
52.58
61.57
-0.02
47.34
46.08
52.68
40.89
28.16
18.18
13.89
9.51
3.10

-0.15
-3.32
-6.44

-10.05
-13.04
-23.96
-27.26
-39.23
-39.62
-49.93
-39.18
-29.07
-27.32
-25.67
-22.84
-19.73
-15.41
-10.88
-7.86
0.29
7.86

-30.50
-25.75
-24.70
-17.34

-8.08
-0.05
8.63
0.03

12.58
20.60
34.06
36.03
36.05
30.27
33.80
37.16
25.71
26.58
26.87
26.57
24.97
21.97
27.29
20.69
16.60
10.61

6.94
2.14

-1.92
-6.72

-10.89
-15.29
-18.89
-22.00
-24.20
-33.80
-43.03
-43.39

0.494
0.531
0.594
0.628
0.656
0.673
0.727
0.284
0.545
0.546.
0.582
0.532
0.476
0.426
0.408
0.389
0.348
0.332
0.315
0.297
0.273
0.250
0.179
0.129

-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000

0.306
0.291
0.246
0.226
0.209
0.200
0.121
0.284
0.106
0.113
0.031
0.145
0.203
0.236
0.247
0.258
0.273
0.280
0.286
0.291
0.298
0.303
0.318
0.323
0.337
0.338
0.348
0.339
0.329
0.328
0.327
0.324
0.321
0.316
0.310
0.309
0.300
0.285

0.579
0.549
0.543
0.497
0.439
0.389
0.337
0.284
0.217
0.169
0.087
0.065
0.056
0.097
0.067
0.031
0.124
0.117
0.114
0.115
0.125
0.145
0.105
0.151
0.176
0.215
0.237
0.267
0.293
0.322
0.348
0.375
0.397
0.417
0.431
0.490
0.549
0.552
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A CONTEXT-SENSITIVE META-CLASSIFIER FOR COLOR-NAMING

B Clipped

31 7 30.77
32 7 30.77
33 7 30.77
34 7 30.77
35 7 30.77
36 7 30.77
37 7 30.77
38 7 30.77
39 7 30.77
40 7 30.77

0 8 20.54
1 8 20.54
2 8 20.54
3 8 20.54
4 8 20.54
5 8 20.54
6 8 20.54
7 8 20.54
8 8 20.54
9 8 20.54

10 8 20.54
11 8 20.54
12 8 20.54
13 8 20.54
14 8 20.54
15 8 20.54
16 8 20.54
17 8 20.54
18 8 20.54
19 8 20.54
20 8 20.54
21 8 20.54
22 8 20.54
23 8 20.54
24 8 20.54
25 8 20.54
26 8 20.54
27 8 20.54

25.75
28.36
33.51
36.90
39.78
42.44
44.87
46.25
46.93
47.63
-0.02
36.82
36.64
35.15
25.15
15.99
13.28
10.16
3.62
1.58

-0.11
-1.74
-3.09
-4.47
-5.36

-14.85
-16.46
-17.35
-27.79
-27.43
-26.87
-17.18
-16.13
-15.07
-13.39
-11.72

-9.52
-9.22

-49.63
-39.75
-35.69
-32.14
-27.99
-23.60
-16.65
-9.51
-2.51
5.24
0.02
3.13
9.24

15.44
16.60
14.49
18.21
21.44
11.09
11.89
12.03
11.57
10.75
9.36
7.98

15.25
11.28
7.46
7.33
4.26
1.22

-1.47
-4.67
-7.11
-9.92

-12.03
-13.99
-24.04

0.217 0.245
0.314 0.230
0.370 0.209
0.405 0.193
0.435 0.178
0.462 0.161
0.491 0.142
0.511 0.128
0.526 0.118
0.539 0.108
0.194 0.194
0.378 0.068
0.384 0.066
0.382 0.075
0.341 0.125
0.299 0.155
0.290 0.162
0.279 0.169
0.236 0.185
0.227 0.189
0.218 0.192
0.209 0.195
0.200 0.197
0.189 0.200
0.181 0.202
0.134 0.215
0.110 0.217
0.087 0.219

-0.000 0.231
-0.000 0.231
-0.000 0.231
0.024 0.220
0.007 0.220

-0.000 0.219
-0.000 0.217
-0.000 0.216
0.011 0.213

-0.000 0.216

(83)

x y L* b* R G

0.592
0.530
0.505
0.483
0.458
0.431
0.389
0.347
0.305
0.260
0.194
0.181
0.148
0.113
0.103
0.114
0.091
0.070
0.131
0.126
0.125
0.127
0.132
0.140
0.148
0.103
0.127
0.149
0.149 *
0.167 *
0.185 *
0.201
0.219
0.233 *
0.249 *
0.262 *
0.273
0.332 *
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A CONTEXT-SENSITIVE META-CLASSIFIER FOR COLOR-NAMING

x y L* a* b* R G B Clipped

28 8 20.54 -5.25 -25.49 -0.000 0.211 0.340 *
29 8 20.54 0.11 -26.61 -0.000 0.202 0.347 *
30 8 20.54 7.63 -35.92 -0.000 0.193 0.403 *
31 8 20.54 23.81 -41.87 0.154 0.157 0.439
32 8 20.54 23.12 -31.33 0.221 0.152 0.376
33 8 20.54 26.82 -27.84 0.261 0.137 0.356
34 8 20.54 29.26 -25.01 0.285 0.126 0.340
35 8 20.54 22.74 -16.65 0.276 0.144 0.291
36 8 20.54 24.14 -14.33 0.290 0.139 0.278
37 8 20.54 34.44 -14.69 0.340 0.094 0.281
38 8 20.54 35.44 -10.40 0.353 0.086 0.257
39 8 20.54 35.97 -6.33 0.362 0.080 0.234
40 8 20.54 36.42 -2.08 0.370 0.074 0.210

0 9 15.60 -0.02 0.02 0.153 0.153 0.153

(84)
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Focal: blue
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Focal: yellow
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Focal: pink
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Class: red
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Class: white
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