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Abstract

High-density NAND flash storage has become relatively inexpensive due to the popu-
larity of various consumer electronics. Recently, several manufacturers have released
IDE-compatible NAND flash-based drives in sizes up to 64 GB at reasonable (sub-
$1000) prices. Because flash is significantly more durable than mechanical hard drives
and requires considerably less energy, there is some speculation that large data centers
will adopt these devices. As database workloads make up a substantial fraction of the
processing done by data centers, it is interesting to ask how switching to flash-based
storage will affect the performance of database systems.

We evaluate this question using IDE-based flash drives from two major manu-
facturers. We measure their read and write performance and find that flash has ex-
cellent random read performance, acceptable sequential read performance, and quite
poor write performance compared to conventional IDE disks. We then consider how
standard database algorithms are affected by these performance characteristics and
find that the fast random read capability dramatically improves the performance of
secondary indexes and index-based join algorithms. We next investigate using log-
structured filesystems to mitigate the poor write performance of flash and find an
8.2x improvement in random write performance, but at the cost of a 3.7x decrease in
random read performance. Finally, we study techniques for exploiting the inherent
parallelism of multiple-chip flash devices, and we find that adaptive coding strategies
can yield a 2x performance improvement over static ones.

We conclude that in many cases flash disk performance is still worse than on
traditional drives and that current flash technology may not yet be mature enough
for widespread database adoption if performance is a dominant factor. Finally, we
briefly speculate how this landscape may change based on expected performance of
next-generation flash memories.

Thesis Supervisor: Samuel R. Madden
Title: ITT Career Development Professor
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Chapter 1

Introduction

For decades, hard disks have been the storage medium of choice for applications

such as databases that require substantial amounts of high-speed, durable storage.

After dozens of years of intense research and development, hard disks are a mature

technology offering low costs (~$0.33 per gigabyte), high storage densities (750 GB

per 3.5" device), and relatively fast read and write performance ('75 MB/s at the

high end).

Nonetheless, hard disks remain a less-than-ideal storage technology for high-

performance database systems. Largely, this is due to the fact that, unlike virtually

every other component in a modern computer system, hard disks are mechanical:

data are read and written by moving an arm over platters spinning at thousands of

RPM. Given that modern CPUs run at billions of cycles per second, the milliseconds

required to rotate disk platters and reposition the disk arm in order to execute an

I/O operation impose a substantial cost on accessing data. Moreover, even assuming

that a disk can seek to a new location in 4 ms, it can only execute 250 I/O oper-

ations per second, which (assuming that each operation transfers 512 bytes) results

in a throughput of only 128 KB/s, orders of magnitude too low to support a high-

performance transaction processing system. As a result, in order to obtain maximum

performance, the cost of a seek must be amortized over a large I/O operation: i.e.,

to the greatest degree possible, reads and writes must be of sequential blocks of data,

not random ones. Indeed, much of database research (and to a large degree systems



research in general) has focused on ways to avoid expensive random I/O.

While various techniques can help mask the poor random I/O performance of hard

disks, they cannot eliminate it, and modern database systems still suffer from poor

random I/O performance in some situations. Additionally, the mechanical nature of

hard disks imposes two further problems, namely excessive power consumption (and

electrical costs can comprise up to 70% of a modern data center's operating budget 1)

and vulnerability to environmental shocks.

Over the past several years, the price of solid-state NAND flash memory, which has

long been popular in embedded systems, has decreased dramatically, largely as a result

of massive demand for persistent storage in cameras, cellular phones, music players,

and other consumer electronic devices. Unlike hard disks, NAND flash devices exhibit

virtually no seek penalty during random I/O, have relatively low power consumption,

and are highly resistant to environmental shocks. While NAND flash remains more

expensive per GB than disk ($16 vs $0.33), it is already inexpensive enough to be

competitive for performance-critical applications, and prices are expected to further

decline (Figure 1-1). On the other hand, however, NAND flash memory has a number

of restrictions not seen in conventional disks. In particular, flash memory chips have

a two-level hierarchical structure consisting of pages grouped into erase blocks. A

page may only be written a small number of times (1-4) between erase cycles, and

erasing a page requires erasing all the pages in its erase block. Moreover, erase blocks

may only be erased a limited number (104 to 106) times before failing permanently.

In this thesis, we explore the use of NAND flash technology as a replacement

for conventional magnetic hard disks in database applications. In particular, we

focus on the use of commercially-available, off-the-shelf "flash disks." These devices

package multiple flash memory chips into a single unit that hides the write restrictions

of NAND flash memory and provides the same semantics and external interface as

a standard hard disk. Our thesis is that the best query processing strategies and

algorithms that have been developed for a disk-based environment will no longer be

optimal when magnetic disks are replaced with flash memory, and that new techniques

'See http://www.hpl.hp. com/news/2006/oct-dec/power .html
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Figure 1-1: Past and projected costs of magnetic and flash memory storage (courtesy
Samsung Corporation).

will need to be developed in order to fully realize the potential of these devices.

The rest of this thesis is organized as follows. In the next chapter, we describe

NAND flash memory and the techniques that are used to package it into flash disks.

In Chapter 3, we benchmark two commercially-available flash disks from major man-

ufacturers and compare their performance to standard magnetic disks. In Chapter 4,

we examine how flash disks affect the performance and utility of standard B-tree

index structures, and in Chapter 5, we measure the affect of flash disks on join al-

gorithm performance. In Chapter 6, we demonstrate that some of the write-related

drawbacks of flash disks can be overcome using a log-structured storage manager, al-

though doing so incurs a significant (3x) impact on read performance. In Chapter 7,

we provide an overall analysis of our results on flash disks, and in Chapter 8, we

investigate techniques that harness the hardware parallelism inherent in flash disks

to improve performance. Finally, we discuss related work in Chapter 9 and conclude

in Chapter 10.

iiI . -
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Chapter 2

Flash Memory and Flash Disks

In this chapter, we describe the main properties of NAND flash memory and explain

how it is packaged to produce "flash disks," devices with standard IDE interfaces and

disk-like semantics.

As described in [6], flash memory is a type of nonvolatile, electrically-erasable

programmable read-only memory (EEPROM). It is available in two varieties, NOR

flash and NAND flash, named for the type of hardware structures that hold the elec-

trical charges representing information. From an application perspective, the major

differences between the two types of flash are related to the level at which they can

be addressed and the time required to set bits. NOR flash is directly bit-addressable,

which allows applications to be run from it directly, as a main memory. NAND flash,

by contrast, is block-addressed and must be accessed through a controller, which pre-

cludes its use in this manner. In both types of flash, write operations may only clear

bits, not set them. In order to set a bit, an erase operation must be performed. In a

NOR flash device, an erase operation sets one or more bits, but it is extremely slow:

on the order of 15 seconds. By contrast, in a NAND flash device, an erase operation

sets all the bits in a superstructure called an "erase block," (described further below,

but typically on the order of 256 KB), but it executes considerably more quickly: on

the order of 1.5 ms/erase.

Additionally, NAND flash memory is available in considerably higher storage den-

sities and at considerably lower costs than NOR flash. These properties, combined



with its higher-speed erase operations, make it preferable to NOR flash for use in

mass storage devices, where the bit-addressability of NOR flash is of no particular

advantage. In the rest of this thesis, we will consider only storage devices based on

NAND flash memories. In rest of this chapter, we describe in more detail the struc-

ture of a NAND flash memory chip and the techniques used to build mass storage

devices based on this technology.

2.1 Structure of a NAND Flash Chip

NAND flash memory chips have a two-level hierarchical structure. At the lowest

level, bits are organized into pages, typically of -.2 KB each. Pages are the unit

of read and write locality in NAND flash: in order to initiate an I/O operation, a

command specifying the page ID must first be sent to the flash memory controller,

which imposes a fixed setup time irrespective of the number of bits to be read or

written. Thus, subsequent bits in the currently-selected page can be read or written

far more cheaply than bits from a different page: i.e., flash chips exhibit page-level

locality. Unlike as in a disk, however, the penalty for initiating an I/O operation on

a page is constant, rather than a function of the previous I/O operation (e.g., there

is no advantage to reading pages sequentially).

Pages are grouped into higher-level structures called erase blocks, consisting of

-64 pages each. While pages are the units of reads and writes, erase blocks are the

units of erasure. As described above, writes to a page can only clear bits (make them

to zero), not set them. In order to set any bit on a given page to 1, an expensive

erase operation (-6-7x cost of a write, -60-70x cost of a read) must be executed on

the erase block containing the page; this sets all bits on all pages in the erase block to

1. Additionally, pages may only be written a limited number of times (typically one

to four) between erases, regardless of the size or content of the writes. Finally, the

number of erase cycles per erase block is limited, and typically ranges from 10,000 to

1,000,000. After the cycle limit has been exceeded, the erase block burns out, and it

is impossible to perform further writes to the pages in it.



2.2 Building disk-like devices using NAND flash

Due to the write and erase restrictions of NAND flash memory chips, special tech-

niques are required in order to use them efficiently in mass storage devices. Specif-

ically, consider a naive approach that simply packages multiple flash memory chips

(multiple chips are needed to obtain tens-of-gigabytes capacities) into an enclosure

and provides a controller that translates IDE commands into flash memory reads

and writes using a static mapping between IDE block numbers and flash memory

pages. In particular, consider the case of a write. Given a static mapping from block

numbers to page IDs, each write of a block will require the erasure and rewrite of

the corresponding page. Moreover, given that erase operations must be executed on

entire erase blocks, the contents of any other live pages in the erase block must be

read into memory before the erase operation is executed and written back after it

completes. Given that erase blocks typically contain 64 pages, such a strategy would

impose a massive overhead. Moreover, in the case of a power failure or software crash

during the read/erase/rewrite operation, the data that had been read out of the erase

block prior to erasure could potentially be lost. Finally, given that each erase block

may only be erased a limited number of times before failing, such a strategy would

lead to the premature failure of any erase blocks containing "hot" pages.

The drawbacks of this straw-man strategy were quickly realized, and considerable

research [15, 22, 4, 7, 8] has focused on more efficient mechanisms to service writes. In

general, they all rely on one of two options. First, they might replace the straw-man

static map with a dynamic one. The virtual blocks presented to the application can

be mapped to multiple (often any) flash memory page, and the device maintains a

persistent record of these mappings, using (e.g.) the FTL [7]. Under these schemes,

when a virtual block is to be written, a clean page is located on disk, the data are

written there directly, and the persistent map is updated to mark the old page as

obsolete and to record the new location of the virtual block. In this way, the expense

of the read/erase/write strategy may be avoided. This is the approach taken by the

flash disks with which we work in this thesis.



Of course, the dynamic strategy will eventually need to execute an erase operation.

Every time the location of a virtual block is changed, the page on which it was

previously stored becomes obsolete, or a "garbage page." Eventually, the device will

consist entirely of pages which are either live (contain the latest version of virtual

blocks) or garbage, with no clean pages left to absorb new writes. In this case, a

garbage collection operation must be performed in order to make pages available. A

garbage collection operation works similarly to the read/erase/write operation of the

straw-man strategy: a garbage page is identified, live pages in its erase block are

copied elsewhere on the device, and the erase block is erased, converting any garbage

pages to clean pages. (As described, this strategy requires that garbage collection

occur when at least one erase block's worth of free pages remains on the device.)

Clearly, the efficiency of garbage collection is maximized when the erase block that

is erased contains as many garbage pages as possible, as this maximizes the number

of clean pages generated while minimizing the copy-out cost of live pages. On the

other hand, however, as indicated by [6], there is a competing tension due to the need

for wear leveling. Recall that each erase block may only be erased a limited number

of times before failing. In order to prolong the lifetime of the device, it is important

to spread erasures evenly over the erase blocks in the device. If (for example) certain

blocks contain only static data, then they will never be erased under a policy that

tries to maximize the number of reclaimed sectors, concentrating the erase load on

the remaining erase blocks in the device. As such, various schemes (again detailed

in [6]) have been developed to detect and relocate hot and static blocks to achieve

more even wear leveling, at the cost of efficiency. It has been shown in [1], however,

that a policy that randomly chooses a block to erase is asymptotically optimal under

certain (reasonable) assumptions.

Assuming read, write, and erase operations cost r, w, and e psecs each, that erase

blocks contain p pages each, and that the fraction of live pages per erase block is

given by c, then the amortized cost of a write operation under both strategies is

given in Equations 2.1 (naive strategy) and 2.2 (dynamic strategy). Figure 2-1 plots

these functions for 0 < c < 1; note that for live page fractions below 0.9, the dynamic



strategy provides a one-to-two order of magnitude improvement in write performance.

The other option taken to improve write performance on flash memory is to use

a log-structured filesystem, as originally proposed for disks by Rosenblum [18]. Here,

new data are appended sequentially to a log of changes on disk, Periodically, the log

is compacted to delete superseded log records and reclaim space for new updates.

YAFFS [15], YAFFS2 [14], and JFFS [22] are examples of this approach. We note

briefly that the rational for a log-structured filesystem on a flash device is somewhat

different than on a conventional disk. On a conventional disk, an LFS is thought to

be beneficial because most reads would be satisfied by a RAM cache (thus avoiding

the expense of accessing the log), and appending data sequentially to a log avoids the

cost of seeking the disk to update it in place. Flash memory chips, however, do not

have seek delays. In this context, the advantage of an LFS is that it is a no-overwrite

storage manager: like the dynamic mapping strategy described above, it is a method

to avoid the problems associated with the simplistic read/erase/rewrite approach.

naive(c) = e + (p * c (r + w)) + w (2.1)

1
dynamic(c) = w + c) *(e + (p c) * (r + w)) (2.2)

(P - p*c)
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Chapter 3

Device Experiments

In order to assess the potential utility of NAND flash disks for high performance

transaction processing, it is necessary to understand the performance delivered by

such devices in real-world conditions. In this chapter, we perform benchmarks on two

NAND flash disks from two major manufacturers. Specifically, we measure the read

and write throughput obtainable under a range of both random and sequential I/O

workloads. To provide a point of comparison, we also perform the same experiments

using a standard IDE disk.

The flash devices used were 32 GB devices, which we will refer to as device A and

device B. The IDE disk was a Western Digital WD2000JB-00REAO, with 8 MB of

cache and UDMA-100 support. All devices used the standard ext2 filesystem running

with Linux kernel 2.6.17 under Fedora Core 4. The system used had 4 GB of installed

RAM. To avoid unnecessary writes, we mounted the filesystems using the "noatime"

option, which disables file access time updates.

The test procedure was as follows. For each device, we first created a 20 GB file

of zeros (using dd) and flushed the filesystem cache. We then executed 30 seconds

worth (wall-clock time) of I/O operations, which were either random reads, sequential

reads, random writes, or sequential writes. The size of the data read or written with

each operation was varied between 1 KB and 1 MB, and when conducting random

I/O, we pre-generated a permutation of file offsets to write such that no byte in the

file would be written twice and all bytes were equally likely to be written. Writes



Operation Device A Device B
Sequential Read 0.44 1.11
Sequential Write 0.33 0.09
Random Read 30.71 68.89
Random Write 0.32 0.21

Table 3.1: Fraction of magnetic disk performance attained by flash disks.

were conducted synchronously.

The results of these experiments are shown in Figure 3-1, which gives the through-

put for each workload as a function of I/O operation size, and Figure 3-2, which shows

throughput for each device using 4 KB blocks. Based on these data, we propose two

sets of observations. First, Table 3.1 compares the speed at which various basic I/O

operations can be executed on flash disks as compared to magnetic disks, assuming 4

KB reads and writes (which provided the most operations per second). In particular,

we note that magnetic disk obtains between 0.9x and 2.3x the sequential read perfor-

mance of flash, between 3x and 10x the sequential write performance, and between

3x and 5x the random write performance. Flash, on the other hand, executes random

reads between 30x and 69x faster than disk.

Table 3.1 gives a sense of how the performance of existing systems might change

were the underlying magnetic storage system replaced with one based on flash. From

an algorithm design perspective, though, it is also useful to look at the relative costs

of random vs. sequential operations on magnetic disks and flash. Table 3.2 makes

that comparison, again assuming 4 KB I/O operations. In particular, it shows that

flash imposes only one one-hundredth the performance penalty of a disk for random

reads, but that it still imposes a significant penalty for random writes.

The poor performance of random writes as compared to sequential writes on flash

disks is initially perplexing, given that our model of flash memory assumes constant

page access costs irrespective of recent I/O history. Based on communications with

the manufacturer of device A, one explanation for this behavior is the implementation

of the logical-to-physical page mapping strategy, which requires additional copying

for random writes but not large sequential ones, which is a behavior not included in



Operation Flash Slowdown Disk Slowdown
Read (2.96, 3.32) 205.40
Write (112.01, 48.12) 108.86

Table 3.2: Performance penalty of random I/O relative to sequential I/O for disk and
flash. Flash values are given as (Device A, Device B).

our initial model of these devices. Additionally, random writes are in general problem-

atic for garbage collection. Assuming devices attempt to locate sequentially-numbered

virtual blocks in the same erase block (which will improve sequential overwrite perfor-

mance), then random writes will tend to leave relatively larger amounts of live data

in the same erase block as the pages they invalidate than do sequential writes, and

this live data must be copied out during garbage collection before the block may be

erased.

Finally, we observe two differences between the flash devices. Namely, device B

provides significantly higher random and sequential read throughput than does the

device A, whereas device A device enjoys an advantage in write performance. Based

on consultations with the manufacturer, the low sequential read throughput of device

A is apparently due to the device's controller, not to the flash memory itself.
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Chapter 4

Indexes

Having measured the raw performance of flash devices, we now concentrate on how

the use of flash disks affects the performance of a variety of database algorithms. In

this section, we look in particular at index performance. We consider two aspects of

indexes: the cost of creating and accessing them, and their utility in query execution.

To examine the former, we measure the time taken to insert and to lookup keys in a

B-Tree on both flash and magnetic disk. To examine the latter, we compare the time

taken to execute a query using both a sequential scan of a file and an index traversal

through an unclustered index on both types of devices.

While previous work has considered the utility of indexes on flash [13], the results

presented here are unique in that they consider the performance of indexes on flash

disks, not just single, raw flash chips, and in that they are concerned with absolute

performance, not energy efficiency (as in [13]).

4.1 Creating and Maintaining Indexes

In order to see how the costs of creating and looking up keys in indexes changes on

flash memory, we conducted a series of experiments using the Berkeley DB implemen-

tation of B-Trees. We created a range of B-Trees, each containing 2,000,000 records

with 8-byte keys and 100-byte records. Following [23], we parametrized the B-Trees

by r, which controlled the randomness of the key distribution. For r = 0, keys were



given successive integer values. At r = 1, they were chosen uniformly at random, and

for intermediate values of r, they were chosen either from the sequential or uniform

distribution with probability proportional to r. The B-Tree files occupied between

300 MB and 400 MB on disk, depending on r.

As r increases, the difficulty of the workload for the storage system increases.

With r = 0, successive inserts tend to fall into the same B-Tree node. This results

in multiple consecutive updates to the same page and allows the storage system

to perform write coalescing before actually executing a hardware write operation.

Alternatively, when r = 1, successive writes are randomly distributed throughout the

tree, and write coalescing becomes considerably more difficult.

For each value of r, we executed 20,000 inserts followed by 20,000 lookups from

the corresponding B-Tree, with keys for both operations chosen from the distribution

given by r. The cache was cleared between executing the inserts and the deletes.

We discarded the first 10,000 of each operation to allow the cache to warm up, then

measured the time taken for the second 10,000. The B-Tree page size was varied

between 512 bytes and 64 KB.

We used a Linux kernel parameter to restrict the memory recognized by the op-

erating system to 96 MB, which meant that insufficient memory was available to

fully cache either relation. This restriction models the actual situation that would be

faced by a production database, in which limited memory is available to devote to a

particular query.

The results for r = 0, r = 0.33, and r = 1 at 4096 byte block sizes on all three

devices are shown in Figure 4-1. Disk outperforms flash on inserts by a factor of

2.5 to 3.8 across values of r, which is expected given that disk can execute random

writes 5 times faster than flash. On queries, however, the situation is reversed: flash

outperforms disk by a factor of between 24x and 75x at r = 0.33 and r = 1 (at

r = 0 queries take essentially no time on either device, since they all tend to hit in

the same B-Tree node as their predecessors). Given the 30-70x advantage in random

reads enjoyed over disk by the flash devices, this result is also as expected.
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4.2 Use of indexes in query execution

Ultimately, index performance only matters if the database system chooses to use

indexes during query performance. Thus, a natural question to ask is when an index

is likely to be useful during query processing on flash, and whether indexes are more

or less useful than in a disk-based database. On disk, there is a well-known rule

of thumb stating that a query that will retrieve more than about 1/1000th of the

tuples from a file should not use an (unclustered) index, but should just scan the file

directly, as the random read costs incurred by following index pointers into the main

file become prohibitive. Here, we re-examine that rule of the thumb on a flash device

with far faster random reads.

To investigate this question, we created a Berkeley DB queue containing 2,000,000

tuples, each with 4-byte keys and random 100-byte records. The first 4 bytes of each

record were interpreted as an integer between 0 and 200,000, and a secondary index

was built on this value using a Berkeley DB B-Tree. The main file totaled 412 MB on

disk, and the secondary index occupied 42 MB. Again, we restricted available RAM

to 96 MB to prevent the operating system from simply caching all the data, although

sufficient memory was available to fully cache the secondary index.

Using these files, we ran queries of the form: SELECT * FROM tuples WHERE

record_int < x, with x varied to control query selectivity. The queries were ex-
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ecuted using both direct scans and index traversals, and the execution times for

device A, device B, and the conventional disk are shown in Figure 4-2. Note that

index scans are uncompetitive on disk for query selectivities over 0.05%, whereas they

remain competitive with direct scans until selectivities of roughly 2.25% (device A)

to 3.4% (device B) on flash devices, which is a two-order-of-magnitude improvement.

It is critical that a query planner take these new data into account. For example,

suppose that a query planner uses the disk-based 0.05% figure to select a direct table

scan for a query with 0.05% selectivity running on a flash disk. On the data used

here, the flash disk would need 8 to 16 seconds, depending on the device, to execute

the query. Had the planner used the correct 2-3% figure and selected an index scan

instead, the query would taken between 0.24 and 0.46 seconds (again depending on the

device), which is a "32x speedup. Additionally, it is worth noting that a conventional

disk would have required 7.8s to complete the query, which is 16x to 32x longer than

the flash devices.
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Figure 4-2: Performance of direct table scans vs index scans.



Chapter 5

Joins

Another area of query execution in which secondary storage performance plays a key

role is in external memory joins, in which one or both of the relations to be joined

is too large to fit in main memory. We investigate the performance of four common

external join algorithms:

* Standard nested loops join (NL)

* Index nested loops join (INL)

* Index-based sort-merge join (ISM)

* Hash join

A nested loops join simply scans the entire inner relation for matching tuples once

for every tuple in the outer relation. An index nested loops join works similarly, but

it requires an index (clustered or unclustered) on the inner relation, and it probes

the inner relation for matching tuples through the index rather than scanning it

completely. Finally, an index-based sort-merge join uses (clustered or unclustered)

indexes on both the inner and outer relations to traverse both in sorted order and

perform a sort-merge join.

Conversely, a hash join requires no indexes. Here, we describe the Grace Hash

Join algorithm [9]. For each relation in the join, it sequentially scans the relation,



hashes each tuple on the join attribute using some hash function hi, and writes

each tuple to a partition on disk based on the hash value. These partitions are

sized so that a full partition from the outer relation can fit in main memory. Then,

once both relations have been partitioned, the hash join algorithm reads in pairs of

corresponding partitions and outputs matching tuples, using a second hash function

h2 to probe for matches.

To evaluate the tradeoff between these algorithms on magnetic and flash disks,

we performed a primary/foreign key join between the customers and orders tables

using TPC-H data generated at scale 2. At this scale, customers contains 300,000

records and orders contains 3,000,000. The query was SELECT * FROM customers

AS c, orders AS o WHERE c. custkey < x, where x was varied to control query

selectivity.

We generated two copies of the dataset. One was stored using Berkeley DB B-

Tree files, and one was stored using Berkeley DB queue files. The B-Tree files provide

clustered indices (and thus fast lookups) on the primary keys of the relations and

support range queries, but this comes at the cost of more expensive traversals, as

B-Tree nodes are generally not contiguous on disk. Conversely, we used queue files to

represent database heap files: they are generally contiguous on disk, but they do not

support range queries or fast lookups. (Technically, Berkeley DB queue files could

have been used to support fast lookups in this case, but we treated them as simple

heap files.) In both cases, we used 4 KB pages, and we inserted records into the files

in random order so as to fully stress the join algorithms (e.g., given sorted data, a

nested loops algorithm can employ early termination optimizations to avoid scanning

the whole relation).

Additionally, we created a secondary B-Tree index on orders. custkey in the B-

Tree dataset and secondary B-Tree indexes on both orders . custkey and

customers. custkey in the Queue dataset. The sizes of all files used in these experi-

ments are shown in Table 5.1.

The NL and INL algorithms used customers as the inner relation, as doing so

yielded better performance. (When executing nested loop joins with customers as the



Dataset Orders Orders idx Cust. Cust. idx
Queue 405M 62M 66M 5.9M
B-Tree 453M 62M 74M N/A

Table 5.1: Sizes of input files used in join algorithm tests.

inner relation, we stopped searching for matching records for a given order as soon

as one was found, as only one customer for a given order can exist.)

We again restricted available RAM to 96 MB, and Berkeley DB was configured

with 2 MB of cache per open database handle.

The results of this experiment are presented in Figure 5-1, which shows execution

time as a function of query selectivity for each join strategy on both datasets and

all three storage devices. We do not show the NL results, as the runtimes quickly

became unreasonable.

We begin with device A and the Queue dataset (Figure 5-1(a)). At selectivities

from zero to roughly 0.45%, a flash-based ISM strategy is the fastest possible join. For

disk, the ISM strategy is also the best alternative. Flash, however, can follow pointers

from the unclustered indexes into the heap files more rapidly than disk owing to its

fast random I/O; indeed, as the selectivity of the query increases, the advantage of

flash-based ISM over disk-based ISM increases with it, owing to the increased number

pointer lookups executed.

At selectivities from 0.45% to 16%, a disk-based INL strategy is the fastest join,

and INL is also the fastest option on flash for most of this range (ISM is faster until

roughly 1% selectivity). In this regime, an INL join largely devolves to a sequen-

tial scan of the outer relation, and the conventional disk benefits from its superior

sequential read performance. Finally, for selectivities above 16%, a hash join is the

best strategy for both disk and flash, and the disk outperforms device A, as it has

a performance advantage in the sequential reads and writes that are the core of this

algorithm.

The results for device B on the Queue dataset (Figure 5-1(b)) are somewhat

different, owing to its faster sequential reads. A flash-based ISM strategy is the best

join for selectivities up to 0.8%. From 0.8% to 7%, device B and the conventional



disk are both best served by INL and perform roughly equivalently, which is explained

by the INL join devolving to a sequential scan of the outer relation and the devices

having similar sequential read performance. At 16% selectivity, both devices are still

best served by INL, but device B has a performance advantage, as its fast random

I/O allows it to quickly index into the inner relation. At higher selectivities, a hash

join is the best choice for both devices, and here the disk has a slight performance

advantage over device B because it can write out the hash partitions more quickly.

Finally, we consider the two flash devices on the B-Tree dataset (Figures 5-1(c)

and 5-1(d)). Here, an ISM join on flash is again the fastest strategy for selectivities

up to 0.65% (device A) and 1.25% (device B). At higher selectivities, a hash join

becomes the superior strategy for both the flash devices and the disk, again due to

the expense of ISM random I/O. Device A always executes the hash join more slowly

than the conventional disk, due to its poor sequential read and write performance.

Device B, by contrast, executes the hash join as quickly as disk until close to 25%

selectivity, owing to its superior sequential read performance (relative to device A).

Beyond 25% selectivity, the costs of writing out the larger hash partitions dominates,

and the conventional disk becomes the faster device. Note that unlike as in the

Queue dataset, an INL join never becomes the best strategy (and is not shown), as

sequentially scanning a B-Tree involves substantial random I/O to follow pointers

between leaf nodes.

Overall, the conclusion drawn from these results is that the flash devices have

better performance than the conventional disk at low selectivities in the presence of

indexes, where their fast random I/O can be exploited to maximum advantage. At

higher selectivities, device A is hamstrung by its poor sequential read performance

relative to disk, although device B remains competitive. At highest selectivities,

device B is inferior to disk owing to its disadvantage in writing out the hash partitions.
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Chapter 6

Log-Structured Storage Manager

In order to overcome the poor random write performance of flash disks, we consider

using a log-based storage system, which can convert random writes into sequential

writes. This is in the spirit of other work on flash storage [23, 11], which also uses

a logging approach. Rather than implementing our own log-based system, we in-

vestigate the idea by rerunning the device benchmarks described in Chapter 3 using

NILFS [101, a log-structured filesystem (LFS) for Linux and a 10 GB file in lieu of

a 20 GB one, due to implementation constraints of NILFS. NILFS performs all I/O

sequentially by appending block modifications and i-node updates to the end of a

log. A table of block numbers of i-nodes is kept in memory and used to lookup the

appropriate location of file contents when reads are performed. The test setup was

identical to that presented in the previous experiments, except we created the 10 GB

file by writing each block in a random order, to better approximate the state of the

log after a long series of random updates to the file.

The results for 16 KB I/O operations using device A are presented in Figure 6

(16 KB blocks gave the most operations per second for the LFS). As expected, ran-

dom write performance has been dramatically improved, by a factor of 8.2. This

improvement comes with a significant cost, however. Sequential and random read

performance drop by factors of 2.9 and 3.7, respectively. Sequential write perfor-

mance also decreases slightly, attributable perhaps to the development status of the

NILFS filesystem or to additional overhead to update i-nodes.



These results are somewhat encouraging. For a transaction-processing workload

consisting mostly of small random reads and writes, a flash disk using LFS provides

4.5x the random read throughput and 8.2x the random write throughput of a disk,

whereas a flash disk using a conventional file system provides 16.8x the random read

throughput but only 0.33x the random write throughput. Thus, for these devices

and write-heavy transaction-processing workloads, a logging file system will provide

better performance than a disk; by contrast, for read-heavy transaction-processing

workloads, a conventional file system would be preferred. We say the results are

only somewhat encouraging due to costs: neglecting power consumption, given that

magnetic disks are so much cheaper than flash, an array of multiple disks could still

provide superior random I/O at lower cost.

60

50

Seq. read Random read

U Disk V Device

Seq. write

A I Device
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Figure 6-1: Device performance with a logging filesystem and 16 KB I/O operations.



Chapter 7

Discussion

The results in the previous chapters lead to the following two general conclusions.

First, flash has a clear advantage over disk when using B-tree indices, due to its

superior random read performance. This allows it to answer low-selectivity queries

up to an order of magnitude faster than disk if the appropriate index is present. It also

substantially improves the utility of index-based join algorithms. When indices are

unavailable or selectivity is greater than a few percent, then current flash hardware

loses its clear superiority over conventional disks. One of the devices tested (device

B) can match or exceed a conventional disk in the sequential scans of relations that

are required to answer queries in the absence of indexes, whereas the other (device

A) cannot. Additionally, if a query plan requires temporary results to be written

to permanent storage (e.g., a hash or sort-merge join), then both flash devices are

inferior to conventional disks.

Second, the extremely poor random write performance of current flash hardware

implies that an in-place storage manager will likely be unable to provide acceptable

performance for update-intensive applications. A log-structured storage manager

can be used to substantially improve random write performance, but at the cost of

significantly limiting the fast random I/O that was an initial motivation for the use

of flash devices; moreover, the cost of the flash device would still be higher than that

of an array of conventional disks delivering superior performance.

Based on these observations, we see the following possible applications for current-



generation NAND flash disks in high-performance databases:

* In read-mostly, transaction-like workloads. For example, web applications such

as e-mail clients, forums, and account-access front-ends (e.g., applications to

view bank account balances or track shipments) all generate workloads with

few updates and many small queries.

* In environmentally harsh applications (e.g., field-deployed laptops), or settings

where maintenance costs are particularly high (e.g., data centers.) Here, the

resilience of flash memory provides a clear advantage over disks: broken disks

have even worse write performance than flash!

* In embedded applications, due to their low power consumption.

Ultimately, however, current flash technology seems to be a poor fit for high-

update databases if raw performance or price/performance ratio is the primary con-

sideration. Flash disks using an LFS can provide 3x the random write performance

of a disk, but flash disks costs 60x as much per GB ($16 vs $0.33), so multiple disk

spindles could provide superior performance at lower cost (albeit at higher power

consumption). Moreover, as will be discussed further in Section 9.1, were absolute

performance critical, a hybrid disk-RAM device that would provide far superior write

performance could be built for only 4.5x the cost of a NAND flash disk of equivalent

size.

That said, however, both disk and flash technology are constantly evolving, and

what is true today may well no longer be true in the near future. For example,

Samsung projects that within a year, their flash disks will see two-fold increases in

sequential read and write performance, a two-fold improvement in random read per-

formance, and a ten-fold improvement in random write performance [24]. Moreover,

costs per gigabyte will continue to decrease (e.g., in 2005, NAND flash cost $45/GB',

representing a three-fold cost decrease in under two years).

'See http://news. zdnet. co. uk/hardware/0, 1000000091, 39237444,00. htm



Such performance improvements and cost reductions, if realized, would give flash

devices an across-the-board superiority over conventional disks and would make them

attractive for both read-mostly and write-intensive workloads (of course, the fast

random read performance would still make the observations in this thesis regarding

when to use indexes highly relevant). Given that the write performance of flash is

expected to increase, we conjecture that existing update-in-place storage managers are

likely to remain the appropriate means by which to store databases on these devices,

as log structured schemes impose a significant read performance overhead and add a

fair amount of complexity (particularly with regard to free space reclamation).

Finally, even if these performance improvements are realized, as others have

noted [11], the logical block abstraction provided by IDE-based flash disks is lim-

iting. Further performance improvements (such as those proposed by [11]) could be

realized were databases able to "look under the hood" and directly access flash de-

vices. Databases have considerably more information about their expected I/O access

patterns than do most applications and could almost certainly lay their data out more

efficiently than the current generic logical block abstraction provided by flash disk

controllers can. Additionally, because flash drives are composed of multiple memory

chips, it is quite likely databases could extract additional parallelism from flash drives

by striping data across several chips and accessing them in parallel, and we address

this subject in the next chapter. Both types of optimizations could be done within

the existing IDE interface by encoding flash operations such as writes to a specific

page or erases of a particular block as reads and writes of special blocks exposed by

the device, avoiding the need for expensive new interfaces.



Chapter 8

Exploiting Parallelism

8.1 Overview

The previous chapters have treated flash disks as single, monolithic units. In re-

ality, however, these devices are composed of multiple, independently-addressable

flash chips, and a strategy that exploits the parallel nature of the devices may yield

performance benefits. In this chapter, we investigate ways to exploit the inherent

parallelism of flash disks.

Specifically, there are two ways in which one might take advantage of this par-

allelism. First, one could stripe data across the devices. I.e., one could split data

items into fragments and write one fragment to each flash chip. The latency of reads

and writes could then potentially be decreased due to parallel execution. Second,

one could replicate data across the devices. This could potentially boost read perfor-

mance, as reads dependent on data located on a currently-busy flash chip could be

satisfied by a read from another chip with a copy of the data. Write performance, on

the other hand, might suffer due to the increased write load of updating the replicas.

Our hypothesis is twofold. First, while the above techniques are also applicable

to disk arrays, we hypothesize that the tradeoffs between them will be different on

flash. Second, we hypothesize that a system which chooses the replication/striping

strategy to use as a function of the workload can outperform a system that makes

a single static choice. In this chapter, we test these hypotheses using erasure codes



based on Rabin's Information Dispersal Algorithm (IDA) [17]. Specifically, while we

continue to expose the ordinary virtual block abstraction that standard flash disks

do, rather than map a single virtual block to a single physical page, we will instead

fragment or replicate the block and store it on multiple physical pages on different

chips.

The rest of this chapter is organized as follows. In the next two sections, we discuss

ways by which data are commonly distributed over disk arrays and explain Rabin's

IDA. We then describe the discrete event simulator used to test our hypotheses and

present experimental results.

8.2 Striping and Replicating Data Across Disks:

RAID

The standard way to distribute data across multiple disks is to use one of the levels

of RAID originally described in [16]. Of those levels, three are of interest here. First,

RAID level 1 mirrors data across multiple disks: k disks are used (k > 2), and k copies

of each block are maintained. RAID level 1 can potentially improve concurrent read

performance by executing independent reads simultaneously on different disks but

neither improves write performance nor provides additional storage capacity.

Second, RAID level 0 breaks data into chunks and stripes those chunks across

two or more disks. RAID level 0 can improve both read and write performance

and imposes no storage overhead, but a failure of any disk in the array renders the

entire array useless. Finally, RAID level 5 extends RAID level 0 by striping parity

information across k > 3 disks such that the array may be recovered in the event of

a single disk failure (two simultaneous failures destroy the array). A RAID-5 array

of k disks has the capacity of k - 1 disks.

In the present work, we do not simulate RAID levels directly, but rather choose

values of n and m for Rabin's IDA (described below) to correspond to RAID levels

0, 1, and 5.



8.3 Striping and Replicating Data Across Flash

Chips: Rabin's IDA

In order to distribute virtual blocks across multiple physical pages located on multiple

flash chips, we use Rabin's Information Dispersal Algorithm [17]. At a high level, the

IDA works by splitting blocks into n fragments of which m are required to reconstruct

the block (i.e., k = n- m fragments may be lost). More specifically, if we consider the

case of sequences of bytes (rather than of arbitrary symbols) the algorithm is based

on matrix multiplication and inversion in the Galois field GF(28 ). First, consider

encoding. The algorithm chooses n coding vectors of length m such that any subset

of m vectors is linearly independent, which yields an n * m coding matrix A. Second,

the input byte sequence F is divided into chunks of length m, which form the columns

of a m.* I data matrix B. To generate the coded fragments, the algorithm multiplies

A * B, yielding an n * l_ matrix C in which each of the n rows corresponds to onem

coded data fragment.

Next, consider reconstruction. Suppose that we have m coded fragments from C

and we wish to regenerate the original data matrix. Since we generated C by multi-

plying B by A, and any m rows of A are linearly independent, it can be shown [17]

that we can regenerate B by multiplying the coded fragments available by A- 1 , the

inverse of A. Because the encoding and decoding operations rely only on inner prod-

ucts, the algorithms are lightweight and are able to make use of the vector processing

extensions on modern processors [171; this characteristic is important given that we

wish to impose minimal CPU overhead.

The storage overhead for this encoding scheme is given by n/m; by judicious

choice of n and m, we can achieve arbitrarily low storage overhead. In the present

work, we fix n as the number of flash chips in the flash device (so as to be able to

write one fragment to each chip) and vary both m and the number of the generated

fragments actually written to provide varying degrees of redundancy. When m = n,

we have RAID-0-like striping with no redundancy; when m = 1 and we write one

fragment, we have a single copy; and when m = 1 and we write r fragments, we have



r-way replication. On the other hand, the IDA algorithm allows us to express data

distribution strategies outside of this standard set, such as n = 4, m = 3, write 4,

which gives 1.33x replication.

8.4 Experimental Setup

To test these hypotheses, we built a discrete event simulator to test various coding

strategies under a variety of database workloads. The simulator models a 64 MB

flash disk composed of four 16 MB flash chips with 2048 byte pages and 64-page

erase blocks. While this simulated device is considerably smaller than the actual

disk used in previous chapters, a multi-gigabyte device would have required excessive

resources to simulate without providing any additional insight. The flash chips had 20

microsecond page read, 200 microsecond page program, and 1500 microsecond block

erase times, which were derived from Samsung product literature [5]. Simulated

garbage collection was carried out using the model presented in Section 2.2, with the

flash device assumed to be 50% full, which gave an average-case write time of 466

microseconds. For comparison, we also simulated an array of four conventional disks,

each with 8,192 2048 byte pages (total array capacity 64 MB), a 6 ms uniform seek

time, and 60 MB/s read and write bandwidth.

We note that while the performance of the simulated disk agrees closely with real-

world devices, the performance of the simulated flash device differs significantly from

the flash disks tested earlier in this thesis. For example, using the 466 microsecond

average case write time, a simulated flash chip could sustain 4.2 MB/s of random

writes, while the devices tested manage less than 100 KB/s. Even allowing for OS

overheads that would preclude executing a write in 466 microseconds, the difference

is considerable. There are three potential sources of the discrepancy. First, the

simulated device is assumed to be 50% full, so garbage collection operations need to

copy out only half an erase block's worth of live pages. The actual devices, however,

may not be able to detect that only half of their pages are actually in use (due to the

filesystem layered over it), which would cause them to copy out an entire erase block's



worth of pages on each garbage collection event. With 100% space utilization, our

simulator gives read and write times that are close to those observed experimentally

by other groups (e.g., '-15 ms/write) [12]

Second, the devices tested may be buffering writes for tens of milliseconds before

executing them, presumably in an attempt to perform write coalescing. As our bench-

marks were single-threaded, such buffering would reduce the throughput by delaying

the next write. Further experiments (not shown) demonstrated that device B could

support two concurrent random write benchmarks each with the same throughput as

a single benchmark instance, indicating that higher throughput is possible.

Finally, the devices may be managing flash memory in blocks of 256 or 512 KB,

to decrease the mapping overhead, which would require them to copy 256 to 512 KB

per write if the device is completely full [21].

The simulated devices were tested under a workload designed to resemble that of

a transaction processing system; namely, a mix of random reads and writes of single

pages. The system was configured with a number of read worker processes and a

number of write worker processes, each of which generated a read or write to a page

in the device chosen uniformly at random, waited for the operation to complete, slept

for an interval, and then issued another request. Separate base sleep times existed for

each class of workers (read or write) and the actual time slept was chosen uniformly

at random from the interval [0.75*SLEEPTIME, 1.5*SLEEPTIME]. For each set of

parameters (number of writers, number of readers, writer base sleep time, reader base

sleep time), we simulated running the system on both the flash disk and the disk array

using all possible coding strategies with n = 4 (i.e., require from m = 1 to 4 fragments

to reconstruct and write between the number of fragments required and 4 fragments

to the device). A write request returned to the application once m fragments had

been written, and fragments of a single virtual block were always written to different

chips or disks. Only the I/O time was considered (the CPU time for encoding and

decoding fragments was not taken into account). The simulation was considered to

have converged after a run of eight, ten-second epochs showed no more than a 1.0%

change in the total operations/s rate from the end of the first epoch to the end of the



eighth.

Finally, we note that by using the IDA to produce fragments of 2 KB virtual

blocks, we produce fragments smaller than the 2 KB physical pages. Here, we assume

that either a small in-memory buffer exists to coalesce these small writes into full

(or close to full) page writes, or that the underlying flash devices supports partial

page programs. Thus, when computing the time taken for a write, we use a linear

model that charges a worker process with only the time to write fragments, not entire

pages. For reads, we charge each worker process with the time taken to read an entire

physical page (including a full seek, on disk) as most likely the requesting worker was

the only worker with an interest in the contents of the page, precluding amortization.

An alternative design, similar but not explored here, would be to provide larger

(e.g., 8 KB) virtual blocks so that the IDA-produced fragments would be closer in

size to a full physical page.

8.5 Results

Using the procedure described above, we simulated a transaction processing system

with 1, 2, 5, or 10 write processes and 5, 25, or 50 read processes. The write process

base delay was 200 microseconds, and the read process base delay was varied over

200, 1500, and 3000 microseconds.

Here, we show results from three cases: 5 readers, 200 microsecond base write

delay (high write load); 25 readers, 1500 microsecond base write delay (mixed load);

and 50 readers, 3000 microsecond base write delay (high read load). In each case,

there were five writer workers. Figure 8-1 shows the degree of replication in use by the

optimal coding strategy for each configuration of workload and device, and Figure 8-

2 shows the number of fragments required to reconstruct a block under the optimal

strategy in each configuration.

Figures 8-1 and 8-2 show that while the optimal strategy for a disk array is

workload-invariant, the optimal strategy for a flash device depends on the workload.

The optimal strategy on a disk array always uses a one-copy approach: each virtual



block is written to exactly one page. On a flash device, however, write-dominated

workloads are best served by a RAID-1-like strategy that fragments blocks evenly

among all chips without any replication (thus requiring all fragments to reconstruct),

while read-dominated workloads benefit from a replication strategy that places full

copies of blocks on multiple chips. These differences are naturally explained by the

differences between the two types of storage devices. Disk arrays incur substantial

seek delays to begin accessing a block regardless of the amount of data to be retrieved

from it, and in the presence of a random write workload, updating multiple locations

becomes prohibitively expensive. Moreover, due to the high fixed seek cost, parallel

speedups cannot be realized, as reading or writing a fraction of a block takes almost

as long as writing the entire block. Flash devices, on the other hand, have essentially

no seek penalty, which allows redundancy to be maintained for read-heavy workloads

even in the presence of some updates. By contrast, data are written to flash devices

more slowly than they are read. Thus, given the low cost of initiating an I/O op-

eration, under write-heavy workloads a striping strategy that reduces the amount of

data to be written to any chip can improve performance.

Figure 8-3 shows the performance of the optimal coding strategy (in operations/s)

relative to three standard strategies on a flash device. "Stripe" is essentially RAID-0,

"one-copy" is the strategy described in previous chapters of this thesis, and "repli-

cation" is 2-way replication. Note that the optimal coding strategy is essentially

no better than any of the standard strategies; indeed, it differs only in the mixed-

workload case, and there only by a negligible amount. There is no single strategy that

is competitive with the optimal strategy across all workloads, however. Replication is

equivalent under the read-heavy workload but delivers roughly half the performance

of the optimal strategy under the write-heavy workload, one-copy is never equivalent,

and striping is equivalent under the write-heavy and mixed workloads but is 20%

slower under the read-heavy workload.

Figure 8-4 presents the same comparison on a disk array, and here, by contrast,

single-copy is always equivalent to the optimal strategy (since indeed it is the opti-

mal strategy as described above). Moreover, Figure 8-4 clearly illustrates the vast



performance advantage that the simulated flash device has over the simulated disk

array in this setting: regardless of workload or replication strategy, the flash device

outperforms the disk array by two to three orders of magnitude. Indeed, these results

suggest that significant improvements can be realized in the actual devices currently

available and tested in earlier chapters.

8.6 Conclusion

We thus conclude that while there is little observed advantage in using Rabin's IDA

over standard RAID levels (and the CPU requirements of the IDA, while slight, are

not modeled here and might eliminate the small advantage observed), significant (up

to 2x) performance improvements can be achieved on flash devices by varying the

layout of data across flash chips.

We close with a few caveats. First, while these experiments chose a single layout for

the entire database, in practice, one would likely choose a layout for individual items

(e.g., tables) in the database instead. I.e., one might use a high degree of replication

to encode a table which is mostly read and a low degree of replication to encode one

that is mostly written. Second, the simulations presented here assumed the existence

of an in-memory map to map virtual blocks to fragments on permanent storage. In

practice, this may not be practical for large devices. The existing FTL used by flash

disks could be extended to support our coding strategies in a straightforward manner,

however: rather than mapping a virtual block to a single page, it would simply need

to support mapping a virtual block to multiple pages.

Finally, we note that the results presented here assume a workload composed

entirely of the small random reads and writes typical of a transaction processing

system. Other systems might exhibit a larger degree of sequential I/O and might

yield different conclusions.
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Figure 8-1: Degree of replication provided by the optimal coding strategy for both a
flash device and a disk array.
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Figure 8-3: Performance of the optimal coding strategy relative to three standard
strategies on a flash device.
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Figure 8-4: Performance of the optimal coding strategy relative to three standard
strategies on a disk array.



Chapter 9

Related Work

In this chapter, we discuss two major classes of previous research related to the present

work: attempts to mask the mechanical seek latency of conventional magnetic disks,

and prior attempts to build database systems using flash memory.

9.1 Hiding Disk Latency

The problem of masking the delay of a disk seek has been extremely well studied

in the research literature, in both the general systems and database communities,

and we cannot possibly review the entire body of work here. Generally, though,

the need to avoid disk seeks can be seen throughout the design of modern database

systems, from B-tree data structures that use extremely high-arity trees to minimize

the number of I/O operations required to descend to a leaf, to hash join algorithms

that rewrite entire relations on the fly to make them more amenable to sequential I/O,

to query plans that scan entire relations rather than incur the random I/O penalty

of an unclustered index traversal.

Clever algorithms can go only so far, however, and a second approach to improv-

ing database I/O performance is the RAM disk, of which the Texas Memory Systems

RamSan product line [20] is an example. Such systems provide a substantial quantity

(10-1000 GB) of DRAM memory with a battery backup and an equivalent amount

of magnetic storage. In the event of a power failure, sufficient battery power will



be available to copy the contents of the RAM to disk, avoiding data loss. These

devices have the advantage of extremely high performance-RAM is far faster than

either flash or magnetic memory-but at a steep price: a 16 GB RamSan, for example,

costs $25,000, compared to $270 for a 16 GB NAND flash disk. This figure is some-

what misleading, however, as a RamSan device includes high-performance network

interfaces (e.g., Infiniband) that far outclass anything contained in a flash disk. A

fairer comparison would be the cost of eight 2 GB DDR2 RAM chips (total $1,072),

with perhaps another $100-$200 for a controller, battery, and backup disk, for a to-

tal cost in the range of $1200, or roughly 4.5x the cost of an equivalent flash disk.

(These are resale prices, but the comparison holds assuming similar markups on both

NAND flash disks and RAM chips.) These figures suggest that a RAM/disk/battery

hybrid might well be a more appropriate device than a NAND flash disk if pure per-

formance were the only consideration, although a flash device would exhibit lower

power consumption and higher physical robustness.

9.2 Previous Work on Flash Memory

There has been considerably previous work on algorithms and data structures for flash

memories, which is well summarized in a survey paper of the same title [6]. Generally,

this work forms the basis for the techniques considered in this paper; e.g., the dynamic

block remapping strategy to handle writes or the use of logging filesystems to avoid

expensive random writes.

9.2.1 Previous Work on Flash Memory Databases

Work to date on relational databases on flash has been conducted along three ma-

jor axes. First, several authors have considered the problem of scaling relational

databases down to function in flash-based, resource-constrained environments such

as smart cards [3, 191; this work is outside the scope of the present study, which

focuses on high-performance systems in resource-rich environments.

Second, several authors have considered the problem of index design on flash



memory. In [23], Wu et al. present a log-structured B-tree design. In contrast to

standard implementations, in which B-tree nodes are overwritten with new data on

each modification, the B-tree implementation proposed by Wu et al. writes a log

record for each change to a node. All nodes in the B-tree share a common log output

buffer in memory, which is flushed to disk as it fills. This approach converts slow

random I/O into fast sequential I/O, dramatically improving update performance.

The Wu scheme has two drawbacks, however. First, it appears to scale poorly as

B-tree size increases. The Wu approach maintains an in-memory map with an entry

for every node in the B-tree that gives the locations of the node's log records on flash;

as the size of the B-tree increases, so to does this map. Second, the Wu approach

makes read operations potentially more expensive, as log records may need to be read

from multiple locations on disk.

To resolve this latter problem, Nath and Kansal [13] propose a hybrid scheme in

which updates to B-tree nodes are either performed in-place or logged, depending on

the access pattern seen by the given node (e.g., frequently written but infrequently

read nodes should have their updates logged, while frequently read but infrequently

written nodes should be updated in place). They prove that the algorithm used for

switching update modes is 3-competitive, which is a lower bound. They still require

an in-memory node translation table to locate the pages containing log records for

each node, however. Additionally, their work appears to be more concerned with

embedded systems than with high performance, and their experimental evaluations

use a flash chip of only 128 MB.

Finally, beyond indexes, Lee and Moon have proposed a general logging framework

for a database storage manager, which they call In-Page Logging [11]. The key idea in

this scheme is to co-locate log records in the same erase block as the database pages

whose updates they record. Such a design has the advantage of making garbage

collection efficient: once the log pages have been filled and the data pages must be

updated and rewritten, the old data pages and log pages can be erased in a single

operation. Additionally, the authors claim that the reduced write/erase load attained

by this system will improve overall performance.



There are, however, a few concerns with this scheme. First, it seems likely that

In-Page Logging would have a substantial impact on read performance (though the

paper does not explicitly evaluate read overheads), as the authors propose locating 16

log pages in each erase block, and thus each read of a data page would require reading

16 log pages, any of which might contain relevant log records. Second, the In-Page

Logging scheme requires the ability to co-locate specific pages within the same erase

block, which is not supported by current generation flash disks, nor (to the best of

our knowledge) a feature planned by any flash disk manufacturer.

9.2.2 Previous work on IDA and Disk Arrays

This thesis is not the first work to propose using Rabin's IDA to distribute data over

multiple disks in an array. In [2], Bestavros concluded that the IDA was the best way

to take advantage of redundancy in disk arrays to improve performance, which differs

from the results presented here. The strategies against which they compared the IDA,

however, are not the same as those in the present work. Second, the paper dates from

the late 1980s, and disk performance has since evolved significantly. Finally, the

work was purely analytical and did not include an analysis of contention between

concurrent processes in the system, which this work does.



Chapter 10

Conclusion

This thesis has made the following contributions. First, we have measured the per-

formance of a new class of "flash disk" storage devices under a set of realistic I/O

workloads and characterized those regions of the space in which these devices pro-

vide a performance advantage over conventional disks. Second, we have evaluated a

number of core database algorithms (indexes and joins) on these devices and demon-

strated how the new performance characteristics of flash memory change the way

a query optimizer ought generate query plans. We showed that current flash disks

provide excellent random read performance, which enables them to considerably out-

perform disks at index-based "needle-in-a-haystack" queries, but that their poor write

performance renders them unattractive for update-intensive workloads.

Additionally, we explored the use of a log-structured storage manager to replace

the standard in-place update approach and found that while a log-structured approach

can significantly improve random write performance, it does so at the expense of the

fast random reads that make flash devices unique. We conclude that log-structured

approaches can make flash devices tolerable in update-intensive workloads if other

considerations force their use, but that given the lackluster performance and high

cost of flash memory, disk is otherwise preferable.

We also explored ways in which the inherent parallelism of flash devices may

be exploited. We evaluated a variety of strategies for fragmenting and replicating

virtual blocks across multiple flash chips, and we demonstrated that flash chips and



disk arrays require different strategies. Moreover, we demonstrated that, on flash

devices, an adaptive strategy that chooses the degree of fragmentation/replication

based on access patterns can yield up to a 2x speedup over a static strategy.

Finally, we speculated on future trends in NAND flash performance and cost

and suggest that within the next year or two, improved flash disks may present a

compelling performance argument for use in both read-mostly and update-intense

workloads, although at present, they are best suited to read-mostly applications. We

noted that further performance improvements might be realized were databases able

to access flash disks via a lower-level interface than the current IDE-disk emulation

provided by flash drive manufacturers.
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