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Abstract

Location-awareness is essential for many wireless network applications. However,
determining nodes' positions precisely is a challenging task, especially in harsh multi-
path propagation environments. To address this problem, wide bandwidth signals are
envisioned to be used in future localization systems, since such signals can provide
accurate range measurements. In this paper, we investigate the localization perfor-
mance of wideband networks and proposed a performance measure called the squared
position error bound (SPEB) to characterize the localization accuracy. We derive the
SPEB succinctly by applying the notion of equivalent Fisher information (EFI). The
EFI provides insights into the essence of localization problem by unifying the local-
ization information from individual anchors and that from a priori knowledge of the
agent's position in a canonical form. We also investigate the use of wideband antenna
arrays and the effect of clock asynchronism on the localization accuracy. Our anal-
ysis begins with the received waveforms themselves rather than utilizing only signal
metrics, such as time-of-arrival and received signal strength, extracted from the wave-
forms. Our framework exploits all the information inherent in the received waveforms,
and therefore the SPEB serves as a fundamental limit of localization accuracy.

Thesis Supervisor: Moe Z. Win
Title: Associate Professor
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Chapter 1

Introduction

Location-awareness is essential for many wireless network applications, such as the

localization service in next generation cellular networks [1], search-and-rescue oper-

ations [2, 3], logistics [41, and blue force tracking in battlefields [5]. Although lo-

calization in the absolute frame through the Global Positioning System (GPS) has

found applications in many different fields [6], the effectiveness of GPS is limited in

harsh environments, such as in buildings, in urban canyons, under tree canopies, and

in caves [7]. In these environments, line-of-sight (LoS) signals from GPS satellites

are often unavailable due to the inability of GPS signals to penetrate most obsta-

cles. Hence, new localization techniques are required to meet the increasing need for

accurate localization in such harsh environments [7, 8].

Wideband wireless networks are capable of providing accurate localization in GPS-

denied environments [7-12]. A wireless location-aware network consists of two kinds of

nodes: anchors and agents. Anchors are the nodes with known positions (for example,

through GPS or system design), and agents are the nodes with unknown positions,

as shown in Fig.1-1. Each node is equipped with a transceiver, and localization

is accomplished using signals passed between agents and their neighboring anchors.

Wide bandwidth or ultra-wide bandwidth (UWB) signals are particularly well-suited

for localization, since they can provide accurate and reliable range measurements due

to their fine delay resolution and robustness in harsh environments [13-25].

Since agents are localized using the received signals from anchors, their position



Anchor

y) Agent

Figure 1-1: Wireless location-aware networks: each arrow denotes the flow of ranging
information from anchor to agent.

estimates are subject to uncertainty due to noise and environment-dependent phe-

nomena, such as fading, shadowing, and multipath propagation. To characterize the

localization performance, two measures are commonly used, the geometric dilution of

precision (GDOP) [6] and the Cramer-Rao bound (CRB) [26]. The GDOP provides

a way to compare geometric configurations of anchors [27]. The CRB sets a lower

bound on the variance of estimators for deterministic parameters [28,29]. These two

measures are equivalent only if the ranging error is Gaussian [30].

To localize an agent, a number of signals transmitting from anchors to the agent

are needed, and the agent's position relative to the anchors is extracted from these

signals using a variety of metrics. Commonly used signal metrics for localization

include time-of-arrival (ToA) [7-9,23-25], time-difference-of-arrival (TDoA) [31,32],

angle-of-arrival (AoA) [8,33], and received signal strength (RSS) [8,34,35].

Time-based metrics, ToA and TDoA, are obtained by measuring the signal prop-

agation time between nodes. In ideal scenarios, the estimated distance equals the

product of the known propagation speed and the measured signal propagation time.

The ToA metric gives possible positions of an agent on a circle with the anchor at the



center, and two common way to measure ToA are either the one-way time-of-flight

of a signal in a synchronized network [24,36,37], or the roundtrip time-of-flight in

non-synchronized network [17,38]. Alternatively, the TDoA metric provides possible

positions of an agent on the hyperbola, determined by the difference in the ToA's from

two anchors located at the foci. Note that TDoA techniques require synchronization

among anchors but not necessarily with the agent.

Since time-based metrics depend on the direct path signal from the anchors to the

agent, they are subject to errors caused by multipath and non-line-of-sight (NLoS)

conditions [39,40]. Multipath refers to a propagation phenomenon in which signals

reach the receiving antenna via multiple paths, including reflecting off the surround-

ings. The superposition of these arriving paths results in fading and interference,

complicating the detection of the direct path. NLoS conditions, created by physical

obstructions in the direct path, produce a positive bias in the measurement of prop-

agation time, which can severely degrade the localization accuracy. Several types of

algorithms have been proposed to deal with NLoS conditions: 1) treat the NLoS bias

as additive noise modeled by experimental data [7,41]; 2) identify the NLoS signals,

and then remove these signals or weigh the importance of these signals [42-47]; or 3)

consider the NLoS bias as a parameter to be estimated [8,10,11,36,37,48-50]. In the

third type, the NLoS biases and amplitudes of multipath components are modeled as

parameters to be estimated for determining the first-arriving path.

Relatively few studies have investigated the effect of multipath and NLoS condi-

tions on the accuracy of ToA-based localization [7, 8, 10, 11,36, 37,50,51]. In [51], the

CRB for the position in NLoS environments was derived assuming that the signals are

received in line-of-sight (LoS) conditions with biases injected as small perturbations

in attempt to account for NLoS effects.' The authors in [7,8,36,37] showed that NLoS

signals do not improve localization accuracy unless a priori knowledge of the NLoS

biases is available, but their results were restricted to specific models and did not

provide in-depth analysis of the effect of multipath conditions on ranging accuracy.

1In practice, however, a NLoS induced bias can be as much as a few kilometers depending on the
propagation environment [39, 42], and small perturbation may not compensate for NLoS induced
error.



The angle at which a signal arrives at the agent, known as AoA, provides informa-

tion about the agent's position relative to the anchor. AoA can be obtained using an

array of antennas, based on the signals' ToA at each antenna.2 The use of the AoA

metric for localization has been investigated, and many hybrid systems have been

proposed. These include hybrid ToA/AoA systems [49,56], and hybrid TDoA/AoA

systems [57]. However, these studies either are restricted to narrowband signals, or

approximate wide bandwidth signals using narrowband models. Such approaches are

not applicable for wideband antenna arrays, since typical assumptions for narrowband

array signal processing are not valid for wide bandwidth signals.

RSS is also a useful metric for localization, since the propagation distance be-

tween nodes can be estimated from the strength of the received signal [8,34,38]. This

technique has been widely implemented due to its low complexity, but has limited

accuracy [4,8]. Although RSS can be measured by the receiver during data communi-

cation, accurate channel model is needed in order to obtain reliable range estimates.

Note that all these signal metrics are obtained from the received waveforms, and

the specific measurement processes used to extract these metrics may discard rele-

vant information for localization. Moreover, the models for the signal metrics depend

heavily on the measurement processes. For instance, the ranging error of the ToA

metric is commonly modeled as additive Gaussian [7,49,58]. However, it has been

shown that the ranging error is not Gaussian [20,24,59,60], and this has been further

verified by experiments [7, 23]. Therefore, in deriving the fundamental limits of lo-

calization accuracy, it is necessary to start from the received waveforms rather than

from signal metrics extracted from the waveforms [10, 11,36, 37].

In this thesis, we investigate the localization accuracy of wideband wireless net-

works. Our analysis begins with the received waveforms themselves rather than uti-

lizing only signal metrics, such as ToA, TDoA, AoA, and RSS, extracted from the

waveforms.
2There are two ways to obtain the AoA metric: the first is directly through measurement by

a directional antenna, and the second is indirectly through ToA measurements using an antenna
array [52-551. Wideband directional antennas that satisfy size and cost requirements are difficult to
implement, since they are required to work across a large bandwidth [383. As such, antenna arrays
are more commonly used, when angle measurement for wide bandwidth signals is necessary.



The main contributions of this thesis are as follows:

* We derive the fundamental limits of localization accuracy for wideband wireless

networks in terms of a performance measure called the squared position error

bound (SPEB).

* We propose the notion of equivalent Fisher information (EFI), which enables

us to succinctly derive the SPEB. This methodology also provides insights into

the essence of the localization problem by unifying the localization information

from anchors and that from the a priori knowledge of the agent's position in a

canonical form.

* We characterize the a priori knowledge of the channel parameters from realistic

wideband propagation models and determine its contribution to the localization

accuracy.

* We quantify the effects of multipath propagation and path-overlap on localiza-

tion accuracy, and show that the NLoS components can be beneficial when a

priori channel knowledge is available.

* We derive the fundamental limits of localization and orientation accuracy for

localization systems employing wideband antenna arrays. We prove that AoA

metrics obtained from antenna arrays do not increase the localization accuracy

beyond that achieved by ToA metrics alone.

* We quantify the effect of clock asynchronism between the anchors and the agents

on localization accuracy, using both a single antenna and an array of antennas.

The rest of the thesis is organized as follows. In Chapter 2, we present the our sys-

tem model and propose the notion of the SPEB to characterize localization accuracy.

Chapter 3 provides the derivation of the FIM for the SPEB, for both deterministic

and random parameter cases. Then, in Chapter 4, we introduce the notion of EFI,

and show how it can simplify the derivation of the SPEB and give insights into the



localization problem. In Chapter 5, we investigate the performance of localization sys-

tems employing wideband antenna arrays. Chapter 6 investigates the effect of clock

asynchronism between the anchors and the agents. Finally, numerical illustrations

are given in Chapter 7, and conclusions are drawn in the last chapter.



Chapter 2

Squared Position Error Bound in

Multipath Environments

In this chapter, we briefly describe the wideband channel model [15-18,61] and in-

troduce the SPEB, a performance measure for localization accuracy.

2.1 System Model

Consider a wireless network consisting of N® anchors and multiple agents. Each an-

chor has perfect knowledge of its position, and each agent attempts to estimate its

position based on the received wide bandwidth waveforms from neighboring anchors.

Radio signals traveling from anchors to agents are subject to multipath propaga-

tion. The agents estimate their positions independently, and hence without loss of

generality, our analysis focuses on one agent in the network.

Let p E R' for n- = 2 or 3 denote the coordinates of the agent's position, which

are to be estimated, and let No® = {1, 2, ... , N} denote the set of all anchors whose

positions Pk E RI (k E Kf®) are precisely known. Without loss of generality, we

let ANL = {1, 2, --- , M} denote the set of anchors from which the agent receives LoS

signals ( 0 < M < N®) and let KNNL = {M + 1, M + 2, -.. , N®} denote the remaining

anchors from which the agent receives NLoS signals. We first focus on two dimensional

case (n = 2) and then extend the results to n = 3. For n = 2, we have p [x y ]T



and Pk [Xk Yk ]T

The received waveform at the agent from the kth anchor can be written as

Lk

rk(t) = ) s(t-r l)) +Zk(t), tE [O0, Tob) (2.1)
1=1

where s(t) is a known wideband waveform whose Fourier transform is denoted by

S(f), ak' and (1 are the amplitude and delay, respectively, of the lth path, Lk is the

number of multipath components, 1 zk(t) represents the observation noise modeled as

additive white Gaussian processes with two-side power spectral density N0o/2, and

[ 0, Tob) is the observation interval. The relationship between the agent's position and

the delay of the lth path is given by

7T = [ IIP - PklI + bk (2.2)

where 1 -is the Euclidean distance, c is the speed of light, and b~)' > 0 is a range

bias. Range bias bk = 0 for LoS propagation, whereas 0b > 0 for NLoS propagation.

Our analysis is based on the received signal of the form given in (2.1), and hence the

parameter set includes the agent's position and the nuisance multipath parameters,

i.e.,

1. The agent's position p = [x y]T;

2. The biases associated with NLoS paths,2 denoted by b = b b ~ ... b T

where the individual element is

b (2) b (3) b (Lk) 1 T for E JL
ba k ... k (2.3)

0)b b(2) b (3) ... b Lk) , for k EJVNL.-

Note that we exclude b) from the parameter vector 0 for LoS signals since

'The number of multipath components Lk in rk(t) depends on the transmission bandwidth as
well as the physical environment.

2Note that throughout this paper, we will make a distinction between signals and paths. In a
LoS signal, the first path is called a LoS path, whereas the remaining paths are referred to as NLoS
paths. In a NLoS signal, all paths are NLoS paths.



b = 0;

3. The amplitudes of multipath components a = [ aT

Ok [ l) (2)k~

TT T]
C92 CfN@,

For notational convenience, we collect all parameters into the vector

9=[pT T~l TC

where -k is the vector of the multipath parameters associated with rk(t),

)  b(2)  a(2)
1) b(2) (2)Qle Ic Qk

b(Lk) e(Lk) T

b (Lk) kLk()] ,
k k T I

2.2 Squared Position Error Bound

Let 6 denote an estimate of the parameter vector 0 based on the N® received wave-

forms, given by the vector

r(t)= [= ri(t) r2(t)
1

SrN.(t) J te [0,Tob). (2.7)

This continuous random process r(t) can be represented by the random vector

r -

r Tr T r T r TfJ (2.8)

where rk is obtained from the Karhunen-Loeve expansion of rk(t) [28,29]. The mean

squared error (MSE) matrix of 0 satisfies the Information Inequality 3 [28,29, 62]

(2.9)

3The notation Er,9o{1} is the expectation operator with respect to the random vectors r and 0,
and the notation A >- B denotes that the matrix A - B is positive semi-definite.

-I

a (Lk)]k

where

(2.4)

TKN@N i (2.5)

=k {
[bl

k e KLV

kE NNL
(2.6)

I

ErO I ( - 0)(o- 0), 1ýt Jgl



where Jo is the Fisher information matrix (FIM) for the parameter vector 0.4 Note

that (2.9) holds for both deterministic and random parameter vectors under some

regularity conditions [281. Moreover, if the parameter vector is hybrid, i.e., some

of its elements are deterministic and others are random, the above inequality still

holds and provides lower bound on the MSE matrix of any unbiased estimates of the

deterministic parameters and any estimates of the random parameters [62]. 5

Definition 1. The squared position error bound (SPEB) is defined to be6

P(p) A tr [Jg1] 2x2 . (2.10)

Note that the above definition is natural, since (2.9) implies that the MSE matrix

of the position estimate p = [ ^ ]T satisfies [10]

E•r,e {(P - P)(PP - p)T>} _ [J•1 ] , (2.11)

and thus we have7

Er,o {IPPI - P 2  tr [JO1 2x2  . (2.12)

Thus, to obtain the SPEB, we need to derive the FIM for the parameter vector 0.

4More precisely, Jo is called the Bayesian information matrix if all or some parameters in 0 are
random, and the corresponding lower bound is called the Bayesian Crambr-Rao bound or the hybrid
Bayesian Crambr-Rao bound, respectively. In this work, we do not distinguish the names.

5With a slight abuse of notation, Er,0{-} in (2.9) will be used for both deterministic and hybrid
cases with the understanding that the expectation operation is not performed over the deterministic
elements of 0.

6 The notation tr{.} is the trace of a square matrix, and [.]nxn denotes the upper left n x n
submatrix of its argument.

7Note that for a three-dimensional localization problem, the SPEB is defined using the 3 x 3
matrix [J1] 3x3



Chapter 3

Fisher Information Matrix

In this chapter, we derive the Fisher information matrix for both deterministic and

random parameter estimation. The former case corresponds to the situation where

there is no a priori knowledge of the parameters, whereas in the latter case, such

knowledge is available. This knowledge will be shown to increase the estimation

accuracy.

3.1 Fisher Information Matrix without A Priori

Knowledge

The FIM for the deterministic parameter vector 0 is given by [28]

Jo A Er In/f(rO) ] In f (rIO) , (3.1)

where f(rjl) is the likelihood ratio of the random vector r conditioned on 0. Since

the received waveforms from different anchors are independent, the likelihood ratio

can be written as [29]

f(rlO) = f f(rk O), (3.2)
kcn®r



where

f(rkj0) oc exp 2oJ]b k( Lk t S - )dt - JTob LZ ()s (t - T ) 2Jdtj

(3.3)

Definition 2. An agent is said to be localizable if its position can be determined by

the signal metrics extracted from waveforms received from neighboring anchors.

To facilitate the analysis, we consider a mapping from 0 into another parameter

vector

(3.4)

where

S[ (1) (1) (2) (2) (Lk) (Lk)R 7k kk 1T7 (3.5)

and &(I) a ')/c. When the agent is localizable,' this mapping is a bijection and

provides an alternative expression for the FIM as

Jo = T - Jn TT, (3.6)

where J, is the FIM for 7r, and T is the Jacobian matrix for the

0 to rt, given respectively by

iJ ýr { [ lnf (rjl ) • In f (rj0)] = [L
_ 197an 0

transformation from

0

ANL
(3.7)

1Note that the agent is localizable, i.e., trilateration is possible, when M > 3, or in some special
cases when M = 2.

T
rl[T T Tl~



STL TNL] (3.8)
0 - c 0 I

where 0 is a matrix of all zeros, I is an identity matrix, and block matrices AL, ANL,

TL and TNL are given in Appendix A.1. Substituting (3.7) and (3.8) into (3.6), we

have

1 TLALT + TNLNLNLNL TNLANL (3.9)

c ANLTNL ANL

3.2 Fisher Information Matrix with A Priori Knowl-

edge

We now incorporate the a priori knowledge for localization, which is known to in-

crease the estimation accuracy. By exploiting the propagation channel models, we can

characterize the a priori channel knowledge in terms of probability density functions

(p.d.f.'s). The propagation models for wideband channels [38,55,61] and UWB chan-

nels [15-18,38] have been established by experimental efforts. We briefly summarize

them and derive the joint a priori p.d.f. of the multipath parameters in Appendix

A.2.

Since the multipath parameters ik for different k are independent a priori, the

joint p.d.f. of 0 can be written as2

g(0) = g,(p). 1- gk(KkJP), (3.10)

where gp(p) is the p.d.f. of the agent's position, and gk(rKkJp) is the joint p.d.f. of

the multipath parameters conditioned on the agent's position, given by (A.17). Using

(3.2) and (3.10), the joint p.d.f. of the observation r and the parameter 0 can be

2This is a general expression of the joint p.d.f., where all parameters are random. If some
parameters are deterministic, their corresponding g(-) are eliminated from (3.10).



written as

f(r, 0) = f(rO) - g(O), (3.11)

and the FIM for localization can then be expressed as

Jo = Jw + Jp, (3.12)

where Jw and Jp are the FIM's from the received waveforms and the a priori knowl-

edge, respectively, given by3

Jw Er,o (3.13)

(3.14)J, A Eoe{ In g(0) In g(0)] }

The FIM Jw can be obtained by taking the expectation of Jo in (3.9) over the random

parameter vector 0. Substituting (3.10) in (3.14), we obtain

Jp -

2, + Ekno =P,
=1 T
.- pK

=1
PIKL

'-4# 0
(3.15)

3Note from (3.13) and (3.14) that the FIM Jo for random parameters requires averaging over
these parameters, whereas the FIM in (3.1) is in general a function of the deterministic parameter
vector 0.

In f (rj ) a In f (rjO)



where the FIM's Si, E f , and Ekare given by
--- C,•, •--•pp) --- p, a i

.p = Eo In gp(p - In gp(p I) , (3.16)

1 - E o  In gk(-k P) In gkI(kIP) T (3.17)

=kLa 
- T J

6 - _ Eo In gkA (kP) In Agk (kIP) (3.18)

and

rmak EO -pn A Lo In gk( k) ngk(kjIp) (3.19)

respectively. The FIM ,p describes the FIM from a priori knowledge of p, and the

FIM's Sk ,rk and SP characterize the joint a priori knowledge of p and k-.Y--•,) •--p,p) • --p,)





Chapter 4

Evaluation of FIM for SPEB

In the previous chapters, we formulated the localization problem and derived the FIM

Jo in (3.9) and (3.12) for deterministic and random parameters, respectively. The

SPEB can then be obtained by taking the inverse of Jo. However, Jo is a matrix

of very high dimension, making it difficult to invert, while only a small submatrix

[J~'] 2, 2 is of interest (see (2.10)). Furthermore, direct matrix inversion provides no

insight into the essence of localization problems. To overcome this, we introduce the

notion of equivalent Fisher information [10-12].

4.1 Equivalent Fisher Information Matrix

Definition 3. The equivalent Fisher information matrix (EFIM) of a reduced param-

eter set is a matrix with a dimension lower than the original FIM, but it retains all

the necessary information to derive the Information Inequality of the parameter set

of interest.

Let Je E RInn be

Je -A - BC-1BT , (4.1)

where A E IRfnx, B E ×Rnx(N-n) , and C E Rl(N-n)x(N-n) are block matrices of the



original FIM JO, such that

A B (4.2)
JO= BT C (4.2)

Note that the right hand side of (4.1) is known as the Schur complement of matrix

C [63]. It can be shown that [Jo1 ]nxn = Je', and hence the MSE matrix of the

estimates for the first n of N parameters in 0 is bounded below by J;1. Therefore,

Je is the EFIM for these n parameters.

Armed with the notion of EFI, we can reduce the dimension of the original FIM

to obtain a n x n EFIM through one or several steps, where n is the number of

parameters of interest. For a two-dimensional localization problem (n = 2), we are

interested in the SPEB involving only the 2 x 2 matrix [Jol] 2x2.

4.2 Analysis without A Priori Knowledge

We first focus on the case where a priori knowledge of 0 is not available. We apply

the notion of EFI to reduce the dimension of the original FIM in (3.9) and to gain

insights into the localization problems. The following results present the EFIM for

the agent's position.

Proposition 1. If a priori knowledge of the parameters is not available, then the

EFIM for the agent's position is

Je TLALT, (4.3)
c2

where AL and TL are given by (A.4) and (A.1), respectively.

Proof. Let A = TNLANLTNL TLLTE, B = TNLANL, and C = ANL in (3.9).
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Applying the notion of EFI in (4.1), we have

Je I [(TNLANLT T + TLALT T ) - TNLA-NL 1 AN " ANLTTL

I TLALTT. (4.4)
C2 LL

Remark: Proposition 1 shows that if a priori knowledge is not available, NLoS

signals do not contribute to the EFIM for the agent's position, and hence do not

improve the localization accuracy. It implies that we can eliminate these NLoS signals

when analyzing the limits of the estimation accuracy. This observation agrees with

the results of [37], where the amplitudes of the multipath components are assumed

to be known.

Note that the dimension of Je in (4.3) is much larger than 2 x 2, the minimum

dimension required for the SPEB. We will apply the notion of EFI again to further

reduce the dimension of Je in the following theorem, which enables us to investigate

the effect of multipath propagation in LoS signals. Before the theorem, we need to

define the notion of the first contiguous-cluster.

Definition 4. In a LoS signal, the first contiguous-cluster is defined to be the set of

paths {1, 2, .. ,j}, such that I-ri-ri+11 < T fori = 1, 2,. ,j-1, andI 1j--rj+i > Ts,

where T, is the duration of s(t).

Intuitively, the first contiguous-cluster is the first group of non-disjoint paths (see

Fig. 4-1). 1

Theorem 1. If a priori knowledge of the parameters is not available, then the EFIM

is a 2 x 2 matrix

Je(P)=-7c 2  E (1 - Xk) -SNR( 1) - qkqk, (4.5)

1Two paths that arrive at time 7i and rj are called non-disjointed if -ri - I < T,.
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i+lth
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not overlap

first contiguous-cluster

Figure 4-1: Illustration of the first contiguous-cluster in a LoS signal.

where 0 < Xk < 1 is given by (A.37),

A F00 f2 fS(f)|2df 
•1/2

TOO (4.6)
Af_1 +I2IS(f)I2df

SN( 0 | 12+0 0k22 S(S)l2df
SNNR ck o(4.7)

k No

I T
and qk COS k sin k with

Ok = arctan - Y• (4.8)
X - Xk

Furthermore, only the first contiguous-cluster of LoS signals contains information for

localization.

Proof. See Appendix A.3.1.

Before giving the interpretation of above result, we introduce the notion of ranging



information.

Definition 5. Ranging information (RI) is a 2 x 2 matrix of the form

A -Jr(C)7, (4.9)

where A is a nonnegative number, and

cOS2 COS 1Sin
Jr(q) A cos2 s sin (4.10)

[cos # sin sin 2 ¢  J

with € denoting the AoA from the anchor to the agent. The number A is called the

ranging information intensity (RII), and the matrix Jr(¢) is called the elementary

ranging information.2

With the above definition, (4.5) can be rewritten as

Je(P) = E Ak - Jr (k) , (4.11)
kENL

where Ak is the RII from the kth anchor, given by

Ak 87r2/2 ( Xk) - SN R( ) , (4.12)

and Jr(0k) is the elementary ranging information with the angle Ok.

Remark: In Theorem 1, P is known as the effective bandwidth [28, 64], Xk is

called path-overlap coefficient that characterizes the multipath propagation effect, and

SNRO) denotes the SNR of the lth path in rk(t). We draw the following observations

from the Theorem 1:

The original FIM in (3.9) can be transformed into a simple 2 x 2 EFIM in a

canonical form, given by (4.11), as a weighted sum of the elementary ranging

2The elementary ranging information is one-dimensional along the direction from the anchor to
the agent with unit intensity, i.e., Jr (o) has one (and only one) non-zero eigenvalue equal to 1 with
corresponding eigenvector q = [ cos sin ]T



information from individual anchors. Each anchor (e.g. the kth anchor) can

provide only one-dimensional RI along the direction from the anchor to the

agent, given by qk, with intensity Ak. 3

* The RII Ak depends on the effective bandwidth of s(t), the SNR of the first path,

and the path-overlap coefficient. The path-overlap coefficient Xk is determined

by the propagation condition of the first contiguous-cluster in the LoS signal.

More precisely, among the parameters in Kk, only the amplitudes of the first

path al) and the NLoS biases b ) in the first contiguous-cluster affect the SPEB

(refer to (A.37)).

* Path-overlap in the first contiguous-cluster effectively reduces the RII (0 < Xk •

1), thus leading to a higher SPEB, unless the signal via the first path does not

overlap with others (Xk = 0).

* The expression of Xk in (A.37) shows that it is necessary to include ar)'s in

the parameter vector, unless the first contiguous-cluster contains only the first

path.4 Intuitively, localization information is obtained from the estimates of

ToA • )'s, and path-overlap would cause interpath interference. Therefore,

eliminating multipath parameters would result in a looser performance bound

in cluttered environments.

We can specialize the above theorem into a case in which the first path in a LoS

signal is completely resolvable, i.e., the first contiguous-cluster contains only a single

element.

Corollary 1. If a priori knowledge of the parameters is not available and the first

contiguous-cluster contains only the first path, then the RH from the kth anchor is

Ak 87 2/ 2 - SNR' ) . (4.13)
C2 k

3For notational convenience, we suppress the dependence of qk and Ak on the agent's position p
throughout the paper.

4 The amplitudes of all multipath components are not included in the analysis of [37,49].



Proof. See Appendix A.3.2.

Remark: Corollary 1 corresponds to the case when Xk = 0 in (4.12). In such

a case, Ak attains its maximum value since there is no path-overlap. This result is

intuitive and important: the RII depends only on the first path of the LoS signal,

if the first path is resolvable. If the signal via the first path overlaps with others,

however, these paths will deteriorate the accuracy of the first path's estimate and

hence the RII.

The above results give closed-form expressions of the EFIM for localization, which

provide insights into the localization problem and facilitate further analysis. For ul-

trawide bandwidth (UWB) signals, the assumption of non-overlapping is quite rea-

sonable since larger bandwidth signals possess better multipath resolvability.

From Theorem 1, the SPEB can be derived as

c2  2 ' Eke• Z (1 - Xk) -SNR(1 )

P(P) 8Wr2 2  keANL merL(1 - Xk)(1 - Xm) -SNR(1)SNR() sin 2(¢k -_m)

(4.14)

For the special case in which the first paths are resolvable, by Corollary 1, we have

Xk = 0 and the SPEB in (4.14) becomes

c2 2 CEKL SNR()
P(p) k (4.15)87r2• 2 2 kEfL m•EL SNR(')SNRl) sin2 (Ok - O m )

Equation (4.15) is consistent with the results based on single path models in [8,37],

however, those results are not accurate for scenarios in which the first path is not

resolvable.



4.3 Analysis with A Priori Knowledge of Channel

Parameters

We then consider the case where there is a priori knowledge of the channel parameters,

but not of the agent's position. In such cases, since p is deterministic but unknown,

gp(p) is eliminated in (3.10) and hence the a priori p.d.f. of 0 becomes

g(0) = II gk(kl P). (4.16)

Similar to the results in the previous section, we can derive the 2 x 2 EFIM for the

corresponding FIM in Sec. 3.2.

Theorem 2. If a priori knowledge of the channel parameters is available and the sets

of channel parameters corresponding to different anchors are mutually independent,

then the EFIM is a 2 x 2 matrix

Je(P) = E Ak'Jr(0k)+ E Ak. Jr(k) , (4.17)
kEA.L keANNL

where the RI Ak is given by (A.52) for LoS signals and (A.53) for NLoS signals, and

Jr((k) is the elementary ranging information with angle Ok.

Proof. See Appendix A.3.3. O

Remark: Theorem 2 generalizes the result of Theorem 1 from deterministic to

hybrid parameter estimation.5 In this case, the EFIM is still a 2 x 2 matrix and can

be expressed in a canonical form as a weighed sum of elementary ranging information

from individual anchors. In addition, the property that every anchor provides only

one-dimensional information for localization is retained as in Theorem 1.

In Appendix A.3.4, we show that a priori channel knowledge increases the RII,

leading to higher localization accuracy, and when a priori knowledge goes to zero, the

5This is the case where the agent's position p is deterministic and the channel parameters are
random.



result of Theorem 2 degenerate to that of Theorem 1 as expected. On the other hand,

from the perspective of Bayesian estimation, we show in Appendix A.3.4 that one can

consider b 1) (k E AcL) as random parameters with infinite a priori Fisher information

instead of eliminating them from 0 as in our model in Sec. 2.1. Therefore, it is not

necessary to distinguish the RII in (A.52) for LoS signals and that in (A.53) for NLoS

signals. As such, we can treat all signals as NLoS signals with appropriate a priori

Fisher information.

4.4 Analysis with A Priori Knowledge of Channel

Parameters and Agent's Position

We next consider the case where a priori knowledge of the agent's position is available

in addition to that of the channel parameters. Unlike the previous two cases, the

topology, i.e., the anchors and the agent, changes with the agent's positions, i.e., Ck

is different.

The 2 x 2 EFIM is given in (A.67) in Appendix A.3.6, and it is more intricate than

those of the previous two cases. However, if we consider the far-field scenario, where

the agent's a priori position is concentrated in a small area relative to the distances

between the anchors and the agent, Ok is approximately the same for different possible

agent's position, and we have the following result.

Proposition 2. If 1) a priori knowledge of the agent's position and the channel pa-

rameters is available, and 2) the sets of channel parameters corresponding to different

anchors are mutually independent, then in far-field scenarios, the EFIM is a 2 x 2

matrix

Je = E Ak(P)-Jr (0k) , (4.18)
keK®o



where p is the expected agent's position, given by

= Ep{p} = p- g,(p) dp, (4.19)

/k is the AoA from kth anchor to p, and the RII Ak(p) is given by (A.70), J, (0k)

is the elementary ranging information with angle qk, and Ep is the EFIM from the a

priori knowledge of the agent's position, given by (3.16).

Proof. See Appendix A.3.6. O

Remark: This is the most general case in which we also exploit the a priori

knowledge of the agent's position, in addition to that of the channel parameters, for

localization. The expressions for the EFIM can be involved in general. Fortunately, in

far-field scenarios, the EFIM can be simply written as the sum of two parts as shown in

(4.18): the first part is the EFIM from the a priori knowledge of the agent's position,

and the second part is a weighted sum of the elementary ranging information from

individual anchors as in the previous two cases. Proposition 2 unifies the contribution

from anchors and that from the a priori knowledge of the agent's position into the

EFIM. The concept of localization with a priori knowledge of the agent's position is

useful for a wide range of applications such as successive localization or tracking.

4.5 Example: Localization Using UWB Transmis-

sions

We now take localization via UWB transmissions as an example to illustrate the con-

tribution of a priori channel knowledge. In such systems, the multipath components

tend to be resolvable (not overlapping) due to its wide transmission bandwidth. To

gain some insights, we consider a simple scenario in which the channel knowledge is

available, and b) and a(') are mutually independent a priori. Hence, the EFIM from



the a priori channel knowledge can be written as

Jp = diag (0, .1, .2, ... , } (4.20)

where

•k =diag {y(b(')), 'Y(al),--) , (bLk)k), ( Lk)) , (4.21)

and y(b l)) and y(a() ) are the a priori Fisher information of b() and o(')i, respectively.

Note that -y(b••) ) = 00 for LoS signals. Using Theorem 2, the EFIM in (4.17) becomes

/LkJe(p) = Z (\Zw kAl Jr('k), (4.22)

keAf~/ 1=1

where

k,l (b and k = Eo SNR()(4.23)
AkE + 7(bk{l))Sk C2

Remark: Coefficient wk,l weighs the RII of the lth path in received waveform rk(t).

It has the maximum value of 1 when y(b\ ) -- 00oo, and the minimum value of 0 when

7(bl)) -- 0. The expression for Je(p) has the following implications:

* The LoS path contributes all of its RI to the EFIM since y(b ) ) = oo and hence

Wk,1 1.

The NLoS path with a priori knowledge of the bias b) contributes some RI to

the EFIM, since 0 < 'y(bk( ) < c, and hence 0 < wk,l < 1. When the a priori

knowledge of bkl) goes to 0, the path does not contribute any RI to the EFIM

since wk,l = 0. This result is consistent with Corollary 1. On the other hand, if

b) is known, the path contributes all of its RI as a LoS path since wk,l = 1.

* The coefficient wk,l does not depend on 7(a (), i.e., the a priori knowledge of

ka('. This is consistent with Theorem 1 and should be expected since multipath

components are resolvable.



The coefficients wk,l quantifies the contribution of the multipath components with

a priori knowledge to the EFIM. These findings are not restricted to specific NLoS

bias models as in [65] and provide a more general view of the contribution from the

a priori channel knowledge.

4.6 Generalization to 3D Localization

All the results obtained thus far can be easily extended to three dimensional case,

i.e., p = [x y z]T and qk becomes

qk = [ COSWkpCOS k sinWkCOS k sin nk , (4.24)

where "pk and 4k are the angles in the polar coordinates. Similarly, we have a corre-

sponding 3 x 3 EFIM in the form of (4.17).



Chapter 5

Wideband Localization with

Antenna Arrays

In this chapter, we consider localization systems using wideband antenna arrays,

which can provide both ToA and AoA metrics. Since orientation of the array may be

unknown, we develop a model for jointly estimating the agent's position and orienta-

tion, and then derive the SPEB and the squared orientation error bound (SOEB).

5.1 Wideband Antenna Array Model

Consider a network where each agent is equipped with an Nv-antenna array, which

can extract both the ToA and AoA metrics from neighboring anchors. The agents

estimate their positions and orientations based on the received waveforms. Without

loss of generality, our analysis focuses on a single agent in the network.

Let .A = {1, 2, ... , Nv} denote the set of all antennas, and let pArray A [ Array •Array ]T

denote the position of the agent's nth antenna, which needs to be estimated. The

relative positions of the antennas in the array are usually known, but the orientation

of the array may be unknown, depending on the specific system configuration. If we

denote p = [x y ]T as a reference point and p as the orientation of the array,1 then

'Note from geometry that the orientation <p is independent of the specific reference point.
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Figure 5-1: Illustration of the reference point p, orientation p, and the relative posi-
tions of the antennas in the array.

the position of the nth antenna in the array can be represented as (Fig. 5-1)

Array I An(P,ý) 1
Pn =P+ [LYn(P,pW) (5.1)

where Ax,(p, ý) and Ay,(p, p) denote the relative distance in x and y direction

from the reference point to the nth antenna, respectively. The reference point can be

arbitrary, but we will choose the array center defined as follows.2

Definition 6. The array center is defined as the value po, satisfying

(5.2)E Ax,(po, o) =O and E Ayn(po, p) O=
neArv

Since the orientation of the array may be unknown, we classify the localization

problems into orientation-aware and orientation-unaware cases. In both cases, c can

be thought of as a random parameter with infinite (orientation-aware case) and zero

2 We show later that the array center has the lowest SPEB in far-field scenarios .

vw 2"m

1)l 2) ... 7 Nv 7



(orientation-unaware case) a priori Fisher information [10].

The received waveform at the agent's nth antenna from the kth anchor can be

written as

Ln,k

r,k(t) = n,k . s (t- + zn,k(t), t e [0,T ob ), (5.3)
l=1

where s(t) is a known wideband waveform, a 0 )k and r( are the amplitude and delay,
Sn,k are the amplitude and delay,

respectively, of the lth path, Ln,k is the number of multipath components, zn,k(t)

represents the observation noise modeled as additive white Gaussian processes with

two-side power spectral density No/2, and [0, Tob) is the observation interval. The

relationship between the nth antenna's position and the delay of the Ith path is given

by

S 1 [ PArray _Pk I + bnk ] (5.4)' nk =- C n n,k

Since the parameters to be considered include the position of the reference point,

array orientation, and the nuisance multipath parameters, we have

pT p 4 --... (5.5)

where k, consists of the multipath parameters associated with the received waveforms

from all anchors at the nth antenna,

=n [ T .T J2T(5.6)
n,T n,2 n,N@

and each Kn,k consists of the multipath parameters associated with rn,k(t),

nk b ka(1) b (Ln,k) (Ln,k)]T (5.7)L n,k n,k n,k n,k I



5.2 Squared Orientation Error Bound

The overall received waveforms at the antenna array can be written as

r(t) = r1 (t) r 2 (t) .- r. (t) , t [0, Tob), (5.8)

where the received waveforms at the nth antenna is given by

r(t) = [r,i(t) rn,2(t) ... rn,N (t) ] (5.9)

Similar to Sec. 2.2, r(t) can be represented by a random vector r (where r,k(t) is

represented by a random vector rn,k) using the KL expansion.

Definition 7. The squared orientation error bound (SOEB) is defined to be

P(W) A [JlI]3,3 (5.10)

where [ ]3,3 denotes the third diagonal element of its argument.

We consider the multipath parameter vectors rn,k for different n's and k's to be

independent, and hence the a priori p.d.f. of 0 can be written as

g(0) = g,(p)g,(c) II I gn,k(~n,kP, (P), (5.11)
kEArN, nE6Nv

where gp(p) is the p.d.f. of the agent's position, g,(p) is the p.d.f. of the agent's orien-

tation, and g9,k(rI,kJp, p) is the joint p.d.f. of the multipath parameters conditioned

on the agent's position and orientation.

5.3 Analysis with A Priori Knowledge of Channel

Parameters

We first consider scenarios in which a priori knowledge of the channel parameters is

available, but there is no a priori knowledge of the agent's position nor orientation.



In such cases, p and W are deterministic but unknown, and hence g,(p) and g,(vp)

are eliminated in (5.11). Following similar steps in Sec. 4.3, we have the following

theorems.

Theorem 3. If a priori knowledge of the channel parameters is available and the sets

of channel parameters corresponding to different antennas and anchors are mutually

independent, then the EFIM for the position and the EFI for the orientation, using

an Nv-antenna array, are given respectively by

jAry(p)= e,n - qqT (5.12)

nEfv -nEA~ ,•oC r* n ,lkh , +  '

and

(2 1(513)
JA~•Y(•) = Alkhk - qT ( Vjen) q, (5.13)

nE6Nv kE6g nE.M

where E = oo and E = 0 correspond to orientation-aware and orientation-unaware

localization, respectively. In the above expressions,

Je,n = S An,k Jr(qn,k) (5.14)

is the individual EFIM corresponding to the nth antenna,

q = E5 :Ank,kk qn,k (5.15)
nEfv kEAf®

d d
hn,k = AXn(p, p) - COS n,k + Ayn(p, ) . Sin n,k , (5.16)

dp dp

where the RH An,k is given by (A.87), and qn,k C [0 n,k sin nT with 4n,k

denoting the AoA from the kth anchor to the nth antenna.

Proof. See Appendix A.4.1. O

Remark: The EFIM for the position in (5.12), when an agent is equipped with an

antenna array, consists of two parts: 1) the sum of localization information obtained



from individual antennas, and 2) the information reduction due to the uncertainty

in the orientation estimate, which is subtracted from the first part.3 Since qqT in

the second part is a positive semi-definite 2 x 2 matrix and nEA•v• EkE~j@ A,kh ,k is

positive, we always have the following inequality

jArray (p) en (5.17)

nEAfv

where the equality in (5.17) is achieved for orientation-aware localization (i.e., =

oo), or orientation-independent localization (i.e., q = 0). The inequality in (5.17) is

due to the uncertainty in the orientation estimate, which degrades the localization

accuracy, except for E = oo or q = 0. Therefore, the EFIM for the position, using an-

tenna arrays, is bounded above by the sum of all EFIM's corresponding to individual

antennas.

Note that the EFIM in (5.12) depends only on the individual RI's between each

pair of anchors and antennas through An,k's and ¢l,k's, and the array geometry

through hn,k's. Hence, it is not necessary to jointly consider the received waveforms

at the Nv antennas, implying that AoA obtained by antenna arrays does not increase

localization accuracy. Though counterintuitive at first, this finding should not be too

surprising since AoA is obtained indirectly through ToA's by the antenna array, and

the ToA information has already been fully exploited for localization by individual

antennas.

While the equality in (5.12) is achieved for every reference point in orientation-

aware localization, only a unique reference point achieves this equality in orientation-

unaware localization. We make this statement precise in the following definition.

Definition 8. The orientation center is a reference point p* such that

Jray,(p*) = J,. (5.18)
neCJVv

3For notational convenience, we suppress the dependence of hn,k, An,k, and q on the reference
position p throughout the paper.



Note that every reference point is an orientation center in orientation-aware lo-

calization. In orientation-unaware localization, we have the following theorem.

Proposition 3. Orientation center p* exists and is unique in orientation-unaware

localization, and hence for any p • p*,

JAfY(p) < JA7a(p'). (5.19)

Proof. See Appendix A.4.2. O

Remark: The orientation center p* generally depends on the topology of the

anchors and the agent, the properties of the received waveforms, the array geometry,

and the array orientation. Since q = 0 at the orientation center, the EFIM for the

array center and the EFI for the orientation do not depend on each other, and hence

the SPEB and the SOEB can be calculated separately. The theorem also implies that

the SPEB of reference points other than p* will be strictly larger than that of p*.

The SPEB for any reference point is given in the next theorem.

Corollary 2. The SOEB is independent of the reference point p, and the SPEB is

lip- p*II2
P(p) = P(p*) + J(p , (5.20)

where Je(W) is the EFI for the orientation.

Proof. See Appendix A.4.3. O[

Remark: The corollary shows that the SOEB for the orientation does not depend

on the specific reference point, which was not apparent in (5.13). This is intuitive

since different reference points only introduce different translations, but not rotations.

On the other hand, different reference point p results in different hn,k'S and hence

different q, which in turn gives different EFIM for position (see (5.12)). We can

interpret the relationship in (5.20) as follows: the SPEB of the reference point p is

equal to that of the orientation center p* plus the orientation-induced position error,



which increases with the squared distance from p to p* and is proportional to the

SOEB.

5.4 Analysis with A Priori Knowledge of Channel

Parameters and Agent's Position

We next consider scenarios in which a priori knowledge of the agent's position and

orientation is available. Note that the topology, i.e., the anchors and the agent's

antennas, changes with the agent's positions and orientations. We focus on far-field

scenarios as they provide insights into the contribution of the a priori knowledge of

the agent's position to localization.

In far-field scenarios, the antennas in the array are closely located such that the re-

ceived waveforms from each anchor experience statistically similar propagation chan-

nels, i.e., a('s and b0k's are i.i.d. respectively for all n. Since On,k = ¢k for all n, we

have An,k = Ak, qn,k = qk and Je,n = Je.

Proposition 4. In far-field scenarios, the array center becomes the orientation center

and has the minimum SPEB.

Proof. See Appendix A.4.4. O

Remark: Since the orientation center has the minimum SPEB, Proposition 4

implies that the array center always achieves the minimum SPEB in far-field scenarios.

Hence, the array center should be chosen as the reference point, since its position

can be determined from the array geometry alone, without requiring the received

waveforms and the knowledge of the anchor's topology.

Corollary 3. If 1) a priori knowledge of the channel parameters, the agent's position,

and the agent's orientation is available, and 2) the sets of channel parameters cor-

responding to different anchors are mutually independent, then in far-field scenarios,

the EFIM for the array center and the EFI for the orientation, using an Nv-antenna



array, are given respectively by

JArraY(p) = N,-Je + Ep , (5.21)

and

JAy(e )= >1 ZnvhflA h 2 (5.22)
nEIJv kEAf@

where Je is the EFIM corresponding to a single antenna, hn,k is a function of Po, Ep

is the EFIM from the a priori knowledge of the array center, given by (3.16), and E,

is the EFI from the a priori knowledge of the agent's orientation, given by

ýW - E{ Ing.(p)] [ Ing.•(o) (5.23)

Proof. See Appendix A.4.5. O

Remark: Corollary 3 shows that in far-field scenarios, the EFIM for the position

and the EFI for the orientation can be written as a sum of two parts, respectively:

the first part is from the received waveforms, and the second part is from the a

priori knowledge, which is characterized by E, or E,. Since the array center is the

orientation center, Array(Po) and eArray(p) do not depend on each other, and hence

the SPEB and SOEB can be calculated separately. Note that in far-field scenarios,

the localization performance of an Nv-antenna array is equivalent to that of a single

antenna with Nv measurements, regardless of the array geometry.

We now illustrate an application of the above theorem for AoA estimation using

wideband antenna arrays. Consider a far-field scenario in which the agent has de-

termined its center's position po, such that Ck is known. Therefore, estimation of

the AoA from the kth anchor to the array, i.e., 4 k A k - p, is equivalent to the

estimation of the array orientation. By applying Corollary 3, we derive the EFI for

the AoA to the array using a wideband antenna array in the following corollary.



Corollary 4. The EFI for the AoA from the kth anchor to the array, 4 k, is

Jr kA"(ýk) = A fk + E . (5.24)

5.5 Example: Uniform Linear and Circular Array

The above results are valid for arbitrary array geometries. We now illustrate these

results for two commonly used arrays, i.e., the uniform linear array (ULA) and the

uniform circular array (UCA), in far-field scenarios (see Fig. 5-2). Without loss of

generality, we consider the array center as the reference point, and the position of

each antenna in the array can be represented in terms of the array center po and the

orientation 'p.

* Uniform linear array:

pArray N0 n 2 os(5.25)[ sinp J
where A is the spacing of the antennas.

* Uniform circular array:

cos(2ir. - -+ P)prray = P 0 + Nv (5.26)
pL sin(27r - " +)

where Ro is the radius of the array.

5.5.1 Localization and Orientation

For orientation estimation, the EFI for the orientation, by Corollary 3, is

) = N(Nv - 1)(Nv + 1) A2 . k sin2(Ok -p ,) (5.27)S= 

12

kEI'f®



for the ULA, and

2R2z -Ek•lN Ak Sin 2(¢k - ) + , Nv = 2
(p) = 2(5.28)

NvRI/2 - kNg k + Ep, Nv > 2

for the UCA.

For position estimation, by Corollary 3, the SPEB for the array center in far field

scenarios is the same for both the ULA and the UCA. However, the SPEB's for other

positions are usually different, depending on the orientation accuracy achieved by

different array geometries. For example, the SPEB's can be calculated from (5.20)

using (5.27) for the ULA and (5.28) for the UCA.

5.5.2 AoA Estimation

From Corollary 4, the EFI for the AoA from the kth anchor to the array can be

written as

J L ~ N g(Nv - 1)(Nv + 1) A sin ) + (5.29)
Je( k) 12 2k sin &) + (5.29)

for the ULA, and

C2R2 - Ak sin 2 (&k)+ +B , Nv = 2
Je(k) = N > (5.30)

for the UCA.

Note that JeL($k) in (5.29) agrees with JeC(Qk) in (5.30) when Nv = 2, as it should,

since the two array geometries coincide in this case. When Nv > 2, JLe(4k) is highly

dependent on the specific AoA qk, while the performance of the UCA is independent

of the AoA. For a fair comparison, we consider an example with the same array size,

i.e., Ro = (Nv - 1) - A/2. If a priori orientation knowledge is not available, i.e.,



E, = 0, then the ratio of EFI's is

(¢Lk) 1, N = 2J k) 2"(Nv +f1) sin2(=) (5.31)
J(&k) 3 2(NV-1)sn(k) Nv > 2

When Nv, 5, the above ratio is always less than 1, implying that the UCA outper-

forms the ULA. When Nv = 3, 4, the ratio depends on the AoA from the kth anchor

to the array, and on average,

E'Ok J() (Nv + 1) < 1, (5.32)
JS7k)f 3. (Nv - 1)

provided qk is uniformly distributed on [0, 27r). Therefore, we conclude that the UCA

can provide better AoA estimates in general and its performance is more robust to

different AoA's.

5.6 Multiple Antennas at Anchors

The discussion above focused on the case where each anchor is equipped with only

one antenna. From the result in (5.12), the gain of using an antenna array at the

agent mainly comes from the multiple copies of the waveform received at different

antennas.4 Its performance is equivalent to a single antenna with measurements

in Nv time slots, and the advantage of using antenna arrays lies in its ability for

simultaneous measurements at the agent.

If anchors are equipped with multiple antennas, each antenna can be viewed as

an individual anchor, and hence the agent's SPEB goes down with the number of

the antennas at each anchor. Note that all the antennas at a given anchor provide

RI approximately in the same direction with the same intensity, as they are closely

located.

4In near-field scenarios, there may be additional gain that arises from the spatial diversity of the
multiple antennas at the agent.
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Chapter 6

Effect of Clock Asynchronism

In this chapter, we consider a scenario in which the clocks of all anchors are perfectly

synchronized but the agent operates asynchronously with the anchors. In such a

scenario, the one-way time-of-flight measurement contains a time offset between the

agent's clock and the anchors' clock.' Here, we investigate the effect of the time offset

on the localization accuracy.

6.1 Localization with a Single Antenna

Consider the scenario described in Sec. 2, where each agent is equipped with a single

antenna. When the agent operates asynchronously with the anchors, the relationship

of (2.2) becomes

T = [I p -pkll+b ) +B], (6.1)

where B is a random parameter that characterizes the time offset. In this case, the

parameter vector 0 becomes

0[T B K T •• ] (6.2)

1We consider scenarios in which localization time is short relative to clock drifts, such that the
time offset is the same for all measurements from the anchors.



Similar to Theorem 2, where p is deterministic but unknown and the remaining

parameters are random, we have the following result.

Theorem 4. If 1) a priori knowledge of the channel parameters and the time offset

is available, and 2) the sets of channel parameters corresponding to different anchors

are mutually independent, then the EFIM for the position and the EFI for the time

offset are given respectively by

eJ(p) =1 Ak" Jr() - X qBqT (6.3)

kEN kkeN'® Ak - B

and

Je(B) = Ak + EB - qTB Ak k) qB , (6.4)
kEN® k ENoAJ

where the RH Ak is given by (A.53), Jr(Ok) is the elementary ranging information

with angle kk,

qB = Ak 'qk, (6.5)

and =B is the EFI from the a priori knowledge of the time offset B, given by

ZB = EB In g-(B) - In g(B)] (6.6)

with gB(') denoting the a priori p.d.f. of the time offset B.

Proof. See Appendix A.5.1. O

Remark:. Since qBqT is a positive semi-definite matrix and is positive

in (6.3), compare to Theorem 2, we always have the inequality

Jw(p) th Je(p) (6.7)

where the equality in (6.7) is achieved for time-offset-known localization (i.e., EB =



oc), or time-offset-independent localization (i.e., qB = 0). The former corresponds to

the case where there is accurate knowledge of the time offset, while the latter depends

on the RII from each anchor, and the geometry of the anchors and the agent. The

inequality of (6.7) results from the uncertainty in the additional parameter B, which

degrades the localization accuracy. Hence, the SPEB in the presence of uncertain

time offset is always higher than or equal to that without a offset or with a precisely

known offset.

We next consider the case where a priori knowledge of the agent's position is

available, and in far-field scenarios, we have the following theorem.

Corollary 5. If 1) a priori knowledge of the agent's position, the time-offset and the

channel parameters is available, and 2) the sets of channel parameters corresponding

to different anchors are mutually independent, then in far-field scenarios, the EFIM

for the agent's position and the EFI for the time offset are given respectively by

jB P 1 (6.8)
JB = A, + Z Ak(P) Jr(k) - qB()qB(p) (6.8)

and

( )-1
Je= B + E Ak(P) (- qs( T  p + E Ak(P) JT(4k) qB(P), (6.9)

keNKo kePNo

where p is the expected agent's position, Ok is the AoA from the kth anchor to p, and

Ep is the EFIM from the a priori knowledge of the agent's position, given by (3.16).

Proof. The proof uses the far-field assumption and it is similar to those of Proposition

2 and Corollary 3. EO



6.2 Localization with Antenna Arrays

Consider the scenario describing in Sec. 5 where each agent is equipped with an array

of Nv-antennas. Incorporating the time offset B, (5.4) becomes

S 1 p Array Pkjj + b(nk + B], (6.10)

and the corresponding parameter vector 0 becomes

Sp T ýp B kT kT . ] (6.11)

Similar to Theorem 3, where p and ýo are deterministic but unknown and the remain-

ing parameters are random, we have the following theorem.

Theorem 5. If a priori knowledge of the channel parameters is available and the sets

of channel parameters corresponding to different antennas and anchors are mutually

independent, then the EFIM for the position, the orientation, and the time offset,

using an Nv-antenna array, is given by

S nENAv EkEJf An,kQn,flT,q'k Znegav EkEj hn, kAn,k + ZnEAl keAvNo hnkq,k

J y-B e kN hkkqTk ne k~No hA,k n,k+ 'nE••E-k•g hnkn,k+2

enEJv ZkeKN An,kq,k ZnEAv ZkEN® hnkAn,k ZnEA ZkENo nk + B J
(6.12)

where E = oo and E = 0 correspond to orientation-aware and orientation-unaware

localization, respectively, and An,k, qn,k, hn,k, and 'B are given by (A.87), (5.15),

(5.16) and (6.6), respectively.

Proof. The proof is similar to those of Theorem 3 and Theorem 4. O

Remark: Theorem 5 gives the complete EFIM for the agent's position, orientation,

and time offset. Note that the EFIM is a 4 x 4 matrix, and we can obtain the individual

EFIM for the agent's position, and EFI's for the agent's orientation and time offset

by applying the notion of EFI again.



We next consider the case where a priori knowledge of the agent's position and

orientation is available. In far-field scenarios, we have the following result, which

corresponds to Corollary 3.

Corollary 6. If 1) a priori knowledge of the agent's position, the agent's orientation,

and the channel parameters is available, and 2) the sets of channel parameters cor-

responding to different anchors are mutually independent, then in far-field scenarios,

the EFIM for the position, the EFI for the orientation, and the EFI for the time

offset, using an Nv-antenna array, are given respectively by

JAy-B(po) = + N - () + /N ) B() (6.13)

jArmy-B(,) = Z Z h,kk(PO) + Ep, (6.14)
nEANv kEj\N

and

JeA"B(B) = + Nv Ak(PO) - B(P 0)T p qB(0)

(6.15)

where po is the expected position of the agent's array center, and hn,k is a function of

Po.

Proof. See Appendix A.5.2. O]

We then investigate the performance of AoA estimation as in Corollary 4 in the

presence of a time offset. The EFI for the AoA to the array using wideband antenna

arrays is given in the following corollary.

Corollary 7. In the presence of a time offset, the EFI for the AoA from the kth



anchor to the array, &k, is

Jerray-B) A± h (6.16)
nEArv

Remark: Despite the presence of the time offset, the above result is the same

as that in Corollary 4, which implies that the accuracy of AoA estimation does not

depend on the knowledge of the time offset. Intuitively, since the AoA is estimated

from the difference between the ToA's of the received waveforms at the antennas, and

thus the time offset is eliminated from the relative ToA's.



Chapter 7

Numerical Results

In this chapter, we illustrate applications of our analytical results using numerical

examples. We deliberately restrict our attention to a simple network to gain insights,

although our analytical results are valid for arbitrary topology with any number of

anchors and any number of multipath components in the received waveforms.

7.1 Effect of Path-Overlap

We investigate the effect of path-overlap on the SPEB when a priori knowledge of

parameters is not available. In particular, we compare the SPEB obtained by the full-

parameter model proposed in this paper and that obtained by the partial-parameter

model proposed in [36].

Without loss of generality, we consider a simple topology with four anchors (N® =

4) equally spaced on a circle and an agent at the center receiving all LoS waveforms

(see Fig. 7-1). Each waveform consists of two paths: one LoS path (SNRl ) = OdB)

and one NLoS path (SNR (2) = -3dB), and the separations of the two paths (2) T 1)

are identical for k E {1, 2, 3, 4}. In addition, the transmitted wideband waveform is

a second derivative of Gaussian pulse with width approximately equal to 4ns.

Two models are used for comparison as follows:

e Model I (Full-Parameter Model): both the amplitudes and the NLoS biases



are considered as parameters, i.e., 0 = pT ... K where Kk =

(1) b(2) (2)

Model II (Partial-Parameter Model [36]): the amplitudes are assumed to be

precisely known and only the NLoS biases are considered as parameters, i.e.,

0 -[pT b 2) ... b(2)]T

Figure 7-2 shows the SPEB as a function of path separation Tk2) -• according

to Theorem 1. The following observations can be made:

* First, path-overlap increases the SPEB in both models, since the overlap in-

terferes with the ability to estimate the first path and hence reduces the RII.

Note that the shape of the curves depends on the autocorrelation function of

the waveform s(t).

* Second, when the path separation exceeds the pulse width (approximately 4ns),

the two models give the same SPEB, which equals the non-overlapping case. In

such cases, the two paths do not overlap in time, and the RII is determined by

only the first path. This agrees with the analysis in Sec. 4. Mathematically,

this corresponds to a diagonal J, in (3.7).

* Third, excluding the amplitudes in the parameter vector in Model II incorrectly

provides more RI, and hence results in a loose bound when the two paths

overlap. This demonstrates the importance of using the complete parameter

model.

7.2 Improvement from A Priori Channel Knowl-

edge

In this section, we quantify the contribution of a priori knowledge of the channel

parameters ca and b to the SPEB using the same setting as in Sec. 7.1, except a
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priori knowledge of a i), ca2) and b (2) is now added. For simplicity, we consider these

parameters to be independent a priori. In Fig. 7-3(a), the SPEB's are plotted as

functions of the path separation for different a priori knowledge of a<) and o) (no a

priori knowledge of b )); while in Fig. 7-3(b), the SPEB's are plotted for different a

priori knowledge of b(2) (no a priori knowledge of a() and a (2)).1 Several observations

can be made from the results.

* First, in both figures, an increase in the a priori knowledge either of the am-

plitude a or of the NLoS bias b decreases the SPEB.2 This should be expected

since a priori channel knowledge increases the RII, as indicated in Appendix

A.3.4, and thereby the localization accuracy.

* Second, in Fig. 7-3(a), as the a priori knowledge of ac•) and a(2) approaches

infinity, the SPEB obtained using our full parameter model converges to that in

Fig. 7-2 obtained using the partial parameter model. This can be explained by

the fact that the partial parameter model excludes a from the parameter vector,

which is equivalent to assuming known a and hence infinite Fisher information

from their a priori knowledge (y(a (1)) = 7y(C( 2) ) = 00).

* Third, Fig. 7-3(b) shows that the SPEB decreases with increasing a priori

knowledge of b. This is because NLoS paths, in addition to the first path,

can be exploited for ranging, when the a priori knowledge of the NLoS biases

is available. Thus, NLoS signals can be beneficial for localization, as shown

analytically in Sec. 4.3.

* Fourth, it is surprising to observe that, when a priori knowledge of b is available,

path-overlap can result in lower SPEB compared to non-overlapping scenarios.

This happens at certain path separations that depend on the autocorrelation

function of s(t). Intuitively, path-overlap can lead to a higher SNR and hence

a lower SPEB, compared to non-overlapping cases, when a priori knowledge of

the bias vector b is available.

'The a priori knowledge is characterized by Fisher information y(O).
2The amplitude vector a contains all the ar(O's, while the NLoS bias b contains all the b()'s.
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7.3 Path-Overlap Coefficient for Different Trans-

mitted Waveforms

We here investigate the path-overlap coefficient for different shapes of transmitted

waveform s(t). Fig. 7-4(a) shows the six waveforms for our numerical results: they are

a Gaussian pulse, the first through third derivatives of a Gaussian pulse, a triangular

pulse, and a rectangular pulse, with a pulse width of approximately 4ns.

We consider a simply case where the received waveform has only two multipath

components, i.e., L = 2, to gain insights into the effect of path-overlap on localization.

The path-overlap coefficients for these six waveforms as functions of the path inter-

arrival time are plotted in Fig. 7-4(b). First, path-overlap coefficient X decreases

from 1 to 0 in general as the path inter-arrival time increases. This can be explained

as follows: larger path inter-arrival time causes less overlap of the signals via the

two paths, and hence less interference from the second path to the estimation of

the first path. As can be expected, when the path inter-arrival time exceeds 4ns,

approximately the width of the transmitted waveform, X goes to 0, the minimum,

since there is no overlap and hence no interference. Second, the performance of

the rectangular waveform for ranging is remarkably better than others except for the

point where inter-arrival time equals 4ns. The path-overlap coefficient depends on the

autocorrelation function of the transmitted waveform according to (A.37). The second

derivative of the autocorrelation function of the rectangular waveform has a very sharp

peak at the origin, which results in small path-overlap coefficients, and another peak

at 4ns, which results in a throb in the curve of the path-overlap coefficient at 4ns.

This is also true for all other curves: the fluctuations of these curves are determined

by the autocorrelation function of the corresponding transmitted waveforms.
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7.4 Path-Overlap Coefficient for Different Propa-

gation Channels

We now investigate the dependence of path-overlap coefficient X on path arrival rate

for different number of multipath components. We first generate channels with L

multipath components according to a simple Poisson model with a fixed arrival rate

V, and then calculate X according to (A.37). Figure 7-5 shows the average path-

overlap coefficient as a function of path inter-arrival rate (1/v) for different L, where

the averaging is obtained by Monte-Carlo simulations. Several observations can be

made from the results.

* First, the path-overlap coefficient X is monotonically decreasing from 1 to 0 with

1/v. This agrees with our intuition that denser multipath propagation causes

more interference between the first path and other multipath components, and

hence the received waveform provides less RII.

* Second, for a fixed v, the path-overlap coefficient increases with L. This should

be expected as additional multipath components may interfere with earlier

paths, degrading the estimation accuracy of the first path and hence reduc-

ing the RII.

* Third, the performance difference between a channel with five and that with

fifty multipath components is insignificant. This indicates that the effect of

additional multipath beyond the fifth path can be neglected, implying that the

first five paths is sufficient for calculating the RII.

7.5 Outage in Ranging Ability

We have observed that the channel quality for ranging is characterized by the path-

overlap coefficient. If the multipath propagation has a high path-overlap coefficient

(close to 1), we may consider the channel in outage for ranging. We define the ranging
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time for different

ability outage (RAO) as

Pout(Xth) P I{X > Xth}, (7.1)

where Xth is the threshold for the path-overlap coefficient. The RAO tells us that

with probability Pout(Xth), the path-overlap coefficient will exceed Xth so that the

propagation channel is unsatisfactory for ranging.

The RAO's as a function of Xth for different Poisson arrival rate are plotted in

Fig. 7-6 for a channel with L = 50. The RAO's decrease from 1 to 0, as the threshold

Xth increases or the path arrival rate v decreases. This should be expected because

the probability of path-overlap decreases with the path arrival rate, and consequently

decreases the RAO. The RAO can be used as a measure to quantify the channel

quality for ranging and to guide the design of the optimal transmitted waveform for

ranging.
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Figure 7-6: RAO as a function of the threshold Xth for different path inter-arrival
time 1/v with L = 50.

7.6 SPEB for Different Reference Positions with A

Priori Knowledge of Channel and Orientation

We consider the SPEB for different reference points of a ULA when a priori knowledge

of the orientation is available. The numerical results are based on a network with

six equally spaced anchor nodes (N® = 6) located on a circle with an agent in the

center. The agent is equipped with a 5-antenna array (Nv = 5) whose spacing is 0.5m

(A = 0.5). In far-field scenarios, A, ,k= Ak = 10 and on,k =k.

The SPEB as a function of different reference points along the ULA is plotted in

Fig. 7-7 for different a priori knowledge of the orientation, E,. First, we see that

a priori knowledge of the orientation improves the localization accuracy since the

SPEB decreases with increasing E,. The curve of E, = 0 corresponds to orientation-

unaware case and the one of E, = oo corresponds to orientation-aware case. Second,

the array center has the best localization accuracy, and its SPEB does not depend on

E,, which agrees with Corollary 3. Third, the SPEB increases with both the distance
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Figure 7-7: SPEB as a function of the distance from the reference point to the array
center for different a priori knowledge of the orientation E,.

from the reference point to the array center and the error in the orientation estimate,

as predicted by Corollary 2. Fourth, the SPEB is independent of the specific reference

point if E = o00, as referred to orientation-aware localization.

7.7 SOEB for Different Reference Positions with

A Priori Knowledge of Channel and Position

We investigate the SOEB for different reference points of a ULA when a priori knowl-

edge of the reference point is available. The parameters are the same as those of the

previous example except that a priori knowledge of the reference point is available

instead.

The SOEB as a function of different reference points along the ULA is plotted

in Fig. 7-8 for different a priori knowledge of the reference point, E,. The results

are counterparts of those in Fig. 7-7. First, a priori knowledge of the reference point
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Figure 7-8: SOEB as a function of the distance from the reference point to the array
center for different a priori knowledge of the reference point ,p.

improves the orientation accuracy since the SOEB decreases with increasing .p. This

agrees with both intuition and Corollary 3. Second, the array center has the worst

orientation accuracy, and its SOEB does not depend on Ep. This should be expected

since the knowledge for the array center tells nothing about the array orientation.

Third, the SOEB decreases as a function of the distance from the reference point

to the array center if a priori knowledge of the reference point is available. This

observation can be verified by Theorem 3. Fourth, the SOEB is independent of the

specific reference point if ,' = 0, as shown in Corollary 2.

7.8 Performance Comparison of ULA and UCA

We compare the performance of the ULA and the UCA for AoA estimation as a

function of the number of antennas in the array. We consider a case where the a

priori knowledge of the orientation is not available, i.e., ~, = 0, and Fig. 7-9 shows

the ratio of SOEB's corresponding to the UCA and the ULA for different AoA,
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Figure 7-9: The ratio of SOEB's for the ULA and the UCA as a function of different
number of antennas in the array. The four curves correspond to AO = xr/6, ir/3, 7r/2,
and average over uniform A E [0, 27r).

S- ¢- <p. First, the performance of the ULA and the UCA is always the same for

N, = 2, since they have actually the same array geometry in this case. Second, the

ratio highly depends on ¢ for Nv = 3,4, while it is less than 1 for Nv > 5. But the

average ratio over uniform 0 E [0, 27r) is always less than 1, implying that the UCA

outperforms the ULA. This can be explained by (5.31). Finally, the asymptotical

ratio as Nv - oc can be found as

Pc_() J- (L) 2lim lim - sin2( ).
-oo PL ) -oo JeC () 3

(7.2)



7.9 SPEB with Time Offset and Squared Error

Bound for Time Offset

We investigate the effect of time offset on the SPEB and the squared error bound

for the time offset, using the network illustrated in Fig. 7-1. The received waveform

from each anchor provides the agent with RII Ak = 10 (k = 1, 2, 3, 4). Initially, four

anchors are fixed with q1 = 0, 0 2 = 7r/2, 0 3 = 7r, and 04 = 37r/2, respectively.

We now vary the position of Anchor Al counter-clockwise along the circle. Figure

7-10(a) and 7-10(b) shows the SPEB and the squared error bound for the time offset,

respectively, as functions of ¢1 for different a priori knowledge of the time offset. We

have the following observations.

* First, the SPEB decreases as a priori knowledge of the time offset increases. The

curve of EB = o00 in Fig. 7-10(a), corresponding to the case where the time offset

is precisely known, is equivalent to systems without the time offset. Similarly,

the squared error bound for the time offset also decreases as EB increases. The

curve of EB = 00 in Fig. 7-10(b) always equals zero since the bias is precisely

known. These observations agree with Theorem 4.

* Second, all of the four curves have the same value at 01 = 0 in Fig. 7-10(a),

which implies that the time offset has no effect on the SPEB at this point.

This phenomenon is due to the fact that qB = 0 for /1 = 0, which we refer to

as time-offset-independent localization. In this case, the squared error bound

for the time offset also achieves the minimum. These observations agree with

Theorem 4.

* Third, as q1 increases from 0 to 7r, all curves in Fig. 7-10(a) first increases

and then decreases, while all curves in Fig. 7-10(b) increase monotonically. We

give the following interpretations: all the anchors tend to gather on one side

of agent, as 01 increases from 0 to r, and hence the error of the time offset

estimate becomes larger (to see this more intuitively, consider only anchor Al

and anchor A3). In Fig. 7-10(a), the SPEB first increases because localization



information is decreasing and uncertainty in B is increasing, which corresponds

to the two parts in (6.3). Then, the SPEB drops due to the fact that localization

information begins to increase (when q1 > r/2), while the error of the time offset

estimate increases much slower.
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(b) Squared error bound for the time offset as a function of Anchor Al's posi-
tion

Figure 7-10: SPEB and the squared error bound for the time offset with different a
priori knowledge of the time offset, and SB = 0, 10, 102, oo respectively.



Chapter 8

Conclusion

Analysis of localization performance in the literature mainly employs specific signal

metrics, such as ToA, AoA, RSS, and TDoA, rather than utilizing the entire received

waveforms [8]. Our analysis is based on the entire received waveforms and exploits all

the localization information inherent in these signal metrics, implicitly or explicitly.

In particular, ToA and joint ToA/AoA metrics were incorporated in our analysis

in Sec. 4 and 5, respectively. Similarly, TDoA and joint TDoA/AoA metrics were

included in the analysis of Sec. 6, and the RSS metric has been implicitly exploited

from a priori channel knowledge in (A.17), since RSS can be approximated as

LkJirk (t)I2dt ( I 1 S J 2 (t)dt. (8.1)
l=1

From the achievability point of view, maximum likelihood (ML) and maximum a

posterior (MAP) estimates respectively achieve the CRB asymptotically in the high

SNR regimes for the cases without and with a priori knowledge [281. High SNR

can be attained using sequences with good correlation properties [66-68], or simply

repeated transmissions. Therefore, the SPEB is achievable.

In this thesis, we investigated the fundamental limits of localization accuracy

for wideband wireless location-aware systems. We proposed the measure called the

squared position error bound (SPEB) to characterize the limits, and derived the SPEB

succinctly by using equivalent Fisher information analysis. Our results showed that



the localization information can be decomposed into contribution from the a priori

knowledge of the agent's position and that from anchors, which incorporates both the

measurements and the a priori channel knowledge. In particular, the contribution

from anchors can be written in a canonical form as a weighted sum of the elementary

ranging information. We also investigated the use of wideband antenna arrays and the

effect of unknown time offset in terms of the SPEB. Our result provides fundamental

limits for localization accuracy, because the limits are derived based on received sig-

nals rather than the specific signal metrics and hence accounts for all the potential

localization information inherent in the signals. Our methodology gives insights into

localization problems, and the results can serve as benchmarks for localization algo-

rithms as well as facilitate algorithm development for applications, such as anchor

deployment for accurate localization.



Appendix A

Proofs

A.1 Block Matrices for Fisher Information Matrix

This appendix lists the block matrices used in the Fisher information matrix in (3.9).

* The following block matrices

TL =

G 1

D1

G2 GM

DM

appear in T in (3.8):

and TNL =

GM+1

0

(A.1)

where

Dk =[ 0 I2Lk-1 ] and Gk = qk 1k

with

(A.3)Ik = 1 0 ... 1 0

2Lk

GM+2 GN@

(A.2)



* The following block matrices appear for J, in (3.7):

ANL = diag {M+I1, XIM+2,•• , XN },

(A.4)

where XFk E R 2 Lk x2Lk whose elements

02 In f(rJO)
nkan) for i,j = 1, 2,- - ,2Lk. (A.5)

In particular, every element in X'k can be expressed as

02 In f(rIO)
0Ta )oT)

2 a( a(j)
kO k

No
2 a(i W(j)

- k  k

No
2 2(i •) (j)

k k

No

S(i7-k.fst

k2

a(i) 0 (j)R%k ari

( (i 7-

02 In f(rJO)

aoaoU)
2 a -c

No

2 a(i) •c
No

2= (i (c ) l(

Nn W k

a • In f(rlO)
a&O(i)k a&(Tk kc 2 C2

NO Ji

S0._i---5s

-. Iv

12 exp (-j27rf (i)

- T,)

-ri) - (t

(A.b) df

(A.6b)

- Tk')) dt

- Tkj))) df

2 C2 /Ri)
=- _R8 (Ti

No 9

where R,(T) = f s(t)s(t - r)dt. Note that

02 In f(rlO)
04)2,

}= 8r2 2 ,

[*k]i j = Er

Er
(j) s t dt
k~i

I2rfS(f)12 exp -j2. f - (7W) - T,))) df

(A.6a)

Er{

Er -

j f Is(f)

(A.6c)

(A.7)

AL = diag {X1, 1@2," * , IM} ,

W
(t - rk ) -s (t - -rk(j)) dt

-u V1

(f )12 exp (-j27rf - (rk••)

-rkj))

SNR' ) ,



where 0 and SNR ) are given by (4.6) and (4.7), respectively.

A.2 Wideband Channel Model and A Priori Chan-

nel Knowledge

Wideband channel measurements have shown that the multipath components follow

random arrival and their amplitudes are subject to path loss, large and small-scale

fading. While our discussion is valid for any wideband channels that can be described

by (2.1), we consider the model of IEEE 802.15.4a standard for exposition. Specifi-

cally, this standard uses Poisson arrivals, log-normal shadowing, Nakagami small-scale

fading with exponential power dispersion profile (PDP) [17].

A.2.1 Path Arrival Time

The arrival time of multipath components is commonly modeled by a Poisson process

[17, 61], and we have

g•-k ( -•• l ))  - exp [-V ()_ ') -1), TU) > (-) and 1 > 2, (A.8)

where v is the path arrival rate. Using (2.2), we obtain

gb(bl) b(l- )) - exp - b) - b1)
ckk c P'C

b >2 bk -l ) and 1 > 1. (A.9)

Note that bkO) = 0 for consistency.

A.2.2 Path Loss and Large-Scale Fading

The received signal strength (RSS) in dB at the distance dk can be written as [17]

Pk = Po- 100llog10 o + w, (A.10)



where Po is the expected RSS at the reference distance do, 3 is the propagation (path

gain) exponent, and w is a random variable (r.v.) that accounts for large-scale fading,

or shadowing. Shadowing is usually modeled with a log-normal distribution, such that

w is a Gaussian r.v. with zero-mean and variance a2, i.e., w - N(0, Ua). 1 The p.d.f.

of the RSS of rk(t) can then be written as

gp(Pkldk) oc exp - - 2Pk - Po + 100 log 10 d ) (A.11)

where dk = p - PkII, and Pk is given by

Pk = 10 log10 [E Ic 2] ,E k (A.12)

with Es {-} denoting the average over small-scale fading.

A.2.3 Power Dispersion Profile and Small-Scale Fading

As in [16, 17], we consider an exponential PDP given by, 2

Es {Ia)2} k exp(--l)//k) A QM (A.13)

where Yk is the decay constant, and Qk is a normalization coefficient such that

1 0 Pk/10l
Qk = exp(T k) (A.14)

=o exp(-7 Tk)

1The standard deviation is typically 1-2 dB (LOS) and 2-6 dB (NLoS) [18] around the path gain.
2 Note that the first component of LoS signals can exhibit a stronger strength than (A.13) in some

UWB measurement [16]. In such cases, (A.13) and (A.14) need to be modified, accordingly.



In addition, ak() is a Nakagami r.v. with second moment given by (A.13). Specifically,

we have

g9k (aC (bk, dk, Pk) = gak (ak(r7k, Pk)

(2 mrnL
I (1)012m-1I exp |a I2)I e 1)1 (A.15)

where F(ml) is the gamma function and mi > 1/2 is the Nakagami m-factor, which

is a function of rk [17].

A.2.4 A Priori PDF for Multipath Parameters

The joint p.d.f. of the multipath parameters and the RSS, conditioned on the distance

from the kth anchor to the agent, can be derived as

Lk

gk(Ck, bk, Pkd k) = gp(Pkjdk) 7 ak ajkbk, dk, k)
1=1

Lk

II gbk

l=1

(A.16)

By integrating over Pk, we obtain the p.d.f. of the multipath parameters of rk(t) as

follows

gk (Kkdk) = gk (ak,bkjdk) = ~ gk(ak, bk, PkJdk) dPk.
OO-

Equation (A.17) characterizes the a priori knowledge of channel parameters, and can

be obtained, for IEEE 802.15.4a standard, by substituting (A.9), (A.11) and (A.15)

into (A.16) and (A.17). Note that dk is a function of p and since Pk is known, we

have the following relationship

9k('~kJP) = gk(kldk).

(A.17)

S(b(kll-1) ')

(A.18)



A.3 Proofs of the Theorems in Chapter 4

A.3.1 Proof of Theorem 1

Proof. We first prove that Je(p) is given by (4.5).

pendix A.1, we write Gk in (A.2) as

Gk [qk

Gk = qk" .i ,

Gk

Following the notations in Ap-

(A.19)

and lk= 0 1 0 -... 1 0

2Lk-1

(A.20)

Recall that in (A.7)

02 in f(rkl)
071) = 87r2, 2 -SNR ,1), (A.21)

we now define kk E -2Lk-1 and matrix "k E R (2Lk-l)x(2Lk-1) Such that

87r202 -SNRl) k ]T
Xk k k

L kk kk

It follows from Theorem 1 that Je = TLALTT/ 2 , which can be written as

Je C2
cL

A B
BT C

(A.22)

(A.23)

where

Er



AA Gk'kGk

= R + ZGdkkkqk + k4,Ti + (k k ,'kkEk 

G 

Lk

k EjVL
BA[ G1I1 DT G2

= [qk + i11

S.. GM(MDM T]

q2kf + 2 "'" qMk T +GM+8, ]

C A diag {DIDT, D2* 2DT, -. - , DM'MDT }

=diag (1, 1 2, " aM ,

and

RA 81r2f 2  SNR() -qkqT.
IcCfL

Since A is a 2 x 2 matrix, we can obtain a 2 x 2 EFIM

1
Je(P) = 2 {A - BC-1BT}

Substituting (A.24) into (A.26), we obtain Je(p), after some algebra, as

1
Je(P)- -

(A.24b)

(A.24c)

(A.25)

(A.26)

R-

87r2)32

C2

qkkik k kq

(1 - Xk) - SNR() -qkq T ,
VL

where Xk is a scalar, given by

V -1
kT@k kkXk k k

87r 20 2 - SNRk)'

This completes the proof of (4.5).

Next, we show that only the first contiguous-cluster contains information for lo-

where

(A.24a)

(A.27)

(A.28)



calization. Let us focus on Xk and first define the following notations for convenience:

Rs(ij) A Rs(t) -t=.' )-  • , )
k ck

R8(i, j) ]- • RS(t)I =_ 2

R,(1,1) - R,(1,2) Rs

-R,(1, 2) Rs(2,2) R,(2,2) R,(2,3) Rs(2,3)

R,(1, 2) Rs(2, 2) Rs(2,2) -R, 8 (2,3)

-Ri(1, Lk) Rs(2, Lk)

R,(1, Lk) J(2, Lk)

tk A [ 8(1,1) &8(1, 2) Ri(1, 2) S-- R,(1,Lk) R(1,Lk) T

Then, we can express %Fk and tk as

k No diag c, a ,kc,- , Tk - diag {c, a , c, •

and

kk d2ag c, a(2)
kk N diag c ,..No 7 k C,·· ,a(Lk) c} tk

k 1-t

(A.33)

Substituting (A.32) and (A.33) into (A.28), we obtain

(A.34)

If the length of the first contiguous-cluster in the received waveform is L'(< Lk),

92

Rs(i, j) A -- Rs(t)I=i)_T(j)
0t2 o-k Ic

( = -Rs(j, i) ,

(1,2) -R, (1,3) R.9(1,3)

TkA

(A.29)

SRs (1, Lk)

R, (2, Lk)

R,(2, Lk)R,(2, 3)

Rs(Lk, Lk)

Rs(Lk, Lk)

(A.30)

(A.31)

a (Lk),c ,
ak I

(A.32)

Xk 42 2 Ltk .
r•__ 1



Xk in (A.34) can be further simplified. In such cases,

R,(i,j) = Rs(i,j) = R,(i,j) = 0 (A.35)

fori E {1,2,...,L}I and j {L +1,L' 2,..,Lk}, and3

tk =  T k k0T , .ndkj, an0d

t T OT ]T Tk 0tk= OT and Tk 0 ] (A.36)

where tk E R2Lk-1 and Tk E R(2L' - 1)x( 2Lk- 1). Therefore, (A.34) becomes

1 - -1
Xk = 4212 t k tk, (A.37)

which depends only on the first L' paths. As a result, we can see that only the first

contiguous-cluster of LoS signals contains information for localization.

Note that 0 < Xk K 1. Xk is nonnegative since it is a quadratic form and Tk is

a positive semi-definite FIM (hence is Tkl); and Xk < 1 since the contribution from

each anchor to the EFIM in (A.27) is nonnegative.

A.3.2 Proof of Corollary 1

Proof. If the signal via the first path do not overlap with others, then this scenario

can be thought of as a special case of Theorem 1 with L' = 1, i.e., the first contiguous-

cluster contains only one path. In this case, (A.37) becomes

Xk 1 1 R (1,1) (A.38)
47r2/2 472,2 R,(1, 1)

Since signal waveform s(t) is continuous and time-limited in realistic cases, we have

a
Rb(1, 1) = -R, r) = 0, (A.39)

&t r=O

' is a block matrix that is irrelevant to the rest of the derivation.



implying that Xk = 0. Hence, the RII becomes

Ak - 8ir20 2 SNR(k) (A.40)

A.3.3 Proof of Theorem 2

Proof. If a priori knowledge of the channel parameters are available and the sets of

channel parameters from different anchors are independent, then the FIM is

1 TNLANLTNL + TLALT T

cANLTNL

TNLANL ]J-

ANL

where

ANL = Eo {ANL} A diag {1,+1 ,2, .. , i M}

AiL = Ee {hAL} A diag {''M+1, 9M+2,r''~" N}

The FIM Je can be then written as

1J A[BT C

cLT

where

ZkEK. Gk kG + c2'

(G1 ~,ID T + c2 ,)

(GIM'MDT + c2-M ,)T

GM+1 •M+1 + C2 M+1

0

1D T + c2~1 T 1D1-D 1 6-AK,,c K

GM+2'M+2 + C2
PI
M + 2

C diag { M+1 + c2 , ,2M+1 M+2 + C2 M+ 2,, , , N. + C2.N

(A.41)

(A.42)

(A.43)

(A.44)

G- I TMD ± + c2= M

DM4MDT + C2 M

GN, WN. + c2,,No.. G / + ..p,IN

(A.45)



Apply the notion of EFI, and we have the the 2 x 2 EFIM as

Je(P) = Z (Gk kG + c2 P)

- (GkkD (DkkD + c2 (GkkD + c2 T
ke ( G kl kD T p,) ( k,),• (;k k 6hp,)

kEnrL

- (Ga' + 2 (Cp k + C2 =
kEJKNL

From (A.18), we have gk(rkjP) = gk (rKkdk), and

p = E a an1(k k In9kIkJ1T
p, = LE InLg ( k P) - In (rk P

=kkk-.dP, = EEq -1 P Ingk*nkjP)] [19klnknkp

-1 (Gkk + C2k

(A.46)

4k ,T (A.47)

(A.48)

where

,• A Ee

1-4p,p E

•k ·o

I a ad
In gkA kdk)] Ingk l k(|dk)

Sgadk dk k k T

(A.49)

(A.50)

Substituting (A.47) and (A.48) into (A.46), the EFIM can be further simplified as

(A.51)Je(P) = E Ak- Jr (0k)+ E k k" Jr(krk)
kECNL kEJKNL

,k,k
qk *"PIK ,



where Ak is the RII of the received signal from the kth anchor

+ C2 ,k _ k(IT T + c2 Ak ( T
= P" kIJk -+ " )hi i(Jk'EkJ

- k C2p• (' C2 - 11- C,,k.kw b P . ( k b-

+C2,k -1I
-[- x , X•# )

(1 kDT + c2 , T)

for k E NL ,

(A.52)
IT-

l + c2•k)T}+k C2

for k ANNL •

(A.53)

O

A.3.4 Consistency of RII's for LoS and NLoS Signals

This section is to show that 1) the results in Theorem 2 degenerates to that of Theorem

1 when a priori knowledge is not available, and 2) a priori knowledge improves to

localization accuracy in terms of RII.

* When a priori knowledge is not available, 'Ek r k and k, in Theorem 2

are all equal to zero, and the corresponding RII Ak in (A.52) and (A.53) reduce

to

Ak 21
C2

C2

1
c2

{1 kk - (1T kDT) (DklkDk)1 (Dklklk)}

82•2 -SNR )

kk
iT

kk
Tk

k I kk AIk 1k
k

k

{8r 2/32 . SNR 1) - k T k-1kk}

= -2 Xk) .SNR(1)
c~

(A.54)

for k E NL, and

{ - l~k " -1I klk} = 0

1
•k=-

1

C2

{k ' klk

k { kSC2,zk

1
Ak = C2 1 klk (A.55)



for k E AfNL.

* To show that a priori knowledge increases the ranging information intensity,

we consider Ak in (A.52). Note that 1/Ak equals the upper-left element of F 1,

where

1k Ik + C2 Pp
~kT

Dkl klk + c2Fp, I

Dk klk DkLkDT

Dklklk Dk kDT

Dkkll k Dk•kkD T

T - T + C2,_
k

[ kDT + c2 •,

k
"+ PP + •,'-kT 'k
FrPK if,,K:

(A.56)

The inequality in (A.56) is due to the fact thatEk T TS••'P ••In gk(Kk dk) In Agkk dk) -0,
kT =e J

LP, ja0k k I&kk

(A.57)

where k = [dk ~T . Hence, we have F _ < F . Since the upper-left

element of F -1' equals the inverse of the (4.12), (A.56) implies that a priori

knowledge increases the RII.

A.3.5 Consistency of EFIM's for LoS and NLoS Signals

We now show that (A.52) and (A.53) are equivalent when the EFI for b0) from a

priori knowledge goes to infinity. In other words, the contribution of NLoS signals

to localization is as important as that of LoS signals when the bias of the first path

in NLoS signals is precisely known.

Sin (3.17) and in (A4) for NLoS signals can bek
The block matrices 6... in (3.17) and mp,, in (A.48) for NLoS signals can be

_ 1C2

1

- 2



written as

-=k [t2 T
V kk and K, W 5k]

PP)
(A.58)

where Vk, -p, 2 Lk-, and B,, R(2Lk - 1)(2Lk- 1). Note that t2 corresponds totherFserk inorato of I Whe th a roikoleg fb

the Fisher information of b( ) . When the a priori knowledge of bal)

gb(bl)) -t 6(bk(1)), we claim that

lim [+k + C , -1 =
t2-oo 'r 0

0 DklEkDT

goes to oo, i.e.,

(A.59)

Proof. Similar to (A.22), we can partition Ck as

(A.60)kTk

*kj

Then, the left-hand-side of (A.59) becomes

LHS = lim
t2--,00

u + c2 t2

kk + C2Vk

S-1

k T + c2vK
k k J-R

A + C2t 2 
- (kk + C2Vk )T (1k

1
• c 2• 2 (kk + C2 Vk)- - 1,

A k

+ c2~),v-1 (kk +

SC - C••  u + c2t2 (kk + C•Vk) (kk + C'Vk)
kl C

When b(') is precisely known, we have t2 -+ oc, and hence

lim B = 0,
t2--00

lim C = k + C2 ,j
(2 gL

where

= lim
t2--.

A

BT

B
C

(A.61)

c2vk)-1 , (A.62)

I-1* T

(A.63)

(A.64)

+ c
+ C 6-

2

+k k

kk

ýkl

lim A = 0,
t2-,oC

and (A.65)



Notice that 'k = DkIkDj. Hence, we proved our claim in (A.59).

Substituting (A.59) into (A.53), we have

li Ak = 1Tkk + C2k--p

- (1 kD + c (2 Dk kD,7+ c2 (,D kD-+ c2 p,

(A.66)

for k E ANL. We then see that the right-hand-side of (A.66) equals that of (A.52),

i.e., the RII of LoS signals.4

This result implies that LoS signals are the same for localization as NLoS with

infinite a priori knowledge of b ) , i.e., b ) is precisely known.

A.3.6 Proof of Proposition 2

Proof. For each of the possible agent's positions, Ok and dk are different, and hence

q, #k, P -kr^ and "P all become functions of p. Note that in this case, we

need to take expectation over p in (3.13) and (3.14). When the a priori knowledge

of both the channel parameters and the agent's position is available, the EFIM for

the agent's position is given by

Je = + E Ep{ {qk(P)
kEr.

'kp,p(p) . qk(p)T + 2 Ep { qk(P) l Ik&k(P)lk qk(P)}T

- - E, qk(P) 1k(P) + C2 -,(P))} Ep {E k(P) +,(p)-

(EIT +k (P) + c2 ,(p)) qk(P)T}

(A.67)

In far-field scenarios, where 4k and dk are approximately the same for all possible

4Note that the size of k4Note that the size of and p for LoS signals and NLoS signals are different for the same

Lk. Indeed, , and are not associated with bk ) , and hence they are in the same form as
,k k,•k

3 and P for LoS signals in (A.52).



agent's positions, we can approximate p = p = Ep {p} and

E, {qk(p)} qk(p),

Ep p•(p) n,}(p),

E { k (P) k()
ýE, :\,p (p ) i kk (p)
=P -P_

(A.68)

Therefore, the EFIM in (A.67) can be approximated as

SC2 k(p)) qk(P)

- qk(P) (I k(P)+ c2 ' , p,P)) k (k(P)+ 6k,(p))
- 1 (1&k (P) + c2

= , + E Ak() P Jr(Ok) (A.69)

where the RII and the elementary ranging information are, respectively, given by

Xk (p) ^- 1 { 2 k -2 k { k(fP)lkp + C2 pp(p)

-(ITk(P) + c2-pk(0))('k(P) + C -,,P S(1k(p) + C2 T

(A.70)

and

(A.71)Jr(Ok) = qk(P) qk(P) T .

1
kAs•

0-k . , T (k
6-d.p,,( )) qk(

qk(P)" ( k k(f)lk



A.4 Proofs of the Theorems in Chapter 5

A.4.1 Proof of Theorem 3

Since p and c are deterministic but unknown, the joint likelihood function of the

random vectors r and 0 can be written as

(A.72)f (r, 0) = f (r0) -g(0) = I f(rn,k 1) gn,k •n,k P, ).
nENv kEAeN

Note that gn,k(-n,k P,) = gn,k( n,kldn,k), and the FIM Jp from a priori knowledge

can be expressed as

neNo CkeNo .nkT
EnEN ZkE , ""'pIp

WpT
-. P,1

neN, CkeNg ,
=p,1

S . ,Nv

=,T
6-"P, Nv

='n, nnk kp n,kp,-o --" qn,k "pp "hn, k, ýn,k ,k pn,PW -- hn,Ik * p,p)

d
hn,k lXn(p, p) - COS n,k +

dWp

d
p) - sin nO,k.

Block matrices p,n, ,, and correspond to the nth antenna in the array, and

they can further decomposed into block matrices corresponding to each anchor:

YP -=

• [ •,=n,1
6-•W,n 6- I ,

=n,26-pWP
... 6- nN@

.0nN 1

where

, (A.73)

i-n,k _k k TW-pp -= qnk "pp qn,%,

and

(A.74)

(A.75)

(A.76)

(A.77)

(A.78), = diag ( n,2 , , " , • ' ,dia g6(C )



where for each k

=n,k ,- n,k
".pI, qn,k * 0 p,K

and n,k - hn,kk -n,k (A.79)

Note that In,k , and ',n,, are defined similarly as (A.49), (A.50), and (3.17),

except that the subscript {k} is replaced with {n, k}. The transformation matrix can

be written as

G1 G2

T= - h h2

- GNh 1
... hNv

I

where each

G, = qn,1 1n,

hn= [ h, 11n, hn,2 n,2

S.. qn,Nl lN

. " hn,N®,N® ]

Note that the FIM for 0 is

Jo = T -J, TT + Jp

J , = diag {Al, A2 ,"- -· ,AN }

and A! corresponds to the nth antenna as defined in (A.5)

An = diag { n,1, n,2, '.. , n,N@ }

(A.80)

(A.81)

where

(A.82)

(A.83)

(A.84)



We then have the FIM,

Jo = T -J" T T + Jp

ZnEAr GnAnG,

nEAfv hn~An G

A1GT

AN, G

EnEA/v G -lAh T GIA1 S... GN ANv

... hN AN

AjhT

AN h T ANv

Substituting (A.73) in (A.85) and applying the notion of EFI, we obtain the 3 x 3

EFIM for the position and orientation

Je = nEA• kEANo An,k ' qn,knk nEv kEkBV An,khn,k *qn ,k

nE e ,khn,k qnk n kENO An,khn,k

where An,k is the RII from the kth anchor at the nth antenna

(A.86)

An,k ,kn,kln,k + C2, n +c n
-~n,kCf,k + C h.apK) )In,k + C2 •)1 T ,k n,k + C2 ~)T

(A.87)

Therefore, the 2 x 2 EFIM for the position is

jArray(p) = E E An,k" qn,kqn k -

nEAfv keK® nEA

= Je,n- 2
nEAr EnEAv EkENr '\nlkhn,kk

where Je,n is the EFIM for antenna n,

1
=

+ Jp

(A.85)

SqqT
keANT n,knk

qqT (A.88)

Je,n = AE n,k Jr(on,k)
keK®o

(A.89)



and

q = E r An,kh n k qn ,k.
nEArv keN®

In addition, the EFI for the orientation is

Je(p) = A)n,kh~,k
neAv keN®o

- T Je,n-1
(neA )-1 (A.91)

A.4.2 Proof of Proposition 3

Since qqT is always positive semi-definite, we need to simply prove that there exists

a unique p* such that q* = 0.

Proof. Let p be an arbitrary reference point, and

p* = p + g(p), (A.92)

where g(ýp) = [gx(p), g,(W) ]T, and gx(c) and gy(ýp) denote the relative distance in

x and y directions, respectively. Then, hn,k corresponding to p can be written as a

sum of two parts

hn,k = h*,k + hn,k (A.93)

where h*,k corresponds to p*

Sd
hn,k -pA , p)d(p

d
- COS n,k + Yn (P*

dcp

V) -sin Cn,k, (A.94)

and

d =
hn,k 9 (Wp) -COS n,kd~p gy (~ ) -sin n,k

d~p

-g - cos 5n,k + gy - sin ln,k -= T ' n,k.
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(A.90)

(A.95)



Hence, q corresponding to the reference position p is given by

q = A n,khn,k + S S n,khn,k - nk
nEArv kEJA@ nEArv kEcEN

a ne nAq* -

and el can be written as

S: = q g,kg ' n,k q ln,k= n,k qnn,kqk.g
nE.Af kEf.N nEAv kE•rN

Since -nEgv Je,n >- 0, we have q* = 0 if and only if

(A.98)g = Jen
)(n -1

implying that there exists only one g, and hence only one g(p), such that q* = 0.

Therefore, the orientation center p* is uniaue.

A.4.3 Proof of Corollary 2

We first prove that the SOEB is independent of the reference point p.

Proof. Using the notations in Appendix A.4.2, we show that the EFI for the orienta-

tion based on any referent point p

(A.99)Je(p) = E n,k5 2, --
nEAv kEAN

equals the EFI for the orientation based on the orientation center p*

Je (P) = S
nEAv

E (A.100)

101

(A.96)

-g. (A.97)E Je,n
nEAnv

en -
n EM )-1



Let J = CEne Je,n. From (A.96) and (A.97), we have

q - = J -

and hence

qTJ-lq= qJ 4q = T. g = n,kh,k .

nEArv keN®

On the other hand, we also have

An,khn,k k = q* = 0.
nEAv kEAN®

Therefore, we can verify that the EFI for the orientation in (A.99)

Je(p) = A,k(h,k h k ) - Tj-lq
ne'v kENo

- An, *k + 2
nEAv keN®f nEArv

E An,khn,khn,k = Je ( )

This shows that the EFI for the orientation is independent of the reference point, and

thus is the SOEB.

The SPEB achieves the minimum at the orientation center by Proposition 3. We

now derive the SPEB for any reference point and relate that to the SPEB at the

orientation center. The 3 x 3 EFIM in (A.86) can be written, using (A.96) and

(A.104), as

Je
q

Je(O) + 4TJ-l 4

(A.105)

Using the equation of Shur's complement [63], we have

Je 1l(p) = J-F 1 (J-1 ) (J-
Je ( )

1)T _j 1 1 T.
=_J- +Je M *gg)

Je(~p)

102

(A.101)

(A.102)

(A.103)

(A.104)

(A.106)



Since translation g(pc) can be represented as

cos(v + ýpo)

sin(ýo + po) I ,

where Oo is a constant angle, we have

llgll = lip - p*ll

Then, by taking the trace of both sides of (A.106), we obtain

P(p) = P(p*) +
gTg
Je(P)

lip -p*II2
= P(p + 2)

Je ( )

This completes the proof.

A.4.4 Proof of Proposition 4

Proof. Take the array center Po as the reference point, and we have

d

d
d- 1: AC n (PO, C/)

cos On,k + Ayn(0Po, ) -sin Cn,kd~o

Scos ¢O,k +
d

d~p (fl1V AYn (PO, We)

=0.

Consequently,

q = E Akhn,k ' qk=
nEAhv kEAr keN®

Ak qk = 0,
(flEV hnk
\nEAr/

implying po = p*, i.e., the array center is the orientation center.
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(A.107)

(A.108)

(A.109)

Ssin ¢n,k

(A.110)

(A.111)

g(cp) = lip - p* 1 -



A.4.5 Proof of Corollary 3

In far-field scenarios, qn,k and dn,k are approximately the same for all possible agent's

positions and for all n. When a priori knowledge of the agent's position and orien-

tation is available, following the steps of the proof in Appendix A.3.6 and using the

fact that the array center is the orientation center, we can obtain the 3 x 3 EFIM for

the array center and orientation as

Je(Po, cp) NJ= e+ P

oT
(A.112)

0
nEjo EkE k/(POk)hnk + 0 k

where hn,k is a function of po, Je is the EFIM for each antenna

Je = E Ak(o) -qk (k (Po)
qk 

Po)

(A.113)

Note that the non-diagonal elements are zero since po = P*.

A.5 Proofs of the Theorems in Chapter 6

A.5.1 Proof of Theorem 4

In the scenario in which there is a time offset, we use the notations in Appendix A.3.3

and can write the FIM as

EkeNo Gk4kGk

EkeNo I'kGk

N, G;n

EkEK•N Gk klk

kEOr k•11 'k1k

'k111

N® lIN

(A.114)

104

1
Jo =

GN, N'No

+ Jp,



where

Z k
keNo Phpp

0 =166PI

0 T
0 T EB 0 T

E~ T 0 =1
LKI

(A.115)

Applying the notion of EFI, we obtain the 3 x 3 EFIM for the position and the time

offset

Je k= kE.V k qkCkJ= ZkECN®k * qT
e LZc~N® Akc~T

ZkENo /k "qk

ZkEA® 1\k + EB

where the RII Ak is defined as (A.53). Therefore, the 2 x 2 EFIM for the position p

in the presence of the time offset B becomes

JeB() = Ak qkqk
keN®o

1 T
kE 4 +B qBqB,

CkE~N® k +- BS

(A.117)

and the EFI for the time offset can be written as

Je(B) = ]Ak
k E NA

+ EB q- qB
k e No( z
kEN®@

Ak" qkQk) qB, (A.118)

where qB A Eke•A Ak - qk-

A.5.2 Proof of Corollary 6

Similar to the proof in Appendix A.4.5, we can incorporate the a priori knowledge

of the array center and orientation into (6.12), and obtain the approximate EFIM in

105

(A.116)



far-field scenarios as

ZnCArv ZkeGFNR An,kqn,kqnk + 6p

ZneAV ZkCi X/An,khn,kq k

ZneAv ZkEcA )l,kqk

Zne kNo Z kg An,khn,kqn,k

ZncAfV ZkE~f An,khfk ±

ZnEArP keN, \n,khn,k

Cnegv ZkeNA® An,kqn,k

nEAr ZkEAn An,khn,k

EnEANv EkENA® An,k + -- B

(A.119)

Recall that in far-field scenarios, p = p*, implying that E-GHr --keACA An,khn,kqn,k =

0 and - -kNA® nAkhn,k = 0, and hence

Nv -J e +

jArray-B = 0 T

kNVz•ko Akq(T

0

Env, EkEZH )k n,k ±+
0

N , ZCkGA/ Akqk

0

NV EkAr Ak + SB

(A.120)
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