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Abstract. The dredging output of suction dredger mainly comes from the 
suction density of the rake head. Accurate prediction of suction density is 
of great significance to improve the dredging output of suction dredger. In 
order to overcome the shortcomings of low accuracy and poor real-time 
performance of the current inhalation density prediction methods, a bat 
algorithm is proposed to optimize the inhalation density prediction method 
of extreme learning machine. The bat algorithms for optimizing extreme 
learning machines prediction model is constructed based on the measured 
construction data of "Xinhaifeng" Yangtze Estuary, and compared with 
other prediction models. Finally, the bat algorithms for optimizing extreme 
learning machines model is used to build the output simulator of inhalation 
density. Compared with the actual construction, the selection of control 
parameters is analyzed when the output of inhalation density is the best. 
Experients show that bat algorithms for optimizing extreme learning 
machines prediction has high accuracy and good stability, and can provide 
scientific and effective reference for yield prediction and construction 
guidance.  

1 Introduction 
In the dredging process of the dredger , the dredging output is mainly caused by the 

excavation of the rake head. Therefore, the dredging performance of the rake head directly 
affects the production efficiency of the suction dredger. The production of rake head is 
mainly determined by the suction density of rake head. Therefore, it is especially important 
to establish a suitable rake head model to study the inhalation density. [1] The known 
physical model of the rake head is set under ideal conditions, such as keeping the soil type 
unchanged, and the type of rake head used is unchanged.[2,3] However, in the actual 
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dredging construction; the above conditions cannot be satisfied; in addition, the mud 
mixture formation process is complicated in the rake head, and the establishment of the 
physical model of the rake head also needs to consider many unknown parameters from the 
soil, such as permeability and on-site density. [2, 4] In summary, it is difficult to establish an 
effective rake head model through physical analysis. 

In response to the study of the rake head model, some scholars have proposed the use of 
data for black box modeling. In the literature [4], the least square method is used to fit the 
inhalation density. This method has certain limitations. When there are new working 
conditions, the collected data needs to be retrained. In the literature [5,6], the genetic BP is 
used to predict the inhalation density. This method has the disadvantages of complicated 
parameter setting, long training time and low prediction accuracy. 

At present, artificial intelligence, big data and other technologies are widely used in 
various industries, and they have achieved very good results. In view of the research on the 
production of rake head, this paper uses the extreme learning machine (ELM) algorithm to 
analyze the data black box of rake head. The Extreme Learning Machine (ELM) algorithm 
only needs to set the number of hidden layer neurons. It can obtain the unique optimal 
solution without adjusting the neuron weights and thresholds. Compared with other 
traditional neural networks, it has strong learning ability. , the calculation speed is fast, easy 
to converge and so on; [7,14] in the commodity futures price[8], power load [9] forecast have 
achieved good results. In order to improve the generalization performance of the Extreme 
Learning Machine (ELM) model, some literatures use particle swarm optimization 
algorithm [10] and genetic algorithm [11] to optimize the connection weight and hidden layer 
threshold of ELM. However, the particle swarm optimization algorithm has the 
disadvantages of limited search ability and low learning precision, which leads to the 
improvement of the complexity of the algorithm. The use of genetic algorithms also has 
limited space search ability, and it is easy to produce premature and local optimal problems. 
In this paper, the bat algorithm is used to optimize the extreme learning machine (ELM). 
This method is easy to realize the dynamic conversion between the global search and the 
local search. Compared with other optimization algorithms, the structure is simple, the 
parameter setting is less, and the method is better Convergence performance.  

2 Rake head production analysis 

2.1 Dredging data analysis 

During the dredging construction of the suction dredger, the factors affecting the dredging 
output can be divided into the excavation volume of the rake head and the overflow of the 
mud hopper. The more the digging volume is, the more the hopper are loaded; the less the 
cabin overflow, the higher the dredging output. Since the suction flow can be controlled by 
the mud pump, the most representative factor for the amount of digging is the suction 
density of the rake head. There are many factors affecting the suction density of the rake 
head . Generally, there are high pressure flushing, excavation depth, mud pump speed, 
wave compensator stroke, lip pressure, etc. These influence factors interact with each other. 
According to the actual operation experience of dredging construction personnel and the 
literature, [1,5,12] this paper chooses to build the suction density with mud pump speed, ship 
speed, high pressure flushing and steaming head angle and suction flow 5 inputs model 
prediction. 
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2.2 Data preprocessing 

The dredging data set contains the whole process from navigation, dredging and dumping. 
The data set required for the experiment is located in the dredging stage. The data set needs 
to be effectively organized. For example, the boundary conditions are set according to the 
construction parameters (considering the inhalation of the rake head) The density is greater 
than 1 ton/m3, the ship speed and the mud pump speed during normal construction), and the 
invalid data is eliminated. 

Dredging data is collected from various sensors and controllers for suction dredgers. 
These data vary greatly from one another and vary in dimension. In order to avoid the 
influence of the data range size on the prediction results, the original data is dimensionless, 
normalized and standardized. 

3 Introduction to related algorithms 

3.1 Extreme learning machine 

Assume that the vector of the collected data training samples is {( , ),( ,

),( ),……( , )},where Rd, Rm, i {1, 2, 3, ……N}.  
Assuming that the number of ELM hidden layer nodes is L and the hidden layer node 

output function is k(x), then its model is: 

                       (1) 

where is the weight between the i-th single hidden layer node 

and the input node, is the threshold of the i-th hidden layer node in the network;

is the right of the i-th hidden layer node and the output node 
The value, k(x) is the neuron matrix, and the expression (1) is converted into the expression 
of the matrix: 

                          (2) 

where can be solved by least squares 

                          (3) 
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3.2 Bat algorithm optimization ELM model construction 

The Bat Algorithm (BA) is an efficient bio-heuristic algorithm developed by Xin-SheYang 
in 2010. Its principle is to simulate bats using sonar to detect prey. [9,14] The implementation 
process is as follows. 

1. Set the initial number of bats to n, the maximum pulse volume to Amax , the maximum 
pulse rate to Rmax, the search pulse frequency range[ , ] , the volume attenuation 
rate to β, the search frequency enhancement factor to μ , and the maximum iteration number 
to Nmax. 

2. Randomly initialize the position  of the bat, and find the optimal solution  
by judging the current fitness. 

3. The search pulse frequency, speed and position of each generation are updated in the 
following ways: 

              (4) 

              (5) 

                        (6) 

where k is a random number between 0 and 1,  is the search pulse frequency of the i-th 

bat, ∈[ , ] ; and represent the position of the i-th bat at time t and t-1, 

respectively. And the speed at and at which it corresponds. 

4. A random number rand is generated. If rand is greate , the current solution is 
randomly perturbed, a new solution is generated, and the new solution is processed out of 
bounds. 

5. Generate a random number rand, if rand is less than and less than , 

accept the new solution above, and update and as follows: 

                       (7) 

                      (8) 

where: and  have a value range of (0, 1),and are generally set to 0.9. 
The fitness values of n bats are sorted to find the current optimal solution. 
7. Repeat steps 2-6 until the maximum number of iterations is met, and the optimal 

connection weight and hidden layer threshold are obtained. 
Finally, the optimal connection weight and the hidden layer threshold are output to the 

ELM, the test set is then used to predict the outputs of the rake head. The construction of 
the BA-ELM prediction model is shown in Fig.2. 
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Fig. 2. BA-ELM optimization model flow chart. 

4 Simulation experiments and analysis 

4.1 Data source 

The experimental data comes from the dredging project of the Yangtze River estuary of the 
‘Xinhaifeng’ suction dredger. Data points are collected every 30 seconds. After the data is 
preprocessed, 4300 data of 12 cycles are organized, 10 cycles are taken as training data, and 
the remaining 2 cycles are test data. Fig.3 shows the distribution of the original suction 
density data of the suction dredger in 150 minutes at 300 sampling points in one cycle.The 
data points during the construction phase are distributed at [50,240] for a total of 190 
sampling points for 95 minutes. 
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Fig. 3. Raw data distribution map. 

In order to reflect the prediction performance of BA-ELM model, BP, ELM, particle 
swarm optimization (PSO-ELM) and genetic algorithm optimization (GA-ELM) were 
added to compare the experimental simulations, and the average error was used as the 
evaluation index. 

4.2 Analysis of experimental results 

In this experiment, the number of BP input layer neurons is 5, the number of hidden layer 
neurons is 12, and the output layer is 1. The number of ELM hidden layer neurons is set to 
1200. The bat algorithm initializes the population to 30, the pulse loudness Amax is 0.6, the 
maximum pulse rate is Rmax 0.6, the search pulse frequency range [0, 2], and the maximum 
number of iterations is set to 1000. The simulation results are shown in Figure 4.1 and 
Figure 4.2. 

     

     

Fig. 4.1. Cycle 1 inhalation density prediction.  
Top left, Left head inhalation density model; top .right, Left head prediction error; bottom left, Right 
head inhalation density model; bottom right, Right head prediction error 
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Fig. 4.2. Cycle 2 inhalation density prediction.  
Top left, Left head inhalation density model; top .right, Left head prediction error; bottom left, Right 
head inhalation density model; bottom right,Right head prediction error 

Figure 4.1 shows the prediction results and error comparison diagrams of the five 
prediction methods for the first cycle of the suction dredger. The first cycle is 28 sampling 
points, which is the 14-minute output of rake head. It can be found from Fig. 4.1 that BP 
has the worst prediction effect, ELM learning speed is faster, and generalization 
performance is better than BP; ELM prediction effect is improved by ELM optimization. 
Among the prediction effects of GA-ELM, PSO-ELM and BA-ELM, the BA-ELM model 
has the smallest error and the best prediction effect. Fig.4.2 is a second cycle prediction 
rendering (a total of 48 sampling points for a total of 24 minutes). The experimental results 
are consistent with Fig.4.1 .The average error of the five prediction methods is calculated, 
and the average error of each period prediction model is shown in Tab.1. 

Table 1. Average error of each period prediction model. 

Predictive model BP ELM GA—ELM BA-ELM PSO—ELM 

Cycle 1 left 0.0641 0.0635 0.0629 0.0571 0.0617 

Cycle 1 right 0.0769 0.0462 0.0428 0.0351 0.0412 

Cycle 2 left 0.0841 0.0308 0.0261 0.0257 0.0283 

Cycle 2 right 0.0591 0.0331 0.0313 0.0288 0.0301 

As can be seen from Tab.1, the average error of ELM prediction is less than BP, so the 
prediction effect of ELM is better than BP. After optimizing for ELM, its prediction 
performance is improved, and the average error of BA-ELM is the smallest. Therefore, the 
predicted performance is the best. 

The trained BA-ELM model was used to simulate the production of rake head, and the 
construction parameters were optimized. Set the mud pump speed, ground angle and high 
pressure flush to a fixed value according to the required suction density of the hopper, 
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control the inhalation density to [1 ton/m3, 1.4 ton/m3], and set the suction flow rate to [2 
m3 /s,10 m3/s] and the ship speed set to [0 kn/h, 6 kn/h] for visual analysis, the following 
figure shows the simulation of the rake head output in two cycles, as shown in Fig. 5. 

         

Fig. 5. Inhalation Density production Simulation:left:cycle1, right:cycle 2. 

In the cycle 1 of Fig. 5, the mud pump speed was set at 200 rpm, the ground angle was 
set to 7 degrees, and the high pressure flush was 0.52 Bar. The seawater density is 1000 
kg/m3; in cycle 2 , the mud pump speed is set at 200 rpm, the ground angle is set to 2 
degrees, and the high pressure water is 0.52 Bar. It can be seen from Fig. 5, the better the 
inhalation density (the higher the color brightness), the higher the rake head output, the 
suction flow rate is generally in the range of 7m/s to 8.5m/s, and the ship speed between 1 
to 2.6 knots. In addition, it can be seen from Fig.5 that the selection of the ground angle has 
a very significant influence on the output of the rake head. Comparing the above-mentioned 
rake head production simulation map with the actual dredging construction process 
parameters, the suction flow rate and the ship speed value are consistent with the actual 
construction conditions. 

5 Conclusion 
Based on the analysis of inhalation density in the model of raking head output, In view of 
previous research, a method of bat algorithm optimization extreme learning machine is 
proposed to predict the inhalation density. The experimental simulation analysis proves that 
the prediction effect of this method is obviously better than other methods, and it can be 
used as a technical means for forecasting the production of rake head. 

By using the BA-ELM model to establish the rake head production simulator, the 
optimization of the construction process parameters can be realized. This method can be 
used to guide the dredging construction on site and improve the dredging production 
efficiency. 

 
This research is financially supported by China Communications Construction Co., Ltd. project 
number: (2035151801) 

References 
1. Zhen S , Cao D , Jian S . Modeling and Simulation of Drag head on Trailing Suction  

Hopper Dredger[C]// International Conference on Frontier Computing. Springer, 
Singapore, 2018. 

2. Z Su, ZX Zhou, MH Yu, et al.Online Estimation of Soil Grain Diameter during 
Dredging of Hopper Dredger Using Continuous–Discrete Feedback Particle 
Filter[J].Sensors and Materials,Vol.31,No.3  (2019) 953–968:3-7 

CSCNS2019
MATEC Web of Conferences 309, 04018 (2020) https://doi.org/10.1051/matecconf/202030904018

8



3. BRAAKSMA  J．Model-based control of hopper dredgers［D］．Delft: Delft 
University of Technology, 2008:1-21  

4. Wangli. Intelligent data analysis and control of a hopper dredger[D]. Holand :Delft 
University of Technology. 2006:42, 79, 169． 

5.  Cao Dian, Su Zhen, ye Shuxia. Prediction of rake head density of dredger based on 
Genetic BP neural network [J]. Water transport in China (the second half of the 
month),2016(10). 

6. Su Z , Fu J , Sun J . A Genetic Neural Network Approach for Production Prediction of 
Trailing Suction Dredge[J]. 2017. 

7. Huang G B , Zhou H , Ding X , et al. Extreme Learning Machine for Regression and 
Multiclass Classification[J]. IEEE Transactions on Systems, Man and Cybernetics, Part 
B (Cybernetics), 2012, 42(2):513-529. 

8. Feng Jiang, Jiaqi He, Zhigang Zeng. Pigeon-inspired optimization and extreme 
learning machine via wavelet packet analysis for predicting bulk commodity futures 
prices[J]. Science China Information Sciences, 2019, 62(7):70204. 

9. Kong Lingchun, sun qiongqiongqiong, Yang Zhaofeng. Power load forecasting model 
of bat algorithm optimized learning machine [J]. Journal of Liaoning University of 
engineering and Technology (NATURAL SCIENCE EDITION),2016,35(01):89-92. 

10. Xu Aidong, Li haofei, Cheng Lefeng, et al. Pca-pso-elm power supply reliability 
prediction model [J]. Journal of Harbin Engineering University2018,39(06):1116-1122. 

11. Lu Fangcheng, Liu Yi, Xie Qing, et al. Short term power load forecasting based on 
improved genetic algorithm to optimize limit learning machine [J]. Journal of North 
China Electric Power University (NATURAL SCIENCE EDITION),2018,45(06):1-7. 

12. Zhen Su, Wei Yuan. Parameter Estimation of Trailing Suction Hopper Dredger 
Dredging Model by GA[M]// Frontier Computing. Springer Singapore, 2016.:1-7. 

13. Huynh H T, Won Y, Kim J J. AN IMPROVEMENT OF EXTREME LEARNING 
MACHINE FOR COMPACT SINGLE-HIDDEN-LAYER FEEDFORWARD 
NEURAL NETWORKS[J]. International Journal of Neural Systems, 2008, 
18(05):433-441. 

14. Xin‐She Yang, Gandomi A H . Bat algorithm: a novel approach for global 
engineering optimization[J]. Engineering Computations, 2012, 29(5):464-483. 

CSCNS2019
MATEC Web of Conferences 309, 04018 (2020) https://doi.org/10.1051/matecconf/202030904018

9


	1 Introduction
	2 Rake head production analysis
	2.1 Dredging data analysis
	2.2 Data preprocessing

	3 Introduction to related algorithms
	3.1 Extreme learning machine
	3.2 Bat algorithm optimization ELM model construction

	4 Simulation experiments and analysis
	4.1 Data source
	4.2 Analysis of experimental results

	5 Conclusion

