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U INTRODUCTION 

In high-energy collisions, perhaps even more than 

in other branches of particle physics, the lack of a 

general theory is keenly felt. One has mostly to re­

ly on models for the correlation and understanding of 

a massive collection of data. As a consequence, the 

diversity of approaches to the problem is only equal­

led by the diversity of empirical facts to be explain­

ed. It would be quite impossible for me to try to 

summarize and do justice to all the interesting work 

done in this field. Therefore, rather than attempt 

such a task, I propose to concentrate on only a few 

areas of recent development which have not been cover­

ed adequately by earlier international conferences. 

Only the phenomenological aspects of high-energy col­

lisions will be considered in this report; the more 

theoretical questions will be dealt with by Professor 

Frazer in a separate session0 

Among the subjects not discussed in this report, 

I wish to mention in particular: 

i) symmetries and quarks, 

ii) particle reactions with nuclei, 

in which interesting work continues. Reluctantly, I 

have to contend with quoting earlier reviews and some 

contributions to this Conference1?2 \ 

Since Reggeism is still the favourite language 

among high-energy phenomenologists, I shall start by 

summarizing briefly the experimental status of Regge 

poles. 

2. REGGE-POLE MODELS 

The relevance of exchange quantum numbers to high-

energy collisions has long been recognized. Probably 

the best illustrations for this are the following ex­

perimental facts: 

i) In two-body collisions at energies £ 3 GeV/c 

A + B + C + D (1) 

the differential cross-section exhibits peaks at small 

if, and only if, there exist particle or resonance 

states in the exchange channel: A + C + B + D. Up to 

the present, no exceptions have been found. 

ii) The energy-dependence of such cross-sections are 

strongly correlated with the exchange quantum numbers. 

Thus, assuming a power dependence on the laboratory 

momentum: 

-n 
a = a 0 p L . (2) 

Morrison, in his latest compilation of data, found 

that the values of n fall naturally into four groups 

depending on the exchange quantum numbers3), 

Vacuum exchange n ̂  0 

Charge or isospin exchange n ̂  2 

Strangeness exchange n ̂  2.5 

Baryon-number exchange n % 3 - 4 . 

In view of this, a convenient framework to de­

scribe high-energy collisions is the Regge model in 

which the exchanged systems are represented by the 

leading singularities on the complex angular momentum 

plane. Although the existence of branch-points has 

been known theoretically for some time, the early ana­

lyses of data assumed that they were quantitatively 

unimportant. Indeed, such analyses with Regge poles 

alone have been successful in reactions dominated by 

one single exchange. Two such examples: 

i) TT~P TT°n (p exchange) 

ii) ïï~p + rin (A2 exchange) 

were reported already in the Berkeley Conference 

(1966)^. The p and A 2 trajectories so determined ex-



392 Intermediate and High-Energy Collisions-Theoretical 

trapolate comfortably through the corresponding reso­

nances on the Chew-Frautschi plot. 

More recently, using the accurate backward scat­

tering data on T T p + p n * by the BNL-Cornell group, 

Barger and Cline made a successful fit with linear 

(nucléon) and A^(N*3 resonance) trajectories
5). 

Only A^ exchange contributes to TT p scattering, where­

as in TT+p both N and A can be exchanged, but N is 

found to dominate. The fitted trajectory parameters 

are: 

i) a = -0.38 + 0.88 u for N a (3) 

ii) a = +0.19 + 0.87 u for A 6 (4) 

in units of 1 GeV2. At the same time, for u > 0, they 

made a fit for the same trajectories using as input 

the known nucléon resonances, obtaining the values6): 

i) a = -0.39 + 1.0 u for N a (5) 

ii) a = +0.15 + 0.9 u for A 6 . (6) 

The agreement between the two sets of values is as­

tounding. 

The simple pole model has also been successful in 

predicting dips in the differential cross-section at 

certain points where trajectories go through integer 

(boson) or half-integer (fermion) values. From the 

analyticity and factorizability of Regge-pole resi­

dues, it can be shown7) that at wrong-signature points 

O f y of a trajectory a, a helicity amplitude f - j ^ A g A ç A p 

due to the exchange of a must vanish if it involves a 

nonsense transition, i.e. if either |X^ = > or 

|Xg - A p | > o ^ . This may produce dips in the dif­

ferential cross-section at a = a^, whose position is 

independent of the incoming energy. Two well-known 

examples are: 

i) TT p TT°n (p exchange). a = 0 corresponds to a 

wrong-signature point where the spin-flip amplitude 

must vanish. This may be associated with the dip in 

da/dt at t = -0.6 GeV2. 

ii) ïï+p -> p i T + (N and A^ exchange), ot̂  = -1/2 is a 

wrong-signature point where all N exchange ampli­

tudes must vanish. The position of the observed dip 

in dc/du at u = -0.2 GeV2 agrees very well with the 

value of u at = -1/2, as determined from Barger 

and ClineT s trajectory parameters just quoted. Since 

at the dip, only A^ exchange is supposed to contri­

bute, the value of da/du should be related simply by 

isospin Clebsch-Gordan coefficients to that for TT p 

scattering at the same u. The ratio 1:9 so predicted 

agrees very well with the experimental value5). In 

addition, it has been shown by Contogouris et al.8) 

that in the reactions 

the combination 

X(s,t) = (da+/dt) + (da_/dt) - (da0/dt) (7) 

receives contribution only from the exchange of tra­

jectories with the quantum numbers of the to. Experi­

mentally, a dip is observed in X(s,t) at t = -0.5 

GeV2, which may correspond to the wrong-signature 

point at = 0. 

The prediction of nonsense zeros at wrong 

signature points is, pf course, only valid when 

one can neglect the contribution of cuts and of the 

Mandelstam-Wang fixed poles7). The experimental veri­

fication of the prediction thus indicates that, at 

least in the cases discussed, the cuts and fixed 

poles indeed give only small effects. 

At the right-signature points a^, and for sense-

sense transitions at wrong-signature points a^, the 

prediction of the pole model on the behaviour of the 

amplitudes is less definite. The possible alterna­

tives for either case are listed in Table 1, where 

each alternative may further be multiplied throughout 

by additional powers of a - . However, the am­

biguity can in principle be resolved by experiment in 

some reactions, and then hopefully be applied to make 

definite predictions in other reactions by means of 

the factorization theorem. Attempts in this direction 

have been made on: 

i) the A 2 trajectory at the right-signature point 

= 0. The absence of any significant dip in da/dt 

for the reaction TT p r\n favours the nonsense-choos­

ing (Gell-Mann) mechanism with no extra power of a. 

A recent analysis by Krammer and Maor9) of the data 

on TT+P + rrA++ (A2 exchange) and K
+p + K°A + + (p and 

A 2 exchange) also favours the same mechanism. 

ii) the A^ trajectory at the wrong-signature point 

= +1/2. In TT p •> p-rr" (backward) scattering, all 

amplitudes are sense-sense at a. = +1/2. From the 
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TABLE 1 

The designation of the various mechanisms which is used consistently in 
the text, differs somewhat from that normally used (see, for example, 
L. Bertocchi, Ref. 7). I apologize if this should cause some confusion. 
It seems to me, however, that the normal designation is excessively 
clumsy. Ours represents a feeble attempt at its simplification. It is 
earnestly hoped that experts on this subject could agree on a simpler and 
more rational notation. 

depression in da/du near u = 0, and the comparison of 
it 

the extrapolated residue with the actual N 3 ) 3 reso­
nance width, Igi et al.10) concluded in a recent ana­
lysis that the following alternatives are favoured: 
either i) sense-choosing (Chew) mechanism with one 
extra power of (a - 1/2) ; or ii) nonsense-choosing 
(Gell-Mann) mechanism with no extra power of (a - 1/2). 
However, neither of the above examples can yet be 
considered as conclusive. 

Although simple pole models were reasonably suc­
cessful in describing reactions dominated by a single 
exchange, more general analyses were hampered by two 
major complications: 

i) the difficulty of fixing the many parameters left 
undetermined by the model; 

ii) the existence of kinematical constraints on the 
helicity amplitudes arising from analyticity require­
ments . 

The first question is purely technical. It arises 
from the lack of sufficiently accurate data at high 
energy where experiments give normally only differen­
tial cross-sections and not polarization. Recently, 
however, a new technique has been developed which ex­
ploits analyticity in the form of sum rules relating 
the asymptotic expansion of an amplitude to its be­

haviour in the low-energy region. Assuming the Regge 
form of amplitudes at high energy, this then allows 
one to determine Regge parameters using low-energy 
data to a greater accuracy than was previously pos­
sible. This technique will form the subject of our 
next section. 

The other problem of kinematical constraints is 
a more intriguing one and has attracted a great deal 
of effort by many physicists. It arises in the fol­
lowing manner. Let F J ^ j and F | * ] J be, respectively, 
the s- and t-channel helicity amplitudes free from 
kinematical singularities—the so-called regularized 
helicity amplitudes. They are related by the cross-

{X1} 
ing matrix 1 ^ , thus 

However, the crossing matrix X itself has kinematical 
singularities at t = 0 and at thresholds and pseudo-
thresholds, i.e. t = (m. ± m.) 2. Thus in order to 
have F j -^ j free of such singularities, F ^ I J . must sat­
isfy certain constraints at these t-values. So far, 
the arguments are entirely general and independent of 
the Regge model. 

If now, in addition, one imposes the Regge-pole 
hypothesis and the factorization requirement of pole 
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residues, the constraints on the amplitudes are rele­

gated to the trajectories and their couplings. These 

constraints can be satisfied either by: (Leader) 

i) conditions on the residue functions but not on 

the trajectories (Evasion); 

or by: 

ii) conditions also on the trajectories (Conspiracy). 

Obviously, conditions on the trajectories themselves, 

being then independent of the particular reactions 

considered, will have very far-reaching consequences. 

An excellent review on the earlier work on this 

subject has been given by Bertocchi at the Heidelberg 

Conference (1967) 7 ) . The more recent developments 

using group theoretical techniques initiated by Toller 

is treated in this Conference by Frazer11). Many of 

the results so derived, such as the Toller classifica­

tion, even for unequal mass scattering, can also be 

obtained from analyticity and the factorization hypo­

thesis without the use of group theory12). Here, 

however, I shall confine myself to only a few remarks 

on the present experimental status of conspiracy. 

Probably the best test case of conspiracy versus 

evasion is the reaction yp ïï+n. The quantum num­

bers are such,that of the known trajectories, only 

the pion can be exchanged. If the amplitude at t = 0 

is indeed dominated by pion exchange (or, in fact, by 

any single trajectory with definite parity), evasion 

is the only possible solution and implies a zero (dip) 

in da/dt at t = 0. If, however, the pion conspires, 

then there may be another trajectory TT1 with opposite 

parity but otherwise the same quantum numbers. The 

amplitude resulting from the exchange of both TT and 

TT ' may then satisfy the kinematical constraints with­

out requiring a zero at t = 0. The existence or 

otherwise of a dip at t = 0 for this reaction is thus 

a clear test of evasion versus conspiracy within the 

framework of the pole model. Accurate measurements 
- 3 

of da/dt at small intervals down to t ̂  10 GeV 

have now established beyond doubt the existence of a 

peak instead of a dip at t = 0, thus clearly favour­

ing conspiracy13). As we shall see, analyses with 

superconvergence relations give further support to 

this conclusion. 

A similar test can be made on the reaction pn -> 

np (charge exchange). The experimental evidence here 

of a peak near t = 0 again favours conspiracy against 

evasion1 k ). 

However, it should be stressed that the preceding 

discussion is based on the assumption that the lead­

ing singularities on the complex J-plane are simple 

poles with factorizable residues. If it happens that 

cuts or other mechanisms are important, as seems 

likely from present experimental evidence, then the 

significance of these peaks and dips as regards pole 

conspiracy has to be reconsidered. 

To summarize the situation for the simple pole 

model, the following statements seem in order: 

a) in reactions dominated by one single exchange, 

the model is successful, at least to first approxi­

mation; 

b) where several trajectories are necessary, because 

of conspiracy or otherwise, the model can give an 

adequate description but has in general too much free­

dom. In certain cases, however, factorization gives 

definite predictions which can be tested with experi­

ment. 

Although the general picture is reasonable, there 

are some important discrepancies to be noted. I shall 

give some outstanding examples: 

i) The slope a f

p of the Pomeranchuk trajectory as 

determined by fitting high-energy data lies in the 

range 0 < a'p < 0.5 GeV"
2, with the smaller values 

being preferred15). This is much smaller than the 

slopes of other trajectories which are typically 

^ (1 ± 0.1) GeV"2. 

ii) Experiment gives polarization ̂  15 p.c in the 

reaction IT p -> TT°n even at high energy (11 GeV/c) 1 6 ) , 

whereas a simple p-exchange model predicts zero polar­

ization. 

iii) The difference between da/dt of elastic pp and pp 

scattering changes sign around t ̂  -0.15 GeV2, which 

is roughly independent of the energy. Normal explana­

tions of this effect in the Regge-pole model require 

the residue of the co trajectory to vanish at t ^ 

^ -0.15 1 7 ) . The factorization theorem then implies 

a dip in da/dt at this t-value for all reactions do­

minated by the ou trajectory. However, no sign of 
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such a dip is found experimentally in either a) Tip -> 

pN (see, for example, Ref. 8), or b) yp + ïï°n 1 B \ 

both supposed to be dominated by w exchange, 

iv) Assuming that the IT trajectory conspires with a 

parity-doublet as in TT+ photoproduction, Le Bellac 

has shown that factorization then implies that for 

the reaction ïï+p + p ° A + + , da/dt should show a dip at 

t = 0 1 9 ) . Experimentally, in contrast, a peak is 

observed20). 

Whilst objections to the flat slope of the 

Pomeranchuk (i) are mainly aesthetic, the other dis­

crepancies (ii), (iii), and (iv) are more serious, 

since they mean the failure of the few existing 

"clean" tests of the phase of Regge amplitude (ii) 

and the factorization theorem (iii) and (iv). The 

difficulties can indeed be removed by introducing 

secondary trajectories such as the pf [rfeigaasen and 

Fischer21)], the w [ Barger and Durand17)] or the A x 

[Arbab and Brower22)]. However, these secondaries 

are otherwise unknown; they should thus be regarded 

as representing these difficulties rather than ex­

plaining them. 

3. SUPERCONVERGENCE RELATIONS 

Over the last year or so, a new technique has 

been developed which exploits the analytic properties 

and asymptotic behaviour of scattering amplitudes in 

the form of dispersion sum rules relating the low-

energy and high-energy regions. For lack of a better 

name, I shall follow de Alfaro et al.23) and call the 

whole class of such sum rules "superconvergence rela­

tions" to distinguish then from those which are 

deduced from other sources, such as current algebra. 

An example of a superconvergence relation was first 

considered by Igi in 1962 2 k \ It is only recently, 

however, that their generality and usefulness became 

fully recognized25). 

Let f (v,t) be a scattering amplitude odd under 

crossing, and analytic as usual in the energy vari­

able v for fixed momentum transfer t. [Here we fol­

low the notation and derivation of Logunov et al., 

Ref. 25.] Assume, further, that at high energy f(v) 

can be represented as 

i 

where the function e(v) decreases rapidly as v -* 0 0 

and is negligible for v > A. Then applying the 

Cauchy theorem to e(v), using the crossing relation, 

and neglecting the integral 

we get immediately the sum rule 

A 

which is the simplest example of a "superconvergence 

relation". Clearly, a whole class of such sum rules 

can be derived by considering various moments f (v) 

instead of f(v) itself, where y need not even be an 

integer. The resultant sum rules will emphasize dif­

ferent regions in v, depending on the value of y, 

and will in general involve both the real and imagin­

ary parts of the amplitude26). We quote here as an 

example one form of such "continuous moment sum 

rules"—a form proposed by Delia Selva et al. (see 

Ref. 26): 

A 

J àv vY Im {exp [-i (ir/2) y ] f(v)} = 
o 

Y Si ^sinMCaj + Y + l ) a. 

Ù cos (TT/2) ai ai + Y + 1 
(12) 

All these sum rules just express the simple fact that 

the function f(v) is analytic and has the Regge asymp­

totic behaviour. 

Equations (11) and (12) are consistency conditions 

relating the amplitude in the energy range v0 < v < A 

to the amplitude in the region v > A. As such they 

may be used to check the validity of our assumptions 

in the same way as one uses ordinary dispersion rela­

tions. However, since existing high-energy data are 

noraially much less accurate than those at lower ener­

gies, these equations are more conveniently regarded 

as a means of determining Regge parameters from low-

energy data. 

The left-hand side of Eq. (11) or Eq. (12) can be 

evaluated directly in cases where phase-shift analysis 

exists for the low-energy region. Otherwise the in­

tegrals may be evaluated by saturation with known res­

onances. Needless to say, results obtained with 
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phase shifts are far more accurate and reliable. In 
addition, we note the following points: 

i) The cut-off value A at which Regge asymptotic 
behaviour is supposed to set in, is normally taken 
rather low, being limited by the energy of presently 
available phase-shift analyses (E-^ % 1 - 2 G e V ) * 

ii) Results at t = 0 are in general more reliable, 
since many sum rules there involve only the total 
cross-sections for which accurate measurements exist. 
iii) Wherever good high-energy data are available, the 
accuracy of parameters is increased by a simultaneous 
fit to both low and high energies. 

Work in this direction is still developing rapidly. 
The main results which have come to my notice up to 
the present are listed below: 

3.1 Vacuum exchanges in TTN scattering 

Here one has the detailed phase-shift analyses of, 
for example, Lovelace et al., and the accurate meas­
urements of total cross-sections. The main results 
are: 

i) intercept of the Pomeranchuk trajectory27): 

cip = 1 ± 0.02 (13) 

(Delia Selva, Masperi, and Odorico); 

ii) slope of the Pomeranchuk trajectory28): 

a p = 0 ± 0.1 (GeV)'2 (14) 

(Barger and Phillips); 

iii) the necessity of three vacuum trajectories 
(P,PT,P!T) to describe adequately the variation of to­
tal cross-sections above ^ = 6 GeV [Delia Selva, 
Masperi and Odorico27) ; Barger and Phillips28); 01s-
son and Yohd29)]. The variation of Pf and P" para­
meters with the method of determination probably in­
dicates that these are not simple pole trajectories 
but more complicated singularities, e.g. cuts. 

3.2 The nonsense zero for p exchange 
in TTN scattering 

Evaluating the spin-flip, 1 = 1 exchange ampli­
tude as a function of the momentum transfer t, 
Dolen, Horn and Schmid30) found a zero at t^0.5 GeV2, 
as required by Regge p exchange, and as indicated by 

the dip in da/dt at the same t-value for the reaction 
TT p -> TT°n (Section 2). 

3.3 Ghost-killing mechanism 
at right-signature points 

The cases actually studied are the points a = 0 
for i) P1 exchange in TTN scattering, and ii) A 2 ex­
change in KN scattering and TT photoproduction. Here 
the input data are less favourable. Although phase-
shift analysis exists for TTN scattering, the P ! tra­
jectory is heavily shielded by the Pomeranchuk and 
is hard to study. For K N scattering one has to rely 
on resonance saturation, and for TT photoproduction on 
not very accurate phase-shift analysis extending only 
up to E^ak =1.2 GeV. The results are thus less im­
pressive. 

i) PT exchange favours the nonsense-choosing (Gell-
Mann) mechanism at a = 0 (see Table 1) with no addi­
tional power of a [Barger and Phillips28); Gilman, 
Harari and Zarmi31)]. 

ii) Results for A 2 exchange at = 0 are contradic­
tory. Whereas the nonsense-choosing (Gell-Mann) 
mechanism is favoured by Matsuda and Igi32) in their 
analysis of K N scattering, Chu and Roy 3 3) prefer the 
sense-choosing (Chew) mechanism in analysing pion-
photoproduction data. It may be noted here that in 
high-energy fits of several reactions (see Section 2), 
the Gell-Mann mechanism is preferred at a = 0 for A 2 

exchange. SU(3) and the result (i) for Pf also fa­
vours the Gell-Mann mechanism. 

3.4 Cross-over effect in w exchange 

In analysing K N scattering with superconvergence 
relations, it was found that both the spin-flip and 
spin-non-flip amplitudes in co exchange cross zero 
around t ̂  -0.15 GeV2 3 k \ This confirms the result 
from high-energy fits, and underlines the apparent 
failure of factorization in the w residue discussed 
earlier (Section 2). 

3.5 Pion-conspiracy in TT+ photoproduction 

Using the phase shifts of Walker, a group at 
Trieste35) has found that the superconvergence rela­
tions can be satisfied at present accuracy with just 
a pion pole TT together with a conspirator, its parity-
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Fig . 1 Trajectory and residue of the pion and the conspira­
tor as result from the one-pole best fit with superconvergence 
relations (discrete points) (Ref. 35). 

doublet TT1. They then determine from the sum rules 
the trajectory parameters a(t) and the residue func­
tions g(t) for both TT and TT' over a range of t-values. 
Their result is shown in Fig. 1. The values of a and 
g so found agree very well with those obtained in the 
high-energy fit of Ball, Frazer and Jacob13) and re­
produce the existing high-energy data, as can be seen 
in Fig. 2. 

In certain cases where the Regge description of 
the high-energy region is reasonable, the same tech­
nique can be turned around and used to resolve ambi­
guities in the low-energy region by means of high-
energy data. One interesting example of this is the 
work of Martin and Ross 3 6), which applies the super-
convergence relations to KN scattering to determine 
the AKN and EKN coupling constants. They obtained 

g2
A + 0.79 g2

z = 6.1 ± 4.7 (15) 

which lies just outside the limit allowed by pure 
SU(3) invariance: 

g2
A + 0.79 g\ > 13.6, (16) 

thus contradicting a previous result of Kim's. A 
parallel analysis by Logan and Razmi, also with super-
convergence relations, came to similar conclusions37). 

The success of superconvergence relations in de­
termining Regge parameters, and the fact that satura­
tion with resonances alone often gives already a qua­
litative adequate description, have led to a new con­
cept which may subsequently prove far-reaching. This 
is the so-called Pol en-Horn-Schmid duality30). [See 

also G.F. Chew38).] We note first the empirical fact 
that the superconvergence relations (11) or (12) are 
quite well satisfied even down to low energies 
(y 1 GeV), assuming on the right-hand side only a few 
leading Regge poles. If, in addition, the integral 
on the left is approximately saturated by resonances, 
one can consider the Regge poles as being "built up" 
by summing a series of direct channel resonances. 
Moreover, since the relations (11) and (12) are sup­
posed to be valid for all A, the equivalence is "semi-
local", meaning that the Regge pole approximates the 
contributions of resonances averaged over a small re­
gion in energy. This duality is even more dramatic­
ally illustrated by Schmid39), who by projecting out 
partial wave contributions from the p-exchange ampli­
tude in TTN scattering, obtains circles in the Argand 

p 
diagram, which correspond well in position and J as­
signments to the known nucléon resonances. 

This simple observation has important repercus­
sions both in bootstrap dynamics and in the study of 
resonances, which are dealt with in the appropriate 
sessions. What concerns us here as regards high-
energy phenomenology is the correct parametrization 
of the intermediate region, say from 2 to 6 GeV/c. 
Above 6 GeV/c, the Regge model is reasonably success­
ful. 
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Below 2 GeV/c, reactions are known to be dominated by 
resonances and can be studied by the powerful machin­
ery of Lovelace and others for phase-shift analysis. 
Clearly, in the intermediate region, one needs a mod­
el which can interpolate smoothly between direct-
channel resonances and Regge-pole exchange. The 
simple interference model which adds resonances to 
the Regge amplitude, thus: A = A^^ + , though 
qualitatively correct in certain cases1*0), is unten­
able when taken literally. This is clear from the 
discussion of duality given above: one cannot just 
add to A . since A n _ already contains res Regge* Regge 7 

part of the resonance contributions. 

This problem of parametrizing the intermediate 
energy region is not yet entirely solved. However, I 
should like to mention an interesting model of 
Veneziano, which has gone a long way towards its 
resolution1*1). He studied, in particular, the re­
action: 

TT + TT TT + CO 17) 

which has the nice property of being symmetric in all 
three channels. The amplitude can be written as 

T = SVPA S P V P P P A A(s,t,u) (18) 

i) explicit crossing symmetry, 

ii) Regge asymptotic behaviour in all three channels, 

iii) poles at points corresponding to resonances, 

iv) validity of all superconvergence relations at all 
values of t, thus avoiding the difficulties of 
the old interference model as regards "duality". 

The present form (19) with a real is insufficient­
ly realistic for phenomenological analysis. However, 
with appropriate modification, it may well prove to 
be the answer for the intermediate energy region. 

4. DIFFRACTION MODELS AND UNITARITY CORRECTIONS TO 
REGGE POLES 
The existence of cuts in the angular momentum 

plane associated with multiple exchanges of Regge 
poles has been known theoretically for many years. 
In practical applications also, unitarity corrections 
to exchange models in the form of absorption factors 
have been considered already by several authors, not­
ably by Jackson et al.1*2) for particle-exchange mo­
dels, and by Cohen-Tannoudj i et al.1*3) for Regge-pole 
exchange. The only reasons therefore for persisting 
in simple pole models are: 

i) the apparent success it has enjoyed in earlier 
analyses; 

ii) the theoretical difficulty in predicting the cor­
rections due to cuts. 

Recently, however, experiment has brought to light 
a few inconsistencies with the simple pole model, such 
as the apparent failure of the factorization theorem 
discussed in Section 2. These have prompted many 
theorists to make renewed and fruitful attempts to 
solve the cut problem. Another incentive in this 
direction is the experimental discovery of interest­
ing structures in da/dt for elastic scattering at 
large momentum transfers, structures which are high­
ly reminiscent of diffraction phenomena1*1*). 

One can distinguish two general classes of ap­
proaches to this problem, depending on the existence 
or otherwise of the limit: lim (da/dt) for elastic 
scattering at infinite energy. This question is, of 
course, a fundamental one, and is quite independent 
of the Regge model. In the Regge language, however, 
it hinges on whether the slope of the Pomeranchuk 
trajectory a f

p = 0. Now all Regge fits up to the 
present, either directly of high-energy data, or of 
low-energy data via superconvergence relations, have 
yielded a f

p considerably lower than 1 GeV"2, in con­
trast to all other trajectories. The best limit, ob­
tained by Barger and Phillips28) from superconver­
gence relations, gives a !

p = 0 ± 0.1 (see Section 2). 
This means that all present data are consistent with 
a flat Pomeranchuk trajectory and favour the exist­
ence of the limit: lim (da/dt) for elastic scatter-

s-*» 
iiig. 
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The likelihood of a non-vanishing asymptotic lim­

it for elastic cross-sections, together with the fact 

that all reactions well described by simple Regge ex­

changes (such as TT p -> TT°n) vanish rapidly with in­

creasing energy, has prompted many authors to suggest 

essentially non-Regge mechanisms for reactions in the 

asymptotic region. A particularly elegant and simple 

example of this is the diffraction model of Chou and 

Yang1*5) which I shall describe. Others, such as 

Arbarbanel, Drell and Gilman46) prefer to interpret 

the asymptotic limit as being related to a new cur­

rent-current contact interaction which dominates at 

large t over the ordinary strong interactions describ­

ed by Regge poles. This new current may be assigned 

symmetry properties which will lead to relations be­

tween asymptotic da/dt at large t for various reac­

tions . In particular, Ne'eman wants to identify this 

contact term with the fifth interaction responsible 

for SU(3) breaking, and gives some predictions of 

this hypothesis that are available to experimental 

tests47). 

Based on these non-Regge asymptotic models, a 

number of authors have then added finite energy cor­

rections in the form of Regge poles and cuts to de­

scribe existing data 4 8). In the Regge language, the 

Pomeranchuk trajectory in such hybrid models appears 

as a fixed pole on the complex angular momentum plane, 

and is fundamentally different from other trajec­

tories . 

Other authors, however, such as Anselm and Dyatlov, 

and Frautschi and Margolis49), prefer not to excom­

municate the Pomeranchuk trajectory, and allow it to 

retain a finite slope. In these models, the diffrac­

tion peak will continue to shrink at asymptotic ener­

gies leading to vanishing elastic cross-sections. 

They then have to rely on the effects of cuts and non-

Pomeranchuk trajectories in order to explain the gener­

al lack of shrinkage observed at present experimental 

energies. 

Most of the models suggested in either class dis­

cussed above use a technique known as the eikonal ap­ 

proximation, which has a lot of formal similarity to 

the Glauber theory of scattering from nuclei (see, 

for example, Glauber, Ref. 2). To derive this, we 

write first the differential cross-section as (we use 

the notation of Ref. 45): 

where 

The eikonal approximation, which is supposed to be 

valid at large energies and small angles, consists of 

the following replacements : 

P£(cose)-» J 0(b/=t), (23) 

where the impact parameter 

while the sum over £ is replaced by an integral over 

b, thus 

This expression is more convenient to use in terms 

of a two-dimensional Fourier transform. This can be 

arrived at by writing first 

CO 2 Ï Ï 

a = J [l ~ s(b)] J exp (ib/̂ t cos <f>) d<f> b db 

o o (26) 

using a known integral representation of J0. Then 

introducing two-dimensional vectors 

K =(K x,K y) K2 = -t 

where one has introduced the notation < ) for the two-

dimensional Fourier transformation. 

As the simplest example, we turn to the Chou-Yang  

model45) for elastic scattering at asymptotic ener­

gies. We shall describe it in some detail since its 

formal features are shared by many others. We note 

first that the transmission coefficient S(b) can be 

given a physical interpretation as follows. Consider 

a uniform slab of thickness g. If the slab absorbs 
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and disperses an incoming wave, the transmission co­
efficient for the wave through the slab would be: 

S = exp (-a g) . (29) 

The quantity - log S = a g can be conveniently termed 
the opaqueness of the slab as it appears to the wave. 
Similarly, for the scattering of waves by a spherical­
ly symmetric object, the quantity -log S(b) is the 
opaqueness at the impact parameter b. 

Pursuing then a picture suggested earlier50), 
Byers and Yang then proposed that the hadrons be taken 
as extended objects with internal structures given by 
spherically symmetric density functions p(x,y,z). In 
a collision of two hadrons, say A and B, B will then 
appear to a point in A as a disc with a two-dimension­
al opaqueness density, 

DB(x,y) = j pB(x,y,z) dz . (30) 

They then argued that for the two hadrons passing 
through each other, the resultant opaqueness at im­
pact parameter b will be 

- log S(b) = K A B | J DA(b-b')DB(b') d2b', (31) 

where is some constant absorption coefficient de­
pending only on the type of particles. At this point 
it is convenient to introduce the notation <8> for the 
convolution integral; thus (31) reads 

-log S = K A B D A ® D B . (32) 

Substituting Eq. (32) into Eq. (28) then yields im­
mediately the relation 

a A B ( K ) = A A B ( K ) - ^ A A B ( K ) ® A A B ( K ) + 

+ I A A B (K] ® A A B ( K ) ® A A B (K) -..., (33) 

where 

A A B (K) = {- log S) = K A B <DA> <DB> . (34) 

Conversely, one can easily express also in terms 
of a^g, thus 

AARIK) = a A B (K) + ̂  aAB(K) ® a A B (K) + 

+ } a A B (K) ® a A B (K) ® a A B (K) + ... • (35) 

F i g . 3 The charge form factor Fj of proton versus K. The 
curves A and B are the predictions of the Chou-Yang model with 
(A) lim (da/dt) - 79.04 exp (10.3 t) mb (GeV/c)"2. 
(B) lim (da/dt) = 79.04 [exp (5.15 t) + 0.015 exp (2 t)] 2 

P P mb (GeV/c)"2. 
A 1 and B' correspond to the single scattering terms alone 
(Ref. 45). 

The relations (33) and (35) which relate the asympto­
tic scattering amplitude between A and B to their in­
ternal structures, have close connections to the 
Glauber theory of nuclear collisions. Thus, in Eq. 

th 
(33), the n term in the series corresponds to 
n-tuple scattering in Glauber*s theory. 

In order to test the model with experiment, Chou 
and Yang made the following tentative assumptions: 
i) Identification of the density function p(x,y,z) 
in protons with the charge distribution as measured 
by electron-proton scattering. This means 

(Dp) = const Fip(K2). (36) 

ii) Exponential form in t for the asymptotic differen­
tial cross-section in pp elastic scattering, thus: 

da/dt = a 0 exp (At) , (37) 
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where A is fitted to present data for |t| < 1 GeV2. 

Their result for the form factor F^OO as calculated 

from Eqs. (35), (36), and (37) is shown in Fig. 3. 

The agreement with data over several orders of mag­

nitude and a large range in t is quite impressive. 

One notes, in addition, two interesting points : 

i) If for pp scattering, one keeps in Eq. (33) only 

the first term, i.e. if one neglects all effects of 

multiple scattering, one has 

da/dt « |a(K)|2 <* [Fi(K)]4, (38) 

a relation first proposed by Wu and Yang50) and noted 

by several authors to be approximately valid for small 

t values51). 

ii) Multiple scattering terms in Eq. (33) have gent­

ler dependence on t than the single scattering term 

A^g. This can be checked explicitly for A ^ * exp 

(at), which gives for the n-tuple scattering term a 

t-dependence ̂  exp (at/n). The general picture then 

is that at small |t| values, the single scattering 

term dominates. As |t| increases however, multiple 

scattering becomes more important and ultimately 

takes over completely. Now the terms in Eq. (33) al­

ternate in sign. Thus at the value of t where, for 

example, the single scattering term becomes compar­

able to the double scattering correction, they tend 

to cancel, giving rise to a pronounced dip in the 

differential cross-section52). In the asymptotic mod­

el, these dips are actual zeros in da/dt. However, 

as Durand and Lipes have shown, finite energy cor­

rections, for example, in the form of a real part to 

the amplitude, will fill the dips partially52). This 

phenomenon of dips due to interference between single 

and double scattering terms is well-known already in 

particle-nuclei scattering (see, for example, Ref. 7, 

and Glauber in Ref. 2). It arises simply from the 

shadow effect of nucléons in the front of the nu­

cleus on those in the back. 

The picture for asymptotic scattering offered by 

the Chou-Yang model is an attractive one. Unfortu­

nately, it gives us as yet no hint of what is to hap­

pen at finite energies. On the other hand, one has 

the Regge model which has proved most successful in 

describing the energy dependence of reaction cross-

sections. It seems natural, therefore, to try to 

combine these models in some way so as to keep the 

virtues of both. Attempts in this direction have 

been made, for example, by Arnold and Blackmon and 

by Chiu and Finkelstein48). The result is what are 

known as hybrid models. 

Using again the eikonal approximation of Eq. (25), 

one has in Hybrid Models as in Eq. (28) 

a(s,t) = (1- S(s,b)> = i f [l-S(s,b)] exp (i b • K) d2b , 
J J (39) 

the only difference so far being that a and S are now 

functions also of the energy s. To the opaqueness 

factor A^g, which represents the point interactions 

between volume elements of the colliding hadrons, one 

adds now a finite energy (or finite range) correction 

in the form of Regge poles; thus 

AAB(s,t)
 = <~logS(s,b)> 

= AAB(t) + £ Rj(s,t), (40) 

j 
where 

a-(t)-i 

Rj(s,t)= -i 6j(t) (s/so) . (41) 

In the sum of Eq. (40), the Pomeranchuk trajectory 

is excluded, since diffraction scattering which the 

Pomeranchuk pole is supposed to represent is already 

contained in the Chou-Yang factor A^(t). Obviously, 

since all trajectories other than the Pomeranchuk has 

a < 1, the correction terms (41) will all vanish as 

s ̂  oo, yielding again the Chou-Yang model at asympto­

tic energies. 

Physically, there is little justification for the 

choice of Eq. (40) as finite corrections to the Chou-

Yang model. Formally, however, the expression (40) 

has the attractive feature of generating automati­

cally in the amplitude a series of cuts corresponding 

exactly to multiple exchanges of Regge poles. Thus, 

for example, in the double-scattering term in Eq. (33) 

(with A1 substituted for A) : 

AÀB ® ^AB = A A B ® A A B + A A B 0 £ Rj + 

j 

j j j 

the term R. ® AAT> has a cut corresponding to the ex-
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change of the trajectory ou together with a flat 
Pomeranchuk represented by A^. Moreover, it has 
been shown by Arnold53) that the cuts so generated 
have all the known properties of cuts in the Regge 
theory, such as the correct position and the correct 
behaviour of the discontinuity near the branch point. 
Thus although the cuts so generated are a very spe­
cial case of all possible solutions, they are a con­
venient tool for studying their general properties. 

Such hybrid models have been applied, for example, 
by Chiu and Finkelstein1*8) to pp and pp elastic scat­
tering, and by Arnold and Blackmon48) to TTN elastic 
and charge exchange. The details of the models dif­
fer, mainly in the Regge inputs R^. However, the 
main results are not dependent on such details. One 
obtains, in particular, the following features: 

i) A qualitatively correct dependence of da/dt on t 
and on the incoming energy s. An example from Chiu 
and Finkelstein is shown in Fig. 4. One notes, in 
addition, that the diffraction dips are partially 
filled in by the Regge corrections and appear only as 
shoulders. 

ii) At large t, da/dt ̂  exp (- Bv^t). 

iii) The cross-over effect in pp and pp elastic scat­
tering, without requiring the OJ residue to vanish at 
the cross-over point (see Section 2). In any case, 
as now there are cuts, factorization is no longer a 
problem. 

iv) Polarization in TTN charge exchange scattering via 
the interference of the p trajectory with the genera­
ted cuts (Section 2). In fact, Arnold and Blackmon 
were able to obtain good fits to all existing polari­
zation data. 

These hybrid models can also be extended to in­
elastic processes, and yield the absorption model as 
a natural approximation54) (see also Refs. 48 and 49). 
One then considers Eq. (40) and all related equations 
as being matrix equations connecting various channels. 
The single-scattering term A1 for an inelastic colli­
sion requiring exchanges of quantum numbers will not 
have the diffraction term A. However, diffraction 
effects will be brought in via the multiple scatter­
ing terms in the series (33). Now terms in (33) in-

F ig . 4 The pp elastic differential 
cross-section versus -t. Calculated 
curves are at Pxab = 12.4 and 19.2 
GeV/c (Chiu and Finkelstein, Ref. 48). 
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volving more than one exchange of non-Pomeranchuk 

poles will decrease rapidly with energy. Neglecting 

all such higher terms in , one has then for the in­

elastic amplitude simply the single Regge exchange 

modified by corrections due to diffraction scattering, 

which is identical to the "absorbed" Regge amplitude. 

Such "absorbed" Regge models have been applied 

with success (see, for example, Refs. 43 and 54). 

One notes, in particular, that the forward peak in 

TT+ photoproduction which was ascribed (Section 2) by 

simple pole models to pion-conspiracy, can be explain­

ed here without requiring a pion conspirator. The 

reason is that the cuts generated by multiple Regge 

exchange have in general both parities, and, conspir­

ing with themselves, require no evasive zero at t = 0. 

Moreover, it may be noted that early successes of 

the simple pole models, namely 

i) energy dependence of cross-sections, 

ii) occurrence of nonsense dips, 

are to a certain extent preserved in the new formalism. 

Point (i) is approximately correct, at least in the 

forward direction where cut corrections are small. 

For point (ii), one notes that since the Regge term 

changes sign near the nonsense dip, the convolution 

integral in the double-rcattering term largely can­

cels, yielding a small "absorption" correction48). 

There is, however, one theoretically unpalatable 

feature in the hybrid models, namely the artificial 

grafting of an essentially non-Regge mechanism on to 

a Regge model. Therefore, other authors, such as 

Frautschi and Margolis49), and Anselm and Dyatlov49) 

prefer models in which the Pomeranchuk trajectory is 

no different from others and has a finite slope 

M. GeV . The techniques used are similar, the only 

difference being that in Eq. (40) the Chou-Yang 

diffractive factor A(t) is replaced by a Regge term: 

ap(t)-i 

Rp(s,t) = -i 3P(t) (s/s0) . (43) 

Most of the attractive results of the hybrid models 

are retained. However, it turns out that terms com­

ing from multiple Pomeranchuk exchanges have the fol­

lowing features: 

i) positive real part to the amplitude, 

ii) total cross-sections increasing to the asymptotic 

values. 

Both these are opposite to what is observed at pres­

ent experimental energies. Frautschi and Margolis 

ascribed these apparent discrepancies to the effects 

of non-Pomeranchuk poles. However, at higher ener­

gies, points (i) and (ii) are still expected to be 

valid. 

In this connection, it is interesting to note 

that the same predictions (i) and (ii) on the asymp­

totic behaviour have also been obtained by Gribov and  

Migdal in papers contributed to this Conference55). 

Using the Reggeon graph technique developed by Gribov 

and collaborators, which is independent of the model 

assumptions just discussed, they derived an expansion 

of the amplitude in powers of (1/log s), where the 

n^ 1 term corresponds to the cut with n Pomerons ex­

changed. They were able, in addition, to give the 

sign and a lower bound on the size of the first cut 

contribution, thus yielding the previous conclusion. 

Unfortunately, their expansion as yet is expected to 

be valid only at superhigh energies (y 10 1 5 eV). 

A remark at this point on the dips and other 

structures in the differential cross-section da/dt 

may be appropriate. All the models described above 

use the "multiple scattering" expansion, and will 

thus give diffraction minima. On the other hand, 

kinematic zeros in the residues of non-Pomeranchuk 

trajectories may also give rise to dips of the type 

discussed in Section 2. As to which of these the ex­

perimentally observed dips should correspond, experts 

in this field are not unanimous. Thus, for example, 

Henyey et al. 5 4) observed that the dip in da/dt at 

t ^ -0.6 GeV2 for ÏÏ p -> ïï°n (Section 2) can be equally 

well-fitted as a diffraction minimum without assuming 

a zero in the p-exchange residue; whereas Barger and 

Phillips have gone to the other extreme, and suggest 

that even the structures seen in large-angle elastic 

scattering may be due to zeros of pole residues56). 

This difference in opinion can, in principle, be set­

tled by studying the energy dependence of the dip-

bump structures. Whereas diffraction minima are ex­

pected to move forward and deepen with increasing 

energy, dips of the other type are fixed in position 

and will eventually disappear at higher energies. 
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To conclude this section, I should mention also 
several other interesting models which have not been 
included in the general stream of development out­
lined above: 
i) The model of Arbarbanel, Drell and Gilman46. In 
this model, as already mentioned above, scattering 
at large t and s is pictured as being due to a con­
tact current-current interaction. To this is added 
the normal strong interactions, say in the form of 
Regge poles, thus yielding again a hybrid model in 
the sense used above. The main physical difference 
is that here, asymptotically, da/dt at large t ap­
proaches [Fi(t)]\ Unitarity effects which are in­
cluded by means of an N/D method developed by Baker 
and Blankenbecler are shown not to alter this sub­
stantially. Experimentally, this prediction is prob­
ably readily checked with the new generation of 
machines, since at 30 GeV da/dt is already quite 
close to the limit. Also, the model gives no sharp 
diffraction minima which are common to all models 
described above. 

ii) The extended Chou-Yang model, which has been sug­
gested independently by Chou and Yang, and by Byers 
and Frautschi, in papers contributed to this Confer­
ence 5 7). This replaces the c-number densities 
p(x,y,z) by q-number quantities, in second quantized 
notation: p(x) = $+(x)$(x), where $(x) is a quantized 
field. If the structure of the hadrons is fine-grain­
ed, this model reduces to the original Chou-Yang mod­
el for elastic scattering. However, the new formu­
lation allows the hadrons to be excited, giving rise 
to diffractive dissociation processes non-vanishing 
at asymptotic energies. Assuming only spatial inter­
action between elemental matter, diffractive dissocia­
tion can occur only when no internal quantum numbers 
are exchanged, and when the change in spin-parity 
corresponds to an exchange of orbital angular momen­
tum. This prediction agrees well with present ex­
perimental evidence (see, for example, Ref. 3). 
iii) Possible backward peak due to diffractive scat­
tering in analogy to the Glory effect in optics 
[Arnold58)]. 

5. THE MULTI-REGGE MODEL 

The problem of diffraction scattering and unitar­
ity corrections to exchange models is, of course, 

B 3 
Fig. 5 Example of a double-Regge graph. 

intimately connected with that of inelastic channels 
having many particles in the final state. Indeed, it 
may not be possible to understand fully even the sim­
plest reactions, such as elastic scattering, without 
some basic knowledge of multi-particle processes. 
This point of view has, for example, been emphasized 
by Van Hove and his collaborators in their study of 
the overlap functions59). Unfortunately, however, 
due to the complexity of the problem, our experimen­
tal knowledge and theoretical understanding of multi-
particle reactions have remained at a considerably 
lower level than that for two-body collisions. 
Nevertheless, some progress has been made over the 
last year via the multi-Regge model, and I wish to 
report here the main results. 

Before I proceed, I should first make clear a 
point in semantics. In accordance with current prac­
tice, I shall use multi-Regge (hyphenated) to denote 
exchanges of Regge poles "in series". This is to be 
distinguished from multiple Regge exchanges (without 
hyphen) of Regge poles "in parallel" which give rise 
to cuts, as discussed in the previous section. An 
example of a multi-Regge diagram is shown in Fig. 5. 

The multi-Regge model is not a new idea. It is 
an off-shoot of the multiperipheral model60) and has 
been considered by Ter-Martirosyan and Kibble as 
early as 1963 6 1 ) . Since then it has been developed 
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theoretically by many authors62). Its recent revival 
has been mainly due to the data which have become 
available for detailed analysis. 

Consider first the simple case: 

A + B + l + 2 + 3 (44) 

at a high incoming energy s. The model predicts that 
in the region of phase space where all s^ = (p^ + p,.)2 

are large, the process (44) will be dominated by the 
graph in Fig. 5 and by similar graphs with the final 
particles permuted. The question of which graphs are 
actually admissible will be determined by the quantum 
numbers of the external particles and of the exchang­
ed Regge poles. Assuming some analytic properties 
of the amplitude, and performing a double Sommerfeld-
Watson transformation, it can be shown that for the 
graph in Fig. 5 6 3) : 

A ~ Ba(ta) Bbfa) e(ta,tb,o)) ça(ta] çb(tb) s 1 2
V V s 2 3

a b ( t b ] 

(45) 
as expected. We need only note the vertex function 
3(ta,t^,ca) which represents the coupling of two Regge 
poles to a particle. In addition to the masses of 
the Reggeons t and t , it depends on a Toller vari-a D 

able oo which may be defined here as the azimuthal 
angle between the planes a x i_ and b x _3 in the rest 
frame of 2. Theoretically, little is known about the 
dependence of 3(t ,tK,u)) on a>. Blankenbecler and a D . 

Sugar6h), and also Drummond65j using a different meth­
od, have made some predictions of this dependence, 
which are however model dependent. Unfortunately, 
the experimental data are as yet insufficient to test 
these predictions. 

The general features of formula (45) are quite 
obvious. The amplitude is appreciable only when both 
t and t^ are small and it has a dependence on s 1 2 

and s 2 3 characteristic of the exchange quantum num­
bers, and of the intercepts of the Regge poles a and 

a 

v 
By restricting oneself to those events in the 

central region of the Dalitz plot with all s^ large, 
the model can be systematically tested by fitting 
data with the formula (45) in the same way as one 
does in Regge analyses of two-body reactions. The 

accuracy of such tests is limited by the available 
data. However, from the contributions to this Confer­
ence reviewed by Czyzewski66), it appears that fits 
in this direction are becoming quantitative. At pres­
ent, one can claim in decreasing order of certain­
ty 6 7) that: 

i) exchange quantum numbers forbidden in two-body 
reactions are also forbidden here; 

ii) the intercepts of Regge poles are similar to 
those observed in two-body reactions; 

iii) vertex functions are approximately exponential in 
t and weakly dependent of the Toller variable co. 

In the near future, the following analyses should 
be feasible: 

i) quantitative determination of the Regge inter­
cepts ; 

ii) observation of nonsense dips, e.g. in p exchange; 
iii) detection of shrinkage in peaks; 
iv) test of the Regge phase, for example by interfer­

ence with known resonances. 

Such direct tests of the multi-Regge model, how­
ever, being restricted to events with all s^ large, 
are applicable only to three-body events; in fact 
only to a small fraction of such, at present experi­
mental energies. In order to extend our study to 
reactions with more than three particles in the final 
state, one needs to generalize formula (45) not only 
to arbitrary multiplicity in the multi-Regge region, 
but also to the regions where some particles emerge 
in clusters, each with a low effective mass. The 
first question to settle is: what are the proper 
variables for Reggeization? This has been settled 
in a paper by Bali, Chew and Pignotti68), applying 
an elegant technique for Reggeization developed by 
Toller. However, the Regge model by itself gives no 
information on the structure of low-mass clusters. 
Any attempts at a general analysis must therefore 
supplement the multi-Regge model by further assump­
tions concerning these clusters. 

One example of such attempts by a CERN group69) 
assumes that, except for sharp resonances, the struc­
ture of low-mass clusters is governed only by phase 
space. In other words, one makes here the statis­
tical assumption for low-mass clusters in the same 
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way as Fermi did for low-energy production processes. 
A parametrization was suggested which interpolates 
between the multi-Regge region and the region where 
clusters are formed. Then, with further simplifying 
assumptions, such as the neglect of differences in 
charge of final pions, a model was constructed which 
allows one to calculate cross-sections and single-
particle distributions for varying multiplicities 
and energies, in terms of a few constant parameters. 

This model, and variants of it, have now been 
used to study a number of reactions, in particular 
from TTN collision, for details of which I refer to 
the review by Czyzewski66) in this Conference. It 
seems that in general such a model is able to give 
a qualitatively correct description of the follow­
ing features of the data 6 6' 6 9): 

i) for fixed s and increasing multiplicity n, the 
gradual transition of single-particle distributions 
from ones showing strongly multiperipheral features 
to ones approximating phase space; 
ii) the opposite transition for fixed n and increas­
ing s; 
iii) the dependence of the cross-section on energy for 
not too high multiplicities (n % 7) ; 
iv) the dependence of the average transverse momentum 
on multiplicity; 
v) the dependence of the average transverse momentum 
on the longitudinal momentum for fixed n and s; 
vi) the dependence of final-particle distributions 
on quantum numbers. 

In particular, it was found that cross-sections and 
particle distributions are sensitive to exchange 
quantum numbers and to intercepts of exchanged Regge 
poles. The application to these of knowledge gained 
from two-body reactions gives definite predictions 
which are in agreement with data 6 9? 7 0). 

From a purely descriptive point of view, there­
fore, it appears that the multi-Regge model is reason­
ably successful. However, present calculations rely 
too strongly on the Monte Carlo technique, the ef­
ficiency of which decreases rapidly with increasing 
energy. A better technique for calculation has to be 
developed before one can make the analyses more quan­
titative. 

We turn next to the much deeper problem of con­
sistency with unitarity. Consider first the simple 
case for elastic scattering, represented by the 
amplitude (i|T|f > . The unitarity condition reads: 

Im (i|T|f) = £ <i|r|n)(n|T|f> , (46) 
n 

where n runs over all elastic and inelastic states. 
If one assumes further that the elastic amplitude is 
purely imaginary at high energy, Eq. (46) will give 
elastic scattering in terms of multi-particle final 
states. Thus, given a model for inelastic processes, 
one should by Eq. (46) be able to calculate its sha­
dow on the elastic channel and obtain agreement with 
elastic data. Thus, for example, the slope of the 
diffraction peak at small t must agree with the slope 
of the overlap function, as defined by Van Hove. 

The argument can obviously be extended to cases 
where <i|T|f ) is itself inelastic. The result is 
a large number of consistency relations that inelas­
tic amplitudes have to satisfy. These conditions may 
represent an enormous source of physical information 
once we have a reliable model for inelastic colli­
sions. 

Work in this direction is still quite primitive, 
being limited by the crudeness of present inelastic 
models. Nevertheless, a beginning has been made, 
and I shall quote a few examples connected with the 
multi-Regge model from among the contributions to the 
Conference: 

i) Barger and Cline71) made the observation that the 
isospin independence predicted by meson exchange mod­
els for both the elastic and total pp and pp cross-
sections at high energy implies that the total inelas­
tic cross-sections must also be isospin independent. 
From the multi-Regge point of view, this requirement 
is by no means obvious, especially in the case of 
pp inelastic which includes annihilation channels 
supposedly described by multi-baryon exchange. Satis­
fying these constraints presumably implies complica­
ted conditions on the various exchanges involved. 

ii) It has been shown, in a general analysis by Koba 
and Namiki72), that the slope in t near t - 0 of the 
Van Hove overlap function is expressible as a sum of 
two positive terms: r = Ti + T 2, where Ti depends 
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only on the absolute value of the inelastic amplitude, 
whilst T 2 is sensitive to the momentum-dependence of 
the amplitude's phase. Thus, only T x and not T2 can 
be calculated from experimental measurements of par­
ticle distributions in, for example, bubble chamber 
experiments. Now the unitarity condition (46) re­
quires that T be approximately equal (say, to within 
10 per cent) to the diffraction slope of elastic scat­
tering, T ^ . Michejda et al. 7 3) have calculated Ti 

for the reaction Tip -> p + mr at 8 GeV/c using the 
multi-Regge model of Chan et al. 6 9) discussed above, 
and found Ti < (1/4)1^, which is much too small to 
explain the elastic slope. However, taking the phase 
of the amplitude as given by the signature factors 
of the Reggeons exchanged, they obtained a F 2 of the 
right magnitude. A quantitative comparison is not 
possible at present without a better knowledge of the 
phase in the low mass regions. Nevertheless, +he 
observed strong dependence on the Regge phase is 
interesting. 

iii)Chew and Pignotti74) went further, and suggested 
a new bootstrap mechanism with the multi-Regge model. 
They started with a simplified version of the model 
in which there are only two meson trajectories, the 
Pomeranchuk P, and another one M, which represents 
the average of all non-Pomeranchuk poles. With some 
approximations to phase space, they then made a crude 
estimate of the total cross-section in terms of the 
trajectory parameters a and the internal couplings 
g of the Regge poles. Then by requiring that the to­
tal cross-section does not violate the Froissart 

bound at asymptotic energies, they obtained the con­
ditions : 

2 , , (47) g p < 2(1 - a P J , 

where g and a represent constant averages of the cor­
responding quantities. The inequalities are convert­
ed to near equalities if the total cross-section is 
required to go to a constant as s °°. One notes 
that by foimula (47) the constant g p, which repre­
sents the coupling of P to M and an external parti­
cle, is required to be small inasmuch as Op is close 
to 1. This result is similar to an earlier result of 
Ter-Martirosyan, and of Finkelstein and Kajantie75). 
However, being ̂ 0.5, the constant g^ can be large, 
and will thus dominate in the high-energy region. 
The application of their results to the study of pp 
inelastic cross-sections above 6 GeV/c yields good 
agreement with experiment. During the discussion in 
the parallel sessions, Professor Chew reported a 
significant advance by Low and Goldberger in general­
izing the Amati-Fubini-Stanghellini method of deal­
ing with multiparticle unitarity. This will be re­
viewed by Professor Frazer in another session11). 
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D I S C U S S I O N 

BERTOCCHI: You quoted a contradiction between the 
determination of the sense-choosing mechanism of the 
A 2 trajectory as determined from the sum rules. As 
you said, Roy and Stein used photoproduction, whilst 
Igi and Matsuda used KN scattering0 

The apparent contradiction can be understood if 
*) 

you notice that from continuous moment sum rules J 

it turns out that if you look to the amplitude which 
contains the A 2, it contains also the IT1, the IT con­
spirator. For positive t, the A 2 is indeed dominant, 
while for negative t where the A 2 trajectory vanishes 
the TTc is dominant, so that if you use only the A 2 

exchange you will not find the correct answer. 
RATTI: In the study of vector boson production in 
TT collisions at 11 GeV/c, the introduction of ab­
sorptive corrections improves the fit of the RP 
model to the data representing the t-dependence of 
the differential cross-section. However the same 
happens to the old OPE, both in the form factors 
and the absorptive versions. 

On the other hand, the RP model fails in pre­
dicting the t-dependence of the spin density matrix 
elements. 

My question is whether you see any possibility 
of overcoming the difficulty found by the RP model 
in reproducing the P^j!s. 

FINKELSTEIN: I think that these diffractions or 
cut models can shed some light on the question of 
the slope of the Pomeranchon. In the first place, 
since in these models the 2-Pomeranchon cut contri-

*) P. di Vecchia, F. Drago, F. Ferro-Fontan, R. Odorico, 
paper not presented to the Conference. 

butes to the amplitude with a sign opposite to that 
of the Pomeranchon pole, then for given slope of the 
Pomeranchon, there is more shrinkage than there would 
be if the cuts were absent; this means that in order 
to fit data which show very little shrinkage, the 
slope of the Pomeranchon must be very small indeed. 
Secondly, if we expect that cuts as well as poles be 
exchange degenerate—for example, in pp scattering, 
where we know the total cross-section is very nearly 
constant with energy—thus the Pomeranchon would have 
to be flat. 

CHEW: Fox has observed that all Regge-pole difficul­
ties in two-particle 1 = 1 exchange reactions near 
t = 0 can be resolved by assigning M = 0 to the pion 
trajectory and having a separate M = 1 trajectory 
pair. This combination reproduces the usual absorp­
tive model. The new Gell-Mann - Zweig model, de­
veloped from entirely different arguments, contains 
an M = 1 exchange-degenerate trajectory (passing 
through the A 2) of precisely the required nature. 
Here we may have an example of a new kind of duality: 
several different Regge-poles being correlated so as 
to duplicate the effects of absorption. 

Relevant to the same general question is the 
Regge cut-pole relationship exhibited by the multi-
peripheral equation mentioned at the end of Chan's 
report. This equation, being based on unitarity, 
contains absorptive effects and correspondingly gene­
rates cuts. The Regge-cut discontinuities are large, 
however, only when there are Regge poles lying near­
by on an "unphysical" J-sheet. This situation is 
analogous to that in the energy-plane, where cuts are 
small except in the presence of resonances. Just as 
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in the energy-plane, J-cuts can be approximated by 
the underlying poles-inclusion of secondary trajec­
tories and cuts constitute double-counting. 

TER MARTIROSYAN: I would like to make soie remarks. 
Firstly, I want to say that Gribov, in a paper pub­
lished elsewhere and in two papers presented at this 
Conference (in collaboration with Migdal), has de­
veloped a very simple and nice technique allowing him 
to evaluate the contribution of any graph containing 
Reggeon lines and corresponding to the so-called re-
scattering processes. His approach is very general 
and includes, as a special case, a number of models 
mentioned in Dr. Chan's report. For instance, the 
Yang optical model, or an approach developed by 
Arnold, can be obtained as a special case (in the 
framework of Gribov's technique), of the values of 
parameters, or vertices, which enter. Secondly, I 
want to state that this technique can be used as a 

basis for complex angular momentum theory. As a re­
sult, the theory can be put in the form of a power 
series in a small parameter 1/Ç, where I = ln s/s0. 
The zero-th order term in 1/Ç corresponds to the 
Regge-pole contribution, higher orders to the rescat-
tering processes. 

Thirdly, I want to say that evaluation of the re-
scattering corrections (i.e. Mandelstam cut contribu­
tion) has shown that they are very important at large 
|t| and at |t| ̂  m2 inside of the scattering cone. 
On'the contrary, at t = 0 (and for a'|t|ln s/s0 « 1) 
their effect on the phase of the scattering amplitude 
and on its energy dependence turns out to be negli­
gible. Using the values of parameters for the Regge-
pole residues and trajectories, which are now very 
well known, I have estimated (in the paper presented 
to the Conference) that at t = 0 the rescattering ef­
fect is always of the order of 2-41. 


