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ABSTRACT

Microring resonators can be used as pass-band filters for wavelength division demultiplexing in

electronic-photonic integrated circuits for applications such as analog-to-digital converters

(ADCs). For high quality signal transmission, the resonant frequency of the filter has to be held at

certain value to allow minimum timing errors in the sampling of the signal. Thermal tuning is

used to compensate for any fabrication errors or environmental temperature fluctuations that

might lead to shift in the resonant frequency. With the optimized heater design and the proper

closed feedback temperature control circuit, the rings have very efficient on-chip thermal control

to maintain the resonant frequency within 280 MHz.
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CHAPTER 1

INTRODUCTION

1.1 Overview:

Since the fabrication and demonstration of the first laser in the late 50's, the field of optics has

seen many marvelous inventions such as optical amplifiers, resonators, modulators, low loss

waveguides and couplers, photodetectors and optical fibers. In the last 20 years, the merger

between electronics and optics has been a field of great interest for researchers all over the world.

Many scientists had published their visions and ideas for silicon based optical components for a

"photonic circuit" long before the real fabrication ideas were developed [1-3]. Major applications

of electrical and optical integrated circuits are for long haul communications. One of the

challenges faced today in high speed electronic circuitry is electronic jitter, which limits the

performance of the high speed communication tools. The idea behind an optical integrated circuit

is to use the optical components to transmit data as light rather than transporting an electrical

signal for communication. Limitations due to noise are more severe in electrical signals than

optical signals, which are explained in detail below. Two of the systems of interest in this work

are an electro-optical circuit for an analog-to-digital converter (ADC) and optical interconnects

for a high speed supercomputer. The main focus of the thesis will be on enhancing the

performance of an ADC using photonics. The system background describes an electrical ADC

and its limitations due to various noise sources. The alternative to an electrical ADC using

photonics is presented in Section 1.3.

1.2 System Background:

Long distance communication with pure analog signals is not feasible due to the degradation by

noise along the route. Advances in digital signal processing have enabled long haul

communications with good signal recovery at the receiver end. The ADC is a critical component

for most of today's technologies, namely in communication, instrumentation, signal processing

system, medical imaging, and radar system [4]. There are two main functions performed by an

ADC on a signal: sample and hold for a specified time, and quantize the held voltage into number



of levels. The sampling rate (fample) and the resolution (i.e. number of levels or number of bits -

N) are the most fundamental parameters of an ADC. Apart from the sampling rate and the number

of bits, signal-to-noise ratio (SNR) and the power efficiency figure-of-merit (F) are also important

parameters. As the name suggest, SNR gives the quality of the signal with respect to various

noises in the system, and is defined as the ratio of the root-mean-square signal amplitude (V,) to

the square root of the integral of the noise power spectrum over the frequency range of interest

[4]. In physical ADC devices, the number of bits is always lower than the stated number of bits

(N). In an idealized ADC, the only source of the noise is quantization error, which is due to the

smallest quantization step size represented by the least significant bit (LSB). The number of bits

(N) is related to the signal-to-quantization-noise-ratio (SQNR) by [4].

SQNR = 6.02N + 1.763[dB] (1.1)

The overall effective resolution includes noises other than quantization noise and is called the

effective number of bits (ENOBs). Other types of noises namely thermal, aperture, and

comparator ambiguity, degrade the overall performance of the system. In practice, it has been

found that the degradation from an idealized resolution to the ENOB is about 1.5 bits for practical

ADCs [4]. The ENOB for an ADC is related to the SNR by [4]:

ENOB = SNRbit = (SNR(dB) -1.763) (1.2)
6.02

The energy figure-of-merit (F) includes electrical power dissipation (Pdiss) of the system and

represents the total energy required per bit of data conversion.

F = Pdss (1.3)
2 SNRbit fsample

For an electronic ADC, the latest record F value is 65 fJ per conversion step with the sampling

rate of 50 Mega samples per second (MSPS) and 9 bits [5].

Growth in transistor technology in terms of speed and performance till the last decade had

enabled electronic ADCs to function well for various applications. However, a bottleneck is

approaching with the electronic ADCs in terms of achieving high sampling rate and relatively

high ENOBs. The growth rate has slowed down to 1.9 ENOB/decade with the highest achieved

sampling performance of 20 GSPS at 6.5 ENOBs [6]. With power dissipation of 1.1 W, the

sampling rate of 10 MSPS and the ENOB of 13 has been achieved [4]. Comparatively higher

resolution of 7 ENOBs is only possible with the sampling rate of 5 GSPS or less [4]. 11.8 bits

resolution has been shown with the sampling rate of 0.125 GSPS [4]. For low signal frequency,

SNR is constant. The noise increases with frequency, thus, the SNR goes down as the signal



frequency increases. Table 1-1 summarizes some of the electronic ADCs with the highest

sampling rate, ENOBs and the lowest power dissipation.

Sampling rate ENOB Power dissipation FOM * Ref. Year

(GSPS) (mW) (pJ/conversion)

IMEC 0.05 7.75 0.7 0.065 [5] 2007

Agilent 20 4.6 9,000 18 [6] 2003

Maxim 1.5 7.5 5,300 19.5 [7] 2002

te2V (EV8AQ160) 5 7.1 3,900 5.68 [8] 2007

Texas Instrument 0.125 11.8 420 0.95 [9] 2007

tNational 2 7.2 1,900 4.3 [10] 2007

Semiconductor

Rockwell 2 7 5,300 20 [11] 1995

Nordic 0.110 10.4 97 0.65 [12] 2005

Semiconductor

UCLA 2 6 310 2.4 [13] 2005

Table 1-1: Summary of the best electrical ADC.

(* calculated using equation 1.3, t ADCs with ENOBs >7 and fsmpl 2! 2GHz)

SNR is the dynamic measure of the ADC performance for high speed applications. The limitation

of achieving high resolution and large sampling rate for an ADC is due to the electronic jitter.

Aside from quantization noise, other important noise factors in an ADC are thermal, aperture and

comparator ambiguity [4]. Figure 1-1 shows the dependences of ENOBs and sampling rate on

different kinds of noises. Aperture jitter is due to the uncertainty in the sampling instant, i.e.

sample to sample variation in instant of time at which sampling occurs. Within the commercially

available electrical ADCs, there is a trend seen according to which, between 2 MSPS to 4 GSPS,

the resolution falls off 1 bit for doubling the sampling rate and the main cause is the aperture jitter

[4]. Two main causes for the sampling time error are the signal source, which could be the phase

noise of the input or clock signal, and the timing uncertainty of the clock buffers. Due to the

timing error in the built-in Phase-Locked Loop (PLL) that generates, stabilizes and distributes the

digital clock for sampling, ADCs do not sample at precisely equal time-intervals. A state-of-the-

art microwave source provides clock signals with timing jitter of about 10 fs; however, the clock

buffers degrade the overall jitter performance [14]. At high sampling rates, the speed of electronic

components also become one of the limiting factors. This is mainly due to comparator ambiguity

which is related to the ability of a comparator to make an unambiguous decision regarding the



relative amplitude of the input voltage. The finite speed with which the transistors in the

comparators are able to respond to a small voltage change is the reason for this limitation. In an

ADC, all the noise factors ultimately affect the SNR bit value [4].r V2FS 1/2

SNRBit,, log2 6kTR fsample -
( 1/2

SNRBitAperture = log12  2 -1 (1.4)
Y f sample "a

SNRBitAmbiguiy = 6.92f - 1
6.92sample

The variables in the above expressions are: VFS is the full-scale voltage of the analog input signal,

Reff is the equivalent thermal noise resistance, ra is the rms aperture jitter, and fr is the cutoff

frequency of the comparator frequency response. As shown in the plot below, the aperture jitter

limits the SNR bit number at high sampling rates. For the sampling rate as high as 20 MSPS, the

resolution is limited by the thermal noise. As the sampling rate goes higher, the resolution goes

down. Constants used for the plot generation are: Reff = 2,000 F, VFS = IV, T = 300 K, fT =

50GHz and a, = 0.5ps [4].

.0Lner,
z
U'

sampling rate
Figure 1-1: Various noise factors limiting the performance of an electronic ADC.

There are various ADC architectures for sampling and hold, and quantizing the signal. Three of
the most popular architectures are briefly described below [14-16]:



1. Flash: The most common architecture is parallel Flash where 2N
" - 1 comparators are used for

quantization. The sampling rate for the ADC is equal to the Nyquist rate of the analog

signal. The comparator bank is connected to a logic circuit that generates codes for the

input voltage signal. This is good for high resolution applications. Some of the limitations

for the system are the exponential increase in the number of comparators with increased N,

large integrated circuits, high power dissipation and difficulty to match components in the

parallel comparator channels. Also, increasing the input capacitance reduces the analog

input bandwidth.

2. Pipeline: Dual step quantization is involved in this architecture. A coarse analog to digital

conversion is the first step. In the second step, the difference to the input signal is

determined with a digital to analog converter (DAC). The difference is then converted, and

the results are combined in a last step. This type of ADC is fast, has a high resolution and

only requires a small die size.

3. AM modulation: In this architecture, the signal is over-sampled (i.e. fisaple > Nyquist

frequency) and the desired signal band is filtered. The quantization is done using a flash

ADC after the filter. The resulting signal and the error due to flash is fed back and

subtracted from the input of the filter. The negative feedback reduces the error such that it

does not appear on the desired signal frequency. An over sampling ADC trades sampling

bandwidth for improved amplitude resolution.

Apart from the basic ADC architectures as described above, one way to achieve high sampling

rate is time interleaved parallel structure. The sampled signal is interleaved to a channel

architecture providing sequential samples to each channel. If M interleaved channels are used,

each channel is required to operate at fsample/M, reducing the conversion rate of each individual

ADC at the receiver end as shown in Figure 1-2. The bandwidth and the sampling rate for an

ADC can be increased by time interleaving the quantized samples from a parallel array of slow

converters. This application achieves higher sampling rate, and less power dissipation, without

sacrificing SNR bit value. The bandwidth can be increased easily by increasing the components

in the parallel array. As a rule of thumb, operating MADCs in parallel increases the sampling rate

by a factor of M. The electronic ADC for conversion in this case can have less effective data rate

as the signal comes to the receiver every A/h time slot. The major source of error in this

architecture is converter matching error, i.e. the output of each converter with low jitter must have

the sampled signal in its correct time slot.



Serial to parallel
converter

Figure 1-2: Time-interleaving architecture based

3 M+3

on temporal demultiplexing.

Some of the other important terminologies for characterizing an ADC are described here.

Effective resolution bandwidth (ERBW) is the value of signal frequency at which the SNR

decreases to 3 dB below low-frequency value [4]. For most ADCs, ERBW must be greater than

the Nyquist rate, which is half of the sampling rate (-fsampe/2). Spur-free-dynamic range (SFDR)

is the ratio of single-tone signal amplitude, i.e. the rms fundamental signal, to the largest

nonlinear distortion component or the largest spurious noise with the spectrum of interest [4]. To

ensure large SFDR in an interleaved system: a) the sampling time of interleaved ADCs must be

uniform, b) the converter-to-converter gain and the offsets must be precisely matched, and c) the

crosstalk between ADCs must be minimal [14].

The limitation of an electronic ADC to achieve high resolution and large sampling rate at the

same time is evident, due to all the noises involved. There is a need for other approaches to

enhance the performance of an ADC, and that is where photonics can help.

1.3 System Driver:

As mentioned at the beginning of the system background, the main motivation for this work is the

integration of electronics and optical components for an ADC, and optical interconnects for high

performance supercomputers. An optically enhanced ADC is the main system of interest which is

1 2 3 M M+2 2M

M+I M+3



described in this section. A system level description is also given for the optical interconnects for

a microprocessor chip.

One of the key requirements for the development of these photonic systems is that all the optical

devices have to be CMOS compatible. Silicon has been the semiconductor substrate of choice for

the electronic industry as it has significant advantages over other semiconducting materials [17].

If optics can be developed in a silicon platform, we can take advantage of the existing

fabrications technologies and make extremely small optical devices with significant

functionalities. The silicon based material system including silicon (Si), silicon nitride (SiN), and

silicon dioxide (SiO 2) is chosen for the fabrication of most of the optical devices for the system.

1.3.1 Electronic and Photonic Integrated Circuit (EPIC):

Research is being done on utilizing photonic devices for better performance of an ADC. One of

the ways to get around the limitation of the electronic jitter is to replace the clock source that

causes it. Optically enhanced ADCs can help to increase the sampling rate without sacrificing the

effective bit number, as the aperture jitter for an optical clock source is fundamentally lower than

the electronic counterpart. Precise and high repetition rate (>10 GHz) mode-locked lasers have

low timing jitter (<20 fs pulse to pulse) compared to a PLL (-1 ps) [4]. The first ADC utilizing

this photonic enhancement was developed in 1984 with 1 GSPS and 4 ENOBs [18]. In GSPS

range, the electronic sampling jitter is limited to - 1 ps [14], which give the maximum of 8 bits

resolution. Optical sampling jitter can be two orders of magnitude smaller and give more than 12

bits resolution for 1 GSPS [14].

Photonics can be used at various stages in an ADC: 1) photonic assisted ADC, 2) photonic

sampling and electronic quantization, 3) electronic sampling and photonic quantization, and 4) all

optical ADC. The detail review of all the types of systems is given in ref. [18]. Table 1-2 shows

some of the recent results for the photonic enhanced ADCs in research. With the current state-of-

the-art electronic ADCs, large performance enhancement can be achieved for the sampling rate
and the ENOBs by using photonics for sampling and making use of the electronics for

quantization. Electronic Photonic Integrated Circuit (EPIC) is based on Gigahertz High-

resolution Optical Sampling Technique (GHOST) and electronic quantization for an ADC, with

the system specifications of the sampling rate of 40 GSPS and the ENOBs of 7. The goal of EPIC
is the integration of optical components in the silicon platform for optical sampling for an ADC.



Material system Sampling rate ENOB Power dissipation

(GSPS) (mW)

Jalali et. al. [19] LiNbO 3 (modulator) 12 5

Esman et. al. [20] LiNbO 3 (modulator) 0.4 6

Juodawlkis et. al. [14] LiNbO3/InGaAs/InP 0.505 9.8

Jalali et. al. [21] 10,000 4.5

(*digitizer)

Jalali et. al. [22] LiNbO 3 (modulator) 130 7

Miller et. al. [23] GaAs 0.16 3.5 70

EPIC (proposed system) Silicon based (CMOS 40 7

compatible)

Table 1-2: Summary of photonic enhanced ADC.

The 'photonic circuit' utilizes the low jitter properties of a mode-locked laser to develop high

speed ADC beyond the bottleneck set by electronic jitter, and to achieve system performance

better than today's technology in terms of sampling speed and resolution. The total aperture jitter

that the system can tolerate to support the required sampling rate and ENOBs is less than 35 fs

given by:

2 -SNRbit
Tjitter - bitsample  (1.5)

Jý[3sample

The technique used in EPIC for the analog-to-digital conversion is time-interleaved optical

sampling. The time interleaved architecture makes it possible to achieve the desired sampling rate

of 40 GSPS with relatively low speed electrical ADCs at the receiver end behind the

photodetectors. Wavelength-division (de)multiplexing (WDM) is used for sampling in the time

interleaved architecture which assures high data density. In a WDM architecture, the optical

signal from a mode-locked laser is chirped and modulated with an RF signal. The modulated

optical signal is then filtered through a parallel array of tunable filters. An alternative to WDM is

time-division demultiplexing. In time-division demultiplexing the optical signal is not chirped but

the electrical signal is blanketed over the optical pulsed signal i.e. the amplitude of the pulsed

light carries the electrical information. However, time-division demultiplexing requires accurate

optical switches with synchronized time between all switches. The wavelength-division

demultiplexing is chosen to avoid the need of accurate clocks for optical switches, and also it has

been shown that the insertion loss is less for the wavelength-demultiplexing devices such as



tunable filters than optical switches [18]. Using wavelength-division demultiplexing, the sampled

signal is sent to parallel photodetectors and electrical circuit for quantization. The schematic for

EPIC is shown in Figure 1-3. The main optical components within EPIC system are mode-locked

laser, modulator, tunable filters and photodetectors.

analog input 1I•.0 T 2T

Chirped Broadband Spectrum Source i

A kn
mode-locked ultra-short dispersive

laser pulse train element
""""~'*~""~~'".........."

fee
Xc

digital output ...0100101100...

Figure 1-3: Schematic for EPIC. Figure courtesy: Milos Popovic

For various electronic and optical devices, one of the specifications that need to be maintained

through out the system is the electrical SNR (~ 44 dB) or the equivalent ENOBs (- 7). From

Table 1-1, it is apparent that the electronic ADC with 7 ENOBs has the sampling rate limited to

2-5 GHz. For low power usage and better figure-of-merit, the ADC with sampling rate of 2 GHz

is preferred to be used as the quantizer in the time-interleaved system. Once the sampling rate of

the quantizer is known to be 2 GHz; for 40 GSPS data rate, we need 20 tunable filters for WDM.

The repetition rate of the mode-locked laser is also determined by the quantizer sampling rate at 2

GHz.

I

X C



An ultra short pulse train, with low jitter (<20 fs), is needed from a mode-locked laser which can

be used as the source for the optical signal. The repetition rate and the spectral width of the pulse

from a mode-locked laser define many of the device specifications in the system, namely for the

tunable filter, which is discussed at the end of this section. Some of the research data for a mode-

locked laser (@ 1550nm) are summarized in Table 1-3.

Repetition Pulse width Spectral Timing Optical Ref.

rate (GHz) (ps) width (nm) / jitter (fs) Power

-THz (mW)
Chen et. al. 0.194 0.167 18 450 [24]

Gong et. al. 300 1.4 120 [25]

Ng et. al. 10 3.6 6 / 0.75 [26]

Gong et. al. 660 0.42 1200 [27]

Tien et. al. 10 0.8 [28]

Yu. Et. al. 1 0.5 5.6 / 0.7 400 [29]

Malowicki et. al. 10 28 0.15 / 0.018 21 200 [30]

Schlager et. al. 0.75 6 14.4 500 [31]

Table 1-3: Results for various mode-locked lasers at 1550nm.

An erbium-doped fiber laser with a repetition rate of 2 GHz and the spectral width of 22 nm (-

2.8 THz) is utilized for optical sampling. Large spectral width of <2 THz is desired for

telecommunication application, where a single optical source can cover most of the C-band

(1530nm - 1569nm). The signal is chirped using a dispersive element such as a spool of fiber.

The optical chirp ( = pulse period/spectral width) obtained for the pulse is 22 ps/nm. For the

desired spectral width of 2 THz, a linear optical chirp can be assumed. In an optical fiber, the

linear chirp can be assured by optimizing the refractive index profile [32]. The RF signal is

mapped onto the chirped optical pulse using a silicon based 10 GHz Mach Zehnder modulator.

The modulator determines the analog bandwidth for the RF signal that is sampled by the optical

signal. The modulated signal is sampled using tunable filters at 2 GHz. As mentioned earlier, the

sampling rate i.e. the data density can be increased significantly by using the filters in an array for

WDM. For WDM, various demultiplexers can be used, such as microring resonators, array

waveguide gratings (AWGs), mach-zehnder (MZ) interferometer, or chirped grating. In most of

these demultiplexing devices, lower-index contrast material systems result in large area due to

limitation of the bend radius, and device parameters such as the number of wavelength channels.



Using a high-index-contrast (HIC) material system, the bend radius of a few microns can be

achieved. However, in the grating devices especially an AWG, the miniaturization of the

demultiplexers and their performance are inversely related [33]. One of the pronounced losses in

an AWG in a high-index-contrast material system such as Si-SiO 2 is the scattering loss at the gaps

between the array waveguides (0.3-0.5 dB/cm) [33]. To reduce the scattering loss, lower-index

material is used for the coupler slab, which increases the overall device area. Crosstalk between

waveguides also increases when the number of channels is increased and the overall area is kept

fixed. The transfer function of the MZ filter is usually not narrow enough for WDM applications

[34]. Thus, cascaded MZ filters are used as demultiplexers. The advantages and disadvantages of

various kinds of filters are summarized in Table 1-4.

Microring resonator Array waveguide (Cascaded) Mach- Chirped grating

grating (AWG) Zehnder Interferometer

Advantages: Advantages: Advantages: Advantages:

* Area (20 channel)- * Large tuning range * Relatively fast * Easier fabrication

0.05mm 2 (An - 0.75) (40nm) switching speed (50ns) (no bends)

* Low drop loss * Low production cost

Disadvantages: Disadvantages: Disadvantages: Disadvantages:

* Slow thermo-optic * Area (20 channel)- * Low finesse (i.e. larger * Slow tuning speed

tuning speed (ms) 0.25mm 2 (An - 0.75) loss) due to inherent (ms)

* slow thermo-optic cosine shape in the * Small tuning range

tuning (ms) transfer function (<l Onm)

* Small tuning range (<

5nm)

Table 1-4: Summary of filtering technologies.

Here, Silicon-rich-SiN microring resonators are used as tunable filters for optical sampling. One

of the primary reasons for using SiN instead of Si for the ring resonator is due to the higher

precision required to stabilize the more thermally sensitive silicon rings. Temperature dependence

I I

I I

B
a



to the resonant wavelength is discussed in detail in Chapter 3. The working principle of a ring

resonator and the device specifications are explained in Chapter 2. The signal at the drop port of

the filter is the time-interleaved optically sampled signal, with each filter operating at the

repetition rate of the mode-locked laser (i.e. 2 GHz). The total sampling rate of the system is the

clock rate of the mode-locked laser times the number of filter channels for WDM. With 20

channels in a single filter bank, and an optical source of 2 GHz repetition rate, the total sampling

rate of 40 GSPS ( = 20 * 2 GHz) is obtained. 20 channels have to fit within the spectral width of

the pulse of the optical source (i.e. ~ 2 THz, linear chirp region). With a practical full-width-half-

maximum (FWHM) of 25 GHz achievable for the filter, the channel spacing is 80 GHz which

would allow 20 filters to fit within the linear chirp region of 2 THz (- 80 GHz * 20 + 25 GHz

*20). The FWHM and the channel spacing are also within the standard ITU grid policy of 1:3

ratio. Higher-order filter gives sharper roll-off to diminish the cross-talk between adjacent

channels [35]. Thus, second-order filters are used for demultiplexing. The cross-talk between the

adjacent channels is an important factor, as it determines the signal-to-noise ratio. The relation

between optical and electrical SNR is given by [36]:

dB(eecrial =10log R *  =2 * 10log I =2dB ica (1.6)=l Ol ogg. j*!,. I, dB(optical)(

In order to maintain -44 dB electrical SNR, the optical signal-to-noise has to be at least -22 dB.

There have been many models to determine the penalty in dB, in the electrical domain due to

channel cross-talk [37-40]. Theoretical power penalties for various numbers of interfering

components of cross-talk in an optical network are recreated from ref. [38]. According to Figure

1-4, -30 dB cross-talk gives about <2 dB degradation in the electrical SNR.

8-a

UJUi
4,

Crosstalk (dB)

Figure 1-4: Optical crosstalk vs. electrical power penalty.



The total amount of power required for tuning of the filters is an important parameter. For EPIC,
the filters need to be held at a steady temperature and no dynamic tuning is required. Thus,
instead of a large tuning rage, low tuning power is important. Commercial electronic ADCs

operate mostly from -40 to 850C. If we take the photonic ADC with similar operating

temperature, the maximum temperature fluctuation is that of 125"C. However, in real conditions

we do not anticipate such high temperature fluctuations for the tunable filters. The ADC can be

held with proper TEC modules and temperature controllers to keep the operating temperature

within the nominal room temperature. However, the filters are highly sensitive to temperature and

any small fluctuation can shift the frequency. Thus, each filter is allocated a modest 1 mW of

power for tuning with temperature fluctuation range of ~ 50 C. This corresponds to the tuning

power of 60 pW/GHz/channel.

Silicon-Germanium (SiGe) photodetector can be used at the receiver end before quantization. As

mentioned earlier, an electronic ADC with 7 ENOBs and sampling rate of <2 GHz can be used as

the quantizer. Summary of the system target and the parameters for the tunable filters is given in

Table 1-5.

ADC Goal: ENOB = 7 (SNR = 44dB) Sampling rate = 40GSPS Jitter = 35fs

SNR cross-talk 3dB bandwidth Channel spacing Tuning power
(dBe..) (dB) (GHz) (GHz) (CpW/GHz/channel)

Tunable 44 <-30 25 80 60
filter

Table 1-5: Specification for a tunable filter for EPIC.

Thus, at the system level, better performance can be achieved from the optically sampled ADC

using a low jitter femto-second mode-locked laser along with 20 channel filter bank, to ensure the

sampling rate of 40 GSPS with the ENOBs of 7. The focus of this thesis will be on the microring

resonators used as tunable filters described in detail in later chapters.

1.3.2 Ultraperformance Nanophotonic Intrachip Communications (UNIC):



Another system of interest is the demonstration of optical interconnects for microprocessor chips.

Optical interconnects have been studied for many years as a reasonable replacement for the

electronic version [41]. The limited bandwidth of the electronic interconnects have hindered the

speed of CPUs. By using optics to communicate between different elements of a microprocessor

chip with various optical components, the limitation of electrical bandwidth can be eliminated.

The figure-of-merit in an interconnect system is in terms of Giga bits per length. In the electrical

interconnect system, multilayer wires allow large data transfer. Multilayer lines for optical

interconnect are not very feasible from fabrication perspective. One way to meet the interconnect

bandwidth density requirement is using wavelength division demultiplexing. The microrings are

sufficiently small that they can be incorporated in a microprocessor without consuming too much

real estate. For the UNIC project, optical components such as a laser, modulator, filter and

photodetector are to be used within a processor chip to transmit data between memory and the

core processing unit such as ALU. Figure 1-5 shows a simple schematic for UNIC.

Figure 1-5: Schematic for UNIC. Figure courtesy: Jason Orcutt

Similar to EPIC, the ring resonators will be used as wavelength selective filters. In a

microprocessor chip, the operating temperature varies widely (30-50 0 C) depending on the

workload. Thus, larger tuning range is required for this application than that for EPIC, and also

the dynamic tuning for the rings have to be considered. Power density is one of the limiting

factors in a processor, mainly due to the limitations of the conventional cooling mechanisms such

as forced convection or water cooling. The total energy dissipation for the UNIC system has to be

less than 500 fl/bit. This energy constraint requires very efficient thermal tuning of the ring with

power consumption of less than 20 gtW/GHz. Due to processing constraints, the proposed idea for

thermal tuning of the resonator is with the poly-Si heaters fabricated on the same level of the

waveguide.



1.4 Thesis Outline:

Ring resonators are one of the building blocks for optical and electrical integrated circuit. The

working principle and all the major characteristics of a ring resonator are defined in Chapter 2.

For the EPIC system, apart from the jitter due to the mode-locked laser, another place within the

optical sampling where jitter can occur is during wavelength-division demultiplexing at the

filters. The filters have to be tuned to a precise center frequency. Any deviation from the resonant

frequency is seen as the timing jitter for sampling. If we allocate less than 20 fs jitter for the

optical source, we can tolerate 15 fs jitter at the tunable filters. Thus, we need to be able to

precisely control the resonant frequency of the filter, such that the jitter is within the desired

specification. The timing jitter of 15 fs with the chirped pulse of 22 ps/nm corresponds to the

stability of the resonant frequency to within 100 MHz. For a SiN based ring resonator, the

resonant frequency shifts by 3.55 GHz for every degree rise in temperature. This is verified

experimentally for the Si-rich-SiN microring in Chapter 3. To be able to control the resonant

frequency of the ring within 100 MHz, the rings have to be thermally stable to within 30 mK of

the desired absolute temperature. The thermal tuning is used for postfabrication trimming and for

any environmental temperature fluctuations. Other tuning options are also briefly discussed in

Chapter 3. Dynamic tuning is not required for the system as the purpose is to stabilize the rings

within certain temperature. For EPIC, power efficiency of tuning and wavelength stability is more

important metrics than tuning range.

Optimized thin film heaters are fabricated on top of the cladding to locally change the

temperature of the resonator. One of the key parameters under consideration for the design of the

heaters is the power dissipation required for tuning. Finite-element thermal simulation

(FEMLAB) is used to study the temperature profile for the filter along with heaters. The upper

cladding of 1.9 Vim ensures optical isolation of the resonator from local heaters on top.

Simulations done with FEMLAB have shown long heaters with high thermal impedance to be

appropriate in order to minimize power dissipation for thermal tuning. Three different heater

designs with various resistance and tuning powers are studied and presented in Chapter 4. The

total tuning power of 80 jtW/GHz is achieved for the second-order filter with tuning up to 2 nm

which is sufficient for tuning across the entire channel spacing of 85 GHz.



The details of the thermo-optic effect and the thermal tuning of a ring resonator are discussed in

Chapter 3, showing thermal tuning data for the silicon-rich-SiN rings using the on-chip heater.

The details of the heat transfer theory and various heater designs are discussed in Chapter 4 along

with descriptions of experimental methods used for heater characterization, namely the 3-co

method and thermoreflectance. Chapter 5 discusses the temperature controller circuit used with

the heater for precise filter temperature control. A control loop feedback circuit with proportional-

integral-derivative (PID) controller is used as the temperature controller and the circuit is

modeled using the commercial modeling tool: SPICE to check the stability of the circuit. The

experimental results show that the circuit is able to control the temperature of the filters within 80

mK, which assures the resonant frequency stability within 280 MHz. The future work and

concluding remarks are presented in Chapter 6.
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CHAPTER 2

MICRORING RESONATOR

2.1 Overview:

Microring resonators are used as tunable filters for wavelength-division demultiplexing (WDM)

during optical sampling for an ADC. As mentioned in Chapter 1, there are various other devices

which can be used as filters in WDM systems, but the microring resonators have the most

advantages for the application of photonic ADC. In this chapter, the working principle of a ring

resonator is explained with all the characteristics defined that are needed to understand the

performance of a filter. Each parameter value for the filter is based upon the system

specifications. Previous work in the filter development and its performances are mentioned in the

background section.

2.2 Background:

One of the building blocks for an electrical and optical integrated circuit is a microring resonator

(Figure 2-1), which has wide functionalities. Optical ring resonators have been widely studied

and characterized as passive devices. Various aspects of microrings can be used to make

wavelength converters, comb frequency generators, add-drop filters, dispersion compensators,

wavelength division multiplexed (WDM) networks, lasers, modulators etc [1-4]. In this work, the

microring is being used as an optical tunable filter for wavelength selection.
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Figure 2-1: First-order ring resonator.

The idea of microring waveguides can be traced back to late 60's from Bell labs, where it was

first fabricated and studied for different optical functions [2]. Till the early 80's large size ring

resonators were being used for optical demonstrations [5], [6]. It was only in 1997 that B.E. Little

[7] successfully analyzed optical coupling from a bus waveguide into a microring resonator

(radius z 2 plm) using couple mode theory and rigorous numerical finite difference time domain

(FDTD) simulation. Most photonic applications require resonators with a large free-spectral range

(FSR) and low loss, requiring rings to be fabricated with high-index-contrast (HIC) material, such

that there is tight beam confinement. Large FSR is desirable for telecom applications where the

C-band (1530-1569) covers approximately 40 nm in the spectrum range. The bending loss

decreases exponentially with increasing the index contrast between the core and the cladding as

shown in Figure 2-2; recreated using theoretical loss relation from ref. [8]. However, the

scattering loss depends on the size of the waveguide and there is an optimum value for which the

total loss will be minimum. Scattering loss analysis for micron sized waveguides is discussed in

ref. [9]. Si as well as SiN optical waveguides are becoming integral components for optical

systems because of the advantages of HIC and compatibility with silicon integrated circuits (IC).

Due to the HIC, the rings can be made as small as 5 ýtm radius with low loss. Thus, more of these

compact devices can be integrated in a smaller area. The details on how a ring resonator works

are described in the next section.
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Figure 2-2: Bending loss vs. change in refractive index of core and cladding (Theory Ref. 8).

2.3 How does a ring resonator work?

The concept of a microring waveguide is to confine light of particular wavelength in a circular

path of the core. Total internal reflection guides the light from the core-cladding interface and

depending on the wavelength of the light; there may be constructive or destructive interference.

For a greater confinement of light within these rings, large index contrast between core (nl) and

cladding (n2) is desired, such that, the bending loss can be greatly minimized. The critical angle

for total internal reflection is related to the refractive indices of the core and the cladding:

0= Sin-1' (2.1)

In a HIC system, the critical angle is very small, thus ensuring the reflection of most of the light

at the core-cladding interface.

The ring resonators are highly wavelength selective and very useful as optical filters for various

wavelength signals. Figure 2-3 shows a ray trace inside a single ring waveguide showing two

coupled bus waveguides by its side. "Micro" refers to the size of these rings, whose radius is

usually a few microns to ensure large free spectral range (FSR), and is also beneficial for area

conservation in chips due to its compact size and possibility of high density integration.

+ + +

· ·
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Figure 2-3: Simple ray trace inside a ring waveguide.

The light from the input port will evanescently couple into the ring. If the optical path length of

the ring is equal to an integer number of the wavelength, it satisfies the resonance condition and

most of the light of the corresponding wavelength is transferred to the ring. The light is then

redirected to the drop port at the other side of the ring. The resonant wavelength for a ring

depends on the geometry and the effective index (neff) of the sample. If the wavelength, for

example A2, and a ring with radius r, satisfies the condition for resonance, such that the optical

path length is,
2 nn eff r = ARN, (2.2)

the signal couples into the drop port, while rest of the light will pass through the output port [10].

N, is an integer and represents the resonance order. From equation 2.2, we get the resonant

wavelength (Ao) for a ring, depending on the ring geometry and its effective index.

Ao = (2.3)
Ni

The free spectral range (FSR) for a resonator is the frequency spacing of the resonance modes.

FSR= 22 (2.4)
2afeff r

The FSR is inversely proportional to the radius of the ring. Thus, to have high FSR, a small ring

is desired. In the EPIC system, the FSR for the ring is determined by the spectral width of the

mode-locked laser which is 2.8 THz. Linear optical chirp is assumed for 2 THz, thus, the FSR for

the ring is limited to 2 THz. Once the FSR is fixed and the working wavelength is taken to be

1.55 pm (for telecom applications), the radius of the ring is -10 jpm for the SiN material system.



Important parameters in designing a ring filter are ring radius, distance between bus and ring

waveguide and refractive index contrast (i.e. material selection for the core and the cladding). The

gap between the bus waveguide and the ring determines the coupling between them. The total

loss for a resonator depends on the coupling coefficient. In a ring resonator, there can be three

conditions: under, over or critical coupling. At critical coupling, the transmission coefficient (t) is

equal to the total internal loss (y) of the ring, and the transmitted power across the bus waveguide

is zero (i.e. all the power is transferred to the ring). During critical coupling, there is perfect

destructive interference in the through port between the transmitted field and the internal field

coupled into the output waveguide. Small changes in the coupling coefficient can change the

transmitted power.

Input port Thru port
E1 -------- E2

Figure 2-4: Light coupling from bus waveguide to the ring.

The coupling of light (Figure 2-4) into and out of the resonator can be described by the behavior

of the directional coupler. Two assumptions are made in the coupler, 1) coupling is limited to the

wave traveling in one direction (i.e. no reflection), and 2) there is no loss in the coupler. The

amplitudes (E) of the field in the coupling region are related by the transmission coefficient (t)

and the coupling constant (K). The relation is given by [11-13]:

E 2 = tE l - j]E 3  (2.5)

E4 = tE3 - jlE (2.6)

In the matrix representation, the unitary scattering matrix can define the coupled field as,

E = - JKCE E (2.7)
E4 - jr t E3



The coupling and the transmission coefficients are associated with the medium in-between the

ring and the bus waveguide. The total coupling between the bus waveguide and the ring is given

by IK21 and,

t 2 +I2 = 1 (2.8)

The light that enters the ring will accumulate a round-trip phase shift '(p', such that (p = kL . L is

the circumference of the ring (L = 27rR) and k is defined as:
2 nneff

k = ff (2.9)

The output at the through end can also be related to the phase accumulation and an amplitude

transmission factor ' F ' by [15],

E 2 = F exp(i9p)E 4  (2.10)

The amplitude transmission factor (F) describes the total loss of the ring which is the sum of

material loss, radiation loss due to bending and loss due to wall roughness (for example, F = 0.95

means 95% transmission and 5% loss). The transmission intensity factor at the through port is

given by [15]:

2 2

T 2 ] (2.11)T =E2 = - 2tFcos ,+t (2.11)E I 1 - 2tF cos p + t 2F 2

At resonance, the phase accumulated by the signal is the multiple of 2n, qo = m2nr, and the light

couples into the drop port. The transfer function is:

T E 2  t)2 (2.12)
El  (I - rt)2

Figure 2-5 shows a theoretical plot for the transmission curve for a first-order SiN ring of 10 gm

radius. The FSR seen in the spectrum is about 26 nm which is consistent with the calculation

using Equation 2.4. As mentioned earlier, at critical coupling, F = t. Thus, at resonance, the total

power transmitted will be zero as all the power is transferred into the ring.



0.I -

8 0.70.49

0.3
0.2

z 0.1
0

1440 1460 1480 1500 1520 1540 1560 1580
resonant wavelength [nmrn]

Figure 2-5: Transmission curve showing the FSR of ~ 26 nm.

The same principle of transmission can be applied for higher-order ring system, where the

complete transfer matrix can be easily calculated using the individual ring matrices and transfer

matrix between the bus and the ring waveguides. As mentioned earlier, higher-order ring system

is used to get steeper drop response to reduce the cross-talk between the adjacent resonators. Also

for the second-order filter, the direction of drop is same as that of the input and through ports

which is useful in WDM applications.

Input Through

Add Drop

a2 b2

Figure 2-6: Second-order ring resonator.

The transfer matrix connecting the mode amplitudes at the bus waveguide and the first ring is

similar to Equation 2.7 [16].

FSR

-- --- --

r

I

I

1



b1 = ta, - jdl1,' (2.13)

al'=-jfar + tbI ' (2.14)

b '= e2x (t'as '-ijK'a2') (2.15)

b2'= e2x (- jK lc'a'+t'a2')  (2.16)

b2 = ta2 -j 2' (2.17)

a2 = -jka 2 + tb2 ' (2.18)

where, x = 2j - - 4 ; y is the absorption coefficient of the ring material and describes the

loss in the ring, Tr is the round-trip signal time of the ring; Tr = Lnej'c, and L is the circumference

of the ring. K' is the coupling constant between the two rings. The propagating matrix (P) from

one ring to another ring is:

P= e2(j•T, /2-AL/4) ( - jK' (2.19)

The full transfer matrix (M) for a higher-order ring is then given by product of all the individual

transfer and propagation matrices. For a second-order filter, the output at the drop (b2), and the

through port (bi) is related to the input amplitude by:

Drop = b (2.20)
la,1  Aot 2 -2Att'+l (2.20)

2 t( 1+ A At (2t2 + K 2 
) 

2

T- - (2.21)
a, Aot 2 -2Att'+1

Where, A = e( 2 and A¢ = e(j022Tr -y).
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Figure 2-7: Second-order ring resonator: transmission curve (K = 0.087, K' = 0.7).

The quality factor (Q) is an important measure of the frequency selectivity of a ring. The Q-factor

of a microring resonator is defined as the time averaged stored energy per optical cycle divided

by the power leaving the resonator. The loaded Q includes coupling loss from the bus waveguide

under working conditions and can be expressed as,

Q = o (2.22)

Where A,l/2 is the full width half maximum of the transmitted power, and it is proportional to

the losses in the ring. Thus, the Q-factor of a ring is inversely proportional to the loss, and high

Q-value is desirable for the application of interest. The internal Q-factor for the fabricated rings is

within the range of 240,000--410,000, which corresponds to the propagation loss of around 1.5

dB/cm. For the given value of Q, the bandwidth for the passband is 25 GHz for the ring and a

feasible channel spacing of 80 GHz is allocated between the filters, such that 20 filters can fit

within the FSR range of 2 THz to give the desirable sampling rate of 40 GSPS as described in

Chapter 1.

Another important parameter of a ring structure is finesse, which is related to the internal loss.

Finesse is defined as,

FSR 2,r 1
f = - = = (2.23)

45

r~ ~r~rrrr-



where y is the total internal loss of the ring. Higher loss leads to smaller finesse for the ring. To

increase the finesse and the FSR, higher-order rings can be fabricated.

The transmission within the ring is governed by the internal and external losses in the device. As

mentioned earlier, many important parameters of the ring depend on the loss. Important loss

mechanisms in a ring resonator are bending loss, scattering loss due to surface roughness,

coupling loss and material loss. High optical loss leads to small Q-value which is undesirable for

the application of interest. The loss hampers the coupling of the light into and out of the ring,

making the device less effective. Detailed studies have been done on the various loss mechanisms

within waveguides [9], [15]-[21], and an optimized ring was designed for the purpose.

Second-order filters are fabricated with silicon-rich SiN (n = 2.2) cores and SiO2 as a lower

cladding and hydrogen silsequioxane (HSQ) as the upper and side cladding. With the use of an

optimized annealing process, HSQ and SiO2 have comparable, low refractive indices of 1.442 and

1.444 at 1.55 plm [21]. Hence, single-mode waveguides have submicron dimensions. HSQ was

chosen as the upper cladding because of its gap filling property which was needed to fill in the

high aspect-ratio gap between the ring and laterally coupled bus waveguide. The gap is one of the

critical dimensions which determine the coupling coefficient.

The ring design was a part of research at MIT and design details can be found in ref. [19]. The

design and optimization of the ring resonator is an effort of Milos Popovic and Anatoly Khilo,

and the fabrication was done by Charles W. Holzwarth at MIT. Effort is being put into studying

the multistage high-order rings with low loss [20], [22]. The dimensions for the rings and bus

waveguide were optimized for low loss and large FSR [22]. Figure 2-6 shows an SEM picture of

a second-order ring structure. The ring diameter of 20 pm, with group index of 2.3, gives a large

FSR of 26 nm. The rings are fabricated such that the passband has 3 dB bandwidth of 25 GHz.

Low drop loss (3.1 dB) and crosstalk of less than 30 dB has been obtained for these ring

resonators.



Figure 2-8: Top view of second-order microring resonator filter.

For the EPIC system, any fabrication error in the filters cause shifts in the resonant wavelength,

which gives rise to the delay or the timing jitter for the optical sampling of the system. Apart

from the dimensional errors during fabrication, other factors can also lead to shifts in the resonant

wavelength. One of the main causes is the temperature variation of the filter. The spectral

broadening of the optical pulse is called chirping, and for a chirped signal a shift in the

wavelength leads to the time delay give by:

Ar = chirp[fs / nm] x A2[nm] (2.24)

If there is any disturbance in the resonant wavelength, the filters need to be tuned to its resonance

condition. One can obtain the change in the wavelength of the filter by changing the effective

index of the waveguide [23] as given by the formula below.

A2 Aneff--- (2.25)
Ao  ngroup

The change in the wavelength is related to both the effective index and the group index of the

waveguide. When the refractive index is changed, the resonant wavelength varies due to change

in the optical path length (nL) for the light traveling in the ring resonator. Also the coupling

coefficient varies as the index changes. Let 8 be the propagation constant (= neff 27r/o) at the

resonant wavelength Ao. The phase shift accumulated with one round trip in a ring filter is given

by fL= 21Ni with Ni integer. If there is any change in the effective index, there is variation in the

phase shift accumulated in the ring, thus changing the resonant wavelength. The index of the

waveguide can be changed in different ways. Temperature variation is one of them and utilized

here for tuning the ring filters. Other possibilities are also explored and explained in Chapter 3.



2.4 Summary:

Microring resonators are very useful optical devices which are used as tunable filters for

wavelength division demultiplexing. When the resonance condition is satisfied, the power for the

signal of certain frequency is transferred from the bus waveguide to the ring. At critical coupling,

little to no signal is observed at these frequencies at the through port. This property of the ring

resonator is utilized in EPIC for wavelength selective filter. Si-rich-SiN and SiO2 are chosen as

the material system for the ring resonator to give large index contrast. The dimensions and other

parameters for the ring are based upon the system requirements. The rings are thermally tuned for

maintaining a precise resonant frequency. The thermo-optic effect and the thermal tuning of the

ring are discussed in the next chapter.
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CHAPTER 3

THERMO-OPTIC EFFECT

3.1 Overview:

For wavelength division demultiplexing in the EPIC system, tunable filters have to be held at a

precise resonant frequency. Any deviation in the frequency leads to the timing jitter in the signal

as explained in Chapter 2. The deviation from a particular frequency might be due to fabrication

errors or environmental temperature fluctuations. The thermo-optic effect is utilized for tuning,

where the resonant frequency is trimmed by changing the effective index of the ring. The index

change in induced by manipulating the ring temperature. Other alternatives for wavelength tuning

and previous work on thermal tuning are discussed in Section 3.2. The thermo-optic effect in

silicon-rich SiN is studied and explained in Section 3.3. Experimental results showing the thermal

tuning of Si-rich-SiN rings are discussed in Section 3.4. Metal heaters are designed to sit on top

of the rings for on-chip thermal tuning. The design process involved in making a power efficient

heater for thermal tuning is explained in Chapter 4 along with descriptions of all heater designs.

3.2 Background:

The resonant frequency of the ring resonator has to be stabilized within 100 MHz to ensure that

the timing jitter is within the device specification. There are various ways to tune a ring resonator.

One of the ways to change the resonant frequency is by changing the effective index of the ring,

and that can be accomplished by electro-optic effect. The electro-optic effect is a change in the

optical properties of a material in response to an applied electrical field. Polymer microrings have

been tuned with electro-optic effect which is relatively faster tuning mechanism, but the

maximum achievable index of refraction change is small leading to the tuning range of less than

Inm [1]. Bulk and unstrained silicon has zero linear electro-optic coefficient (Pockel's effect).

Kerr effect (non-linear) is observable only under large electric field. One of the future

considerations for the SiN ring resonator is to move to pure Si material, which is more compatible

with the current CMOS technology. Also, the material loss in silicon is less than SiN. No electro-

optic effect in SiN has been reported till now. Thus, the electro-optic effect is not used for the



tuning purposes. Mechanical tuning is also popular for wavelength tuning of resonators. Micro-

electro-mechanical systems (MEMS) actuators are used in ref. 2 to physically change the air gap

to change the coupling and effective index of the waveguide. The precision and stability that can

be obtained with MEMS tuning is very crude compared to other tuning mechanisms. The

refractive index of a silicon nitride waveguide can be changed by oxygen plasma treatment such

that the material composition of the waveguide is changed to form oxy-nitride, and a large shift in

the resonant wavelength of 8.9 nm has been shown experimentally [3]. The other popular way of

controlling the resonant frequency of these passive devices is thermal tuning. The thermo-optic

effect is utilized to achieve a desired resonant frequency of the ring. As the name suggests, the

effect relates any kind of thermal change in the ring to the variation in the optical property of the

device. In this case, the change in the temperature of a ring waveguide leads to a change in the

effective refractive index. The optical path length of the heated waveguide is changed due to the

change in the effective refractive index, which causes shift in the resonant frequency. Details are

described in Section 3.3.

Thermal tuning has been reported for various ring resonator structures as summarized in Table 3-

1. Polymers have very low thermal conductivity and high thermo-optic coefficients (-10-4 i.e. an

order of magnitude higher than SiN), thus thermo-optic tuning of polymer rings is very efficient.

Details on physical mechanism behind thermal tuning is in Section 3.3. InP/InGaAsP microrings,

fabricated with wafer-bonding using polymer (BCB), have been tuned with low power

consumption of 26 jiW/GHz [4]. A wavelength tuning of 16 nm was demonstrated with the input

power of 50 mW. The marvel of such a large tuning range and low power for the ring discussed

in ref. 4 is less exciting because of the fact that the rings were 20 iim in radius giving very small

FSR of 5 nm. As mentioned earlier, large FSR is desired for communication applications, as

many channels can be utilized in parallel for WDM to get large sampling rate. Vertically coupled

microrings made of polyimide have been tuned with 50 ptW/GHz, showing the total tuning of 9.4

nm with low power consumption of 60 mW [5]. However, microrings made of materials

compatible with CMOS processing are preferred for electrical and optical integrated circuits.

Earlier work on thermal tuning of ring resonators involved large scale devices such as 2 mm

diameter Si 3N4 ring with poly-silicon heaters [6]. A poly-Si resistor was used for the first time as

a thermistor to measure the temperature of the waveguide. A first-order silicon ring has been

tuned with low power of 28 pW/GHz and large tuning range of 16 nm [7]. In most of this early

work, the heater design and the tuning power were not considered as the important factors, and

the heating mechanism was not optimized. A single Si3N4 ring has been reported with a tuning



range of 20 pm/K and a tuning power of 400 jtW/GHz [8]. The largest shift seen in this work was

3.6 nm for 180 mW of input electrical power. Microrings made of HIC material system, Hydex,

has tuning rate of 17 pm/K [9]. In more recent works, small silicon rings (- 2 Itm radius) with

large FSR (47 nm) and high Q-factor (-6730) have been thermally tuned with tuning range of

0.11 nm/K [10].

Material Thermo-optic Tuning power Tuning range Ref.

coefficient (dn/dT)

InP/InGaAsP + BCB -1.1 x 10 4 /oC 26 tW/GHz 16 nm [4]

Polyimide -5 to -7 x 105 /PC 50 ptW/GHz 9.4 nm [5]

Si 1.9 x 10-4 /C 28 tW/GHz 16 nm [7]

Si3N4  4.5 x 105 /oC 400 tW/GHz 3.6 nm [8]

Si-rich-SiN 4.5 x 105 /0C 80 ipW/GHz <1 nm This work

Table 3-1: Summary of previous work for thermal tuning of ring resonator.

In this thesis, efficient thermal tuning for Si-rich-SiN second-order filters is shown with a tuning

power of 80 CtW/GHz. This is the first attempt for such low power thermal tuning for a higher-

order microring resonator made of Si-rich SiN. For the application, the maximum tuning range

equivalent to a single filter channel spacing of-- 0.7 nm is sufficient. One of the key aspects of

ensuring efficient thermal tuning is to have an optimized heater design. Heater designing and

optimization are described in detail in Chapter 4.

3.3 Thermo-optic Effect:

The change in temperature leads to many variations within the atomic structure of the material. In

most intrinsic semiconductors, the change in the refractive index due to temperature variation is

attributed to the thermal expansion and the change in the bandgap energy due to change in

electron distribution. All materials have thermal expansion coefficient (SiN: 3.3 x 10-6 /
,C) which

relates the increase in the dimensions due to the temperature rise. For most semiconductor

materials, the effect of thermal expansion is negligible due to small thermal expansion

coefficients. However, in polymers, the expansion coefficient can be large (PMMA: 7.7 x 10-5

/oC). The refractive index varies according to the thermo-optic coefficient (dn/dT) which tells the

effective change in the refractive index for P1C change in the material temperature. Various

factors affect the coefficient value including operating frequency range, crystal orientation,



operating temperature, doping concentration etc. Depending on the material, they can have

positive or negative thermo-optic coefficient such that the refractive index increases or decreases

with change in temperature.

Any formal study of the temperature dependence of the refractive index for Si-rich SiN has not

been published in literature. However, closely related materials such as silicon, silicon dioxide,

amorphous silicon nitride (Si 3N4), and silicon-rich silicon oxide thin film have been studied. The

refractive index of silicon-rich-SiN at room temperature falls in between pure silicon (3.45) and

Si3N4 (2.05), depending on the content of silicon.

For silicon (both crystalline and amorphous), the thermo-optic effect is predominantly due to the

temperature dependent bandgap energy. As the energy shifts, the refractive index also varies

which depends on the bandgap [11]. The bandgap shift is mostly due to the electron-phonon

interaction [12, 13]. The lattice expansion due to the thermal energy also causes the shift in

bandgap, but the contribution is minimal compared to the electron-phonon interaction [12]. As

the temperature increases, the inter-atomic spacing increases due to atomic vibrations. It

decreases the average potential seen by an electron in a material and thus the bandgap decreases.

The shift in energy can be calculated using perturbation theory i.e. Debye-Waller effect [12].

Varshni proposed a simple equation for temperature dependent bandgap energy [12].

AT 2

E, (T) E, (0) A (3.1)

where Eg (0) is the bandgap energy at 0 K, and A and I are the fitting parameters which varies

according to the material. The underlying assumption for this simplified equation is that the

bandgap energy is proportional to T at high temperatures, and iT at low temperatures. The

Sellmeier equation is an empirical relation between the refractive index and the operating

wavelength, and it has been generalized to generate the temperature and wavelength dependent

refractive index model (n (2, T)) for an adequate fit for the empirical data for silicon and

germanium [14].

In general, Si-rich-SiN is formed by the nucleation of Si clusters in a dielectric host [15]. As the

silicon concentration increases, the optical properties, namely refractive index, are governed by

the silicon atoms [15]. Si-rich-SiN formed by low pressure chemical vapor deposition (LPCVD)

shows excess Si in the form of nanocrystals whose size depends on the temperature. The optical

constants of the film depend on the stoichiometry (i.e. the ratio of the concentration of the Si and



N atoms). Higher Si concentration increases the refractive index value for silicon nitride [16-18].

Similarly, if the oxygen concentration is increased to form oxy-nitride, the index value goes down

[17, 18]. The model for the dielectric function for silicon-rich silicon nitride described in ref. [19]

has been obtained by generalizing the Philipp model where the Si-tetrahedral is the fundamental

subunit. In this model, the dielectric response for SiN has been obtained with the scaled mixed

response of a-Si and a-Si3N4. The model includes the average effective number of the electrons

according to the stoichiometry and the average energy gap is calculated for the material from a-Si

and a-Si3N4. Good agreement between the model and the experimental results for various

wavelengths are shown in the reference [19].

For the silicon-rich silicon oxide thin film, the refractive index increases with increasing

temperature and the index also increases by increasing the content of silicon [20] which is similar

to silicon-rich SiN. The silicon rich oxide thin film consisted of nanocrystal silicon embedded

inside the silicon dioxide matrix. The temperature dependent refractive index for Si-rich silicon

oxide was modeled well with the theories relating index change to the temperature dependent

bandgap (Varshni's model: Equation 3.1). For a given temperature change, the shift in the index

and the bandgap energy is related by the Moss rule and it fits well for the experimental results for

Si-rich silicon oxide [20].

4 = g (3.2)
n Eg

Using similar analogy from Si-rich silicon oxide, it can be concluded that for Si-rich SiN, the

temperature induced change in the refractive index is mostly due to change in the bandgap

energy.

For the EPIC system, a large number of filters are arranged in array to form filter banks such that

the sampling rate is enhanced by the number of filters in the bank. Figure 3-1 shows an SEM

picture of a second-order filter and a schematic of a two channel filter bank with input, output and

drop ports. The ring resonators are fabricated with target channel spacing of 80 GHz with 5 GHz

standard deviation due to random process variations, which cannot be corrected during

fabrication. The 5 GHz deviation in the frequency corresponds to the dimensional uncertainty of
40 pm in the radius of the ring. Thus, a postfabrication tuning technique is required. In this work,
thermal tuning is proposed for post fabrication trimming of the HIC microring resonators for
stable and precise resonant frequency control. Thermal tuning with micro-heaters is beneficial
due to its ease of integration and low power consumption.
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Figure 3-1: (a) SEM picture of second-order filter (top view) (b) Two channel filter bank

layout.

In the case of a HIC ring resonator, when the refractive index changes, there is a shift in resonant

wavelength as shown by the following relation [21].

S Aneff 1 aneff-- AT (3.3)
AO ngroup ngroup aT

For EPIC, dynamic tuning is not required as the purpose of thermal tuning is to compensate for

any fabrication errors and, or environmental temperature fluctuations that might occur within the

device. They do not require large tuning range. However, the sensitivity of the temperature

control for the ring is critical.

As mentioned earlier, the thermo-optic coefficient of a material is temperature dependent as well

as wavelength dependent. At 1.55 ýtm, the thermo-optic coefficients for SiN and SiO 2 are 4e-5 K-'

and 1.5e-5 K-' respectively. In the case of a waveguide structure, the shift in resonant wavelength

can be attributed to change in refractive index of the core and the cladding. As the temperature of

the ring changes, the refractive index of both the core and the cladding material changes which

causes the shift in the resonant wavelength for the ring structure. Equation 3.4 gives the tuning

range for the waveguide [21 ].

AA Ao n neff Incore nf an + nff n, (3.4)
AT ngroup T ) ntgroup ancore auT + + an aT (3.4)a

For a SiN core, HSQ upper cladding, and SiO2 lower cladding, the group index is 2.29 at 1550

nm, and the theoretical tuning range is 28 pm/K - 3.55 GHz/K. If only effective refractive index

(1.46) is used for the theoretical prediction, the thermal tuning range for the Si-rich-SiN



waveguide is 44 pm/K which is an over-estimate compared to what has been measured and

reported in literature. HSQ is a type of spin-on-glass material and it is assumed to have the same

thermo-optic coefficient as silicon dioxide. For the theoretical calculation, the thermo-optic

coefficient is taken to be a constant value for all operating temperature. However, experiments on

silicon have shown the thermo-optic coefficient to vary with temperature [22-24].
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Figure 3-2: (a) Experimental data showing various thermo-optic coefficients at different

operating temperatures for Silicon [Ref. 22], (b) p = (1/n) (dn/dT) for Silicon [Ref. 23].
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From ref. 23, the temperature dependence of the thermo-optic coefficient for silicon near the

room temperature (- 373 K) can be estimated to be 2.2e-8. Since the refractive index of Si-rich

SiN is closely governed by the silicon content of the material, the temperature dependence of the

thermo-optic coefficient will also be similar to that of silicon. The temperature dependence of the

thermo-optic coefficient might be one of the causes for slight variation in the experimental results

which are discussed in the next section.

For the experimental verification, the optical output at the drop port of the ring resonator is

analyzed to study the thermal tuning effects. Figure 3-3 shows the output spectrum of an 8 jtm

radius second-order SiN ring resonator showing the free spectral range (FSR) of 22 nm and the

peak at 1538.5 nm which is consistent with the geometry of the resonator. A mismatch between

the resonant frequencies of the two rings of a single filter causes two peaks at the drop spectrum

as seen at 1560 nm in Figure 3-3. The mismatch might be due to the difference in the ring

dimensions or coupling coefficient mismatch between the two rings.
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Figure 3-3: Optical spectrum for a second-order filter at drop port: full spectrum showing

FSR with first resonance peak shown at -1538.5nm

3.4 Thermal Tuning (External Heating):

To confirm the thermal tuning before HSQ deposition, experiments were performed on the

second-order filters with air as the upper-cladding using external heaters. Figure 3-4 shows the

r
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cross-section of the ring with silicon dioxide as lower-cladding and air as upper-cladding for the

test sample.

Figure 3-4: Cross-section for the ring waveguide showing SiO 2 as lower-cladding below SiN.

A schematic of the experiment for the thermal tuning measurement with the external heating is

shown in Figure 3-5(a). An Agilent Lightwave measurement system (8164A) is used as the light

source with the wavelength range of 1510-1640 nm. The light enters the waveguide through a

polarization maintaining (PM) single mode lensed fiber. Using an x-y-z piezo cube and the piezo

servo controller, the fiber is aligned very close to the input waveguide of the filter. At the other

end of the sample, the light is collected onto a photodetector through free space coupling using a

100x microscope objective. An adjustable mirror allows focusing the beam spot to an infra-red

camera (Micron-viewer 7290A) or the photodetector. The voltage corresponding to the optical

signal hitting the photodetector is read through a DAQ (6020E) that is connected to a computer.
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Figure 3-5: (a) Experimental setup for measuring the optical output of the resonator to

show the thermal tuning (b) Placement of the sample on TEC.

The microrings are designed to support a transverse electric (TE) fundamental mode. Thus,

polarization is an important issue during experiment. In non-PM fibers, there is polarization

scrambling along the length and the output signal at the drop port is very low. Optical amplifiers

could not be used during the experiment due to the polarization restriction. As the light was

injected into the waveguide, the fiber was rotated and aligned such that there was maximum

optical signal at the drop port. If the optical amplifier was to be used, the fiber would have to be

re-aligned every time when the amplifier is turned on since the light coming out from the

amplifier is not along the same axis each time. Thus, an optical amplifier was used only during

fiber alignment and aligning the free-space coupling components. The fiber alignment is very

susceptible to disturbance from the surrounding environment where the experiment was carried.

V"



Strong air flow around the setup or vibration to the optical table was enough to misalign the fiber

tip. The sample was heated using a thermo-electric cooler (TEC) and a temperature controller

(ILX Lightwave LDC 3714). The TEC module was set at a fixed temperature and a micro-

thermocouple was used to measure the temperature at the top of the sample (Figure 3-5 b).

Thermal simulations done in FEMLAB show that the actual temperature of the ring and the top of

the sample vary by as much as 17%.

One of the earlier observations in the experiment was a broad spectrum at the output for various

sample temperatures. The broadness in the spectrum was mainly due to dust accumulation on the

rings which increases the total loss of the resonator, which is indeed seen as a broader peak and a

lower Q value. The sample was rinsed in ethanol in an ultrasonic wave cleaner and this caused the

peaks to be narrower. Figure 3-6 shows the output spectrum of the ring at various temperature

before the sample was cleaned. The actual output for the ring after cleaning is shown in Figure 3-

7.
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Figure 3-6: Optical spectrum of the second-order filter as the temperature of the sample is

increased. The broad peak is mostly due to dust particles on the rings.

The temperature of the sample was changed by increasing the TEC's set temperature. Figure 3-7

shows the shift in resonant wavelength of the second-order filter as the temperature rises from

21 C to 700C.
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Figure 3-7: Optical spectrum of the second-order filter as the temperature of the sample is

increased (after cleaning).

The resonant wavelength is taken to be the wavelength with maximum power at each

temperature. The plot shown in Figure 3-8 summarizes the shift in resonant wavelength due to the

change in temperature of the sample as measured by the thermocouple. A linear fit gives the

tuning range of 36 pm/K.
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Figure 3-8: Thermal tuning for the second-order filter (without overcladding) is observed

by changing temperature of the rings. Total shift of 2.2nm is seen due to heating the rings

from 21 0C - 810 C.
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The second-order filter with over-cladding of HSQ was measured with similar procedure to get

more accurate results for thermal tuning. The resonant wavelength shift for increase in the ring

temperature is shown in Figure 3-9. To get an accurate tuning range, the temperature of the ring

waveguide is needed. The micro-thermocouple measures only the top of the sample. Using

FEMALB, the temperature of the rings can be predicted by knowing the temperature of the top of

the sample and the TEC set temperature at the bottom of the sample. Figure 3-10 shows the plot

for resonant wavelength shift versus the temperature of the rings. When linear dependency is

assumed, the tuning range of 30 pm/K is obtained, which is within 7% of the theoretical

prediction for the Si-rich SiN waveguide.

0.
o

45
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Figure 3-9: Optical spectrum of the second-order filter (with HSQ overcladding) as the

temperature of the sample is increased.

At higher operating temperature, the peak broadens and the extinction ratio decreases. This is

mainly due to the frequency mismatch between the resonance peaks of the two rings which

causes the total output power to decrease. Also, it was observed that the accuracy of the TEC

controller at higher temperature above 400 C was +0.50 C due to fluctuation in the set temperature-

the PID constants that keep the set temperature constant at lower temperature do not work very

well at high temperature.
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Figure 3-10: Thermal tuning for the second-order filter (with HSQ over-cladding) is

observed by changing temperature of the rings.

3.5 Summary:

The thermal tuning for a second-order Si-rich-SiN ring resonator using external heaters is shown

in this chapter. The final data for thermal tuning is obtained by heating the rings using on-chip

heaters that are described in the next chapter. The tuning range for the SiN waveguide was

measured to be 30 pm/K which matches well with the theoretical prediction. The power

consumption for the thermal tuning will be obtained from similar experiment described in this

chapter using on-chip heater. The heater designs and optimization parameters are described in the

next chapter.

AJ/AT = 30pm/K
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CHAPTER 4

HEATER DESIGN & THERMAL TUNING POWER

4.1 Overview:

Designing a heater with low power consumption for the thermal tuning of the ring resonator is an

important part of this project. The key requirement for the heater design is the high power

efficiency for thermal tuning. For EPIC, the power efficiency for tuning and the wavelength

stability are more important metrics than the overall tuning range, as the requirement is to

stabilize the output of the rings at a certain frequency. Thermal tuning can be utilized for two

applications: large tuning range or low power consumption. The optimization parameters for the

two requirements are slightly different and will be explained in the later section of the chapter.

The heaters serve the dual purpose of heating the rings as well serving as sensors for temperature

measurements. Various heater geometries are studied using the three-dimensional finite element

simulations (FEMLAB). Experimental techniques such as the 3o3-method and thermoreflectance

are used to verify and characterize the micro-heater performance. For better understanding of the

heat transfer in the device, the various modes of heat transfer are described along with the

boundary conditions used for the theoretical simulations. The finite element simulations of three

different types of heaters are described and the most power efficient heater is chosen.

4.2 Heat Transfer:

Finite element simulation is utilized to estimate the temperature profile of the heater due to joule

heating. The energy is dissipated from a resistive heater and it is assumed that all the electrical

power contributes to the heating of the element. FEMLAB estimates precise temperature at any

given point of the sample. The boundary conditions and electrical-thermal model used are
described below.

4.2.1 Modes of Heat Transfer:



Heat transfer is the flow of energy due to a difference in temperature. Conduction, convection and

radiation are the three modes of heat transfer [1]. For designing a heater, it is important to

understand the heat flow in the device such that the temperature of the ring resonator can be

predicted by knowing the electrical input power to the heater.

For conductive heat exchange, the energy is transferred via vibration of molecules within the

medium. It is a common mode of heat transfer in solids. The mathematical model for conductive

heat transfer is give by:

C OT
Q= -C + V.(- 7VT) (4.1)

Vol. Ot

The total heat flux [Q - W/m3 ] transferred through conduction is related to the volume [Vol. -

1/m3], heat capacity [C - J/K], and thermal conductivity [4 - W/m K] of the material. For a steady

state model, the temperature does not change with time, thus, reducing the conductive heat

transfer model to a simpler expression.

Q = V.(- ýVT) (4.2)

The convective heat transfer is carried via fluid flow, which is characterized by the heat transfer

coefficient 'h'. For a solid to air interface, the natural convection heat transfer coefficient is taken

to be 5 W/m 2K [2]. The total power distributed within an area 'A' due to convection is given by,

hAAT
Q - (4.3)

Vol.

Radiation is the mode of heat transfer when there is exchange of thermal radiation

(electromagnetic radiation) energy between two bodies. An implicit assumption for the heater

model is that there is no radiation and no loss of heat from any other mechanism apart from

conduction and convection. Thus, the focus of the heat transfer will be on these two modes.

4.2.2 Boundary Conditions:

There are two types of boundary conditions for solving the heat flow in a system: the Dirichlet

type and the Neumann type [2]. For Dirichlet type boundary condition, the temperature of the

boundary is set to a fixed value. Whereas in the Neumann type, the heat flux across the boundary

is specified.



For a heat source, such as a resistive heater, the heat flux can be specified as qo [W/m 2] which

enters the domain and is transferred through conduction and convection to the surrounding

environment. h is the normal vector of the boundary.

q = -h.(- ýVT) - h(Tinf - T) (4.4)

Equation 4.4 is the energy balance model where the input heat flux (qo) is dissipated through

conduction and convection (Equations 4.2 and 4.3), represented by the two terms in the right hand

side of the equation. For the EPIC system, there are multiple filters in an array. Instead of

modeling the entire system, we can use the symmetry of the system to our advantage. Figure 4-1

shows a schematic of a filter bank, where a single second-order filter can be simulated as a unit

block. The condition of symmetry is useful for the reduced model size as in the case of this

theoretical modeling. According to the condition of symmetry, the temperature gradient across

the boundary is zero.

- n.(- 5ýT)= 0 (4.5)
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Figure 4-1: A single second-order filter can be used as unit cell to get thermal distribution

for a larger number of filter banks.

The interior boundaries have the condition of continuity, according to which the normal heat flux

on the upside of the boundary is equal to the normal heat flux on the downside of the boundary.

4.2.3 Electrical - Thermal Model:



For the theoretical simulations, it is assumed that the heat from the resistive element is transferred

through conduction and convection. The silicon substrate (<30 tm) is assumed to be in contact

with an ideal heat sink with ambient temperature (293K). The heater design is optimized to have

the largest change in temperature for a given input power. The idea here is that the largest

temperature rise in the heater will cause the waveguide underneath to also have large temperature

rise leading to efficient thermal tuning. The governing equation for the heat transfer is given by

the conduction as it is the primary source of heat flow in the system. In FEMLAB, an appropriate

electrical-thermal heater modeling is given by "Thin conductive shell and heat transfer

applications", which uses the basic governing equations of the heat transfer from the heater to the

substrate. The total input power (electrical) for a resistive heater of resistance 'R' and applied

voltage 'V' is given by,

V2
P = IV = (4.6)

R

The nominal resistance for a given heater at room temperature can be calculated from the

geometry and the basic material properties.

L
R=p - (4.7)

A

where p is the resistivity of the material, L is the length, and A is the cross-section area of the

heater.

In the electrical-thermal model, an important assumption is made according to which, all the

electrical energy is utilized to heat the resistor as joule heating. The governing equation for the

electrical-thermal simulations in FEMLAB relates the heat flux as the joule heating due to applied

voltage.

Power V2 1
heat flux= - I (4.8)

Area R A (4.8)

The total heat flux into the system is given by the gradient of the applied voltage:

qo = dsa(VV)2  (4.9)

where ds is the thickness of the heater [m], a is the electrical conductivity [S/m], subscript t in the

gradient means tangential gradient, and V is the electrical potential [V].

The resulting heat transfer equation for the heater is given by:

- n.(- ýVT)= qo + h(Tinf - T)- V,.(- dsVtV) (4.10)



According to the equation, the total heat flux is dissipated from the sample due to conduction and

convection. The last term on the right hand side represents the additional heat flux due to the thin

conducting layer of the heater and ý, is the thermal conductivity in the layer.

Some of the key assumptions for FEMLAB simulations are:

* Steady state (DC simulation): All the theoretical values for the heater designs are

considered to be steady state.

* The heater is modeled as a thin conducting layer to use the appropriate application

module. The heaters are 100 nm thick and can be considered thin compared to the

cladding (1.5 pm) and waveguide's thickness (400 nm). Since the heater material is a

metal (Titanium), it is a good electrical conducting layer (a = 1.3*106 S/m).

* For most materials, the resistance varies with respect to the temperature. In the theoretical

modeling, the resistance of the heater is kept constant.

* Heat flux due to joule heating is specified as the boundary condition at the surface of the

heater.

* Heat is dissipated to the surrounding air by convection; most of the heat flows towards

the substrate via conduction; and sidewalls have symmetry for boundary condition

(Figure 4-1).

* Natural convection is assumed between air and the heater surface on the top, as there is

no forced air flow in the system. Heat transfer coefficient is h = 5 W/m2K [2].

For the thermal tuning of the ring resonators, the heaters can be fabricated on top of the rings as

well as on the same level of the resonator. For EPIC, the heaters are fabricated on top of the ring

resonator with 2 pm of over-cladding in between to ensure good optical confinement. The

optimized ring dimensions for high intrinsic Q (>50,000) are 10 pm center radius and 400 nm

thickness.

The filter bank is fabricated with various layers, namely the substrate, the cladding and the core.

Theoretically we can predict the temperature of the rings by knowing the composition of the



device, the total input electrical power and the boundary conditions. Using FEMLAB, the pattern

of heat flow is predicted for various heater designs, which gives an insight to the temperature as a

function of position. Based on the thermal resistance and the total thermal power, heater designs

are optimized for the highest power efficiency.

4.2.4 Thermal Impedance:

Thermal impedance is the measure of thermal resistance of a system, and gives an insight to the

heat flow and barriers to heat transfer from high temperature to lower temperature. Thermal

impedance (ZT) can be taken as the amount of change in temperature (AT) due to certain input

power (P).

AT = ZTP (4.11)

A simple one-dimensional heat flow can give a rough estimate of the thermal impedance of the

system (Figure 4-2a),

d
Z, = (4.12)

In the given equation, d is the distance of the heat source from the heat sink, A is the area and ý is

the thermal conductivity of the material separating the source from the ideal sink. A finite disk

model as shown in Figure 4-2(b) can be used as a rough three-dimensional estimate for the

thermal impedance of the system with the heater as a disk on top of the half space. In this case,

the thermal impedance is give by:

1
Z, = (4.13)

2s'

's' is the diameter of the disk.

Isoflux
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Figure 4-2: Thermal impedance modeled for 1-dimension and 3-dimensional geometries.



In case of a ring resonator filter, the thermal tuning can be utilized to obtain a large tuning range

or high power efficiency tuning. For applications such as reconfigurable optical add-drop

multiplexers (R-OADM), large tuning range is necessary. For a large tuning range, the goal is to

get the waveguide temperature as high as possible, i.e. close to the heater temperature. Larger

area heater as shown in Figure 4-3(a) gives nearly one dimensional heat flow towards the

substrate, and the average change in temperature of the waveguide is larger compared to the

heater in Figure 4-3(b). For comparison purposes, the temperature of both the heaters is this

simulation is taken to be 100 0 C. The amount of power required to raise the temperature of the

heater to 100 0C is different for both cases. Less than 50% of the input power of the large heater

can bring the temperature of the smaller heater to the equal temperature value. Thus the second

heater is better in terms of power consumption. However, since the average waveguide

temperature rise is less for the smaller heater, the total tuning range is smaller. If similar tuning

range is required from the second heater, i.e. the average waveguide temperature rise has to be

260C, the amount of power required is about 0.13 mW. The tuning power is still less than the

larger heater. However, the downside of the small heater design is that the temperature of the

heater gets very high even with relatively low power, mostly due to large current density. With

10.13 mW, the temperature of the heater is 175 0 C. The heater temperature cannot be increased

indefinitely. The problems of electromigration and oxidation will be prominent at higher

temperature. Electromigration has been seen in the experiments which is described later in the

chapter.

P = n 7mW T = 1000 C T = 1000C P = nOORmW

(a) (b)
Figure 4-3: (a) 1-D heat flow for larger thermal tuning range, (b) heater with higher

thermal impedance for power efficient tuning.

Thus, for large tuning range, one would focus on designing heaters that give nearly 1-D heat flow

such that the ring temperature is very close to the heater temperature. However, that is not the



case for power efficient design. Thermal impedance is the key parameter for optimization. Higher

thermal impedance means larger change in waveguide temperature due to relatively smaller input

power, which directly makes the heaters power efficient. Thus, heaters with larger thermal

impedance are desired for the tuning purposes for EPIC.

4.3 Materials & Design Curves:

One of the important aspects of designing a heater for thermal tuning of the ring resonator is the

selection of the heater material. For the theoretical simulations, various materials were used.

However, fabrication ease also has to be taken into consideration. At the beginning of the project,

design curves were generated to optimize the material choices.

4.3.1 Heater Material Selection:

All the materials for the ring resonator are chosen to be "CMOS compatible", such that the

present IC fabrication technology can be utilized. For EPIC, silicon-rich silicon nitride (SiN)

rings are fabricated on silicon substrate with 3 pm of silicon dioxide as undercladding for mode

confinement and low loss. 2 pim of hydrogen silsesquioxane (HSQ) is used for over-cladding. The

titanium heaters are designed to sit over the rings for thermal tuning. Figure 4-4 shows the cross

section and the top view of the ring layout for the second-order filter.

Input port Through port

Heater

d=2 m rHSQ

sl SiN ~icroring
d = 3 n SiO2

Si Substrate

(a)
(b)

Figure 4-4: Basic layout of the second-order filter (a) cross-section (b) top view.



Various materials were studied for making the heaters. Poly-silicon, amorphous silicon,
chromium alloy and titanium were studied in detail as all of these materials are compatible with

silicon processing and could be potentially used to make heaters. Various properties of the

materials were studied. The thermal expansion coefficient of the heater has to match well with the

cladding material, such that the stress due to thermal mismatch is minimum at the interface.

Silicon dioxide's thermal expansion coefficient is 5 x 10-4/oC. The material with larger

temperature coefficient is desired so that a small change in temperature can give large resistance

change in the heater for better temperature sensing purposes. Similarly, the material with a large

thermal conductivity is preferred for efficient heat flow from the heater to the cladding. Poly

silicon is compatible with high temperature processing with silicon dioxide, and has been used as

heaters for thermal tuning of resonators [3]. However, compared to metals, the poly silicon used

in Ref. [3] has a smaller resistive temperature coefficient (9.5 x 10-4/oC). Also, the temperature

coefficient of poly Si is highly dependent on the doping level and could be negligible in some

cases. Chromium metal has been used most frequently as heater and thermistor material for

tuning applications [4]. Due to the fabrication ease, titanium metal is chosen as the resistive

heater. A thin layer (10nm) of gold is put on top of the metal layer to prevent oxidation. The

measured temperature coefficient (0.0012+4%) for titanium is less than the cited values. It has

been reported that the temperature coefficient for titanium films are highly dependent on the

processing [5]. The impurities during the deposition can give various temperature coefficients,
and the values might also be different due to the gold layer at the top of the heater.

Material Thermal Electrical conductivity Temperature Thermal
conductivity (E) (a) [S/m] coeff. [1/K] expansion coeff.

[W/m K] [1/K]

Chromium 93.9 8x 106 0.0028 4.9 x 10-6

alloy

Titanium 21.9 2.38 x 106 0.0020 - 0.0038 8.6 x 10.6

Poly Silicon* 125 Highly dopant Highly dopant - 9.4 x 10-6

dependent dependent

Amorphous 1.8 - - - 2 x 106

silicon*

Gold 318 4.5x 107 0.0037 12.4 x 10-6

Table 4-1: Summary of material properties for resistive heaters. (* Properties of

semiconductors depends on doping and impurities).



4.3.2 Temperature Control Sensitivity:

At the beginning of the project, design curves were generated to find the sensitivity of the

temperature control needed for the devices. As an initial step for the design problem, various

criteria were looked into that could be optimized for the sensitivity of the temperature control of

the thermal tuning of the resonators. The variable in the design curve shown in Figure 4-5 is the

cladding material which has different thermo-optic coefficients. As mentioned in Chapter 1, the

system requirement for the tuning of the rings is that the total tuning power efficiency has to be

less than 60 ýtW/GHz per channel, and the resonant frequency has to be controlled within 100

MHz. According to the design curve, if polymers such as PMMA (with negative thermo-optic

coefficient) are used for the cladding around the core waveguide, the power dissipation is higher.

However, the temperature control is much relaxed to achieve the stability of 100 MHz. For

polymers, the change in refractive index with temperature is mostly due to density variation [4].

For polymers such at PMMA, the density decreases with increase in temperature [6]. The increase

in volume due to relatively higher thermal expansion coefficient (70 x 10-6 /,C), leads to decrease

in material density [7, 8] which causes the refractive index to go down; thus most polymers have

negative thermo-optic coefficient. If positive thermo-optic coefficient materials such as SiO 2 are

used, power dissipation is much lower, however much more precise temperature control is needed

for the desired stability in frequency. From the following design curve, SiO 2 is the optimum

choice for the cladding material as the power dissipation is within the requirement and the

temperature fluctuation can be tolerated within 30 mK for stable center frequency.
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Figure 4-5: Design curves for different cladding (lower and upper) materials.

The cladding material is also selected by the index ratio between the core and the cladding. To

confine the mode in the core and decrease the loss, high-index-contrast (HIC) system is required.

Silicon dioxide (SiO 2) provides high index contrast with silicon or silicon nitride waveguide and

is also well suited for low power dissipation tuning. HSQ has comparable properties as silica with

refractive index of -1.4. The material has low thermal conductivity resulting in smaller thermal

cross-talk (4 = 0.4-1 W/m K) compared to the traditional silica over-cladding. Thus, HSQ is used

as the over-cladding material for the waveguide. Also, HSQ has a good gap-filling quality that is

necessary for the critical gap between the bus waveguide and the ring which is about 500 nm.

4.3.3 Over-cladding Thickness:

Reducing the thickness of the over cladding helps as the temperature of the waveguide can be

increased with smaller heater powers. However, if the metal is too close to the core of the

waveguide the optical loss increases. Figure 4-6 shows a plot which illustrates that as the

thickness of the cladding is decreased, the power efficiency increases. With 2 pm thick over-

cladding, the optical loss is minimal and the power consumption is well within the requirement.
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Figure 4-6: Dependence of tuning power on over-cladding thickness.

4.4 Theoretical Finite Element Simulations:

Using FEMLAB, various heater designs were developed and studied. Their power consumption

and thermal impedance were the main criteria for comparison and optimization. Among the

designs, three main heaters are described below.

4.4.1 Circular Heater:

These are the preliminary heater designs. Each ring is allocated its own heater on top of the over-

cladding. For thermal tuning of a second-order filter, the voltage is applied to both the heaters.

The heaters are designed such that they cover the entire ring structure. The width of the heater is

approximately 2.5 times the width of the ring, and the heater covers the largest surface area

compared to all the designs. Due to greater heat spreading over the lateral directions, this design

is the least efficient of all the other designs. The heaters have comparatively lower thermal

impedance due to larger area. Figure 4-7 shows the thermal simulation for a three channel

second-order filter bank with the heaters on top of the two filters at the edges.
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Figure 4-7: (a) Circular heaters (b) Thermal profile at the waveguide level.

Using the material property of Titanium (resistivity = 7.83 x 10-7 § m) and geometrical

dimensions, the electrical resistance of a single titanium heater is roughly calculated to be 300 I2.

With the applied voltage of 0.5 V, the total input electrical power for a single heater should be

about 0.83 mW. In the simulations, the total electrical power is the integral of the total heat flux

(W/m 2) across the resistive heater which is 0.77 mW. For the theoretical power calculation of

0.83 mW, the resistance is estimated by taking the length of the heater to be the circumference of

the circle with radius 10 gm, whereas the simulated heaters had the leads for the contact as seem

in the figure above. For the given input electrical power, the average temperature rise of a single

ring is 5.2 K. In case of tuning two rings as in the second-order filter, twice the input power is

needed to raise the temperature of the rings. The total thermal impedance of the system for a

second order filter is about 3400 K/W. The required tuning power per filter for SiN ring is 82

jtW/GHz (- 12.7 GHz/mW).



In micro-scale systems such as EPIC or UNIC, one of the important thing under consideration is

the thermal cross-talk between the rings and the adjacent heaters. The amount of thermal

disturbance due to an adjacent heater can have a severe and unwanted effect on the filter and its

resonance frequency. For the cross-talk simulations, the channels are kept 100 ptm apart, and the

worst case scenario is studied, where the middle filter is not tuned thermally but the adjacent

heaters are turned on (as shown in Figure 4-7 a). The change in temperature of the middle rings

due to two adjacent heaters give the cross-talk measure for the device. The cross-talk between the

adjacent channels is 1.3 GHz/W which is very small compared to the thermal tuning.
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Figure 4-8: Temperature profile across the cross-section of the three filters.

Figure 4-8 shows the temperature profile of the filters along the cross-section. It can be seen that

the maximum temperature rise is underneath the heaters, and the cross-talk is small as the

temperature rise of the rings in the middle is negligible.

4.4.2 S-shaped Heater:

Another heater design is the S-shaped heater or the snake heater. In this design, a single thin

resistive element is used to heat a second-order filter. With the applied voltage, the Joule heating

causes the temperature of the rings to increase. The main disadvantage of the design is the

unnecessary heating at the center of the filter where hotspots are created as seen in the figure

below. As mentioned in the theory of heat transfer, the heat flow is in the direction of lower



temperature. With this heater design, the heat flow in the lateral direction is somewhat checked

by the adjacent sides of the heater as the energy flow is towards lower temperature. The heater

also has smaller surface area compared to the two circular heaters, which leads to higher thermal

impedance. Thus, this heater has better power efficiency for thermal tuning.
Max: 294,535

294.4

294.2

294

293.8

293.6

293.4

293.2

Min: 293

Figure 4-9: S-shaped heater design (temperature profile at the waveguide level).

According to the geometry, the heater resistance is 670 Q. With the input power of 0.21 mW, the

average temperature rise of a ring is 0.82 K. Thus, the thermal impedance of the system is more

than 3900 K/W. The tuning power for this heater is 72 jLW/GHz (- 14 GHz/mW). For cross-talk

simulation, the thermal effects of the adjacent heaters were studied on the middle ring. The cross-

talk is very low within the range of 0.21 MHz/W. Figures 4-10 and 4-11 show the thermal

simulations of the heater with cross-talk measurement. The temperature profile shows that there is

comparatively no temperature change at the middle rings due to two adjacent heaters, indicating

very low cross-talk when the adjacent channels are 100 pLm apart.



Figure 4-10: Thermal cross-talk simulations for adjacent heaters.
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Figure 4-11: Temperature profile across the cross-section of the three filters.

4.4.3 Horse-shoe Heater:

The best power efficient heater design (Figure 4-12) is the horse-shoe shaped heater. At the first

glance, these heaters look like the regular circular heaters discussed earlier. However, the design

is more power efficient than both the previous discussed heaters as the surface area is optimized

to heat most of the ring and create no hotspot. The heaters are made up of thinner wires which

help in decreasing the total surface area. As mentioned earlier, the most efficient heater design is

the one with the maximum thermal impedance. In case of the system with large thermal

impedance, huge temperature rise can be obtained for the rings with minimal input electrical

power.



Figure 4-12: Best heater design with large thermal impedance.

Similar power and cross-talk simulations were done for this heater. The total resistance of the

heater is about 2.3 KA2. With the power consumption of 1.5 mW, the average temperature rise of

the ring filter is 6.7 K. Thus, giving the thermal impedance of 4800 K/W. The tuning power

consumption for this heater is 60 piW/GHz (- 17 GHz/mW) and the cross-talk is minimal at 1.6

GHz/W.
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Figure 4-13: Thermal profile of the heater with cross-section temperature profile.
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Figure 4-13 shows the thermal simulation of the heater with cross-section temperature profile.

The cross-section shows the temperature distribution from the heater to the substrate with the

rings in between. Heat flow across the cross-section is not one dimensional towards the substrate

as would be required if the application was for large tuning range. The cross-talk is tolerable

between the adjacent filters that are separated by 100 tim.

The following plot summarizes the three heater designs and the comparison factors: namely the

thermal impedance and the power dissipation for tuning.
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Figure 4-14:
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Heater designs with different thermal impedance and tuning power.

4.5 Experiments and Results:

The validation of the FEMLAB simulation is done by measuring the temperature of the heater

and comparing the thermal impedance of different designs. Two different methods can be utilized

to obtain the temperature of the heater: 3-o method and thermoreflectance, which are described in

this section.

4.5.1 3-o Method:

For accurate measurement of the thermal impedance, precise temperature measurement of the

heater is required. 3-o is a popular technique to measure the temperature and thermal

conductivity of thin films [9-12]. In the 3-0 method, an applied current of co frequency across a
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resistive element causes the resistance and the temperature of the sample to change with 2w

frequency. The voltage across the resistor has higher frequency component, namely the 3c

component which has the information about the temperature of the sample. The temperature is

related to the applied voltage and the 3w frequency component as derived below.

The resistance of the heater is temperature dependent and varies with temperature coefficient 'a'.

Ro is the nominal resistance at room temperature.

R = R0 (1 + aAT) (4.14)

The change in temperature of the device is due to Joule heating given by:

AT I2 RoZT (4.15)

where, ZT is the thermal impedance of the device. The voltage measured across the sample is:

V = IR = I o cos(wt)* Ro (1+ aAT) (4.16)

V 10 cos(ct)* Ro (I + a(1o cos(wt)) 2 RoZ)

V 10I cos(ot)* Ro I + a -. (1+ cos(2wt))RoZT

VK IoRo + O3RO2ZT + R2Z cos(ot)+ RO cos(3ot)
2 4 4

The measured voltage across the resistor has a 'w' and a '3w' component, and the measured

temperature oscillation due to the sinusoidal signal is:

4V 3,AT z ' " (4.17)a V,
A simple experiment was carried on a diffused silicon resistor (6.152J wafer) to show the

working of the 3-o process. This is a four-point measurement as shown in Figure 4-15, where the

current is applied through two probes and the voltage is measured across the resistor.



Figure 4-15: Simple schematic for 3-co measurement.

As the total input power across the resistor is increased, the temperature of the device goes up as

shown in the plot below. With this experiment, the smallest temperature change measured was 36

mK. The temperature coefficient for the diffused silicon was measured to be 1.8 x 10"-3 K1' using

the four point resistance measurement at various temperatures.
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Figure 4-16: Change in temperature of the diffused resistor measured by 3-0c method.

The thermal conductivity measured from the resistor for the silicon layer is 1.38 W/cm K which

is similar to the reported values of silicon of 1.3 W/cm K [13].

There are some basic assumptions made for the 3-0o method as discussed in ref. 9, and 10. These

assumptions are for the geometry of the sample and the operating frequencies within which the
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method gives accurate results. The thickness of the sample has to be greater than the thermal

penetration depth, and the heater's width has to be small compared to both the thermal

penetration and sample thickness. The thermal penetration depth (d) is related to the diffusivity

(D) and operating frequency (co) by:

SI 2 =(d
q ki2w)

(4.18)

Figure 4-17 shows the thermal penetration depth for HSQ (D = 4.7 x 10-7 m2/s) which is

underneath the heater. For very thin layer of HSQ (<5 gm), operating frequencies near 10 Hz is

sufficient to meet the geometrical conditions for 3-o method.
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Figure 4-17: Thermal penetration depth for HSQ for various operating frequencies.

The temperature coefficient for the titanium heater was measured to be 0.0011 K"' using the four-

point resistance measurement at various temperatures as shown in the plot below.
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Figure 4-18: Temperature coefficient measurement for titanium heater.

The measurement was done on several heaters and the average temperature coefficient was found

to be 0.0012 K'.

The final three heater designs (Figure 4-19: a,b,c) were experimentally characterized using 3-0

method. The heaters were fabricated by Charles W. Holzwarth at MIT.

(a) (b)

Figure 4-19: SEM pictures of the test heaters.

(c)

Systematic measurement shows the thermal impedances for the optimized heater to be 8807 K/W

respectively. The FEMLAB simulations indicate the heater with similar geometrical shape and

composition to have thermal impedance of 9180 K/W. To make the mesh size and simulation run-

time reasonable, the substrate thickness was only assumed to be 30 gpm for the theory as

---

?

?

?



compared to 500 jim in the real sample. The thermal conductivity for silicon (1.3 W/cm K) is two

orders of magnitude smaller than that for silicon dioxide (125 W/cm K). Thus, using a thinner

substrate in the simulation does not affect the impedance of the ring resonator by much. The

thermal impedance was calculated as the slope of the power versus temperature as shown below.
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Figure 4-20: 3-0 measurement data for the optimized heater.

The thermal impedance calculated from the 3-co measurement takes into account only the heater,

and does not give the actual temperature of the buried ring waveguide. The actual temperature of

the metal heater will always be larger than the buried ring. Thus, the thermal impedance of the

heater is also larger than the thermal impedance seen by the ring that includes average

temperature rise of the ring.

Figure 4-21 summarizes all the heaters that were studied theoretically and tested using the 3-co

method. The measured electrical resistances for the heaters are also close to the approximated

value.

Y = 8.8*x + 0.19
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Figure 4-21: Experimental results for the thermal impedance of the heaters.

4.5.2 Thermoreflectance:

Various kinds of thermal imaging have been used to study the temperature profile of different

devices. Thermoreflectance is a useful methodology to get precise temperature with very high

spatial resolution [14-16]. Thermoreflectance microscopy measures the normalized change in

surface reflectivity due to modulation of the surface temperature. The concept of

thermoreflectance is based on the relation of change in reflectivity of the material and its

temperature. The thermoreflectance coefficient relates the average amplitude of the change in

temperature and reflectivity change (A 91) which is taken from a CCD camera.

- = I )AT = V.AT (4.19)
A9 aT = -

AT = A- i (4.20)
9?

The 4-bucket technique [14, 15] is used for thermoreflectance measurement which has the

accuracy of the temperature scale to within 10 mK. The thermoreflectance calibration coefficient

(T) depends on the material, the illumination wavelength and the operating temperature. To

demonstrate the process of thermoreflectance, preliminary measurements were done on a silicon

waveguide from Lincoln laboratories. These waveguides are 1.8 gm long with the thickness of

100 nm. The calibration coefficient for silicon in the green light (512 nm) is 1.1 x 10-4 K ' [15].

Using this information, we can deduce the temperature profile of the waveguide from the change

in reflectivity as shown in Figure 4-22.
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temperature profile and change in reflectivity.

Thermoreflectance is used to get the temperature profile of the heater as shown in Figure 4-23.

Titanium is covered with a thin 10 nm layer of gold to prevent oxidation. The skin depth for gold

at the working wavelength of 467 nm (blue light) is about 3 nm, which is smaller than the

thickness of gold layer.

skin _depth()= 2 - 2.9nm (4.21)
w~(4.21)
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Thus, thermoreflectance coefficient of gold in the blue light is used for temperature calibration ('

= 3.3 x 10-' K-'). The change in temperature measured by thermoreflectance is the average value

for the amplitude of the temperature oscillation.
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Figure 4-23: Temperature profile of the heater at input power of 0.15 mW.

For the input power of 0.14 mW, the temperature oscillation of the heater is - 1.2 K. Thus, the

thermal impedance of the heater is 8500 K/W, which is similar to the value obtained from the 3-co

measurement. One of the disadvantages of the thermoreflectance measurement is the long

iteration time, which actually helps the process by reducing the noise and makes it possible to

measure very small signal. However, electromigration for the heater was seen as a pronounced

effect due to running the current for long time (<15 hours). Electromigration [17-19] is the

transport of material in a conductor caused by the momentum transfer between conducting

electrons and diffusing material atoms. This phenomenon is very easily visible in narrow (sub-

micron width) electrical wires. The width of the heater that is used in the experiment is in the

order of 0.2 gm. Apart from large current density causing electromigration, the time for which the

current is put across the resistor is also important. Black's Law [18] gives the median time of

failure for a wire which depends on the current density. For a large current density, the time of

failure due to electromigration is short, whereas for small currents electromigration might not

occur during the lifetime of the device. Instantaneous electromigration was not observed for these

heaters. However, for a few milli-watts of power, electromigration occurred when the experiment

of thermoreflectance was carried for a day. The microscopic picture of a heater destroyed by

electromigration is shown in Figure 4-24.
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Figure 4-24: Heater destroyed by electromigration.

4.5.3 Thermal Tuning with On-chip Heater:

The final set of experimental data for thermal tuning was obtained by heating the ring waveguides

using the on-chip heater. The optical measurement was taken at the drop port for each input

power. Figure 4-25 shows the optical spectrum at the drop port of the second-order filter. At

higher power, the spectrum is broad and the frequency mismatch between the two rings of a filter

is very distinct, as seen by the two peaks. This can be well explained with the heater

misalignment (Figure 4-26) during fabrication which causes one ring to heat more than the

another.

1540.5 1541 1541.5 1542 1542.5 1543 1543.5
resonant wavelength (nm)

Figure 4-25: Optical spectrum showing shift in resonance as the heater power is increased.



The misalignment during the fabrication leads to non-uniform heating of the ring. From the

theoretical simulation using FEMLAB, if the heater is placed 5 gm diagonally away from the

exact position of the rings, the difference in the thermal impedance of the ring is more than 25%

at only 3570 K/W, as compared to the optimized value of 4800 K/W. The filters also had the

frequency mismatch between the two rings of the second-order filter from the initial state which

got worst when the heater power was increased in this non-uniform heating as shown from the

experimental data.
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Figure 4-26: Misalignment of the heater on top of the ring waveguide.

Figure 4-26 shows the plot for electrical power versus resonant wavelength according to which

the filters are tuned for more than a single channel spacing with the total power efficiency of 80

jpW/GHz.
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Figure 4-27: Thermal tuning efficiency for the optimized heater.

When linear dependency is assumed, the efficiency for thermal tuning is 12.3 GHz/mW (- 80

pW/GHz). The theoretical prediction with the optimized heater structure on top of the ring filter

is 17 GHz/mW (' 60 ptW/GHz). The discrepancy is attributed to the misalignment of the heater,

which brings the tuning power efficiency of the heater down to 13 GHz/mW, similar to the

experimental results.

4.6 Summary:

The electrical characterization for the micro-heaters using both thermoreflectance and the 3-

co method show high spatial and temporal resolution needed for the accurate temperature

measurement of the heaters. Relatively good agreement between the theoretical simulation and

the measurements within the fabrication errors for the heaters indicate that the proposed

optimized heaters will have low power dissipation. The optimized heater is fabricated and tested

to verify the thermal impedance, and the thermal tuning is achieved for a second-order filter with

on-chip heaters with power consumption of 80 gtW/GHz for a second-order filter channel. The

next step is to put a temperature feedback control along with the heater that will ensure the steady

resonance frequency of the filter within 100 MHz. The negative feedback circuit used for this

application and the experimental results for thermal stability are discussed in Chapter 5.
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CHAPTER 5

FEEDBACK TEMPERATURE CONTROLLER

5.1 Overview:

Thermal tuning is used for the post-fabrication trimming and stabilizing the resonant frequency of

the microring filter. The heater is run by a temperature controller feedback circuit which helps in

maintaining a steady temperature against the environmental temperature perturbation. The

electronic circuit described in this chapter works on the principle of the Wheatstone bridge, where

the circuit senses the change in the resistance of the heater induced by the change in its

temperature. The voltage difference across the bridge passes as the error through a feedback

control loop which sets appropriate voltage across the bridge to reduce the error. There is no

direct non-invasive technique of measuring the temperature of the microrings. Thus, the circuit

monitors the temperature of the heater by monitoring its resistance as a measure of the filter

temperature. With FEMLAB simulations, the temperature of the rings can be obtained from

knowing the heater temperature. Examples of commercial temperature controllers and previous

related work are described in Section 5.2. The circuit is introduced in Section 5.3. The theoretical

simulation for the circuit using SPICE is discussed in Section 5.4. The experimental procedure

and results for the stability measurements using the circuit are shown in Section 5.5.

5.2 Previous Work:

Most commercial feedback temperature controllers have thermo-electric cooler (TEC) as the

heating/cooling device and thermistors to monitor the temperature of the module for feedback

purposes. Figure 5-1 shows two such modules from Analog Devices [1] and Electronic

Wavelengths (PID-1500) [2] that can be used for precise temperature control. The block diagram

in Figure 5-1(a) shows an optical module which has a TEC device, and a thermistor connected to

the controller that sets the TEC temperature. The controller monitors and controls the output by

reading the thermistor temperature for the feedback. Similarly, the PID-1500 has a resistive

heater for heating the module and a thermistor connector for feedback.
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Figure 5-1: Temperature controller circuit models using TEC/resistive heaters and

thermistors [1, 2].

The commercial TEC controllers as shown above are used widely for maintaining temperature

within the precision of 0.01 0C for laser diode and other optical modules. In a laser, the

temperature precision is mostly needed for the wavelength stability at the output. For our purpose

also, the wavelength stability at the output of the ring resonator is a requirement in order to

reduce the error due to timing jitter during sampling. Due to the circuit design restriction, a single

resistor cannot be used as both the heater and the sensor in the commercial controllers. The input

sense current in the thermistor is only in the micro-amperes regime, which is not enough to drive

the heater. One of the constraints for the on-chip integrated circuit is the chip area and the

dimensions of the devices. For various reasons mentioned in Chapters 1-3, the photonic devices

in the integrated chip have very small feature sizes (-1-2 Pm). To minimize the total area usage

on a chip, the proposed temperature controller uses a thin-film resistive element both as a heater

and a temperature sensor, instead of using two different elements as needed in the commercial

TEC controllers. Control feedback is utilized to regulate the temperature of the sample.
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Thermal tuning is a widely used method for regulating the resonant frequency of a ring structure,

and various techniques have been used in the past for monitoring and controlling the temperature

of the ring resonator. One such example is illustrated in Figure 5-2, where a micro-control loop

for the rings uses a resistive heater and a temperature sensor made from platinum wire [3]. The

rings in this demonstration are 70-100tpm large. A disadvantage of putting the sensor on the edge

of the resonator is the possibility of inaccurate temperature reading due to thermal crosstalk.

+ +-

onator

I "Irr I

Figure 5-2: Micro-Control loop.

One of the earlier works [4] shows a poly-Si film as a heater and a temperature sensor for a large

diameter (- 4mm) ring resonator. Two bands of poly-Si are laid within the circumference of the

ring as shown in Figure 5-3. One film is used as a heater, while the other is used to measure the

temperature of the ring. Since the ring diameter was large, two resistors could be easily fit inside

it. However, for EPIC, with 10 jtm radius ring, the inner resistor would have been very small and

the measurements would be affected by parasitic contact resistance.

Al bonding I

2.6 pm-wide 2.8 pnm-wid
rib waveguiis-bended rib

waveguide

directional coupler Al polarizer

Figure 5-3: Poly-Silicon heater and temperature sensor for tuning a microring [Ref.4].
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Reference 5 and 6 describe two circuits that demonstrate experiments where a single resistor is

used as a heating element and as a temperature sensor. The key concept of these circuits is the

Wheatstone bridge architecture. With these resistor bridge circuits, the observable temperature

modulation is limited by the noise and the off-set voltage limitations of the operational amplifiers.

Using the components as mentioned in the references, the temperature sensitivity is 75-90 mK.

Even though, the same resistor is used as the heater and the thermistor, in both cases, switches are

used to separate the heating and the measuring mode. The interchange between the two modes is

facilitated by a switch which operates at a low frequency of 50 Hz [5]. In such circuits, the

change in the resistance of the heater is used as the temperature measure. The resistance of the

heater changes due to change in its temperature which is quantified by its temperature coefficient.

Thus, metals with high temperature coefficient are beneficial for sensor applications. Accurate

resistance measurement is given by the bridge circuit in which the unknown resistance, i.e. the

heater, is compared with a known reference resistor. The reference resistor is equivalent to setting

the reference temperature that we want the heaters to be at. In the circuits for ref. 5 and 6, the

voltage across the heater and the reference resistor is measured to get the error which controls the

power regulator and the amount of current flowing to the heater. The temperature controller

circuit for this research also uses similar architecture of the Wheatstone bridge to measure the

resistance change and appropriate temperature variation, and the feedback circuit controls the

voltage across the bridge in order to minimize the errors.

5.3 Circuit Specification:

The following circuit (Figure 5-4) described in this chapter is used for the temperature stability of

the ring resonator. The circuit is based on the resistance bridge structure where the change in the

resistance of the heater is measured to indicate the change in temperature. The temperature

controller is not an on-chip circuit in the EPIC project. In the Wheatstone bridge architecture, the

heater is the unknown resistor and the other three resistors are assumed to be temperature

independent. One of the resistors is a potentiometer which sets the resistance value for the heater.

Once the bridge is balanced, if there is any temperature change in the ring/heater, the resistance of

the heater changes according to its temperature coefficient. The error in the voltage between the

set resistor and the heater is measured by an instrumentation amplifier (low noise - 0.28 tVpp,

low offset voltage - 15 itV) which passes through a feedback circuit to control the total input

voltage to the bridge. If the heater resistance is smaller than the set value, the current flow

increases through the heater which causes larger power dissipation and increase in temperature
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due to joule heating, thus increasing the overall resistance to maintain the temperature. Similarly,

if the heater resistance is higher than the set value, the current flow decreases causing decrease in

the temperature rise due to joule heating, thus decreasing its resistance.

SYSTEM PID CONTROLLER

Figure 5-4: Temperature controller feedback circuit.

The feedback circuit tries to maintain the overall balance between the voltages of the two

resistors such that the error in the voltage difference measured by the instrumentation amplifier is

minimum. The feedback controls the total voltage across the bridge circuit. One of the widely

used control feedback mechanism is the proportional-integral-derivative (PID) controller. A

general schematic for a closed loop feedback system with a PID controller is shown in Figure 5-5.

-Output-+
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Figure 5-5: Feedback system using PID for stability.
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The error signal is multiplied by a proportional gain (Kp) to reach a setpoint. The error is also

integrated and multiplied by an integral gain (Ki) to accelerate reaching the setpoint and also

eliminates any steady-state error due to the proportional gain. The derivative action slows down

the rate of change for reaching the setpoint and thus helps decrease the overshoot. The PID

controller used for the circuit is shown in Figure 5-4, and the details of the circuit are discussed in

the next section along with the circuit simulations. Figure 5-6 shows the block diagram

representation of the temperature controller.

Input (error)

Figure 5-6: Temperature control feedback diagram.

The resistance of the heater varies with respect to the temperature according to:

RH (T) = RHO + RHOaAT (5.1)

RHO is the nominal resistance of the heater at the room temperature and a is the temperature

coefficient of the heater (For titanium/gold: a = 0.0012K7'). For a balanced bridge, the resistance

of the heater is controlled by three other resistors in the bridge and is given by:

RH = RTEMpR 2  (5.2)
R,

RTEMP is a variable resistor (e.g. potentiometer) which sets the temperature of the heater by fixing

the resistance. From equation 5.1 and 5.2, the change in temperature can be related to the resistors

as:

AT= RER2 -RHORI (5.3)

An instrumentation amplifier continuously adjusts the total voltage drop across the resistance

bridge to maintain its two inputs at equilibrium. The error for the feedback is measured by a

single resistor gain instrumentation amplifier (LT1167) with low noise. The theoretical limitation

for the measurement is the thermal noise of the resistor, given by:

Vnoise = B4kBTRAf (5.4)
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The nominal heater resistance is 2.4 KQ at the room temperature (T = 293K). Thus, the

theoretical thermal noise limit for the resistor is 6 nV/'Hz. The frequency of interest for the

measurement is related to the time scale at which the thermal disturbances occur in the

surrounding near the resonator. The temperature variations of the air around the device can be

minimized by keeping it in an enclosed box and controlling the air convection. However, in an

electronic chip, the larger temperature perturbation occurs due to heating of the entire chip. The

studies done on the thermal management in an electronic device such as a microprocessor have

shown the heat distribution across the chip [7, 8]. According to an experimental result of the

temporal temperature variation for a working microprocessor, the average switching speed for the

temperature variation is in the order of 1 ms [7]. At a measurement bandwidth of 1 kHz, the

thermal noise due to the heater is in the order of 190 nV. For the balanced resistor bridge, the

voltage error measured by the instrumentation amplifier is due to the resistance variation in the

heater caused by the temperature perturbation. A change in the temperature of 30 mK for the

heaters causes the resistance change of 82 m.Q. The equivalent voltage signal to be measured by

an ideal amplifier with the gain of one is 2 ptV. The current of 25 ýpA across the heater used to

calculate the voltage signal of 2 ptV causes self-heating with the temperature variation of less than

10 mK. The signal to noise ratio (SNR) for the measurement across the heater if limited by the

thermal noise of the heater is:

SNR = 2 iV /190 nV = 10.52 (5.5)

However, when using operational amplifiers and instrumentation amplifiers, the measurement is

limited by the noise performances of the electronic components. A commercial simulation

package-SPICE is used for the circuit simulation. To improve the SNR of the measurement,

higher gain value can be chosen for the amplifier, but higher gain results in higher noise for the

circuit as shown in the results of the simulations discussed in the next section.

5.4 SPICE Model:

In the feedback circuit, there are three main parts: the system (the Wheatstone bridge), the PID

controller and the summing junction. First, the open-loop circuit analysis is done to show the

operation of the Wheatstone bridge. The loop is closed with the feedback from the system using a

PID controller. The noise analysis and the transient response are performed using SPICE models

of the specific amplifiers.
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The open-loop transfer function for the circuit only involves the Wheatstone bridge and the

instrumentation amplifier (Figure 5-7). An idealized amplifier is assumed for the calculation of

this transfer function with a gain (gamp•er). The transfer function is the ratio of the output voltage

of the instrumentation amplifier to the input voltage of the bridge and is given by:

RTEMP RH ]K R= + RAP R, + RHR * gamper (5.6)

Vin RTE RH Vout
R2 + R •RTEM, R, + RH gampler

Figure 5-7: Temperature controller without feedback.

The circuit was modeled using the SPICE simulator. The net file for SPICE simulation is attached

in Appendix A. The three amplifiers (LT1167: the instrumentation amplifier, and LTC1052: the

operational amplifier for the PID compensation and the summing junction) used in the circuit are

from the Linear Technology (LT) Inc., which allowed usage of the web-free version of the CAD

III tool for the SPICE modeling provided by LT. The SPICE macro-models for all the amplifiers

were available in the library of the program tool box. The CAD tool can be downloaded from ref.

9.

The noise analysis for an open loop circuit (Figure 5-8) shows that the limitation in the

measurement is due to the instrumentation amplifier noise rather than the resistance in the circuit.

The best commercially available instrumentation amplifier with low noise (0.28 pV, -0 .1Hz to

10Hz) is used for the circuit. As the gain of the amplifier is increased, the noise also increases, as

shown in the plot below.
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Figure 5-8: Noise analysis for the open-loop circuit.

With the amplifier gain of 51, the SNR for measuring 30 mK temperature variations is only 2

which sets the limitation for a precise measurement. Figure 5-9 shows the theoretical simulation

for the error measured by the instrumentation amplifier for various input voltages. It matches well

with the measured results.

E
-'1aV

0

-0

0r=J

o

"0 1 2 3

Input voltage (V)
4 5

Figure 5-9: Various error voltages measured at different amplifier gains.

A PID controller is implemented at the feedback loop to ensure a stabilized output of the circuit.

The transfer function for the closed-loop system with the feedback gain (G) is given by the

Black's formula as:

V .u, K (s) __

Vi,, I + K(s)G(s)
(5.7)
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where, G = ,Z2 , - R 3R 4 C 2
+ R 3  ,Z = RR 6 C 3

+ R5Zi R3R4C1C2s2 + (R4C2 + R3C 1 + R3C2 )s +1 (R6 + Rs)C 3 s +1

Figure 5-10: Block diagram for the temperature controller with feedback using PID

compensation for stability.

The step response simulations

which is well compensated to

oscillation or instability.

2.5

1.5

"
0.09

for the feedback circuit shows slight overshoot at the beginning

reach the setpoint with the settling time of 2 ps, and there is no

6 0.098 0.1 0.102 0.104 0.106 0.108

time(ms)

Figure 5-11: The step response for the feedback circuit.

0.11

The noise analysis for the closed loop circuit shows the noise at the output of the instrumentation

amplifier to be 160 nV/lHz which limits the measurement of the sense voltage to 5 ýpV. The

resistance change for the heater corresponding to this sense voltage is 0.292, which sets the

temperature limitation for the circuit to 67 mK. This limitation is set by the noise of the

instrumentation amplifier.
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5.5 Stability Measurement:

The overall instability seen in the intensity at the output of the drop port of the filter is due to

many contributing factors: the filter response fluctuation due to temperature instability, the laser

power fluctuation, the laser wavelength instability, and the fiber coupling variation due to actual

movement of the tip of the fiber. A lock-in technique is used to measure the thermal instability

due to the filter response, where the other contributing factors namely the fiber coupling variation

is cancelled.

The measured laser power fluctuation at a single wavelength is very small compared to the

fluctuations seen with the ring resonator, and can be considered as a stable source for the

experiment. The bigger problem during the experiment in the intensity fluctuation over time is the

thermal drift in the piezo cube which is used for aligning the fiber tip near the waveguide. During

the course of experiments, it was observed that the fiber tip had to be realigned after every set of

experiments. If anything on the optical table was moved around, the fiber had to be realigned for

the maximum output. Similarly, if the experiment was conducted after a period of halt (2-3

hours), the fiber had to be realigned. In one of the early experiments, the intensity of light at the

drop port is seen to decrease over the time period of less than 30 minutes. To determine the

temperature instability of the filter response, the coupling variation due to the thermal drift of the

piezo aligner had to be removed. Thus, a two-color lock-in technique is used for the thermal

stability measurement (Figure 5-12).

Figure 5-12: Thermal stability measurement setup.
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For the experiment, the two optical signals from two laser modules (8164A and 81554SM) are

coupled into the waveguide using the available 4-1 polarization maintaining coupler (Micro-

Optics Inc. SN9404). One of the optical wavelengths is taken to be at the steepest slope in the

pass-band of the filter and another signal is taken as the reference, away from the pass-band. Both

the signals are externally modulated with two phase-locked function generators at two different

frequencies (co, = 5 KHz, and co2 = 35 KHz), and measured through a photodetector (New Focus

2011, gain = 3x104) and a lock-in amplifier (SR830) in the dual-harmonic mode. The lasers could

not be internally modulated with the digital on-off modulation due to the presence of higher order

harmonics in the signals. With the sinusoidal modulation, the 7
h harmonics for 5 KHz signal was

an order of magnitude lower than the second signal at 35 KHz. The variation due to the coupling

misalignment is the common noise factor in both the signals measured by the lock-in amplifier,

which is cancelled by subtraction and the residual deviation is due to the thermal fluctuation of

the filter. To show that the measurement is not limited by the electronics of the setup, the thermal

stability measurement was taken for the laser with a commercial athermal MUX-DEMUX (E-

TEX). The optical output of the commercial filter (Figure 5-13 a) was passed through the 4-1

coupler, and measured with the photodetector at the gain of 3x10 4 such that the detected power

was similar as for the microring resonator. The standard deviation for the drift in the wavelength

was measured to be only 0.28 pm over the time range of more than an hour (Figure 5-13 b).

C

C:

0T.Cr

UZ

Time (min)

(a) (b)

Figure 5-13: Laser output stability measurement with a commercial MUX-DEMUX.
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For the SiN ring resonator, 30 pm shift in the resonant wavelength corresponds to a change in

temperature of 1 K. If the rings are assumed to be in absolute athermal conditions, the wavelength

drift of the laser for 0.28 pm would correspond to the temperature variation of 10 mK which is

the limiting factor for the stability measurement due to the laser inaccuracy.

The thermal stability for the microring resonator was first measured with the open-loop circuit.

The input voltage of 3 V was applied to the circuit. The standard deviation in the frequency due

to the thermal variation was measured to be 500 MHz (-4.5 pm), which corresponds to the filter

temperature fluctuation of 145 mK (Figure 5-14 a). The two optical inputs were at 1541.2 nm and

1542.2 nm. The extinction ratio for the second-order filter was only 12 dB. Thus, even the light

with the wavelength of 1542.2 nm which is away from the pass-band was seen at the drop port

through the photodetector. The drop port spectrum is shown in Figure 5-14 (b) with the slope

estimate at the wavelength of interest (1541.2 nm - 32.28 dB/nm).
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Figure 5-14: (a) Temperature fluctuation over time measured with the lock-in technique for

the open loop circuit, (b) Drop port spectrum for the filter with slope fitting.

The fluctuation in the intensity of the light at the drop port of the filter was measured by the lock-

in amplifier. The slope (32.28 dB/nm) along the roll-off of the pass-band gives the measure of the

change in the intensity versus the change in the resonant wavelength. Thus, the temperature

fluctuation of the filter can be calculated from the intensity deviation measurements. With the

closed-loop feedback circuit, the temperature perturbation can be controlled with higher precision

than with the open-loop circuit. Similar stability measurements show the thermal deviation of less

than 100 mK for the filter response, with the best achieved value of 80 mK thermal stability,

which is equivalent to the frequency variation of 280 MHz. Figure 5-15 shows the temperature

fluctuation measured for the closed loop circuit.
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Figure 5-15: Temperature fluctuation over time measured with the lock-in technique for the

closed-loop circuit (amplifier gain = 6).

Another experiment was done to show the thermal stability of the system where an external

temperature perturbation is introduced by shining a white light source on to the sample. When the

light is on, the temperature variation of nearly 1 K is introduced to the heater which is shown in

Figure 5-15 with the open-loop measurement. With the closed-loop feedback, the temperature

variation is reduced to be equivalent to the fluctuation of 80 mK. The sense voltage measured

across the resistor is different when the light is turned on and off. When the light is turned on, the

temperature of the heater increases, thus the voltage across the heater goes down such that there is

less joule heating. With the amplifier gain of 1, the closed-loop does not perform any better than

the open-loop circuit as the gain is not enough to reach the setpoint. When the proportional gain is

increased to 50, the external temperature variation is compensated by the circuit.
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Figure 5-16: Temperature variation over time measured with the lock-in technique.

The temperature perturbation of 80 mK can be reduced by putting the device in a box or vacuum

chamber such that the air convection around it is lowered. With the closed-loop feedback circuit,

the external temperature perturbation can be reduced within the experimental limit set by the

noise limit of the control circuit and the temperature variation due to air movement around the

sample. With the various PID gain factors, we can compensate for any external temperature

variation.

5.6 Summary :

Thus, with the PID temperature controller circuit, we show the stability of the microring resonator

to 80 mK giving the resonant frequency stability of 280 MHz. Better temperature stability can be

obtained by isolating the device in a more controlled environment such as a concealed box or in

vacuum, the options which are available for packaging for an ADC.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Summary:

The electronic analog-to-digital converter (ADC) is facing a bottleneck in achieving a high

sampling rate as well as a high effective number of bits. Various photonic devices can be used in

an ADC to enhance its performance. Such a concept has been proposed for the electronic-

photonic integrated circuit (EPIC) system where the signal sampling is done in the optical

domain. With this system, 7 ENOBs can be obtained with 40 GSPS sampling rate. Microring

resonators are used as tunable filters for wavelength division demultiplexing in this optical-

electronic system. The small size of the ring (radius = 10 pm) enables a large free spectral range

(1.6 THz) and also provides greater ability to integrate large number of devices in a small area

chip. CMOS compatible materials are used for the optical device fabrication such that the current

CMOS technologies can be utilized and both the optical and the electronic components can be

fabricated in a single facility. The core of the waveguide is made of silicon-rich-silicon nitride

and the over-cladding materials are silicon dioxide and HSQ. The high index contrast ratio of the

materials allows the feature size of the waveguide to be in sub-micron range. The microrings are

used as filters that allow signals of only specific wavelength to pass during the sampling process

for an ADC.

The second-order filters are designed to get steeper drop response and to reduce the cross-talk

between adjacent filters. The filter response for the resonator has the FWHM of 25 GHz and the

channel spacing of 80 GHz. During the sampling process for an ADC, any error in the resonant

wavelength of the filter results in the timing jitter which can produce erroneous results. Thus, the

resonant wavelength of the ring filter has to be controlled within a certain value to reduce this

timing jitter. Many phenomena within the device can cause the shift in the resonant wavelength,

temperature change being one of them. Thermal tuning is utilized for controlling the resonant

wavelength of the ring resonator. Thermal tuning is based on the thermo-optic effect of the

waveguide according to which, the thermal changes in the device causes optical variations. As the
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temperature of the ring is changed, the refractive index varies which causes shift in the resonant

wavelength. Thermal tuning is mostly used for post-fabrication trimming and to compensate for

any temperature variation in the environment. Si-rich-SiN rings have been tuned with the

efficiency of 30 pm/K. This was experimentally verified using external heaters as described in

Chapter 3. The slight discrepancy in the tuning efficiency from the theory can be explained by the

temperature dependent thermo-optic coefficient of the waveguide.

The microring filters are tuned with on-chip heaters made of titanium metal. One of the system

requirements for the EPIC was the total electrical power limitation for tuning the ring filter. For

efficient thermal tuning, the heater designing is an important aspect. Finite element thermal

simulations were used to study the temperature profile and heating of the rings with different

heater designs. The final fabricated heater was able to tune the filter with the efficiency of 80

giW/GHz. According the thermal simulations, the heater design should have had the tuning

efficiency of 60 gW/GHz. However, due to the fabrication misalignment of the heater, the

efficiency decreased by nearly 25%. The 3-co method and thermoreflectance were used to

characterize the heaters.

Temperature stability is an important requirement for the filter in the EPIC system. An off-chip

closed loop feedback circuit was designed to control the temperature of the heater within a certain

fixed value. A feedback circuit was based on the Wheatstone bridge architecture. The titanium

heater was the variable resistor of the bridge. The resistor at the opposite arm of the bridge to the

heater is a set potentiometer. The voltage difference across the two resistors is the feedback error

which is measured by a low noise instrumentation amplifier. The error passes through a PID

controller and sets the voltage across the bridge. The absolute temperature of the heater can be

controlled within 80 mK with an external heat source perturbing the rings. This temperature

control of 80 mK assures the stability of the resonant frequency within 280 MHz, and this

frequency variation can cause the timing jitter of 48 ps. The higher timing jitter will lead to lower

ENOBs or lower sampling frequency. With 50 ps of jitter, the ENOBs is reduced to 6.5 as

compared to 7 ENOBs. The limitation for the temperature control in the circuit, which increased

the jitter, was set by the noise of the amplifier as described in Chapter 5. The total power

consumed by the off-chip control circuit was 200 mW. Since the power consumption restriction

was only for on-chip devices, the off-chip circuit was not included in the total power consumption

for the ADC requirement. However, as one of the future directions for the research, the total
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power consumption of such an ADC should be studied and possibly reduced to make it a more

portable energy efficient device.

Thus, the goal of a temperature controlled microring filter for an ADC has been achieved and is

described in this thesis. Some future works and reconsiderations for the research are discussed in

the next section.

6.2 Future Work:

One of the key specifications that were not met during the experiments was the total power

consumption for tuning the ring resonators. The rings were tuned with 80 pW/GHz power when

the system requirement was 60 gW/GHz. As described in Chapter 4, the main reason for this

discrepancy was the misalignment of the heater. When designing the heater for thermal tuning,

the fabrication tolerance was not considered. The smallest feature size for the heater was 800 nm

and in theory, the heaters were perfectly aligned on top of the rings. Due to misalignment during

heater fabrication the tuning efficiency was decreased by nearly 25%. As a part of the

development of the research, the heater design should be reconsidered to resist such fabrication

mishaps. Increasing the width of the heater such that there is a larger overlap of the heater with

the ring filter would give more tolerance to the heater design against fabrication misalignments.

However, the width cannot be too big as the problems of cross-talk and higher power dissipation

becomes prominent. The power dissipation for tuning can be reduced by exploring different

waveguide materials as discussed later in the chapter. In future, the heater fabrication should be

done more carefully with better alignment markers to make sure that the overlap between heater

and ring is well matched.

Similarly, a single heater was fabricated on top of a second-order ring filter. Two rings of the

filter could not be controlled independently. In the case of frequency mismatch between two

rings, they have to be heated independently. The heater design has to be modified to ensure

independent heating such that the frequency mismatch can be corrected. In Chapter 4, individual

circular heaters on top of each ring were also considered which could have been controlled

independently. Figure 6-1 shows such a heater which was used mostly to compensate for the

frequency mismatch between the rings. The critical dimension of the heater was 1.2 lm as

compared to 800 nm for the optimized heater described in Chapter 4, which made the overlap of
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the heater on top of ring relatively

high power to tune a single filter.

easier. But this design is not very power efficient as it takes

Figure 6-1: Separate heaters for two rings of a second-order filter.

A single heater, similar to the final design discussed in Chapter 4, on top of the second-order

filter with an option of three contacts could give the alternative of heating a single ring or both the

rings at any given time with a single temperature control circuit. One of the other problem of

having two heaters for a single filter apart from large power consumption is the requirement of

two control circuits which will increase the off-chip power dissipation. Even though, off-chip

power dissipation is not currently restricted for the EPIC system, it is not hard to see that the

power requirement for a portable ADC will be limited, which will limit both the on-chip and off-

chip power consumption. As a part of the future research direction, the total power consumption

of the entire ADC has to be constricted within certain limit.

The temperature control of the heater was limited to more than 60 mK due to the circuit noise

which prevented the device from reaching the system specification of 30 mK. The noise of the

operational amplifier was the limiting factor. A better circuit design with lower noise figure

should be considered to lower the temperature measurement limit. Most of the noise in the circuit

was from the amplifiers. There could be a creative way to imply the PID functions without using

amplifiers or by reducing the number of amplifiers used in the present circuit. Also, the

instrumentation amplifier measures the voltage difference across the heater and the set resistor to

indicate any temperature change. Higher voltage difference will ensure better signal to noise
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ratio. The heater material with a higher temperature coefficient can give a large resistance change

and voltage difference. Titanium was chosen for this work due to fabrication ease. However,

other metals with larger temperature coefficient such as platinum can be considered that will give

better signal to noise ration and reduce the temperature measuring limit of the circuit. Metals such

as nickel, titanium, cobalt, tungsten, aluminum etc. are CMOS compatible which can be used in

the silicide form. They may have positive or negative temperature coefficient. Tungsten silicide

has a negative temperature coefficient of 400 ppm/°C. Different metal compounds that are

compatible with CMOS processing can also be tested to use as the heater. Their temperature

coefficients have to be experimentally verified to be large enough before using them.

Using silicon waveguides instead of Si-rich-SiN would make the thermal tuning of the ring

resonators very power efficient. Silicon's thermo-optic coefficient is an order of magnitude larger

than that of SiN. Thus, a small change in temperature would cause larger variation in the resonant

frequency. For SiN, 1 K change in temperature gives only 3.55 GHz shift in resonant frequency,

where as for Si rings, the same temperature change will cause a shift of 13 GHz. Thus, the same

heater design used for SiN rings can be more than 3 times power efficient when used for heating

the silicon rings. Using silicon rings will definitely reduce the tuning power consumption.

However, the downside is the stringency in the temperature control. Since the thermo-optic

coefficient of silicon is large compared to SiN, a slight perturbation in temperature of the ring

could cause the resonant frequency to shift by a large amount. Thus, the temperature control for

the heater will be reduced to less than 10 mK, which is very hard to achieve. Thus, moving

completely to the silicon platform would benefit in terms of controlling the total power

dissipation of the system, however, temperature control becomes a bigger issue which has to be

addressed carefully. One of the ways to reduce the temperature control requirement for silicon is

by adding a polymer with negative thermo-optic coefficient as the cladding material for the

silicon waveguide. The effective index of the guided mode in the waveguide can be made

temperature insensitive by choosing the cladding material such that the positive variation in the

index due to temperature change at the core is cancelled by the negative variation in the index at

the cladding. As seen in Chapter 3, the thermo-optic coefficient of both the cladding and the core

is required to calculate the dependence of the resonant wavelength to the temperature variation.
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APPENDIX A:

SPICE NET File
%% SPICE file to simulate the control circuit %%

XU1 N006 N009 N010 N012 0 N007 N002 N003 LT1167
V1 N002 0 15
V2 N012 0 -15
V3 N013 0 PWL(0 0 0.1 0 0.1001 3 0.2 3) AC 1
R2 N001 N009 10
R3 N001 N010 10
R4 N010 0 3k
XU2 0 N004 N002 N012 N005 LTC1052
XU3 N014 N011 N002 N012 N001 LTC1052
R5 N004 P001 1k
R6 N008 N004 1k
R7 N011 N005 10k
R8 N001 N011 10k
R9 N014 N013 10k
R10 0 N014 10k
C1 N004 N007 5p
C2 N005 N008 10n
R12 N006 N003 100k
C3 N007 P001 10n
R1 N005 N004 10k
R11 N004 N007 2k
;dc V3 0 5 1
;tran 0 0.4 0 0.0001
XVH N009 0 N010 0 RES
.SUBCKT RES 1 2 4 5
ERES 1 3 Value = {I(Vsense)*(2.4k*(l+0.0012*((V(4,5))^2/2.4k)*8800))}
Vsense 3 2 DC 0

*XVH N009 0 RES
*.SUBCKT RES 1 2
*ERES 1 3 Value = {I(Vsense)*2.5k*(1+0.0012*(I(Vsense))^2*2.5k*8800)}
*Vsense 3 2 DC 0
.Ends
;ac dec 100 1 100MEG
.noise V(N007) V2 dec 100 1 10MEG
;tf V(N005) V3
.lib LTC.lib
.backanno
.end

* RG1 IN- IN+ V- REF OUT V+ RG2
.SUBCKT LT1167 1 2 3 4 5 6 7 8

XIN1 2 1 7 4 10 LT1167 IN1
XIN2 3 8 7 4 11 LT1167 IN2
XOUT 13 12 7 4 6 LT1167 OUT
* input protection
DIP1 2 7 DX
DIP2 3 7 DX
DIP3 4 2 DX
DIP4 4 3 DX
* input capacity
CDIFF 2 3 1.6E-12
CCM1 2 4 1.6E-12
CCM2 3 4 1.6E-12
* feedback network
RF1 1 10 24700
CF1 1 10 2.5E-12
RF2 8 11 24700
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CF2 8 11 2.5E-12
RCM1 10 12 10E3
RCM2 6 12 10E3
RCM3 11 13 10E3
RCM4 13 5 10E3
.MODEL DX D(IS=8.2592e-16 RS=0 XTI=0)
.ENDS LT1167

.SUBCKT LT1167 IN1 1 2 3 4 5

* input stage
M1 11 2 10 10 M1 L=100U W=100U
M2 12 1 10 10 M2 L=100U W=100U
RD1 3 11 12575 TC=-2.97e-6
RD2 3 12 12575 TC=2.97e-6
DIl 1 3 DI1
DI2 2 3 DI2
C1 11 12 1.0547e-13
IEE 10 4 DC 0.00015904
GA 60 99 11 12 7.952e-5

* noise sources
IRI 0 101 DC 1
IR2 0 102 DC 1
DR1 101 0 DRI
DR2 102 0 DRI
GRIl 99 1 101 102 0.002898
IR3 0 103 DC 1
IR4 0 104 DC 1
DR3 103 0 DRI
DR4 104 0 DRI
GRI2 99 2 103 104 0.002898
RRu 605 0 3.4435
VRu 605 0 DC 0
FRu 99 60 VRu 1

* frequency shaper
RR1 6 60 0.001

* output stage
R2 6 99 1000
C2 6 7 1.25e-10
GB 7 99 6 99 3560.5
R01 7 99 14.9
R02 7 50 0.1
R03 50 5 65
R04 5 99 5937900000
VC 53 50 DC 1.2
VE 54 50 DC -1.2
DC1 53 55 DX
DC2 55 56 DX
DE1 57 54 DX
DE2 58 57 DX
GVC1 3 56 3 56 1.0E-4
GVE1 4 58 4 58 1.0E-4
GVC2 3 55 3 55 1.0E-5
GVE2 4 57 4 57 1.0E-5
GVLP 99 60 56 3 1
GVLN 99 60 58 4 1

* supply characteristic
EGND 99 0 POLY(2) 3 0 4 0 0 0.5 0.5
IP 3 4 DC 0.00014096

.MODEL DX D(IS=8.2592e-16 RS=0 XTI=0)

.MODEL Ml NMOS(LEVEL=3 KP=0.56117 VTO=1.00001 KF=7.6298e-28)

.MODEL M2 NMOS(LEVEL=3 KP=0.56117 VTO=0.99999 KF=7.6298e-28)

.MODEL DI1 D(IS=9.55e-11 EG=0.21274 XTI=3)

.MODEL DI2 D(IS=9.45e-11 EG=0.2144 XTI=3)
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.MODEL DRI D(IS=8.2592e-16 KF=6.4148e-18 RS=0 XTI=0)

.ENDS LT1167 IN1

.SUBCKT LT1167 IN2 1 2 3 4 5

* input stage
M1 11 2 10 10 M1 L=100U W=100U
M2 12 1 10 10 M2 L=100U W=100U
RD1 3 11 12576 TC=-2.9701e-6
RD2 3 12 12576 TC=2.9701e-6
DI1 1 3 DI1
DI2 2 3 DI2
C1 11 12 1.0547e-13
IEE 10 4 DC 0.00015904
GA 60 99 11 12 7.952e-5

* noise sources
IR1 0 101 DC 1
IR2 0 102 DC 1
DR1 101 0 DRI
DR2 102 0 DRI
GRI1 99 1 101 102 0.002898
IR3 0 103 DC 1
IR4 0 104 DC 1
DR3 103 0 DRI
DR4 104 0 DRI
GRI2 99 2 103 104 0.002898
RRu 605 0 3.4435
VRu 605 0 DC 0
FRu 99 60 VRu 1

* frequency shaper
RR1 6 60 0.001

* output stage
R2 6 99 1000
C2 6 7 1.25e-10
GB 7 99 6 99 3560.5
R01 7 99 14.9
R02 7 50 0.1
R03 50 5 65
R04 5 99 5937900000
VC 53 50 DC 1.2
VE 54 50 DC -1.2
DC1 53 55 DX
DC2 55 56 DX
DE1 57 54 DX
DE2 58 57 DX
GVC1 3 56 3 56 1.0E-4
GVE1 4 58 4 58 1.0E-4
GVC2 3 55 3 55 1.0E-5
GVE2 4 57 4 57 1.0E-5
GVLP 99 60 56 3 1
GVLN 99 60 58 4 1

* supply characteristic
EGND 99 0 POLY(2) 3 0 4 0 0 0.5 0.5
IP 3 4 DC 0.00014096

.MODEL DX D(IS=8.2592e-16 RS=0 XTI=0)

.MODEL M1 NMOS(LEVEL=3 KP=0.56117 VTO=1.00001 KF=7.6298e-28)

.MODEL M2 NMOS(LEVEL=3 KP=0.56117 VTO=0.99999 KF=7.6298e-28)

.MODEL DIl D(IS=6.5805e-12 EG=0.7051 XTI=3)

.MODEL DI2 D(IS=5.3995e-12 EG=0.7452 XTI=3)

.MODEL DRI D(IS=8.2592e-16 KF=6.4148e-18 RS=0 XTI=0)

.ENDS LT1167 IN2

***
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.SUBCKT LT1167 OUT 1 2 3 4 5

* input stage
M1 11 2 10 10 M1 L=100U W=100U
M2 12 111 10 10 M2 L=100U W=100U
RD1 3 11 12576 TC=-2.9703e-6
RD2 3 12 12576 TC=2.9703e-6
DI1 111 3 DI1
DI2 2 3 DI2
C1 11 12 1.0546e-13
IEE 10 4 DC 0.00015903
GA 60 99 11 12 7.9514e-5

* noise sources
IR1 0 101 DC 1
IR2 0 102 DC 1
DR1 101 0 DRI
DR2 102 0 DRI
GRI1 99 1 101 102 0.002898
IR3 0 103 DC 1
IR4 0 104 DC 1
DR3 103 0 DRI
DR4 104 0 DRI
GRI2 99 2 103 104 0.002898
RRu 605 0 3.4435
VRu 605 0 DC 0
FRu 99 60 VRu 1

* common mode rejection
GCM1 99 20 POLY(2) 1 99 2 99 0 0.0005 0.0005
RCM1 21 99 1000
RCM2 20 99 1000000
LCM 20 21 0.53052

*140 dB for gain=1000
*ECM 111 1 20 99 0.8E-7

* 125 dB for gain=100
ECM 111 1 20 99 5.6234e-7

*115 dB for gain=10
*ECM 111 1 20 99 1.778E-6

* frequency shaper
RR1 6 60 0.001

* output stage
R2 6 99 1000
C2 6 7 1.25e-10
GB 7 99 6 99 3560.5
R01 7 99 14.9
R02 7 50 0.1
R03 50 5 65
R04 5 99 5937900000
VC 53 50 DC 1.9
VE 54 50 DC -1.6
DC1 53 55 DX
DC2 55 56 DX
DE1 57 54 DX
DE2 58 57 DX
GVC1 3 56 3 56 1.0E-4
GVE1 4 58 4 58 1.0E-4
GVC2 3 55 3 55 1.OE-5
GVE2 4 57 4 57 1.OE-5
GVLP 99 60 56 3 1
GVLN 99 60 58 4 1
ECLP 91 0 7 50 370.37
ECLN 92 0 7 50 370.37
DCLP 91 90 DX
DCLN 90 92 DX
VLIM 90 0 DC 0

126



FB 7 99 VLIM 10.851

* supply characteristic
EGND 99 0 POLY(2) 3 0 4 0 0 0.5 0.5
DSUB 4 3 DX
IP 3 4 DC 0.00014097

GV 31 0 7 50 10
DP1 3 31 DX
DP2 33 4 DX
RGV 32 33 9.7531
EGV 31 32 POLY(1) 3 4 -0.8 1.0

.MODEL DX D(IS=8.2592e-16 RS=0 XTI=0)

.MODEL M1 NMOS(LEVEL=3 KP=0.56121 VTO=1.00001 KF=7.6303e-28)

.MODEL M2 NMOS(LEVEL=3 KP=0.56121 VTO=0.99999 KF=7.6303e-28)

.MODEL DI1 D(IS=9.55e-11 EG=0.20727 XTI=3)

.MODEL DI2 D(IS=9.45e-11 EG=0.20883 XTI=3)

.MODEL DRI D(IS=8.2592e-16 KF=6.4148e-18 RS=0 XTI=0)

.ENDS LT1167 OUT

.SUBCKT LTC1052 3 2 7 4 6 ;(+IN -IN V+ V- OUT)
* INPUT
IBI 2 7 -10P
IB2 3 7 10P
RD1 4 80 4421
RD2 4 90 4421
M1 80 2 12 12 PM1
M2 90 3 12 12 PM2
CIN 2 3 5e-12
DG1 2 7 DMG1
DG2 3 7 DMG2
C1 80 90 1.5e-11
ISS 7 12 0.00012
CS 12 0 7.5e-12
* INTERMEDIATE
GCM 0 8 12 0 2.2619E-11
GA 8 0 80 90 2.2619E-04
R2 8 0 100000
C2 1 8 3e-11
GB 1 0 8 0 7025.3
R02 1 0 199
* OUTPUT
RSO 1 6 1
ECL 18 0 1 6 179.55
GCL 0 8 20 0 1
RCL 20 0 10
D1 18 19 DM1
VOD1 19 20 0
D2 20 21 DM1
VOD2 21 18 1.7955

D3A 131 70 DM3
D3B 13 131 DM3
GPL 0 8 70 7 1
VC 13 6 1.4332
RPLA 7 70 10
RPLB 7 131 1000
D4A 60 141 DM3
D4B 141 14 DM3
GNL 0 8 60 4 1
VE 6 14 1.4332
RNLA 60 4 10
RNLB 141 4 1000

IP 7 4 0.00158
DSUB 4 7 DM2
* MODELS
.MODEL PM1 PMOS(KP=4.2637E-04 VTO=-1.1)
.MODEL PM2 PMOS(KP=4.2637E-04 VTO=-1.1000005)
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.MODEL DM1 D(IS=le-20)

.MODEL DM2 D(IS=8e-16 BV=19.8)

.MODEL DM3 D(IS=le-16)

.MODEL DMG1 D(IS=7E-12 N=2.31)

.MODEL DMG2 D(IS=6.3E-12 N=2.31)

.ENDS LTC1052
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APPENDIX B:

MATLAB CODE
B.1 Design curves for different cladding
%%%%.% Computation for TE mode, buried guide %%%%%%%
%%%%%% varying thermo-optic coeff (dcladidT) for cladding %%%%%%%

c = 3e17;
lambdaO = 1550;
wO = c/lambda0*(1/1e9);

%[ntI/s] speed of i.ight
[nin] operating wavelength for the system

%[GHz] frequency corresponding to operating wavelength

%%% input: power and overall ava. temperature change of waveguide: values from femlab

%%% thermal impedance
P = 0.0012;
T = 6.24;

ng = 2.293;

WO = 2;
TO = 1/(W0*1e-6);
width = 20;
chirp = TO/width;

dndc = 0.87;
index of core

dcdT = 4.5e-5;

dndclad = 0.25;

dwdc = 69.7/0.001;
dwduc = 18.7/0.001;
dwdlc = 9.2/0.001;

for the

%[K]

final heater - 5200K/W
input power to the heater
overall change in temp of the guide due to heater

:%group refractive index

S[GHz]repet.it;ion rate fc4r mode .locked laser
%[fs]period for mode locked laser
%[nm]pulse width for laser output
%[fsinm] chirp due to dispersion

%change in effective refractive index wrt change in refractive

%dneffi dncore
%change in refractive index of core wrt temnp
%dncore/dT ---- core: Si-rich SiN
%change in effective refractive index wrt change in refractive
index of clad
%dne fi : dnc Iad
%frequency dependence on index change

i = 0;

for dcladdT = -le-4:(2e-4+le-4)/1000:3e-5
%[l/K]Ichange in refractive index of clad wrt temp

i = i + 1;
x(i) = dcladdT;
dlabmdadT(i) = - (lambdaO/ng)*(dndc*dcdT + x(i)*dndclad);

%[nm/K]change in lambda wrt change in temp
jitterl(i) = abs(chirp*dlabmdadT(i)/10);

%[fs]total jitter for 100UK temp change
jitter2(i) = abs(chirp*dlabmdadT(i)/20);

%ifsatotal jitter for 50mK temp change
jitter3(i) = abs(chirp*dlabmdadT(i)*30e-3);

%[fs]total jitter for 50mK temp change
dwdTl(i) = - (wO/ng)*(dndc*dcdT + dndclad*x(i));

%[GHz/K]cha.nge in w wrt change in temp
dwdT(i) = dwdc*dcdT+dwdlc*dcladdT+dwduc*dcladdT;
dPdw(i) = abs((P/T)*1e6/dwdTl(i));

end

[AX,H1,H2] = plotyy(x,dPdw,x,jitter3,'plot');
set(get(AX(1),'Ylabel'),'St.ring', 'Power Dissipation [uW/GHzJ]')
set (get(AX(2), 'YlabeL'), 'String', 'Timing Jitter [fs] ')
xlabel( 'dnclad/dT [i/K]')
title ('TE mode, buri..ed guide')
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%Harry's doubie axis plot code in my folder under matiab util.s
plot(x,dPdw)
addaxis(x,jitter2,[0 44])
addaxisplot(x,jitter3,2)

B.2 Transmission curve for second-order filter

lambda = (1531.66e-9:(1532.46e-9-1531.66e-9)/500000:1532.46e-9);
neff = 1.460; % effective index of the ring
c = 3e8; % speed of light
L = 2*pi*10e-6; % circumference of the ring
w = (2*pi*c)./lambda; % circular frequency
Tr = L*neff/c; % round trip signal time

a straight = 3; %JdBicm] total absorption loss at wavegu.:i.de secti..on
alpha = ((astraight)/(-3/(log(0.5)))*100); %[/Im] static absorption coefficient (SiN)

%%%% For Silicon Nitride (SiN) waveguide

uo = 4*pi*le-7;
e0 = 8.85e-12;

t = 500e-9;
tl = 900e-9;

wb = 600e-9/2;
wr = 800e-9/2;

so = t+wr+wb;
sol = tl+wr+wr;

ncore = 2.2;
nclad = 1.44;
neff = 1.46;
1 = 1535e-9;
wl = c/l;
ko = 2*pi/l;
B1 = ko*neff;
B2 = Bl;

%%%% Bus

% [H/m]
% F/im]

% distance between bus and ring
-distance between rings

A[m] width of bus wavegui.de/2
%[m] width of r:ing wa.veQguide/i2

%[m] distance between bus and ring from the center
%[m] distance between two rin•gs from the center

% SiN r'ef.ractive index
% Si2 refractive index

% effective index of S.iN/SiO2 waveguide
% wavelength of interest for transfer function

% wave vector
% propagation constant in the waveguide
% both ring and bus made of same cor.e/c...adding

= sqrt(Bl^2-ko^2*nclad^2);
= (Bl/(2*wl*uo))*(wb+1/al);
= sqrt(ko^2*ncore^2-Bl^2);

%%%% Ring]
a2 = sqrt(B2^2-ko^2*nclad^2);
Pr = (B2/(2*wl*uo))*(wr+l/a2);
k2 = sqrt(ko^2*ncore^2-B2^2);

R = 1;
radius - inf.)

% decay constant in cladding
% mode power
% transverse propagation constant in core

% decay constant in cladding
% mode power
% transverse propagation constant i.n core

% effective radius of curvature of the ring (bus

x = ((wl*(cos(k2*wr))*e0*(ncore^2-nclad^2))/((sqrt(Pb*Pr))*(kl^2+a2^2)*2));
y = ((sqrt((pi*R)/a2))*(exp(a2*(wr-so))));
z = (a2*(cos(kl*wb))*(sinh(a2*wb))+kl*(sin(kl*wb))*(cosh(a2*wb)));
ka = 0.087;

%%%% Ring2
a3 = sqrt(B2^2-ko^2*nclad^2);
Pr = (B2/(2*wl*uo))*(wr+l/a3);
k3 = sqrt(ko^2*ncore^2-B2^2);

R1 = 10e-6;
R2 = 10e-6;
R = (Rl*R2)/(Rl+R2);

% decay constant in cladding
o mode power
I transverse propagation constant in core

r radius of the ring

% effective radius of curvature of the ring
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xl = ((wl*(cos(k3*wr))*e0*(ncore^2-nclad^2))/((sqrt(Pr*Pr))*(k2^2+a3^2)*2));
yl = ((sqrt((pi*R)/a3)*(exp(a3*(wr-sol)))));
zl = ((a3*cos(k2*wr)*(sinh(a3*wr))+k2*sin(k2*wr)*cosh(a3*wr)));
kb = 0.7;

ta = (1-ka^2) ^ ( 0 .5);% transmission coefficient (bus-ring)
tb = (1-kb^2)A (0.5);% transmission coefficient (ring-ring)

Ta = kaA2+ta^2;
Tb = kb^2+tb^2;

A = exp(j*w.*Tr-((alpha*L)/2));
Aa = exp(alpha*L);
Aq = exp(2*j*w.*Tr-alpha*L);

T = (abs(((1+Aq).*ta-A.*tb*(ka^2+ta^2*2))./(Aq.*ta^2-2*A.*ta*tb+1))) .2;
T1 = loglO(T)*10;

D = (abs((j*A.*ka^2*kb)./(Aq.*ta^2-2*A.*ta*tb+l))).^2;
D1 = loglO(D).*10;

plot (lambda*le9,D1,'r')
plot (lambda*le9+0.1,D1,'r')
xlabel ('wavelength (nm)')
ylabel ('power (dB)')

B.3 3-co method (diffused silicon resistor)
% three omega measurements on 6.152J boron-doped resistor
alpha = 0.0018; % Boron doped tempco, 410.43 ohm resistor

vs. frequency, at -
% 22.51 Vpk-pk across
% [frequency, V 3w(mV
data f = [ 1

3
7
10
26
57
63
81
98
107
172
301
420
613
827
915
1172
1610
1981

x = size(data f);

27.43 mA amplitude bias
DUT, last stage ga:in of 10(
- rms), V 3w(mV - rms) ]
21.65 22.07
21.64 22.06
20.82 21.24
20.45 20.83
19.40 19.80
18.27 18.68
18.07 18.48
17.54 17.95
17.07 17.63
16.80 17.28
15.71 16.25
14.73 14.73
14.09 14.19
13.21 13.25
12.94 12.94
12.32 12.38
12.03 11.78
11.12 11.23
9.85 10.36 ];

freq = data_f(:,l);
V 3w = (data_f(:,2)+ data f(:,3))./2;
V 3w error = abs(V_3w - dataf(:,2));

V 3w f = V_3w*sqrt(2)*2/10*le-3;
V 3w f error = ((V 3w error./V 3w)).*V 3w f;
V 3w f e = (V 3w f error./V 3w f)*100;
V 3weavg = sum(V_3w_f_e)/x(:,1);

V 1w f = 22.51;

temp_f = V 3w f./V lwf/alpha*4;
temp_error = ((V_3w_f_error./V_3w)).*temp_f;
Te = (temp_error./temp_f)*100;
Teavg = sum(T_e)/x(:,1);

%[Vj pk-pk voltage at input of final stage

% temp error percentage

%[V] pk-pk voltage at input of: final stage

% temp error percentage
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figure
hi = errorbar(logl0(freq),temp_f, temp error);
set (hl, 'LineWidth', 2);
set(gca, 'FontSize',14);
hold on;
hi = plot(logl0(freq),temp f,'ko');
title('change in temp of diffused resistor (6.152J.)
xlabel('log (freq) - operating frequency');
ylabel('change in temp [K] ');

measu:ced by 3w met:hod');

% vs. current, at 10 Hz;
% [VinmV] V 3w(rms) [mV V Iw(pp) V]I, last. stage gain of 1.0,
data c=[400 0.246 2.132

500 0.398 2.618
600 0.604 3.146
700 0.798 3.665
800 1.196 4.16
900 1.594 4.63
1000 2.14 5.40
1200 3.3 6.35
1600 7.1 8.35
1800 9.7 9.37
1900 11.2 9.88
2000 12.9 10.39];

V 3w c = data c(:,2)*sqrt(2)*2/10*le-3;
V _w c = data c(:,3);
R DUT = 410.43;
I = (data c(:,1)*1e-3/100)/2;
P heat = I.^2*R DUT;
temp c = V 3w_c./Vlwc/alpha*4;
temp = temp c*1000;
I = I*1000;

% 3w pp voltage at incut of final stage
% Iw pp voltage across sample

amplitude of current [A]
amplitude of peak heating [W]
pk-pk. temperature change [Ki
pk-pk temperature change [mKn
amplitude of current [mA]

temp c/2*1000;

figure
hi = plot(P_heat*1000,temp c/2,'k.');
xlabel('total power for heating the resistor [mW] ');
ylabel(' (amplitude) change in temp. [K]');
set(hl, 'LineWidth' ,2);
set(gca, 'FontSize',14);

% thermal. conduct.ivity cai.culati.on from freq data
1=560e-4; % approximate length of resistor (40 microns wide)
RMSpower=0.01*0.01*410.43/2;
flin=log(data_f((end-4):end,i));
temp lin=temp_f((end-4):end);
p=polyfit(-temp lin, f_lin, );
kappa=RMS_power/l/pi*p(1) % from Cahill
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