
Traffic Prediction and Navigation Using Historical

and Current Information

by

Sejoon Lim

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering
and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

A uthor
Department of Electrical Engineering

and Computer Science
February 1, 2008

Certified by
Daniela Rus

Professor
Thesis Supervisor

A ccepted by..................
Terry P. Orlando

Chairman T- nartment ('nmmitte- e nn tsduflnr t q1dlhent1

%ROIPVESILrlCL 15 J-1%,FaLLLIIAcL Vil %ruuaUcaV OUuqrIcu

ARCHWA Momm

MASACtHUIS iSMFUTE
OF TEOHNOLOGY

APR 0 7 2008

LIBRARIES

Traffic Prediction and Navigation Using Historical

and Current Information

by

Sejoon Lim

Submitted to the Department of Electrical Engineering
and Computer Science

on February 1, 2008, in partial fulfillment of the
requirements for the degree of

Master of Science in Electrical Engineering
and Computer Science

Abstract

We developed a traffic prediction and navigation system that deals with uncertainty of road
traffic conditions by stochastic modeling of road networks. Our system consists of a data
collecting system, a data management system, and a path planning system. First, the data
collecting system gathers real-time travel time data using a mobile sensor network system,
CarTel. GPS sensor units having wireless connectivity were deployed on taxis running
around the Boston area, and report their position and time information to the networked
database system. Second, the raw GPS data collected from this CarTel system is processed
to generate a database storing the statistical information of road travel time. We organize a
large amount of data in a form in which they can be accessed efficiently and can capture im-
portant aspects of road traffic conditions. Third, we developed efficient stochastic shortest
path algorithms that find best paths depending on drivers' goals. We evaluate our algo-
rithms using both simulations and real-world drives. Finally, we implemented a path plan-
ning system using historical and current information organized by our data management
system. Our system provides a Web-based interface that is publicly usable. The interface
provides traffic information, including optimal paths and visualized traffic conditions. Our
system also offers analysis tools of users' own driving routes with user track-log uploading
interface. We evaluate the system using taxi trajectories and human driving experiments.

Thesis Supervisor: Daniela Rus
Title: Professor

Acknowledgments

I would like to express my gratitude to Daniela Rus for her support and supervision. I would

not have been able to finish my Master's work without her guidance and help. Her vision

and enthusiasm for this research were really helpful to develop our project. I am also very

grateful to Hari Balakrishnan, David Gifford, and Samuel Madden for their suggestions and

guidance. I appreciate Jakob Eriksson for providing me with the CarTel GPS data. Thanks

to all the members of the Distributed Robotics Laboratory for helpful discussions.

Contents

1 Introduction 19

1.1 Outline 23

2 Related Work 25

2.1 Shortest Path Problem 25

2.2 Data Sources 26

2.3 M ap M atching 27

2.4 Traffic Prediction 28

3 High Level System Description 29

4 Data 33

4.1 CarTel System 33

4.2 GPS Data Collected 34

4.3 M ap Data 37

4.3.1 TIGER/Line Data 37

4.3.2 Navteq Data 37

5 Data Processing 41

5.1 Road Network Modeling 41

5.2 Matching GPS Data onto a Map 41

5.3 Aggregation 46

5.3.1 Constructing the Delay Statistics Map 46

5.3.2 Assigning Travel Time Statistics 50

6 Stochastic Planning

6.1 Problem Formulation

6.1.1 Road Network Modeling

6.1.2 Cost Functions

6.2 Stochastic Path Planning by Parametric Optimization

6.2.1 Transforming the Cost Function Into Parametric form .

6.2.2 Exhaustive Enumeration

6.2.3 Examining Probe Points

6.2.4 Restricting A by Upper and Lower Bounds

6.2.5 Correctness

6.2.6 Running Time

6.3 A Pruning Algorithm

6.3.1 M otivation

6.3.2 Correctness

6.4 Algorithm Evaluation

6.4.1 Experimental Data

6.4.2 Running Time

51

. 51

. 51

.. ... 52

. 54

. 54

. 55

.. . .. 56

. 57

..... 62

..... 62

..... 62

..... 62

.. . .. 65

..... 66

..... 66

..... 66

7 Using Current Information

7.1 Current Information Incorporation

7.2 Current Information Propagation .

8 The Intelligent Traffic System

8.1 System Overview

8.2 Database

8.3 Backend Processing Unit

8.3.1 Optimal Path Query

8.3.2 Map Matching Result Query

8.3.3 Congestion Area Query.

8.3.4 User Route Upload and Analysis Query

8.4 Graphical User Interface

75

............. 75

............. 75

............. 77

............. 77

. 79

. 80

. 81

. 82

8.4.1 Optimal Path 82

8.4.2 Trajectory and Map-Matched Streets 83

8.4.3 Color Coded Congestion Map 84

8.4.4 User Route Upload and Analysis 86

9 Experiments 87

9.1 Path Examples 87

9.2 Selecting a Trajectory 88

9.3 Independent Gaussian Assumption 90

9.4 Overall Path Goodness 96

10 Conclusion and Future Work 99

List of Figures

3-1 System Overview. The data gathering systems are composed of networked

cars with GPS sensors and the GPS database where location and time data

of each car is stored. The raw GPS data is processed and stored in an or-

ganized form in the database RoadNetDB. MyRoute portal Web service

provides users traffic information including best route and travel time esti-

mates, etc. 30

3-2 Demonstration Web Interface. The figure shows different optimal paths

from a start location (the green arrow) to a destination (the red "D) on a

Thursday afternoon, according to the three different criteria: the route rec-

ommended by Google's Maps (the topmost route), minimum expected time

(the middle route), and maximum probability of arriving by the deadline

(the bottom route) 31

4-1 CarTel node hardware [21]. Soekris net4801 has a 586-class processor

running at 266 MHz with 128 MB of RAM, 1GByte of flash memory, an

802.1 lb miniPCI Wi-Fi card, and a USB port through which GPS sensors

are connected 34

4-2 Cumulative number of GPS samples according to the range. Y-axis indi-

cates the number of GPS samples within the distance indicated in X-axis

from M IT 35

4-3 The Road Segments of Massachusetts Frequently Covered by the Taxis

with the GPS Nodes. The right figure is a zoomed-in version of the left

figure. 35

4-4 The Road Segments of Boston and Cambridge Covered by the Taxis with

the GPS Nodes. Road segments where the number of coverage is more than

10 times (top) and road segments where the number of coverage is more

than 100 times (bottom) 36

4-5 The Representation of Multi-level Crossing 38

4-6 Road Segments in the TIGER/Line Data around Boston (Top) and Cam-

bridge (Bottom) 39

4-7 Road Segments in the Navteq Sample Data around Boston (Top) and Cam-

bridge (Bottom) 40

5-1 Map Matching Result. The red line is actual GPS points reported from the

CarTel node and blue line is a sequence of segments that were matched

by Algorithm 1 (left). The green line is a sequence of segments that were

selected without post-processing (right). 45

5-2 The Geographic Map (top) and the Delay Statistics Map Built by Algorithm

4 (bottom) 48

5-3 The Number of Groups That Have At Most The Amount of Samples Indi-

cated in X-axis. There are total 38844 groups. The maximum number of

samples on a group is 10917......................... 49

6-1 Graphical Interpretation of the Optimal Path in the m - v Plane. Each black

square represents a path from the origin to the destination. Equi-probability

paths lie on a parabola with an apex at (d, 0) and a curvature of1 . The

optimal path is the first point that meets with a parabola as we increase the

curvature. 54

6-2 (Left) The Result After Three Executions of A-optimal Searches with A1 =

0, A2 = 00, and A3 = -mo-m____ . Each black point represents the A-optimal

path for each A. The gray points represent the paths that are not found yet.

The blue regions are guaranteed to contain no path. The white triangles

indicate candidate regions for better paths. The red points are the probe

points of the regions, which are the intersections of two A-optimal search

lines. (Right) The Result After Another Execution of the A-optimal Search.

A A-optimal Search was executed only for the left candidate region. The

newly found path turns out to be the new current optimal path and the two

red points are the new probe points. 57

6-3 Illustration of A1 and A.. At is increased as better A-optimal path is found. . 60

6-4 (Left) Illustration of Subsuperiority Conditions. Let O be an origin and D

a destination. Given a path I for a certain node N, any O to N path lying in

the blue area (path 2) is inferior to path 1. The path 1 is inferior to the other

path (path 3) when it lies in the red area. If another path (path 4) lies in the

white area, both paths coexist. (Right) Illustration of a Coexistance Area

for Three Paths. When path 1 and path 2 coexist, the region for another path

to coexist is the white area, which is reduced as the number of coexisting

points increases 64

6-5 Running Time Measured at the Square Bidirectional Grid Structure, where

each edge has a random mean and variance between 0 and 1 with a deadline

of half grid size. "exhaustive" is the exhaustive A-optimal search, "probe"

is just applying the candidate region probing method, "bound" is just ap-

plying the bounds of A, and "Alg. 1" is Algorithm 6. "Alg. 2" is Algorithm

7. 67

7-1 Example of Flow Preservation. Since the flow is preserved through the

thick arrows, we can consider propagating current information observed at

one of those thick arrows to other thick arrows. 70

7-2 An Example of Current Information Propagation 73

8-1 The User Interface to the Traffic Information System with Highlighted

Paths and Travel Time Estimates. Optimal Path Query Result for a Travel

from MIT ("O") to Newton, MA ("D") at 5-6 pm on Weekdays. 83

8-2 Map Matching Result. The red line is actual GPS points reported from the

CarTel node and blue line is a sequence of segments that correspond to the

GPS trajectory. 84

8-3 Hot Spot Visualization. The top figure shows the color-coded mean veloc-

ity of road segments. The bottom figure shows the color-coded ratio of the

standard deviation and the mean of the travel time of road segments. Road

segments indicated with the red color are hot spots. 85

8-4 Example Interface Showing a User's Drives Color Coded by Speed. Red

: 0 10 mph, Orange : 1020 mph, Green : 20-30 mph, Cyan : 30-40

mph: Blue: over40 mph 86

9-1 The User Interface to the Traffic Information System with Highlighted

Paths and Travel Times Found by the Algorithms Described in Chapter 6. . 88

9-2 Optimal Path Query Result for Different Time Windows. Travel from MIT

("O") to Massachusetts turnpike entrance ("D"). 89

9-3 Delay Time Distribution for One Segment and Multiple Segments. The

first two plot is delay distribution for one segment. The last plot is delay

distribution for 6 segments including the first two segments 91

9-4 Comparison of the Mean and the Standard Deviation between Estimation

and Measurement per Hour of Day for the Route from 1 Albany Street to

70 Waverly Street 92

9-5 Comparison of CDF's between Estimation and Measurement for the Route

from 1 Albany Street to 70 Waverly Street for Different Hours of Day . . . 93

9-6 (Top) Histogram of Empirical Travel Time Data and Gaussian Fits for Any

Time for Weekdays. (Bottom) Probability Comparison between Empirical

Data and Gaussian Fits for Any Time for Weekdays, where the Y axis was

scaled to make the Gaussian CDF linear. "Empirical" indicates the travel

time measurement by driving, "Gaussian" indicates the Gaussian fit for the

entire data and "Gaussian (in 270)" indicates the Gaussian fit using only

the data in 270 seconds. The unit of the X axis is second. 94

9-7 (Top) Histogram of Empirical Travel Time Data and Gaussian Fits for 1 -

2 pm for Weekdays. (Bottom) Probability Comparison between Empirical

Data and Gaussian Fits for 1 - 2 pm for Weekdays, where the Y axis was

scaled to make the Gaussian CDF linear. "Empirical" indicates the travel

time measurement by driving, "Gaussian" indicates the Gaussian fit for the

entire data and "Gaussian (in 270)" indicates the Gaussian fit using only

the data in 270 seconds. The unit of the X axis is second. 95

9-8 Four Major Alternative Routes from MIT ("O") to Boston Logan Airport

("D"). Red line : route 1, Orange line : route 2, Green line : route 3, Blue

line: route 4 96

9-9 The Probability of Arriving in a Given Deadline from a Start location to a

Destination for Different Times of Day. (Top: Estimation, Bottom: Mea-

surement) 97

List of Tables

8.1 Segments Table: represents each road segment in the Geographic Map . 76

8.2 Map Matching Table: describes a road sequence of segments driven by cars 77

8.3 Groups Table: represents the delay statistics for each group in the Delay

Statistics Road Map 77

9.1 Comparison of the Estimated Mean and Standard Deviation with the Mea-

sured Mean and Standard Deviation for the Route from 1 Albany Street to

70 Waverly Street 90

9.2 Comparison of the Percentiles between Estimation and Measurement for

the Route from 1 Albany Street to 70 Waverly Street 92

Chapter 1

Introduction

Traffic congestion is clearly a serious problem: a recent survey [36] estimates that the

annual nation-wide cost of traffic congestion is $78 billion, including 4.2 billion hours in

lost time and 2.9 billion gallons in wasted fuel. Drivers today have little knowledge of

historic and real-time traffic congestion on the paths they drive, and even when they do

(e.g., from "live" traffic updates), they generally do not know how to use that information

to find good paths. As a result, they often tend to drive sub-optimal routes and often leave

well in advance when they need to make an important deadline.

Our objective is to provide an effective navigation system for cars that uses historical

and real-time traffic data to determine optimal driving directions and traffic estimates. Our

work provides a planning system that can be used by robots as well as human drivers. The

system is a useful addition to on-board navigation systems using computer-aided automa-

tion to provide good paths that meet desired travel goals (e.g., "when should you leave,

and what path should you take, to reach the airport by 8am with high probability?"); it is

also a worthwhile addition to Web-based mapping services. We view the incorporation of

traffic-aware path computation as an important practical addition in the rapid trend toward

computer-assisted driving and autonomous decision-making in vehicles.

In addition to helping individual cars avoid congested roads, we believe that our work, if

deployed widely, can manage traffic flow, reduce congestion, and reduce the fuel consumed

by cars on a macroscopic basis by using the under-utilized parts of the road network better

than today (thereby reducing load on congested areas). Using our algorithm to investigate

this global traffic management question is an area for future work. In this thesis, we are

concerned with finding good paths for a single car.

We present and evaluate algorithms for planning the motion of vehicles (autonomous

or human-driven) on roadways in the face of traffic delays. Rather than model road delays

statically, as in current on-board navigation systems and Web-based mapping services, our

algorithm uses past observations of actual delays on road segments to model these delays

as probability distributions. The algorithm minimizes a user-specified cost function of the

delay distribution. We investigate a few cost functions in detail, particularly one that is

equivalent to maximizing the likelihood of reaching a destination within a specified travel

deadline.

The main challenge in planning paths taking traffic delay into account is that these de-

lays are not fixed. The delay on a road segment is best modeled as a probability distribution;

in addition, this distribution typically depends on a number of factors, such as time-of-day,

whether it is a working day or not, events such as concerts or sporting events, weather, etc.

The shortest-distance path is often not the best path to use if one seeks to minimize the

expected travel time or maximize the probability of reaching the destination by a certain

time. Our algorithm uses historic observations of travel delays on road segments at differ-

ent times of day to produce delay distributions (indexed by time-of-day). We posit that this

information, together with real-time updates of extraneous conditions (such as accidents),

is invaluable (and sufficient) to compute good paths that meet user-specified goals. Given

the probability distributions of delays on segments, finding good paths requires more than a

shortest path computation, because the "optimal substructure" property does not hold (i.e.,

if the best path from S to T goes through X, it does not follow that the sub-path of this

path from S to X is itself the best S-X path).

We have implemented our algorithm and evaluate it by first modeling the historic de-

lays using data from the CarTel vehicular testbed [21], a network of 28 taxis. The data

consists of travel times organized by road segment and by time of day, yielding statistical

profiles for all the road segments. We model the road network as a weighted graph where

the nodes represent intersections and the edges represent road segments. An aggregation

algorithm combines the road segments into groups to coalesce the important delay charac-

teristics without losing information about alternate paths. Our algorithm has the flavor of

searching and pruning the delay statistics on the road network data structure. We evaluate

the algorithm and its assumptions using simulation and actual test driving.

Observation of traffic conditions is essential for traffic prediction and navigation. There

have been various approaches to measuring road speed or flow, from using sensors buried

under roads to using cameras. However, methods utilizing these kinds of equipment are

expensive to establish. Thus, it may be impossible to obtain live traffic information for all

the roads. In contrast, our approach involves acquiring traffic data from various sources that

are already established and wide-ranging, such as GPS sensors, and records of toll booth

pass times. As a result, we may be able to estimate the speed of entire roadways without

any deployment of additional hardware systems on roads.

Even if we knew the current road velocity of all the roads, several challenges would

remain. One problem is that the best path based on the current information might not

actually be optimal since the road conditions could change while we travel. What we really

need to know is the velocity of each road at the time we actually drive through it. In fact,

it would be impossible to tell the traffic conditions exactly since traffic conditions might

change, but we envision that we can predict the future conditions of roads by examining

how the past and current traffic conditions affect the future condition. Thus, we use not

only real-time traffic information but also historical information to develop a probabilistic

model for predicting traffic conditions.

Another challenge is finding an optimal path when road travel times are uncertain. For

example, if you want to go from your home to the airport tomorrow morning such that you

reach the airport by 8am, what is the latest time you can leave home and what route should

you use, such that you make it by that time with high probability? Our system allows

users to obtain answers to such questions. There have been some stochastic shortest path

algorithms in theoretical area, but practical algorithms are rare. In addition, most previous

research assumes that the travel times for road sections follow the Gaussian distribution and

that they are independent of each other, but none of these algorithms has been supported

by any concrete experiments. In our research, we investigated whether these assumptions

are realistic by examining real data.

Because we deal with a large amount of data, it is essential to organize data in an

efficient way. And fast implementation is needed. These are non-trivial issues.

To achieve our objective addressing the technical challenges, first, we collected real-

time travel time data by a networked sensor network with GPS sensors. Second, we orga-

nized the data to extract important traffic condition information from the raw GPS measure-

ment data. We observed that the traffic pattern has both uncertainty and predictability. To

capture these, we use stochastic modeling of road network travel time. We used them for

predicting traffic conditions, travel time estimates and for finding the best route. Finally, we

developed efficient algorithms for finding the optimal paths with stochastic conditions. We

want to provide drivers information which route would be the best for the drivers, using the

information measured by our network sensors. The notion of "best" route depends on the

drivers' goals. Typically, goals can be expressed as combinations of speed and reliability.

Based on the developed algorithms, we designed and implemented a traffic prediction and

navigation system.

Contributions of our work include:

Real-time wide-range high-granularity data collection. Networked cars gather and de-

liver travel time data for every road segment where cars reach in real time. The data

is wide ranging since GPS sensors can report their position and time everywhere cars

go. The data has high-granularity since cars can go every small road segment. The

data was gathered over a long period with a large amount of cars that run many hours

per day. Our database system is unique in the abundance of real measurement data.

Statistical modeling and building a road travel time map. The road network was mod-

eled as statistical delay map. A robust map matching alg orithm, a road segments

combining algorithm for meaningful delay statistics, and a current information prop-

agation algorithm were developed to build a travel time map, which is a basis of

traffic prediction and route planning.

Efficient stochastic shortest path algorithms. Stochastic shortest path algorithms were

developed, implemented, and evaluated. The algorithms build upon some previous

work [32, 29] on stochastic shortest path algorithms and improves the performance.

Publicly usable traffic navigation system. We implemented the algorithms making a work-

ing Web-based traffic navigation system. The system is accessible through internet

via Web browsers.

Interface for gathering public drivers' track-log data. We get public users' GPS traces

to enlarge our GPS log database. We encourage their participation by providing

analysis tools for their driving habits.

1.1 Outline

This thesis is organized as follows. Chapter 3 gives an overview of a route planning system

for traffic. Chapter 4 gives the description of the data collection system. Chapter 5 gives

the data processing and analysis module. Chapter 6 gives the stochastic motion planning

formulation, presents our algorithms, and evaluates the algorithms in simulation and also

using physical data from the CarTel taxi deployment. Chapter 7 gives a method of using

sparse current information. Chapter 8 gives our traffic information system. Chapter 9 gives

the field experiment to test our system.

Chapter 2

Related Work

This thesis builds on very important previous work in motion planning, data collection and

analysis, and traffic prediction systems. Specifically, we extend the algorithmic work in

[32] who introduced a very nice algorithm for stochastic motion planning.

2.1 Shortest Path Problem

Since efficient algorithms for shortest path problems were proposed by Bellman [17] and

Dijkstra [16], many algorithms have been developed for finding the shortest paths in various

networks. A* search algorithm [25, 15] finds the shortest path using a heuristic estimate,

which is used to rank the paths to search. These algorithms work if the edge weights are

deterministic and do not change. In many applications of road travel planning, however, the

more important measure of the path optimality is the travel time, which changes according

to various factors depending on networks. In [13], an efficient algorithm for a dynamic

shortest path with time dependent deterministic edge weights is given. In [22], the authors

suggested an efficient query method that finds the set of all fastest paths, one for each

sub-interval having different edge travel times, given a user-defined leaving or arrival time

interval. These works consider the time dependency of the travel time, but do not consider

the uncertainty involved in the traffic.

Several prior studies have considered the stochastic nature of the travel time [18, 38,

9, 27, 41, 29, 31, 32]. In the stochastic shortest path problem, edge weights are modeled

as probability distributions rather than deterministic values. In this setting, the optimal

path depends on drivers' diverse objectives. When a driver's objective is to minimize the

expected travel time, the problem can be solved by the standard shortest path algorithms

by replacing all the edge weights with their expected values as is first approached in [18].

However, for various goals such as maximizing the probability of arriving within a given

deadline, the optimal path cannot be found with the standard shortest path algorithms since

the optimal substructure property does not hold. In [18], the author examined some meth-

ods to find the shortest-path probability distributions by approximation using Monte Carlo

programming.

Loui [28] suggested using a general non-decreasing monotonic utility function of ar-

rival time to represent the goodness of reaching the destination at a certain time and gave

an algorithm that finds the path that maximizes the expected value of a utility function.

However, it yields a large running time. Nikolova et al. [32] developed an algorithm that

finds the path that maximizes the probability of reaching the destination in a given dead-

line assuming that delays are both Gaussian and independent on different road segments.

Inspired by this algorithm, we developed a method that improves performance by remov-

ing unnecessary invocations of shortest path searches. Murthy and Sarkar [29] developed

a stochastic shortest path algorithm with a decreasing deadline utility function based on

pruning paths using dominance conditions. We developed a second method that improves

performance by clarifying the pruning conditions when the edge cost follows Gaussian

distributions and the utility function is a simple deadline function.

2.2 Data Sources

There have been several approaches to acquiring traffic data. The most prevalent one uses

inductor loops installed beneath roads [43, 14]. This is adequate for counting the number

of cars that pass a specific location, but it is not suitable for measuring travel time, and

measurements are possible only on instrumented roads. Recently, GPS sensors installed in

probe vehicles have been used [35, 21, 45]. The travel time of vehicles can be measured and

recorded for each road segment. In [21], the researchers developed a system called CarTel

that includes GPS and wireless communication. This system was used to study routing and

data delivery from cars. Recently, some companies [4, 1] use cell phone localization to

estimate the road traffic conditions. They track the cell phone movement to get the veloc-

ity of roads or measure the volume of cell phones to estimate the amount of congestion.

Their service focuses on visualizing the level of congestion on the map. Alternative paths

provided by the systems would be helpful for avoiding congestion but may be sub-optimal

depending on users' various goals.

2.3 Map Matching

To use the GPS data as a source of traffic measurement, the GPS location should be asso-

ciated with the underlying map. This process is known as map matching. Map matching

methods vary from simple search techniques [23], to more complex techniques such as

using Kalman filters or Belief Theory [24, 39, 37, 30]. The methods using statistical es-

timation work well especially when the GPS signal can be lost for a certain amount of

time, but usually require heavy calculations. In [8, 42] the point to point, point to arc,

and arc to arc matchings are introduced, but they are unlikely to work very well unless

both the user's location and the map are known with a high degree of accuracy. Matching

GPS points onto a map requires smart techniques since GPS sample points have noise and

maps are not perfectly aligned to the real road segments in many cases. The authors in

[8, 42, 20, 34] suggest map matching algorithms that utilize the network topological infor-

mation to improve the map matching performance. In [40] vehicle speed was taken into

account to compliment inaccurate vehicle heading information at low speeds. In [10], the

authors suggested global map matching using the Fr6chet Distance as a distance measure.

The algorithm considers only minimizing the maximum distance between GPS points and

a candidate path, which could lead to mismatching in case some GPS samples have large

noise. Most of the previous research focused on identifying the correct link among the

candidate links in every step of the map matching process since one bad match can lead to

a sequence of bad matches. However, none of them effectively deals with the accumulated

map-matching errors. We suggest an algorithm that detects and recovers the map matching

errors by post-processing.

2.4 Traffic Prediction

In predicting traffic conditions, it has usually been assumed that traffic patterns repeat from

day to day, and that changes in traffic happen gradually. Many existing models for pre-

dicting traffic conditions use historical traffic information, real-time traffic information, or

both [7, 44, 26]. In [14], the authors employed an artificial neural network technique for

traffic forecasting, where long-term forecasts rely on historical patterns, and short-term

forecasts rely on current information. A spatial extrapolation method was used to recon-

struct the present traffic situation from point measurements [11]. In [19] the authors used a

belief propagation algorithm to predict traffic conditions as a binary status indicating traffic

on a segment is fluid or congested. They used floating car data sent by probe vehicles as the

only source of traffic information. There has been also some research on traffic prediction

based on simulation considering various factors that affect the traffic flow [33, 7]. In the

literature, traffic prediction focuses on predicting a future condition as a specific value, but

in this thesis we will be more interested in estimating the distributions of the travel time in

the road networks.

Chapter 3

High Level System Description

Our research objective is to provide an effective navigation system for autonomous or

human-piloted cars that uses historical and real-time traffic data to determine optimal driv-

ing directions and traffic estimates. Our intelligent navigation system consists of:

1. a data gathering system (e.g. CarTel nodes [21]) included in cars that move in traffic

frequently (e.g. taxis);

2. a data analysis system to compile a historical database of traffic conditions;

3. an algorithm for route planning that uses both historical data and current information;

4. a traffic information system implementation with an appropriate human interface.

The first part of the system consists of data gathering systems to obtain traffic delay

data. In [21] a system called CarTel was developed that uses GPS and wireless commu-

nication to collect position and time data from cars. CarTel is a mobile sensor network;

each car carries a wireless embedded computer and a collection of sensors, including GPS.

The result is network capable of obtaining data about a large metropolitan area at relatively

low cost, compared to current approaches that deploy traffic sensors in roads. CarTel nodes

deployed in 28 Boston taxis since January 2007 collected many gigabytes of traffic delay

information over the past year, covering several thousands of driving routes.

The second part of the system converts this data into a statistical model of traffic delays

segmented according to various temporal and spatial categories. This task is challenging

MyRoute
portal

/
~dNs~flR I

I -- - I
I I

User

EVDO, ', 802.11
GPS
database

Figure 3-1: System Overview. The data gathering systems are composed of networked
cars with GPS sensors and the GPS database where location and time data of each car is
stored. The raw GPS data is processed and stored in an organized form in the database
RoadNetDB. MyRoute portal Web service provides users traffic information including best
route and travel time estimates, etc.

for several reasons: first, data volumes are quite high, so efficient algorithms and indices

are needed. Second, the data is noisy, so algorithms that match GPS points to an underlying

road database in a robust and error free way are essential, as also discussed in prior work

by other researchers. Third, determining how to segment the data into a collection of road

segments is non-trivial; simply computing statistics on a per-intersection granularity leads

to a huge road graph with questionable statistics for each segment. However, making the

segments too large loses information about alternate path segments to route cars along.

The third part of the system uses these statistical distributions of road delays to pro-

duce delay- and congestion-aware paths. We have developed new algorithms that optimize

various delay criteria, building on recent theoretical work on stochastic shortest paths algo-

rithms [32].

A Web-based interface allows users to query the system for traffic conditions and for

optimal paths given historical data. (see http: //gasherbrum5. csail .mit. edu:

..

I

8000/cgi-bin/trafficDemo.py)

1214~ 3li88WtB 1 T a 11T 41.35 --- - . 8181 My 10,8.1 __!lOw

,AE .. ln-HuOf 5D1&.. I D_-lti__ _ _ _ _ _ _ _ _ _ _

6660 , 0 Bnod*
R014 Lo.,C.." rF3 id jW r

POaO 4 Iametry

I'.U

/a

TOTAL

MEWRIAL

MASSACHUSETTS
AVEMASSAACH US MS
AVE

(unnamed street)
(unnamed street)

IBEACON ST

(unnamed street)

(unnamed street)

SOLDIERS FIELO RD

SOLDIERS FIEL RD

SOLIERS FIEL RD

SOLDIERS FIELD RD

SOLDIERS RFIELD RD

ELUOT BRG

FLIlOT BRt

ELLOT BRG

ELLIOT BRG

(unnamed street)
GREENOUGH BLVD

(unnamed street)

(unnamed street)
(unnemed sVet)

11r;u a 1 6

Figure 3-2: Demonstration Web Interface. The figure shows different optimal paths from
a start location (the green arrow) to a destination (the red "D) on a Thursday afternoon,
according to the three different criteria: the route recommended by Google's Maps (the
topmost route), minimum expected time (the middle route), and maximum probability of
arriving by the deadline (the bottom route).

This Web interface allows users to select start point, end point, hour of day, day of

week, and deadline, and provides the user with the minimum distance path, the minimum

expected time path, and the maximum arrival probability path.

- 0Prob (Prob 00."1
met ~ sdo ak, w anu~vo~t

S.BlOil 28.5lnph12mnin
tt.lýu
32-0s"<
114.ec

23.3sec

15.5sec

3 2sec

84.6sec

6 -ser

21 ?eec

10.2sec

21 4sec
113.1set

48,8sec

3t. sec

22.2sec

31.4sec

16.1sec

7 1r -
9• 9setc

8.8sec

8.4sez

15,7sec

33.5sec

12.heec

29.8e-

O,:in

11L 6sec
6. set

? 6sec

6.4sec

t A-

2.5set23.2sec
2.3sec

3.3sec

4,9see

3.3set3-11-
8.2sec

Z.8sec

I Aýý
2.6sec
0.0see

2.2sec
S-2see
8.73sec

3.•9he

0 125m-

0 21m'N
0.231mid

0.149mil

0 01Cm'l

0,412mil

o 077md•

0.037m•

0. 149M

0.106mil
0ý221mfl

1L665mil

0.505mil

0 329mil

0.23mde

0.362mil

0.167mtl

a ONam
008mail

0.036mil

C.05rmil

0.105mlle -. smPr
0.178mieý
0.069-it 704mp
0.206mileZ aSS24

I 1·c~ I

Chapter 4

Data

In this chapter we discuss the collection of traffic data using CarTel nodes, and the integra-

tion of this data with existing traffic databases.

4.1 CarTel System

Real-time traffic data is collected by a wireless sensor network built by CarTel [21] (see

http://cartel. csail .mit. edu/). CarTel is a mobile sensor computing system

designed to collect, process, deliver, and visualize data from sensors located on mobile

units such as automobiles. It provides a simple, centralized programming interface, han-

dles large volumes of sensor data, and copes with variable, intermittent network connec-

tivity. A CarTel node is a mobile embedded computer. Each node gathers and processes

sensor readings locally before delivering them to a central database. A variety of on-board

and external sensors collect data as users drive. The possible applications of this mobile

sensor computing system includes traffic monitoring by using GPS sensors, environmental

monitoring by using chemical and pollution sensors, civil infrastructure monitoring such

as patholes by using vibration sensors, automotive diagnostics by obtaining information

from a vehicles's on-board sensors, geo-imaging by taking location-tagged images, and

data muling by using cars as delivery networks.

4.2 GPS Data Collected

Cars with the CarTel node (Figure 4-1) collect data as they drive and log them to their local

databases. As connectivity to any open wireless access point via 802.11 protocol becomes

available, data on cars is delivered to the CarTel GPS database server, which is PostgreSQL

8.0.7. Some CarTel GPS units also have Evolution-Data Optimized (EVDO) connection

so that they are guaranteed to report their location in real time. 28 taxis in the Boston area

are equipped with the EVDO enabled CarTel nodes and are reporting their positions every

second in real time when they are running. The data covers anywhere taxis run. The data

fields stored in the CarTel GPS database are latitude, longitude, datetime, and label of the

car.

Figure 4-1: CarTel node hardware [21]. Soekris net4801 has a 586-class processor running
at 266 MHz with 128 MB of RAM, 1GByte of flash memory, an 802.11 b miniPCI Wi-Fi
card, and a USB port through which GPS sensors are connected.

The total recorded time by 28 taxis from February to November 2007 is 80506350

seconds, which corresponds to about 932 days. The number of trips is 68515. Thus, the

average trip time is about 19 minutes 35 seconds. Each car drove an average of about 47

days for this period, which means that each taxi gathered data for about 3.7 hours a day.

The car who gathered the most data drove 8039127 seconds (equivalent to about 93 days),

which corresponds to average 7.4 hours a day.

Figure 4-2 shows how the collected GPS samples are distributed spatially. From the

plot we can see that the data is quite abundant for the Boston and Cambridge area. Even

though the density of data for suburban areas is not high we can see that the range of the

data gathered is quite wide.

a)

Cu

4,

x 10
7

0 20 40 60 80 100

Figure 4-2: Cumulative number of GPS samples according to the range. Y-axis indicates
the number of GPS samples within the distance indicated in X-axis from MIT

Figure 4-3: The Road Segments of Massachusetts Frequently Covered by the Taxis with
the GPS Nodes. The right figure is a zoomed-in version of the left figure.

Figures 4-3 and 4-4 shows the road segments covered by the 28 taxies. The figures were

generated after matching the GPS data onto a map by using the map-matching algorithm

that is described later in this thesis.

Sat
Cha

Figure 4-4: The Road Segments of Boston and Cambridge Covered by the Taxis with the
GPS Nodes. Road segments where the number of coverage is more than 10 times (top) and
road segments where the number of coverage is more than 100 times (bottom).

4.3 Map Data

4.3.1 TIGER/Line Data

The TIGER/Line files are extracts of selected geographic and cartographic information

from the Census Bureau's TIGER (Topologically Integrated Geographic Encoding and Ref-

erencing system) database [6]. The TIGER/Line files are publicly available. The files con-

tain rows representing each road segment. Fields in multiple columns describe the features

of each road segment, such as latitude and longitude of the two end points, street name,

street category, etc. Figure 4-6 shows the road segments of the TIGER/Line files on the

Google Maps [3]. The road network built from the TIGER/Line files for Massachusetts has

429,529 segments and 341,773 intersections.

As shown in Figure 4-6, the TIGER/Line files describe every small road segments with

relatively high accuracy. However, there are some drawbacks that it difficult to use the

TIGER/Line data for routing purpose. First, there is no one-way information. Second,

there is no restricted maneuver information, such as whether left turn is prohibited or not

at a junction. Third, there is no multi layer information. Consider a two layer crossing as

illustrated in Figure 4-5. Let the two thick arrowed lines represent a portion of highway

and the thin line represent a surface road beneath the highway. Thus, the three lines are not

physically connected, but the TIGER/Line files describe this multi-layer road structure as

7 road segments, a-g, where each road segment is denoted by its two end points with just

latitude and longitude. So, there is no way to distinguish this kind of multi layer crossing

with 7 physically connected road segments.

Other issues that make routing with the TIGER/Line files difficult include that the map

is not well-aligned to the real road segments in some areas and that no speed limit or

average speed information exists.

4.3.2 Navteq Data

Navteq is a digital map company whose products are widely used in many commercial GPS

navigation systems [5]. We obtained Navteq Sample data for the northeast region of the

b

C

ar

Figure 4-5: The Representation of Multi-level Crossing

United States in the GDF (Geographic Data Files) format [2]. The Navteq data contains

useful information for routing including one-way, restricted maneuver, multi-layer infor-

mation. The road network build from the Navteq data for Massachusetts, Rhode Island, and

Connecticut has 602,268 segments and 468,366 intersections. The Navteq road segments

around the Boston and Cambridge area are shown in Figure 4-7. Comparing Figure 4-6

and Figure 4-7, we observe that the Navteq data is better aligned to the real road segments

than TIGER/Line data.

Figure 4-6: Road Segments in the TIGER/Line Data around Boston
(Bottom)

(Top) and Cambridge

Figure 4-7: Road Segments in the Navteq Sample Data around Boston
bridge (Bottom)

40

(Top) and Cam-

Chapter 5

Data Processing

In this chapter we describe how we organize traffic information and store it in our database.

5.1 Road Network Modeling

The road network is represented by a graph, where nodes represent intersections and edges

represent road segments. We call this the Geographic Map. We associate a road delay

distribution with each road segment. This per-intersection granularity road map leads to a

large graph for small road segments with related travel statistics. We combine statistically

related road segments into groups so that they can capture important delay characteristics

without losing information about alternate path segments. This data structure is the Delay

Statistics Map. The Geographic Map is used for matching CarTel GPS traces onto real road

segments, while the Delay Statistics Map is used for statistical-delay-sensitive routing.

5.2 Matching GPS Data onto a Map

Since the coordinates of points in map databases are not always well-aligned to real road

segments, and GPS measurement data are noisy, we need to have a robust map matching

algorithm. Because of these errors, finding the best road segments corresponding to a few

GPS samples does not work well. To solve this, we developed a post-processing algorithm

that can be used to correct local matching errors.

Our map matching algorithm uses forward local matching and backward post process-

ing. First, GPS trajectory samples are grouped by five points (line 4 of Algorithm 1). Then,

the most probable road segment where the five points might have originated is selected

(line 5 of Algorithm 1). For this local matching, the distance and orientation between each

road segment and every five points are considered (line 7 of Algorithm 2). Noting that the

maximum vehicle speed is around 100 miles per hour and that the minimum road segment

size is about 50 meters, the sampling rate of our GPS tracking unit (one sample per second)

implies that at least one sample will lie on each road segment through which probe vehicles

actually pass. Thus, it is guaranteed that GPS sample points cover connected sets of road

segments. The post processing is based on this observation (line 6 of Algorithm 1). If a new

candidate road segment is not connected to the previous segment (line 2 of Algorithm 3),

we select the next best candidate (line 17 of Algorithm 3). If this candidate is not also con-

nected, we examine a maximum of three more candidates until we achieve connectivity.

If connectivity is satisfied within these five trials, the post-processing ends and the found

segment is inserted into the segment list (line 7 of Algorithm 1) and we proceed with the

local matching with the next five sample points. If we encounter a situation where we can-

not find connectivity with the best five candidates (line 5 of Algorithm 3), we consider that

local matching has failed at one of the previous steps. Then, we increase the aging factor

of the previous road segment by a factor of 2 and go one step back and find the possible

maximum five candidates (line 6 - 11 of Algorithm 3). The cost of the local matching is

multiplied by this aging factor (line 10 of Algorithm 2). If we find any candidate in 5 trials,

then we proceed with the local matching keeping the found candidate segment. Otherwise,

we go another step back, and do the same procedure. With this recursive post processing

algorithm, we achieve robust map matching in the presence of GPS measurement noise and

digital map misalignment.

Figure 5-1 shows the comparison of map matching between the case when we use

the local-matching as well as post-processing and the case when we only use the local-

matching. The benefit of post-processing is remarkable especially when GPS location er-

rors are large or the underlying map is not accurate.

Driver's stop detection. Taxi drivers make intentional stops regardless of road traffic

Algorithm 1: MAP-MATCHING
Data: GPS trajectory t
Result: sequence of segments segList, which corresponds to the input trajectory t

1 segList +- [1
2 agingIDs +- []: aging id list
3 agingCounts - []: aging count list corresponding to the aging id list
4 foreach 5 sample subtrajectory s in t, which is shifted by one sample do
s bestSeg 4-LOCAL-MATCHING(s, aginglDs, agingCounts)
6 POST-PROCESSING(bestSeg, segList, aginglDs, agingCounts)
7 segList.append (bestSeg)

s return segList

Algorithm 2: LOCAL-MATCHING
Data: subtrajectory s, aging id list aginglDs, aging count list agingCounts
Result: the local best segment bestSeg

1 bestSeg +- 0
2 minCost +- 0
3 costFactor +- 1: the factor multiplied to the actual cost according to aging
4 foreach point E s do

5 L streetSet.add(getClosestStreets(point))
6 foreach seg E streetSet do
7 cost +- meanDistance(s, seg) + varDistance(s, seg) + orientation(s, seg)
8 if seg.id E aginglDs then

9 L costFactor +- 2 * agingCounts

to cost +- costFactor * cost
11 if cost < minCost then
12 bestSeg +- seg
13 minCost +- cost
14 return bestSeg

conditions. Thus, we need to classify when the taxi drivers stopped due to traffic and when

they stopped due to other needs, and discard the waiting times not due to traffic. If the

distance of the two end points of 2 minute trajectory is less than 3 meters (which means

less than 0.1 km / hour) then we consider it as a stop by a driver. This is from frequent

observation that it is very rare that a car would not move even 3 meters for 2 minutes even

though the roads were congested. If we make the threshold too small, e.g., less than 3

meters, GPS noise becomes dominant. More accurate models that analyze more long-term

patterns of a car movement would improve the stop detection.

Algorithm 3: POST-PROCESSING
Data: bestSeg, segList, aginglDs, agingCounts
Result: modified aginglDs, agingCounts

1 lastSeg +- the last element in segList
2 while bestSeg is not connected to lastSeg
3 and bestSeg is not the same with lastSeg do
4 localMatchingFailCount <- localMatchingFailCount + 1
s if localMatchingFailCount > 5 then
6 remove the last element of segList and roll back the subtrajectory pointer to

the start point of lastSeg
7 if lastSeg.id E aginglDs then
s L increase the agingCounts for the lastSeg by 1

9 else
lo L aginglDs.append(lastSeg.id)

11 lastSeg +- the last element in segList

12 if bestSeg.id e aginglDs then

13 L increase the agingCounts for the bestSeg by 1
14 else
15 L aginglDs.append(bestSeg.id)

16 s +- 5 sample subtrajectory starting from the modified subtrajectory pointer
17 bestSeg +-LOCAL-MATCHING(s, aginglDs, agingCounts)

18s return aginglDs, agingCounts

Map matching failure detection. In some cases, map matching fails. In such cases

we need to discard these samples. After map matching, we compare the actual distance of

the trajectories and the distance sum of matched segments. If the difference between them

is larger than a predetermined threshold then we classify this as a map-matching failure.

A.4

Kr Hill
~ery

S.

/
/

Figure 5-1: Map Matching Result. The red line is actual GPS points reported from the

CarTel node and blue line is a sequence of segments that were matched by Algorithm 1
(left). The green line is a sequence of segments that were selected without post-processing
(right).

Hybridiuare PaI

ker Hill
metery

i

4.

quar•e Parl

5.3 Aggregation

5.3.1 Constructing the Delay Statistics Map

We need to combine the road segments into meaningfully large groups. In this section, we

will explain how we build the Delay Statistics Map from the Geographic Map and the Map

Matching Table, a table created as a map matching result, which contains a sequence of

rows for matched segments.

After map matching, we know how many GPS samples each road segment has. Using

this information, we make a graph, called the High Samples Geographic Map, that has

only segments with enough samples. That is, low sample segments are removed from the

Geographic Map. In this graph, nodes that have more than three edges become junctions.

Segments connecting any couple of junctions are combined into a group.

The following is the detailed road segments combining algorithm that assigns a unique

grouplD and direction compared to the group direction for each group. The root node

should be a node that connects at least three segments in the High Samples Geographic

Map.

We generated a Delay Statistics Map having 38,844 segments and 28,698 intersections.

This is a reduction of the number of nodes and edges by a factor of about 20 from that of

the Geographic Map represented by Navteq data since the original Navteq data has 602,268

segments and 468,366 intersections.

Figure 5-2 shows the road network built by this process, which is the graph repre-

sentation of the Delay Statistics Map. Figure 5-3 shows what the GPS sample number

distribution is like among the groups of the Delay Statistics Map.

Algorithm 4: BUILD THE DELAY STATISTICS MAP
Data: High Samples Geographic Map table
Result: Group table representing Delay Statistics Map

1 grouplDs[-1, -1, ...]: size=number of segments
2 directions[O, 0, ...]: size=number of segments
3 node +- rootNode
4 nodes: FIFO queue
5 newGroup +- True
6 curGrouplD + 0
7 while node Z 0 do

if node # rootNode then
if node was already visited then

L node +- nodes.pop()
else

grouplDs [node.segmentlD] - curGrouplD
directions [node.segmentlD] - node.direction
groupDistance + groupDistance + node.distance
if newGroup then

newGroup 4- False
startNode <-- node.prev

neighbors <- getNodeNeighborsOnHighSamplesGeographicMap(node)
foreach neighbor E neighbors do

if neighbor was not visited then
L nodes.append(neighbor)

if len(neighbors) = 2 then
endNode +- node
if curGrouplD : 0 thenL insertlntoDatabaseGroupTable(

curGrouplD, startNode, endNode, groupDistance)

curGrouplD - curGrouplD + 1
newGroup +- True
groupDistance - 0

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 node + nodes.pop()

7

Figure 5-2: The Geographic Map (top) and the Delay Statistics Map Built by Algorithm 4
(bottom)

m B

~a - "4~·

4,

,·

;t·
;il

0,

0o
0}

x 104

0 100 200 300 400 500
samples

Figure 5-3: The Number of Groups That Have At Most The Amount of Samples Indicated
in X-axis. There are total 38844 groups. The maximum number of samples on a group is
10917.

5.3.2 Assigning Travel Time Statistics

Scanning the Map Matching Table we assign the mean and variance of each group by the

method described in Algorithm 5. For each segment in the Map Matching Table (line 4),

we accumulate the segment delay as long as they belong to the same group (lines 6-9), and

update the group statistics by the process described in lines 11-18.

Algorithm 5: ASSIGN DELAY STATISTICS
Data: Map Matching Table mmt, Groups tables
Result: Updated mean, variance, numSampls fields in Groups tables

1 groupDelay +- 0
2 prevGrouplD - -1
3 first +- True
4 foreach row E mmt do
5

6

7

8

9

10

11

12

13

14

s15

16

17

18

(grouplD, delay) +- grouplDandDelays(row)
if first or grouplD == prevGrouplD then

groupDelay <- groupDelay + delay
prevGrouplD <- grouplD
first <- False

else
(numSamples, meanTime, varTime, distance)

getCurrentStatistics(prevGrouplD)
newNumSamples +- numSamples + 1
newMeanTime +-

(meanTime * numSamples + groupDelay) /newNumSamples
newVarTime <- (numSamples * (meanTime2 + varTime) +

groupDelay2)/newNumSamples - newMeanTime2

setNewStatistics(prevGrouplD, newNumSamples, newMeanTime,
newVarTime)

groupDelay <- delay
prevGrouplD +- grouplD

Chapter 6

Stochastic Planning

In this chapter we describe our two novel algorithms that cope with the uncertainty of

road traffic conditions by stochastic modeling of travel delay on road networks. These

algorithms determine paths between two points that optimize a cost function of the delay

probability distribution. They can be used to find paths that maximize the probability of

reaching a destination within a particular travel deadline. For such problems, standard

shortest path algorithms do not work because the optimal substructure property does not

hold. In the worst case, stochastic shortest path problems are computationally intractable,

requiring the exploration of a search space that is super-exponential in the number of road

segments. A suite of stochastic route planning algorithms was developed and implemented.

The best route depends on the drivers' goals and is a combination of speed and reliability.

Our algorithm can be integrated into on-board navigation systems as well as route-finding

Web sites, providing good paths to drivers that meet their desired goals.

6.1 Problem Formulation

6.1.1 Road Network Modeling

A road network is represented by a graph, where edges represent road segments and nodes

represent intersections. We assume that

1. the delay of each edge follows a Gaussian distribution;

2. the delay of each edge is independent of every other edge.

In Section 6.4, we provide evidence for these assumptions. We formulate stochastic motion

planning as a graph search problem over a graph with an origin O and a destination D,

where the travel time of each edge is an independent Gaussian random variable. Since the

sum of independent Gaussian random variables is also a Gaussian random variable, we can

denote the travel time for a path r consisting of edges e of mean me and variance v, as

follows:

t, , N /(m, v,), where m, = m~m and v, = ve.
eEir eE7r

6.1.2 Cost Functions

Our objective is to find a path that minimizes an expected cost when the cost function

models a user's goal. We call this the "optimal" path for the given cost function. We

consider several cost functions including:

Linear Cost

Here, the cost increases linearly with the travel time. When the cost of arriving at the

destination in time t is C(t) = t and the delay PDF of a path r is f,(t), the expected cost

of traveling through 7 is

EC, = tf7 (t)dt = m,7 .

Linear cost models the path with minimum expected time.

Exponential Cost

Exponential cost models a cost function that increases sharply as the arrival time increases.

When the cost function is C(t) = eAt, where A is the steepness of the cost increase, the

expected cost can be written as

EC, = e*t fr(t)dt= {e"(m+s `' "

This exponential cost function minimizes a linear combination of mean and variance deter-

mined by A.

Step Cost

Step cost models a cost that only penalizes the late arrival after a given deadline. The cost

function is C(t, d) = u(t - d), where u(.) is the unit step function and d is the deadline.

The expected cost is

EC, (d) = j u(t - d)f,(t)dt = j f,(t)dt

d - m,

where ((-) is the CDF of the Standard Normal distribution. Thus, when RI is a set of all

paths from 0 to D, the minimum expected cost path is

d - m,
argmax 4'(), (6.1)

which turns out to be the path that maximizes arrival probability. Since 4(-) is monotoni-

cally increasing, maximizing '1(.) in (6.1) is equivalent to maximizing

d - rn,
dPd(7r) = - (6.2)

The minimum expected cost path for the linear and exponential cost cases can be found

by a deterministic shortest path algorithm, such as Dijkstra's algorithm or A* search algo-

rithm since the cost of a path can be expressed as the sum of the cost of each edge in the

path. However, when the cost is a step function, these algorithms cannot be used since the

objective, (6.2), is nonlinear. Our goal for the rest of the thesis is to develop an efficient

algorithm for finding the maximum probability path given a deadline.

6.2 Stochastic Path Planning by Parametric Optimization

In [32], an algorithm for the case of normally distributed edge costs was given based on

quasi-convex maximization. It finds the path with the maximum arrival probability by stan-

dard shortest path runs with different edge costs corresponding to varying parameters. We

now give a graphical interpretation of the optimal path and show a connection to the para-

metric optimization problem, which will ultimately lead to a new algorithm that reduces

unnecessary runs over [32].

6.2.1 Transforming the Cost Function Into Parametric form

Let path 7r be denoted by a point (m,', v,1) in a rectangular coordinate system, called the

m - v plane, where the horizontal axis represents the mean and the vertical axis represents

the variance. The objective of the optimization problem, (6.2), can be rewritten to show the

relation between m, and v, as

1
v, = 2 (2 , (6.3)

(Pd(Wr)2

which is a parabola in the m - v plane with apex at d, where pd(lr) is determined by the

curvature of the parabola. Thus, the optimal path is the path that lies on the parabola of the

smallest curvature.

Figure 6-1: Graphical Interpretation of the Optimal Path in the m - v Plane. Each black
square represents a path from the origin to the destination. Equi-probability paths lie on a
parabola with an apex at (d, 0) and a curvature of . The optimal path is the first point
that meets with a parabola as we increase the curvature.

I

Intuitively, the optimization problem is to find the first path that intersects the parabola

while we lift up the parabola starting from the horizontal line (see Figure 6-1). This sug-

gests finding the optimal path using linear optimization with various combinations of cost

coefficients.'

Consider setting the cost of an edge be linear combinations of mean and variance, me +

Ave, for an arbitrary non-negative A. We call the solution for this edge cost the A-optimal

solution. This edge cost follows the optimal substructure property and has the property

described in Lemma 1, which was also stated in [32].

Lemma 1. An optimal path occurs among the extreme points of the convex hullfor all the

0 to D paths in the m - v plane if there exists a path that has a mean travel time smaller

than the deadline.

Proof Let point P on the m - v plane represent the optimal path. Then, there is no path

point that has the ýp value larger than that of P. Therefore, every other path point must be

inside the parabola. Since the parabola is convex, P must be an extreme point. O

With Lemma 1 we can find the optimal solution from A-optimal solution for a given A.

Since A-optimal cost satisfies the optimal substructure property, any deterministic shortest

path algorithm (e.g. Dijkstra's algorithm or A* search) will find A-optimal paths.

6.2.2 Exhaustive Enumeration

In [32], a method for stochastic motion planning was proposed that exhaustively enumer-

ates all the extreme points of the path convex hull. A brief description of the algorithm is

as follows: First, find the A-optimal paths for A = 0 and A = oo. If they are the same,

it must be the optimal solution. Otherwise, find the A-optimal path using A = - moo-
00-Voo

since this A value will cause the algorithm to search the entire region completely unless it

finds a new path, as illustrated in Figure 6-2 (Left). If no new path is found, the algorithm

terminates with the optimal solution being the one with the largest W value. Otherwise,

the newly found path divides the search region into two parts. Then, the A-optimal search
1Linear optimization finds a path that first intersects a straight line when the line is moved in a direction

determined by cost parameters

is executed for each region using A values determined to search each region completely.

In this approach, when the number of extreme points is Ne, there will be Ne searches to

guarantee that all the extreme points are enumerated. In addition, Ne - 1 more searches

are needed to conclude that no other paths exist between the extreme points. Thus, the

total number of enumerations could be large. Next, we show how to reduce the number of

required A-optimal searches.

6.2.3 Examining Probe Points

If we know that a certain search region's best possible outcome is worse than the current

optimal solution, we do not need to execute the costly A-optimal search for that region. In

this section we formalize this point.

Definition 1. Let the triangular region where a better path can exist be called a candidate

region. Let the vertex in the middle of the candidate region be called a probe point. Can-

didate regions are illustrated as white triangles ALiMiRi, and probe as red points Mi in

Figure 6-2 (Left).

Theorem 1. If the ýo value of the probe point as defined in (6.2) is smaller than the current

optimal value, the candidate region does not contain the optimal path.

Proof Suppose that a path lies at the probe point. Then, no other point in the candidate

region can be an extreme point. The interior points cannot be an optimal solution since the

optimal solution occurs at one of the extreme points by Lemma 1. Suppose that a path does

not lie at a probe point. Add an imaginary origin to destination path that lies on the probe

point. The addition of an imaginary path will not make any difference for searching for

the optimal solution since it is not better than the current optimal path. The same argument

shows that interior points cannot be optimal solutions. O

By Theorem 1, we can remove from consideration the candidate region if the region's

probe point satisfies the condition in Theorem 1. Figure 6-2 (Right) illustrates a case where

the right candidate region AL 2M2R2 was removed without any execution of A-optimal

search since the po value of the probe point M2 is smaller than that of current optimal path.

: optimal path

optimal path

U M

Figure 6-2: (Left) The Result After Three Executions of A-optimal Searches with A1 = 0,
A2 = oo, and A3 = mo-m. Each black point represents the A-optimal path for each A.

VO - VCo
The gray points represent the paths that are not found yet. The blue regions are guaranteed
to contain no path. The white triangles indicate candidate regions for better paths. The
red points are the probe points of the regions, which are the intersections of two A-optimal
search lines. (Right) The Result After Another Execution of the A-optimal Search. A A-
optimal Search was executed only for the left candidate region. The newly found path turns
out to be the new current optimal path and the two red points are the new probe points.

The left candidate region ALM 1M R 1 was searched since the left probe point gives larger O

value than the current optimal value, and a new path was found as the A-optimal path. The

same procedure is applied to the new candidate regions built by the newly found A-optimal

path until there is no candidate region remaining.

6.2.4 Restricting A by Upper and Lower Bounds

The A values that should be searched are limited by upper and lower bounds.

Theorem 2. The optimal path can be found by searching only with the A values upper

bounded by A,, the negative inverse of the tangent to the parabola at the intersection of the

0-optimal search line and the co-optimal search line.

Proof If the A-optimal solution is the same as the A,-optimal solution for all A > AX, we

can trivially find the same path with A, instead of A > As. Suppose that there exists a

certain A > A, for which A-optimal path (mA, vA) is different from the A,-optimal path

(mx,, vA,). Then, we can say that mA.5 mr and v\, # vA since 0 < A < 00. From the

definition of A-optimal path, mAr + AUvA, < m, + A,vA and mA. + AvA, > mT + AvA.

Rewriting these, we get

A,(v\. - v\) < m\ - m,,, (6.4)

A(vA, - vA) > m' - m\ .

From the two inequalities we get (A - A,) (v\, - vx) > 0 and since A > A,, it follows that

vu, > v and m\ > mA..We get an expression for A, by taking the derivative of (6.3) and

its negative inverse

1 vA = a -1/ m= oa mmmo
(d - mo) 2

2vo(d - mo)

From (6.4) and (6.5), and since d - mo > d - m\ and v\ > voo,

mA - mx,

VAu - VA

d -mo

2v00

1 d - m,

2 v,

Since mn\ > mx, and d - m, > 0,

1 1< -
mX-mn + 2 2

d-m•

From (6.6) and (6.7),

1
m\-mx\ 2d-m,

mA - mA, vA

v•, - v,\ d - mA

We can rewrite this as follows:

VA, - VA mA - mAu m,\ - m 2)
< (+ 2),v' d - mA d- m

VA M<(- + 1)2,
vA d - mx

v - d - mAvA <(-),
v'\ d - mx,

d - mo0

2voo
(6.5)

(6.6)

(6.7)

d - m),d - m

Thus, for any A > A,, the A-optimal solution is worse than A,-optimal solution. Thus,

there is no need to search the area with the A that is larger than AX,. Therefore, whether

A-optimal solution is the same with the A,-optimal solution or not we can find the optimal

solution by searching with A <= A,. O

Theorem 3. The optimal path can be found by searching only with the A values lower

bounded by At, the negative inverse of the tangent to the current A-optimal parabola at the

intersection of the current A-optimal parabola and 0-optimal search line.

Proof Following the argument as in Theorem 2, suppose that there exists a certain A <

At for which the A-optimal path (mx,, vx,) is different from the A1-optimal path (m\, vx).

Then, we can say that mx, # mx and v\, = vx since 0 < A < oo00. From the definition of

A-optimal path, mx, + Alvx, < mx + Aivx and mx, + Av\, > mx + Avx. We can rewrite this

as

Al(v,\ - V') < mx - mx,, (6.8)

A(vx, - vx) > m\ - mx,. (6.9)

Inequalities (6.8) and (6.9) give (A - At)(vx, - vx) > 0 and since A < A1, it follows that

vx, < vA and mx < mx,. We get an expression for At by taking the derivative of (6.3) and

its negative inverse

Av (d - mot)2 (6.10)At = -1/ m=mo (6.10)am " 2v,,ot (d - mo)

From (6.8) and (6.10),

mx - mx\, Od(lropt)2

< - (6.11)
v, - v\ 2(d - mo)

If Pd(lropt) > Pd(7rx), searching with A does not give better result then current optimal

path. If Pd(ropt) • Pd(7rA),

ýPd(1ropt)2 (d (7rA) 2 (Od(rx)2 d - m(6.12)2 < < (6.12)
2(d - mo) 2(d - mo) 2(d - m) 2vx

since d - mo > d - mx. From (6.11) and (6.12)

mA - ma 1 d- mA
<1 - 2vAt -- vA 2 vA (6.13)

Since mA < m,\ and d - mA > 0,

1 1> -
mx-mA1 +2 2

d-mx

(6.14)

From equation (6.13) and equation (6.14),

1 mA - mA\ vA
m\-mA, ±2 +2 v\, -- v\ d -mA

d-mA

Following a similar process as in the proof of Theorem 2, we get

d - mA d - mA\

Thus, for any A < A1, the A-optimal solution is worse than A,-optimal solution. Thus, there

is no need to search the area with the A that is smaller than A1. O

iitial A,

Updated i

---:--'--~- -~~--~ -U-~-`

Figure 6-3: Illustration of A, and A,. At is increased as better A-optimal path is found.

At and A, are illustrated in Figure 6-3. Theorem 1, 2, and 3 lead to the Parametric

Search algorithm (see Algorithm 6) for finding the best route that maximizes the probability

of arriving at the destination in a given deadline. In line 3 and 4, the 0-optimal and oo-

optimal paths are searched with a shortest path algorithm (e.g. Dijkstra's algorithm or A*

Algorithm 6: PARAMETRIC-SEARCH
Data: Graph with mean and variance of each edge, origin, and destination
Result: The optimal path

1 bestPath +- 0
2 Rs = [] : FIFO queue containing candidate regions.
3 patho - SEARCH-A-OPTIMAL-PATH(0)
4 path, -- SEARCH-A-OPTIMAL-PATH(oo)
s if patho == path, then
6 L return patho

7 Rs.push(Region(l : patho, r : path,, p: (patho.mean, patho.var)))
s calculate A1 and A,
9 while (R -- Rs.pop()) = 0 do

10 if R.probe.cp < bestPath.cp then continue
11 A _- R.l.mean-R.r.mean

l.var-r.var

12 if A > Au then
13 if Au was not searched then A +- Au
14 else continue

15 if A < A, then
16 | if A, was not searched then A +- A1
17 L else continue
is path +-SEARCH-A-OPTIMAL-PATH(A)
19 if path $ R.1 and path 5 R.r then
20 if path.p > bestPath.cp then
21 L bestPath +- path, update A1

22 calculate probe, and prober
23 if probe.op > bestPath.p then
24 L Rs.push(Region(l : R.1, r : path, p: probe,))

25 if prober.p > bestPath.cp then
26 L Rs.push(Region(l : path, r : R.r, p: prober))

27 return bestPath

search). If the two found paths are the same the algorithm terminates. If they are different,

the first candidate region consisting of the three points denoted in line 7 is pushed onto the

queue. Candidate regions are evaluated for searching. The conditions in line 10, 23, and

25 come from Theorem 1, and those in line 12 and 15 from Theorem 2 and 3, respectively.

If the candidate region does not need to be searched, the algorithm continues with the next

region. Otherwise, the region is searched with the A value determined by the left and right

path of the region (line 11) and possibly modified by the upper and lower bounds (line 13

and 16) in line 18.

6.2.5 Correctness

Algorithm 6 finds the optimal solution in a finite number of A-optimal searches. The paths

in the region we exclude from the exhaustive enumeration using the extreme points cannot

be optimal by Theorem 1. The paths in the region we excluded using the upper and lower

bound of A cannot be optimal due to Theorems 2 and 3. Since the number of required A-

optimal searches is upper bounded by 2Ne - 1 as described in Section 6.2.2, the algorithm

finds the optimal solution in a finite number of searches.

6.2.6 Running Time

[32] showed that the running time of the exhaustive A-optimal search is ne(log n), where the

number of nodes is n (since there are ne(logn) extreme points in the worst case ([12]) and

we can find one extreme point in O(n 2) using any standard shortest path algorithm.) We

have observed empirically a speedup factor between 10 and 20. The running time is loosely

upper bounded by ne(log n). We are currently working on a theoretical characterization of

the speedup.

6.3 A Pruning Algorithm

6.3.1 Motivation

Since the cost function for stochastic motion planning is not linear, the optimal substructure

property does not hold. However, in [29], the authors provided some pruning methods. In

this section we give a condition that can be used to rank any two subpaths, which is specific

to the case where the edge cost follows a Gaussian distribution and the goal is maximizing

the probability of reaching the destination in a given deadline.

Definition 2. Suppose paths 7r, and 7r2 reach intermediate node N. 7ir is superior to 7r2 if

for any trajectory tfrom N to D, 7r followed by t is better than 72 followed by t.

The following theorem describes the subsuperiority condition.

Theorem 4. Let 7l and 72 be two different O-to-N path with mean and variance (ml, v i)

and (m2, v2), respectively. Then 7r1 is superior to 7r2 if ml < m 2 andd- > d- 2

Proof Let the mean and variance of an arbitrary N-to-D path be mND and VND respec-

tively.

Case 1) when vl < v2:

From the inequality relationships between mi, m 2 and vl, v 2 ,

d - (ml + m2ND)
d - (m2 + mND)

> 1 and + VND < 1.
V2 + VND

Thus, it follows that

d - (ml + ND)
V-I +÷ VND

d - (m2 - mND)

4V 2 + VND

Since this inequality holds for any N-to-D path, 7rl is superior to r2.

Case 2) when vi > v2 :

From the inequality relationship between mi, m2 and vl, v2, it follows that

d - (ml + mPND)
d - (m2 + mND)

d - m 1

d - P22

and >VI + VND

4V 2 + VND

Since we have

it follows that

d - m2
d - P2

d - (ml + mND
d - (m2 + mND

) 0V/1 + VND

) +2 V VND

Thus,

d - (ml + mND)

VI1 +1 VND

d - (m2 + ND)

4V2 + VND

V

O

D V

m A

D

d I d

Figure 6-4: (Left) Illustration of Subsuperiority Conditions. Let O be an origin and D a
destination. Given a path 1 for a certain node N, any O to N path lying in the blue area
(path 2) is inferior to path 1. The path 1 is inferior to the other path (path 3) when it lies
in the red area. If another path (path 4) lies in the white area, both paths coexist. (Right)
Illustration of a Coexistance Area for Three Paths. When path 1 and path 2 coexist, the
region for another path to coexist is the white area, which is reduced as the number of
coexisting points increases.

Since this inequality holds for any N-to-D path, 71, is superior to 7r2.

Figure 6-4 (Left) illustrates the subsuperiority relationships between subpaths. The

paths lying in the red region are superior to path 1 and those lying in the blue region are

inferior to path 1. The paths that lie in white area coexist with path 1. Coexisting paths are

not desirable since each extension of every coexisting path should be examined. However,

the probability that many paths coexist is not high since the area allowing coexistance

shrinks as more paths coexist, as shown Figure 6-4 (Right).

Theorem 4 leads to the algorithm shown in Algorithm 7.

Algorithm 7: PRUNING-ALGORITHM
Data: Graph with mean and variance of each edge, origin O, destination D
Result: The optimal path

1 paths[i]: An array of subpath lists reaching node i
2 openPaths = []: FIFO queue for open subpaths
3 openPaths.push(O.nodelD)
4 while (curNodelD -- openPaths.pop()) # 0 do
s path +- paths[curNodelD]
6 while path h 0 do
7 ifpath.closed then continue
8 neighbors +- getNeighbors(path)
9 foreach n in neighbors do

to inferior +- False
11 stored +- paths[n.nodelD]
12 while stored = 0 do
13 if n is superior to stored then
14 L paths[n.nodelD]. remove(stored)

15 else if n is inferior to stored then
16 L inferior +- True

17 stored +- stored.next

is if not inf erior then
19 paths[n.nodelD].insert(n)
20 openPaths.push(n.nodelD)

21 path.closed +- True
22 path +- path.next

23 return the best path in paths[D.nodelD]

For every open paths (line 4), all the extended paths to the next nodes (line 8) are

compared with the stored paths. If the new extension is superior to a stored path, the stored

path is removed (line 13). If the new extension is not inferior to any stored paths, it is

inserted (line 18).

6.3.2 Correctness

Any path with a loop is inferior to a path that does not have a loop since a loop adds

positive mean and variance to the loopless path. Note that path with larger mean and larger

variance is inferior. The algorithm stops in a finite number of steps since paths with loops

are pruned. Since the extension of pruned subpath cannot be better than that of superior

subpath, the pruned path cannot be optimal. Since every non-pruned path was compared

for optimality, Algorithm 7 finds the optimal path in a finite number of steps.

6.4 Algorithm Evaluation

We have evaluated empirically the performance of Algorithms 6 and 7 against the exhaus-

tive A-optimal search proposed in [32] using simulation data and real data from the taxi

database.

6.4.1 Experimental Data

Grid Structure

The simulation data set is a square bidirectional grid structure where each edge has a ran-

dom mean and variance uniformly distributed between 0 and 1. Grid structures of size from

10 x 10 to 100 x 100 were used. The origin and destination are two diagonally opposite

points.

Physical Road Network

The Delay Statistics Map built using CarTel the taxi database was used as a physical test

bed. The map has about 29000 nodes and 39000 edges. It is dense around the Greater

Boston area and granular in rural area of Massachusetts.

6.4.2 Running Time

The running time of Algorithms 6 and 7 were compared with the exhaustive A-optimal

searches using the two data sets above. Two variations of Algorithm 1, where only one of

the two methods introduced in Section 6.2.3 and 6.2.4 were used to examine the effect of

each method. Figure 6-5 shows the results on the simulation data. Algorithm 6 with both

methods runs fastest. The speedup is by at least a factor of 10 over the algorithm in [32].

The speedup is due to reduced amount of A-optimal searches. For the algorithm in [32], the

number of A-optimal searches gradually increased from 17 to 119 as the number of nodes

increase from 100 to 10000, whereas it increased from 5 to 7 for Algorithm 6. Algorithm 7

runs faster than the algorithm in [32], but not as fast as Algorithm 6.

20

nodes

Figure 6-5: Running Time Measured at the Square Bidirectional Grid Structure, where
each edge has a random mean and variance between 0 and 1 with a deadline of half grid
size. "exhaustive" is the exhaustive A-optimal search, "probe" is just applying the candidate
region probing method, "bound" is just applying the bounds of A, and "Alg. 1" is Algorithm
6. "Alg. 2" is Algorithm 7.

The running time of Algorithm 6 on the Delay Statistics Map for a route 144km long is

14 seconds with 5 A-optimal searches when the deadline is 3 hours. The same query took

178 seconds when we used the exhaustive A-optimal search yielding 75 A-optimal searches.

^t

Chapter 7

Using Current Information

In this chapter we give a method using current information for the road segments as it is

observed. For now we do not expect to observe enough current information for all the

roads, which is required to plan the optimal path since real-time coverage by 28 taxis

is limited. Thus, we do not use complicated estimation and prediction methods but use

current information as supplementary information. The method suggested in this chapter

uses the observed current information and propagates the information as far as the road

segments are statistically related. We will develop a more sophisticated algorithm that uses

both historical and current information, which can be used when we have a significant

amount of current information.

7.1 Current Information Incorporation

In this section we explain how we utilize the current information for path planning by in-

corporating the current information into the historical information. We update the database

by the information observed in real time. When the stochastic shortest path algorithm runs,

we substitute the historical information with this current information for the road segments

that have updated information for a predefined time window. That is, we can substitute

the mean travel time with the current observed travel time, and the variance of the travel

time with a smaller value than the historical variance. Since the current observation will

be related to other connected road segments, we use this method for other road segments

where the current information was propagated from adjacent road segments by the algo-

rithm introduced in the next section.

7.2 Current Information Propagation

In this section we provide an algorithm that propagates the current information to statis-

tically related road segments. From the taxi traces, we mark the transition from one road

group to another, and keep the number of incidences from each adjacent road as shown by

an example in Figure 7-1. Then, we propagate a velocity measurement on one road group

to others if the statistics are similar and the amount of flow is mostly preserved.

3

100

7

Figure 7-1: Example of Flow Preservation. Since the flow is preserved through the thick
arrows, we can consider propagating current information observed at one of those thick
arrows to other thick arrows.

Algorithm 8 shows how the current observed velocity is propagated through related

groups. Algorithms 9 - 12 are the functional blocks called in Algorithm 8. When GPS

probe vehicles update current information for the road groups where the vehicles are, the

information is propagated by Algorithm 8. Algorithm 8 recursively calls itself (line 8) if the

propagation conditions are satisfied (line 6) for each group connected to the current group

in either forward or backward directions (line 4). The propagation stops if the maximum

amount of propagation defined by the first call of the Algorithm 8 is reached (line 2).

Algorithm 9 returns the connected groups to the current group. If direction is forward,

the groups that are forward with regard to the vehicle's moving direction are returned.

Algorithm 10 examines whether the statistics of the adjacent two groups are similar.

The algorithm compares both the average velocity of each group and the travel time fluctu-

80
90

10

Algorithm 8: PROPAGATE
Data: direction : indicator of the forward or backward propagation,
velocity : the observed velocity,
updateTime : the time of the observation,
group : the group where the velocity observed,
table : the Groups Table corresponding to the time of day,
count : the propagation count
Result: Updated current information

i count - count - 1
2 if count < 0 then

3 L return
4 newGroups +- FIND-GROUPS(direction, group, table)
5 foreach newGroup E newGroups do
6 if Is-SIMILAR(group, newGroup) and

IS-FLOW-CORRELATED(direction, group, newGroup) then
7 UPDATE-CURRENT-INFO (velocity, updateTime, newGroup, table)
s PROPAGATE(direction, velocity, updateTime, group, table, count)

Algorithm 9: FIND-GROUPS
Data: direction, group, table
Result: a list of groups

1 return the list of groups that are connected to the group depending on the direction

ation from the mean for each group.

Algorithm 11 checks if the amount of cars (flow) is preserved from one group to another.

If the flow is preserved between two groups, there is high chance that the statistics of the

two groups are similar.

Algorithm 12 updates the current information fields of the Groups table corresponding

to the current time of day in the database.

Algorithm 10: IS-SIMILAR
Data: group, newGroup
Result: True or False

1 if group.distance/group.mean is similar to
newGroup.distance/newGroup.mean and group.std/group.mean is similar to
newGroup.std/newGroup.mean then

2 L return True

3 else

4 L return False

Algorithm 11: ISFLOWCORRELATED
Data: direction, group, newGroup
Result: True or False

1 if direction ==forward then
2 if theflow through newGroupfollowed by group is more than 30 % of the total

flow through group then

3 L return True
4 else

s L return False

6 else
7 if theflow through group followed by newGroup is more than 30 % of the total

flow through newGroup then
8 L return True

9 else
1o L return False

Algorithm 12: UPDATE-CURRENT-INFO
Data: velocity, updateTime, newGroup, table
Result: Updated Groups Table table

1 update the meanTime field of newGroup in table with the time calculated from
velocity, and the updateTime field with the given updateTime.

Figure 7-2 shows an example of current information propagation by the algorithm dis-

cussed in this chapter. The red lines in Figure 7-2 indicate the road segments where current

information is observed and orange lines denote the road segments where observed infor-

mation was propagated.

r :Coisgi Cs

Commonu

w Cambridge

cambndge Hai
colege UnAV

5 o r r If,
Fxkj m(ip i8

*j. "# % 7TI·I.R

Figure 7-2: An Example of Current Information Propagation

Longwvo
:I

''

i

-il

c:'·'':I :d
: i,

Chapter 8

The Intelligent Traffic System

8.1 System Overview

The traffic information system consists of a database called RoadNetDB and a Web server.

The Web server is implemented with Common Gateway Interface (CGI) consisting of a

frontend Graphical User Interface (GUI) module and a backend processing module, which

accesses RoadNetDB for information queries. Server side programs were written in python

and client side programs were written injavascript. The client side program uses the Google

map open API [3] for visualizing the paths. For a faster route search, a database was

organized using spatial indexes, highly accessed tables were cached from the database, the

highly used parts were implemented with faster language (C programming language), and

user requests were processed asynchronously for better user experience.

8.2 Database

We established a database system on a Linux computer with 2.4 GHz CPU and 2 GB

memory. The database system we used is MySQL 5.0.32 database, which provides spatial

functionalities so that spatial queries are optimized with an R-tree structure. The main ta-

bles in RoadNetDB are Segments Table corresponding to the Geographic Map and Groups

Table corresponding to the Delay Statistics Map. Each row in these tables represents each

edge in those Maps. We call the edges in the Geographic Map simply segments and those

in the Delay Statistics Map as groups. First, we implemented a java program that ex-

tracts the required information from the Navteq or TIGER/Line data files . We first started

the project with the TIGER/Line files, but because of the lack of overhead crossing, one-

way, and restricted maneuvers information, etc., we switched to the Navteq sample data

for northeastern regions of the United States. The program extracts data fields for each

road segment, including the coordinate of the two end points, street name, street category,

one-way information, restricted maneuvers, etc., and stores those into data files. Second,

the extracted data files are uploaded to RoadNetDB, generating the Segments Table repre-

senting the Graphical Map as shown in Table 8.1. As a result, there are a total of 602268

segments in the Segments Table.

Table 8.1: Segments Table: represents each road segment in the Geographic Map
Field Description
SegmentlD unique id of each segment
StartPoint latitude, longitude, z level of the start point
EndPoint latitude, longitude, z level of the end point
StreetName name of the street
Distance the distance calculated by the two end point
Category a road category
Line a MySQL LineString spatial data format value for the end-to-end line
GrouplD unique id of group which this segment belongs to
GroupDirection the relative direction of this segment compared to direction of group

Next, we conduct the following sequel of processes to generate the Delay Statistics

Map. First, we run a map matching python script that matches every taxi trajectory to the

segments as defined in the Segments Table according to Algorithm 1. Each row of the

Map Matching Table is a segment matched from trajectories. Table 8.2 shows the fields

in the Map Matching Table. During this map matching process, the time taken to travel

the segments are kept. The travel time for each segment can be found by the difference

from subsequent "time" field. The "StartFlag" in Table 8.2 indicates whether consecutive

map-matching results are in a continuous travel or not. It is "1" when a new travel starts,

"2" when the last segment of the previous map-matching is the same with the first segment

of the current map matching, and "3" when the last segment of the previous map matching

is connected to the first segment of the current map matching. Second, a python script

for aggregation runs to generate the Groups Table according to Algorithm 4. The fields

in Groups Table are shown in Table 8.3. Finally, a python script for assigning taxi delay

data into the groups is run to assign the statistics for each group according to Algorithm 5.

Groups Tables (Table 8.3) contain mean and variance of the travel time for each group

calculated from the taxi GPS data per hour and per day.

Table 8.2: Map Matching Table: describes a road sequence of segments driven by cars
Field Description
SegmentlD the matched segment id
Direction the direction of the trip relative to the direction of the segment
Time the time when the car enters the segment
Velocity velocity' is the average velocity for 2 minute trajectory
StartFlag indicates the connection between subsequent map-matching
Car the label of the car

represents the delay statistics for each group in the Delay Statis-

GrouplD
StartPoint
EndPoint
StreetName
Distance
Category
Line
MeanTimeNormal
VarTimeNormal
NumSamplesNormal
MeanTimeOpposite
VarTimeOpposite
NumSamplesOpposite

unique id of each group
latitude, longitude, z level of the start point
latitude, longitude, z level of the end point
name of the street
the distance calculated by the two end point
a road category
line object of MySQL spatial feature
mean of the normal direction
variance of the normal direction
number of samples of the normal direction
mean of the opposite direction
variance of the opposite direction
number of samples of the opposite direction

8.3 Backend Processing Unit

8.3.1 Optimal Path Query

In this section the backend query processing for optimal route search is explained. As is ex-

plained before, we keep the delay statistics (mean and variance) not for every road segment

Table 8.3: Groups Table:
tics Road Map

FieldField Description

defined by the Geographic Map but for the road groups defined by the Delay Statistics

Map. Thus, delay sensitive routing is basically done through the Delay Statistics Map.

Since the origin and destination are not necessarily among the nodes of the Delay Statistics

Map, it is required to connect the origin and destination node to the nearest segment group

in the Delay Statistics Map. Thus, the path search is done in three steps: First, we find a

shortest path from the start point to the point in the Delay Statistics Map by running A*

search or Dijkstra's algorithm on the Geographic Map. Second, a similar process is done

for the end point in the reverse direction. Finally, we find a route connecting the origin side

group point and the destination side group point through Delay Statistics Map using the

algorithms developed in Chapter 6. The data type and functions used to implemented this

is as follows.

Data Type

A path is represented by a linked list of nodes, where the Node object represents nodes as

follows:

* Node : Node has the following fields as member.

• x, y, z : the coordinate of the node. x, y represents latitude and longitude, respec-

tively, and z represents the Z-level to distinguish multiple layer road structures.

• currentCost : the current cost from the start node to the current node.

- estimatedCost : the estimated cost from the current node to the end node, which

is used as a heuristic cost of A* search algorithm.

• segmentID, streetName : the id and street name of the segment that connects the

previous node and current node.

- mean, variance : the mean and variance of the travel time for the segment that

connects the previous node and current node.

- previousNode : the pointer to the previous node.

Functions

* getClosestPoint(point) Returns the closest segment end point for origins and destina-

tions given by user input. This queries the information from the Segments Table in

RoadNetDB using the MySQL spatial search functionality for the fast look-up.

* getShortestPathToDSM(startNode, endNode, direction) Finds the path from "startN-

ode" to the Delay Statistic Map by A* search or Dijkstra's algorithm if "direction"

is forward. If "direction" is backward, the path from the Delay Statistic Map to the

"endNode" is found. "startNode" and "endNode" are the points in the Geographic

Map.

* getOptimalPathOnDSM(startNode, endNode, deadline, A, mode, useCurrentlnfo) Finds

the path from "startNode" to "endNode" using the stochastic shortest path algorithm

developed in this thesis. "startNode" and "endNode" are the points in the Delay

Statistics Map. "mode" indicates which algorithm to use. "useCurrentInfo" indi-

cates whether current information will be used or not.

* getNodeNeighbors(table) Queries the next nodes connected to the current node. "table"

is the Geographical Map when it is called from "getShortestPathToDSM", and it is

the Delay Statistics Map when it is called from "getOptimalPathOnDSM". Because

this method is frequently called for the Delay Statistics Map, we cached the neighbors

of each node in a file to reduce the execution time for database queries.

8.3.2 Map Matching Result Query

In this section the backend query processing for finding matched road segments given a se-

quence of GPS coordinates that represents a trajectory. For each subtrajectory of the given

trajectory, first, the nearby segments of each point in the subtrajectory are queried. Sec-

ond, the best matching segment to the subtrajectory is found among the nearby segments.

Finally, the found segment is examined whether it is connected to previous matches. The

following functions explain each step of this query process.

Functions

* getClosestStreets(point, length) Returns the street segments that lie in the square region

defined by a center point "point" and the length of a side "length". This function

obtains the road segments satisfying the input condition by querying the Segments

Table of the RoadNetDB. For a fast look up, MySQL spatial query commands using

"Polygon" and "MBRIntersects" are generated. This SQL query returns only the

road segments that intersects with the polygon representing the square area.

* getStreetCandidate(streetSet, subtrajectory, aginglDs, agingCounts) Returns the lo-

cally best segment for the "subtrajectory" among the nearby road segments in "street-

Set" considering the aging factors for the road segments in the "agingIDs" list. This

is the implementation of the local matching algorithm, Algorithm 2

* processCandidate(streetSet, subtrajectory, segments, candidate, aginglDs, agingCounts)

Returns whether locally best candidate "candidate" is connected to the matched seg-

ment list "segments". If connectivity does not hold, four more local best candidates

are examined until connectivity holds. If the connectivity is satisfied with none of

these candidates, the last matched segment in "segments" is removed since it is re-

garded as a wrong match.

8.3.3 Congestion Area Query

In this section the processing used for retrieving the congestion information is explained.

Functions

* getSegmentsByConditions(condition, center, length) Returns the road segments that

satisfy the travel time statistics defined by the input conditions "condition". This

function generates a MySQL spatial query that retrieves the rows from the Groups

Table that correspond to "condition" and lie inside the square area specified by "cen-

ter" and "length".

8.3.4 User Route Upload and Analysis Query

In this section the processing needed for user file upload and trajectory retrieval and visu-

alization is explained.

Data type

* GPXTrackPoint : This represents the GPX track point which is parsed from GPX files.

GPXTrackPoint has the following members.

• lat, ion, ele : the latitude, longitude, and elevation of the GPS point.

• time : the time of the GPS point

Functions

* uploadFile0 Uploads the users' track-log files to the log repository directory. This func-

tion call is usually followed by the "parseAndStoreInDB" function call with a file-

name argument specifying this file.

* parseAndStoreInDB(filename) Parses the track-log files specified by "filename" to gen-

erate a sequence of GPXTrackPoint objects. The GPS points are inserted into the ta-

ble named UserTraces in the RoadNetDB, which has userlD, triplD, lat, ion, time as

its columns. The summary of the trip represented by this GPS points is inserted into

another table named TripSummaries, which has userlD, title, hour, day, duration,

startTime, endTime, startLat, startLon, endLat, endLon, and userDefinedLabel.

* parseAndShow(filename) Parses the track-log files specified by "filename" and returns

the GPS point string, which is used by the GUI module to visualize the corresponding

trajectory color coded by speed on the map.

* getUserTripSummary(userID) Returns the summary information of the trip that the

user uploaded. This function checks the cookies to confirm that the user is authorized

to look up the data for the "userID". This function generates an SQL query to the

TripSummaries table in the RoadNetDB.

* getUserTrace(userlD, triplD) Returns the trajectory corresponding to the "userID" and

"tripID". This function checks the cookies to confirm that the user is authorized to

look up the data. This function generates an SQL query to the UserTraces table in

the RoadNetDB.

8.4 Graphical User Interface

All user requests are processed by Asynchronous Javascript And XML (AJAX) technology

to provide better user experience. When a user clicks buttons, the corresponding javascript

methods are called, and the user request are processed by server side python programs. The

results are notified to the javascript callback functions asynchronously. The Google map

open API [3] was used to visualize the results on a map image.

8.4.1 Optimal Path

Optimal path finding interface provides an easy travel-condition-input form and an effective

display of the result. There are two ways to enter an origin and a destination. One is to

enter the address in the "Address" text box in the top row of the input form. Another way

to enter an origin and a destination is by clicking the corresponding spot on the map. The

first click generates an origin point, and the next click generates a destination point. Users

can navigate over the map either by the control panel at the left top side of the map or by

drag and drop. Users can select the "Hour of day" and "Day of week" when they want to

travel. The "Deadline" is the time in minutes in which they should finish the travel. There

are three buttons that find different optimal routes:

Minimum Distance : The route that has the minimum distance;

Minimum Expected Time : The route that would be the fastest route on average;

Maximum Probability : The route that gives the highest chance of reaching the destina-

tion in the deadline.

Users can also check what Google Maps provides by clicking the "Google" button on the

right top side of the input form. Users can also select "Use current information" to use

current information, though it is using sparse current data for now.

S% vatTRn
l
Sun 9648 33125757 mode - Max Prob (P9ob 99 9%)

4- O r TOTAL 1490.3 96. lo.4mile 25 Omph

ISO

-r * QNnvOLQ 5.8sec 2.4.sc 0.038mile 2341m0h 167
SQ

- TECHNOLOGY 1 ~, 0 0 il 6i 81
SQ

r MAIN ST 13.7sec 4.2sec 0.115mil

r MAIN ST 301,0ec 1S.40ec 0.099mil

r MAIN ST 11.8sec 2.Osec 0.114mil

r BISHODPR ALLEN 9605ec 0.secO. 0385mil
DR

r PROSPECT ST 47.0seC 0.0sec 0.7Omi

r WESTERN AVE 4.0oc 0.0Osec 0.072mil

r WESTERN AVE 39.5Sec 4.45se 0136mil

r WESTERN AVE 65.3sec 52.1sec0A74mi

F WESTERN AVE 24.3sec 11.0sec.067mil
r WESTERN AVE 62.5sec 4.2sec0.085mil

F WEST8ERN AVE 35.5sec l7.Osec 0.12mile
BAG

S (u'mreed 13,7.se 8.5sec 0.097mil
street)

r SOLDIERS 27.5se 3.1sec 0.329mil
FIELD RD

r SOLDIERS 25.5sec 31.7mc 0.23mile
FIELD RD

33

26

21

2

130

4

8

13

30

15

30

26

21

10

Newt o n SOLDIERS 30 9se, 3.4sec 0.362mil
CsBons4VS2 cFIELD RD

(Brockhe if 14 Fsc 12.4sc 0.09lmil
-~ ~~ R...cA Vsx ..

w5.5% r SOLDIERS 1 Soec 1.5e0 0.SIm.II
51 -· Sc:b 159 Oll~ci:, ~~ Rex Asexe eli> F IELD RD 44SS7.50 A5ri(DEA . SOLDCe .IERS lA.sec 7,4soc 0A75mil

:•a .c aoCW FIELD RD 4 67se 5.6•e 0,09ml

4 C F SOLDIERS 47OSC, 15A6see 0R096mil

-orR s 46ma ZuC 4,SSOC 0r659IEiiR
.·-~i . Pn :FIX, · FIlrrcELD RD_dr RlbM $Iý I

Figure 8-1: The User Interface to the Traffic Information System with Highlighted Paths
and Travel Time Estimates. Optimal Path Query Result for a Travel from MIT ("O") to
Newton, MA ("D") at 5-6 pm on Weekdays.

Figure 8-1 shows an example of the paths found by our optimal path planning GUI. The

top blue line is the maximum arrival probability path given a deadline of 30 minutes. The

green line is the minimum expected time path. The bottom blue line is the path Google

Maps give.

8.4.2 Trajectory and Map-Matched Streets

Current and historical trajectories and their corresponding road segments found by our

map-matching algorithm can be shown using a map-matching GUI. A trajectory to match

onto the map is selected by the user input: the label of the car, the start time, and the

duration. Figure 8-2 shows an example of the taxi trajectory query result.

" "· R.-I... 4 - 4 S, FIELD RD: rew H
7

7

6

6

Show Taxi Trajectory

"0 C+ knd 2

ofCar #IPTOOS2 smcel 12007-0",.4 13.00 00 dm tO m-n sh-'cuwent ocekon

ra itmt ýIK705-7 1O 3 00 00 4942-4
Omm ~ihU

"Average velocity of this
part of the trip"

ii
c

a

iLI

i::
"sL

"GPS trajectory (red line)"

"Corresponding road segment

(blue line)"
0 -)

:~i~-~~c::: ·ni·~ ~~W'

Figure 8-2: Map Matching Result. The red line is actual GPS points reported from the
CarTel node and blue line is a sequence of segments that correspond to the GPS trajectory.

8.4.3 Color Coded Congestion Map

Figure 8-3 visualizes congestion spots. Users can select the level of congestion to query

both by the travel time variation (the ratio of standard deviation and mean) and by the mean

velocity. Users can also select the area of interest by center point and width. For the top

figure the average velocity becomes lower as color changes from blue to green, yellow,

orange, red. For the bottom figure the fluctuation of the travel time becomes larger as color

changes from blue to green, yellow, orange, red. Thus, red road segments are hot spots,

where average velocity is low and the variation of the travel time is large.

i

co

Figure 8-3: Hot Spot Visualization. The top figure shows the color-coded mean velocity
of road segments. The bottom figure shows the color-coded ratio of the standard deviation
and the mean of the travel time of road segments. Road segments indicated with the red
color are hot spots.

yc;~ll

8.4.4 User Route Upload and Analysis

"My Drive" is a private member area where users can upload their own GPS track-log files

and can see their routes on the map color coded by speed. The file to be uploaded should

be in a valid GPS Exchange (GPX) file format. Users can press "just uploaded" button

to see the trace they just uploaded, or they can also view the summary of the entire GPS

traces they uploaded by clicking the "history" button. While users can get useful analysis

information about their drives, users' track logs help us develop a more accurate and robust

traffic information system. Login is required to look up users' own GPS traces.

____ o H o 3f da.3Tp13pm Pr•3 F a7 , -4H T"m Mu, .

48V Cay of*eK-iiZ O

3 2007-10-31 16:52:1L 2007-10-31 17:07 38 5527.0

2 2007-10-31 16:26:1 2007-10-31 1645:04 1893.0

1 2007-10 31 16:04:56 2007-10 31 16:16:27 1171.0

42.362222,-71.091242

Figure 8-4: Example Interface Showing a User's Drives Color Coded by Speed. Red :
0-10 mph, Orange : 10-20 mph, Green : 20-30 mph, Cyan : 30-40 mph : Blue : over
40 mph

Chapter 9

Experiments

In this chapter we evaluates our intelligent traffic information system by the field experi-

ments.

9.1 Path Examples

Figure 9-1 shows different optimal paths from a start location (the green arrow) to a desti-

nation (the red "D"), according to three different criteria: the minimum distance route (this

is the same route recommended by Google Maps and is indicated as the topmost red route),

the minimum expected time route (the middle green route), and the maximum probability

route with a deadline of 14 minutes (the bottom blue route). Our system estimates that

minimum distance route (which is 3.1 miles) will take 18 minutes on a Tuesday afternoon.

Our system's minimum expected time route (which is 3.5 miles) takes only 11 minutes and

45 seconds. The maximum probability route (which is 4.1 miles) takes 11 minutes and

51 seconds on average with 90.3% guarantee of arriving on time. The minimum distance

route and the minimum expected time route have lower probabilities of 1% and 88.5%,

respectively.

Figure 9-2 shows how the optimal paths change according to the time of day. For

a travel from MIT to the Massachusetts turnpike Cambridge entrance, we queried both

minimum expected time path and maximum arrival probability path for both 3,-4 pm and

4-5 pm on Mondays. The minimum expected time path for 3,-4 pm is the red line. The

Adress From FivtstCAubeldpHA . To 42.387 2 61 1

Time Mourofday 3pm-4pm Day ovofwekTue - Duratton lJ(minute)
*0rt Path *bhOM 1 E 1

Pa. P 0
U2 p

Q

c-

MI-u

Cell

e- olGoo,~

* ~ lin'CI

,My route- ear 1Gele u

maIp I 5•, 1 m1 • varTimeSum - 9489.28524354 mode - Max Prob (Prob: 90.3%)
r- t OTL 1e t.O 9Stdv DIStanci Velocit mp
r TOTAL 711.0 97.4 4.9mie 25.Omph

- r VASSAR ST 58.3sec 30.2sec0.376n
r VASSAR STS14.0sec32. soc0,794n

r AMESBURY 1.0.se .. ose 0.lBon
r MEMORIAL 13Asec 2.5sec 0,173ry

r MEMORIAL 17.9sec 6.3sec 0.338nr
DR

r MEMORIAL 5.4seco 1.4sec 0.072m

r MEMORIAL 9.2sec 2.$sec 0,0990DR

r MEMORIAL 24Asec 142sec 0,103rMOR
r MEMORIAL 87.55ec46.9sec 0.183mOR
r MEMORIAL 70.9sc 415seC 0.191rDR

r WESTERN53.9sec40A,4sc 0.12mAVEBRG

r (unnamed 8.0se D'sc 0.097rrstreet)

r SOLDIERS24.5sec 2.0Cse 0,3299

r SOLDIERS 13.6sec 1.4sec 0.23mi

FIELD RD 0,6s5c 0.362

r ELLIOT BRG 7.5sec 4.5scO 0.167m
r ELLIOT BRG 7.0sec 1.0sec 0 088m
r ELLIOT BRG .5sec 0.5sec 0 .094nm

r ELLIOT BRG 4.0sec 0.0sec 0 036m

r (unnamed 8.0se1 lO0eR 0058rr
street)

r- GREENOUGH,, ,_,
41

Figure 9-1: The User Interface to the Traffic Information System with Highlighted Paths
and Travel Times Found by the Algorithms Described in Chapter 6.

maximum arrival probability path for 3-4 pm is also the red line. The minimum expected

time path for 4-5 pm is the orange line. The maximum arrival probability path path for

4-5 pm is the green line. The Google Maps give blue line. From this result, we can observe

that it is better to use longer but faster path for the time window 3~4 pm, which is not a

rush hour, and it is better to avoid the Mass Ave bridge during the time window 4r5 pm,
when the traffic through the bridge starts to increase. The paths found by our system avoid

the highly congested Massachusetts Avenue, which the path Google Maps provide uses, in

rush hours as shown by the orange line in Figure 9-2.

9.2 Selecting a Trajectory

Identifying taxi trajectories that follow a specific sequence of road segments for a given

route or an origin and destination pair is necessary for testing our system. A given route

can be described as a sequence of segments. While scanning the segments of Map Matching

Table, if the exact match to the sequence of the given route is found, we add the delays for

10
3

1

36

42 2

40 2

19 2

17 2

16 2

1s 2

15 2

16 2

5 2

6 2

5 2

2 2

2 2
2 2
2 2
2 2

2 2

Co Ot LonCo **Nnd0C? B T Atlke -T _

Figure 9-2: Optimal Path Query Result for Different Time Windows. Travel from MIT

("O") to Massachusetts turnpike entrance ("D").

the entire segments getting a travel time sample for the given route. However, for some road

segments where map matching is not reliable, this kind of sequence matching does not work

well. In that case, we find all the route that connects the origin and destination, and classify

them by visualizing routes on a map. The method to obtain the origin-to-destination travel

samples using the CarTel GPS data is described as follow:

1. Make small a square region around the origin and destination, respectively.

2. Scanning the GPS data samples of each car ordered by time, find a GPS point entering

the origin region and remember the time when the car leaves the origin region (call

it "time 1").

3. Check if the car enters the destination region in a given threshold time interval (the

maximum possible time interval for the origin to destination travel).

4. If true, save the entering time (call it, "time 2"). The travel time from the origin to

destination is "time 2" - "time 1".

5. Repeat from 2 to 4.

We get many route samples with the described method, and we use them to validate the

assumptions and to evaluate our system.

9.3 Independent Gaussian Assumption

To test the independent Gaussian assumption, we identified a route with a large number

of travel samples in the Boston taxi CarTel trajectories database. We used a path from 1

Albany Street to 70 Waverly Street in Cambridge, MA , which is 1.12km long and has 5

intersections and 6 road segments. Figure 9-3 shows the delay distribution of road segments

and total travel time distribution of the route. Table 9.1 shows the mean and standard

deviation of each road group. The estimated travel time for the path based on the statistics

of each road group is shown in the row starting with "Estimation". The row starting with

"Measurement" shows the measured statistics of the travel time for the path based on the

1886 trajectory samples.

Table 9.1: Comparison of the Estimated Mean and Standard Deviation with the Measured
Mean and Standard Deviation for the Route from 1 Albany Street to 70 Waverly Street

Street Mean (sec) Stdev (sec) Distance (miles) Number of Samples
Group 1 18.7 4.9 0.16 4204
Group 2 20.9 18.5 0.117 5735
Group 3 27.6 23.4 0.034 5817
Group 4 13.3 3.6 0.098 5651
Group 5 23.6 6.9 0.214 3012
Group 6 35.7 16.1 0.264 2824

Estimation 139.8 35.2 0.9
Measurement 141.8 43.9 0.9 1886

Table 9.2 shows that the percentiles of estimation and measurements are mostly in 5

second range. Figure 9-4 shows that the mean and standard deviation of estimation and

measurement is similar for all the hour of day.

2000

1500

1000

0 20 40 60
sec

0 20 40 60
sec

11
0 50 100

sec

80 100 120

80 100 120

0 300

Figure 9-3: Delay Time Distribution for One Segment and Multiple Segments. The first
two plot is delay distribution for one segment. The last plot is delay distribution for 6
segments including the first two segments

Lj

L~LJ .a •

n

0i --- -------- - - -r ,~_,

I
I

I
I

1

II I

==:1

-

Table 9.2: Comparison of the Percentiles between
Route from 1 Albany Street to 70 Waverly Street

Estimation and Measurement for the

20'

18

16

14

12

(10

8

6

4

2

Hour of day

Figure 9-4: Comparison of the Mean and the Standard Deviation between Estimation and
Measurement per Hour of Day for the Route from 1 Albany Street to 70 Waverly Street

Figure 9-5 shows that the estimated distribution by our system is very close to the real

distribution.

More specifically, Figure 9-6 shows that the empirical data is very similar to the Gaus-

sian distribution, especially in the probability interval from 0.05 to 0.95.

Thus, our assumptions will make sense for the stochastic planning for reaching the

destination with the probability in this range. The discrepancies observed over 0.95 and

Percentile (%) Estimation (sec) Measurement (sec)
50 139.6 136.0
60 148.6 144.0
70 158.1 153.0
80 169.6 164.0
85 176.1 172.0
90 185.1 182.0
95 197.6 207.0
99 221.7 282.0

---- ~~- ---

--

Albany Sam Any day

Empirical
.. fEmpirical appr
- Estimation

sec sac

Figure 9-5: Comparison of CDF's
from 1 Albany Street to 70 Waverly

between Estimation and Measurement for the Route
Street for Different Hours of Day

under 0.05 shows the limitation of our algorithms due to our assumption. For example, as

shown in Figure 9-6 (Bottom), our system will estimate that the users can reach the goal

with 99% probability if they leave 230 seconds before the deadline, but the empirical data

shows that we will get only 97% chance, and if users want 99% guarantee they should

leave about 270 seconds before the deadline. The discrepancy over 0.95 is caused by some

unusual long delay, which might be due to unexpected events, construction work, or data

gathering noise such as taxi drivers' intentional stops or slow drives. The discrepancy below

0.05 is due to the Gaussian distribution spans to the negative value whereas the travel time

cannot be negative. We observe less discrepancy in case of Figure 9-7, which is using only

the data from 1 , 2 pm whereas Figure 9-6 are for entire hours. This result suggests that

narrowing the data by conditions that affect the traffic delays such as time of day makes the

delay distribution look more like independent Gaussian distribution. Thus, in our ongoing

Albany Any hour Any day

see

Albany 12pm Any day

I 50 100 150 200 260 300 350

0 50 100 150
Data

200 250 300

Data

Figure 9-6: (Top) Histogram of Empirical Travel Time Data and Gaussian Fits for Any
Time for Weekdays. (Bottom) Probability Comparison between Empirical Data and Gaus-
sian Fits for Any Time for Weekdays, where the Y axis was scaled to make the Gaussian
CDF linear. "Empirical" indicates the travel time measurement by driving, "Gaussian" in-
dicates the Gaussian fit for the entire data and "Gaussian (in 270)" indicates the Gaussian
fit using only the data in 270 seconds. The unit of the X axis is second.

0.012

0.01

0.008
2>,

o 0.006

0.004

0.002

0.v
U

0.016

0.014

0.012

0.01

o 0.008

0.006

0.004

0.002

n

0 50 100 150
Data

200 250 300

0 50 100 150 200 250 300
Data

Figure 9-7: (Top) Histogram of Empirical Travel Time Data and Gaussian Fits for 1 - 2
pm for Weekdays. (Bottom) Probability Comparison between Empirical Data and Gaussian
Fits for 1 - 2 pm for Weekdays, where the Y axis was scaled to make the Gaussian CDF
linear. "Empirical" indicates the travel time measurement by driving, "Gaussian" indicates
the Gaussian fit for the entire data and "Gaussian (in 270)" indicates the Gaussian fit using
only the data in 270 seconds. The unit of the X axis is second.

v
U

research, we are investigating the proper conditions that constraints the traffic delays.

This observation provides some evidence that the independent Gaussian assumption

used for Algorithm 6 and 7 holds for the Boston taxi CarTel database, but more testing on

road segments with more associated travel data is necessary. As the database grows every

day, we plan to continue this validation.

9.4 Overall Path Goodness

Four different routes from MIT to Boston Logan airport as shown in Figure 9-8 were ex-

amined using taxi paths and human test driving.

W~~r,. 1'9C3"

aI t MJ

i - Sqae ar

Tw:· cit
r - i~ai:-yn

Ahearn
Ga::f·~ _una=-i!\'~

/I :

Chrlsbi

Figure 9-8: Four Major Alternative Routes from MIT ("O") to Boston Logan Airport ("D").
Red line : route 1, Orange line : route 2, Green line : route 3, Blue line : route 4

The estimated mean of each path during 7 am to 9 pm was 872 seconds, 899 seconds,

816 seconds, and 795 seconds for route 1 (6.9km), route 2 (7.2km), route 3 (6.7km), and

route 4 (6.2km) respectively. The measured mean was 869 seconds, 895 seconds, 811 sec-

onds, and 799 seconds. Thus, the estimated minimum expected time path, route 4, agrees

with the measurement. Figure 9-9 gives the maximum probability path. The estimated

probability is similar to the measured probability. From both estimation and measurement,

for a deadline less than or equal to 12 minutes, the route 3 is the best, but for a deadline

larger than 12 minutes the route 4 is the best. We can observe that route 4, which is the

minimum expected time path is the worst path for a deadline less than 12 minutes.

10 12 15 17
minutes

19 21 23

12 15 17
minutes

19 21 23

Figure 9-9: The Probability of Arriving in a Given Deadline from a Start location to a
Destination for Different Times of Day. (Top: Estimation, Bottom: Measurement)

- route 1
- route 2

IZ route 3
-route 4

40

20

~IL
10

-

Chapter 10

Conclusion and Future Work

We developed efficient stochastic shortest path algorithms, and implemented a traffic in-

formation system using historical and current information. We evaluated the system with

actual measured travel time for selected routes, and observed that our system's optimal path

and travel time estimates are close to the reality. We envision that more accurate prediction

and better navigation are possible when more data are gathered and when users share their

travel time information with others through our system.

In the future, we are interested in developing path planning algorithms for multiple

users. We are also interested in improving our algorithms and system by considering de-

pendencies of each road segment and by using better modeling of delay distributions. We

are currently extending the algorithms to integrate current traffic information with historical

information to make more accurate estimation and to predict the future traffic conditions.

Considering various conditions affecting traffic like weather, construction work, events is

also part of our current plans. Finally, we plan to integrate this planning system with au-

tonomous vehicles.

100

Bibliography

[1] Airsage, inc. http: //www. airsage. com/.

[2] Gdf 3.0 documentation and manual. http://www.ertico.com/en/
links/links/gdf_-_geographic data_files.htm#GDF 3.0
Documentation & Manual.

[3] Google maps api. http: //code. google. com/apis/maps/.

[4] Intellione technologies corporation. http: //www. intellione . com/.

[5] Navteq data. http: //www. navteq. com/developer/index. html.

[6] Tiger/line data. http: //www. census. gov/geo/www/tiger/.

[7] M. Ben-Akiva, M. Bierlaire, H. Koutsopoulos, and R. Mishalani. Dynamit: a sim-
ulation based system for traffic prediction. In DACCORD Short Term Forecasting
Workshop, 1998.

[8] D. Bernstein and A. Komhauser. An introduction to map matching for personal navi-
gation assistants. New Jersey TIDE Center, 1996.

[9] Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path
problems. Mathematics of Operations Research, 16(3):580-595., August 1991.

[10] Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-
matching vehicle tracking data. In VLDB '05: Proceedings of the 31st international
conference on Very large data bases, pages 853-864. VLDB Endowment, 2005.

[11] Hans Braxmeier, Volker Schmidt, and Evgueni Spodarev. Spatial extrapolation of
anisotropic road traffic. Image Anal Stereol, 23:185-198, 2004.

[12] P. Carstensen. The complexity of some problems in parametric linear and combina-
torial programming. Ph.D. Thesis, Mathematics Dept., U. of Michigan, Ann Arbor,
Mich., January 1983.

[13] I. Chabini. Discrete dynamic shortest path problems in transportation applications:
Complexity and algorithms with optimal run time. Transportation Research Record,
1645:170-175, 1998.

101

[14] Roland Chrobok, Joachim Wahle, and Michael Schreckenberg. Traffic forecast using
simulations of large scale networks. In IEEE Conference on Intelligent Transportation
Systems, Oakland, CA, USA, August 2001.

[15] Rina Dechter and Judea Pearl. Generalized best-first search strategies and the opti-
mality af a*. J. ACM, 32(3):505-536, 1985.

[16] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269-271, December 1959.

[17] Bellman R. E. On a routing problem. Quarterly of Applied Mathematics, 16:87-90,
1958.

[18] H. Frank. Shortest paths in probabilistic graphs. Operations Research, 17(4):583-
599, 1969.

[19] Cyril Furtlehner, Jean-Marc Lasgouttes, and Arnaud de la Fortelle. A belief propaga-
tion approach to traffic prediction using probe vehicles. In Intelligent Transportation
Systems Conference, pages 1022-1027, September 2007.

[20] JS Greenfeld. Matching gps observation to locations on a digital map. In the 81th
Annual Meeting of the Transportation Research Board, 2002.

[21] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Goraczko,
Allen K. Miu, Eugene Shih, Hari Balakrishnan, and Samuel Madden. CarTel: A
Distributed Mobile Sensor Computing System. In 4th ACM SenSys, Boulder, CO,
November 2006.

[22] Evangelos Kanoulas, Yang Du, Tian Xia, and Donghui Zhang. Finding fastest paths
on a road network with speed patterns. In the 22ndInternational Conference on Data
Engineering, pages 10- 10, April 2006.

[23] J.-S. Kim. Node based map matching algorithm for car navigation system. In the
International Symposium on Automotive Technology andAutomation, pages 121-126,
1996.

[24] Harris C.B. Wong R.V.C. Krakiwsky, E.J. A kalman Iter for integrating dead reckon-
ing, map matching and gps positioning. In IEEE Position Location and Navigation
Symposium, pages 39-46, 1988.

[25] R-M Kung, E Hanson, Y Ioannidis, T Sellis, L Shapiro, and M Stonebraker. Heuristic
search in database systems. In Proceedings from the first international workshop on
Expert database systems, pages 537-548, Redwood City, CA, USA, 1986. Benjamin-
Cummings Publishing Co., Inc.

[26] Wei-Hua Lin. A gaussian maximum likelihood formulation for short-term forecasting
of traffic flow. In IEEE Conference on Intelligent Transportation Systems, Oakland,
CA, USA, August 2001.

102

[27] R. Loui. Optimal paths in graphs with stochastic or multidimensional weights. Com-
munications of the ACM, 26(9):670-676, 1983.

[28] Ronald Prescott Loui. Optimal paths in graphs with stochastic or multidimensional
weights. Commun. ACM, 26(9):670-676, 1983.

[29] I. Murthy and S. Sarkar. Exact algorithms for the stochastic shortest path problem
with a decreasing deadline utility function. European Jounal of OperationalResearch,
103:209-229, 1997.

[30] Maan E. El Najjar and Philippe Bonnifait. A road-matching method for precise vehi-
cle localization using belief theory and kalman filtering. Journal Autonomous Robots,
19(2):173-191, September 2005.

[31] Evdokia Nikolova, Matthew Brand, and David Karger. Optimal route planning under
uncertainty. In International Conference on Automated Planning and Scheduling,
2006.

[32] Evdokia Nikolova, Jonathan A. Kelner, Matthew Brand, and Michael Mitzenmacher.
Stochastic shortest paths via quasi-convex maximization. In ESA, pages 552-563,
2006.

[33] Moshe E. Ben-Akiva Qi Yang, Haris N. Koutsopoulos. Simulation laboratory for
evaluating dynamic traffic management systems. Transportation Research Record,
1710:122-130, 2000.

[34] Mohammed A. Quddus, Washington Yotto Ochieng, Lin Zhao, and Robert B. Noland.
A general map matching algorithm for transport telematics applications. GPS Solu-
tions Journal, 7(3):157167, 2000.

[35] Kumud K. Sanwal and Jean Walrand. Vehicles as probes. Technical Report UCB-
ITS-PWP-95-11, California Partners for Advanced Transit and Highways (PATH),
January 1995.

[36] D. Schrank and T. Lomax. The 2007 urban mobility report. Annual report, Texas
Transportation Institute, The Texas A&M University System, September 2007.

[37] Drane C.R. Scott, C.A. Increased accuracy of motor vehicle position estimation by
utilizing map data, vehicle dynamics and other information sources. In the Vehicle
Navigation and Information Systems Conference, pages 585-590, 1994.

[38] C. E. Sigal, A. A. B. Pritsker, and J. J. Solberg. The stochastic shortest route problem.
Operations Research, 28(5):1122-1129, 1980.

[39] J. Tanaka. Navigation system with map-matching method. In the SAE International
Congress and Exposition, pages 45-50, 1990.

[40] M. Quddus W. Y. Ochieng and R. B. Noland. Map-matching in complex urban road
networks. 2003.

103

[41] Michael P. Wellman, Matthew Ford, and Kenneth Larson. Path planning under time-
dependent uncertainty. In 11th Conference on Uncertainty in Artificial Intelligence,
pages 532-539, August 1995.

[42] Christopher E. White, David Bernstein, and Alain L. Kornhauser. Some map match-
ing algorithms for personal navigation assistants. Transportation Research Part C:
Emerging Technologies, 8(1-6):91-108, February-December 2000.

[43] Haichen Xu and Daniel J. Dailey. Real time highway traffic simulation and prediction
using inductance loop data. In Vehicle Navigation and Information Systems Confer-
ence, Seattle, WA, USA, July 1995.

[44] Ramin Yasdi. Prediction of road traffic using a neural network approach. Neural
Computing and Applications, 8(2): 135-142, 1999.

[45] Jungkeun Yoon, Brian Noble, and Mingyan Liu. Surface street traffic estimation.
In MobiSys '07: Proceedings of the 5th international conference on Mobile systems,
applications and services, pages 220-232, New York, NY, USA, 2007. ACM.

104

