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Abstract

The objective of this thesis is to present the foundation of an automated large-scale
disease prediction system. Unlike previous work that has typically focused on a
small self-contained dataset, we explore the possibility of combining a large amount
of heterogenous data to perform gene selection and phenotype classification. First,
a subset of publicly available microarray datasets was downloaded from the NCBI
Gene Expression Omnibus (CEO) [18, 5]. This data was then automatically tagged
with Unified Medical Language System (UMLS) concepts [7]. Using the UMLS tags,
datasets related to several phenotypes were obtained and gene selection was performed
on the expression values of this tagged micrarray data. Using the tagged datasets and
the list of genes selected in the previous step, classifiers that can predict whether or
not a new sample is also associated with a given UMLS concept based solely on the
expression data were created. The results from this work show that it is possible to
combine a large heterogenous set of microarray datasets for both gene selection and
phenotype classification, and thus lays the foundation for the possibility ofautomatic
classification of disease types based on gene expression data in a clinical setting.
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Title: Professor
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Chapter 1

Introduction

1.1 Introduction

Imagine going to a doctor's office and having the physcian tell you your likelihood of

having a certain disease. Imagine a surgeon being able to conclusively determine the

origin of a tumor so that the correct treatment can be implemented. This will become

the norm in the near future. In order for this to become a reality, however, a vast

amount of data needs to be leveraged and combined to produce accurate predictors for

the wide array of clinical outcomes. The aim of the work in this thesis is to provide the

groundwork to show the feasibility of such an automated disease prediction system.

1.2 Motivation

With ever-growing repositories of public microarray data, the notion of using multiple

different datasets spanning various diseases, treatment conditions, and tissue types to

create a classification system becomes feasible. Similarly, with the constant decrease

in price and complexity of performing microarray experiments, the clinical application

of microarrays is within reach. Unfortunately, without a so-called "black box" that

a clinician can use to test a given patient's gene expression data against a multitude

of diseases, gene expression data cannot be used as a diagnostic tool.

Recent work utilizing large disparate datasets by Butte et al. [9} and Segal et
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al. [41} show that finding statistically significant genes and gene modules is indeed

possible. What they failed to show, however, is that this same data can then be used

to generate useful classifiers for these different conditions. That is, they only showed

that the phenotypic data can be used to find significant genes or gene modules, but

not that these same genes can then be used to classify new instances of data. To

the best of our knowledge, all phenotype classification methods thus far have used

a single dataset, a strictly standardized set of data, or a computationally intensive

normalization method on the input data. For example, Furey et al. [23] performed

their SVM classification independently on three different homogeneous microarray

datasets. Similarly, Anderson et al. used a nearest neighbor algorithm to predict

childhood leukemia [1]. While these disease specific methods are vital in further-

ing the understanding of individual diseases, for diagnostic purposes it will become

necessary to use a large quantity of heterogenous data. Furthermore, complex nor-

malization methods, such as Loess normalization [19], cannot be used as they require

the normalization to be performed on all of the data. Not only is this impractical

when analyzing thousands of experiments, but one would also have to re-normalize

the data each time a new experiment is added to a database. The only example

of using multiple datasets, albeit on a small scale, without a complex normalization

method that we are aware of, was proposed by Warnat et al. [45]. They show that

by either performing quantile discretization or by converting the expression values

to median rank scores, accurate classification results are plausible. As they them-

selves mentioned, however, since only two datasets were used for each of the three

phenotypes they examined, their results required further study.

In this work, we show that the use of a large heterogenous database as the basis

of phenotype classification is not only feasible, but it also gives promising results

and can be used as the foundation of a large-scale phenotype prediction tool. We

first employed a natural language processing tool to annotate free text with domain

specific concepts and then used these concepts in conjunction with regular expressions

to automatically select datasets associated with phenotypes of interest. Using these

datasets, we performed gene selection and then phenotype classification. Our results

14



show that it is possible to integrate a large quantity of heterogeneous microarray

datasets, and the results are comparable to other methods that used homogeneous

input data.

1.2.1 Terminology

Throughout this work the following definitions will be used unless explicitly stated

otherwise. A microarray dataset will be a set of microarray experiments that were

conducted by a specific lab for a specific purpose. For example, if a group of scientists

were studying lung cancer and performed ten microarray experiments, five disease

state experiments and five control experiments, then the set of these ten experiments

is a dataset. Each experiment will also have associated with it a platform. The

platform is the the actual chip that the microarray experiment was conducted on, for

example the Affymetrix HGU-133A chip. Figure 1-1 shows a pictorial representation.

Lung Cancer Dataset

FExpermet 1: Lung Cancer

(Expefrmnt 2: Lung Cancer

E xprien 3:, Lung CancerH A

Experkmenl 5: Normal Tissue

Experiment 6: Normal Tissue

Figure 1-1: The relationship of a dataset, an experiment, and a platform.

1.2.2 Microarrays

The term microarray has been previously used but never clearly defined. At the

most basic level, microarrays are used to perform high throughput biological gene ex-

pression experiments. In essence, a microarray experiment simultaneously measures

the quantity of thousands of genes in a sample. For most common microarrays, a

scientist starts by extracting mRNA from a tissue or system of interest and creates
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a fluorescence-tagged cDNA copy of this mRNA. These sample probes are then hy-

bridized to a microarray chip that have cDNA probes attached to the surface in a

predetermined grid pattern. The underlying idea behind this process is that a sample

probe will only bind to its complementary probe, thus allowing a scientist to mea-

sure the quantity of the sample probe present. After leaving the microarray chip

submerged in the solution containing the sample probes for several hours, any excess

unhybridized sample probes are washed off. The microarray is then scanned using

laser light and a digital image scanner records the brightness level at each probe lo-

cation. It has been shown that the brightness at a particular spot is correlated with

the RNA level in the original tissue or system of interest [39].

Initial Microerray

Prmbe

Samp e Probe

Figure 1-2: The basics of microarray technology. Fluorescence-tagged cDNA sample probes for

a tissue or system of interest are hybridized to a microarray chip containing cDNA probes. After

the hybridization process, the chip is scanned using a laser, and the intensity levels at each probe

location are measured to determine the expression level for a particular gene.

There are multiple different forms of microarray technologies; the two major ones

being spotted cDNA arrays and oligonucliotide arrays. While both of them measure

gene intensity levels, the approach of how they are created and the way in which

the intensities are measured differ. The former was introduced by Mark Shena et al.

16



[39] in 1995 and is also known as a cDNA microarray. Typically, a robotic spotter

picks up cDNA that has been amplified using PCR and places it on a glass slide.

When performing the experiment, two conditions are actually tested simultaneously,

each with a different fluorescent color. The intensity levels are then measured as a

ratio of the two conditions. On the other hand, oligonucleotide arrays are generated

by a photolithographic masking technique first described by Stephen Fodor et al.

[22] and were made popular by Affymetrix. Unlike the cDNA arrays, oligonucleotide

arrays only measure one condition at a time. One therefore needs to perform multiple

experiments in order to compare multiple conditions. A more in-depth explanation

about microarray technology and the various types of microarrays can be found in

[28].

Difficulties in Dealing with Microarrays

Although microarray technology enables one to get a genome-wide snapshot of the

quantity of RNA levels in a sample, there are many factors that make this data difficult

to deal with. Simply put, the data is noisy. For example, a replicate experiment

that uses exactly the same experimental setup can, and often does, report different

expression levels. While this may seem disconcerting, this irreproducibility of data is

not limited to microarray technology, but also occurs in most types of experiments in

which miniscule quantities are measured with a highly sensitive device. The standard

approach to dealing with this problem is to make many replicates and hope that the

intensity values of the repeats converge to the true measure. Unfortunately, not only

are microarray experiments very expensive, but these sort of repeats tend to eliminate

noise caused by measurement errors and not the biological variation inherent in the

samples being studied.

Another major obstacle in dealing with microarray technology is the lack of cross

platform reproducibility. As detailed in [28], high intensity levels in a cDNA exper-

iment did not correspond well with high levels in oligonucleotide experiments. In

light of this, this work only uses single channel data. Furthermore Hwang et al. [26]

performed a study where they compared two human muscle biopsy datasets that used
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two generations of the Affymetrix arrays (HG-U95Av2 and HG-U113A) and showed

that they obtained differences in both cluster analysis and the differentially expressed

genes. While this is an unfortunate conclusion, this sort of noise is inevitable and

cannot be countered. Interestingly, however, our results show that while it may be

true that the results from different datasets are not identical, reasonable results both

for gene selection and phenotype classification can be attained.

1.2.3 Problem Statement

The aim of this thesis is to show the plausibility of using a large set of microarray

experiments to automatically build classifiers for various diseases. Unlike previous

work that has typically utilized a single or a few datasets to generate these classifiers,

the objective is to show that a large heterogeneous database filled with microarray

experiments can be used to generate classifiers.

1.3 Data

1.3.1 GEO Data

The Gene Expression Omnibus (CEO) [18, 5] is a public database containing gene ex-

pression and molecular abundance provided by the National Center for Biotechnology

Information (NCBI). GEO data is divided into GEO Data Sets (GDS), GEO Series

(GSE), CEO Samples (GSM), and GEO Platforms (GPL) files as depicted by Figure

1-3. In terms of the terminology introduced earlier, GDS and GSE files are datasets,

GSM files are experiments, and GPL files are the platforms. The difference between

a GDS and GSE file is that a GDS file contains additional meta information that the

curators of CEO added to the original GSE file that was uploaded. For example, GDS

files contain subset information about each experiment such that one can see what

condition a given experiment has in the dataset. The dataset with the identifier GDS1,

for instance, was an experiment conducted to find genes related to reproductive tissue

in Drosophila melanogaster (data accessible at NCBI CEO database, accession num-
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ber GDS1; http://www.ncbi.n1m.nih.gov/geo/query/acc. cgi?acc=GDS1). The

various subset information provided includes information such as gender of the fly

for the given sample and the tissue the sample was created from. Another impor-

tant difference between GDS and GSE files is that a GDS may only contain exper-

iments that were conducted on a singled GPL platform. It is possible for a GSE

to contain experiments with multiple platforms because there are instances when

an experimenter compared multiple microarray platform technologies or performed a

cross-species study. It is important to note that there are many more GSE files in

GEO than GDS files, as there are many datasets which have yet to be manually anno-

tated. Due to the large size of the GEO database, only a subset of the entire database

was downloaded. More specifically, all GDS files pertaining to Homo sapiens, Mus

musculus, and Drosophila melanogaster were downloaded on 13 June 2007. All GSE

and GPL files relating to these GDS files were also obtained. This amounts to 1317

GDSs that were curated from 1086 GSEs, which are made up of 25128 experiments,

and 1171 platforms. While the data for mouse and fly was downloaded, this study

concentrated only on the microarrays pertaining to human data.

Figure 1-3: The relationship of GEO files as represented by a UML diagram.

Other Data

Other supporting materials were obtained directly from the National Center for

Biotechnology Information (NCBI) website [33]. These files include mapping of

gene symbol to Entreze identifier (gene-info), Refeq and GenBank identifiers to En-

trez Gene identifiers (gene2accession), UniGene identifeir to Entrez Gene identifier
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(gene2unigene), and Enterz Gene identifiers to GO terms (gene2go). The Gene On-

tology data was obtained directly from Gene Ontology website [4]. These files were

all downloaded on 13 June 2007.

1.4 Code Developed

In order to perform this work, various libraries were implemented and used. A brief

description of the major components are discussed below.

1.4.1 Majik: Microarray Java Interface Kit

To deal with the vast amount of microarray data, the various file types, etc., a li-

brary to work with microarray data was developed. This library contains methods to

read the various GEO files and to perform manipulations of the data. Most of the

manipulation of GEO files is performed using this library.

1.4.2 JMath

There is no effective statistical package available for Java. Since the majority of this

work was performed in Java it became necessary to create a library for statistical

methods. Many of the methods were ported over from the R statistical package.

JMath is thus an object-oriented framework for various statistical functions that were

used throughout this work.

1.4.3 WekaX

The WEKA data mining toolkit was extended with various new functionality. For

example, filters based on statistical methods (using the JMath library) and a kernel

density estimate based classifier were implemented.
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Figure 1-4: Screenshot of the website used to remove incorrectly tagged text.

1.4.4 UMLS Annotation Correction Site

A web-based front end to the MySQL database containing all the UMLS tags for the

microarray datasets, shown in figure 1-4, was created to enable users to efficiently

remove incorrect labelings. Through the website, users were allowed to examine the

tags associated with the text and supply regular expressions to remove falsely tagged

pieces of text. Users were also allowed to insert new tags that were missed by the

MMTx software.

21



22



Chapter 2

Methods

To perform the automatic classification of various phenotypes from disparate microar-

ray datasets, the text of the microarray datasets was first automatically tagged with

medical concepts. In addition, the expression intensity values were made compara-

ble in a non-compute intensive preprocessing step. This was then followed by gene

selection and finally by classification. During the gene selection phase, a total of six

different variations were performed. The workflow is detailed below and is depicted

in Figure 2-1.

2.1 Data

The Gene Expression Omnibus (GEO) [18, 5] is a public database provided by the

National Center for Biotechnology Information (NCBI) that contains gene expression

and molecular abundance data. All GEO Datasets (GDS) files pertaining to Homo

sapiens were downloaded on 13 June 2007. All GES Series (GSE) and GEO Platform

(GPL) files relating to these GDS files were also obtained. This amounts to 612

GDSs that were curated from 500 GSEs, which are made up of 14454 experiments

and performed on 142 different platforms.
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GenerGene SelecltCron
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ID Mappi Perform Permutation Based
Prbet nta 4 ln T Test F dlenng d

Prbe Intensiies ReeAFltteneif ring Fialtin

Preprocessing. ............. ... .. .. ... ... ... ...... .

Buidd and Test Classifiersj

Figure 2-1: The processing workflow used to conduct this study. First, the GEO data is made
comparable by mapping all the microarray probe identifiers to NCBI Entrez Gene identifiers. This
comparable data is then rank normalized and used for gene selection and phenotype classification. A
total of six different gene selection methods were performed, and the then multiple different classifiers
were tested on the selected genes.

2.2 Automated Text Tagging

One of the largest drawbacks to the data in GEO is the lack of machine interpretabil-

ity. While one can simply browse GEO using the web if only looking for a few datasets,

this becomes cumbersome if attempting to obtain a large quantity of datasets. More

importantly, browsing the web is not a viable solution for a phenotype predicting

"black box." Thus, instead of using the online search tool, we downloaded the afore-

mentioned human datasets. Along with the intensity data, all of the files in the

database contain only text that was written by either the experimenter that per-

formed the initial experiments or the curators that added meta data. This does not

allow one to easily find, for example, all datasets pertaining to lung cancer without

some search tool. The most naive option would be to simply use regular expressions

to search all of the text to find experiments of interest. Unfortunately this does not

work well in a domain that has so many synonyms. For example, "breast cancer,"

"breast carcinoma," "carcinoma of the breast," "malignant breast carcinoma," and so

24



forth, all refer to the same concept. To overcome this barrier, the MetaMap Transfer

(MMTx) software [3] was used to annotate the text within the GDS and GSE files

with Unified Medical Language System (UMLS) concepts [7]. A MySQL database

was used to store the 11858 distinct concepts associated with the data. Thus, the

problem of finding related datasets was turned into a problem of finding datasets with

the same UMLS identifiers. As explained by Butte et al. [9], the annotation process

is not perfect and thus we used regular expressions to remove many of the incorrect

annotations. Annotations that were missed by the software were also added.

To perform phenotype classification, two distinct test groups of microarray datasets

were created; one for disease specific phenotypes, and the other for tissue specific

phenotypes. These groups of microarray datesets were generated by searching for

the relevant UMLS concepts in the database. For example, one of the phenotypes

in the diseased group was "breast cancer" and we searched for datasets that were

related to the UMLS concept "Breast Carcinoma" (C0678222). The candidate list

of datasets for each phenotype was then reduced to only those performed using an

Affymetrix chip as it is hard to interpret two-channel data in conjunction with single-

channel data. This produced an initial list of 122 candidate datasets for the seven

disease phenotypes. We then further pruned this list to eliminate any datasets that

made reference to treatment conditions, such as knock-outs and treatment therapies.

As a matter of fact, simply using a rule to exclude any dataset with the term "re-

sponse" in the title or description produced a nearly final list of datasets. We had

to manually include only seven datasets that were removed by the previous rule as

they contained some diseased controls along with the treatment data. We then also

incorporated experiments from two large-scale analyses of the human transcriptome

datasets (GDS596 and GDS181). We also had to remove eight datasets that did not

have at least two diseased tissue samples.

Unfortunately, the efficacy of this process was drastically different for the disease

and tissue specific data due to the nature of the microarray experiments in GEO.

Most of the datasets pertaining to diseases contained only experiments pertaining

to one disease, while the majority of the tissue datasets contained a vast number
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of different tissue types. Due to this difference, the automatic selection of datasets

was only performed for the diseased group. The datasets for the tissue group were

manually curated and the phenotypes of each experiment were supplied by hand.

With a set of datasets in hand, the next task was to group the individual ex-

periments with those pertaining to the disease state of interest. All experiments

in the disease data group that were not annotated as being diseased were removed.

Similarly, all experiments in the tissue data group that were not annotated as being

normal controls were discarded. This state was inferred from the subset information

in the GDS files. Since the majority of the tissue specific datasets contained multi-

ple normal tissue samples, it was not possible to automatically label each experiment

with both its phenotype and disease state accurately. Unlike the tissue data, however,

the datasets containing diseased samples are by and large specific to a single disease

phenotype. We therefore used regular expressions to automatically assign a disease

state label to each experiment. This process achieved a sensitivity of 62% and speci-

ficity of 98% on the giving data for inferring whether an experiment was diseased or

not. To ensure the reproducibility of the subsequent gene selection and classification

steps, the incorrect annotations were then modified manually to the correct labelings.

Following this process, the data for the disease group consisted of 40 distinct GDS

files made up of 894 GSM files. Of those, only 782 were used, as those were the

ones representing the disease state. These experiments are made up of samples of

arthritis, breast cancer, leukemia, lung cancer, lymphoma, prostate cancer, and renal

cancer. For tissue classification, 346 normal tissue state experiments of the 684 GSM

experiments from 23 GDS files were used. Bone marrow, brain, heart, liver, lung,

muscle, pancreatic, prostate, renal, spinal cord, and thymus tissues were represented

in these experiments. Tables A.1 and A.2 contain the detailed listing of the different

datasets.

In order to simulate miss-annotation of data, incorrect data was incorporated into

some of the disease phenotype data. We introduced emphysema samples (GDS737)

and experiments containing data for lung pneumocytes infected with Pseudomonas

aeruginosa (GDS1022) into the lung cancer data. The prostate cancer data was aug-
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mented with two datasets containing treated prostate adenocarcinoma cell line data

(GDS2057 and GDS2058). Expression data from peripheral blood mononuclear cells

from patients with renal cancer following treatment with rapamycin analog CCI-779

(GDS1021) was added to the renal cancer data. Finally, some spondyloarthropathy

samples were left in with the arthritis data from GDS711. The data for the dis-

ease group thus ultimately consisted of 45 distinct GDS files made up of 906 usable

experiments.

2.3 Preprocessing

As each of the GDS files is already internally normalized as part of the uploading

requirements to GEO, intra-dataset normalization was not necessary. Unfortunately

the different datasets obtained from GEO are not directly comparable to each other.

Each experiment is based on a specific platform and thus the intensity values provided

are values for a specific probe on the microarray. Furthermore, the identifiers used

are platform specific and cannot be directly translated between multiple platforms.

To overcome this obstacle, each probe was mapped to its corresponding Entrez Gene

identifier. Entrez Gene identifiers, which will be referred to as either the Entrez ID

or gene ID from here on, were chosen due to the universality of the identifier. Unlike

gene names or symbols, NCBI guarantees that a given gene ID will only be used for

a single gene.

The following procedure, which is pictorially represented in figure 2-2, was used

to perform the probe to gene ID mapping. First, regular expressions were used to

attempt to find the gene symbol, GenBank identifier, RefSeq identifier, UniGene

identifier and the Entrez identifier in the platform file. If an Entrez identifier was

present, then this was immediately used and the subsequent steps were not performed.

If either a gene symbol or a UniGene ID was present, those were used to find the Entrez

identifier. If no Entrez IDs were found based on the gene symbol or UniGene ID, then

the RefSeq and GenBank identifiers were mapped to the Entrez IDs. Unfortunately,

this step does not guarantee a one-to-one mapping and thus the gene ID that occurred
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Figure 2-2: The process for mapping platform probe identifiers to Entrez Gene identifiers.

the most frequently was used. If the counts were tied, the top four Entrez IDs were

used. Multiple Entrez IDs were used as opposed to the single best one due to the

possibility of an erroneous match. It was assumed that by duplicating the information

over multiple genes, at least one of them should be correct. A similar method was

described by Chen et al. [11].

While mapping all probe identifiers to Entrez IDs allows for mapping probe values

between different platforms, it does not address the issue of different normalization

schemes in the various datasets. This was addressed by rank normalizing each probe

intensity value as performed by Butte et al. [9].

We performed leave-dataset out cross-validation to perform the gene selection and

classification. For each phenotype, the data was split into ten cross-validation runs

such that the phenotype of interest consisted of one class and all remaining data

from the other phenotypes made up the other. We also ensured that each cross-

validation run held out at least one dataset with the phenotype of interest. If there

were fewer than ten datasets assigned with a given phenotype, then datasets were

reused for the positive class (those with the phenotype of interest) while ensuring

that the negative set (those with a different phenotype) contained different datasets

than in the previously generated cross-validation runs.

Unlike traditional cross-validation schemes that hold out individual experiments,
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Figure 2-3: A heatmap generated by the heatmapo function in the R statistical computing

package [36] of 50 random genes from two different breast cancer datasets. Due to differences in

normalization, the experiments do not cluster by phenotype (diseased or normal) but rather by

dataset.

when combining multiple datasets it was imperative to remove entire datasets. The

reasoning behind this can be seen in figure 2-3 where 50 randomly selected genes from

two breast cancer datasets, GDS2250 and GDS817, were clustered. One would hope

that the two major clusters consisted of diseased and normal samples, but instead the

experiments clustered by dataset rather than phenotype. As a matter of fact, Warnat

et al. [45] report a similar result when clustering leukemia samples from two different

datasets. Thus, if one had excluded individual experiments, then the likelihood would

be much higher that a classifier would perform well due to it picking the dataset the

experiment came from rather than the phenotype it belongs to. For example, assume

that experiments from the aforementioned GDS2250 breast cancer dataset are used

both in the training and testing set. Since this dataset has four times as many diseased

samples as control samples, a majority of both the training and testing would consist

of diseased tissue. As intra-dataset similarity is greater than phenotype similarity,

a classifier would most likely classify a testing experiment from GDS2250 as coming

from GDS2250. Considering that a majority of the GDS2250 experiments have the
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class label "diseased," this testing instance would probably also be labeled as such

as well. If a classifier does so, it will automatically get 75% of the classifications

correct since only about a quarter of the testing data from GDS2250 are normal

control samples. As a matter of fact, we performed tests where experiments rather

than entire datasets were left out, and the performance of the classifiers was better

(results not shown).

2.4 Gene Selection

Utilizing a set of datasets with comparable probe identifiers and intensity values,

six different gene selection methods were performed. This process can be described

as passing the input data through a set of filters, each of which only keeps the best

genes, until a final list of most significant genes is produced. The six selection methods

performed are variations on which filters were used.

The first filter used was based on the difference of inter-class and intra-class vari-

ance. Due to the heterogeneity of the data there were values for a given gene that

were both extremely high and low values within a single class. Furthermore, there

were cases in which such genes were actually chosen as part of the set of significant

genes. These genes, however, are probably not important marker genes, as for a given

phenotype, either low or high values are possible. To remove these offending genes,

the genes were ranked in decreasing order based on a score computed by the difference

in intra-class to inter-class variance using the formula:

score = Var(G) - E Var(Ge),
CEC

where G is the vector of all intensity values for a given gene, C is the set of classes, and

G, is the vector of intensity values for the given gene in class c. In other words, genes

that displayed low intra-class variance but high inter-class variance are preferable.

This filter was applied independently to all ten cross-validation runs after which each

gene was scored by the sum of the ranks produced during each run. Using this
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method, the bottom 10% of the genes were removed.

A permutation based Student's T test filter was also used. If the F test returned a

p-value of less that 0.05, Welch correction was used. An unpermuted t-test could not

be used as it could not be guaranteed that the underlying distribution of intensities

would be normal. More formally, for each gene, the data was split into the two

classes. A t-test was then performed on 1000 random permutations of the class labels

to produce a null distribution. Based on this null distribution a gene was considered

to have a significant association with the phenotype if it had a multiple hypothesis

corrected p-value of 0.01. After all ten cross-validation runs were complete, any gene

that did not appear to be significant in at least eight of the ten runs was immediately

discarded and not considered in any subsequent step.

Finally, three different "standard" machine learning feature selection methods

were employed: relief F [27, 29, 38], information gain, and chi-squared. Briefly, the

relief F algorithm selects genes by randomly sampling experiments, computing its

nearest neighbors, and then adjusting the score based on how well the gene can dis-

criminate experiments from neighbors of different classes. Information gain measures

the difference between two probability distributions based on comparing the entropy

of a given class to the entropy of the class given the gene. Chi-squared evaluates genes

by the chi-squared statistic with respect to the class. Similar to the variance based fil-

tering, the selection was performed independently on each of the ten cross-validation

runs and genes that were selected multiple times were deemed more significant. Since

the feature selection methods provide a score for each gene, individual genes in each

cross-validation run were ranked according to its score as determined by the selection

algorithm. To produce the list of the top ten significant genes, for instance, the ranks

of all the genes were added and the ten genes with the highest cumulative rank were

chosen.

One may notice that the cross-validation runs are being used at each step as

opposed to over the entire selection (and later, classification) process. The reason

behind this relates back to the way the cross-validation runs were initially generated

and is based on the requirement of finding the most robust set of genes for a given
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phenotype. Since each cross-validation run uses a different subset of the data, requir-

ing a gene to be significant in multiple cross-validation runs produces the most robust

set of significant genes.

As aforementioned, six different combinations of these filters were tested. The

first three were the permutation based t-test filter followed by one of the standard

machine learning selection algorithms. The second three were the same as the first

three except that the variance filter was used prior to the permutation based t-test

filter.

2.5 Classification

With the set of significant genes at hand, several classifiers were compared using ten

cross-validation runs for each phenotype. We examined kNN [2), C4.5 decision tree

[34], random forest [8], SVM [10, 20], and K* [14] classifiers. Boosted versions of

the kNN and decision trees were also tested. Not only were various classifier-specific

parameters tested, the number of input genes was also altered between 10 and 300.

These classifiers were chosen on the basis of past performance on microarray data

[23, 32, 37, 15].

2.5.1 KDE: Kernel Density Estimate Based Classifier

In addition to these well known classifiers, a nearest neighbor based classifier using

kernel density estimates [42, 40] was also developed and tested. A kernel density

estimate can be thought of as a smoothed estimate of a distribution where the kernel

describes the smoothing function. For example, 2-4 shows the density estimate of

1000 random normally distributed values. To train this classifier, a separate density

estimate using a Gaussian kernel is generated for each class and for each gene. For

example, to build a classifier based on ten genes and two classes, a total of 20 kernel

density estimates are generated. Given a trained distribution for each class for a gene,

one can classify a new value by computing the likelihood the value came from each

of the trained distributions. To classify a new experiment, the classifier computes
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Figure 2-4: A histogram and density estimate of 1000 random normally distributed points. The
density estimate is essentially a smoothed density estimate generated from discrete data points.

the probability for each gene's value using each of the trained distributions. The

experiment is then classified by assigning it the class label that most of the individual

genes' values belonged to.

A version of this classifier that assigns weights to each of the genes based on the

separation of the density estimates was also created. While there are numerous ways

in which one could potentially measure the difference between two distributions, we

chose a method based on sampling. For each density estimate for a given gene the

the following procedure was performed. First, n equally spaced points in the domain

of the density estimate were chosen. The probability of each of the n points was then

computed in all of the other density estimates and summed up. If the distributions

are completely disjoint then all of these probabilities are zero. The weight for a gene

is then inversely proportional to the sum such that the smaller the sum the higher

the weight. The lowest weight for a gene was bounded by 1 / (numGenes * 10) where

numGenes is the number of genes used to build the classifier.
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Chapter 3

Results & Discussion

3.1 Gene Selection

While the objective of this work was to show that it is possible to generate accurate

classifiers from a heterogenous database, it is important to verify that the genes

deemed significant during the selection process are indeed related to the phenotype

in question. Since heterogenous data is being used, it is much more likely that a gene

is selected as significant just because of the large inter-dataset differences mentioned

earlier. In other words, a cancer classifier built from genes that are not related to

cancer is probably not as significant as an accurate classifier built from genes that

are related to cancer.

To verify the selection process for the phenotypes relating to cancer, the following

procedure was implemented. For each selection method, we iterated over all the differ-

ent sets of top genes. For each gene, the corresponding NCBI Gene website (http: //

www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=search&term=GENEID whereGENEID

is the Entrez Gene ID of the gene in question) was downloaded and the text was ana-

lyzed using regular expressions. If any of the regular expressions matched any of the

text on the page, it was considered a hit. Since we varied the number of significant

genes from 10 to 300 the hit count was normalized to one. For example, if 15 out of

the 30 selected genes were hits, then a score of 0.5 was recorded. This same process

was then also applied ten times to randomly selected genes and the averages of the
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Figure 3-1: Comparison of the fraction of genes that are related to cancer when performing the

selection to randomly selected genes. This plot was generated by analyzing the text of the NCBI

Gene website for the selected set of genes. Any point that lies above the 450 line represents a set

of selected genes that had more terms on the website associated with cancer compared to a set of

equal size of randomly chosen genes. With only a few exceptions, all points lie above the 45' line.

runs were recorded.

Figure 3-1 shows that the selected set of genes are implicated in cancer more

often than a random set of genes. Each point is the result of the random selection for

the given number of attributes compared with the corresponding result for a given

selection method and cancer phenotype. Any point that lies above the 450 line depicts

a point where the score for the set of selected genes was greater than the score of the

randomly selected genes. With a few minor exceptions, this figure shows that the

set of selected genes corresponds to genes related to cancer. More precisely, while

on average about 20% of the random genes were classified as hits, about twice that

many were deemed to be related to cancer when using the selected genes. This fact

is represented by the large point roughly in the center of the cloud of points in the

plot.
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To further verify the validity of the gene selection processes, the 300 most sig-

nificant genes of all the selection methods for the phenotypes were compared. Each

selected gene was scored by its ranking and the 50 highest scoring genes that appeared

in multiple phenotypes are reported in figure 3-2. This figure shows the relative scores

of the genes of the different phenotypes such that white is a low score, black is medium,

and red is the highest. Interestingly, gene 11155 (LDB3) has been shown to be sig-

nificant in both muscle and heart tissue [46, 35]. Furthermore, gene 399 (RHOH),

which has been shown to be associated with lymphoma [24, 43], shows up as being

a prominent gene in thymus tissue, leukemia, lymphoma and bone marrow tissue.

Similarly, gene 55 (ACPP), which is a gene that is secreted by the epithelial cells of

the prostate gland [33), has a high score for both prostate tissue and prostate cancer.

Finally, gene 8685 (MARCO) has shown to be expressed in the lung and liver [21, 6]

and appears to be significant in the arthritis samples as well. Surprisingly, there are

no genes that were selected for spinal chord tissue that are also deemed to be signifi-

cant in the other phenotypes. Intuitively this does make sense as spinal chord tissue

is drastically different from the other phenotypes tested. While figure 3-2 shows the

genes and how they relate to the various phenotypes, table A.4 contains the top ten

genes from each selection method for each phenotype that were selected at least in

two of the selection methods.

Since noise was introduced into four of the seven disease phenotype data, we

compared the overlap of the genes that were selected in both the clean and noisy data.

Recall, to simulate a real-world situation we added incorrect data to the original set of

datasets and repeated the experiments. Table 3.1 contains the fraction of the top 100

genes that overlapped for the six variations of the gene selection method. The values

are split up by the three machine learning gene selection methods and by whether

or not the variance filter (var filter) was used. Interestingly, there is a large span

of the level of conservation between the fraction of genes that were selected in both

the "clean" and "noisy" data. At closer examination, however, it appears that the

amount of change is correlated with the fraction of experiments that were contributing

to noise. For example, the noisy data for lung cancer contained 97 experiments, but
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Var Filter No Var Filter

-'-

Arthritis .40 .36 .31 .41 .36 .32
Lung Cancer .07 .08 .06 .10 .07 .08
Prostate Cancer .18 .32 .28 .17 .26 .27
Renal Cancer .25 .04 .04 .32 .08 .07

Table 3.1: Comparison of Gene Selection With and Without Noise

the clean data only contained 54 samples. As approximately half of the data was data

for different phenotypes, it is not surprising that there is such a large change in the

genes that were selected. On the other hand, the arthritis data only contained ten

erroneous samples and thus it was more likely to pick out the same significant genes

in both runs.

3.2 Classification

Using the genes generated from the gene selection phase, the classification was per-

formed independently on the disease and tissue datasets. Since all the testing exper-

iments in each cross validation run are from completely different datasets than those

used during training, the results reported show the predictive power of classifiers on

previously unseen data. To evaluate each classifier's strength, the F measure was used

as the performance measure of each classifier as it was shown to be a a good statistic

when there are a lot of negative cases [25]. Briefly, the F measure is the weighted

harmonic mean of sensitivity and specificity and is calculated as follows:

F - (1 + a) x sensitivity x specificity
a x specificity + sensitivity

a was set to 1 as this gives equal weighting to the sensitivity and specificity. Figure

3-3(a) shows six charts for the results of the disease classification, one for each of the
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gene selection methods. Every individual bar represents the average F measure for

all the different disease phenotypes for a given number of genes. Each group of bars

corresponds to the results for a single classifier.

Looking at the charts notice that the relative performance of all the classifiers stay

relatively consistent regardless of the gene selection method used. This shows that

while selecting a different set of genes to generate classifiers affects the performance,

it does not affect how well the classifier performs in general on this type of data. For

instance, regardless of the genes used, the K* classifier was among the poorest per-

foi-mers while the KDE and SVM classifiers were among the best. Another interesting

observation is that as opposed to the other classifiers, both weighted and unweighted

versions of the KDE classifier along with the K* classifier perform better with fewer

input genes. As the KDE classifier based the prediction on the (weighted) sum of

the probabilities, it is not surprising that this is the case. Since the genes are ranked

by their selection score, the top few genes are the most important when performing

predictions. As more genes are added, the more noise is introduced into the system

because the 3 0 0 th gene is much less important in predicting the outcome as compared

to the first. This notion is further supported by the fact that, in general, the decrease

in performance is not as great for the weighted KDE compared to the unweighted

KDE. A more detailed table listing the best results for each classifier can be found in

table A.5.

Applying the same selection and classification methods to tissue data yielded

promising results as well. Figure 3-3(b) depicts the results, again separated by the

six different gene selection methods. Here we show the F measure values for the

different selection methods for each tissue type when ten genes were used to build

each classifier. In this chart, each vertical bar represents the F measure for a particular

classifier for a given phenotype. The most striking difference between the tissue data

and the disease data is that the average F statistic value is higher in the tissue

data. Interestingly, unlike the disease data in which the KDE classifier performed

comparably to the SVM classifier, the score of the KDE classifier is only average

when using tissue data.
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(a) Comparison of the results of disease classification using the six different gene

selection methods. Each vertical bar is the average F measure for all disease phenotype classification

runs for a given number of genes used to build the classifier. For example, the first bar in each group

represents the result when ten genes were used to build the classifiers. The second bar represents the

result when 20 were used, and so forth. Figure (b) Comparison of the results of tissue classification

using the six different gene selection methods. This chart compares the results of the various

classifiers for the various tissue types when 10 genes were used to build the classifiers.

41

o
o

a

I

I

I

I

a-M-
51"C" . - - - -=-I. - '- -1



(a) Classifier Perforance For Disease Data
I -

0.9 + + +

+ + 44 ++ + 

0.7 - ++ +
Xx xx* +

0.6 -

0.5 - x +

0.4 - +

0.3 -
o Arthritis
x Breast Cancer
+ Leukemia
o Lung Cancer

0.1 - Lymphoma
+ Prostate Cancer

V Renal Cancer
0 0-2 0.4 0.6 0.8 1

F Measure Using a Random Set of Genes

(b) Classilier Perfomrance For Tissue Data1 -W WC008, oTI o

0-9 - cO 8

0.8

x 0
0.7 - X

0.6 x

+ x o'!

0.4 X o BoneMarrow
x Brain Tissue
+ HeartTissue0.3 - 0 LiverTissue
x Lung Tissue

0.2 - + Muscle Tissue
02Pancreatic Tissue

Prostate Tissue
0.1 + Renal Tissue

o Spinal Cord Tissue
x Thymus Tissue

0 0-2 0.4 0.6 0.8
FMeasure Usinga Random SetofGenes

Figure 3-4: Comparison of performance between classifiers generated using a random set of genes
and the corresponding classifier made from the selected set of genes. Each point represents the Fmeasure of the classifier built from the genes from one of the six selection methods and a fixed
number of attributes (such as 10, 20, etc) and the corresponding classifier built by picking a random
set of 10, 20, etc. genes. Any point that lies above the 45 line depicts a classifier that performed
better when using the selected set of genes as opposed to a random set of genes. Figure (a) represents
the results from the disease specific phenotypes while (b) depicts the results for the tissue specificphenotypes.
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Figure 3-5: Performance comparison of classifiers built using the genes from the various gene
selection methods on the clean and noisy data. Any point that lies above the 450 line represents
a point where the classifier built and tested using the clean data outperformed the corresponding
classifier built and tested using the noisy data.

Just as random genes were selected to perform the gene selection validation shown

in figure 3-1, random genes were selected and the classification process was performed

ten times each. If the aforementioned results were obtained merely by chance, one

would expect that selecting random genes and using them to build classifiers would

yield similar results. Figure 3.2 shows the results of this test and shows that the

vast majority performed better when using the selected set of genes compared to a

random set. As one would expect, using a random set of genes created classifiers that

were correct approximately half the time with F measures of, on average 0.46 for the

diseased data and 0.49 for the tissue data.

Since we expect noisy data to be present in a large-scale phenotype prediction
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database, the performance of the classifiers built using the clean data was compared

to the performance of the classifiers built using the noisy data. The results in figure

3-5 show that the performance of many of the classifiers stays roughly the same.

Each plot has six points for the various classifiers, one point for each of the six gene

selection methods. The two exceptions are the classifiers for lung cancer and renal

cancer data. The performance of the former is worse using the clean data while the

latter performs better when using the clean data.

Although increased performance using less noisy data is a good sign, the substan-

tial decrease in performance of the lung cancer classifiers is initially worrisome. This

issue was addressed by testing whether the lung cancer classifier, built using approx-

imately half cancer and half other data, was in actuality classifying whether a new

sample was a lung tissue sample or not. To perform this test we built the classifiers

from the lung cancer data and then used those classifiers to classify whether or not a

new sample was lung tissue. As depicted in figure 3-6, it appears that the classifiers

built using the noisy lung cancer data were indeed classifying lung tissue! This figure

shows the box plot of the F measures obtained by all classifiers either trained using

the clean data or noisy data, and then testing those classifiers using the lung data.

Surprisingly, the performance of the classifiers trained on the disease data show very

comparable performance in the classification of lung data as to those classifiers built

using the tissue data.

Our primary results obtained by combining multiple datasets are confirmed by

the much smaller study of Warnat et al. [45]. They examined six datasets pertaining

to three different cancers and achieved classification accuracies of 97% for prostate

cancer, 89% for breast cancer, and 90% for leukemia. For these phenotypes, we

achieved accuracies of 90%, 89%, and 92% using the KDE classifier on our expanded

dataset. Unlike their study, however, we show that these classification results are

possible when using many different datasets that were performed on a wide array

of platforms. Furthermore, our 90% accuracy for the prostate cancer data included

noise! Without the noise we achieve 93% accuracy for prostate cancer. Similarly,

our classification results are in line with the accuracies compiled in Cho et al. [12] for
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Using Disease Classifiers to Classify Tissue Data

00

Lung Cancer Data Noisy Lung Cancer Data

Figure 3-6: This figure shows the performance of classification of lung tissue samples using either
classifiers built from the clean lung cancer data or the noisy lung cancer data. The good performance
of the classifiers built using the noisy lung cancer data indicates that the classifier was most likely
classifying items as lung samples as opposed to lung cancer samples.

classifiers built from single datasets. In addition, through the use of random sampling

for both the NCBI gene validation and phenotype classification, we verified that it

is possible to use a heterogenous database to perform gene selection and phenotype

classification.

3.3 Discussion

We have presented the foundation for an automated large-scale phenotype prediction

system based on microarray data. Large heterogenous sets of datasets relating to

disease and tissue phenotypes were used to select significant genes for seven disease

phenotypes and 11 tissue types. Using those genes, various classifiers were trained

and tested through leave-dataset-out cross validation. The results of both the gene

selection and phenotype classification show that it is possible to use a large microarray

database as a "black-box" to classification tool. Although our results are promising,

there are still critical pieces of the puzzle that require further attention.

Using the rank normalization and permutation t-test based gene selection mod-
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eled on the work by Butte and Kohane [91, the number of genes that were deemed

significant varied greatly. For example, only 11 genes for the muscle tissue had a

multiple-hypothesis corrected p-value of below 0.01 in 80% of the cross validation

runs. On the other hand, there were over 8000 genes that matched this criteria for

the breast cancer data. As a matter of fact, as depicted in figure 3-7(a), there ap-

pears to be a linear relation between the number of experiments used to perform the

analysis and the number of genes that pass the permutation t-test filter. A possible

explanation for this result is the difference in sample size. As all experiments were

used for all phenotypes, the phenotypes that have the fewest associated experiments

naturally have the most experiments that are not associated with it; thus, the largest

difference in sample size. It has previously been shown by Legendre and Borcard [31]

that a large difference in sample size can reduce the power of the t-test, whether it be

using Welch correction or permutation based. The problem with sample imbalance

affecting the differentially expressed genes was also noted in Yang et al. [47]. For

example, they noted that for a given dataset that had the experiments equally di-

vided between 2 classes they achieved a precision rate of about 80% and a recall rate

a little under 75%. When the ratio of the number of experiments in the two classes

was changed to five to one, the precision rate dropped on average 5% and the recall

rate 20%.

To further examine this issue, 200 genes were randomly selected for each phe-

notype. The variance of the rank normalized intensities for each of the genes was

then used to generate the boxplot depicted in figure 3-7(b). One of the most striking

features of this plot is how the average variance of the genes used for arthritis are

nearly four times greater than that of all other phenotypes. Even more surprising is

that the so-called "noisy" arthritis data has a slightly higher average variance than

the "clean" data. When we analyzed the raw data, we saw that indeed, the variance

of the intensity values in one of the two arthritis datasets used (GDS711) is extremely

high. For comparison, examine figure 3-8 that depicts a heatmap of 100 random genes

and their corresponding rank normalized intensity values in two breast cancer and

two arthritis datasets. The difference in the variance between the clean and noisy
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Figure 3-7: (a) Comparison of the number of experiments used to perform the gene selection to
the number of genes that were deemed significant after the permutation t-test filter for the disease
and tissue data. (b) The box plot for the average variance for each phenotype. 200 genes were
randomly selected for each phenotype and the variance of the ranked intensity values with respect
to the phenotype.

arthritis data may be explained by the difference in sample size. Since there are only

56 experiments for the noisy data, and ten less for the clean data, it is hard to get

a true estimate of the underlying distribution and thus the variance. Thus, it is also

not surprising to note that the classifiers built using this arthritis data also had the

lowest sensitivity and specifitcity.

If one ignores the arthritis data, however, the remaining variances are all quite

low and correlate well (correlation of -0.81) with the number of genes that are deemed

significant using the permutation t-test filter. In other words, the lower the average
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Figure 3-8: Comparison of 50 random genes in two breast cancer datasets and two arthritis

datasets. One will notice the large variation of rank normalized intensity values for one of the

arthritis datasets (GDS711) is causing the large variance noted in figure 3-7(b).

variance within the group, the greater the number of genes that had lower p-values.

As one would expect, the average variances for lung cancer, prostate cancer, and re-

nal cancer were also lower when the erroneous datasets were removed from the data.

Interestingly, this variance correlates to some degree with the number of experiments

used (correlation of -0.69) but not with the number of different datasets used (cor-

relation of 0.03). Furthermore, there is a slight correlation between the number of

datasets or the number of experiments and the performance of the classifiers as mea-

sured by the F measure (0.24 for the former and 0.11 for the latter). While these
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correlations are very low, it does point to the fact that adding data is not penalizing

the classification process.

The large difference in average variances between the disease data and tissue data

is also related to the sample size. Examining the tissue specific data and excluding

brain tissue, each phenotype in the tissue data had about 20 experiments associated

with it. This is in contrast with at least 46 samples in the disease specific data.

One will also notice that the brain tissue data, which had 132 experiments associated

with it, had the lowest average variance. In other words, as the amount of data is

increased, a better estimate of the true underlying distribution can be generated.
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Figure 3-9: Density estimates for four of the most predictive genes for (a) liver tissue, (b) muscle
tissue, (c) and leukemia.

To address the variability of the performance of the KDE classifier, the density

estimates of the genes for some of the best performing KDE classifiers were compared

with density estimates of the genes for the poorest performer. The plots of four of the

top ten genes from liver and muscle tissue along with leukemia are shown in figure

3.3, such that one curve in each plot shows the rank normalized intensity values for
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the phenotype of interest and the other depicts the data for all other tissues. One will

immediately notice that the separation of the density estimates for the liver tissue's

genes is substantially greater than that for the other phenotypes. In other words,

the average ranks for the intensity values for these four genes across all experiments

with normal liver tissue samples are significantly different from the average ranks of

these four genes in other tissues. Unlike the density estimates for the liver tissue, the

estimates for the muscle tissue data show both greater overlap and longer tails, both

of which are problematic for classification. Clearly, the greater the overlap the greater

the intersection between the two curves and thus the greater the change of erroneous

classification. While long tails do not imply a large overlap between the two density

estimates, they do imply that the range of values for these genes are greater. Since

the range is greater it is much harder to predict the correct class as there are large

regions where either class could potentially be correct. Although the predictive power

of the muscle tissue classifier was not optimal, it is worthy to note that many of the

genes depicted in figure 3.3 have been shown to be associated with their respective

phenotypes [33, 30, 13, 16].

Furthermore, the previous discussion about the amount of data present when

training the classifiers sheds light on an important characteristic of the KDE classifier.

In general, with the exception of liver tissue which only had 21 samples, the classifiers

for the phenotypes with the most data performed better. Although the average score

for all classifiers was higher when using more data, the average difference between the

top F measure for brain and renal tissue, which had 132 and 39 samples respectively,

was significantly lower than that of the difference between the scores of the best

classifiers and the KDE classifiers built on the other tissue data. Therefore, as public

microarray repositories grow and more data related to each phenotype can be found,

the more accurate the classifier will become.

One of the largest bottlenecks in this study was obtaining the training data.

Although a large portion was automated, we still had to intervene at several points in

the process. While the use of UMLS concepts is a logical starting point, it does not

allow for great enough sensitivity in understanding what the dataset is truly about.
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The use of regular expressions to annotate the individual experiments with being

diseased or normal was a simple way to begin. As a matter of fact, the recent and

independent work by Dudley and Butte [17] shows that that classifying experiments as

"diseased" or "normal" can be performed fairly accurately using regular expressions.

In the case of this work, we made certain to be overly stringent with our rules, as

evident by the high specificity and relatively low sensitivity. This ensured that the

experiments that were labeled as "diseased" were truly diseased, but also deprived

the system of many other possible experiments. As a matter of fact, a large portion of

the experiments that were missed were those that were labeled with something to the

effect of "control" in experiments where the control referred to the untreated disease

state. Another large source of missed experiments were those that were labeled with

specific cell lines that can only be deemed as "diseased" through expert knowledge or

explicit rules. As is evident by the significant fluctuation in the gene selection process

in the presence of noise, it is vital to minimize the number of mislabeled experiments.

Any strict rule-based system is limited and will not be able to capture all the

intricacies of a language such as English. Furthermore, using natural language pro-

cessing to automatically label datasets and experiments with phenotypic information

is undoubtedly useful for data that has already been published, but an alternative

approach may be more fruitful for new data. For example, if scientists who submit

microarray datasets are required to label their data when submitting it, many of these

problems could be solved at the source. We are currently working on a method that

allows a user to add new datasets and experiments to an online database. Through

this online portal users will be able to first annotate their own experiments with the

correct phenotypic data and then view their data in the context of all other data

already in the database. Unlike GEO, which only provides a repository of microarray

data, we envision an exploratory tool that can be used to leverage the vast amount of

existing knowledge. Another possibility is to formulate the natural language process-

ing problem in the form of a CAPTCHA problem [44] and ask web users to annotate

the data when signing up for online accounts on various websites.

It is with this framework in mind that the usefulness of the KDE classifier becomes
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apparent. Although the SVM classifier matches or outperforms the KDE classifier in

many instances when there was little data, there are three important advantages of the

KDE classifier for large datasets. First the density estimates are independent of the

number of experiments. Since a fixed number of points are used to describe a density

estimate, each estimate will only ever be as large as this fixed number. Secondly, and

more importantly, density estimates are easy to update. A new training experiment

can be added to an existing density estimate by simply adding it to the estimate.

Even if the entire density estimate needs to be recomputed, it can be recomputed

on a gene by gene basis rather than by experiment or dataset. This is a highly

desirable characteristic if a classifier needs to be kept up-to-date while new data is

being added to a database. Finally, the more data present, the better the predictive

results become. In other words, the KDE classifier represents a non-memory and

non-compute intensive classifier that performs better as more information is added

that performs equally or better to many existing classifiers.
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Appendix A

Tables

Table A.1: Datasets used for disease phenotypes

Phenotype ID Dataset Title

Arthritis

C0003864 GDS2126 Rheumatoid arthritis: synovial tissues

GDS711 Juvenile rheumatoid arthritis expression profiles in mononuclear cells

Breast Cancer

C0678222 GDS1069 Homeobox gene HOXA5 induction: time course

GDS823 Breast cancer cell expression profiles (HG-U133B)

GDS483 DACH1-responsive genes

GDS1329 Molecular apocrine breast tumors

GDS2250 Basal-like breast cancer tumors

GDS1508 Tamoxifen effect on endometrioid carcinomas

GDS817 Breast cancer cell expression profiles (HG-U95A)

GDS1925 Estrogen receptor alpha positive breast cancer cells response to hyperactivation of MAPK pathway

GDS820 Breast cancer cell expression profiles (HG-U133A)

GDS1664 Parathyroid hormone-related protein knockdown effect on breast cancer cells

GDS360 Breast cancer and docetaxel treatment

GDS992 Endoplasmic reticulum membrane-associated genes in breast cancer cell line MCF-7

Leukemia

C0023418 GDS1454 B-cell chronic lymphocytic leukemia subtypes

GDS1604 Ionizing radiation effect on monocytic leukemia cells

GDS1064 Acute myeloid leukemia subclasses

GDS1388 B-cell chronic lymphocytic leukemia progression

GDS760 T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma comparison

GDS1886 Moderate hypothermia effect in vitro

GDS2251 Myeloid leukemia cell lines

GDS330 Acute lymphoblastic leukemia treatment responses

GDS596* Large-scale analysis of the human transcriptome (HG-U133A)

Continued on Next Page...
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Phenotype

Table A. 1 - Continued

Dataset TitleID

* Indicates that these datasets were manually added to the list

54

Lung Cancer

C0684249 GDS1650 Pulmonary adenocarcinoma

C0152013 GDS1688 Various lung cancer cell lines

GDS1312 Squamous lung cancer

Lymphoma

C0024299 GDS1617 Motexafin gadolinium and zinc effect on Ramos B-cell lymphoma line

GDS1750 Mantle cell lymphoma cell lines (HG-U133A)

GDS1751 Mantle cell lymphoma cell lines (HG-U133B)

GDS2295 Aplidin and cytarabine effect on diffuse large B cell lymphoma cell line

GDS1419 Classical Hodgkin's lymphoma: T cell expression profile

GDS596* Large-scale analysis of the human transcriptome (HG-U133A)

GDS181* Large-scale analysis of the human transcriptome (HG-U95A)

Prostate Cancer

C0600139 GDS1736 Arachidonic acid effect on prostate cancer cells

C0033578 GDS1390 Prostate cancer progression after androgen ablation

GDS1439 Prostate cancer progression

GDS1423 Lunasin effect on prostate epithelial cells

GDS1746 Primary epithelial cell cultures from prostate tumors

GDS181* Large-scale analysis of the human transcriptome (HG-U95A)

Renal Cancer

C1378703 GDS1344 Papillary renal cell carcinoma classification

GDS507 Renal clear cell carcinoma (HG-U133B)

GDS505 Renal clear cell carcinoma (HG-U133A)



Table A.2: Datasets used for tissue phenotypes
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Table A.3: The titles of the tissue phenotype datasets in table A.2
ID Dataset Title
GDS1059 Acute myeloid leukemia response to chemotherapy
GDS1096 Normal tissues of various types
GDS1663 Expression data from different research centers
GDS1726 HIV encephalitis: brain frontal cortex
GDS181 Large-scale analysis of the human transcriptome (HG-U95A)
GDS1962 Glioma-derived stem cell factor effect on angiogenesis in the brain
GDS2190 Bipolar disorder: dorsolateral prefrontal cortex
GDS2191 Bipolar disorder: orbitofrontal cortex
GDS422 Normal human tissue expression profiling (HG-U95A)
GDS423 Normal human tissue expression profiling (HG-U95B)
GDS424 Normal human tissue expression profiling (HG-U95C)
GDS425 Normal human tissue expression profiling (HG-U95D)
GDS426 Normal human tissue expression profiling (HG-U95E)
GDS505 Renal clear cell carcinoma (HG-U133A)
GDS507 Renal clear cell carcinoma (HG-U133B)
GDS53 CD34+ cell analysis
GDS552 Essential thrombocythemia megakaryocytes
GDS596 Large-scale analysis of the human transcriptome (HG-U133A)
GDS651 Heart failure arising from different etiologies
GDS670 Emphysema lung tissue expression profiling
GDS707 Aging brain: frontal cortex expression profiles at various ages
GDS838 Imatinib effects on chronic myelogenous leukemia CD34+ cells
GDS969 Bone marrow prolonged storage effects
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Table A.4: Top selected genes for various phenotypes

Var Filter No Var Filter

Phenotype Gene ID

Arthritis

3020 (H3F3A)

6201 (RPS7)

8667 (EIF3H)

6161 (RPL32)

6136 (RPL12)

6128 (RPL6)

4691 (NCL)

6147 (RPL23A)

3320 (HSP90AA1)

3150 (HMGN1)

10575 (CCT4)

1915 (EEF1A1)

6146 (RPL22)

7178 (TPT1) _

Breast Cancer

1982 (EIF4G2)

23352 (UBR4)

3049 (HBQI)

6168 (RPL37A)

64816 (CYP3A43)

2547 (XRCC6)

6013 (RLN1)

64096 (GFRA4)

56673 (Cl1orf16)

10500 (SEMA6C)

150684 (COMMD1)

91746 (YTHDC1)

2044 (EPHA5)

829 (CAPZA1)

Leukemia

23157 (SEPT6)

4602 (MYB)

9555 (H2AFY)

566 (AZUl)

6189 (RPS3A)

51433 (ANAPC5)

896 (CCND3)

Continued on Next Page...
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Phenotype Gene ID

Table A.4 - Continued

Var Filter No Var Filter

,

.0

0

cY~
9535 (GMFG)

863 (CBFA2T3)

3676 (ITGA4)

7454 (WAS)

5579 (PRKCB1)

3635 (INPP5D)

23240 (KIAA0922)

100 (ADA)

7422 (VEGFA)

Lung Cancer

1521 ()

28831 (IGLJ3)

7454 (WAS)

10901 (DHRS4) 
0

2123 (EVI2A)

2877 (GPX2)

3537 (IGLC1)

3538 (IGLC2)

3880 (KRT19) 0

28299 (IGKV1-5)

28815 (IGLV2-14)

28793 (IGLV3-25)

51400 (PPME1) ,

3535 (IGL )

Lymphoma

57379 (AICDA)

5079 (PAX5)

1488 (CTBP2)

933 (CD22)

4099 (MAG)

149699 (GTSF1L)

931 (MS4AI)

55653 (BCAS4)

5872 (RAB13)

29802 (VPREB3)

50865 (HEBP1)

6689 (SPIB)

90925 ()

23240 (KIAA0922)

Continued on Next Page...
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Phenotype Gene ID

Table A.4 - Continued

Var Filter No Var Filter

e0
.0

0

5450 (POU2AF1)

939 (CD27)

928 (CD9)

8204 (NRIP1) _

Prostate Cancer

51109 (RDH11)

10257 (ABCC4)

27122 (DKK3)

397 (ARHGDIB)

205860 (TRIML2)

4853 (NOTCH2)

1452 (CSNK1A1)

8992 (ATP6VOE1)

7082 (TJP1)

9231 (DLG5)

6170 (RPL39)

292 (SLC25A5)

5587 (PRKD1)

283677 ()

90993 (CREB3L1) ___

Renal Cancer

55195 (Cl4orflO5)

348158 (ACSM2B)

123876 (ACSM2A)

3773 (KCNJ16)

1014 (CDH16)

4036 (LRP2)

10249 (GLYAT)

6519 (SLC3A1)

83737 (ITCH)

6299 (SALL1)

6540 (SLC6A13)

79799 (UGT2A3)

2222 (FDFT1)

55867 (SLC22A11)

2018 (EMX2) _

BoneMarrow

4353 (MPO)

1991 (ELA2)

Continued on Next Page...
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Table A.4 - Continued

Var Filter No Var Filter

Phenotype Gene ID 0

5796 (PTPRK)

6037 (RNASE3)

5654 (HTRA1)

2526 (FUT4)

8404 (SPARCL1)

6284 (S100A13)

1410 (CRYAB)

6036 (RNASE2)

25893 (TRIM58)

3045 (HBD)

2993 (GYPA)

932 (MS4A3)

10562 (OLFM4)

212 (ALAS2)

4171 (MCM2)

Brain Tissue

230 (ALDOC)

6638 (SNRPN)

6812 (STXBP1)

8926 (SNURF)

6616 (SNAP25)

10900 (RUNDC3A)

801 (CALMI)

599 (BCL2L2)

1808 (DPYSL2)

6000 (RGS7)

22883 (CLSTN1)

3800 (KIF5C)

2664 (GDI1)

8237 (USPIl)

1759 (DNM1)

2775 (GNAO1)

10439 (OLFM1)

7102 (TSPAN7)

Heart Tissue

79933 (SYNPO2L)

2170 (FABP3)

7139 (TNNT2) :
1760 (DMPK)

Continued on Next Page...
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Table A.4 - Continued

Var Filter No Var Filter

Phenotype Gene ID 0

7134 (TNNC1)

27231 (ITGB1BP3)

58498 (MYL7)

1158 (CKM)

5441 (POLR2L)

70 (ACTC1)

6331 (SCN5A)

4634 (MYL3)

8048 (CSRP3)

27129 (HSPB7)

518 (ATP5G3)

6508 (SLC4A3)

4607 (MYBPC3)

51778 (MYOZ2)

1160 (CKMT2) .__

Liver Tissue

4153 (MBL2)

130 (ADH6)

3080 (CFHR2)

1361 (CPB2)

1576 (CYP3A4)

3273 (HRG)

3697 (ITIHI1)

1565 (CYP2D6)

3240 (HP)

5950 ()

3700 (ITIH4)

3698 (ITIH2)

5004 (ORM1)

720 (C4A)

1559 (CYP2C9)

3929 (LBP)

3818 (KLKB1)

197 (AHSG)

1571 (CYP2E1)

721 (C4B) _ __

Lung Tissue

7080 (NKX2-1) .

177 (AGER)

Continued on Next Page...
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Phenotype Gene ID

Table A.4 - Continued

Var Filter

13P

0

No Var Filter

Al0

6439 (SFTPB) 0 0 S 0 0

7356 (SCGB1A1)

3107 (HLA-C) 0 0 0 0

4091 (SMAD6)

51208 (CLDN18)

6441 (SFTPD)

3949 (LDLR) 0 S

5225 (PGC)

6440 (SFTPC)

27074 (LAMP3)

Muscle Tissue

11047 (ADRM1) 0 0 0 0 0

11155 (LDB3) o o o

2027 (ENO3) 0 0 0

6495 (SIX1)

2314 (FLII) 0 0

786 (CACNG1) 0 0 0

81786 (TRIM7)

7957 (EPM2A) 0 0 0

5708 (PSMD2)

4837 (NNMT) 0 0 0

10653 (SPINT2) 0 a 0

57157 (PHTF2) o

10324 (KBTBD1O)

2997 (GYS1)

781 (CACNA2D1)

89 (ACTN3)

4330 (MN1)

114907 (FBXO32) 0

8260 (ARD1A) 0

Pancreatic Tissue

1357 (CPA1)

5407 (PNLIPRP1)

51032 0
63036 ()

5644 (PRSS1)

1506 (CTRL)

1080 (CFTR)

2813 (GP2)

Continued on Next Page...

0

S

S

S

0

0

S

S

S

0

S

S

S

S

0

0

S

S

61



Phenotype Gene ID

Table A.4 - Continued

Var Filter No Var Filter

0

C

(6

5406 (PNLIP)

5319 (PLA2GIB)

3375 (IAPP)

5645 (PRSS2)

1056 (CEL)

154754 ()

2641 (GCG)

5646 (PRSS3)

5408 (PNLIPRP2) .

Prostate Tissue

6652 (SORD)

4477 (MSMB)

3817 (KLK2)

6495 (SIXI)

57535 (KIAA1324) 0

2316 (FLNA)

6406 (SEMG1)

354 (KLK3)

8000 (PSCA) 9

7103 (TSPAN8)

10481 (HOXB13) 0

55 (ACPP)

1292 (COL6A2)

79098 (Clorfl16) 0

25800 (SLC39A6)

Renal Tissue

5174 (PDZK1)

6819 (SULT1C2)

2168 (FABP1)

64849 (SLC13A3)

9356 (SLC22A6)

6561 (SLC13A1)

5340 (PLG)

7369 (UMOD)

51463 (GPR89B)

949 (SCARBI)

4036 (LRP2)

54852 (PAQR5)

3772 (KCNJ15)

Continued on Next Page...
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Phenotype Gene ID

Table A.4 - Continued

Var Filter No Var Filter

0

S
.0

0

0

S

51626 (DYNC2LI1) T
6568 (SLC17A1) 11 *
159963 (SLC5A12) _ _

Spinal Cord Tissue

2342 (FNTB)

975 (CD81)

65108 (MARCKSL1)

780 (DDR1)

6678 (SPARC)

2261 (FGFR3)

1028 (CDKN1C)

358 (AQP1)

4359 (MPZ) e

7368 (UGT8)

5653 (KLK6)

79152 (FA2H)

3730 (KAL1)

7846 (TUBAlA)

4744 (NEFH) _ _

Thymus Tissue

3932 (LCK)

6955 (TRA@)

915 (CD3D)

51176 (LEFi)

10279 (PRSS16)

914 (CD2)

10803 (CCR9) 0

3861 (KRT14)

6504 (SLAMFI)

913 (CD1E) 0

28738 (TRAJ17) 0

28611 (TRBV5-4)

28566 (TRBV21-1)

3866 (KRT15) 0

925 (CD8A)

28568 (TRBV19)
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Table A.5: Classifier performance for various phenotypes

Classifier Num Genes F Sensitivity Specificity

Arthritis RandomForest 100 .84 83.42 95.27

KStar 10 .72 75.00 70.47

J48 10 .72 75.00 70.47

IBk 10 .72 75.00 70.47

LibSVM 10 .72 75.00 70.47

Boosted IBk 10 .72 75.00 70.47

Boosted J48 10 .72 75.00 70.47

WeightedKDE 10 .72 73.89 70.35

KDE 10 .71 73.59 69.79

Breast Cancer LibSVM 75 .79 77.77 80.88

IBk 300 .74 77.74 77.25

Boosted IBk 300 .70 72.39 72.83

WeightedKDE 10 .69 71.65 67.80

KDE 150 .67 67.38 67.00

Boosted J48 100 .67 67.66 66.22

KStar 50 .66 67.12 67.25

J48 200 .65 66.71 71.29

RandomForest 200 .65 66.09 71.20

Leukemia IBk 100 .92 95.39 90.64

LibSVM 150 .91 94.75 90.38

KDE 30 .89 94.41 88.23

WeightedKDE 30 .87 92.79 86.48

Boosted IBk 30 .86 89.21 85.14

RandomForest 30 .81 81.97 82.94

Boosted J48 20 .81 84.03 82.57

KStar 30 .80 81.66 81.56

J48 20 .78 83.30 76.80

Lung Cancer WeightedKDE 10 .70 74.04 68.43

KDE 10 .68 73.60 68.10

J48 10 .63 68.48 74.70

IBk 10 .62 68.25 63.19

Boosted IBk 10 .62 68.22 62.71

KStar 10 .60 66.79 61.27

RandomForest 10 .60 64.06 66.93

LibSVM 250 .59 64.99 59.20

Boosted J48 10 .58 63.00 67.40

Lymphoma

Continued on Next

WeightedKDE

KDE

IBk

LibSVM

KStar
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83.57
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84.47

81.09

80.66

78.24
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Table A.5 - Continued

Classifier Num Genes F Sensitivity Specificity

Boosted IBk 200 .79 81.44 80.67

Boosted J48 100 .78 82.50 78.49

J48 200 .77 81.37 77.26

RandomForest 10 .75 77.80 76.25

Prostate Cancer WeightedKDE 10 .90 92.90 89.86

KDE 10 .88 92.65 88.88

Boosted IBk 75 .88 88.20 94.85

LibSVM 50 .86 86.39 92.43

IBk 50 .84 83.36 90.73

J48 10 .75 76.51 79.57

RandomForest 10 .72 73.07 78.15

Boosted J48 30 .72 72.70 76.66

KStar 10 .70 73.44 73.17

Renal Cancer IBk 10 1.00 100.00 100.00

LibSVM 10 1.00 100.00 100.00

Boosted IBk 10 1.00 100.00 100.00

KDE 10 .99 99.48 99.20

KStar 10 .98 97.89 99.20

WeightedKDE 10 .97 98.11 96.67

J48 20 .87 86.17 93.73

Boosted J48 20 .87 86.17 93.73

RandomForest 10 .86 84.12 95.46

Bone Marrow LibSVM 75 .88 87.08 89.67

KDE 10 .85 85.00 85.00

WeightedKDE 10 .85 85.00 85.00

IBk 75 .85 85.00 85.00

Boosted IBk 75 .85 85.00 85.00

RandomForest 75 .85 85.00 85.00

Boosted J48 250 .84 84.94 83.33

J48 50 .82 81.86 83.42

KStar 10 .82 80.42 84.61

Brain Tissue IBk 75 .95 95.00 95.00

LibSVM 250 .95 95.00 95.00

Boosted IBk 75 .95 94.83 94.88

RandomForest 30 .94 94.23 94.76

KStar 200 .94 93.48 94.30

Boosted J48 250 .93 92.99 93.76

J48 150 .92 93.52 91.75

KDE 50 .92 93.26 91.06

WeightedKDE 300 .92 93.26 90.91

Heart Tissue LibSVM

RandomForest

Continued on Next Page...

250

10

.82 81.38

.81 81.13

86.85

82.27
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Table A.5 - Continued

Classifier Num Genes F Sensitivity Specificity

Boosted IBk 20 .80 79.17 79.95

KStar 50 .79 78.33 79.91

IBk 20 .79 78.33 79.91

Boosted J48 100 .78 76.26 84.07

J48 10 .77 78.11 80.74

KDE 50 .76 77.97 74.49

WeightedKDE 10 .73 77.50 71.57

Liver Tissue KDE 10 1.00 100.00 100.00

WeightedKDE 10 1.00 100.00 100.00

KStar 10 1.00 100.00 100.00

J48 50 1.00 100.00 100.00

IBk 10 1.00 100.00 100.00

LibSVM 10 1.00 100.00 100.00

Boosted IBk 30 1.00 100.00 100.00

RandomForest 30 1.00 100.00 100.00

Boosted J48 30 .98 99.67 97.62

Lung Tissue IBk 10 .90 90.00 90.00

LibSVM 10 .90 90.00 90.00

Boosted IBk 10 .90 90.00 90.00

KDE 20 .86 89.22 86.00

KStar 20 .85 85.00 84.87

RandomForest 20 .84 84.93 84.00

J48 20 .84 85.00 83.53

Boosted J48 10 .84 85.00 83.53

WeightedKDE 20 .84 85.66 86.04

Muscle Tissue RandomForest 10 .82 79.90 85.81

LibSVM 10 .78 74.58 88.91

IBk 10 .74 73.93 77.56

Boosted IBk 10 .72 73.02 75.01

KStar 10 .71 69.58 78.65

Boosted J48 10 .71 70.00 73.64

KDE 10 .69 70.29 73.75

WeightedKDE 10 .67 67.19 67.29

J48 10 .62 62.40 61.69

Pancreatic Tissue

Continued on Next
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Table A.5 - Continued

Classifier Num Genes F Sensitivity Specificity

Boosted J48 30 .85 85.00 85.00

Prostate Tissue LibSVM 20 .88 87.50 89.78

RandomForest 20 .88 87.50 89.78

IBk 20 .85 83.33 89.32

Boosted IBk 20 .85 83.33 89.32

Boosted J48 10 .80 79.08 83.76

KDE 10 .78 79.35 88.16

KStar 10 .78 77.50 79.62

J48 20 .74 76.96 72.33

WeightedKDE 10 .73 70.69 77.21

Renal Tissue IBk 10 .95 94.44 94.89

LibSVM 20 .95 94.44 94.89

RandomForest 20 .95 94.44 94.89

KDE 30 .95 94.77 94.55

J48 10 .95 94.96 94.17

Boosted J48 20 .94 93.00 95.00

Boosted IBk 20 .93 91.94 94.75

WeightedKDE 20 .92 93.43 92.29

KStar 10 .92 89.89 94.64

Spinal Cord Tissue LibSVM 10 .85 85.00 85.00

Boosted IBk 20 .84 83.75 84.96

KStar 10 .83 84.85 82.33

IBk 20 .78 77.50 79.66

RandomForest 10 .75 74.89 77.14

J48 10 .69 69.93 68.18

Boosted J48 10 .68 73.29 68.77

KDE 20 .61 65.57 63.17

WeightedKDE 10 .59 68.89 59.36

Thymus Tissue RandomForest 50 .87 86.25 89.73

LibSVM 30 .85 86.97 86.27

KStar 30 .85 85.00 85.00

J48 20 .85 85.00 85.00

IBk 20 .85 85.00 85.00

Boosted IBk 50 .85 85.00 85.00

Boosted J48 10 .85 85.00 85.00

WeightedKDE 20 .84 84.79 83.00

KDE 20 .83 84.68 81.33
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