
Supercomputing visualization made simple
By

Huy Nguyen

B.A, Mathematics and Computation

Oxford University, 2005

Submitted to Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Feb 2008

© Massachusetts Institute of Technology 2008. All rights reserved.

Author.......

"/ Department of Electrical Engineering and Computer Science

Feb 2008

Certified by

Alan Edelman

Professor of Applied Mathematics

Thesis advisor

A ccepted by 7

Professor Terry P. Orlando

Chair, Department Committee on Graduate Students

MASSACHUS TS7WTrni
OF TEOHNOLOGY

APR 0 7 2008
I *P0 . I

LIBRARIES
ARIHNES

Abstract

In this thesis, we propose a solution for remote visualization for supercomputers. Our solution

consists of two tools that help users visualize data from high performance computers. The first

one takes advantage of the Web and AJAX technology [25], is simple, light weight and does not

require any pre-installation which can be a perfect tool for demonstration supercomputing data.

The second tool, a 3D Viewer on MATLAB Star-P [8], is to utilize more resources in the user's

workstation to achieve better quality visualization and more flexibility in data navigation and

analysis. Both solutions strive to create a simple and user-friendly framework that supports

researchers' goals to create, analyze, test and debug numerical algorithms in supercomputing

world.

Thesis supervisor: Alan Edelman
Title: Professor of Applied Mathematics

Acknowledgment

I would like to sincerely thank my advisor Prof. Alan Edelman. He first introduced to me the

concept of supercomputing visualization and inspired me to conduct my own exploration in this

area. Without his guidance, stimulating support and great suggestions, this thesis could not have

been completed. This project was funded by Alan's Research Assistantship.

I'm also deeply grateful to Prof. Bill Roscoe and Dr. Michael Collins for their valuable

supervision and encouragement during my undergraduate studies at Oxford University; to Steve

Leibman, Ron Choy, Viral Shah, Raghunathan Sudarshan and the Star-P team for their

constructive feedbacks, which helps refine the content and structure of the project.

I also would like to thank Interactive Supercomputing and Mathworks, for creating excellent

products, MATLAB and Star-P, on which my solution was built.

Lastly, I would like to give my special thanks to my family, my father Nguyen Ngoc Dung, my

mother Nguyen Thuc An, my brother Nguyen Ngoc Hung and my girlfriend Bui Phuong Anh,

whose love, patience, and continued support has fuelled me the lasting energy to finish this

project.

Contents

System architecture .. 12

Clients... 12

Server: ... 13

M atrix M anager .. 14

D ata pre-processing in the M atrix M anager: ... 14

Create auxiliary m atrices: 15

Com posing algorithm : 15

W eb technology .. 17

W eb 2D D esign .. 18

Pre-caching....................................... 19

U sing W eb 2D V isualization 21

V iew m odes ... 22

Lim itation of W eb 2D V isualization.................................... ... 23

D esign .. 25

Java 3D V iew er: .. 26

Rendering algorithm : .. 27

Geom etry Clipm aps .. 29

N etw ork perform ance:... 32

Com pare to 2D V isualization: 32

Server com putation overhead and query cost: 34

Netw ork adapting ... 34

U sing Star-P 3D V isualization 35

Bibliography ... 39

Figures

Figure 1 G eneral architecture.. 12

Figure 2 Clip and cache w indow 18

Figure 3 C lip and cache w indow 19

F igure 4 U pdate border ... 21

Figure 5 Im age view m ode 22

Figure 6 H ybrid view m ode 22

Figure 7 3D V iew er architecture... 25

Figure 8 3D Viewer calls diagram 27

Figure 9 A Geometry Clipmap configuration .. 30

Figure 10 minlevel clipmap and visible window 33

Figure 1 Some screen shots of the 3D Viewers for peaks matrix 36

Chapter 1
Introduction

Scientific visualization has been long known as an efficient tool to assist researchers to

achieve better and deeper understanding of objects. However, such an application on

supercomputing data faces many difficulties due to the huge size of data, issues of parallel

processing, processes communication, shared memories etc. In this project, we hope to build a

simple solution for that problem which can help researchers visualize supercomputing data on a

server from a commodity workstation. In addition, as the tool is built on top of the Star-P system,

it automatically inherits the simple and easy-to-use approach of Star-P, allowing users to

visualize data on popular environments like the Web or MATLAB. In combination with the

Star-P system, this visualization tool can be used as a tool to assist researchers in designing,

debugging and testing numerical algorithms.

Related works:

Tuchman et al. [17] presented a 2D-matrix-visualization with features such as panning,

zooming, number coloring to enhance visualization and remote visualization. They also showed

an example of applying it to numerical algorithm design. However, due to the lack of hardware

and software at the time, this system was rather limited in many ways including matrix size,

graphic quality and network usage, etc. The mathematical tool, gCluto[21], for analyzing and

clustering data, has matrix visualization in two modes: mountain view and tree view. While the

mountain view mode shares similar features with our 3D Visualization (Chapter 4), the tree view

presents a clustered matrix in an intuitive hierarchy structure. However, this tool is solely

compatible with local matrices, thus limiting its use to small data analysis.

Chen et al. [18] adopted a novel approach for general remote visualization using

structured, pre-rendered imagery. This approach even allows users to have 3D Visualization on

the Web using the industrial standard QuickTime VR Movies. However, as this approach

requires users to download the movies before they can start visualizing, it is not real time and

wastes huge amounts of resources when users just want to view a small part of the object. VNC

[1] is another general purpose approach that can be used for visualization. This method seeks to

build a local visualization system on the server side, and transfer screenshots of the server to the

clients using VNC technology. However, even if the network bandwidth and the download speed

are unlimited, this method still suffers from the latency effect. Visapult [5][27] and VisIt [4] are

other general purpose visualization systems which are designed to optimizing graphic, network

consumption and guaranteeing interactive frame rate. However, as they both require a lot of

server power for rendering, only a limited number of users can access visualization concurrently.

In addition, to use these applications, user data must be converted to compatible formats before

visualizing. This step is inconvenient and cumbersome if the data is repeatedly updated such as

in algorithm debugging.

Taking into account various limitations of the applications listed above, our system not

only supports remote matrix visualization with high graphic quality but also guarantees a real

time interactive frame rate. Furthermore, importing data is not required in our system as it is built

on top of the Star-P system which already hosts the data.

The general design of the system will be described first in Chapter 2. In Chapter 3, we

will discuss about the 2D Visualization in Web. Chapter 4 will present in greater details the

design and implementation of our 3D Visualization on MATLAB Star-P. Future work and

conclusion will be discussed in the last chapter.

Chapter 2
General analysis and design

Our goal is to build a system that not only allows researchers to visualize matrices that reside on

supercomputers but also guarantees an interactive frame rate in unstable network conditions.

Therefore, in our design, we strive to achieve the following objectives:

1. The matrix size can be as large as the supercomputer can afford. The system should be

able to work with hundreds of Gigabyte matrices or more in the future.

2. The supercomputing server maybe expensive and shared among a lot of users. We should

take into account the computation cost of visualizing on the server side. In our system,

we hope to keep the server computation complexity and space as low as possible.

3. Although rapid progress has been made in the area of supercomputing in both

computation and storage, the communication technology has seen much more gradual

changes. Current high speed Internet only allows network transfer speeds of gigabits per

second. Due to this reason, the network is the bottle-neck of our remote visualization

system and most of our work should be done to solve this problem.

4. Another communication problem, more subtle than network speed (megabytes/second),

remains: latency. The typical latency needed for a packet to travel back and forth

between client and server is hundreds of milliseconds. Hence, our application cannot

make a request to research for data for each visualizing frame, since if this happened, the

frame rate could be dragged to as low as 5 frames per seconds (fps) which is

unacceptable for an interactive application.

Figure 2 General architecture

System architecture

Clients

Currently, there are 2 types of clients in our system: the Web 2D Visualization and the 3D

Viewer on Star-P. Building two types of clients in one system, we want to try different

approaches to support mathematical researchers in supercomputing visualization. The first

approach is based on the popularity and user-friendliness of the World Wide Web empowered by

the recent development of AJAX technology [25]. In this approach, our goal is to build a

visualization application that is reachable to billions of web-users around the world with minimal

effort. No installation or special skill is required. All users need is basic computer skills and a

computer with Internet access. The second approach, a 3D Viewer on MATLAB Star-P aims to

utilize more resources in the user's workstation to achieve better quality visualization and more

flexibility in data navigation and analysis.

The protocol used for communication between clients and server is TCP/IP. More details about

the techniques and clients design will be discussed in chapter 3 and 4.

Server:

On the Server side, Star-P is a distributed system that works as the computation and storage

engine. On top of it, we build a Matrix Manager and server proxies. While the server proxies

only implement communication protocols to correspond with clients, the Matrix Manager can be

considered as the heart of our server; which is responsible to process all client queries forwarded

from the proxies, talk to distributed processors in the clusters and gather requested information

from them. The Matrix Manager works with all matrix distributions supported by Star-P

including row distribution, column distribution for dense matrices and CRS for sparse matrices

[10].

Thanks to this modular architecture and the general interface of the Matrix Manager, adding a

new type of client in to this system becomes very easy; we only need to build the new client and

a proxy on server, and plug them into our system.

Matrix Manager

The Matrix Manager is responsible for processing the client's queries forwarded from the

visualization servers. It uses the Message Passing Interface (MPI) and the Star-P SDK [9] to

gather information from different processors in the Star-P distributed system. Also, in the Matrix

Manager, data is pre-processed to minimize query cost.

Data pre-processing in the Matrix Manager:

Queries from clients in our visualizing system are always in the following format:

f(x1,yl,x2,y2) where f is a decomposable function mapping the rectangular sub-block

(xl: x2, vy: y2) in the matrix to a real or complex value.

Definition: Let f be a function well-defined on every rectangular block of a matrix A. For all

blocks B in A and for all P(B) which is a partition of B into smaller sub-blocks, f is

decomposable on A if and only if the value of f(B) can be retrieved from the set of values

f(P(B)

Normally, without pre-processing, the computational complexity of any query is O(nw) where n

is matrix size. However, when data is pre-processed, the query cost can be reduced to linear

(O(n)) with linear storage requirement.

Basically, a pre-processing process is established to create a set of auxiliary matrices which

contains pre-computed values of f at some chosen blocks. Then, when a query

f(x1,yl, x2,y2) is received from client, it will be partitioned into these chosen blocks and pre-

calculated values are then used to retrieve query result.

Create auxiliary matrices:

Fix a constant integer a. At level 1, partition our matrix into a x a equivalent blocks of size .

Recursively, at level k+1, blocks at level k are partitioned in to a x a equivalent blocks of size

+7. At the last level, the block size should be less than a . Then, for each level, an auxiliary

matrix is created to store the pre-computed values of blocks in that level. Since we do this

calculation in order of decreasing level, the total computation cost is only O(n). The total space

required for auxiliary matrix is 0((r~) . In practice, a is set to 16, thus, the total space required

should be less than 1/100 space of matrix.

Composing algorithm:

1. Find the largest auxiliary block that completely fits in a queried block. If there are more

than one such blocks (of the same size), take them all. If no auxiliary block found, use

blocks of size 1 x 1 instead.

2. If the blocks found in step 1 cover the whole queried block, combine their pre-calculated

values and return the result.

3. Divide the remaining area into 4 sub-blocks, and recursively calculating f on these sub-

blocks. Combined results of the recursive calls with the pre-calculated values of block

found in step 1 and return the result.

Chapter 3
2D Visualization

Web technology

Nowadays, the Web is a standard in the content industry and is considered the best way to

deliver information. Anything published on the web can be instantly accessed by billions of

Internet users around the world. Therefore, there are more and more services, businesses built to

leverage this technology such as office tools, games, mails, personal information managers and

they are gradually replacing the role of traditional desktop software. Along with the Web's

increasing popularity, web applications are also becoming much more sophisticated with the

support of various technologies such as Javascript, Flash, PHP and AJAX. This sweeping

development of web technology is the primary inspiration for our project.

In this chapter, we will present a 2D Visualization on the Web which enables users to view their

matrices in 2D and navigate it by panning and zooming.

Web 2D Design

Figure 3 Clip and cache window

Webpage: The Webpage is the location where data is rendered. HTML DOM and Javascript are

used for components layout, and processing user control signals such as zooming, drag-and-drop

etc.

Data Cache: The Data Cache is responsible for caching texts and Images, making them always

available to the webpage. In order to guarantee such availability Data Cache uses pre-caching

technique (detail will be shown below).

Network Proxy: Network Proxy is actually an AJAX Engine which is responsible for silently

downloading the request data for the Data Cache. The data format used is XML for

compatibility.

Pre-caching

The basic idea of pre-caching is trying to make sure that important data is always cached before

requested by user.

Figure 4 Clip and cache window

In the client side, the user can view matrices by any web browser. This is a very similar view to

the map in any online mapping system such as Google Maps, Yahoo Maps or Microsoft Live

Maps. Our matrices visualization will be presented inside a rectangular window called a clip

window.

As we don't want to download the entire matrix (web browsers don't have enough memory for

such huge data), we only cache a portion of matrix that contains data in the clip window. This

cache is also in rectangular shape and is called cache window. The cache window is normally

about 4 times larger than clip window (double in each side) so that clip window can fit

completely inside it. When the clip window is moved by user, cache window is also moved along

to accommodate it. However, since each cache window move is equivalent to a cache update,

continuously moving cache window would amplify latency effect and degrade our interactive

behavior. Therefore, various techniques have been used to minimizes such moves.

The first technique is to restrict the cache window coordinates to be multiple of a (whose value

depends on zoom level) so that the cache will only be updated when clip window is moving far

enough (theoretically at least a/2). Another technique is to define an update border near each side

of cache window. The cache window is only updated when clip window touches this border. The

distance of the update border to cache window's side is set based on our caching strategy and

networks condition. The smaller this distance, the fewer cache updates needed. However if this

distance is too small, latency effect might be experienced as cache window does not have enough

time to update when clip window is moving out of it.

Figure 5 Update border

Finally, we observe that when the cache window is updated, not all of its data is replaced.

Normally, just a portion of the cache window is modified on a cache update. Figure 5 describes a

usual cache update situation in which the shaded area is added into the cache and the transparent

area is removed (if cache window is designed as a 2-dimensional cyclic array, those two areas

are actually the same part in that array). Therefore, by only updating those parts that are actually

changed, a fair amount of bandwidth and computations has been saved.

Using Web 2D Visualization

It's quite simple to use the Web 2D Visualization since all that we need is a web browser and an

Internet connection. Then, the user just needs to login the specified internet address to start

visualizing. The remaining process is very much similar to navigating maps online.

....... . .- ;·- ·..-- ~-- ·-- ·- -I^--·I- 11-

I t

·,

.

I

·- · ~··---··r----'~`-~"

I

·--s----·~-----~----

I I

i I

I

· · ·~·---·,'--··~'-- -'

V;

Figure 6 Image view mode

Figure 7 Hybrid view mode

View modes

Depending on the zoom level, there are two view modes available on Web 2D Visualization:

Image mode (Figure 6) and Hybrid mode (Figure 7) which is the combination of the image and

1.10

11Z

120

12S

130

125

numerical values. Image mode is available for all zoom levels while the Hybrid mode is only

available in the 3 highest zoom levels (due to the size of text to represent numerical data). Image

mode is normally useful for high level study of matrices while the Hybrid mode is more helpful

when user wants to work on detail such as in debugging or testing.

Limitation of Web 2D Visualization

Although the Web 2D Visualization is fairly simple and does not require any installation or prior

training, its inability to modify or create data makes it dependent on other Star-P applications

such as MATLAB Star-P. If these applications are not available, this web application becomes

unusable. In the future, we hope to make additional improvements by creating a hook on the

website that allows web users to have more control of the data.

Chapter 4
MATLAB Star-P 3D Visualization

The most significant difference between 2D and 3D Visualization interactive applications

is the ability to change the view angle. In a 2D world, the user is only allowed to view objects

from a fixed angle in a straight down direction, as the previous chapter discussed. Because of this

restriction, the whole matrix visualization can be considered very big image. Therefore it is

possible to pre-render such image at different zoom levels and send interested parts of it to client

upon demand. This is the reason why a light-weight web browser is sufficient to implement a 2D

Visualization Client.

In a 3D world, the view angle is changeable. As there is no fixed image in the whole

visualization, we can obtain unlimited images by looking at the matrix from different view angle

and position, and it is impossible to pre-render all of them. Moreover, in 3D world, there are

infinite number of points and view angles from which the whole matrix is visible. In such cases,

we have to guarantee to have cached enough information to visualize the whole matrix [24].

Otherwise, our application would be at least suffered from latency effect. Obviously,

downloading and caching a huge matrix onto user's workstation is extremely expensive and is

not considered as a viable solution.

In this chapter, we will present a solution for 3D Remote Visualization for matrix, which

not only gives good quality visualization but also guarantees to work at interactive frame rate

under unstable network conditions.

Design

As stated in chapter 2, the 3D visualization application is designed in client-server

fashion: the Java 3D Viewer Client and the 3D Visualization Server run. The architecture of

these two components is described by Figure 8.

Figure 8 3D Viewer architecture

Java 3D Viewer

Renderer Cache
data

(rendering data dataManager (store,
available in Data updatereust"[update, request

Manager) cache data)

User cntrol Send/R eive data

sig lal up ate

Controller Network
(mouse, keyboard) Proxy

(talking to server
proxy)

Server

Star-P cluster

3D Matrix
Visualization Manager

Server

Java 3D Viewer:

The 3D Viewer consists of 4 different components: Controller, Renderer, Cache Manager

and Network Proxy.

Controller: In Java, this component is a listener object that listens to mouse and

keyboard events. When an interested event is triggered, Controller should notice the Renderer to

change its behavior such as camera position, angle or rendering mesh type...

Cache manager: Cache manager is responsible for storing and managing visualizing

data. Moreover, it also helps to keep the Renderer from worrying about the Server and

communication problems such as latency. By using various techniques like pre-caching or

Geometry Clipmaps, it guarantees to be always available for Renderer's requests and therefore,

keep the Renderer run interactively with user.

Renderer: As its name suggested, this component is responsible for drawing objects onto

user's desktop screen. Renderer uses OpenGL for 3D drawing. Together, Renderer and Cache

Manager is the heart of the viewer system. Cache Manager takes care of the data and Renderer is

responsible of how to represent them as best as it can.

Network Proxy: This component is only responsible for implementing the protocol to

talk with server. It accepts data update requests from the Cache Manager, forwards them to

server and vice versa.

The architecture of three components Cache Manager, Controller and Renderer is

analogous to the standard MVC architecture for GUI application. Network Proxy is incorporated

into our design to help separate network from visualization. This design separation is not only

easier to implement but also more flexible on the protocol used to talk with server. If we would

like to change protocol, we can just replace this Network Proxy component and keep the rest of

architecture unchanged.

The diagram in Figure 9 shows how our Client-server structure works with MATLAB

Star-P. From MATLAB Star-P environment, when 'visualize' function is triggered, it passes

control to the local Viewer client. The Viewer then starts the Server remotely by using ppclient

provided by MATLAB Star-P. When both the Client (Viewer) and the Server are up and

running, they start talking to each other, transferring data and rendering.

nnrlpnt

Figure 9 3D Viewer calls diagram

Rendering algorithm:

As stated in the chapter 2, our main concerns in designing this system are communication

(network speed, bandwidth, latency) and server computation cost for scalability. Therefore, the

3D rendering algorithm is very important because it decides what information should be

provided by the server and which data should be transferred through network. A good rendering

algorithm for this particular purpose is the one that minimizes server computation overhead and

query processing, network consumption and number of updates.

Based on those objectives, a number of rendering algorithms are investigated, evaluated

and compared to others to choose to most suitable one.

In structure, pre-rendered imagery [18] and VNC, rendering job is implemented on the

server and then images, and movies are sent to clients for visualization. The advantage of this

approach is simplicity and sensitivity to output. However, they either suffer from the latency

effect (VNC) or real time (pre-rendered imagery). They also require a lot of server computation

for rendering.

Another approach is to send geometry data to client and let it do rendering job. This

approach not only saves server computation for rendering but also is latency-tolerant. Streaming

mesh introduced by Isenburg et al. [7] reorders vertices and triangles to optimize memory access

and speed up rendering algorithm substantially. However, as the geometry data is proportional to

the size of matrices, it is impossible to transfer it in raw format; data simplification is required to

reduce network consumption. Progressive mesh [15] is a standard simplification method which

merges close vertices to reduce mesh complexity. This algorithm can be tuned to make sure that

the mesh size is transferable under any kind of network. However, since this algorithm is

designed for general purposes, it is not optimized for our specific matrix structure; it is

complicated and consumes server power. In addition, it is not locality consistent, (i.e. visualizing

data for neighboring viewpoints don't share much information in common), and thus, the number

of updates due to navigation can be large and unmanageable. Another method (Lindstrom et al.

[3][6][12], Pajarola [16], Atlan et al. [19], Rottger et al. [13], AMR [2] and ROAM [11][14]) is

using triangle hierarchies to take care of vertices of different level of details. Based on this tree

and position of the viewpoint, vertices at appropriate level of detail are selected for rendering.

These algorithms ensure a fast render process with low computation cost. However, data

structures used in these methods are very complicated and hard to maintain. In addition, they

don't have locality consistence property; therefore, cache updates can still be high. To avoid the

complicated triangle hierarchies' structure, Joachim et al. [26] partitions matrix mesh into tile

blocks of different resolutions and chooses appropriate tiles for rendering based on view

distance. Although this method has simpler data structure than triangle hierarchies, it has issues

in dealing with cracks between 2 tiles.

Visapult uses a hybrid approach; matrix mesh is represented by both pre-rendered images

and simple geometry data. The method has proved to be very efficient for remote visualizing of

3D Object. However, this system requires a highly graphic power server where all rendering

work is done. In addition, this algorithm is very complicated to implement.

In our application, we decide to use Geometry Clipmaps [20][22] (GC) which falls into

the category of algorithms that send geometry data to user. It is simple, fast, requires low server

computation overhead, and almost minimizes network consumption and cache updates.

Geometry Clipmaps

Basically, GC is the generalization of clip and cache windows in our 2D version on web. In this

algorithm, the clipmaps is analogous to the cache windows and level-of-detail is equivalent to

zoom level. However, unlike 2D version in which only one zoom level is rendered at a time, in

GC, many windows of different levels are rendered at once. Large but coarser windows will be

used to render objects far from view point and small but finer windows will be used to render

close objects in detail. To achieve this illusion, the only requirement is that all cache windows be

centered at the viewpoint which is the same as in 2D Visualization. Of course, to get a high

quality of visualization, cache windows of larger size than 2D Visualization is required, but

managing them is almost the same.

I I i i I

I I i I

I

I I

I I I I I

I I 1 I I t I I i i

I t I I f I

I I I I ' , Ieve '!
I I I I i

I I I I I I I I I I--- --- ---

I I t ! I 1 I I

I

-- t---4- i
I I

I J
- - - -

-- t- - - . -
I

I I
--- 4 --4j---

Lv i

I I I I I
i I I I I I

I I I

I I I

I I I

I I I

I I

I I I I I

I I

I I I I

I I It I

I I I I I

- - • - - -.. .I -I I
i I i

I I I I I

.1--- --- --- --- --- --- d
I I I I

I I I II

I I I-- + -~-- + -- -

Clipmap at level k+ 1 is 2 time
sparser than clipmap at level'04%- ---- -

I I I \I I

--- +---+- -I.----

I I I \

I I I

I I I I--- +--+-- -

's larger but also 2 times ' ,
k. Therefore, they requiret------------------------------

d , I I
II I I I I

I I I II I I I I II ' I I I I I I I I

I I I I I II I I I

I |I I= - - - 4 - 4 4 4 4 4 4+

Figure 10 A Geometry Clipmap configuration

_ · 1 I · · · I

l I a L i i i |

1 , - .

°

. .

r

i

i
i·
I

i
i
i
i

r

i

i

~
i
i

i
i
i

i

1

i

i
i

i

i

i
i

i

i
i

. . l 1I I

-

I B i I I D

I [I 1 I

I

Figure 10 shows a configuration of the GC. The clipmaps are indexed in finer-coarser

order (clipmap at level 0 is the finest one and cover the least area). Clipmaps of higher level are

coarse but the area they cover is also larger. Clipmap at the highest level is the smallest one that

covers the whole matrix.

In our algorithm, we set area of clipmap at level k+1 to be 4 times larger than clipmap at

level k but also 4 times coarser. Therefore, the space required for clipmaps at different levels are

the same. It is apparent from the figure that the clipmaps are not accurately centered at the view-

point. This slight displacement is due to the grid alignment (discussed before in chapter 3) of the

cache windows to reduce cache updates. Since all clipmaps are supposed to center at the view

point, any clipmap of level k should be totally enclosed by clipmaps of higher level. Therefore,

even in case clipmap of level k is not available (due to network latency, server computation time)

clipmap of level k+1 can be used to render its area. When level k clipmap becomes available, its

data will be used to replace data taken from level k+l. Although there should be a visualization

difference between these 2 clipmaps and artifact might occur after replacement, in practice, it is

rarely noticeable.

Network performance:

Compare to 2D Visualization:

In our implementation of GC, we notice that if the view-point's elevation is high,

clipmaps at low level (0, 1, 2 ...) may be too small and indistinguishable. Therefore, removing

them from rendering list does not hurt visualization quality much but saves a lot of rendering

cost. In fact, for a given view-point elevation, we set the lowest level clipmap to be rendered as:

minleVei= jlog:("- t

where

r iew point elevation

0 = view angle

do = size of clipmrnap level 0

Essentially, minlevel indicates the lowest level whose area is at least 4 times larger than

the visible square when the view-direction is straight down (bird-eye view).

view

Zz
matrix

risible square size = 2Iv i

Figure 11 minlevel clipmap and visible window

It can be noticed from Figure 11, visible square and minlevel clipmap are very similar to

the cache and clip windows in chapter 3. Therefore, if we also set the panning rate to be

comparable to the panning rate in Web 2D Visualization, the cache behavior of our 3D Viewer

I view I
fi

1

I

should be similar to the 2D case. More precisely, they are only different in a constant factor.

Therefore, our 3D Viewer should have the similar network performance as in 2D.

Although, the above argument does not prove any absolute bound on the network

performance, it does give a relative bound that roughly speaking, if the Web 2D Visualization

works, the 3D Viewer should also work. In practice, both of them run smoothly under typical

high speed internet connection.

Server computation overhead and query cost:

Since no rendering are required on the server, computation overhead and query cost in

GC are both low. In addition, the block-wise independent server query type of GC allows us to

use the technique shown in Chapter 2 to reduce the server query cost to constant.

Network adapting

As network unreliability is one of our major concerns in building remote applications. Adapting

to networking condition not only helps us avoid annoying problems such as lost packet, network

congestion, etc. but achieve better visualization quality under good networking condition.

We seek to build the streaming of visualizing data in such a way that whatever information

received at client side is sufficient to rendering something and if more information arrives, it can

be used to achieve better graphic quality. This principle suggests us to order the data in coarser-

to-finer style, which fits naturally to our clipmaps structure. Coarser data are clipmaps at higher

level while finer data are low level clipmaps. Each time, a group of clipmaps updates are

received at the server, those updates for higher level clipmaps will be sent back to clients first.

On the client side, the visualization program renders all information it has received so far.

During rendering process, if the level clipmaps are not yet available, all lower level are ignored.

Using Star-P 3D Visualization

Besides its efficiency in rendering a view, our visualization application is also designed to be as

much user-friendly as possible. Assuming a distributed matrix a was created in MATLAB Star-

P, for example:

>> [X,Y] = meshgrid(-3:(6/400):3*p);
>> a = peaks(X,Y)
addene object: 401by401p=

ddense object: 401 -by-401 p

to visualize a:

>> visualize('a');

(Note: The single quote is required for technical reasons).

A viewer window will appear in response to the command and the user is freely to navigate

(zoom, pan, rotate) his/her matrix in 3D with mouse or keyboard. Figure 12 shows a few screen

shots for visualization of our example matrix a.

Peaks matrix in 3D Viewer, from bird-eye

view point

From a different view point

A closer look

Figure 12 Some screen shots of the 3D Viewers for peaks matrix

Chapter 5
Future work

Because of time constraints, there are several interesting features have not been implemented in

our system.

Firstly, as stated in the end of chapter 3, the Web 2D visualization still has limitation in data

controlling, making it only useful for presenting one's work to others through the Web. Without

the support of other applications such as MATLAB Star-P to create matrices, Web 2D is almost

unusable. A solution to this problem is to build a Controller on the Star-P server which accepts

both controlling message and query message from client. When the incoming message is for

querying, it will be forwarded to the Matrix Manager and processed the same as before. If it is a

controlling message (e.g matrix creation, addition...), the Controller should be authorized to

perform corresponding operation on Star-P server and send the error/status message back to

clients. Currently, with the support of Star-P SDK, we believe that it is possible to build such

Controller. If we are successful, our Web 2D Visualization will be greatly improved to have both

the power of an independent MATLAB client and the popularity of the Web.

Secondly, in the current implementation, only one front end processor on the server is

responsible to gathering data and process client requests. As a result, there is only one

download/upload channel used between client and server. Although this centralized structured

has advantage of simplicity, it is not optimized in server load balancing and network

consumption. As one of our next steps in this project, we would like to de-centralize server

process, allow multiple processors to process client request at once and utilize parallel network

channels to increase network performance.

Finally, we are also interested in the chance of expanding domain of visualized objects which is

currently limited to 2D matrices. Although this seems to be the most natural next step for our

project, it has many theoretical and practical challenges. As can be noticed in chapter 4, the

rendering algorithm was carefully selected and tuned to take advantages of nice structures in 2D

matrices class. In other data classes, such structures hardly exist. Consequently, current

algorithm can't be generalized to work with other classes and more sophisticated algorithms are

needed. Currently, even the existence of such algorithms is still an open question to us.

Bibliography

1. VNC Documentation. ATEtT Laboratories, Cambridge, UK,
http: //www.cl.cam.ac.uk/research/dtg/attarchive/vnc/howitworks. html.

2. Kahler R., Prohaska S., Hutanu A., Hege H.C. Visualization of Time-Dependent Remote
Adaptive Mesh Refinement Data. 2005, IEEE Visualization.

3. Lindstrom P., Pascucci V. Visualization of Large Terrains Made Easy. 2001, IEEE
Visualization .

4. Visit: Parallel Visualization and Graphical Analysis Tool.
http: / /www. l1nt. gov/Visit/home. html.

5. Visapult. http: //vis. Ibl. gov/Research/visapult2/.

6. Lindstrom P., Pascucci V. Terrain Simplification Simplified: A General Framework for
View-Dependent Out-of-Core Visualization. 2002, Vols. 8(3): 239-254 , IEEE Trans. Vis.
Comput. Graph.

7. Isenburg M., Lindstrom P. Streaming Meshes. 2005, IEEE Visualization .

8. Choy, R., Edelman, A.; Gilbert, J.R.; Shah, V.; Cheng, D. Star-P: High Productivity
Parallel Computing. June 2004, Technical report.

9. Star-P Manual. Interactive Supercomputing.

10. Shah V., Gilbert ,J. R. Sparse Matrices in MATLAB Star-P: Design and Implementation.
2004, HiPC .

11. Duchaineau M. A., Wolinsky M., Sigeti D.E., Miller M. C., Aldrich C., Mineev-Weinstein
M.B. ROAMing terrain: real-time optimally adapting meshes. 1997, IEEE Visualization.

12. Lindstrom P., Koller D., Ribarsky W., Hodges L.F., Faust N., Turner G.A. Real-Time,
Continuous Level of Detail Rendering of Height Fields. 1996, Vols. 109-118, SIGGRAPH.

13. Rottger S., Heidrich W., Slusallek P., and Seidel, H.P. Real-time generation of
continuous levels of detail for height fields. Central Europe Conf. on Computer Graphics and
Vis., .

14. Real-Time Dynamic Level of Detail Terrain Rendering with ROAM.
http: //www. gamasutra. com/features/20000403/turner_01. htm.

15. Hoppe H. Progressive Meshes. 1996, SIGGRAPH .

16. Pajarola R. Overview of quadtree based terrain triangulation and visualization. Jan 2002,
Report UCI-ICS TR 02-01,.

17. Tuchman A.M., Berry M.W. . Matrix visualization in the design of numerical algorithms.
1990. , ORSA Journal on Computing, 2(1):84-92.

18. Chen J., Yoon I., and Bethel E. W. . Interactive, Internet Delivery of Scientific
Visualization via Structured, Prerendered Imagery. April 20, 2005, Lawrence Berkeley National
Laboratory. Paper LBNL-57528..

19. Atlan S., Garland M. Interactive Multiresolution Editing and Display of Large Terrains.
June 2006, Vols. Volume 25, Number 2, 211-223(13), Computer Graphics Forum.

20. Losasso F., Hoppe H. Geometry clipmaps: terrain rendering using nested regular grids.
2004, Vols. 23(3): 769-776, ACM Trans. Graph.

21. Rasmussen M., Newman M., Karypis G. gCluto Documentation. 2004, http://www-
users. cs. umn. edu/- mrasmus/gcluto/doc/gcluto-0. 5/index. html.

22. de Boer W. H. Fast Terrain Rendering Using Geometrical MipMapping. October 2000, E-
mersion Project.

23. Ware C., Franck G. Evaluating stereo and motion cues for visualizing information nets in
three dimensions. 1996 , ACM Transactions on Graphics (TOG).

24. Ng C.M, Nguyen C.T, Tran D.N, Tan T.S., Yeow S.W. Analyzing Pre-fetching in Large-
scale Visual Simulation. June 2005, Proceeding of Computer Graphic International Conference
(CGI),.

25. Garrett J.J. Ajax: A New Approach to Web Applications. February 2005, Adaptive Path .

26. Joachim Pouderoux, Jean-Eudes Marvie. Adaptive streaming and rendering of large
terrains using strip masks. 2005, GRAPHITE .

27. Bethel W., Tierney B., Lee J., Gunter D., Lau S. Using high-speed WANs and network
data caches to enable remote and distributed visualization. 2000, High Performance
Networking and Computing Conference.

