
Using Diagrammatic Explorations
to Understand Code

by

Vineet Sinha
S.M. Computer Science and Engineering, Massachusetts Institute of Technology (2003)

B.A.Sc. Computer Engineering, University of Waterloo (2001)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Author

February 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

Department of Elee•riezi Engine--rin•g ~n•omputer Science
January 31, 2oo8

Certified by

Certified by

Accepted by..................................

MASSACHUSETTS INSTITUTfE
OF TEOHNOLOGY

APR 0 7 2008

I IRRARIl"R

----. .- 'r----ge--r
..- *d R. Karger

Professor of Computer Science and Engineering
Thesis Supervisor

- Robert C. Miller
Professor of Computer Science and Engineering

Thesis Supervisor

(/ Terry P. Orlando
Chairman, Department Committee on Graduate Students

ARCHIVES

Using Diagrammatic Explorations
to Understand Code

by

Vineet Sinha
Submitted to the Department of Electrical Engineering and Computer Science

on January 31, 200o8, in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract:

Understanding code is a significant challenge for developers. This thesis examines
the limitations of current tools that use diagrams to assist code comprehension and
demonstrates the value of four design principles:

* That diagrams should be based on familiar models such as UML class diagrams
and layered architectural diagrams, so that developers can understand them
without additional training.

* That the familiar diagrams must be able to focus on specific parts of a codebase
relevant to the developer's task, to prevent users from getting overwhelmed with
irrelevant information.

* That the focused diagrams need to support exploration of the codebase by direct-
ly interacting with the existing diagram.

* That the focused diagrams can be created by users' exploration as needed for
their tasks in traditional code editors.

This thesis shows that understanding for software developers can be effectively sup-
ported by interactive exploration using focused diagrams of familiar representations
of code. These ideas have been combined to build two tools: Strata, which displays
using the popular layered architectural diagrams, and Relo, which is based on UML
class diagrams. The tools have been evaluated using both controlled lab studies and
field deployments. Study results have been positive, indicating merit in these ideas.

Thesis Supervisors: David R. Karger and Robert C. Miller
Titles: Professors of Computer Science and Engineering

to my parents and brothers
who inspire me to leave no stone unturned

Acknowledgments

Working on a PhD can often seem to be a daunting task. I am glad to have
had the encouragement, support, and advice of a great set of mentors, col-
leagues, and friends.

I want to start by thanking my advisors, Prof. David R. Karger and Prof. Ro-
bert (Rob) C. Miller, for their help in guiding me with my research. Rob
helped me understand how to do research while working with users, while
David helped me understand when to ignore users while doing research
:-). Rob must have saved me over a year by pointing me to latest interface
techniques and helping in prioritizing tasks for my research. David helped me
understand how to crystallize ideas and arranged for funding my graduate
studies.

This work would have been significantly harder to do without the funding
that helped me focus on both my masters and my PhD research. Funding
from HP, Nokia, the Simile project, and the MIT Oxygen Project are greatly
appreciated.

Beyond my advisors, I received great support from faculty here at MIT and in
particular those on my committee. Like my advisors, Prof. Daniel Jackson
and Dr. Howard Shrobe helped in development of the research, and asked the
right questions to fully realize the impact of this work. Other faculty have
helped by giving their valuable words of wisdom and by showing their confi-
dence in me and my work - special thanks go to Prof. Larry Rudolph, Prof.
Michael Ernst, Prof. Victor Zue, Prof. Tomas Lozano-Perez, Prof. Leslie Kael-
bling, Prof. Randall Davis, and Prof. Sam Madden. The opportunity to get this
feedback would not have been possible without the framework provided by
the Electrical Engineering and Computer Science Department and the re-
sources provided by the Computer Science and Artificial Intelligence Lab.

I also received help and feedback on ideas and suggestions for implementa-
tion approaches from members of my research groups. These research groups
include the Haystack group and the User Interface Design (UID) group.
Thanks go in particular to David Huynh, Jaime Teevan, Karun Bakshi, Mi-
chael Bernstein, Adam Marcus, Max Goldman, Greg Little, Kai Shih, Harr
Chen, Nick Matsakis, Punyashloka Biswal, Solomon Bisker, Mike Bolin, Yuan
Shen, Sacha Zyto, Jones Yu, and Dennis Quan. Along with these research
groups, were also members of W3C and Simile, in particular Stefano Mazzoc-
chi, and members of the larger Center for Reliable Software, and in particular
Derek Rayside, Adam Kiezun, and Jonathan Edwards.

continued on next page

continued from previous page

This research also benefited from the contributions of a number of people
outside of our lab. In particular, Elizabeth Murnane joined in fixing bug and
implementing research ideas in the built tools. Cyrus Kalbrener provided
code contributions that helped in increasing the performance of the work. A
number of other people gave feedback on features that were not working
properly, or those than needed polishing - special thanks go to Benedict Heal,
Emerson Murphy-Hill, and Richard Nemec. Help on solving some of the
problems from Kevin Wilkinson, Daniel Tunkelang, and Randy Hudson are
greatly appreciated.

Additionally, some of the work in this thesis comes directly from work I did
while at Accenture Research Labs. I am grateful for them giving me the op-
portunity to gain a better understanding of the problems faced by software
projects being built at different companies. Beyond the labs resources I also
appreciate having had the opportunity to work with lab members including
Edy Liongosari, Scott Kurth, Kishore Swaminathan, and Mark Grechanik.

While working deeply on problems I have needed to have my sanity kept in
check with the help and support of a great group of friends. One group in-
cludes my friends at the lab, including Ali Mohammad, Harr Chen, Adam
Marcus, Federico Mora, Jacob Eisenstein, Sayan Mitra, Kinh Tieu, Yuan
Shen, Gregory Marton, and Olya Veselova. Another group consists of those
that I have lived with while working on this research - David Huynh, Harold
Fox, and Hang-Pang Chiu. And those that that I have known via dancing and
Tango, including Suelene Chu, Jordan Hunt, Long Ngo & Ulrike Kappes, An-
na Custo, Panayiotis Lemonidis, Richard Huang, Eszter Hars, Bryan Ford,
Sheila Erimez, Jacob Eggers, Shu-Yee Chen, Miriam Sorell, Sharon Kuo,
Steve & Pamela Slavsky, Carlos & Tova Moreno, Eray Yuksek & Martina Gra-
canin, Erick Eisack, Ting Chen, and Caleb Welton.

And my family... who consistently kept me focused on my research. Just as
law enforcements might have perfected the use of good cop - bad cop roles for
investigation, my parents and brothers seemed to have perfected the art of
making me work on the most important tasks, either by sharing their wis-
dom, showing their love, annoying me, or by just reminding me that "I am
still in school".

CONTENTS

1. INTRODUCTION ... 21

1.1. The Problem 21

1.2. Program Comprehension 23

1.3. Approach.. 23

1.4. W alkthrough ... 29
1.4.1 Layered Overviews with Strata 29
1.4.2 Detailed Relationships with Relo 32

1.5. Scenarios.. 37

1.6. Contributions.. 38

1.7. O utline 39

2. PREVIOUS WORK 41

2.1. Developer Behavior 41
2.1.1 Understanding Models 42
2.1.2 Use of Sketching 43
2.1.3 Working with Concerns 44

2.2. Overview Tools ... 45

2.3. Exploration Tools 52
2.3.1 Tree based approaches 53
2.3.2 Visualization based approaches 54
2.3.3 Discussion 58

2.4. Tools for Large Projects............................ 59

2.5. Design Tools ... 61

3. SURVEY OF SOFTWARE IMMIGRANTS 63

3.1. M ethod.. .. 64

3.2. R esults 66

3.3. Task Analysis .. 68

4. STRATA USER INTERFACE 71

4.1. Appearance 72

4.2. Supporting Interactive Layout 76
4.2.1 Guess Based Layout 76
4.2.2 Interacting with Layout 81
4.2.3 An Active Layout Engine 81

4.3. Supporting Interactive Exploration 83
4.3.1 Interface Behavior for Navigating 84
4.3.2 Exploration via Navigation Buds 84

4.4. Updating Module Definitions.............................. 85

5. RELO USER INTERFACE 87

5.1. Appearance 87

5.2. Supporting Interactive Layout .. 90
5.2.1 Building an Incremental Interactive Layout Engine 90
5.2.2 Rules Based Layout 91

5.3. Supporting Interactive Exploration 93
5.3.1 Navigation Buds 93
5.3.2 Levels of Detail 95
5.3.3 Autobrowse 96

5.4. Automated Diagram Management............................ 96
5.4.1 Linked exploration 97
5.4.2 Automated Removal of Items 97

5.5. Supporting Communications using Diagrams.............................. 98

6. IMPLEMENTATION.. 101

6.1. Development Challenges 101

6.2. A Caching Architecture........................ 103

6.2.1 Mapping Support 103
6.2.2 Basic Caching using Builders 104
6.2.3 Caching Compound Relationships 104

6.3. Agent Framework 105

7. EVALUATIONS ... 107

7.1. Using Strata with Projects 107
7.1.1 Methodology log
7.1.2 Results & Discussion lo9

7.2. User- Study with Strata 113
7.2.1 Methodology 113
7.2.2 Results & Discussion 114

7.3. User-Study with Relo .. 117
7.3.1 Method 118
7.3.2 Results & Discussion 125

7.4. Feedback from the Field with Relo 132

8. CONCLUSIONS .. 135

8.1. Summary of Contributions 135
8.2. Raised Questions 136

8.3. Looking Ahead 136
8.3.1 Design Patterns 136
8.3.2 Program Knowledge Extraction 137
8.3.3 Different Diagram Types 137
8.3.4 Collaboration and Communication 138
8.3.5 Support for non-software domains 138

REFERENCES.. 139

FIGURES

Figure 1 - Typical class diagrams ... 27
Figure 2 - Typical layered architectures diagrams .. 28
Figure 3 - Top level view when a developer opens Strata on the entire JEdit

codebase ... 29
Figure 4 - Strata after the developer removes the modules other than org. 31
Figure 5 - Strata with the search module being selected................................. 32
Figure 6 - Relo started by opening EllipseFigure .. 34
Figure 7 - After adding the method basicMoveBy (by using the more items

m enu) ... 34
Figure 8 - Clicking on the class to show its buds 34
Figure 9 - After clicking on the inheritance buds................................ 35
Figure to - Expanding the class AbstractFigure and the method

addFigureChangeListener....................... 36
Figure 11 - Asking for callers of addFigureChangeListener...........................37
Figure 12 - Visualization of Software Terrain Maps... 46
Figure 13 - The SeeSoft Visualization 47
Figure 14 - Armin view on loading dependencies 48
Figure 15 - Armin view after running a short script............................. 49
Figure 16 - Layered layout provided by Deref 50
Figure 17 - LDM on an old version of the Ant project...................................... 51
Figure 18 - A layered view by LDM of the ant project .. 52
Figure 19 - Results of the exploration session shown in the previous section

with the Eclipse IDE .. 53
Figure 20 -Results of the exploration session shown in the previous sections

w ith JQ uery.. ... 54
Figure 21 - The call graph viewer of Field 55

Figure 22 - Class hierarchy browser of Field................................. 56
Figure 23 - Part of an exploration session with SHriMP 57
Figure 24 - Part of an exploration session with the TkSee Visualizer 58
Figure 25 - Screenshot of M ylar 60
Figure 26 - Screenshot of Jazz [39] ... 61
Figure 27 - Survey Questions.. 65
Figure 28 - Typical layered architectures diagrams (as in Figure 2) 73
Figure 29 - A Layered Architectural Diagram...74
Figure 30 - Strata display of the jEdit project ... 75
Figure 31 - Automatically building a layered diagram without dealing with

cycles (for the jEdit project).. 77
Figure 32 - Dependencies in the top-level modules of the ant project 78
Figure 33 - Dependencies in the top-level modules of the ant project

(numbering modules). ... 79
Figure 34 - A depiction of the steps of the layering algorithm on the ant

project.. .. 79
Figure 35 - Results of the layering algorithm 8o
Figure 36 - Merging the results of the generated layers. 80
Figure 37 - Expanding the browser module in j Edit 82
Figure 38 - Breaking a module in Strata. 83
Figure 39 - Navigation Buds on the buffer module in Strata 84
Figure 40 - Part of an exploration session with SHriMP (as in Figure 23) 88
Figure 41 - Relo showing part of the JHotDraw project. (as in Figure 9) 89
Figure 42 - Layout rule for directed relationships 92
Figure 43 - Layout rule for directed relationships 93
Figure 44 - Clicking on the class to show its buds (as in Figure 8)................... 93
Figure 45 -Annotations in Relo 99
Figure 46 - Basic Relo Architecture..103
Figure 47 - Architecture with caching support for Relo 104
Figure 48 - Architecture with support for Strata 105
Figure 49 - RSSOwl with cycle breaking 110

Figure 50 - Traditional partitioning with RSSOwl...111
Figure 51 - Diagram width with and without cycle breaking compared to ideal.111
Figure 52 - Strata display of the jEdit project (same as Figure 5 and Figure 30)112
Figure 53 - Strata display of the buddi project 113
Figure 54 - Strata display of the view and controller of the buddi project 113
Figure 55 - One of the higher-level views of System A................................... 115
Figure 56 - Business domain view of System "A" using Strata. 117
Figure 57 - Background for the Ant task. 119
Figure 58 - The Ant task. ... 120
Figure 59 - The test case for the Ant task 121
Figure 60 - Hints provided for the Ant bug................................. 121
Figure 61 - The Lapis task 122
Figure 62 - Hints for the Lapis task..122

Figure 63 - Questions Programmers Ask During Software Evolution Tasks -
Part I .. 123

Figure 64 - Questions Programmers Ask During Software Evolution Tasks -
Part II. ... 124

Figure 65 - Milestone 4 with Lapis using Relo 127
Figure 66 - Milestone 5 with Lapis using Relo 127
Figure 67 - Milestone 6 with Lapis using Relo 128
Figure 68 - Users progress improvement with Relo. .. 130
Figure 69 - User 5's actions during the study................................. 130
Figure 70 - User 8's actions during the study. 131

TABLES

Table 1: Difficulty of understanding the project 66
Table 2: Users saying documentation technique was used effectively to assist in

understanding project.. 66
Table 3: Comparing current and wanted techniques for all survey participants ..67
Table 4: For software immigrants (developers examining internal code) 68
Table 5: Tasks done by user when they were examining the code...................... 69
Table 6: The Java Relationships Model 94
Table 7: Projects used in determining Strata usefulness 108
Table 8: Results from expanding the projects in Strata..................................... 11o
Table 9: Users performance on Study Tasks 128

1. INTRODUCTION

As software systems grow in size and use more third-party libraries and
frameworks, there is a large need for developers to understand unfamiliar
large codebases. This thesis presents two tools, Relo [79][8o][81][82] and
Strata, which support developers' understanding by creating diagrammatic
representations of explored code. As the developer explores relationships
found in the code, these tools automatically manage the context in a visuali-
zation helping build the developer's mental model. Relo and Strata help de-
velopers explore code and select the important subset of code artifacts and re-
lationships to display using various visual constraints to ease the comprehen-
sion of the targeted code.

1.1. THE PROBLEM

The growth in size and complexity of software has resulted in developers fac-
ing increasing difficulties in comprehending and maintaining a coherent
mental model of the code. While design documents can help in getting an un-
derstanding of the projects, they often do not exist. Even when such design
details are available, they typically only reflect the initial design of the system,
as design changes are often not reflected in the documentation. Furthermore,
even when available, the design documentation often does not cover all as-
pects of the software system. Understanding is especially hard when using
components and frameworks from many different providers. Even the rise of
open source, commonly heralded for making code available for reuse, has
contributed to these problems, since open source developers often skimp on
documentation, letting the source code speak for itself [51].

1. INTRODUCTION

Techniques like object-oriented programming and design patterns have
helped control complexity in large projects by allowing developers to create
and use appropriate abstractions and encapsulate inessential details. Unfor-
tunately, these techniques make certain parts of program comprehension
harder, requiring a developer reading the code to follow multiple forms of
relationships. For example, following a function call, once a simple task, now
also requires keeping track of inheritance and polymorphism. This complexi-
ty brought about by the interaction of multiple types of abstraction mechan-
isms forces developers trying to understand code to remember the involved
interactions. Developers thus need tool support to keep track of and appro-
priately show these different relationships.

Program understanding studies have found understanding to be an impor-
tant and large task, with new developers to a project spending 80% of their
time understanding code and more experienced developers in the projects
spending around half of their time understanding code. Beyond the produc-
tivity overhead, difficulties in program comprehension can result in signifi-
cant other problems. For example, new code will often not be consistent with
the rest of the project and this inconsistency caused by the new code will
gradually result in the deterioration of the codebase.

When providing the developer with the right code elements and relationships
for a given task, these elements and relationships need to be shown in a man-
ner appropriately emphasizing the right elements and the relationships. Con-
sider UML Diagrams - Class Diagrams emphasize the classes, attributes, op-
erations, and the relationships between them, while Sequence Diagrams or
Collaboration Diagrams emphasize the interaction between the given
classes/objects. While UML diagrams were created to support communica-
tion of code and design issues, using UML tools have their limitations. The
reverse engineering capabilities provided by such tools to generate diagrams
directly from source code have too much information. Users typically com-
plain that the amount of information in resulting diagrams is overwhelm-
ing [2], and thus such tools only have a lo% adoption by developers [3].

Even when having a set of systematically created diagrams, Cherubini et
al. [17] found that there is a need for the diagrams to be adapted to the cur-
rent task of the user. Their study, conducted at Microsoft, observed the use of
diagrams created for a software system. With the exception of new hires, dia-
grams were found to be of little use. The main limitation again was that the
diagrams did not show the appropriate code elements - they either contained
either too few or too many details when compared to the diagrams that would
have been useful for the task.

Tools which do not overwhelm users have required users to write scripts to
bring the shown information under control. Work in other domains to help
users navigate and comprehend large information spaces have also had simi-

1. INTRODUCTION

lar scalability limitations, and have suggested the use of analyzing users' tasks
to get around the scalability limitations by providing task specific visualiza-
tions [311][371].

1.2. PROGRAM COMPREHENSION

Program comprehension has been studied for over 20 years (as described lat-
er in section 2.1). When new to a project, a developer's initial goal is to focus
on understanding the code. However, understanding code is only sometimes
the developer's primary goal. More often program understanding is second-
ary to other coding tasks [20]. A developer might be trying to fix a bug and
while doing that might need to understand some part of the codebase that he
has not seen before. For developers understanding is often secondarily
needed to accomplish their primary task. Developers thus need to be able to
focus on their primary task and have an intuitive interface tightly integrated
with their development environment. Comprehension tools that require de-
veloper training or require the developer to author a script to use the tool will
not be of much benefit to developers.

Developers have been shown to build a number of different types of mental
representations or mental models while understanding code [23][88]. For
large projects, experience developers build these mental models mostly using
an opportunistic strategy focusing only on code elements relevant to the task
at hand [54]. Supporting such an opportunistic code exploration strategy is
therefore needed in helping developers' comprehension.

1.3. APPROACH

This thesis takes a user-centric approach to assist developers in code under-
standing. The code understanding process starts with developers examining
the code structure. This structure involves both code elements, such as
classes, fields and methods, and code relationships such as inheritance, me-
thod calls and package containment. Graph based diagrams can help com-
prehension by showing relevant code elements and relationships of the code
structure. However, existing diagramming tools are not effective at helping
users understand code. This thesis goes around the limitations of current
tools and demonstrates the value of four code ideas:

1. Existing program comprehension tools overwhelm users by using an un-
familiar notation that must be learned. Showing code using familiar di-
agrams makes it easier to absorb the information. Such diagrams help re-
duce the amount of information that needs to be absorbed for the current
task. These diagrams should be based on popular diagram types created
by developers [18][28] and have been known emphasize important prop-
erties of the code. This thesis builds support for program comprehension

1. INTRODUCTION

by using visualization representing the two of the most commonly created
diagrams types of code. The first, supported by Relo, is based on UML
class-diagrams, which emphasize the details in classes and the relation-
ships between them. The second diagram, supported by Strata, is based
on commonly drawn layered architectural diagrams and provides an
overview of the components of a project. Examples of such diagrams are
shown in Figure 1 and Figure 2 respectively.

Showing familiar diagrams has a number of requirements. Current visua-
lization tools show all nodes in a similar manner and all relationships in a
similar manner - with the only differences being that of color based on
the node type, such that Java packages have a different color than classes
or methods (as opposed to packages looking diagrammatically like tradi-
tional packages). Similarly for relationships, inheritance in class diagrams
is often drawn by developers as a relationship directed upwards with the
arrow always being closed. Relo and Strata try to mimic such defaults in
its diagrams. Furthermore, beyond appearance relationships can also be
displayed via visual constraints. In Relo, vertical layout is used for inhe-
ritance hierarchies, while call trees are displayed from left-to-right and
containment layout is used for items inside packages and classes.

2. Existing diagramming tools show the entire codebase in a single diagram
and therefore overwhelm users. Focused diagrams are thus needed to
show a specific part of the codebase relevant to the developer's task.
Showing a relevant method in such diagrams does not mean that other
methods in the same class need to be shown. These diagrams represents
one of the many architectural views needed to understand the different
aspects of the project [19][46]. Such diagrams are similar to those drawn
by developers on paper [18] (described in section 2.1.2), but are not avail-
able in today's UML tools [9][lo]. Such focused diagrams are important
as they omit unnecessary details that might otherwise overwhelm devel-
opers.

3. Building focused diagrams requires knowing what parts of the codebase
matter to the developer's task. Tools need to allow users to interactively
explore and build a diagram. Existing diagramming tools show focused
diagrams only if the developer selects a set of code elements before gene-
rating a diagram. They do not help developers find relevant code ele-
ments. Unfortunately, as is common in information seeking tasks, devel-
opers trying to understand parts of a codebase do not yet know which
code elements are involved in their task. Exploration support can be pro-
vided by allowing users to follow relationships in a lightweight manner,
such as by directly clicking buttons in the shown diagram. Similarly, but-
tons can allow for easy removal of irrelevant items, and can help dia-
grams represent a focused view of the current task, thereby assisting the

1. INTRODUCTION

developer in remembering code elements associated with the current
task. Supporting exploration allows for changes in the developer's under-
standing of both his task and the underlying code by supporting changes
to the partial diagrams. In contrast, traditional diagramming tools only
show a static output and behave in a manner similar to paper.

Relo and Strata show buttons for exploration when nodes are selected.
Users can add or remove code elements and also access relationships on
the various methods and follow them. Prior work on program compre-
hension [641][73][84][87] has shown that while developers may examine
small programs systematically and exhaustively, large codebases are not
explored that way; instead, developers follow an as-needed exploration
strategy, examining only the artifacts they think they need.

4. Interactive exploration of diagrams helps developers understand code
when it is their primary goal. However, program comprehension is often
a secondary task to bug fixing, feature addition, performance tuning,
refactoring, etc. In such cases, there is a need for the shown diagrams to
be integrated within the IDE. Further, as developers continue to explore
code in the IDE, there is a need to link their explorations in traditional
editors to update diagrams. Thus a developer adding a feature to a project
and getting lost in the codebase, should be able to ask the tool to show a
diagram of his current exploration to provide a starting point for his un-
derstanding.

Thus Relo and Strata are designed to appear like commonly made code dia-
grams, displaying parts of large codebases and allowing user to interact with
the diagrams and use the diagrams for exploring to help reduce developers
cognitive overhead.

Further, developers examining an unfamiliar implementation by going
through the code have problems staying oriented in the project and maintain-
ing an organization of visible code elements [26]. Relo and Strata therefore
show a diagram that remains consistent and shows nodes in predictable plac-
es based on both the needs of the diagram type and the current task. As de-
velopers understand code, their mental model consists of involved code ele-
ments and the manner in which they interact. This mental model changes as
the developers get a better understanding of both the current code and the
problem that they are trying to solve [1211][421][56][61]. A program compre-
hension interface therefore needs to support developers understanding task
by not only allowing developers to examine different parts of the code but
also by consistently managing this changing mental model. Supporting such
diagrams consistently means not only providing developers fine-grained con-
trol in adding or removing code elements to a diagram, but allowing such
changes to only incrementally modify the diagram, i.e. instead of drastic glo-

1. INTRODUCTION

bally optimal re-layouts on each change there is a need for a layout that tried
to maintain properties in the current diagram.

With support for these code ideas, additional capabilities can allow diagrams
to be used for communication among developers or for allow users to build
more complex queries based on the viewed items. Queries can allow users to
ask complex questions to the tools. For example, Relo allows the user to se-
lect multiple nodes and then let the tool 'navigate about' to find out how the
nodes are connected.

1. INTRODUCTION

plivate int statonlo
pfivM.a bIta isOpersting

public EmtaySdu)(I

public int SltStationID(
public voild .tStiontDlo(t vai

public iou.., gliwpwat~ing(

public iVold se Opei~ln(lpubtla veld so*Opot~ booleaft vol

ATM

privte float cashOnHand CashIwrS ahion
ptrivat eiot dispensed

C*- Cow-

pubic flemt VtCam.obond() bio loot "vWCltCd(
poublic void oolcush~oollad(floatý4ll publicotlt ivortitAttmioutivallble(
publot utl at)ilpootu)

publie void %*~ipamsud(fivutval)
public int isttatlioC()

Cpubilioc vod sooid bob i t oil(lubval)
pibio tgott itatiuonl)(pou.publiboo t igftOpeouting()

pablc vuld itstlootlli(ivoti) re Id a

publio loiai fi e oitriini(public void oisparlnot(bioo va vat)

p u b l c v o i d 'Idi f i p t l v
public voId sv9p*Foaldlu booloon vat)

Bralch

7 -7 private chat connectd

ANvtoh poublic oViovh()

00-e- i public char gotCon"Goo t
public Cordooolun) pubiovd iuCiotuitodbooov.)
public void valldsiAocounltnfo(

UserAFII&
public bUiioio

Figure 1 - Typical class diagramsL

1 The first images returned by Google on searching for "Class Diagrams" Sources:
http://developers.sun.com/jsenterprise/learning/tutorials/jse8/uml-class-diagram.html and
http://java.freehep.org/freehepl.x/yappi/ClassDiagram.html

1. INTRODUCTION

czfizm

Common Search/l Exposure Services

Hosti Environmenlts

Figure 2 - Typical layered architectures diagrams2

2 Source: The first images returned by Google on searching for "Layered Architecture". Sources:
http://msdn2.microsoft.com/en-us/library/ms978689.aspx,
http://ausweb.scu.edu.au/awo4/papers/refereed/treloar/paper.html and
http://bartdesmet.net/blogs/bart/archive/2005/o9/ol/ 35 17.aspx

Sourcesw

4IEA

Access
Layer

Content

Workifl
& Mgt
Layer

Storage
Layer

r

1. INTRODUCTION

1.4. WALKTHROUGH

We present a walkthrough through two scenarios, one trying to get an over-
view of a codebase using Strata and another trying to show detailed relation-
ships in a project using Relo.

1.4.1 Layered Overviews with Strata

Strata builds high-level diagrams of dependencies in software projects and
actively helps developers to explore, understand, and get an overview of the
underlying project. These diagrams are similar to commonly available layered
architectural diagrams. The diagrams represent the current selection (or the
entire project) and is built by aggregating dependencies and code elements in
the project. A developer can then use Strata to interactively either focus on a
relevant portion of the project or remove irrelevant portions. Developers can
explore and find relevant (potentially crosscutting) concerns within the im-
plementation and use them as modules for future explorations. The focus is
on providing a mechanism to get a rapid high level visualization - to provide
good defaults without needing developer intervention, and provide develop-
ers with exploration mechanisms to find the relevant portion of the code that
they might be interested in.

Figure 3 - Top level view when a developer opens Strata on the entire JEdit codebase.
The diagrams show the org package builds on (and depends on) one or more packages

at the lower levels.
(top: the default view, and bottom: when the mouse is moved over the org package)

Consider a developer working with Strata on the JEdit project [5]. JEdit is an
open-source Java based editor consisting of a fairly extensive plugin and
scripting framework. The project consists of over 500 classes and over
150,000 lines of code (as measured by wc). When working with such projects
it is difficult to get an overview of the various components. Strata tries to pro-
vide support to help the developer understand the JEdit project by exploring
through overview visualization of the code components. The developer needs

qJ 'gnU,,,, + bsh $ com + insww

if com installer

1. INTRODUCTION

to only right-click on the project in the Eclipse IDE and open Strata from the
context menu, which produces a view similar to Figure 3.

The figure shows that at the highest level the project consists of a number of
modules with the org module being the largest. Strata also shows the exact
size of modules in tooltips allowing the developer to realize that the gnu and
com modules consist of very few classes. The modules are shown in a layered
view, with each module in a layer depending on one or more modules in the
layer below it. In this case, the org module depends on a module below it, and
moving the mouse over the org module indicates by an arrow that it depends
on the bsh module. An experienced Java developer will likely recognize that
the module bsh is related to scripting support3 , the installer module is re-
lated to an installer for the editor, and the small com and gnu modules consist
of overrides to the externally provided functionality provided in these mod-
ules. Since developers are mostly interested in the code for the current
project, Strata by default shows only the dependencies in the provided
source, and does not include code provided in external libraries.

At this point, the developer can select and remove the smaller modules from
the view. Doing so causes Strata to automatically expand the org module, to
show that it consists of the gj t. sp module and the obj ectweb module. Again,
the module names are not very useful, but represent the best guess that Strata
starts with, and in such cases, just noticing that the module is large can rec-
ommend an exploration path to the developer. In helping developers with
top-down comprehension, Strata expands the largest module when there are
three or fewer modules shown. Since there are only a few modules being
shown (even after expanding the gj t. sp and obj ectweb modules) Strata ex-
pands the largest module again: gj t. sp. This module consists of the jedit
and the util modules. Once again, the j edit module is expanded automati-
cally to give Figure 4.

From Figure 4, a few high level observations can be made. The objectweb
module does not seem to have any dependencies to or from the rest of the
shown code. Since util is below jedit, util likely has a number of code ele-
ments depending on it. The j edit module consists of a number of modules
dealing with, among other things, the gui, a textarea, and search support.

3 Developers not recognizing these modules can explore and discover their functionality as shown
with the org module.

1. INTRODUCTION

l objectweb

org.

Figure 4 - Strata after the developer removes the modules other than org.

When the developer mouses-over the modules, dependencies to and from the
module are shown. Strata uses colors to indicate which modules depend on
the module being moused over. The current module is colored gray, modules
which build on top of the current module are colored in a lighter shade, and
the modules which the current module depends on have a dark shade. Mod-
ules that have dependencies both to and from the current modules are co-
lored with the same color as the current module. Figure 5 shows the visualiza-
tion with the developer having selected the search module - in this case
beyond showing dependencies and highlighting appropriate modules, the de-
veloper is also shown buttons to show any other dependencies associated
with the search module. The dependencies are shown using arrows, with
thicker arrows indicating a larger number of dependencies.

1. INTRODUCTION

i objeweb

org.

Figure 5 - Strata with the s ea r ch module being selected

Again, the developer can continue the process. He can decide that certain de-

pendencies represent minor temporary inconsistencies with the design, and

can right-click on them to hide them asking the tool for an updated layout, or

can continue exploring with the tool by asking it to remove some of the mod-

ules. Once at a detailed enough exploration level the developer can ask the

tool to show the dependencies in the code, or to view the source of the in-

volved modules.

1.4.2 Detailed Relationships with Relo

Relo is designed to help developers explore and understand small focused
parts of large codebases. Such a small manageable parts of the code can
represent a developers task and not include irrelevant details to the task, thus
helping in developer productivity [13][67]. Relo visualizations are shown in

1. INTRODUCTION

the commonly available UML Class diagrams which emphasize details of
classes in the codebase. Relo further provides an interactive exploration in-
terface for developers to view, select, add, and remove code elements, and
presents them graphically to assist in the comprehension of the shown code.

Relo visualizations start with a single code artifact, such as a package, class,
or method, from which a developer can browse different relationships to inte-
ractively add or remove code artifacts. As the user interacts with the diagram,
Relo automatically lays out the diagram, with layout rules that try to put
components in predictable places (consistent with UML diagrams) based on
their relationships: e.g., vertical layout for inheritance hierarchies, left-to-
right for call trees, and container layout for package and class containment.
In addition, Relo allows zooming in to view and edit code using text editors
embedded in the diagram. Developers can therefore abstract to a high level,
or focus-in to see the actual code.

Relo is built with the intent of supporting developers exploring the static
structure of code, in a UML like visualization. We illustrate how Relo would
be used by a developer for typical comprehension task. For this example, we
use a task similar to that tackled by JQuery [40]. The task involves a develop-
er working with the JHotDraw [6] project, a GUI framework for building
drawing applications consisting of figures like rectangles, triangles, ellipses,
lines, etc. Suppose the developer needs to add a feature that operates on fig-
ures and would therefore like to understand how to manipulate figures. In
attempting this task, the developer will try to understand the code, likely by
taking a few steps:

1. Find a class implementing figures.

2. Understand it by examining a few methods in this class.

3. Go up the inheritance tree, to find a suitably general base class
representing all figures.

4. Find code that manipulates figures by calling methods in this general
base class.

5. Select an appropriate manipulating class, and examine its methods to
duplicate relevant functionality.

A developer following the above steps will typically make rapid progress in
the first three steps: finding a starting class (using simple heuristics and
search queries), examining it, and selecting an appropriate base class. How-
ever, when the developer attempts step 4, i.e. selecting a method that is called
for manipulating figures, and tries to examine the callers he will have difficul-
ty in keeping track of the various examined code artifacts. The difficulty will
occur because of the desire to maintain a context, by examining the roles of
nodes connected by inheritance, containment, and method calls relation-

1. INTRODUCTION

ships, i.e. he will need to remember at the minimum 3 relationships and 6
code artifacts (corresponding to the 3 steps above), something that is larger
than human short term memory [571.

This scenario would be simple with Relo. As the developer looks at the code,
he will find that JHotDraw has a number of packages, with one being called
figures. The developer would look at that package, and find that the class
EllipseFigure is a relevant starting point for his/her exploration. The devel-
oper would then just need to select the class, and open it in Relo (as shown in
Figure 6).

Figure 6 - Relo started by opening EllipseFigure

On finding the class EllipseFigure and starting Relo with it, the developer is
presented with Figure 1. The figure shows that the class has 15 members, and
the developer clicks on the menu to see a list. Considering the method
basicMoveBy as potentially interesting, he clicks on the method name in the
menu and thereby adds the method to the diagram for future examination
(Figure 7). Once it is added the developer clicks on the class to be presented
with a handle indicating the class inherits from another class (shown in Fig-
ure 8). The developer clicks on this handle to show superclasses, and there-
fore continues his exploration to find a relevant base class by clicking up-
wards (Figure 9).

Cifadaiue
S3lipseFiar

a bandove1yntirn: void
14Members>

33Casses

Figure 7 - After adding the method basicMoveBy (by using the more items menu)

Figure 8 - Clicking on the class to show its buds

1. INTRODUCTION

Figure 9 - After clicking on the inheritance buds

With the developer having an idea of the inheritance tree of figures in the
project, he chooses to expand the AbstractFigure class. After double-
clicking to see all public methods, the developer removes some methods irre-
levant to his task (manipulating figures), and examines the remaining me-
thods to select one for expansion. Deciding that the
addFigureChangeListener method is part of the general framework for
changing figures, the developer decides to expand it.

The developer is presented with the Figure lo, which shows the implementa-
tion of the method. After finding the implementation relevant, the developer
will want to continue with the original plan of finding the manipulators of
figures. In this case, the developer will want to find a caller of
addFigureChangeListener. To do this, the developer collapses the
AbstractFigure class and clicks the caller handle for the method in the inter-
face (Figure 11). Relo is now acting as both a call-hierarchy browser and an
inheritance-hierarchy browser.

Once presented with Figure 11, the developer can easily select the relevant
classes that manipulate figures, and does not have to worry about the con-
necting inheritance, containment, and method calls relationships. As the de-
veloper continues with his task, he can go on to build a larger visualization
and choose to refine the generated diagram at every step, so that the visuali-
zation helps in his understanding of the codebase.

1. INTRODUCTION

Figure lo - Expanding the class AbstractFigure and the method
addFigureChangeListener

1. INTRODUCTION

Figure 11 - Asking for callers of addFigureChangeListener

1.5. SCENARIOS
There are a number of scenarios that Relo and Strata can be especially useful
for:

1. Concrete Context Representation: As a developer performs a task he
often needs to explore code. During this time a Relo diagram can represent
his mental model and supplement his short-term memory, by automatical-
ly creating and updating the relevant visualization of the code. At the same
time, a Strata diagram can help a developer situate in the codebase as he
explores it. The developer can be shown the modules being explored di-
rectly, those modules that depend on it, as well as those modules that are
used by the current modules.

2. Lost in Code: As the developer explores code in a traditional IDE, he can
often get lost in the code base. Relo's capability of linking to the IDE to
track navigation in the background can be used if the developer gets lost or
forgets an important relationship that was traversed. The developer can
ask Relo to launch a visualization based on recent navigation history. The

1. INTRODUCTION

generated diagram can help the developer see how recently visited code
was related and can further suggest next steps accomplishing their tasks.

3. Connecting Elements: Developers can get into situations when they
need to find and understand how two or three code elements are con-
nected. The large number of relationships between these code elements
means that following them to see how the items are connected also re-
quires remembering the various relationships traversed and further in-
volves a number of wrong connection hypotheses. Using a visualization to
help keep track of the visited nodes and relationships can help assist in
remembering explored parts. Alternatively, Relo provides an autobrowse
capability which tries to connect the nodes given to it by the user.

4. Communication: Relo diagrams can be rapidly created, and produce
documentation that is directly linked to the code. Such diagrams can be
used as structured documentation [62] for communicating between team
members, while at the same time can provide the benefits of having an ac-
curate diagrammatic representation of the code. A common scenario for
this is when a task is given to a developer, his mentor can create a diagram
of the parts of the code that might be relevant along with comments and
send the diagram to the developer for use in accomplishing his task. Such
diagrams are a visual and more intuitive form of concern graphs [68]
which have been shown to increase developer productivity.

5. Impact Analysis: Overview diagrams provided with Strata can be used
by developers to gain a high-level understanding of components in a
project. When a developer has a need for modifying a set of 4-5 classes
that are involved in a task, he would also need to understand the impact of
any change, i.e. (a) which classes build on the original set of classes and
would feel the impact of any functionality change, or (b) which classes do
the original set of classes depend on. For example, a developer modifying
the encoding of identifiers in an application, will want to know which all
classes depend on it and therefore how much of the codebase will need to
retested to verify a correct implementation. While non-visualization ap-
proaches can provide this information, showing a layered architecture
view will more succinctly show the effect of the various nodes in the
formed dependency.

1.6. CONTRIBUTIONS
This thesis shows that understanding for software developers can be
effectively supported by interactive exploration using focused dia-
grams of familiar representations of code. These ideas have been
combined to build two tools: Strata, which displays using the popular layered

1. INTRODUCTION

architectural diagrams, and Relo, which is based on UML class diagrams. In
particular, this work has a number of contributions:

* An approach and tools for allowing developers to have an intuitive con-
trolled exploration of relevant elements for a development task by provid-
ing support for managing the amount and presentation of information to
the developer based on his/her interaction with code elements.

* An approach for building visualizations allowing users to work with their
current suite of tools while still being linked to a diagrammatic represen-
tation of their current or past exploration(s).

* A visualization technique and implementation to show multiple relation-
ship types and code elements in an intuitive manner.

* A lightweight approach and tool to provide developers a high level under-
standing of inter-module and intra-module dependencies, i.e. to easily
understand the various components that affect and build on a current
module, and to easily understand the various components involved in the
current module respectively.

* A survey of developers' experiences on the effectiveness of various docu-
mentation techniques.

* A survey of the amount of dependency cycles in high-level modules of
popular publically available projects.

* A qualitative evaluation of (Strata) a light-weight tool for showing over-
view diagrams of modules by users on their own projects.

* An in-depth evaluation consisted of feedback from users in the field and
controlled quantitative and qualitative of (Relo) a static visualization
based program comprehension tool providing support for large codebas-
es.

1.7. OUTLINE
This thesis starts with a brief overview of previous work that Strata and Relo
have been informed from in Section 2. Results of a survey of developers expe-
riences on the effectiveness of various documentation techniques are then
presented (section 3). This thesis then presents the main idea of Strata (sec-
tion 4) and Relo (section 5). The implementation of the tools is presented in
Section 6, and evaluation in Section 7. We finally discuss future work in Sec-
tion 8.

2. PREVIOUS WORK

A significant amount of work has been done in helping developers work with
and understand large codebases. While a deep understanding of how devel-
opers work with and understand code has evolved, there has only been li-
mited usage of program comprehension tools. Below we describe work on
understanding developers' behavior and cover previous tools helping devel-
opers either gain an overview or deeply explore their codebases. We also de-
scribe other tools that have been built to help developers work with large
projects

2.1. DEVELOPER BEHAVIOR

Ethnographic studies of developers' behaviors have shown this fact program
comprehension to be an important and large task. However, partially because
comprehension is often a secondary task, studies measuring it offer varying
reports of their degree of importance for developers. Corbi reasoned that
more than half of the effort in accomplishing a task for the programmer is in
understanding the system [20]. Studies by Davison et al. have shown new
project members spending 6o%-8o% of their time understanding code, with
the number dropping at most down to a low of 20% as the developers gain
experience in the code that they are working with [22]. Another study by
Singer et al. found developers spending over 25% of their time either search-
ing for or looking at code [76]. In a recent survey of 427 developers at Micro-
soft, conducted by Cherubini et al. [18], 95% agreed that understanding exist-
ing code is an important part of their job function. Further, over 65% indi-
cated understanding existing code once or more times a day (with over 25%
indicating understanding multiple times a day). Another study of 157 devel-

2. PREVIOUS WORK

opers at Microsoft by LaToza et al. [49] found that developers spent roughly
equal amounts of time understanding code as other tasks such as designing,
unit testing, and writing. On the other side a study by Perry et al. did find
code inspection to only take 5% of developer time [6o], though the number
can be possibly explained because the study required developers to self-
report their current task and program understanding typically is secondary to
other coding tasks.

2.1.1 Understanding Models

Studies over the last twenty plus year of developer's understanding code have
created a number of theories about the strategies used by developers, during
the understanding process, and the developer's mental model, i.e. their men-
tal representation of the code [23][88].

Developers typically take one of two strategies, using a systematic strategy or
an opportunistic one [54]. A systematic strategy involves the developer going
through the code in detail, tracing both control-flow and data-flow abstrac-
tions, while building an accurate model of the program. An opportunistic
strategy in contrast is used more often by experienced developers in large
projects and involves users focusing only on the code elements relating to the
task at the cost of being more error prone. Most tools present complete mod-
els of the code and therefore support systematic strategies. In contrast, Relo
and Strata also support opportunistic strategies by allowing developers mul-
tiple navigation steps from shown diagram to obtain diagrams focused on the
developer's task.

Systematic and opportunistic code comprehension strategies typically result
in a bottom-up model of the code being built by the developer. This involves
the developer reading code statements and mentally grouping them in to
higher level abstractions [73][74]. This building of developer's mental model
has been found by Pennington [64] to happen in two phases: firstly by build-
ing a program model consisting of control-flow abstractions, and then by
building a situation model consisting of data-flow abstractions and functional
abstractions (program goal hierarchy). By supporting both opportunistic and
systematic strategies, Relo and Strata can be said to mirror the developer's
mental model and therefore support these comprehension processes.

In contrast to bottom-up building of a mental-model, developers also use a
top-down strategy for understanding code [14]. This top-down strategy is
used by developers either when they are familiar with a domain or are trying
to find a starting point for their code exploration. This process involves them
starting by building a high-level hypothesis, then verifying the hypothesis by
looking for familiar structures, and using these verifications to form subsidi-
ary hypotheses. High-level views of Strata support overviews of the code and
therefore enable many types of such high-level hypotheses verification by de-
velopers.

2. PREVIOUS WORK

Other theories of comprehension provide for processes that combine the
above strategies. Letovsky [5o] has proposed that developer's model is built
up in conjunction with a knowledge base representing the developer's exper-
tise and background, with the process of building the mental model involving
three types of hypotheses: why, how, and what. von Mayrhauser added that a
developer likely builds not only bottom-up models (program model and sit-
uation model) but also a top-down domain model while understanding [95].
Again, Relo and Strata provide support for opportunistic exploration and
therefore ease in developer's building mental models of their code. A detailed
categorization of these opportunistic questions is done by Sillito et al. [78]
and has been used in evaluating the effectiveness of Relo as described in
Chapter 7.

2.1.2 Use ofSketching

Relo and Strata use diagrams to bring together separated pieces of functio-
nality into a single focused location. For these diagrams to be easy and intui-
tive to use, they need to resemble diagrams commonly sketched by develop-
ers. Cherubini et al. [18] studied such sketches and found that developers
most commonly used boxes-and-arrows diagrams, representing entities and
the relationship between them. Diagrams were often used to help keep devel-
opers oriented in the big picture. Boxes in diagrams were labeled with text,
with the size of the box sometimes encoding the importance or the size of the
entity being represented. Boxes were sometimes grouped into higher-order
structures using large boxes or dividing lines. Boxes were also sometimes
placed next to each other in lieu of arrows. Relationships between entities
were usually represented with arrows. They were mostly directed and gener-
ally pointed rightward or downward (though some drawing types had differ-
ent conventions like class inheritance where arrows were pointed upwards).

Relo and Strata support these ideas. They allow developers to explore
through box-and-arrow diagrams with code elements placed next to each
other to minimize arrows. Relo and Strata's approach of supporting diagram
types support other attributes as found by Cherubini et al., also allows for ex-
tensions to such as iconic representations for entities (such as database via
cylinder, OLAP via data cube, computer via CPU tower and person via a stick
figure), circles for states in state-transition diagrams, and other entities such
as processes, hardware devices, and UI screens. The other property found in
the study that can be investigated for use in Relo would be for the usage of
numberings to indicate sequence in diagrams. The study did call for tools like
Relo which attempted to integrate reverse-engineering with support for light-
weight sketching of the relevant parts of the code. Relo provides this by creat-
ing a model of the code in a database, and allowing users for exploring the
model either directly in Relo or in the IDE with the explored items showing in
Relo.

2. PREVIOUS WORK

Strata focuses on the higher level views when compared to Relo. It provides
support for showing modules in the underlying hierarchical structures from
the codebase. While not focusing on the more popular class-diagrams, it fo-
cuses on providing the connection to the big picture view of the project. In
providing high-level views, Strata also aggregates modules and dependencies
to present them to users in an organized manner.

2.1.3 Working with Concerns

In software development concerns are any matter of interest in a software
system. They are often synonymous with features or behaviors. Containment
based modularization represents one type of concerns, with concerns also
potentially cutting across a number of modules. Examples of concerns in-
clude performance, logging and data integrity. A key principle of software
engineering has been the separation of concerns - the idea of splitting a sys-
tem into sub-components that have as little as possible overlap in functionali-
ty. Separation of concerns eases managing a system since it allows for focus-
ing on particular sub-parts of the overall system. Relo and Strata diagrams
can thus be said to be visualization of particular types of concerns.

The potential of effectively working with views of concerns has been long ac-
knowledged. Initial work on concerns focused on representing con-
cerns [35][91] and providing schemas for their interactions [891][36]. A con-
crete instantiation of concerns on code, called Concern Graphs [68] consist of
code elements connected by few types of relationships (calls, reads, writes,
checks, declares etc.). Concern graphs are graphs which are typically dis-
played to users as trees. When created ahead of time and provided to devel-
opers concern graphs have been shown effective in representing the relevant
portions of code for a code maintenance task. Such concern definition will
also be helpful for usage within Relo and Strata.

The main limitation of these techniques is in the effort required in creating
the concerns. Approaches for building concern graphs have focused on min-
ing navigation events and using various learning techniques towards infer-
ring the graphs [55][67]. In contrast, Relo and Strata try to get such informa-
tion directly from users by providing an interactive exploratory interface. Us-
ing an interactive interface results in the diagram representing the develop-
ers' task, and support for multiple tasks requires just having multiple dia-
grams, in contrast techniques mining developers' navigation events have li-
mitations when needing to account for developers switching tasks. Further,
mining a developer's navigation events for creating concerns graphs can only
be helpful for subsequent tasks, and requires interfaces for retrieving indexed
concerns.

Relo and Strata visualizations can be said to be interactive diagrammatic re-
presentations of concern graphs, in that they only show a manageable part of
the code and do not include irrelevant details, allowing a developer to focus

2. PREVIOUS WORK

on the important relationships. By providing an interface to help developers
build concern graphs Relo and Strata leverage these strengths of Concern
Graphs. When examining details Relo uses a relationship model similar to
that used by concern graphs. For higher-level views Strata uses graphs con-
sisting of nodes that represent multiple code elements and the different rela-
tionships being aggregated into dependencies with a count representing the
strength of the dependencies as the number of relationships - this approach
of aggregation of dependencies has been shown effective for high-level
views [711].

2.2. OVERVEW TOOLS

A number of approaches have tried to provide high-level views of software
projects. These projects try to either help situate a developer in an artificial
surrounding, provide statistical information to developers, or focus on help-
ing developers understand the underlying architecture of the codebase.
Among these projects Strata focuses on providing a diagram made from
commonly used principles in developers sketches and provides for a
lightweight interaction for developers to focus in on parts of the project that
they need to examine.

SOFTWARE TERRAIN MAPS

Figure 12 shows Software Terrain Maps [25] which are created automatically
for developers and consist of hexagonal tiles each representing a fixed num-
ber of lines of code. Terrain maps are laid in a manner so as to be stable as
the code evolves and therefore are useful in situating developers as they ac-
complish their tasks. However, such a tool has a limited benefit in helping
developers understand and examine code. Looking at the diagram does not
provide any information on the major modules of the codebase and how they
are connected. In contrast, users of Strata are able to quickly identify mod-
ules that they need to ignore and remove from a diagram or need to examine
in more detail. Strata diagrams are also more intuitive to developers and are
the type that developers would sketch themselves.

2. PREVIOUS WORK

Figure 12 - Visualization of Software Terrain Maps

SEESOFT

The SeeSoft project [29], like Strata, also tries to visually represent large
amount of code for exploration. It however uses a line-based visualization
that maps each line of source code into a thin row on the screen with files in

2. PREVIOUS WORK

the system representing a column on the screen (see Figure 13). While the
visualization is helpful in presenting statistical information like the age of
documents, the visualization is not able to show relational information such
as code dependencies. Relo and Strata both focus on showing these relation-
ships among code elements.

Figure 13 - The SeeSoft Visualization

DALI, ARMIN, AND DEREF

Approaches which try to help developers understand the code by providing
an overview of the system have typically required expert input to present us-
ers with useful results. The Dali workbench [43] provides for automatic ex-
traction of dependencies but expects users to provide define modules and
their contents which are used for building views. While very useful, the work-
bench is not able to provide a useful view unless users provide to module de-

2. PREVIOUS WORK

scriptions. The ARMIN project [13] works similarly to Dali and goes further
in easing the module definition process but still requires developers to pro-
vide scripts to perform the modularization. Figure 14 shows the Armin dis-
play on initial extraction of dependencies, with Figure 15 showing the view
after a short script is run.

ý mm*W

Figure 14 - Armin view on loading dependencies

2. PREVIOUS WORK

m~ntnhco,4f~tA4ftt# *~%%

2--· -~··~

Tevr nA

w o

,- -ageouP mad

W-I- pi "-
...... 1 *~ •ill ••l

aow ***-f*

±1 ±1:

PPa* 4Yg~n W'Lw
PwC~rp ragur*m

:enlC~~

Figure 15 - Armin view after running a short script

The DEREF environment [93] takes things a step further (as shown in Figure
16) by showing modules in a scalable layered view as opposed to the radial
layout used by Dali and Armin. Deref however also requires manual input
from users to provide module definitions.

L-7--7 =tý ý, .- -__

~K·ce·~~;a~-*·o·r~.lbrr~~4.~*ai~.r*~~aa ~r·x~a*mi~aw*b~-ra*irrvriar~~m6~

4 $----------------- ·--; ----- ---- -·-· ·------------ -------- ------------------------------ ----

'8~· :: i .i.i··-- ··-*·:.

i'i~i~4' ~iC '7""1 ~ v,·rrr·F``
F

!

I i

2. PREVIOUS WORK

Figure 16 - Layered layout provided by Deref

In contrast to these systems Strata provides a fully automated approach pro-
viding layering based on the known package or directory structure, and orga-
nizes the modules into a layered view. By being completely automated Stra-
ta's results are more lightweight for users and they can more easily get high-
level views of the project. Strata's defaults in module contents and layering
can be changed by the user to provide accurate diagrams when such informa-
tion is available. Strata also provides options to focus developers on the un-
expected dependencies going upwards in a project, and provides exploration
support so that developers can easily get architectural information for any
part of the system that they are interested in.

LDM

An approach that has been effective in being automated has not been visuali-
zation related. LDM [71] consists of a tool that extracts dependencies and
shows them without user-intervention in a matrix form. This approach
(shown in Figure 17) while scalable requires user training to make sense of
the display. Strata thus tries to bring the benefits of this approach in a more
intuitive 'box-and-arrow' that is more easily grasped, and also provides explo-
ration support needed for easily creating multiple diagrams.

12IIEm
~I

jlmasm, sam~rrJ~i~i di~isiii~i~j~jlr~ri

2. PREVIOUS WORK

While LDM does present a view of the matrix result in a diagrammatic repre-
sentation (shown in Figure 18), their diagrammatic view has a number of li-
mitations, such as showing modules with cyclic dependencies in a manner
similar to modules having no dependencies amongst each other. For example,
in the figure, inside the ant module the modules util, types, and filter, are
have a cyclic dependency - something that is only noticeable when looking at
the matrix view. Strata differentiates such kinds of dependencies and further
provides an interface for developers to easily explore dependencies by asking
it to open modules depending on the current module.

Strata is inspired from the scalability of the matrix representation of LDM.
Strata further uses partitioning algorithms similar to LDM, and handles
cycles in a similar manner as ordered in LDM's matrix representaiton.

$roit

2

0
0
iLM

S" IN

+2

2

1223I:!43i

; I3 4

9 7 3152 17. 29

3 3 1 55 1 1 4 13 12

514 20 10 309 4 '12 3 6 71 '13

41 1T

4

5-

Figure 17 - LDM on an old version of the Ant project

Ti

I

13

2. PREVIOUS WORK

Figure 18 - A layered view by LDM of the ant project

2.3. EXPLORATION TOOLS

Approaches to user-directed exploration of large projects have typically done
so by using multiple distinct views each supporting only a single predeter-
mined relationship, like inheritance or method-call hierarchy (see Figure 19).
Such views occur commonly as tree widgets in most IDE's, but result in a loss
of context when attempting to work with more than one relationship. Devel-
opers using more than one tree view need to keep track of how the views are
connected. For example, considering the exploration session in the previous
section, will result in a traditional IDE looking like Figure 19. As happens of-
ten with IDE's, the developer ends up having used a number of tree views -
the search view, the package explorer, the inheritance hierarchy view, and the
call hierarchy view - and therefore needs to remember at what point he left
interacting with one view and switched to the next. The same problem hap-
pens also with the editors, which are often all stacked as tabs, making it im-
possible to see how code elements are connected. To overcome the loss of
context like Relo recent tools have tried to bring the different relationships
together in a single view. Below we describe such work and discuss their as-
sistance in helping developers explore and understand code.

2. PREVIOUS WORK

Fie Edi Source Refact- Nalvate Ser

13 PadageEvpor -ee. 0

+ ~j CH.fa.draw.applet
" ,f CH.Wfadraw.applicaion
"+ . CH,fa.draw,conarb
- 3 CH Oa.dras.figures

+ Abstraclumneecoraion"eja
+ ArrowTp.java
+ A, ttrbutesgure lava
+ BorderDecorator.java
+ Ji BordeTod.java
+ c hopElipseConnector.a-a
+ ConsretedTextTod.java
+ ElbowCwnetebvjava
* L Elboviade.java
+ •, Ekose•I•re.ava
+ j FigureAttrutes.jva
+ J Foawn leande.java
+ a GroupCormand.java
+ ~J GroupFIge.java
+ J GroupHande.java
* i ImageFaigre.Java
+ l sertmageCovmman d.java
+ Ui LweCoecton.ava
+ J LUeDecoraton.java
S LneFpue.java
*+• NunbsrTextFigue.java

+ PolyLteCmretr.java
+ ii PolyKeFigue.java
+ DL PoyMW dlae.dava
+ M JyLkeLoator.java
* + RadusHan-de.;ava
+ J• RectangvleFCR e.ava
+ L RoundRectanePFgure.jave
+ S crbb*eTlod.iava

P

- Outline

Proje Run Window Hei

j Esl 9 eV-bre pava .1. Pattelbrary.jva ib Aktrelree.ejva jý bstract~pre.Java i67gwe.java " 4

paokage CH.ifa.draw.figures;

'import java.awt.;,

* A.n ellipse figurte.

.... , r URRENT VEPSICN$

Ipublic olass EllipseFigure extends AttributeFigure (

4CaIl MWarchy 0 seach
eeebes cg addFueanusengwO ehangetedenery -in worksp fopee -638 oacurrances in projedt 3HiotDraw
- edFigur geteener(F g ireChav A I Cd

+ 0 addToCont*aw(FaureChangeuot 76 aigrhandho m X -^ +
S caaecttat(Comector) -CGO.. 4 CH. a draw e a src - 3IotDraw

* 0 addNode(Figure) - CH.fa.draw.ut + CH.fa.drawappkcatnr - sc - otDraw
+ m read0bjet(ObfectnpStream)- + r CH.fa.draw.contr b- src - btDraw
* canmctEnd(Connectaor) - ifa.d + CH.fa.draw.igures -src - 3otDraw
* g read(StorableInput)- CH.faadraw, v + CH .fadraw ra mewrk- src - otDraw

4> 4 : + ;$ CH.fa.draw.samplesjavdraw - src - lottDraw

Problera Dedabin Proress Console

t- rsut
e

Ai

-0 sgDefaultAttlbutes

RosadKectangle fasttrbtjP yoeFigure iSgoI TexagFigure ARundRtgureruegrer

CH.Wa.&aw.fiue.AttrbteAFs Ire - IotDraw/src 39 of 41M

Figure 19 - Results of the exploration session shown in the previous section with the
Eclipse IDE

2.3.1 Tree based approaches

The main approach for preventing the loss of context using traditional non-
graphical widgets is JQuery [40]. This approach brings the multiple relation-
ships together in a single tree. It allows developers to perform queries on
nodes, in an as-needed manner, and then uses query results to populate
children of the node. This approach, as shown in Figure 20, thus keeps track
of the developer's exploration in the tree view. However, difficulties in using
JQuery come from having the tree view's children relation represent different
kinds of relationships at different levels: for some parts of the tree, the child-
ren may represent containment, but for other parts, they may represent me-
thod calls. In Figure 20 looking at the top-level makes it seem apparent that
the user is looking at the contents of the figures package and that the Figure
interface shown a level inside is part of this package. However, examining the
codebase shows this to not be true, and that the Figure interface has been
very intentionally been put in a framework package. To overcome this Relo
shows the different relationships between elements in different ways using
diagrammatic constraints such as visual nesting for containment, or left-to-
right ordering for method calls.

0 Jdv -EtipsPjggir jdv

4

2. PREVIOUS WORK

Figure 20 -Results of the exploration session shown in the previous sections with
JQuery

2.3.2 Visualization based approaches

Visualization approaches have typically focused on presentation at the ex-
pense of exploration capabilities. While Reiss' FIELD [65] system (shown in
Figure 21 and Figure 22) supported user-directed exploration using graphical
widgets its benefits were limited as exploration would only be on a single re-
lationship.

2. PREVIOUS WORK

Io flowview: auto

Flow Seiection play de

MEMQ

Figure 21 - The call graph viewer of Field

2. PREVIOUS WORK

-1 rchrnmien! rmanaae

Figure 22 - Class hierarchy browser of Field

SHriMP Views [65] supports comprehension by using fisheye-lens distortion
for zooming in on targeted pieces of code (see Figure 23). It allows users to
select relevant portions and zoom in on information. Double-clicking on a
package of interest will open-up the package, zoom-in on it, and show mem-
bers of the package. However, user-directed expansion in Shrimp's happens
only along the containment axis - users cannot select a code artifact of inter-
est and choose to expand the visualization only across a non-containment
relation. Selecting a method in Shrimp and asking it to show the method's
being called, results in not only the called methods being shown but also
every sibling of every method (and every sibling of every method container).
This approach of showing all siblings even when interested in a particular
relation tends to overwhelm users [85]. In contrast Relo starts with a single
element and allows the user to direct the expansion (and contraction) of the
diagram on important parts by explicitly choosing relationships. While
Shrimp does provide capabilities for filtering relationships and nodes, these
filters are applied centrally in a global dialog, and are not supported as part of
the user's interaction with the visualization to support his exploration. Thus,
it is hard to get the system to only show inheritance for some nodes in the
visualization and on method calls in other parts.

EMPLOYEERANK II EMPLOYEE::systemCost(SYS"

- _Ei
Z/

Pvaasiaa3lT

2. PREVIOUS WORK

8 ket C IasM t Send c ect sn ma ndLW tde

IPackage Exploer I Node F it

* p rrd-ecps [cvs.soaceforge.net
+ pmdeclipse-,md
+ A uSSOvA (cvs.souwcefb•.rret
* >Shrp [c•s.cs.uuvc.ca
+ ý TestCreole

< 4

Fe Ede Noide Nagat" Took H* QlckvA

I 4A Ea v 0 fP = 16 ' 5= 7?

K$ ýbhaoj

eWachy cotws LaPaat oAboe Node (fod) a NWWiha s warfy

O n ri

OECj b t-erh
Fi1 2 PaokawpRod

F" atasA I Fat

kcc Fiter

) Geoaps

O E I eded by

OF --E- has paraeter type

12[1 has returntype

OI]i eplaetedby

1 W rterIao edeeded by

O i of type

- cal, callsstaicalyGroW

12 - caass
12-l calls satiallay

Figure 23 - Part of an exploration session with SHriMP

!e" Ii PI f In
i `

n 04' L;
:1': e3 i

a Blit~ -

2. PREVIOUS WORK

Another visualization approach, the TkSee Visualizer [96] provides support
for users to perform queries to build a visualization for graphical exploration,
and displays relationships using a radial layout (see Figure 24). The TkSee
Visualizer however limits users' ability to focus on relevant parts of the code
by not allowing users to zoom in, zoom out, or remove irrelevant items from
the visualization. It requires users to specify properties for queries in a dialog
box outside the visualization for adding items, instead of allowing the users to
leverage contextual information to browse towards the information need as
shown to be needed by users [89]. Instead Relo performs these queries auto-
matically based on the developer's selection of a code element and the devel-
oper's selection of an appropriate relationship to extend the visualization.

Figure 24 - Part of an exploration session with the TkSee Visualizer

Beyond improving on visualization approaches by providing exploration ca-
pabilities, Relo uses visual constraints to present nodes in expected locations.
These generated visualizations are similar to sketches made by developers
and have been proposed in studies examining navigation behaviors of pro-
grammers [451].

2.3.3 Discussion

Compared to other exploration tools, Relo takes a hybrid approach, leverag-
ing the strengths of both tree based and visualization based approaches. Relo
user-directedness reduces cognitive overhead, and uses a graph-based view

2. PREVIOUS WORK

with automatic layout placing nodes and children in predictable locations.
Further, Relo uses direct-manipulation browsing

2.4. TOOLS FOR LARGE PROJECTS

A number of research projects have attempted at building tools for working
with large software projects. Like Relo and Strata these tools work by helping
the developer focus on relevant parts of the code. Since many of these ap-
proaches provide benefits in ways orthogonal to Relo and Strata, they can be
integrated for further helping developers work with large projects.

HIPIKAT

The Hipikat project [21] creates a full-text index of source code, the docu-
mentation, bug reports, mailing lists, newsgroup articles, and version logs.
Once this index is created, developers can use the code as a starting point to
find relevant documents from any of these resources. Hipikat makes it easy
for developers to find documents and therefore useful information concern-
ing the code, so that it can be examine and for the developers task. In contrast
Relo and Strata works by trying to exploit the structure in the code. Hipikat
results can be used with code artificats shown in Relo and Strata to provide
more useful directions to users.

LASSIE

Lassie [24] is a knowledge based system that allows the capture of the varying
relationships, so that developers can ask the system semantic questions.
While Lassie's knowledge base has the overhead of requiring the knowledge
to be acquired into the system to be useful, it does provide a higher-level un-
derstanding to users. Relo and Strata instead attempts to allow the developer
to explore the relationships already available from the code, so that develop-
ers can make such semantic decisions themselves. Relo and Strata sessions
can be considered as interesting starting point for building a knowledge base
just-in-time for a project.

MYLAR

Mylar [44] is built as an integration into the Eclipse IDE (shown in Figure 25)
and uses developers navigation events to develop a model of what the devel-
oper might be currently interested in. This model of the developers interest
allows Mylar to hide items not relevant to the developer's current. Such sys-
tems, which depend on mining navigation events, like the concern leaning
tools, have limitations in supporting multiple concurrent tasks. While Mylar
does provide a task view, users need to remember to change update the view
when switching from one task to another. Relo and Strata visualizations in-
stead explicitly represent developer's tasks, and supporting multiple tasks by

2. PREVIOUS WORK

allowing developers to create multiple visualizations. While Mylar does help
in reducing the amount of shown information to users, it has the further limi-
tations that developers still need to remember how the shown code elements
are related or connected for the current task.

Id d Bsi Ribnile l.j a - c ips D

Ele E&3 apm Refactr Wuuate Setih Nod± &m ~Wkio
L-1 IvG "Worwo Sau"-

-~a Xrtborcd

0 RIkbonGder~crioly
orgvnet substance. ribbon. gleryoob

S{ ThemeReslzablelcona
S ThemeResIzablekcon

e, getlcon~idthO
m p9kd*(GrqI*ksM, doule, dc

~ pak*con(Componet Graph
m pkt~vhepe(GrMks2D, 9sape, C

1Bi org0jvnet~substancenribbon~ui

rutdsoniponaets

-i k stdllMonipornwt)

Qek ctborPerforwd(AcdtorEY

ia runo
(L ~aiJI(Componren)

-f SuetncCortrobwPade
d i test ribbon
S- [j NewCheckRbbonjava

- EC. NewCheckRibbon
n get'hune8and

scrollUpButton.setPreferredSize(new
buttonHeight));

p? pecial case itf avail,1Jle height
expandActionButton.setPreferredSizei

totalButtonHeight - 2 * butt
ribbonGallery.getButtonStrip() .setBc

buttonVidth, totalButtonHeig

for (int i = 0; 1 < ribbonGallery.ge
JGalleryButton currButton = ribt
currButton.setVisible (false);

see If need to 'tart from the iaz
int currIndex = firstButtonIndex;
int startX = borderInsets.left;
if (currIndex < 0) {

startX = buttonX;
currIndex - lastButtonIndex;

/ go back
while (currIndex >= 0) {

firstButtonIndex - currIndex
JGalleryButton currButton =

.getButtonAt(currInd

S P3 Imp wi cMarest ekimn

----------- --------- --------------- --
2 * 2 M - li4M

Figure 25 - Screenshot of Mylar

JAZZ

The Jazz project [39] (shown in Figure 26) provides another approach to
helping developers in large projects by supporting awareness of team mem-
bers activities and thereby enhancing collaboration in teams. Online team
members are displayed with their pictures and status (in tooltips). Integrated
chat views are anchored to lines in the code editor, and colored icons on files
show changes by team members. This approach of increasing collaboration
between teams by providing communications functionality directly in the IDE

II

-:-;---: L

I . ,~~ --·····-I--·-··- ·--·· ····-- ~·i~-···; '·~;;·; ;;~

----- ----
-- -- i----------i---------

-i

2. PREVIOUS WORK

is an approach orthogonal to the directions chosen by Relo and Strata, and
can be provided by them.

E&l Edi 2are seactor Na-igate serch roqsct &un PHPUApache Mendowi tp

SPackage Explorer x

- ActiorPane
- cn. rbm.n research. cue.acti

S + i Aciontabdejava
+ • Acontist.ava
+ A ctionLogaeva

t ActhonPenivao
+ 4j A(ctonP Itemrnaa
+ r iewC sjava

+ Flex kLayout.)ara
+ ~Urt C)l•,

: RE. P- oramFilesa

ActionnPce/com/bmjrescarc
saar (1O:12AM EST, Dec15

C u 1JJohr,(l10:12 AM E5T, Dec 151
S'L-TF (10;12 AM EST, DCL 15j

Steve (10:12 AM E5T Dec 1

E7J

I ActionPane.iava X

1package com. ibm. research. cue. actionpane:

g.eclipse..ut.widgete.*:

4 . d c .ec1ise.sut.SUr:
SimL. g.eclipse.svt.events.7;
6 Ouport org.eclipse.svt. layout.':
7 imnport org, clipoc.out .cuatom. StzkLayuTL;

9ii va.util.Vector;
10 Inpo va.utii. Hashtable;
Ll

13 * Ac icnPane a version of LindLws XP's context sensitive tasx
14 * pane (a special pane that appears whenever you open a folder
15 * that shows you a bunch of r-iht- click nenu itens, links to ot
10 = pactO-, ai u nealt_•qt Cnht th Bryan CWK (Cl vacon(as of 3:22 FM EDT,

hicudactonpanc1ActbnPen'iavY Pi~t e 1U,,."

03) e View this person's ective hies
03) o Make a fast vew rcr Bryan Crk

773 * Li Te NaCe a ph00 Cal U BrnClark
24 CUI, IBA Research 2

2 6 uhXlicv Ulw Aic tunPvuw wxmtedw Cumpuni-' Isaac:

27 bworI1
28 /flags for rep-icateSettingq ()...

t comhbreseach.cue.ac

S •Fr TrATF TTFM ,
0 SREPLICATE LAEEL :

DES DFAULT _ERTICA
SL -EFAUL I iORIZO
sDEFAULT_SPACIN(

verticlaroin int
S_hcrizontaelargn : i

K _spacingMargin: int
IllerfrdrIue Ci•Up

hidedr: Hachtable
.

_ .lc - Ivuu ,
Oct 233) laout:GrdLatout

> updateMarginsJ)

aeIret(A.tionPane

tonPane(Corpos
e5pacingMargn()
tHozorkzoalMagin

I m active (a of 5:31 PMEST Feb 26 04)
ng on ActinPaneIetem. ava

c a~~~.~

- 1 (
I lrrkra

suramne aac I-TeI souz j

Figure 26 - Screenshot of Jazz [391

2.5. DESIGN TOOLS

In contrast to Relo and Strata, traditional commercial design tools take a dif-
ferent approach for working with large projects. These tools like Rational
Rose [9], TogetherJ [lo], and Fujaba [4] provide reverse-engineering capabil-
ities and provide another kind of support for program comprehension. The
reverse engineering capabilities in such tools often create a single large dia-
gram that overwhelms users. The design tools are mostly helpful for develop-
ers who already understand the code, allowing them to create diagrams as
documentation and therefore providing them for subsequent developers. Re-
lo and Strata instead focuses on providing direct support for exploration and
other activities involved in the comprehension process. Models generated by
such design tools can potentially be leveraged by Relo and Strata for provid-
ing users with navigation suggestions and annotations to help developers un-
derstand code more effectively.

IJhn Stve

it

t
ZL

I

3. SURVEY OF
SOFTWARE IMMIGRANTS

Before building a tool to help developers understand code, we wanted to get
their feedback on the usefulness of various understanding solutions available
to them and the cases when they needed to use such help. In providing a tool
helpful to most current developers we are targeting experienced developers as
opposed to first time programmers. Such experienced developers who are
new to a project or are new to a part of a codebase are called software immi-
grants. Software immigrants have been previously studied by Sim and
Holt [75] and noticed patterns on the type and schedule of ramp-up tasks as
well as the impact of environment and administrative issues. With regards to
understanding code they noticed bottom-up comprehension strategies to be
more effective and that the lack of documentation effected developer's ramp-
up.

In order to inform the design of Relo and Strata, a survey was conducted of
software developers focusing on their comprehension experiences. Previous
research focused on the functionalities found and used in program compre-
hension tools [11], but there was a need for the usage of developers with re-
gards to their tasks. Since using various types of documentation often assist
in understanding code the survey also needed to examine which documenta-
tion techniques were used and wanted by developers when they looked at the
code. It was believe that the different between what was wanted and what was
used by developers would point towards capabilities that program compre-
hension tools should consider. This attempt is closer to the study of Robillard
et al. [66], though instead of focusing on comprehension strategies, the focus

3. SURVEY OF
SOFTWARE IMMIGRANTS

was to gain an insight on developer tasks when they looked at code so as to
ease developers in doing such tasks in a comprehension tool.

3.1. METHOD

Given the difficulty of getting a large number of immigrants looking at one
single project, we decided to study a number of open-source projects. Our
goal was to get developers' opinions on their experiences understanding the
open-source project's code. We therefore were looking for developers who
had deeper experience than just the public API of the project; developers who
had actually read at least part of the source code. Since we wanted to study
developers attempting to comprehend the project, we also wanted to exclude
the core developers of each project from participating in the survey, as they
would have designed and written the source (not software immigrants). We
did this by asking developer's to classify themselves into one of three catego-
ries (with regards to the project being surveyed): Core Developers, Examined
Internal Code, or API Users. We expect that core developers to be the com-
mitters on the project working on improving the code, and API users to be the
developers who use the codebase for their own projects and who likely did
not look at the codebase of the project being surveyed. We expect those who
marked themselves as having examined internal code to be the closest to
software immigrants.

To prevent any particular project bias, we selected two of the largest organi-
zations hosting and developing open-source projects (the Apache Software
Foundation and the Eclipse Foundation), and tried to choose the projects
with the largest number of developers using them. The projects were selected
based on the suggestions of a developer working with each organization. The
Apache projects were Ant, Struts, Geronimo, Cocoon, Xerces, Xalan, Tomcat,
Derby, Lucene, and Batik. The Eclipse projects were SWT / JFace / Work-
bench, GEF, EMF, RCP, JDT-Core, (Text) Editor Framework, and Platform.
After selecting the open source projects, we then created a short web survey
(shown in Figure 27) for each project.

Links to the surveys were then posted on project-specific mailing lists. Each
open source project typically has a developers' mailing list corresponding to
the core developers of the project, and a users' mailing list corresponding to
the clients of the project. Although we needed people ideally in between these
mailing lists - developers who were advanced clients but not (yet) core devel-
opers - it was suggested not to mail on both the lists since it could possibly
offend developers and be considered as spam. We therefore advertised our
survey on each users' mailing list with the expectation that the more expe-
rienced developers would also be reading the users' mailing lists (to help
people out). We collected survey results for a period of 1 week.

3. SURVEY OF
SoFTWARE IMMIGRANTS

Understanding Software: [Project Name]

1. [Required] What is the depth of your experience with this Project:
" Core Developers
O Examined Internal Code
O API Client Only
O Never saw the Source Code (this survey does not apply to you)

2. How would you rate the difficulty of understanding the code?
o Can't really say
o Very Hard
0

o Hard
0

o Like other projects
0
o Easy
0

o Very Easy

3. Are there any particular things that the code did which made it easy to
understand?
O Good Javadoc
O Good Examples
O Good Diagrams of code components
O Good Articles describing using code
E Good Articles describing code architecture
O Other: [

4. What would be the most beneficial things that you would suggest to add
to make the code easy to understand?
O More Javadoc
O More Examples
O More Diagrams of code components
O More Articles describing using code
E More Articles describing code architecture
O Other: [

5. Try remembering when you had to look at the source of this project.
What were you trying to do? ... And which parts did you find difficult to
understand?
r 1
[1
[1

6. Do you have any particular parts of the code (sets of classes, methods,
etc.) that you think are particularly hard to understand?
[1
r 1
1 1

7. Any other comments about the understandability of the code?
[1
[1
r 1

Figure 27 - Survey Questions

3. SURVEY OF
SOFTWARE IMMIGRANTS

3.2. RESULTS
The survey was filled 98 times, of which 20 entries were rejected since they
were all filled from the same originating IP address within a span of 4 mi-
nutes. Of the remaining 78 respondents, 11 claimed to be core developers, 50
had examined the internal code, 30 had only used the publicly available API's
and 2 had never seen the code4.

Table 1 shows the number of developers with each level of experience, and
their estimated difficulty of understanding the code in their project.

Table 1: Difficulty of understanding the project
Numbers organized by developers' varying experience with each project5

Developer Experience Very Easy Hard Very
with Project Easy Hard

API Client o 5 7 8 1

Examined Code 1 11 lo 13 2

Core Developer o 5 o 3 1

To gain an insight on what currently works when trying to understand code,
the survey asked developers for documentation techniques that they had
found helpful for understanding the code. Table 2 shows the results. Several
of the presented techniques were not directly listed in the survey, but were
entered by respondents under the 'other' field in the survey. The table shows
that, at least in Java projects (which were the only kind surveyed) the most
effective techniques currently used are Javadoc in the code, usage examples,
and articles describing the code.
Table 2: Users saying documentation technique was used effectively to assist in under-

standing project

Effective Documentation % saying used
Technique effectively 6

Javadoc 44.8%

4 The sum is more than 78 since we allowed developers to select more than one of the options.

5 The survey results in this table only could 58 of the 78 entries due to a bug in the survey software
used. The survey was actually conducted using a 9-point likert scale, but results in-between the values
from 5-point likert scale shown above were all mapped to the same entry in the database, i.e. the sur-
vey results for the value in between 'Very Easy' and 'Easy' was indistinguishable from the results for
the value in between 'Hard' and 'Very Hard'. These extra values were therefore discarded but are ex-
pected to show the same trends as above.

6 Percentage of 78 users. The sum is more than loo% since each user could select multiple techniques.

3. SURVEY OF
SOFTWARE IMMIGRANTS

Effective Documentation % saying used
Technique effectively 6

Examples 38.4%

Articles describing using code 37.2%

Articles describing code ar-
chitecture 179%

Code structure / standards /
architecture / design / pat- 14.1%
tern usage

Diagrams of code compo- 3.8%
nents

Mailing list 3.8%

Manual 1.3%

Test cases 1.3%

Next the survey asked what kinds of documentation developers wished they
had. Table 3 shows the five most-wanted kinds of documentation. The table
shows two main trends. One is that developers wanted more of all the docu-
mentation techniques that they were already finding useful, with the only ex-
ception being Javadoc - presumably because Javadoc is already used very
effectively in most projects (as shown earlier in Table 2). The other main
trend showed that two techniques are used significantly less than what was
wanted by developer in understanding the code. These two techniques are
articles describing the code architecture and diagrams of code components.
Apart from these trends, respondents also asked for better code design in the
projects and for improved FAQ's (frequently asked questions) with pointers
to examples.

Table 3: Comparing current and wanted techniques for all survey participants

Documentation Techniques Current Want

Articles describing code architecture 17.9% 44.9%

Articles describing using code 37.2% 33.3%

Diagrams of code components 3.8% 42.3%

Examples 38.5% 29.5%

3. SURVEY OF
SOFTrARE IMMIGRANTS

Documentation Techniques Current Want

Javadoc 44.9% 24.3%

Further examining the data behind the Table 3 tells us that there are two dif-
ferent groups of people with different needs. The API-Clients (the developers
who had not needed to look at the source code of the project) were asking
mostly for articles describing code usage; in other words, they were looking
for API usage articles. On the other hand, developers who had actually looked
at the code more often asked for articles describing the architecture and dia-
grams of the code. Results for software immigrants, the group that can most
benefit from a program comprehension tool, are shown in Table 4. The table
shows that software immigrants want diagrams to help them understand the
code, but are currently not getting them.

Table 4: For software immigrants (developers examining internal code)

Documentation Techniques Current Want

Articles describing code architecture 18.0% 46.o%

Articles describing using code 40.0% 26.o%

Diagrams of code components 0.0% 42.0%

Examples 44.0% 26.o%

Javadoc 44.0% 28.o%

3-3. TASKANALYSIS
In order to gain an understanding of the functionalities needed to best sup-
port understanding code, the survey also asked developers to describe a task
they were doing when they last looked at the source. While we would ideally
like the tasks to be typical tasks, since developers were drawing on their
memory probably some time after the event, these tasks are likely to
represent the memorable ones, tasks that caused the developer pain and
might benefit from tool support. From the free-form answers, we derived the
taxonomy shown in Table 5, along with how many developers indicated each
task. Based on answers, we split the table into two columns: one for the tasks
that required a static analysis of the code, and the other for those requiring a
run-time analysis. Items in the 'other' column refer to tasks that were too va-
gue to determine whether they needed static or dynamic results.

From the table, it seems that support for 20 of the given 30 tasks (over 66%)
can be provided by helping users explore static relationships in the code.

3. SURVEY OF
SOFTIWARE IMMIGRANTS

Table 5: Tasks done by user when they were examining the code

Task

1. Extend code 4

a. Decide - using provided mechanism or modifying code 2

b. Selecting appropriate class (to extend) 1

2. Fix bugs 2 3 3

a. Find cause of compile-time/run-time errors 2 2

b. Find cause of memory leak 1

c. Find workarounds

3. Understand "architecture" 3 4 5

a. Understand lifecycle of class 2

b. Understand threading 2

c. Understand concepts 1

d. Understand design intent 2

4. Understand code 11 3 6

a. Use API efficiently 1

b. Understand the "core" of project 2

c. Understand run-time trace (when not reflected in code structure) 3

d. Find & understand code for a task which is an example of what you want 3

e. Understand relationships between multiple classes 7

f. Understand how some functionality is implemented 4

g. Understand generated class 1

h. Understand roles of variables with 2-3 character names 1

Total 20 10 14

4. STRATA USER INTERFACE

The Strata interface provides for understanding code using traditional
layered architectural diagrams as a basis for an exploration interface. Layered
diagrams are mostly useful in gaining a high-level overview of a project or
part of a project. Such diagrams can help a developer understand the code
and target parts of the codebase to add, modify, and fix functionality.

The parts of the project under consideration by the developer are referred to
here as modules or components. The codebase is often further organized by
having modules consist of multiple sub-modules. These modules and sub-
modules form a basic part of a layered architecture. Ideally, these modules
have sharp, obvious boundaries, with the dependencies organizing the mod-
ules into layers such that each layer depends only on the layers below
it [72][90]. With such layered dependencies, functionality can be clearly and
easily be tracked to the underlying modules. Furthermore, such layered de-
pendencies increase the predictability of changes in the code and can limit
the impact of the changes. Thus, managing a potentially large number of
modules and reducing dependency cycles, often results in the modules being
organized as a layered architecture.

Given that large codebases need to be organized using a layered architecture,
Strata is designed to easily build such layered architecture diagrams. Effi-
ciently using the code to create such architectural diagrams is expected to
ease understanding of the system and promote project architecture re-
views [32]. However, having the architecture available and synchronized with
the application implementation has been difficult and costly [47]. Without
active intention to maintain the architecture, code boundaries decay. This
decay can happen because of developer error, rapidly approaching code deli-
very deadlines, or the presence of crosscutting concerns. An understanding of

4. STRATA USER INTERFACE

the current state of the codebase as different from the intended ideal version
can also provide an opportunity to improve module implementations.

Previous approaches to build these diagrams efficiently and automatically
have had limited success partially due to the difficulty in dealing with the de-
cayed boundaries - it is hard to build architectural diagrams from spaghetti
code. An approach is therefore needed to generate layered architectural dia-
grams even with such decayed boundaries. Since it might not be possible to
detect and know the important dependencies among spaghetti code, the ap-
proach will need to make good guesses in generating the architectural dia-
grams.

While good guesses can help easily create such layered architectural dia-
grams, these guesses might not be always right. In such cases, it is important
to provide lightweight interaction to modify the generated diagram. Having a
familiar interface with lightweight interactions to correct the diagrams allows
users to not need training in the tool. This lack of needed training is impor-
tant for supporting developers who might be trying to achieve some other
primary task when understanding an underlying codebase. In contrast, exist-
ing tools like Armin [13] and LDM [71] require expertise is using the tool to
obtain a valid architectural diagram.

Below we describe the requirements for building a familiar interface as
needed for Strata. We then describe the approach to analyzing the code to
create the diagram, along with the guesses made in such a process, and most
importantly the approach used to interact with such a diagram to correct
guesses made by the system. We then describe support for exploring with the
Strata interface and show support for annotations and creating new modules
for use within Strata.

4.1. APPEARANCE
Layered architectural diagrams examples can be seen in Figure 28 and Figure
29. The main features of such diagrams are used in shaping Strata's appear-
ance: The architectural diagrams consist of rectangular modules which are
shown in layers, as opposed to radial layouts such as those shown by some of
today's tools (for example in Figure 15). Members of a module are laid out in
a single row or column, and if there are too many items they are shown using
a grid like layout. Modules that build on other modules are shown in a layer
above the modules that they depend on. As can be seen in Figure 30, Strata
uses these points to provide users a diagram consistent with other diagrams
they have seen before.

c~Users

Wi componetfs (UIC)

UI Process Components (UIP)

SourcesSecs

Access
Layer

Common Search/Exposure Services

Content
Workfloy

& Mgt
Layer

Storage
Layer

Hosting Environments

Figure 28 - Typical layered architectures diagrams
(as in Figure 2)

4. STRATA USER INTERFACE

4. STRATA USER INTERFACE

ClH

A
Serv

Viw

Contro

Mldi

Data I
Base

Figure 29 - A Layered Architectural Diagram7

One feature of existing layered diagrams that Strata does not support is that
the shown arrows include both static and runtime dependencies. The runtime
dependencies are not shown primarily because it is hard to extract them in an
efficient manner. Once extracted, these runtime dependencies can be easily
added to the underlying dependencies for displaying a more accurate diagram
to the user.

7 Source: A typical architectural diagram used from one of Accenture's Project Documentation

hiiatutr Co]tpt

4. STRATA USER INTERFACE

if objectweb

org.

Figure 30 - Strata display of the jEdit project
(same as Figure 5)

In a given module organization, it might be the case that some modules are
much more important and larger than others. Using the directory structure,
the root of the codebase having some branches with very little code while oth-
er branches have most of the code. For example, in Figure 30 most of the
jEdit code base is under the org/gj t/sp/jedit branch with the remaining
(objectweb, installer, etc.) being supporting code. To support a developer
focusing in on the largest parts of the code, Strata shows such modules larger
than the rest of the modules. The module with the largest size is shown with
twice the font size and twice the font weight (boldness) as the module with
the smallest size, with the rest of the modules scaled proportionately. We
measure the size to a module by the number of classes contained by it.

4. STRATA USER INTERFACE

4.2. SUPPORTING INTERACTIVE LAYOUT

Beyond showing layered diagrams, Strata also needs to help developers with
real world constraints - helping in cases when there is not enough informa-
tion available about the architecture or when the module boundaries have
decayed and when it is hard to detect the important modules. In such cases
Strata attempts to make good guesses, based on those shown successful in
other more powerful but less-intuitive reverse-engineering tools [71]. Inter-
face techniques are then provided to allow users to interact with and correct
guesses.

4.2.1 Guess Based Layout

Building a layered architecture can simply be said to have three phases: firstly
for having a module organization so as to aggregate dependencies, secondly
to split the modules into layers, and finally to deal with any cycles found
among the modules when attempting to create the layers. We describe these
phases in more detail below.

MODULE ORGANIZATION

In the absence of a provided module organization, the directory structure (or
package structure in Java) is used as the default. Figure 30 shows the Strata
display for j Edit code base, with the gui module being in the j edit module,
corresponding to the org. gj t. sp. j edit. gui package and the
org.gjt. sp.jedit package.

After the dependencies are extracted from the code, the dependencies are ag-
gregated together based on the module definitions. These aggregated depen-
dencies are cached in a database at build time to improve performance, and
allow developers to get different views of the code in a lightweight manner.

BASIC LAYOUT - PARTITIONING

Once dependencies are aggregated Strata tries to perform a layout. For the
layout, a basic partitioning algorithm is followed in splitting modules into
layers so that the modules in higher layers have dependencies on the modules
in lower layers [151][3o][97]. These algorithms work on a set of given mod-
ules, iteratively processing and removing modules from the set. The modules
that don't have any modules depending on them are processed by adding to
the top layer, while the modules that don't depend on other modules are
processed by adding to the bottom layer.

In some cases, there are too many modules with no dependencies on each-
other. This can make a layer too wide. In such cases, if a layer is wider than
any other layer in the module it is split into multiple layers, such that its
width is smaller than the next largest layer.

4. STRATA USER INTERFACE

DEALING WITH CYCLES

The largest challenge in building the layers is in dealing with the presence of
unexpected and unplanned dependencies between modules that often result
in cyclic dependencies. Not dealing with such dependencies results in most
modules showing up in a single layer, producing a useless diagram. For ex-
ample, consider the difference between Figure 30 generated by Strata and
Figure 31 generated by LDM [71]. Such cycles require Strata to have an ap-
propriate strategy for dealing with cycles. We use a simple approach in Strata
for dealing with the cycles. While an optimal solution will be helpful, it is
more important to have a strategy in dealing with the cycles.

Pje

BJ ...oj~rs~fC

+ ax

Pot

?t ib

+: ..Ja

opt-

...ea 4j: .. g

+ý, wmw Wert +

Figure 31 - Automatically building a layered diagram without dealing with cycles (for
the jEdit project).

Modules in the top row have no dependencies on each other, while all the modules in a
second row are part of an interconnected cycle (output as provided by LDM [71]).

In order to provide a good layered diagram in the presence of cycles, Strata
makes the assumption that the cycle-inducing dependencies are unintention-
al and therefore fewer in number than the intentional dependencies. Strata
thus needs to find and remove the smallest number of dependencies to make
the dependencies graph acyclic. While this problem, referred to as the mini-
mum feedback arc set8 problem, is known to be NP-complete [34] Strata uses
a simple algorithm to approximate it.

8 In the phrase 'minimum feedback arc set', arc refers to the edges of the graph, feedback arcs refer to
those edges inducing cycles, and minimum refers to the smallest such set.

I
1 1'" ;" 0

1 ,.
. 1 ' ftli, 13

I
;

1!

t

i
~iri+'`^''

·̀

: i

ýý'jF-IF
ch

·::i·

}

::

4. STRATA USER INTERFACE

Strata uses the number of dependencies between two modules as a proxy for
the importance of the dependency between the modules. For dependencies,
we use inheritance, field references, method invocations, and construction of
objects. The algorithm works iteratively on each cycle, in a 3-step process un-
til all the cycles have been removed:

1. Find thefilter strength: the filter is the smallest number of dependen-
cies between any two modules in the cycle.

2. Break dependencies below the filter strength: this works to effectively
guess the unplanned dependencies and break them.

3. Partition the filtered set: with the weakest dependency removed the
partitioning algorithm can eliminate some cycles.

Figure 32 - Dependencies in the top-level modules of the ant project.

"I i
type

7

4. STRATA USER INTERFACE

Figure 33 - Dependencies in the top-level modules of the ant project (numbering mod-
ules).

[0, 1, 3, 4, 5, 6, 7, 8][0, 1, 2, 3, 4, 5, 6, 7, 8] 3[2 5, 8

filter-1

[7]
[5 1, 3, 4, 6, 8 [0, 1, 3, 4, 5, 6, 8]

[6] [0, 1,8]

Figure 34 - A depiction of the steps of the layering algorithm on the ant project.

We describe the cycle breaking approach in the context of creating layers for
the children modules of the org.apache.tools.ant module of the Ant
project [8]. Showing the modules and the dependencies we get Figure 32. To
simplify the description we represent each of the nine modules using a num-
ber in the 0..8 range (Figure 33). Attempting to partition the nine modules
with the basic algorithm results in two layers: with the first one consisting of
a cycle of eight modules and the second one consisting of the module '2'. This
partitioning, shown in Figure 34, can be said to be a partitioning with a filter
of o. The algorithm now looks at the remaining cycle applying a stronger filter

4. STRATA USER INTERFACE

(and ignoring more dependencies). Thus in the above figure, the modules {o,
1, 2, 3, 4, 5, 6, 7, 8} get partitioned to get the cycle {o, 1, 3, 4, 5, 6, 7, 8} (with
module '2' removed) without applying any filters. In the next step we find
that filtering dependencies of strength 1 will break part of the cycle, and after
partitioning we get the module '7' being removed, resulting in the cycle [o, 1,
3, 4, 5, 6, 8]. We continue the process of ignoring cycles by filtering depen-
dencies of strength 4 or less in the next step, and going on until we have very
small cycles. In Strata we stop breaking cycles that have 3 items in them. The
algorithm chooses not to break all the cycles since it would otherwise result in
a very large number of layers - with the ideal diagram not being too tall or
too wide and therefore containing an equal number of rows and columns.

[7]
[5]
[3]

[0,1, 2,3,4,5,6,7,8] Ol 01 . > [4],
[0, 1, 8]
[61
[2]

Figure 35 - Results of the layering algorithm.

Once we have finished partitioning the modules, we can combine the results
of the partitioning in the order that the partitioning was done as shown in
Figure 35.

[7]
[5]
[3] [5, 7]
[4] [3, 4]
[0, 1, 8] U00 [o, 1, 8]
[6] [6, 2]
[2]

Figure 36 - Merging the results of the generated layers.

Breaking the cycles and applying filters can mean that modules in two adja-
cent layers have no dependencies on one another. For example, in Figure 36
module '7' does not depend on module '5' and therefore the two modules can
be merged into a single layer. We thus move modules generated from the
previous step to eliminate false layerings, i.e. cases when the modules do not
depend on the layer below them. Once the layers are created they are merged
by moving modules downwards till they depend on a module directly below
them.

4. STRATA USER INTERFACE

4.2.2 Interacting with Layout

With the guesses provided by Strata, there is a need to allow users to interact
with it and correct these defaults. Modules can be easily moved to more ap-
propriate layers, can be moved into other modules, or can be removed from
the diagram.

In generating a layered diagram Strata uses a number of heuristics to make
guesses and organize the code. These guesses can be incorrect and the inter-
face needs to provide for a lightweight manner to correct them. In particular,
a module guessed to be on a wrong layer, can be easily corrected by just mov-
ing it. Another type of guess made by Strata is in using the directory structure
for defining modules boundaries. Strata uses the concept of breaking a mod-
ule, to layout and display the sub-modules at a higher level. Users in Strata
can open up modules to show the layers inside a module. Such opened mod-
ules have all the sub-modules drawn within the parent module. A user wish-
ing to see the layers with the sub-modules laid out without the parent con-
tainment can ask the parent module to be broken.

Consider part of the jEdit project expanded in Figure 37. Expanding the
browser module shows the classes that it contains and the layers that they
form. A user might decide that the browser module as defined by the directo-
ry structure is incorrect and therefore would want to organize it at a higher
level. Breaking the browser module results in Figure 38.

4.2.3 An Active Layout Engine

The Strata layout is active and is applied by default whenever new items are
added to a diagram, such as by a developer dragging-and-dropping a module
on the diagram. When a module is removed from the diagram, the diagram is
crunched - modules are moved to new layers that might exist as if the mod-
ule had not been shown in the first place. Crunching is performed since the
user might have felt that the removed module was not relevant to the dia-
gram. However, when a user explicitly moves a module to a new layer, these
automatic layout rules are disabled. The disabling of the automatic layout
happens because the moving of the module to a new layer is likely an indica-
tion by the user that the layers involving the moved module were incorrect.

4. STRATA USER INTERFACE

Spluginmgr options
iB help ff menu

E adent

iB search
di proto if to fBPont

'B gui *

fb buffer
iD syntax fB msg

org.gjt~sp~jedft.

Figure 37 - Expanding the browser module in j Edit.

4. STRATA USER INTERFACE

E pluginmgr a options
0 bro :e.W ecooserwog

Sbrows.er.WSNe~mnexid 0 browser.BrwseroRequest 0bmaosrowad~

Sbrowser.fowserview 0 browser.VFSBrowm

0 browser. WSDwecWryEntryTable

$ help

0 browW.VFSrectoryEntryTableModel

$ proto 10 [9 print

egui r
$ textarea

W buffer

0 syntax M msg

M search

0 browser.BrowserUstener

org.gjt.sp.jedit.

Figure 38 - Breaking a module in Strata.

4.3. SUPPORTING INTERACTIVE EXPLORATION

Strata provides a number of ways to help users navigate around using a
layered view. These include behavior depending on Strata's use as a primary
or secondary mechanism, support for exploration with buttons called naviga-
tion buds, and additional query support built to support overview related
tasks.

4. STRATA USER INTERFACE

4.3.1 Interface Behavior for Navigating

Strata and layered diagrams are helpful in providing users with an 'overview',
which can mean different things depending on the developers' task. To sup-
port these tasks, Strata provides two modes.

The first mode is for a developer intending to understand a project or a sub-
component. This typically happens when the developer is introduced to a
large codebase for the first time, and understanding the code is typically his
primary task. When in this mode the developer will want to dive into the
code, starting from getting a high-level overview to selecting interesting sub-
modules for examination. In this top-down mode Strata supports exploration
by automatically expanding the largest module when there are three or fewer
modules shown. Users can alternatively also double-click on modules to ex-
pand them.

The second mode is designed for developers focusing on doing other tasks
like feature addition or maintenance, and in the process wanting to know
where he is in the codebase. He would typically have an idea of the overall
architecture and would be looking to Strata to place the currently examined
piece of code in the architecture. Strata supports this behavior by providing a
linked mode. In this mode a developer's currently selected code element in
the IDE is shown as a module in Strata together with both the modules that
depend on the currently selected module and the modules that the currently
selected module depends on, i.e. the dependers and the dependees. In this
mode developers double-clicking on a module changes the focus of the view
to the newly selected module along with its dependers and dependees.

4.3.2 Exploration via Navigation Buds

To ease understanding within a Strata diagram, users are allowed to interac-
tively explore directly in the diagram. A button shown on the currently se-
lected modules (as in Figure 39) provides the primary exploration support.
These are for common exploratory actions like removing modules, expanding
them to show their children, and showing which modules depend on the cur-
rent module. Navigation buds help developers to realize the available options
and provide a means to easily explore the code.

Ii -
a options

+ org.gjt.sp.jedit.

Figure 39 - Navigation Buds on the buffer module in Strata.

4. STRATA USER INTERFACE

When users select a module (buffer in this case) and click on the 'show de-
pending' navigation bud, Strata shows the modules that depend on buffer.
As shown in the figure, while the options module does depend on buffer,
other modules depend on it as well.

Strata also allows users to explore into the dependencies shown in a layered
diagram. This allows a user to understand the cause of the dependencies. A
developer can right click on a dependency and ask to Show Dependency
Cause, will have the source and destination modules opened up showing only
the modules causing the dependency.

44.4 UPDATING MODULE DEFINITIONS

Strata uses packages and directory structure as the modules hierarchy. While
the package structure often represents a useful organization of the code, there
can be multiple organization schemes that might be relevant. In some soft-
ware projects that were examined for this thesis, the package structure was
organized according to technology domain concepts, but an alternative or-
ganization might be related to business domain based concepts. Developers
can explore using Strata, focus in on a set of code, and then save that view.
These saved module definitions can be shared with other developers or later
used in other explorations.

5. RELO USER INTERFACE

Developers trying to understand code and examining details need to see the
different relationships involved among the target code element. Relo is there-
fore based on UML class diagrams. UML class diagrams are the most popu-
larly used of the different UML diagrams [28], and are therefore expected to
be familiar to most developers.

Beyond using a familiar notation, like Strata, Relo follows the core principles
outlined in the thesis. Relo focuses on preventing users from getting over-
whelmed by the amount of shown information - a common occurrence when
examining details. Relo therefore takes the approach of showing the bare
minimum information in partial focused diagrams - any items that are not
explicitly indicated to be relevant are not shown to the developer. Further, in
helping developers examine the code and explore around, Relo also provides
users with lightweight means of interactively exploring around the codebase.

Below we describe the appearance of Relo visualizations in our attempt at
making them familiar to users. We then discuss the requirements on Relo to
maintain a familiar representation while allowing users to interact with the
diagram, by providing support for an interactive layout engine. Next we dis-
cuss the interactive exploration capabilities. We then describe support for
tracking the explorations in the background and providing automated dia-
gram management support in Relo. Finally, we describe support for using
Relo for communications.

5.1. APPEARANCE

Software visualization tools have traditionally shown code in basic box-and-
arrow diagrams (for example in Figure 40) and require developers to follow

5. RELO USER INTERFACE

external legends to understand the main components shown in the diagram.
In contrast, Relo is designed to appear familiar and therefore appears similar
to the popular UML class diagrams (Figure 41). Packages, classes, methods,
and fields are easily distinguishable using expected representations together
with familiar icons from the IDE. A developer looking at a Relo diagram does
not need to refer to a legend to differentiate a method from a class, or a class
from a package. Further, as in UML class diagrams, class members are shown
vertically using a stacked layout with no space between members, while the
various classes are laid out in a less constrained layout. While such a repre-
sentation causes challenges in understanding relationships among class
members, the representation has strengths in showing relationships among
multiple classes. Relo relationships are also similar to typical UML class dia-
grams with inheritance relationships not being drawn as single straight lines
from the start to the end, but as stepped lines with upward pointing closed
arrows.

OL s;. -

4 Pa&AeV E.Oorer

1_4 biwo
* Co-eKoWv [cvs.cvs.wm.ca&

+ [*.vd-cipo Eý.swoufobgeveý
+ prr4-ede-pd
+ * >RSSOD ccv.sourceforgevnet
+ t>Sthnp (oCS.ot c aa !
+ ký Test~erm

Htervbyý coitavis Lat Ab.ove Node (boot) Vj NavigApo Alty V

NO&Ffte

SElaEll Oartace

Jot

OMlhod
[e PeokageFragaWt

1 EJPrc Fftq

FindterElC [PEIII] decae

El extended by

0E h.eprandintype

El h. rd. tyl.

O rftnfae exteded by

l L].otype-dct :.l cd:csnacy io.

ElZ cd.
El -i-- tnI gscda yp

Figure 40 - Part of an exploration session with SHriMP
(as in Figure 23)

Fe E& NoD& Nagate TOo Hok Qikk lfts

lk S. 4 A X;B; ?

., .• • ['•s, g.'e•

Fiur 40~`-I- ~`~--~-~ ~ Part ~ ~ of` anexloaio ssion wthSriM

I

5. RELO USER INTERFACE

Figure 41 - Relo showing part of the JHotDraw project.
(as in Figure 9)

Figure 41 shows part of the JHotDraw project. The figure shows the
CH.ifa.draw.framework, CH.ifa.draw.figures, and the
CH.ifa.draw.standard packages. The LineConnection, TextFigure,

EllipseFigure, AttributeFigure, AbstractFigure, and GraphLayout classes
and the Figure interface are shown. To distinguish between the different
items, the standard Eclipse icons for packages $, classes (, and interfaces 0
are used, with methods using different icons based on whether they are pub-
lic e, protected ,or private *

Relo uses partial diagrams to prevent users from getting overwhelmed. It
therefore shows as little information as possible. However, users also want
visible code elements to be easily identifiable. This is possible when showing
an element with its container element, for example in Figure 41 when show-
ing the TextFigure class insides the CH.ifa.draw. figures package. Howev-
er, when an element is requested to be added to the diagram, Relo tries to
show as little information as possible, and therefore does not automatically
include these container elements. Such shown code elements therefore have
their name shown fully qualified - a Java method appearing by itself is pre-
fixed by its containing package and class. In Figure 41, the GraphLayout class
is therefore shown as CH. ifa. draw. util. GraphLayout.

The approach of showing nodes only when explicitly requested often results
in cases when not all of the children of a node are shown. In such cases, there

5. RELO USER INTERFACE

is a need to indicate to users that more children exist than the currently
shown nodes. To show the existence of more children and to provide a me-
chanism for users to add the children, users are shown a more items menu.
This menu consists of a list of the remaining children and selection of items
from the menu results in the nodes being added to the diagram. Figure 41
shows the button to create this menu on classes to allow users to add me-
thods and fields, and shows the button on packages to allow users to add
classes and interfaces. Beyond selectively adding items using this menu, users
also have a menu option of adding all children to the diagram.

As part of making the diagram seem familiar, Relo also uses automatically
triggered navigation services to show relationships that a user would typically
consider obvious and would be shown in hand-drawn diagrams would. One
such service automatically adds inheritance relationships when found be-
tween any visible classes. Another service tries to reduce the amount of in-
formation shown by adding the container element when there are multiple
children shown. Adding relationships make the diagram seem to have lesser
information via visual grouping of related items.

5.2. SUPPORTING INTERACTIVE LAYOUT

Providing a layout for Relo presents a number of requirements not found by
in popular graph layout algorithms. Since Relo presents nodes in a class-
diagram like view, nodes need to be shown in expected locations for such dia-
grams. In common UML class diagrams, method call relationships go from
the left to the right; inheritance runs from the bottom to the top, and con-
tainment is shown by nesting. Code elements in Relo therefore should to be
laid-out using these same constraints.

5.2.1 Building an Incremental Interactive Layout Engine

The first algorithm used by Relo, and the most popular one available in most
graph tools, was based on the orthogonal graph layout algorithm [70][77].
These algorithms work by building a representation of the various horizontal
and vertical constraints and then iterating to minimize edge crossovers. Such
algorithms work hard on providing a globally optimal layout. However, with
this approach the addition of even a new node or edge to a diagram often
causes all nodes to be repositioned. Thus using such a layout algorithm re-
sults in a lack of consistency of node positioning as the diagram is being built,
and can distract users from their comprehension related task.

In order to have a fluid automatic layout of the graph, a simple approach is to
use a force-directed approach for laying out code elements. Such approaches
implement node attraction and repulsion as forces and iterate the node posi-
tions to minimize the applied forces [94]. These forces were extended for use
in Relo to support directed constraints and graph containment. The presence

5. RELO USER INTERFACE

of such forces results in the layout engine having a number of local minima.
These local minima result in the layout not being perfect but behaving pre-
dictably. Furthermore, newly added nodes do not cause the remainder of the
graph to significantly re-layout. The significant re-layouts do not happen as
doing so requires nodes to move on top of other nodes and the node-node
repulsive forces prevent this from happening. However, while force-directed
layouts do support incremental layout, adding nodes does cause the forces to
change and does still result in minor unexpected movements of nearby nodes.
Additionally, such force-directed approaches are limited in their need to
model all constraints as forces, and perform poorly when needing to support
complex constraints. Adding support for simple constraints like aligning dis-
connected or vertically-connected nodes in a column are hard - and expo-
nentially harder when one of these nodes has a relationship associated with
it.

Relo therefore has evolved to use a simple rule-based engine with support for
common layout cases built into the engine via a set of rules. While the engine
might not perform well in some edge cases, the rules are designed for com-
monly occurring scenarios and thus nodes in such scenarios are well laid out.
A user can benefit from the auto-layout for most of the time, but when things
get messy can either layout the nodes himself or consider eliminating nodes.

5.2.2 Rules Based Layout

The Relo engine uses a simple set of rules for the layout. The rules depend on
the origin for adding nodes. The origin is the perceived users' focus on the
diagram:

* In an empty view, the origin is at the center.
* When a user is trying to follow a relationship, then the origin

represents the originating node where the request was made.
* In other cases, such as with linked exploration, choosing the location

of the most recent addition can result in the diagram only expanding
on one side, and thus getting too wide or too tall. In such cases, the
location of the most recent addition is used only half the time, and the
rest of the time the origin is chosen to be the center of the diagram -
the selection of which strategy to use as the origin in such cases is
chosen randomly.

Once the origin is found, new nodes are positioned on the origin. Placing
nodes at the origin allows such nodes to be automatically aligned with the
originating node or position when the rules are enforced. The rules are re-
peatedly asserted to enforced them by an engine which then also check and
breaks any node overlaps. There are two main rules that need to be sup-
ported:

* Support for Directed Relationships - A large part of the complexity of
the layout in Relo is in supporting directed relationships, i.e. the sup-

5. RELO USER INTERFACE

port for some relationships to be shown from top-to-bottom or from
left-to-right. In these cases, nodes are laid out to follow the direction-
al constraint associated with the relationship. The rules provides
more sophisticated support for when there are multiple nodes that
need to be positioned with the same directional constraint and same
target node. Just enforcing the directional constraint first and break-
ing overlaps second will cause the placed nodes to not be organized
with respect to the first part, i.e. directional constraints. In such cas-
es, the rule lays out the nodes in a more organized manner, as shown
in Figure 42.
Support for Undirected Relationships - In this case nodes have more
freedom to be positioned in contrast to the directed relationships.
Nodes are simply laid-out in a clock-wise manner around the target
node. The layout start in a similar manner as for directed relation-
ships, but then nodes go around the target node so as to minimize the
relationship length. Figure 43 shows how the rules work for the
layout of an undirected relationship.

U

Figure 42 - Layout rule for directed relationships

m
I

5. RELO USER INTERFACE

Figure 43 - Layout rule for directed relationships

The engine does not directly support the layout of unconnected nodes. In
such a case, nodes are all positioned on the origin, but the overlap breaking
part of the engine positions the nodes in available places.

5.3. SUPPORTING INTERACTIVE EXPLORATION

Relo provides a number of mechanisms to allow a developer to interactively
explore and effectively focus on code elements that matter to his current task.
Such exploration capabilities target small incremental changes in the diagram
so that a developer can maintain a consistent mental-model of the code.

5.3.1 Navigation Buds

Figure 44 - Clicking on the class to show its buds
(as in Figure 8)

A developer can browse the code in a Relo diagram using buds to navigate
and extend the visualization with simple clicks. A bud is a context sensitive
button on the currently-selected code element. For example, as shown in Fig-
ure 44, when the EllipseFigure class is selected, it will sprout buds for the
different relationships that could be followed from the class - in this case the
extends relation. Clicking on the bud will make the visualization grow by
showing more items having the relationship, i.e. following the selected buds
relationship. Buds are only shown when they will result in a modification of
the view, i.e. as in Figure 44 a class that is not extended by other classes will
not show the extended-by bud. Buds provide support for a browsing behavior
commonly observed in users trying to home-in on information based on the

!

i x~

5. RELO USER INTERFACE

surrounding contextual information [89]. They are provided instead of navi-
gation property dialogs or context menus, that are used for configuring
shown or filtered relationships as needed by most visualization tools.

The navigation buds, while primarily designed for exploring, also provide fea-
tures for controlling the diagram growth. When the mouse hovers over a na-
vigation bud to add items to the visualization, a preview is provided of the
number of items that will be added when the bud is clicked - such previews
have been shown to be helpful to users in getting a better understanding of
the information they are looking at [27].

While clicking on a navigation bud default to adding the items on the dia-
gram, the user can choose to instead right-click on a bud to get a menu of the
names of the code elements that can be added to the diagram. Further, Relo
limits the number of items that are added during exploration - when five or
more items need to be added to the diagram, clicking on the button again
shows the menu of items to allow the user to only add relevant items.

RELATIONSHIP MODEL

Elements of Relo visualizations have been chosen heuristically based on for-
mative evaluations with users. Relo elements include packages, classes (in-
cluding nested and anonymous classes), fields, and methods (including con-
structors). The relationships used by Relo are shown in Table 6. The most
common relationship explorations that a developer will want to perform are
made available as navigation buds, to make them easily accessible. Complex
relationship explorations, such as showing the entire subclass tree of a class,
are available through a context-sensitive menu.

Table 6: The Java Relationships Model

Navigation Context Relationship From To
Bud Menu

V 9 Inheritance Class Class

J Method override Method Method

V Field access Method Field

V Field modify Method Field

~ Field type Field Class

~ Containment Package Class

9 For inheritance in the context menu we also allow users to open the inheritance hierarchy, i.e. the
transitive closure of the relation.

5. RELO USER INTERFACE

Navigation Context Relationship From To
Bud Menu

Class

Class Method

Field

V Method param. Method Class

% 0, Method calls Method Method

This relationships model is similar to that of concern graphs [67]. When
created ahead of time and provided to developers concern graphs have been
shown effective in representing the relevant portions of code for a code main-
tenance task. While concern graphs are typically displayed to users as trees,
Relo is more diagrammatic and focused on exploration capabilities. Instead
of focusing on describing these concerns, we focus on those relationships that
could be used in understanding code. In our model, instantiations of classes
are represented by calls to one of its constructors. We have chosen not to
show relationships to and from local variables as they represent low-level
code details which are not needed when understanding code interacting with
multiple classes as is often the cases in last projects.

These relationships can be extended to provide exploration of an object mod-
el by performing lightweight analysis [41], however, we chose to focus on the
static relationships in Relo.

5.3.2 Levels ofDetail

Relo diagrams try to show as little information as possible. The user can then
semantically zoom-in by double clicking on an element or selecting the ex-
pand bud ('+') to show more details. For classes, this means starting with on-
ly the class name, and at the first expansion level showing the children mem-
bers having public access, followed by protected and private access. For me-
thods, expansion shows the method implementation in an editor view. In-
stead of expanding a class to show all public members, the user can also use
the more items menu to get a list of members and add only the relevant
items. This keeps the diagram from growing too fast and at the same time
provides the user with fine-grained controls.

Developers can also reduce the size of the diagrams. They can collapse code
elements by clicking on the '-' handle. Alternatively, developers can selective-
ly remove code element from the diagram by clicking on the 'x' handle. Since
Relo is providing a view of the codebase navigation buds do not remove items
from the actual codebase, but only remove the items from the diagram. When

5. RELO USER INTERFACE

items are removed from the view, to ensure that developers think the items
are hidden and not deleted, the system animates them moving to the more
items menu. Developers can also rapidly remove multiple code elements from
the visualization by selecting multiple items and clicking on the group's navi-
gation bud.

5.3.3 Autobrowse

As part of exploring through the code, developers often need to know how
various code elements are connected. This might be to find out how a particu-
lar piece of the underlying system is launched or to find out how to update a
particular interface using some data already available to the system. When
trying to connect two code elements the high branching factor of the code can
get developers lost easily. Autobrowse is a feature of Relo designed to help in
these situations. It tries to similar a user browse through the code and adds
successfully found code paths to the diagram. Autobrowse requires two or
more starting points, given to the system by the user selecting and right click-
ing the code-element. It then locates and shows short paths of relationships
between the selected elements, thereby showing how the elements are con-
nected. It does this by performing a simple breadth first search for hidden
artifacts that are connected (and therefore relevant) to the given items. Some
relationships, like inheritance, are more important in cases like this and for
any given path length they are searched first. The search terminates as soon
as at least one path is found, displaying the found path. Developers can re-
peat autobrowse to add longer paths.

Items removed from the diagrams are added internally to a list of items likely
not relevant to the current task. When autobrowse is performed, any items
that are in this likely not relevant list are ignored. This can allow a developer
to select two code elements, run autobrowse, and if he finds the found path is
not relevant it can be removed to run autobrowse again. Since the system
tracks the removed items, it will not automatically add these items, thereby
allowing the developer to see other paths. Such support for removed items
are helpful to tell the system to ignore the obvious pieces of code connecting
the entire system, like logging capabilities.

Beyond doing a breadth-first search, other approaches such as those done by
Holmes and Murphy [38] can be used to improve the quality of results to us-
ers.

5.4. AUTOMATED DIAGRAM MANAGEMENT

Relo builds on the basic exploration capabilities by providing a set of view-
based agents that are either live (continuously monitoring the visualization)
or are triggered explicitly by the developer.

5. RELO USER INTERFACE

5.4.1 Linked exploration

While users might want to use Relo explicitly with the intent of understand-
ing code, i.e. in a primary mode, Relo also provides support for those devel-
opers wanting to use the tools provided by the traditional environment (IDE),
but still get the benefit of an incremental visual exploratory environment.
Like Strata, Relo automatically tracks explorations made in other views of the
IDE and extracts the relationships traversed. Use of the package explorer,
call-hierarchy view, or the type-hierarchy view, result in the respective con-
tainment, method call, or inheritance relations being inferred and added to
the Relo diagram. This allows the developer to work in a environment having
more software development features, and at any time decide that he has pos-
sibly lost context and would like a Relo visualization to help him.

If the developer gets lost, say because he can't remember how the various
tabs/views are connected to each other, he can open Relo which will use the
exploration history to build a diagram. Since the exploration history may be
large, Relo first shows a dialog box that allows the user to choose which ele-
ments to show.

With this bootstrapped diagram generated, the developer use Relo to explore
further. Alternatively, Relo continues to track the developers' exploration and
updates the visualization to help provide context to the developer, thus caus-
ing Relo to actively mirror the navigation.

5.4.2 Automated Removal ofltems

With code elements being added explicitly via exploration in the diagrammat-
ic interface or indirectly via linked exploration, the need for removal of irrele-
vant items exists. Such code elements exist in the diagram for one of two rea-
sons: they either were mistakenly thought relevant at one time, or based on
the current knowledge of the problem are not expected to be relevant.

Relo uses a simple approach similar to the degree of interest model which has
been shown effective in capturing a task context to reduce items being
shown [16][44]. Relo uses a score consisting of three components. The first is
a selection count being increased when an element is selected, the second
component represents the age of the item - on every action the selection
count is reduced. The third component represents the interconnectedness,
and is the number of shown relationships to or from the element.

Relo also provides an auto-remove mode, which automatically removes ele-
ments when more space is needed to display new items. When enabled items
with low scores are treated as not being relevant and are the first to be re-
moved when the visualization takes a large amount of space. The heuristic
used for taking a large amount of space is 3/4 of either the height or the width
of the diagram being taken.

5. RELO USER INTERFACE

During linked exploration developers are primarily working in the IDE, and
might not be focusing on the diagram to manage and remove elements
shown. Auto-remove mode is therefore automatically enabled during linked
exploration. The developer can also manually enable or disable auto-remove
at any time.

5-5. SUPPORTING COMMUNICATIONS USING DIAGRAMS

By providing a lightweight method to provide various forms of annotations,
developers can use Relo to not only understand an underlying codebase, but
also to describe and communicate this understood knowledge along with do-
main knowledge via enhanced diagrams.

As developers understand code, their understanding moves from a structural
model to a model consisting of data-flow and functional abstractions [131].
Relo helps users maintain these forms of understanding by providing support
for basic types of annotations. For example, a system using the model-view-
controller architecture, might typically have the associations between com-
ponents carefully separated into factories in the code; however, a particular
view of the code could have such relationships added by the developer. Relo
allows developers to create named relations between items being shown and
add comments to the explorations session, to allow the developers to
represent formed higher level abstractions when examining the code [1].
These annotated diagrams can then be saved for future reference or for com-
municating with other developers.

Relo provides a panel which can be used by developers to add annotations to
the diagram at any time during the exploration process. Once added, these
diagrams can be saved using the IDE's menus, and thereby shared with other
developers.

5. RELO USER INTERFACE

Figure 45 -Annotations in Relo

6. IMPLEMENTATION

Building a visual exploration environment for helping developers understand
code has a number of unexpected challenges. These challenges are described
below along with a description of core architectural components.

6.1. DEVELOPMENT CHALLENGES

The first prototypes of Relo and Strata took a month each to be built. Since
then the tool has been iterated for a 3-year period. While the core ideas could
have been evaluated easily in a non software-engineering domain, the need
for their realization has only come about in applying the ideas towards devel-
opers. We therefore focused on building the tools out towards evaluating
them in real-world situations. We describe some of the unexpected develop-
ment requirements we realized when building such tools.

1. Developers are typically performing program comprehension to assist in
some other primary task. This requires a program comprehension tool to
support developers that are currently performing their primary tasks. Re-
lo and Strata were therefore built on top of the widely used Java IDE Ec-
lipse. However, the requirement of integrating into the developers' pri-
mary task has two key sub-requirements.

Firstly, the program comprehension tool needs to be integrated into the
developer's current location of doing the tasks, i.e. his development envi-
ronment. Beyond the obvious requirement of presenting a view inside the
IDE, this requires an architecture to support the basic concepts of undo-
redo commands and drag-n-drop. Further, developer's navigation events
need to be tracked for conversion and use in Relo and Strata. These navi-
gation events are typically in the form of multiple IDE events that need to

101

6. IMPLEMENTATION

be processed: text selection, structured (Eclipse Java Elements) selection,
window openings, Eclipse Java Actions, etc.

Secondly, the tool needs to support a large breadth of functionality that
the developer might use while performing his primary task. While func-
tionality like following inheritance and method call relationships within
Relo are obviously needed, capabilities like inferring these relationships
when navigating in the IDE or providing integration with these IDE views
into Relo are needed. Additionally, working with other IDE views like
search and the various debug views is needed.

2. Eclipse being an Open Source IDE has its functionality reusable in many
ways. However, using it in ways that it has not been used before often re-
sults in various IDE bugs being exposed. These include the lack of a
common framework for reusing Views and Editors, the system to fail si-
lently in certain cases for fire selection events, and the inability to persist
view settings between Eclipse perspective switches.

3. Having good response times with large projects requires the caching of
dependencies instead of a just-in-time parsing of the code. Building these
dependencies quickly can be done by parsing the binaries at build time
(instead of parsing the source), but doing so limits updates when compile
errors exist. Further, since projects can be large these dependencies need
to be written to disk instead of having significant memory requirements
and therefore not working with large projects as can be experienced with
some program comprehension tools [651.

4. Providing support for Java code not only requires supporting a significant
portion of the Java Language Specification [33], but also supporting un-
documented defaults used by the various compilers. For example, while
Java developers have heard of and used anonymous inner classes, the Ja-
va compiler generates and uses anonymous methods for static initializers
and for providing access to private methods. The Java parser needs to
further resolve references in classes to those fields and methods in base
classes.

5. Providing a tool for download to allow users to try and give feedback can
take significant resources. Beyond traditional deployment obstacles like
working well with 3rd party tools and ensuring that there are no thread
deadlocks, development tools need to also worry and check both the ver-
sion of the Java VM that is being used to run the tool and the version of
the VM that is being used for the users tools.

6. In obtaining usage data about the various functionalities of Relo and Stra-
ta, there is also a need to capture and merge logs of usage of the core IDE.
Beyond checking for the IDE selection service failing in the midst of get-
ting data, there is a need for the logging code to ensure that it does not

102

6. IMPLEMENTATION

adversely affect the IDE. For example initial attempts at logging users ac-
tivities both slowed down the IDE and also unintentionally disabled some
of the IDE's functionality. The logging service had to be modified to
change the capture frequency and use different tactics to log different
components.

6.2. A CACHINGARCHITECTURE

The need for integration into the developer's environment led Relo to be built
on Eclipse. This required the building a mapping engine to connect the vari-
ous representations used by Eclipse and Relo, then the support for basic
caching for use in Relo, and finally support for compound relationships for
use in Strata.

6.2.1 Mapping Support

Figure 46 shows the basic architecture of Relo as built in the initial prototype.
In the figure, the Eclipse module represents the core IDE with Java support
(JDT) built on top it. The Java support consists of two components the UI
and the Core (consisting of the Java compiler). The diagramming capabilities
are provided by using Eclipse GEF (graphical editing framework). Since Relo
needs to be launched from the interface, it depends on and listens to the JDT-
UI module. Further, in order to be able to query the source code Relo needs
to use the JDT-Core directly as well. To allow for the seamless use of the JDT-
UI and the JDT-Core, Relo provides for a mapping module to connect them
to a fixed identifier representation.

Figure 46 - Basic Relo Architecture.

103

6. IMPLEMENTATION

6.2.2 Basic Caching using Builders

For Relo to work rapidly on large codebases and have services checking non-
visible portions of the codebase without consuming a large memory footprint,
Relo needs to translate the underlying codebase into a triples database. This
triples database is based on the W3C standard RDF [48] and therefore allows
for easier extension of Relo to other languages and domains. All relationships
are represented in the form <source, relationshipType, destination> and the
mapping engine connects this representation to the Eclipse builder frame-
work (for building the cache) and both the JDT-UI and the JDT-Core. Sup-
porting a new language thus requires just adding the relationships to the da-
tabase and providing the mappings to and from the various Eclipse objects.
Figure 47 shows the Relo architecture with support for caching via a store. As
the diagram shows the Relo JDT mapper has been further optimized to get
relationships from the binary Java .class files and therefore be able to extract
relationships faster than parsing the source files.

Figure 47 - Architecture with caching support for Relo.

6.2.3 Caching Compound Relationships

Support for Strata has been built on top of the diagramming and caching in-
frastructure provided by Relo. The architecture, shown in Figure 48, provides
additional support for caching compound relationships. Beyond particular
relationships between fields, methods, or classes, Strata shows users aggre-
gated dependencies at higher levels and caches them in the store. In the ar-
chitecture 'RC' is used to indicate the Relo Core and is a set of reusable com-
ponents, while the Relo module provides support explicitly for the class dia-
gram browsing.

104

6. IMPLEMENTATION

Figure 48 - Architecture with support for Strata.

6.3. AGENT FRAMEWORK

In providing an incremental exploration environment Relo also contains an
agent framework. This framework allows agents to monitor shown code arti-
facts and make minor modifications to the generated visualization. For ex-
ample, one such agent automatically draws the containing class or package
when there are multiple artifacts that share the parent. This way by visual
grouping Relo is able to reduce the information that needs to be understood
by the developer even though it is adding information to the visualization.
Similarly, Relo also draws direct inheritance relations between elements
shown in the visualization.

Agents listen to one of a number of events, such as code artifact selection,
creation, or other actions, and then either vary properties of the visualization,
add elements, or remove them. These simple agents thus work together in
providing a tool that feels intelligent. In cases when too many agent based
modifications might happen, agents can apply their changes sequentially and
use a short delay before their actions are taken thus giving users a feeling of
control as the information is being organized by the system. For example,
when a user clicks on the calls handle on a method, the called methods are
first shown along with their calls relationships. After a half-second delay the
parent assertion agent is triggered which might add the parents to the me-
thods. This might be further followed by inheritance relationships being add-
ed to the diagram. Instead of overwhelming the users with all these items be-
ing added at once, the changes are ensured to be simple and are not only add-

105

6. IMPLEMENTATION

ed gradually, but can also be undone, and each agent can apply a set of its
own rules to only perform actions when the perceived information shown is
reduced.

With support for automatically adding elements by agents, Relo also needs to
ensure that items removed by the user (say by using one of the handles) are
not automatically added by an agent. For such cases, Relo keeps track of all
user requested removals, and does not allow agents inferred code elements to
be added once such an element has been removed by the user.

1o6

7. EVALUATIONS

Our primary focus during the evaluation of Relo and Strata was to evaluate
the usability of the tools with multiple developer's given very limited training.
This was because developers mostly understand code secondarily to some
other task. Additionally since studies of most program comprehension activi-
ties and tools have focused on very small and therefore artificial code bases,
we focused on evaluating the tools on projects and tasks from the real world.

7.1. USING STRATA WITH PROJECTS

The initial design for Strata was verified and polished using a set of open
source projects as part of a preliminary formative evaluation. Design know-
ledge was extracted from examining the code, and by reading various forms
of documentation. During this phase, we noticed that most tools only pro-
vided limited support for organizing the module dependencies, and that or-
ganizing these dependencies was important in getting an overview of the un-
derlying codebase. Strata thus provided support for organizing these depen-
dencies into layers and did so primarily by breaking cycles found in the code.
We therefore performed an evaluation of Strata on an externally created col-
lection of projects and measured the quality of the cycle breaking on these
projects.

107

7. EVALUATIONS

Table 7: Projects used in determining Strata usefulness

Project Description Hosted Col- Size
lected LOCn Classes

10

Popular GUI and Implemen- sourceforge Nov'06 434,676 2,277
Azuereus tation of the BitTorrent pro-

tocol

Buddi Program to manage personal sourceforge Nov '06 31,186 128
finances and budgets
API for managing J2EE con- codehaus Feb '07 64,726 518
tainers
Library for abstracting away objectweb Feb '07 20,664 145
different RMI (Remote Me-

Carol
thod Invocation) implementa-
tions.

Sphinx Speech recognition system source- Nov'o6 98,553 382
forge/cmu

Commons- Implementation of common apache- Nov'o6 o10,988 41
Codec encoders and decoders jakarta

Implementation of the DNS sourceforge Feb '07 33,634 184
protocol

jEdit Configurable text editor for sourceforge Nov'o6 159,908 514
programmers
Tool involving simulated sourceforge Nov'o6 17,187 95

jMemorize flashcards to help memorize
facts

Tool for viewing chemical sourceforge Nov'o6 100,131 291Jmol
structures in 3D

Implementation of the Ruby codehaus Nov 'o6 82,081 427
JRuby programming language

Web Application for issues- sourceforge Nov'o6 10,288 80
JTrac tracking

Radeox API for rendering wiki mar- codehaus Nov 'o6 11,811 179
kup

Rssowl Newsreader supporting RSS sourceforge Nov'o6 81,647 201
TvBrowser Extensible TV-guide program sourceforge Nov'o6 149,564 777

A set of tools involving instant sourceforge Nov 'o6 579,288 2,744
messaging

lo All projects were extracted from the head of source repository at the collection date.

11 LOC = Lines of Code

108

7. EVALUATIONS

7.1.1 Methodology

The collection used for this evaluation was an externally provided collection
of java projects (used in [53]). The projects were from popular open source
web sites, including sourceforge.net, codehaus.org, and objectweb.org. 16
projects were selected based on popularity, and are listed in Table 7, along
with descriptions, project sizes, and information on extracting the collection
again.

For the study, we took each project and opened it in Strata. Since we were
evaluating the effectiveness of cycle breaking, each project was opened with
cycle breaking both enabled and disabled. When opening the projects, we no-
ticed that when all the modules are expanded most projects have some cycles
in them. We therefore wanted an objective method for selection of how many
modules and which ones we wanted to show.

Strata uses a top-down expansion interface since having too many modules
being shown can overwhelm users. We decided that a typical scenario for a
developer would have around 10-12 modules. Having more might result in
the users getting overwhelmed and having fewer might not be helpful for a
developer trying to decide relevant components for his exploration. We de-
cided that a typical developer would get the 10-12 modules by expanding the
largest modules if either (a) there were less than 6 modules, or (b) the largest
module was more than twice the second largest module. The expanded mod-
ules were then broken and layered amongst the rest of the modules.

We logged qualitative observations and extracted data on the number of
modules shown, number of rows and number of columns.

7.1.2 Results & Discussion

Table 8 shows the data collected from expanding the various projects. The
table includes the number of modules shown when the projects were ex-
panded, the average number of characters per module, and the number of
row and columns when our cycle breaking algorithm was applied or not.

o19

7. EVALUATIONS

Table 8: Results from expanding the projects in Strata

Cycle Without
Avg chars Modules breakin! breakin8

Projects per module shown # rows # cols # rows # cols

sf-rssowl 13.84 13 6 3 3 11

sf-zimbra 19.21 37 25 4 4 32

sf-tvbrowser 12.06 3011 5 5 19

sf-jmol 10.36 19 6 4 5 7

sf-jtrac 5.71 7 3 3 2 4

sf-jmemorize 11.25 8 6 2 2 5

sf-dnsjava 15.6 3 11 4 4 3 8

sf-cmusphinx 7.3 10 7 2 6 4
sf-azuereus 19 12 5 4 3 7

sf-buddi 5.833 6 4 2 1 6

owf-carol 4 6 3 3 3 3
jakarta-
commons-codec 17.76 13 5 4 4 6

ch-jruby 6.17 17 11 2 1 17
ch-cargo 14.58 17 10 3 8 6
ch-radeox 5.25 8 7 2 5 4

sf-jedit 10.89 19 14 2 3 16

Any diagram that has too few layers will not be helpful. For example, the
RSSOwl project being opened in Strata with cycle breaking is shown in Figure
49 and with the traditional partitioning algorithm is shown in Figure 50.

fBcontroler.tray i controer~dnd

acntmlf.propertiEDaxonlerus* controller.panel

'D modOel bj
$ controIWe.forms

net.sourceforge.rssowl.

Figure 49 - RSSOwl with cycle breaking

110

'L 4BController.thread

7. EVALUATIONS

Figure 5o - Traditional partitioning with RSSOwl

We therefore plotted the number of columns as a percentage of the total
number of modules in the diagram (Figure 51). The chart also includes the
idea width of the layered diagram. We calculated the ideal width of the dia-
gram to be the number of columns that would make the diagram a square -
here estimated to be the square root of the number of modules. Another al-
ternative would be to use the average number of characters per module and
use an estimate of the height of a column.

100%
90%
80%
70%
60%
50%
40%

30%
20%
10%
0%

(9% zt "

v Ideal Width (sqrt cntfjqm With Cycle Breaking

Figure 51 - Diagram width with and without cycle breaking compared to ideal

From the figure it can be seen that traditional partitioning (non cycle-
breaking) diagrams are often very wide. 75% of the projects (12 of 16) had the
diagram width consisting of half of all the modules, i.e. half the modules that
were in the diagram were all on one row. On average the traditional partition-
ing diagrams width were 35.1% greater than the ideal width, while the cycle
breaking algorithm resulted in an average of 3.6% less that the ideal width.

Among the 16 projects only 4 (25%) had no cycles at the level we expanded.
And only 1 of these had no cycles at all when expanded completely. The
project that had no cycles was the apache commons codec project, which is a
library of independent codes and therefore can be expected to have indepen-
dent modules and no cycles. In Chapter o, we argued that software projects

Traditional Partitioning

*' to~

I

~spS
;`*`P

7. EVALUATIONS

have a tendency for their module boundaries to become less defined, there-
fore have cycles, and thus need lightweight and easy to use tools to point the
cycles out. The large percentage of projects having cycles justifies this argu-
ment.

Sobjectweb

org.

Figure 52 - Strata display of thejEdit project
(same as Figure 5 and Figure 30)

We analyzed the cycles on the various projects to determine if our cycle
breaking algorithm broke the cycles in places that made sense. We found that
as expected the util modules were often at or near the bottom (also can be
seen in Figure 49). Similarly, as can be seen with the j Edit project in Figure
52, the algorithm often put the gui modules in higher layers. In the Buddi
project, as can be seen in Figure 53, the view and the controller depended
on the model. Further, as in Figure 54, among the view and the controller,

7. EVALUATIONS

the controller classes mostly depended on the view classes with the excep-
tion of a few core controller classes (like the accessibility support).

$ util $ plugins

$ controller t view
s model

$Bprefs
org.homeunix.drummer.

Figure 53 - Strata display of the buddi project

0 controler.CategoryModifyDtiaog e controker.Prefernaiclog

0 contror.SdhdedransaconsistFrame 0 controer.CagoryistPanel

0 controer.Aoun a1og controer.SdedueModfyiog

(controler .AcwttVst1ane -ontrole Xr.na re

G controler.TranslateKeys ctroler.Translate

org.homeunix. drummer.

Figure 54 - Strata display of the view and controller of the buddi project

7.2. USER- STUDY WITH STRATA

With support for cycle breaking built and tested with various projects we
wanted user-feedback of developers using Strata on their own codebases. Our
goal was both to verify the need for the tool, but also to get feedback on
layout, and understanding requirements of the tool. We did this by conduct-
ing studies with developers on seven projects.

7.2.1 Methodology

We worked with the primary developers on seven projects. System A and Sys-
tem B were proprietary and we were asked to not include some details not

113

7. EVALUATIONS

relevant to the case study (such as the names of the projects and the clients
they were actually implemented for).

We performed a demonstration of Strata on one of our test codebases, and
asked the developers to install Strata and give us feedback on the tool. We
asked a number of questions regarding the tool, the approach, and their ex-
pectations of it. In particular, we wanted to know if they liked the layered ap-
proach and the manner or layering, or if they wanted a different form of
module layout. We also asked if the visualizations they observed matched
their understanding of the systems, and what deviations they identified (such
as Strata not behaving well, or the code being possibly wrong). We tried to get
an understanding of the helpfulness of the tool and gather any feedback that
they might have had on it.

7.2.2 Results & Discussion

Developers using Strata generally found the tool helpful. At the beginning of
the session, some were initially suspect of the benefits of Strata. This was par-
tially because they were typically very busy and wanted to get back to their
work, but was also magnified by most projects' tendency to organize at the
highest level modules that represent overrides of externally provided functio-
nality. Users needed to be informed that if the modules seemed irrelevant at
the top-most level, they should choose the biggest or most familiar module
and double-click on it for expanding (and that they could look at the other
modules later). Once the top most module was expanded, developers began
to quickly get an understanding of the benefits of Strata.

All except one user explicitly mentioned that they liked the layers with one
user saying "what makes sense here is organizing by dependencies". Part of
what the developers liked about the diagram was its compactness compared
to traditional diagramming tools mentioning happily that "it was like trees
but it also had arrows".

Users liked being able to mouse over modules so that the dependencies to
and from it were shown. Users felt that the layers building upwards were nat-
ural.

114

7. EVALUATIONS

com.apm.dev,

Figure 55 - One of the higher-level views of System A.
Figure shown with all non-downward dependencies being drawn

System A, shown in Figure 55, shows the display after expanding the largest
module for System A and shows all dependencies that need to be examined,
i.e. dependencies that are not going downwards. From the figure, it can be
seen that some of the modules use the classes in the exceptions module. In
addition, as in this case developers found that the layerings were close to ex-
pectations.

In 6 of 7 cases, the developers were able to very quickly point out "the one
wrong thing with the diagram", and were curious as to the reason for the dev-
iation. The reasons for deviations varied. Sometimes they were related to like-
ly errors in the implementation of the underlying project. In one case the dev-
iation pointed the developer to a part of the project where they would want to
conduct a more extensive review with the shown information. And in another
cases it reminded of refactorings that needed to be completed. The developers
also mentioned that the layering gave good insight into the code, and one de-
veloper mentioned wanting to use the diagrams as a starting point to get new
developers to understand the structure of the code. 5 of 7 developers men-
tioned finding interesting things that they knew at one time but had forgot-
ten.

Users appreciated that the sizing indicated importance of the modules, and
gravitated towards the larger ones. But this also made them ask for better
support for the important items. Other than emphasizing modules based on
code size some users wanted to emphasize modules based on the "time I
[just] spent in it" or "time I spend [editing it] over the last month". There was
no general agreement on the right metric for importance and emphasizing
the modules. Related to choosing the appropriate metric is that there seems a
need to also bias weights related to their context when launching Strata. By

115

7. EVALUATIONS

default Strata shows dependencies from the current project to any code being
used, which also includes other projects in the current workspace. Users liked
this but wanted Strata to adjust the weights to the current project and em-
phasize those modules.

3 users wanted to move a module from the default. For one user this hap-
pened because Strata had been too aggressive in ignoring dependencies to
break cycles and the developer wanted the two modules of the cycle to be in
the same layer. In 2 cases (28%) Strata had made an "obvious" mistake which
the developers wanted to quickly fix.

Developers appreciated the fluidity with which they could look at more gra-
nular aspects of their projects, especially when they would find unexpected
dependencies in their projects and would want to examine the set of involved
modules in more detail.

As can be noticed from Figure 55, a limitation of the default views shown in
Strata was that they sometimes showed the modules along technology boun-
daries - placing all code accessing the database in the dao module and the
business logic in the ejb module. Having modules organized along technolo-
gy boundaries is not the default way of thinking about the project. While the
technical separations were useful, the business domain diagrams where ex-
pected to be the default. The developer did appreciate being able to expand
the modules in Figure 55, group classes and save them as modules, to quickly
create their own module descriptions for opening them with Strata (as shown
in Figure 56).

116

7. EVALUATIONS

com.apm.arch

Figure 56 - Business domain view of System "A" using Strata.

Developers wanted to use Strata in different ways. While some developers
were interested in why the diagrams did not appear as expected, other devel-
opers seemed to focus more on the diagrams as the reality and wanted to un-
derstand the impact of their changes. Developers also wanted Strata to help
in situating themselves, by providing an indication in the diagrams of the
code elements involved in their current task. They felt that Strata would be
useful for both a new project that they were joining as well as the current
project that they were working on.

Two limitations of Strata were felt by user. The first one was that developers
would have liked to have the architectural diagrams be based on runtime data
as well. The other need was for Strata to connect to currently available design
documents and provide verification capabilities.

7.3. USER-STUDY WITH RELO

In order to evaluate the strengths and weaknesses of Relo, we conducted a
controlled user-study of Relo on bug fixing tasks. Over a period of 6 months
we iterated through 15 users while refining the study and Relo. We then ran a
controlled study on 13 users. The goal of the study was to demonstrate the
validity of approach used in Relo. Secondary goals were to detect usability
issues in Relo, and gain more insight into developers' decision processes
when using tools to help in the comprehension of large projects.

117

S u enroment

7. EVALUATIONS

7.3.1 Method

In order to closely resemble traditional large software development projects,
we searched from projects having over looK lines of codel2. While larger
projects do exist, most strengths and weaknesses of Relo were expected to be
found in the codebase. The goal for the projects was to either have access to a
developer on the project to verify the bug fix or for the project to have an es-
tablished bug database which could be used to identify bugs and their fixes.
In order to demonstrate the studies accuracy over varying codebases, we se-
lected two projects: the LAPIS project [7] consisting of over 150,000 lines of
code and the Ant project consisting of over 200,ooo lines of code.

To best select experienced software developers, study participants were re-
quired to have atleast a year of worth of Java development experience. Partic-
ipants further could not have looked at the code of Lapis or Ant before.

The study setup consisted of two 19" LCD monitors sitting right next to each
other and running at 1280x1024 pixels. On the left monitor we had an Eclipse
workbench running Relo maximized (no other views were open), and on the
right monitor we had the default Java Development Tooling (JDT) perspec-
tive of Eclipse. Study participants were informed that they could change this
configuration, but no one did so.

After a short description and demo of Relo, study participants were given
three tasks. The first task was a warm-up task during which the study facilita-
tor helped them with both the task and the Relo features. Users where then
given a bug to find the solution to from Ant and Lapis. The bugs were chosen
from the projects bug database, and the first bugs that were deterministic,
reproducible, and not OS-specific were selected for the task. In the tasks the
developers did not have to write the needed code, but had to mention the ex-
act location/cause of the bug or implementation location of the feature addi-
tion. After the tasks users were asked to answer questions that measured
their understanding of the system.

Participants used a think-aloud protocol [52][63], and their actions were rec-
orded by screen capture software and event logging. The study concluded
with a questionnaire and a short semi-structured interview.

THE STUDY TASKS

Both study tasks included a description of the task, and a set of short hints.
The hints were designed based on the information provided in the tasks ques-
tions, as opposed to using any information or understanding from the code-
base. Users were told to do the task and continue when they knew exactly
what needed to be changed to fix the bug.

12 Size of code base was measured using the command 'wc'.

118

7. EVALUATIONS

The Ant task (Figure 57, Figure 58, Figure 59 and Figure 60o) required fixing
an old bug that we had selected from the Ant bug database. We chose an old
bug so that we could have a verified solution to the bug. The chosen bug had
id 3742613 and also included a test-case to reproduce the bug attached origi-
nally to the bug descriptions. Through preliminary studies questions we rea-
lized and added a small background on Ant as well.

The Lapis task (Figure 61 and Figure 62) required adding a small feature
which had components already implemented to the codebase.

Figure 57 - Background for the Ant task.

13 http://issues.apache.org/bugzilla/showbug.cgi?id=37426 on Ant version 1.6.5

119

Background

This bug is from the Ant project when providing support
for JUnit tasks. Below is an example of a simple build
file for ant.

<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="build" name="ant-test">

<path id="ant-test.classpath">
<pathelement location="bin"/>

</path>
<target name="build">

<javac debug="true" debuglevel="$ { debuglevel }"
destdir="bin" source="${source}" target="$ {target}">

<src path="src"/>
<classpath refid="ant-test.classpath"/>

</javac>
</target>

</project>

What is the cause of the below bug? What needs to be mod-
ified to fix it?

Reported Bug

Summary: task doesn't print all the Test names when us-
ing forkmode='once'

Description:
Hi,

if you use forkmode='once' for your junit task, the names
of tests are not printed to the console. Only 1 test-name
is printed!!!

for example:

junit:
[junit] Running org.example.MyTest3
[junit] Tests run: 1, Failures: 0, Errors: 0, Time

elapsed: 0,05 sec
[junit] Tests run: 4, Failures: 0, Errors: 0, Time

elapsed: 0,01 sec
[junit] Tests run: 4, Failures: 0, Errors: 0, Time

elapsed: 0 sec

However,
the expected output is (which is the same output as you
get when using forkmode='perTest'):

junit:
[junit] Running org.example.MyTestl
[junit] Tests run: 1, Failures: 0, Errors: 0, Time

elapsed: 0,05 sec
[junit] Running org.example.MyTest2
[junit] Tests run: 4, Failures: 0, Errors: 0, Time

elapsed: 0,01 sec
[junit] Running org.example.MyTest3
[junit] Tests run: 4, Failures: 0, Errors: 0, Time

elapsed: 0 sec

Figure 58 - The Ant task.

120

7. EVALUATIONS

7. EVALUATIONS

Test Case:
The lines below show a junit test case, and provide the
options to reproduce the bug. Running the test case
should require running the Main.main method in the
project with the arguments '-buildfile text.xml test'
-- test.xml --

<?xml version="l.0" encoding="UTF-8"?>
<project basedir="." default="build" name="ant-test">

<path id="ant-test.classpath">
<pathelement location="bin"/>

</path>
<target name="build">

<javac debug="true" debuglevel="${debuglevel}"
destdir="bin" source="${source}" target="${target}">

<src path="src"/>
<classpath refid="ant-test.classpath"/>

</javac>
</target>

<target name="test">
<!--

<junit fork="on" forkmode="perTest" printsummary="on">
<junit fork="on" forkmode="once" printsummary="on">

<junit fork="on" forkmode="once" printsummary="on">
<test name="tstPckg.HelloTest" />
<test name="tstPckg.AnotherTest" />

<classpath refid="ant-test.classpath"/>
</junit>

</target>
</project>

Figure 59 - The test case for the Ant task.

Hints (try answering these to figure out the bug):

1. Where is the correct code being outputted called from, i.e. what
code displays "Tests run"?

2. Where is the code that is only being printed in some cases
called from, i.e. what code displays "Running"?

3. How does the execution of the unit tests call the two different
outputs? What code needs to be changed to have the desired
behavior as needed by the bug

Figure 60 - Hints provided for the Ant bug.

121

i

7. EVALUATIONS

Figure 61 - The Lapis task.

Hints (try answering these to figure out the bug):

1. What code is responsible for the "Named Patterns" list, i.e.
where was it created?

2. Where should you be adding the fix, i.e. what gets called when
a node is selected in the Named Patterns list?

3. What already implements the functionality that needs to be
added, i.e. what gets called when the node is expanded?

Figure 62 - Hints for the Lapis task.

COMPREHENSION QUESTIONS

To measure users understanding during the task we chose to use ask users a set
of questions about the codebase after the fixed the bug. In order to ensure that
these questions were not biased, the questions were selected based on a study
done by Sillito et al. [78] on the questions programmers ask when doing such
coding tasks. There are 8 such types of questions and are listed in Figure 63 and
Figure 64. Before the study we asked 4 users to do the bug-fixing tasks and then
told them to generate a question based on each type. These 4 users then voted on
the questions generated by the other 3 users, and we picked 1 question of each
type.

122

The Named Patterns list has a count in parentheses after each pattern.
This count doesn't update often enough. At the very least, it should up-
date when the user clicks on it. For example, suppose you start with a
blank document (File/New File). Then search for English\Word in the
named patterns list; you'll see that the Word entry in Named Patterns
has (0) after it. Now edit the document to add some words: "some text
here". Word still has (0) after it, which is updated if you collapse and
expands the "English" node. Fix it so that clicking on the Word entry in
the Named Patterns list updates it.

7. EVALUATIONS

1. FINDING INITIAL FOCUS POINTS

* Which type represents this domain concept or this UI element or ac-
tion?

* Where in the code is the text in this error message or UI element?
* Where is there any code involved in the implementation of this beha-

vior?
* Is there a precedent or exemplar for this?
* Is there an entity named something like this in that unit (for example

in a project, package or class)?

2. BUILDING ON POINTS - QUESTIONS ABOUT TYPES

* What are the parts of this type?
* Which types is this type a part of?
* Where does this type fit in the type hierarchy?
* Does this type have any siblings in the type hierarchy?
* Where is this field declared in the type hierarchy?
* Who implements this interface or these abstract methods?

3. BUILDING ON POINTS - ENTITIES AND RELATIONSHIPS FOR INCOMING
CONNECTIONS

* Where is this method called or type referenced?
* When during the execution is this method called?
* Where are instances of this class created?
* Where is this variable or data structure being accessed?
* What data can we access from this object?

4. BUILDING ON POINTS - ENTITIES AND RELATIONSHIPS FOR OUTGOING
CONNECTIONS

* What does the declaration or definition of this look like?
* What are the arguments to this function?
* What are the values of these arguments at runtime?
* What data is being modified in this code?

Figure 63 - Questions Programmers Ask During Software Evolution Tasks - Part I.

123

7. EVALUATIONS

5. UNDERSTANDING A GRAPH - BEHAVIOR AND LOGIC

* How are instances of these types created and assembled?
* How are these types or objects related? (whole-part)
* How is this feature or concern (object ownership, UI control, etc) im-

plemented?
* What in this structure distinguishes these cases?
* What is the behavior these types provide together and how is it distri-

buted over the types?
* What is the 'correct' way to use or access this data structure?
* How does this data structure look at runtime?

6. UNDERSTANDING A GRAPH - DATA AND CONTROL-FLOW

* How can data be passed to (or accessed at) this point in the code?
* How is control getting (from here to) here?
* Why isn't control reaching this point in the code?
* Which execution path is being taken in this case?
* Under what circumstances is this method called or exception thrown?
* What parts of this data structure are accessed in this code?

7. GROUPS OF GRAPHS - RELATIONSHIPS BETWEEN MULTIPLE GRAPHS

* How does the system behavior vary over these types or cases?
* What are the differences between these files or types?
* What is the difference between these similar parts of the code (e.g.,

between sets of methods)?
* What is the mapping between these UI types and these model types?

8. GROUPS OF GRAPHS - CHANGING GRAPHS AND THEIR IMPACT ON THE
SYSTEM

* Where should this branch be inserted or how should this case be han-
dled?

* Where in the UI should this functionality be added?
* To move this feature into this code what else needs to be moved?
* How can we know this object has been created and initialized correct-

ly?
* What will be (or has been) the direct impact of this change?
* What will be the total impact of this change?
* Will this completely solve the problem or provide the enhancement?

Figure 64 - Questions Programmers Ask During Software Evolution Tasks - Part II.

124

7. EVALUATIONS

7.3.2 Results &Discussion

The exploration capabilities are an important aspect of Relo, and we found
that participants liked the ability provided by navigation buds to understand
the surroundings fast, especially the ability to click on the buds and rapidly
see the different code artifacts connected by the various relationships. Four of
12 participants mentioned during the study (without prompting) that they
liked the ability to examine the code quickly. Participants found that the na-
vigation buds gave them good control of the generated diagrams. They did
feel that they were able to access code that they wanted (4.6 on a 7-point Li-
kert scale). Users seemed to be able to use to get more easily situated in the
codebase, allowing them to explore around faster. One missing feature men-
tioned was an integrated search mechanism for the entire codebase; while
Relo does support exploring from a given starting point, searches need to be
performed in a separate tool and then brought into Relo. Participants also felt
slowed down by Relo when the navigation buds would result in around six
items or more - in the JDT, these developers were able to use the keyboard
quickly to navigate such lists faster than a mouse could be used to manage
such code artifacts. Better keyboard access to Relo might help in such cases.

Developers using previous visualization tools have found them to be over-
whelming [85]. By contrast, participants did not find Relo to be overwhelm-
ing (2.6 on a 7-point Likert scale14 to the assertion of the tool being over-
whelming). Five participants indicated strong disagreement, while the re-
maining participants indicated during the interview that their sense of being
overwhelmed was really caused by the task and the large codebase given to
them, while Relo was very helpful for the task.

Participants also understood the code artifacts that were being automatically
added (like parent class/packages and inheritance relationships). They did
not feel helpless with manipulation of the interface. Even given the large
tasks 32.96% of items added to Relo were added by the user explicitly, with
the rest being added automatically via selection. They found the tool-tips use-
ful in explaining the various navigation buds, and liked the capability of being
able to organize the artifacts and their relationships into "something rele-
vant". Five of the participants mentioned wishing that they had the tool earli-
er for their previous projects, and three other participants mentioned the tool
would be helpful in understanding code written by others.

We measured understanding by asking those users that made significant
progress with each task to answer the questions related to it. To measure
progress we created a set of 8 milestones that each user would hit in complet-
ing the task. They were:

14 In the Likert scale, 1 represented 'strong disagreement', 3 represented 'disagreement' 4 represented
'neutral', 5 represented 'agreement' and 7 represented 'strong agreement'.

125

7. EVALUATIONS

1. This happened when the participants started looking at the code.
Looking at the main method in a project would qualify here.

2. Breadth First: This represented the stage if a user would systemat-
ically try to understand the entire codebase. While rare in expe-
rienced developers, some of our participants had not worked with
such large projects before and did try to understand the codebase
completely.

3. Depth First: This represented the stage when a user would start at
some basic point in the code and then follow references to various
field in order to understand the codebase. While not purely a
depth first exploration, this strategy is relatively a lot more depth-
first than the breadth first strategy. Users that his this milestone
often made good progress.

4. Found Hint 1: Users that were able to find the relevant part of the
code relevant to the first hint hit this milestone.

5. Found Hint 2: Users that were able to find the relevant part of the
code relevant to the second hint hit this milestone.

6. Found Hint 3: Users that were able to find the relevant part of the
code relevant to the third hint hit this milestone.

7. Users hit this milestone when they were able to suggest an answer,
but were not yet comfortable enough to say with any certainty that
it was the solution.

8. Users hit this milestone when users were comfortable with their
answer.

Some users did make progress by using other avenues than the provided
hints. However, in all such cases users did need to hit two main distinct code
locations specific to their strategy (milestone 4 and 5), and did need to pull
together the information to solve the task (milestone 6).

For example, consider a user doing the Lapis task with Relo. On hitting miles-
tone 4, he would have found the code responsible for creating the "Named
Patterns" list and associated fields. Doing so would give Figure 65. Tracking
what code gets called when nodes in the "Named Patterns" list nodes are ex-
panded, results in milestone 5 and Figure 66 - implying that the grayout ()
method needs to be called by the selection listeners as shown in Figure 67
and part of milestone 6.

126

7. EVALUATIONS

Figure 65 - Milestone 4 with Lapis using Relo
Searching for the creator of the Named Patterns list in Lapis.

ED sw gI

0 MpltiDotPahernPane
SMutiDocPattemPane~Coordina~tor)

15 Members>

Figure 66 - Milestone 5 with Lapis using Relo

127

G LibraryTree

e addibraryTreeistener(LibraryTreeListenr)
e vauechanged(TreeecbonEvenQ)

xO t3rbeePath)

3 Members>

56 Members -

62 Claesx3

(,.PatternPane

e PatternPane(iCoordhr tr)
66 Members,>

Ir

'•i•
II•(

Figure 67 - Milestone 6 with Lapis using Relo

Each users progress and the number of questions answered is listed below
in Table 9:

Table 9: Users performance on Study Tasks

Task 1 Task 2

User Proj Relo Progress Questions Proj Relo Progress Questions
1 Ant Yes 5 Lapis No 5

2 Lapis Yes 6 Ant No 5
3 Ant No 8 Lapis Yes 8 3
4 Lapis No 6 0 Ant Yes 5 0
5 Ant Yes 5 4 Lapis No 8 7
6 Ant No 4 Lapis Yes 5
7 Lapis Yes 4 Ant No 7 5
8 Ant No 5 4 Lapis Yes 8 5
9 Lapis No 6 1 Ant Yes 6 2

10 Ant Yes 5 6 Lapis No 4 2
11 Lapis No 7 4 Ant Yes 7 4
12 Lapis Yes 8 4 Ant No 5 3

7. EVALUATIONS

128

7. EVALUATIONS

Task 1 Task 2
User Proj Relo Progress Questions Proj Relo Progress Questions

13 Ant Yes 6 6 Lapis No 6 7

From the table it can be seen that on average users did make more progress
(+8%) and answered more questions correctly (+43%) when using Relo.
However, in both cases there is a large amount of noise and the numbers are
not statistically significant. The three possible hypothesis that could be in this
data are:

I. Improvement because of using Relo.

II. One task is harder than the other.

III. There is a significant learning effect.

Analyzing the data shows that for Hypothesis I is supported by 5 user's data
and contradicted by 3 user's data, i.e. 3 users performed worse when they
used Relo. For Hypothesis II the Ant task being harder than Lapis is sup-
ported by 6 user's data and contradicted by 2 user's data. Hypothesis III is
supported by 4 user's data and contradicted by 4 user's data. Thus, the Ant
task is likely harder than the Lapis task. Getting the average performance dif-
ferent for Ant users also shows this to be true, but again the values are not
significant.

Plotting the progress improvement (Figure 68) we see that of the three users
doing worse with Relo, in two of the cases (4 & 5) the users where using Relo
while doing the harder Ant task. Collecting more data should allow us to
quantify the amount of the difficulty of the ant task, and help in reducing
noise for the Relo improvements.

Progress Improvement with Relo
80%

60%

40%

20% -

0% -

1 2 3 6 8 9 10 11
-20%

-40%

-60%

129

-I - -

12 13

I I- ~ - -

7. EVALUATIONS

Figure 68 - Users progress improvement with Relo.

In further examining Relo's effect on progress improvements, we can look at
the actions done by users during the study, by plotting the number of items
automatically added to Relo, their number of selections of items in Relo, and
the number of moves of nodes in Relo. Figure 69 and Figure 70 show these
plots for user 5 (who did worse with Relo) and user 8 (who did better with
Relo) respectively.

Examining user 5's actions it can be seen that while he did continue exploring
in the IDE and thereof the auto-adds keep increasing, he just tried looking at
and using Relo at two times during the study - once near the beginning and
once near the end. Thus, Relo likely did not slow his progress during the
study. Looking at user 8's actions it can be seen that his selections in Relo
keep gradually increasing and he therefore did use Relo throughout the study.
It is also worth noting that the number of times that user 8 moved a node is
much less than the number of selections he made in Relo, i.e. Relo's layout
engine was effective in placing nodes.

10 15 20 25 30 35 40 45 50 55 60

Time (min)

Figure 69 - User 5's actions during the study.

130

200

180

160

140

120

100

80

60

40

20

0

I~~_

__

7. EVALUATIONS

Figure 70 - User 8's actions during the study.

During the interview, all participants admitted to starting each task in the
Eclipse Java Tooling (JDT) because that was what they were used to. While
we had expected a bias towards the familiar tools and had encouraged partic-
ipants to use Relo, the size of the codebase and tasks made them initially ig-
nore the tool. However, as each task progressed, the study participants most-
ly drifted towards Relo. This usage of Relo would happen as the complexity of
the task increased: Relo would first be used as a contextual map, and then the
participants would work directly with it. Even though minor bugs in Relo
(with layout) would sometimes drive developers back to the JDT, they would
keep drifting back into Relo to mitigate the task complexity.

One obstacle to using Relo was in dealing with dynamic/runtime code struc-
ture. For one task, a participant used exception traces to detect bugs to get
runtime information and then tried to understand the relationships in the
code. However, since Relo currently only infers static relations from the code,
it was not able to draw relationships between such method calls. Related to
this is the representation of control flow in the visualization which was a larg-
er part of the Ant task. Relo diagrams are closer to UML class diagrams than
other interaction diagrams like sequence diagrams. In some cases, this results
in Relo visualizations not being very helpful.

IUU

90

80

70

60

50

40

30

20

10

0

85 90 95 100 105 110 115 120

Time (min)

IT\T\

7. EVALUATIONS

The most interesting result of the study was the understanding of the cases in
which Relo was most helpful to developers. In large codebases since develop-
ers use an as-needed/opportunistic approach they often take approaches to
the task that only result in dealing with 2-3 classes/methods. In such cases,
they would find navigating with Relo to be more of a hindrance since mouse-
based navigations do not have as many shortcuts available as keyboard based
navigations. However, in cases where more than 3 code artifacts are interact-
ing, participants found Relo very useful.

There were a number of challenges to getting good results. While inexpe-
rienced programmers would either aimlessly make progress or would take a
breadth-first strategy in understanding the code, more experienced pro-
grammers typically take a more opportunistic strategy in understanding the
code. The problem is that taking this approach requires the developer to si-
tuate in the workspace, which for a large project can take time. Another chal-
lenge is that some experienced programmers don't necessarily have Eclipse
experience and end up spending time getting comfortable with the IDE. Fur-
ther providing the study framework does reduce the stability of Eclipse and
sometimes unexpectedly causes some of the Eclipse base functionality to stop
working. Similarly Eclipse has the debugging functionality as part of a sepa-
rate perspective, switching perspectives causes Relo to be unexpectedly hid-
den.

7.4. FEEDBACK FROM THE FIELD WITH RELO

Relo has received a positive response from the Eclipse plugin community.
The plugin has been rated as the top Eclipse Plugin in the UML category with
one of the largest number of community votes (139 people have voted an av-
erage rating of 8.5/1015). Users have mostly appreciated the abilities to only
show parts of the code in the diagram and the ease to explore and expand a
diagram. Users' comments also indicate fairly sophisticated usage of Relo, for
example, them trying to explore the codebase and building up a diagram,
then saving it, and opening it later on to continue exploration.

All negative comments from the field have been for fixing bugs. The single
largest has been in dealing with the various platform configurations for dep-
loying the plugin, i.e. in supporting different versions of Java VM, different
versions of Java in the users project, in supporting different versions of Ec-
lipse, and in supporting different plugin combinations that might be availa-
ble.

Users have provided helpful comments such as:

15 As of October 12t: http://www.eclipseplugincentral.com/Web_Links-index-req-viewcatlink-cid-19-
orderby-rating.html

132

7. EVALUATIONS

"This is cool!! Last year I was exploring JHotDraw and it was a lot of work
to grasp the essential principles (even with all the available papers and
pattern descriptions). Your tool helps a lot. Go on like that. I am looking
forward to the first major release (with less bugs)."

133

8. CONCLUSIONS

This concluding chapter summarizes the contributions of the dissertation,
and presents both questions directly raised by this work and future directions
of taking this approach.

8.1. SUMMARY OF CONTRIBUTIONS

For developers, understanding code is both a large and an important compo-
nent of their work. Given the complexity and size of the underlying codebase,
developers can easily get overwhelmed using tools in assisting the compre-
hension process. By building Relo and Strata this thesis demonstrates and
evaluates a number of ideas to help in code understanding tools:

* The use of diagrams familiar to developers, so that developers can under-
stand code without additional training and can benefit from relationships
emphasized by the diagram. In particular, the building of tools to support
the usage of UML class diagrams and layered architecture diagrams. And
further, the exploration of implementation issues in using building such
tools, such as providing effective layout support.

* The use of an interactive diagrammatic exploration environment for de-
velopers to select and find code elements relevant to their task.

* The tracking, use of, and linking of developers' explorations in the IDE
editors, to assist in comprehension while the developer focuses on non-
comprehension aspects of the task.

Beyond the ideas built into Relo and Strata, this thesis provides a number of
related contributions. It consists of a survey of developers' experiences on the
effectiveness of various documentation techniques when used for program

135

8. CONCLUSIONS

comprehension. Further this thesis contains qualitative and quantitative
feedback from both controlled lab studies and field deployments of Relo and
Strata.

8.2. RAISED QUESTIONS

Building Relo and Strata has raised a number of questions, many of which
have been examined in this dissertation. However, an in-depth examination
of some of the below will be helpful in improving the tools quality

* Improved Layout Engines: While both Relo and Strata have had mul-
tiple iteration in the development of their layout engine, there is room for
further improving the engine. Simply put, providing interactive layout
support for diagrams with visual constraints has a number of challenges.
Not only is there a need for an algorithm that provides a good guess for
code semantics that the algorithm doesn't really understand, but such an
algorithm also needs to deal with decayed code, and further provide sup-
port for users interaction with the diagram.

* Improved Interactivity: Both Relo and Strata have support for basic
direct interaction with the shown code elements, to either show more
code element, to zoom into details of the shown code, or for the removal
of the shown code elements. In fact, support has been provided for com-
plex queries such as shown with autobrowse. However, such provided
support include very simple graph queries, and presents an opportunity
for an intelligent algorithm which users team knowledge towards quickly
building relevant and useful diagrams.

8.3. LOOKINGAHEAD
This work highlights the need for improved tool support for program com-
prehension by supporting interactive exploration of code in familiar dia-
grams. Further help can be provided in understanding code or other non-
software domains by providing support for some of the below.

8.3.1 Design Patterns

Experienced developers have a good understanding of design patterns. They
are often able to use them effectively in understanding parts of codebases by
recognizing the patterns in the underlying codebase, i.e. in a top-down man-
ner. While design patterns seem to form an essential part of understanding
code using them in building effective program comprehension tools has sig-
nificant obstacles.

A key challenge has been the effective recognition of design patterns. Design
patterns are high-level concepts and have a great degree of variability in their
instantiations. To take into account such variability design pattern detection

136

8. CONCLUSIONS

engines can be tried to be implemented on a fuzzy scale. Additionally, oppor-
tunities exist for interfaces for a programmer to interactively use a detection
engine for easing the detection of design patterns.

The other challenge in providing support for design patterns is that it is not
clear as to the form of an appropriate visualization of the design patterns. In
particular, members of design patterns play different roles inside the pattern
- it is not clear as to how these roles should be visualized, especially in cases
where a member performs more than one role as in different patterns.

8.3.2 Program Knowledge Extraction

Various types of annotations can be extracted automatically from a system for
use in helping developers explore code. These approaches do however have a
number of challenges in successfully adopting them.

Static program analyses build a model of the program which is then simu-
lated to extract one of a possibly large number of useful properties from code.
Effective usage of such analyses for program comprehension, however, re-
quires the appropriate selection and definition of extractable properties that
are important for understanding code. Additionally, such analyses can take
significant computation time that would affect the usefulness of such tech-
niques. Such analyses can be made practical by splitting them into multiple
parallelizable chunks and caching results to perform the analyses only on
changed portions of the codebase.

Runtime analyses can also be helpful for program comprehension. These in-
volve analyses based on values taken up by variables at runtime. Again, leve-
raging this approach requires dealing with the involved performance over-
head. In particular, the overhead of logging data during the traced program's
run can be significant. Other challenges include providing support for logging
in distributed environments and dealing with interactive application.

Finally, program knowledge can be extracted using heuristics. While heuris-
tics cannot make guarantees on the detection of any particular property, they
have been shown to be effective in program comprehension tasks 141]. Simple
approaches such as using TFIDF on tokenized identifiers in the code can be
used to provide good starting points for developers exploring a codebase.

8.3.3 Different Diagram Types

While Relo supports exploration in UML like class-diagrams and Strata pro-
vides support for layered architectural diagrams, support for other popular
diagram types can potentially help developers with diagrams emphasizing
other properties of the codebase. For example, Message Sequence Diagrams
emphasize interactions between objects. Supporting such diagrams have
challenges in their having a stronger demand for runtime data and also in
some of these diagrams taking large space to show the important properties.

137

8. CONCLUSIONS

Beyond providing support for different diagram types, there is also an oppor-
tunity for the usage of colors and sizes to emphasize different properties of
components like recency of edits or browsing, and amount of edits or reuse in
the code base.

Additionally with the presence of these different diagrams is the need for
consideration between switching from one diagram type to another, and the
support for having more than one diagram type be shown in a single visuali-
zation. These can become a challenge especially in the cases when the defini-
tion of familiar for one diagram type conflicts with those of another.

8.3.4 Collaboration and Communication

While Relo and Strata are helpful for developers understanding code, they
can be used by an expert programmer to store annotations about the system
for use by a new programmer later on. These annotations can be of many
types. Bookmarking support for diagrams can implicitly define the imple-
mentation of a feature. Diagrams can be enforced as build rules and can be
injected into views inside the text editor. Comments in diagrams can be or
used for suggesting more code elements of interest to a user. More structured
annotations such as numbers can show control or data flow in a diagram for
futures viewers of a diagram, and powerful annotations can even be used by a
design pattern engine to capture and leverage design patterns used in a
project.

8.3.5 Support for non-sofhtare domains

Relo and Strata have been built on a general framework, which can be ex-
panded to other domains. Information-rich domains have both significant
amounts of structured data readily available and common graphical repre-
sentations to be used to show the data. Beyond expanding the underlying
framework for diagrammatic exploration in other domains, support can be
provided for working out-of-the-box using graph style sheets [59] as a basis
for the used diagrams.

138

REFERENCES

REFERENCES

[1] Apache Ant, ver 1.6.5, http://ant.apache.org, 2006.

[2] A. Bien, "UML Reverse Engineering ... not so important in real world
projects?", http://www.adam-
bien.com/roller/page/abien?entry=umlreverse engineeringnotso, 7th

Aug 2007.

[3] ComputerWorld, "Waiting for UML 2.0" interview with Grady Booch and
Bran Selic, Mar 2004,
http://www.computerworld.com/developmenttopics/development/story/o,
lo8ol,91325,oo.html, 2007

[4] Fujaba Tool Suite, http://wwwcs.uni-paderborn.de/cs/fujaba/

[5] jEdit, ver 4.3, http://jedit.org, 2006.

[6] JHotDraw. http://www.jhotdraw.org/

[7] The LAPIS Project, User Interface Design Group, MIT Computer Science
and Artificial Intelligence Laboratory, ver 1.2,.
http://groups.csail.mit.edu/uid/lapis/, 2007

[8] Longwell - Simile, ver 2.0, http://simile.mit.edu/longwell/, 2007

[9] Rational Rose, IBM, http://www.ibm.com/software/rational/

[lo] Together Technologies, Borland, http://www.borland.com/together/

[11] S. Bassil, and R.K. Keller, "Software visualization tools: survey and analysis".
IWPC 2001.

[12] M.J. Bates, "The design of browsing and berrypicking techniques for the on-
line search interface". Online Review, 13(5), October 1989, pp. 407-424.

139

REFERENCES

[13] L. O'Brien and C. Stoermer, "Developerure Reconstruction Case Study",
Software Engineering Institute, Carnegie Mellon University, Technical Re-
port CMU/SEI-2003-TN-oo8

[14] R. Brooks, "Towards a theory of the comprehension of computer programs"
Intemational Joumal of Man-Machine Studies, 1983

[15] Browning, T. "Applying the Design Structure Matrix to System Decomposi-
tion and Integration problems: A Review and New Directions". IEEE Trans-
actions on Engineering management, Vol. 48, No. 3, August 2001.

[16] S. K. Card and D. Nation. "Degree-of-Interest Trees: A Component of an At-
tention-Reactive User Interface". Advanced Visual Interfaces Conference,
2002.

[17] M. Cherubini, G. Venolia, and R. DeLine. "Building an Ecologically-valid,
Large-scale Diagram to Help Developers Stay Oriented in Their Code". In
VL/HCC 2007.

[18] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko. "Let's go to the white-
board: how and why software developers use drawings". In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (San
Jose, California, USA, April 28 - May 03, 2007). CHI '07. ACM Press, New
York, NY, 557-566.

[19] P. Clements, F. Bachmann, and L. Bass. "Documenting Software Develope-
rures - Views and Beyond", Addison-Wesley, 2003.

[20] T. A. Corbi. "Program understanding: Challenge for the 199os". IBM Sys-
tems Journal 28 (2), pp. 294-306, 1989.

[21] D. (ubrani6 and G. C. Murphy. "Hipikat: recommending pertinent software
development artifacts," ICSE 2003

[22] J. Davison, D. Mancl, and W. F. Opdyke, "Understanding and Addressing
the Essential Costs of Evolving Systems," Bell Labs Technical Journal, 5(2),
April-June 2000, pp. 44--54.

[23] F. D' etienne. "Software Design-Cognitive Aspects". Springer Practitioner
Series. 2001

[24] P. Devanbu, R. J. Brachman, P. G. Selfridge, and B. W. Ballard. "LaSSIE: a
knowledge-based software information system", ICSE 199o

[25] R. DeLine, "Staying oriented with Software Terrain Maps", In Proceedings of
the Workshop on Visual Languages and Computation, Sept 2005.

[26] R. DeLine, A. Khella, M. Czerwinski, G. Robertson, "Towards understanding
programs through wear-based filtering". ACM SoftVis 2005.

[27] K. Doan, C. Plaisant, and B. Shneiderman, "Query Previews in Networked
Information Systems". IEEE ADL 1996.

140

REFERENCES

[28] B. Dobing, and J. Parsons, "How UML is used". Communications of the
ACM, 49(5), May 2006, pp. 109-113.

[29] S. G. Eick, J. L. Steffen, and E. E. Summner Jr. "Seesoft - a tool for visualiz-
ing line oriented software statistics" IEEE Trans. On Software. Engineering
18(11), pp957-968.

[3o] D. A. Gebala and S. D. Eppinger. "Methods for Analyzing Design Proce-
dures", Proceedings of the ASME Third International Conference on Design
Theory and Methodology, pp. 227-233, 1991.

[31] N. Gershon and S.G. Eick, "Guest Editors' Introduction: Scaling to New
Heights", IEEE Comp. Graphics and Applications, 18(4):16-17, 1998.

[32] I. Gorton and L. Zhu. "Tool Support for Just-in-Time Architecture Recon-
struction and Evaluation: An Experience Report", Proceedings of the 27th
International Conference on Software Engineering, St. Louis, Missouri, USA,
15-21 May, 2005 (ICSE'o5).

[33] J. Gosling, B. Joy, G. Steele, and G. Bracha. "The JavaTM Language Specifica-
tion Third Edition", Addison-Wesley, 2005.

[34] J. Guo, F. Hiiffner, and H. Moser, "Feedback arc set in bipartite tourna-
ments is NP-complete". Information Processing Letters, 102(2-3), pp 62-65,
Apr. 2007.

[35] W. Harrison and H. Ossher. "Subject-oriented programming (a critique of
pure objects)." OOPSLA 1993.

[36] W. Harrison, H. Ossher, S. M. Sutton Jr., and Peri Tarr, "Concern Modeling
in the Concern Manipulation Environment." IBM Research Report
RC23344, September 2004.

[37] I. Herman, G. Melancon, and M. S. Marshall, "Graph visualization and navi-
gation in information visualization: A survey", IEEE Trans. on Visualization
and Computer Graphics, 6(1):24-43, 2000.

[38] R. Holmes and G. C. Murphy, "Using Structural Context to Recommend
Source Code Examples", ICSE'o5.

[39] S. Hupfer, L. -T. Cheng, S. Ross, and J. Patterson. "Introducing collabora-
tion into an application development environment" In ACM 2004 CSCW,
2004, pp 444-454.

[40] D. Janzen and K. D. Volder. "Navigating and Querying Code Without Get-
ting Lost", AOSD 2003.

[41] D. Jackson and A. Waingold. "Lightweight extraction of object models from
bytecode", ICSE 1999

[42] S. Jul, and G.W. Furnas, "Navigation in Electronic Worlds: Workshop Re-
port", SIGCHI Bulletin, 29(4), October 1997, pp. 44-49.

141

REFERENCES

[43] R. Kazman and S. Jeromy Carrier, "View Extraction and View Fusion in De-
veloperural Understanding", In Proceedings of the 5t International Confe-
rence on Software Reuse, 1998.

[44] M. Kersten and G. C. Murphy, "Mylar: a degree-of-interest model for IDEs",
AOSD 2005

[45] A. J. Ko, H. Aung, and B. A. Myers. "Eliciting Design Requirements for
Maintenance-Oriented IDEs: A Detailed Study of Corrective and Perfective
Maintenance Tasks". ICSE 2004.

[46] P. Kruchten "The 4+1 View Model of Developerure". IEEE Software. 12, 6
(Nov. 1995)

[47] P. Krutchen, R. Hilliard, R. Kazman, W. Kozaczynski, H. Obbink, and A.
Ran. The Software Developerure Review and Assessment (SARA) Report,
2002.

[48] 0. Lassila and R. Swick, "Resource description framework (RDF): Model
and syntax specification", http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222, February 1999. W3C Recommendation.

[49] T. D. LaToza, G. Venolia, and R. DeLine. "Maintaining mental models: a
study of developer work habits". In Proceeding of the 28th international
Conference on Software Engineering (Shanghai, China, May 20 - 28, 2006).
ICSE '06. ACM Press, New York, NY, 492-501.

[50] S. Letovsky. "Cognitive processes in program comprehension", In Proceed-
ings of Empirical Studies of Programmers, pp. 58-79. 1986.

[51] M. Levesque. "Fundamental issues with open source software development",
First Monday, 9(4) April 2004,
http://www.firstmonday.org/issues/issue9_4/levesque/

[52] ? - G. Lindgaard. "Usability Testing and System Evaluation: A Guide for De-
signing Useful Computer Systems", 1994, Chapman and Hall, London, U.K.
ISBN 0-412-46100-5

[53] G. Little, and R.C. Miller. "Keyword Command Completion in Java", Pro-
ceedings of the 22th IEEE/ACM international Conference on Automated
software engineering, ASE '07

[54] D. C. Littman, J. Pinto, S. Letovsky, and Soloway E. "Mental models and
software maintenance", In Empirical Studies of Programmers, Washington,
DC, pp. 80-98, 1986

[55] I. Majid and M. P. Robillard. "NaCIN - An Eclipse Plug-In for Program Na-
vigation-based Concern Inference". Proceedings of the Eclipse Technology
Exchange at OOPSLA, October 2005.

[56] G. Marchionini, "Information seeking in electronic environments", 1995,
Cambridge University Press.

142

REFERENCES

[57] G. Miller, "The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information", Psychological Review, 1956, vol.
63 pp. 81-97

[58] G. C. Murphy and D. Notkin, "Reengineering with Reflexion Models: A Case
Study", IEEE Software, 1997.

[59] E. Pietriga, "Graph Stylesheets (GSS) in IsaViz".
http://www.w3.org/2001/11/IsaViz/gss/gssmanual.html, November 2001

[6o] D. Perry, N. Staudenmayer, and L. G. Votta. "People, Organizations, and
Process Improvement". IEEE Software, 11(4), 36-45, 1994

[61] P. Pirolli, and S. Card, "Information foraging in information access envi-
ronments", Conference proceedings on Human factors in computing sys-
tems, 1995, PP. 51-58.

[62] P. O'Shea and C. Exton, "An Investigation of Java Abstraction Usage for
Program Modifications." IWPC 2005.

[63] J. Nielsen, "Usability Engineering", pp 195-198, Academic Press, 1993.

[64] N. Pennington, "Stimulus structures and mental representations in expert
comprehension of computer programs". Cognitive Psychology, 19:295-341,
1987.

[65] S. Reiss. "Visualization for Software Engineering - Programming Environ-
ments", Chapter 18, pages 259-276, in "Software Visualization", ed. Stasko et
al.

[66] Robillard, M.P.; Coelho, W. and Murphy, G.C. "How effective developers
investigate source code: an exploratory study", IEEE Transactions on Soft-
ware Engineering, 30(12), Dec. 2004, Pages: 889- 903

[67] M. P. Robillard and G. C. Murphy. "Automatically Inferring Concern Code
from Program Investigation Activities". In ASE 2003.

[68] M. P. Robillard and G. C. Murphy. "Concern graphs: finding and describing
concerns using structural program dependencies", In ICSE 2002.

[69] R. Roshandel, B. Schmerl, N. Medvidovic, D. Garlan, and D. Zhang, "Using
Multiple Views to Model and Analyze Software Developerure: An Experience
Report", University of Southern California, Center for Software Engineering,
Techincal Report USC-CSE-2003-5o8

[70] G. Sander. "Layout of compound directed graphs". Technical Report
A/o3/96, Universit at des Saarlandes, June 1996.

[71] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. "Using Dependency Mod-
els to Manage Complex Software Developerure". 20oth Annual ACM SIG-
PLAN Conference on Object-Oriented Programming Systems (OOPSLA
2005).

143

REFERENCES

[72] M. Shaw and D. Garlan. "Software Architecture: Perspectives on an Emerg-
ing Discipline". Prentice Hall, 1996.

[73] B. Shneiderman and R. Mayer. "Syntactic/semantic interactions in pro-
grammer behavior: A model and experimental results". International Jour-
nal of Computer and Information Sciences, 8(3): 219-238.

[74] B. Shneiderman, "Software Psychology: Human Factors in Computer and
Information Systems." Winthrop Publishers Inc., 1980.

[75] S. E. Sim and R. C. Holt. "The Ramp-Up Problem in Software Projects: A
Case Study of How Software Immigrants Naturalize", ICSE 1998

[76] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. "An Examination of
Software Engineering Work Practices" In Proceedings of CASCON '97, 209-
223, 1997.

[77] K. Sugiyama and K. Misue. Visualization of Structural Information: Auto-
matic Drawing of Compound Digraphs. IEEE Transactions on Systems,
Man, and Cybernetics, 21(4):867--892, July 1991.

[78] J. Sillito, G.C. Murphy, and K.D. Volder. "Questions Programmers Ask Dur-
ing Software Evolution Tasks", SIGSOFT'o6, November 5-11, 2oo6.

[79] V. Sinha, R. Miller, and D. R. Karger. "Incremental Exploratory Visualiza-
tion of Relationships in Large Codebases for Program Comprehension",
Poster, OOPSLA 2005.

[80] V. Sinha, R. Miller, and D. R. Karger. "Incremental Exploratory Visualiza-
tion of Relationships in Large Codebases for Program Comprehension",
Demonstration, OOPSLA 2005.

[81] V. Sinha, R. Miller, and D. R. Karger. "Relo: Helping users manage context
during interactive exploratory visualization of large codebases", ETX 2005.

[82] V. Sinha, D. R. Karger, and R. Miller, "Relo: Helping Users Manage Context
during Interactive Exploratory Visualization of Large Codebases". VL/HCC
2006.

[83] E. Soloway and K. Ehrlich, "Empirical studies of programming knowledge",
IEEE Transactions on Software Engineering, 10(5), PP. 595-609, September,
1984.

[84] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lampert, "Designing
documentation to compensate for delocalized plans". CACM, 31(11):1259-
1267, 1988.

[85] M.-A. Storey, H. Muller, and K. Wong, "Manipulating and documenting
software structures using SHriMP views", ICSM 1995.

[86] M.-A. Storey, H. Muller, and K. Wong, "How Do Program Understanding
Tools Affect How Programmers Understand Programs?", WCRE 1997.

144

REFERENCES

[87] M.-A. Storey, F. Fracchia, and H. Muller. "Cognitive design elements to sup-
port the construction of a mental model during software visualization".
IWPC 1997.

[88] M.-A. Storey. "Theories, Tools and Research Methods in Program Compre-
hension: Past, Present and Future", Software Quality Journal, Springer,
2006.

[89] S. M. Sutton, and I. Rouvellou. "Modeling of software concerns in Cosmos".
AOSD 2002.

[9o] C. Szyperski, "Component Software - Beyond Object-Oriented Program-
ming", ACM Press/Addison- Wesley, 1997.

[91] P. Tarr, H. Ossher, W. Harrison, and Stanley M. Sutton, Jr., "N Degrees of
Separation: Multi-dimensional Separation of Concerns." ICSE 1999.

[92] J. Teevan, C. Alvarado, M. S. Ackerman, and D. R. Karger. "The perfect
search engine is not enough: a study of orienteering behavior in directed
search". CHI 2004.

[93] Q. Teng, X. Chen, X. Zhao, W. Zhu and L. Zhang, "Extraction and Visualiza-
tion of Architectural Structure Based on Cross References among Object
Files". COMPSAC 2004.

[94] D. Tunkelang. "A Numerical Optimization Approach to General Graph
Drawing", Ph.D. Thesis, Carnegie Mellon University, 1999.

[95] A. von Mayrhauser and A.M. Vans. "From code understanding needs to re-
verse engineering tool capabilities". In Proceedings of CASE'93, pp. 230-239.

[96] L. Wang."Animated Exploring of Huge Software Systems", MS Thesis,
School of Info. Tech. and Engg., University of Ottawa, 2002.

[97] J. N. Warfield. "Binary Matrices in System Modeling" IEEE Transactions on
Systems, Man, and Cybernetics, vol. 3, PP. 441-449, 1973.

145

