
Equation-based Hierarchical Optimization of a
Pipeline ADC

by

Tania Khanna
B.S., Electrical and Computer Engineering (2005)

Cornell University

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Electrical Engineering
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2008
© Tania Khanna

B.S., Cornell University (2005), MMVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this thesis document in whole or in part.

Author ..

Certified by.

Accepted by .

MASSACHUSET" JNSTh
OF TEOHNOLOGY

APR 0 7 2008

LIBRARIES

. :

Department of Eleptrical Engineering and Computer Science
January 18, 2008

Joel Dawson
Assistant Professor

Thesis Supervisor
..................

Terry P. Orlando
Chairman, Department Committee on Graduate Students

AR1CH~IV~ES

1~-~T~c~

Equation-based Hierarchical Optimization of a
Pipeline ADC

by

Tania Khanna
B.S., Electrical and Computer Engineering(2005)

Cornell University

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Electrical Engineering
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Abstract

In system design, allocation of circuit resources like power and noise budget is a difficult
problem. It is difficult to know the optimal distribution of resources because the
performance space of each component is not fully characterized. This uncertainty results
in an iterative approach with frequent re-design of circuit blocks for different distribution
schemes. Equation-based optimization has been shown effective and time efficient in
circuit design, but is impractical for systems due to the large number of variables
resulting in long solve times. This work shows an equation-based hierarchical
optimization strategy suitable for design in deeply scaled CMOS processes. Because it is
a hierarchical methodology, it scales gracefully to systems that are much larger than can
be handled by known optimization methods.

This thesis matches flat and hierarchical optimizations of a 10-stage pipeline ADC in
a 0.18-um process. A pipeline ADC was chosen because it is a system small enough to
be handled by a flat optimization, yet large enough to be approached with a hierarchical
methodology. This allows a quantitative comparison of the computation resources
required by each strategy. In this approach, equation-based optimizations generate the
Pareto-optimal surfaces of each pipeline stage. Exploiting the surfaces' gentle nature and
amenability to low-order equation fits, they are abstracted to higher levels as
representations of the circuit block. Thus, resources are allocated at the system level
(such as power dissipation, noise budget, gain, etc.) very rapidly and very efficiently
using familiar equation-based optimization strategies. In the end we demonstrate an
optimization strategy that takes 25x less time to allocate resources than a traditional, flat
methodology.

Keywords: System design, optimization, pipeline analog to digital converters,
Pareto-optimal.

Thesis Supervisor: Joel Dawson
Title: Assistant Professor

Acknowledgements

I would first like to thank my family for all of their support and attention. Without my

parents' hard work and patience, I would not be who I am. I am amazed every day at

how they do it, and it is that effortlessness that I hope to achieve. My siblings have set an

excellent example for me in life, and I can only give my thanks for that. My family has

been there whenever I needed anything, and their constant support and tolerance of me is

priceless.

Secondly, I must thank my advisor, Joel Dawson. He has always given me great

advice and direction, especially in recognizing when I need it. In addition to the

guidance he has given me, he has always been the optimistic when it has come to my

research motivating me to keep going. This work could not have been completed without

his help and encouragement.

I am grateful to Sabio Labs, Inc. for their optimization toolbox and constant software

support. They have always been willing and prompt in improving the tools for my use.

In addition to their generous donation of their software, I would like to thank Mar

Hershenson, Sunderarajan Mohan, and Dave Colleran for the donation of their time.

Their willingness to share the vast knowledge they've accumulated and their enthusiasm

for the topic is immeasurable.

I would also like to thank Ranko Sredojevic, Vladimir Stojanovic, and Willie

Sanchez for the many conversations on optimization theory and application. It has been

an enlightening experience. Lastly, I extend my thanks to the entire Dawson and Perrott

research groups for their company and support on long and short nights.

Contents

1 Introduction 10

1.1 Background information 10

1.2 Hierarchical optimization 11

1.3 Thesis organization 12

2 ADC Pipeline 13

2.1 Pipeline operation 13

2.2 Sample and hold amplifier 15

2.3 Pipeline stage 16

2.4 Operational amplifier 18

3 ADC flat formulation 20

3.1 System formulation 20

3.1.1 Power and area 22

3.1.2 Signal-to-noise ratio 22

3.1.3 Sampling frequency 22

3.2 Pipeline stage formulation 23

3.2.1 Power and area 23

3.2.2 Noise power 24

3.2.3 Time constant and slew rate 25

3.3 Interface variables 26

3.4 Operation amplifier formulation 27

3.4.1 Power and area 28

3.4.2 Noise 28

3.4.3 Gain-bandwidth and slew rate 29

3.4.4 Functionality constraints 29

3.4.4.1 Kirchoff's Laws and Circuit biasing 30

3.4.4.2 Gain 30

3.4.4.3 Phase margin 31

3.4.4.4 Good design practice 32

4 ADC hierarchical formulation 33

4.1 Hierarchical stage module 33

4.2 Pareto-optimal surface generation 34

4.2.1 Design space exploration 35

4.2.2 Surface fitting 37

5 Optimization results 39

6 Conclusions 44

6.1 Future Work 45

Appendices

A MATLAB flat formulation code 46

A. 1 Top-level system code (ADC_top) 46

A.2 Pipeline stage code (pipelineStage) 48

A.3 SHA code (sampleAndHold) 49

A.4 'Connect' codes 49

A.4.1 connectHoldAndSample 49

A.4.2 connectSample 49

A.4.3 connectHold 50

A.5 Operational amplifier code 51

B Pipeline stage hierarchical module code (hier stage) 56

C Pareto-optimal surface generation code 57

C.1 Pipeline stage with objective code (pipelineStage_objective) 57

C.2 Design space exploration code (tradeoff pipelineStage) 58

C.3 Pareto surface fit code (processData) 59

C.4 Monomial best fit code (monomial fit) 60

List of Tables

4-1 Mean relative errors for monomial fits 38

5-1 Flat and hierarchical solutions 39

5-2 Flat and hierarchical formulation sizes 43

List of Figures

2-1 Pipeline decomposition and stage operation 14

2-2 Fully differential sample and hold amplifier 15

2-3 Single ended phase configurations for sample and hold amplifier 16

2-4 Fully differential pipeline stage 16

2-5 Single ended phase configurations for pipeline stage 17

2-6 Operational amplifier circuit topology 19

3-1 Pipeline decomposition with a circuit view of a pipeline stage 21

3-2 Stage in amplification phase with op-amp input capacitance 25

3-3 Hold/sample pair 26

3-4 Operational amplifier half-circuit with bias circuitry 28

4-1 Pareto surfaces. (a) Pipeline stage Pareto surface I showing the

design space and tradeoffs between nPO, slewRate, and power for

each pipeline stage (b) Pipeline stage Pareto surface II showing the

design space and tradeoffs between CL, Thold, and power for each

pipeline stage. 36

5-1 System solutions. (a) System solution plot I. Each solution line plots

the operating point of each pipeline stage against the design space

from Figure 4-1(a) where stagel consumes the most power and

stagel0 the least. (b) System solution plot II. Each solution line

plots the operating point of each pipeline stage against the design

space from Figure 4-1(b) where stagel consumes the most power

and stage 0 the least. 41

5-2 Optimize times for the flat and hierarchical optimizations 42

Chapter 1

Introduction

1.1 Background information

Much work has been done within the optimization and circuit communities related to the

optimization of individual circuit blocks [1, 2]. Both equation-based and simulation-

based optimization methods have enjoyed recent success for certain problems [3, 4].

However, the best of these newest methods are still painfully overwhelmed by the sheer

size of the design space typical of even modest sized, mixed-signal systems. Examples of

such systems abound, including signal paths for RF transmitters and receivers, high-

speed serial communications links, and pipelined analog-to-digital converters. Much of

today's designs are done by experienced designers who have over time developed the

intuition needed to design such complex systems. Employing hierarchy is a natural way

to cope with a large number of design variables, and many hierarchical approaches have

been explored to simplify system level optimization [5-7]. Still, an efficient technique

that brings value to the designer remains elusive.

The result is that many gains and insights reported by the optimization community

have yet to impact design practice for large, mixed-signal systems. Current design

practice may be summarized as follows. First a system designer breaks down the system

into individual blocks, distributing block specifications according to system level

equations and circuit design experience. These block specifications are then handed to

circuit designers who choose circuit topologies to meet the specifications. The circuit

designer then returns a small number of design points for the assigned block back to the

system designer who re-evaluates the initial spec distribution. Iterations of this process

are repeated until the entire system meets specification. These iterations are necessary

because the in the beginning stages of system design, the system designer has to rely on

her experience and a discrete number of operating points to characterize the operation of

each block. The method applied here allows the system designer to have a quantitative

characterization of each block's performance space before allocating system resources.

1.2 Hierarchical optimization

This thesis builds on previous optimization work [8, 9] by decomposing a large system

into manageable circuit blocks and adopting a hierarchical, bottom-up (H-BU) approach.

To begin, we break the system up into its primitive blocks, and then produce Pareto-

optimal [1] surfaces for these blocks. These surfaces can be obtained using a variety of

techniques including geometric programming (GP) and evolutionary algorithms (EA) [6]

[8]. The H-BU method has been applied to a discrete component receiver segment in a

previous work [12], which utilizes GP to generate Pareto-optimal surfaces. However, in

this application we veer from GP while still using equation-based techniques with a

specialized solver for circuit design from Sabio Labs, Inc. [11] that can handle signomial

equations. This deviation allows for more accurate models of the CMOS process than

GPs allow for with the benefit of writing more intuitive circuit design equations than EAs

allow for.

The tradeoffs between performance metrics (such as gain, noise performance, power,

linearity, etc.) are quantitatively modeled as simple monomial functions. Unlike past

works [5, 6], we take advantage of the gentle nature of the tradeoffs by using simple

monomials, and the result is that the system formulation is less complex and more solver-

friendly. Moreover, because the design space is confined for each primitive block to the

relatively small slice inhabited by the Pareto surface, we achieve this simplicity without a

corresponding severe degradation in accuracy. This work applies the H-BU method on a

10-stage pipeline ADC in a 0. 18xm CMOS process with a 100Mbps sampling frequency

as proof of concept.

1.3 Thesis organization

Chapter 2 explains the circuit theory of a pipeline ADC by decomposing it into its

components. The ADC is also broken down into manageable circuit blocks for the

purpose of applying a hierarchical optimization strategy. Finally, design choices for the

operational amplifier (op-amp), of great importance in the overall design, are discussed.

Chapter 3 extends the circuit theory and intuition from Chapter 2 to a mathematical

program for the pipeline in a flat formulation. The formulation starts from a top-level

system design, descends to the pipeline stage topology including an op-amp, and finally

to transistor-level design of the op-amp. The focus of Chapter 3 is to understand the

circuit theory from a mathematical and hierarchical perspective.

In Chapter 4, the framework from Chapter 3 is used to create a hierarchical

formulation of the pipeline. To do this, we abstract a lower level block-in this case a

pipeline stage-using low-order equations modeling the tradeoffs between system design

variables. Also discussed is the generation of Pareto-optimal surfaces, which are gentle

and amenable to fits with the low-order equations. This a non-trivial task because the

entire design space of the pipeline stage must be encapsulated in the Pareto-optimal

surface.

Chapter 5 shows and compares the optimization results for both the hierarchical and

flat formulations. Conclusions and future directions of this work are given in Chapter 6.

Chapter 2

ADC Pipeline

The H-BU methodology can be applied to any system that can be dissected into discrete

blocks, and a variety of mathematical programs can be used to implement the method.

One such example is the receiver segment [12], which used GP as the technique for

optimization. This work retains equation-based optimization techniques, but it veers

from GP by allowing signomial [11] expressions in the formulation. The method is

applied to a pipeline ADC because it lends itself well to a hierarchical optimization with

its many stages, while being practical for a comparison to a flat optimization because of

the reasonable total number of design variables.

In the following sections we will explain operation of the pipelined ADC as well as

discuss the design choices made from a circuit design perspective, and complete the first

step of the H-BU method, which is to decompose the desired system into smaller, more

manageable blocks.

2.1. Pipeline operation

The most elementary analog-to-digital converter compares an input voltage with a

reference voltage and decides whether the input is higher or lower than that reference.

This simple comparison would constitute a 1-bit conversion, however for most

applications higher bit resolution is necessary.

To extend the conversion precision we can use a pipelining technique by carrying

over to another stage the remainder of the input signal after subtracting either the

reference voltage or nothing when the decision bit was high or low respectively. The

residue is first multiplied by two (for a 1-bit per stage resolution) so that it is amplified to

the full input voltage range and can be passed onto the next stage for the next bit

comparison. This pipelining is continued through n-stages to obtain n-bit accuracy. This

concept can be extended to k stages with an n bit resolution per stage seen in Figure 2-1.

The gain element required for this generalized pipeline is 2n. This work applies the H-

BU method to a 10-stage pipeline with a 1 bit per stage resolution.

ige k

n bits

Figure 2-1. Pipeline decomposition and stage operation.

In pipeline ADC design, the limiting factor of power consumption is the operational

amplifier (op-amp) because of the necessary gain element. Current design practice scales

down the op-amp in later stages to reduce power consumption without reducing bit

resolution or speed. The noise requirements in later stages are more lax, thus a smaller,

less power hungry op-amp can be used. However, the optimal scaling is typically only

approximated with rules of thumb, and often it is not worth the designer's time to

precisely scale the last few stages. The last uniquely designed stage is therefore cascaded

as the remaining stages to fulfill the bit precision specification. The focus of this work is

to apply the H-BU method to minimize power by optimally scaling the stages, and

compare the optimization results with a flat optimization. In so doing, we will have

demonstrated a hierarchical methodology that scales to systems much larger than

pipelined ADCs.

2.2. Sample and hold amplifier

The pipeline is fully differential, which results in many circuit benefits including

improved SNR, immunity to common mode disturbances, and cancellation of even-order

distortion products. We chose an active sample and hold amplifier (SHA) for the input

sampling, seen in Figure 2-2. During the sampling phase, the qpl switches are closed, and

during the hold phase, the p2 switches are closed.

V+out

V-out

Figure 2-2. Fully differential sample and hold amplifier.

To analyze this active circuit, it is easier to look at the single ended operation. Both

phase configurations are seen in Figure 2-3. In Figure 2-3(a), the input voltage is applied

across the sampling capacitor, thus storing a charge Q = CVin. Also, the output is

connected to the inverting input and thus set to ground. When the amplifier switches to

the hold phase, we see the configuration in Figure 2-3(b). The input is now disconnected

V in

V+in q)

and the output connects to the other side of the sampling capacitor. Because of charge

conservation and constant capacitance the voltage across the capacitor must be Vin, and

therefore V,,out holds the input voltage.

C
Vin •

Vout

(a) Sampling Phase (b) Hold Phase

Figure 2-3. Single ended phase configurations for sample and hold amplifier.

2.3. Pipeline stage

Each stage of the pipeline must perform a sample and hold operation, but we can

incorporate the gain element into this existing configuration to be more efficient. The

pipeline stage is shown in Figure 2-4. With this configuration, there is still a sample

phase but the hold phase is replaced with an amplification phase. For convenience, we

will still call this the hold phase, but it is implied that in the case of a pipeline stage there

is a gain of 2.

V'in

V+in

V+ out

V-out

Figure 2-4. Fully differential pipeline stage.

Again, the single ended phase configurations in Figure 2-5 are helpful in analyzing the

stage operation. In Figure 2-5(a), the input voltage is applied across the sampling

capacitors in parallel, thus storing a charge Q = CVin on each capacitor. Also, the output

is connected to the inverting input and thus set to ground. When the phase changes to the

hold phase, we see the configuration in Figure 2-5(b). The input is now connected to

ground and the sampling capacitors are in series. Because of charge conservation and

constant equal capacitance the voltage across each capacitor must be Vin, and therefore

Vout holds 2*Vin.

C C

VnC
yin+ tI Vout

(a) Sampling Phase (b) Hold (Amplification) Phase

Figure 2-5. Single ended phase configurations for pipeline stage.

A more straightforward approach is to apply Kirchoff's Current Law (KCL) on the

inverting terminal of the op-amp, which at the time of switching holds the Vin:

sC -(0 - Vin) = sC -(Vin - Vout,)
Vin = Vin -Vout
ou, - 2Vin

The ADC from figure 2-1 is implemented as a simple comparator, where a sampled

voltage larger than the common mode produces a '1' bit and a voltage lower than the

common mode produces a '0'. The decision bit then controls switching circuitry as the

make-up of the DAC, which subtracts the correct reference voltage to calculate the

residual voltage. In this work, we exclude the ADC and DAC from the formulation,

because these blocks are not dominant factors in the power consumption of the pipeline,
and they are supporting circuitry, which can be designed independently.

We can now construct the pipeline by feeding the analog signal into the sample and

hold amplifier and outputs into 10 pipeline stages cascaded together to provide 10 bits of

resolution. Thus far we have analyzed how the digital conversion is obtained, but we

must characterize the operational amplifier carefully because that is where the majority of

the power is consumed.

2.4. Operational Amplifier

The op-amp topology chosen for the pipeline was comprised of two fully differential

stages and is shown without biasing circuitry in Figure 2-6. The first stage has a pMOS

input differential pair with a folded cascode to achieve high gain by increasing output

impedance [13] [14], and the second stage is a differential common source amplifier.

Two stages and cascoding were necessary to minimize finite op-amp gain errors in the

pipeline, which was crucial for accuracy. If we call the op-amp gain A, the closed loop

gain for a pipeline stage can be calculated as follows using Black's formula [15]:

A
Vout = Vin

21+(2A)(Y2Vout = Vin

Looking at the resulting expression, we note that as A approaches infinity the gain

approaches 2, the ideal value for perfect residual amplification.

Since the op-amp is fully differential we must actively control the common mode

output. Each stage has a node biased using feedback circuitry from that stage's output

node. These nodes are marked in Figure 2-6 as Vcmi and Vcm2. These nodes are

important again to minimize op-amp finite gain errors, since they ensure the op-amp is

operating with the correct common mode to achieve the highest gain.

One final consideration taken in choosing the op-amp topology is frequency

compensation. Because the op-amp is in a negative feedback configuration, we must

ensure the stability of the circuit to prevent oscillation. By employing a frequency

compensation to split the poles of the op-amp, we push one pole higher in frequency and

extend the stable frequency range [13] [14]. A common technique for pole splitting is

Miller compensation [13] [14], which is implemented by placing a capacitor between the

input and output nodes of the second stage. Though Miller compensation is common and

easy to implement, it is not the optimum from the standpoint of increasing closed loop

bandwidth. We can do better by using the relatively new technique of cascode

compensation [16-18]. To employ cascode compensation, we insert a feedback capacitor

from the output of the second stage to the cascode node of the first stage shown in Figure

2-6. In taking advantage of cascode compensation, the op-amp can achieve a greater

bandwidth thereby by increasing the pipeline sampling rate.

Stage 1 Stage 2

Figure 2-6. Operational amplifier circuit topology.

From this exploration into the circuit theory of the pipeline, we see that hierarchy is

useful when analyzing circuits. Much of the theory relies on abstraction of lower level

blocks like a pipeline stage or an op-amp. With well-defined topologies, it is possible to

mathematically express the performance of each block, and extend hierarchy to the

performance tradeoff space of each block as well as in the space of node voltages and

currents.

.. -..... P."--

Chapter 3

ADC flat formulation

Before applying the hierarchical method, we first formulate the ADC as a flat

optimization problem. This flat formulation is necessary for the H-BU method, since it

provides an analytical framework for the hierarchical formulation and Pareto surface

generation. However, the proposed method does not require us to actually follow

through with a flat optimization, which is computationally intensive and thus very time

consuming. We only perform a flat optimization in this work by way of comparison, in

order to highlight the tremendous speed advantage of a hierarchical optimization.

3.1 System formulation

A simple system level formulation of the full pipeline is

minimize pp " Ptotal + tA -Atotal
subject to fSample> fSample, Spec'

SNR > SNRSpec

where y• and pA are normalizing constants for system power and area respectively, fsampte

is the sampling frequency, SNR is the signal-to-noise ratio, andfsample,spec and SNRspc are

the system specifications that must be met. The system formulation is rather simple and

similar to equations system designers already use to approximate system performance. In

this work we formalize this, making the case that equation-based optimization is superior

to simulation-based optimization at the system level.

As discussed in Chapter 1 and 2, the most intuitive way to decompose a pipelined

ADC is by its stages seen again in Figure 3-1 with a circuit view of each stage. In a

hierarchical design, there are many design variables that are not important to higher

levels of hierarchy, such as transistor dimensions, bias currents and voltages, and so on.

In generating our Pareto-optimal surfaces, we must choose the variables that are

important at higher levels in the hierarchy. Or in other words, we must choose the

variables that determine the system level specs, which in the case of an ADC are the SNR

and sampling frequency. These, in general, will be performance metrics that contribute

to the equivalent performance metric at the system level. For example, the power of a

given stage is important because it contributes to the overall power consumption of the

system. For this problem, we determined that the important system design variables to be

abstracted from each stage are: power (P); area (A); output-referred noise power (nPO);

settling time constant (mhold); slew rate (slewRate); input capacitance of the sampling

stage (clS); output capacitance of the hold stage (cLH). In the following sections, we

detail the impact of each of these performance metrics on the overall system. The

commented top-level system code (ADC_top) is given in Appendix A. 1.

Vout

Figure 3-1. Pipeline decomposition with a circuit view of a pipeline stage.

3.1.1. Power and area

The power and area expressions are straightforward and simply a sum of the powers and

area of each pipeline stage and the SHA.

N N

Ptot = PSHA + I Atot = ASHA + An.
n=1 n=1

In the system level objective function, power and area are weighted with normalization

factors, Mx, so both are held at equal importance during optimization. The circuit designer

determines the normalization factors by examination. For example, power and area are

on the order of mW and mm2 respectively resulting in a Up=10 3 and MA=10 9. This is an

example of the designer insight embedded into the formulation.

3.1.2. Signal-to-noise ratio

The dominant noise contributions in the pipeline are due to quantization and thermal

noise given as follows:

2 2 2 LSB 2 nPOk
Vn,tot = n,quant n,thermal 2k

k-i-
2

where nPOk is the output referred noise power of stage k and is explored in section 3.2.

The SNR can then be written as

2

SNR =- ppmax
8 vn,tot

where Vppm, is the maximum output peak-to-peak voltage.

3.1.3. Sampling frequency

Sampling frequency is constrained by the settling time, tsette, of each stage, so for a given

sampling frequency spec, we can add the following constraint to the system formulation:

1
tSettle =

This constraint ensures that each stage settles within half the sampling period. The

settling time of each stage can further be expressed as the time taken for a single ended

output to slew across the half the maximum output voltage range, Vpp.ma,, plus linear

settling time after the slewing:

tSettle,n = tSettle,slew,n + tSettle,linear,n

1/2 Vpp,max log(precisionn) * Thold,nslewRaten

where precisionn is the required precision of stage n to achieve the desired bit resolution;

rhold,n and slewRaten are the settling time constant and slew rate of stage n respectively.

This expression gives us a worst-case calculation for the settling time, and can be

constrained

tsettle,n < tsettle,

for n=1,...,N. Therefore, this formulation constrains the worst case settling time such

that the sampling frequency specification is met.

3.2 Pipeline stage formulation

The pipeline stage formulation aims to define the system level design variables in terms

of the circuit components in the stage, namely the sampling capacitors and op-amp seen

in Figure 3-1. In the following sections, we explain the formulation for one pipeline

stage, which is expressed in commented code in Appendix A.2.

3.2.1 Power and Area

The power and area of each stage is straightforward:

P = PAmp

A = AAmp + 4 -Acsample

Here we approximate the total power of stage as the power consumed by the op-amp

since it is the dominating power sink. Similarly, the area is defined as the active area

comprised of the op-amp and sampling capacitors. The active area of a transistor (Af),

is calculated as the product of the width (WA), length (LA,), and number of fingers (nk):

AMx = WMx -LMx nM,

and the capacitor active area is the product of the capacitance and a constant capacitive

density, which is determined by the process. It should be remembered that the stage is

fully differential so there are a total of 4 equal sampling capacitors. All other equations

assume the half circuit analysis technique in formulating the pipeline operation.

3.2.2 Noise power

For calculating noise in each pipeline stage, we rely on the Sabio models [11] for the

noise current in a transistor, which express the noise current as a function of transistor

dimensions. Shown in section 3.4.2, we can write an expression for the output noise

current of each stage of the op-amp as a function of each transistor noise current and then

calculate the output referred thermal noise:

.2 .2

nPO = In,Stgl,Amp + In,Stg2,Amp

4 -gm i fFB - Cout,Stgl,Amp 4 - gm (Cout,Stg2,Amp + Cc,Amp)

where i2n,Stgl,Amp and i2n,Stg2,Amp are the square noise current at the output of stage 1 and

stage 2 of the op-amp respectively; Cout,Slgl,Amp and Cout,Stg2,Amp are the node capacitances

at the output of stage 1 and stage 2 of the op-amp respectively; and CC,Amp is the

compensation capacitor in the op-amp. During the hold mode, the pipeline stage is in

feedback and there is an associated feedback factor, fFB, defined as the gain from the

output to the input of the stage. This configuration is recalled from Figure 2-5(b) and

modified to include the input capacitance of the op-amp, Cin,Amp, in Figure 3-2. Also

recalled is that the node voltage on the inverting terminal is the input voltage sampled

during the previous sample phase.

CSample

CSan

vout

Figure 3-2. Stage in amplification phase with op-amp input capacitance.

Applying KCL on the inverting node of the op-amp, we get

S CSample (Vout - Vin) = S (CSample + Cin,Amp) -(Vin)

Csample Vout = (2 Csample + Cin,Amp) Vin +

Vin CSample
fFB i -

Vout 2 " Csample + Cin,Amp

3.2.3 Settling time constant and slew rate

To fulfill the sampling frequency constraint in section 3.1.3, we need to define the

settling time constant, Chold, and slew rate, slewRate, to express the settling time. By

approximating the amplification phase transfer function as a single pole system, we can

define the following:

1
'hold = 1

-GBWAmp
2 mp

where GBWAm, is the gain-bandwidth of the op-amp. Since in hold mode, the op-amp is

in a gain of 2 configuration, we divide the GBW by a factor of 2. Finally, the slew rate of

the stage is simply defined as the op-amp slew rate:

slewRate = slewRateAmp.

The sample and hold amplifier is similarly formulated, except there is only one

sampling capacitor. The full sample and hold formulation code can be found in

Appendix A.3.

3.3 Interface variables

To ensure that the pipeline stages can interact with each other, we choose to force the

interface variables to be compatible. A potential consequence of this choice is a loss in

performance, as it requires the designer to circumvent a true, "unpiloted" optimization

and impose this discipline. However, the imposition frequently is in line with good

design practice, and the result seems to be that no such performance penalty is ultimately

paid.

With the ADC we must worry about input and output capacitances of each stage in

the two operating modes-hold and sample. It can be shown that the pipeline can be

broken down into hold/sample pairs shown in Figure 3-3, and that the input and output

capacitance of the hold and sample stages respectively can be ignored since those voltage

nodes are virtual grounds and any difference in capacitance will not affect performance.

CSample,h,

•.,

Hold Stage Sample Stage

Figure 3-3. Hold/sample pair.

Therefore, for all pairs of consecutive stages

cLH = clS,

where cLH is the load capacitance seen by the hold stage and clS is the input capacitance

of the sample stage. These values determine the load capacitance seen by the op-amp,

which affects the design of the op-amp. Therefore, we introduce another variable CL,

which is the load capacitance seen by the op-amp. We can now express the values of

these three variables in terms of the sampling capacitors and input capacitance of the hold

stage:

cIS = 2 - CSample,sStg

cFB = CSample,hStg Csampe,hStg + Cin,Amp)

CSample,hStg (CSample,hStg + Cin,Amp)'

2 -Csample,hStg + Cin,Amp

CL = cIS + cFB = cLH + cFB

where cFB is the capacitance seen looking into the feedback path of the hold stage. With

the constraints placed on clS, cLH, and CL, we can ensure that the blocks will interact

with each other as expected.

These constraints can be found in the 'connect' codes in Appendix A.4. Also included

in this code are the settling time constraint from section 3.1.3 and the noise power

calculation mentioned in section 3.2.2. The 'connect' codes are actually part of the top-

level system formulation, but for convenience in coding they were included segmented

into their own files.

3.4 Operational amplifier formulation

We finally formulate the op-amp, which consists of transistor level design. In Figure 2-6

we see the op-amp circuit diagram, but in Figure 3-4 is the equivalent half circuit diagram

including bias circuitry to set node voltages. Using the equivalent half circuit, we can

formulate a mathematical program to define all the op-amp parameters used in all higher-

level formulations. We now express all op-amp parameters in terms of transistors

parameters and other circuit element, which are all defined as a function of the transistor

dimensions and biasing by signomial models created by Sabio Labs, Inc. For greater

detail, the full op-amp formulation code is in Appendix A.5.

Gnd

Figure 3-4. Operational amplifier half-circuit with bias circuitry.

3.4.1 Power and area

Power is simply calculate by summing the current flowing from the power supply, VDD, to

ground and then multiplied by VDD:

P = VDD(ibias + istagel + istage2).

The op-amp area is expressed as the active area

A=2-Acc+ IA+ 2-A,
bias core

or as the sum of the transistor areas and capacitor areas, which are now direct function of

transistor dimensions and capacitances respectively.

3.4.2 Noise

From higher-level formulations, we know the exact expression for noise we need to

extract:

2 2 2 .2
In,Stgl = 2 (in,M2 + n,M4 + n,M1O)

•2 2 .(2 2 3
n,Stg 2

+ in,M34)

where i2n,stgl and i2n,Stg2 are the square noise currents at the outputs of stage 1 and stage 2

of the op-amp respectively.

3.4.3 Gain-bandwidth and slew rate

The settling time constraints relied on a gain-bandwidth calculation from the op-amp. In

true circuit designer fashion, we assume the op-amp is a single pole system, and define

the gain-bandwidth as

GBW gnIn

Cc
This assumption is valid because we force constraints on the other poles of the system

such that they are high frequency. Therefore the dominant pole is used to define the

gain-bandwidth. The imposed constraints are explained in greater detail in section

3.4.4.3.

The other op-amp characteristic needed to calculate settling time is slew rate. We can

express the slew rate as the minimum of the slew rates of each stage in the op-amp, by

creating a variable slewRate and forcing

slewRatestgl < slewRate

slewRateStg2 < slewRate'

where each stage slew rate is given as

slewRatestg1 - i M8
Cout,Stgl

1 M 26slewRatestg2 M26
Cout,Stg2

3.4.4 Functionality constraints

In addition to defining the variables passed onto higher levels of hierarchy, we must

ensure the op-amp is operating correctly to rule out any impractical solutions that are still

mathematically feasible. In other words, the formulation is not complete without

additional constraints to describe the practical design of the op-amp. The following

sections detail the functionality constraints, which complete the formulation.

3.4.4.1 Kirchoff's Laws and Circuit biasing

The most basic of functionality constraints is to have Kirchoff's Voltage and Current

Laws (KVL and KCL) to hold over all loops and nodes in the op-amp. This would

include applying KCL to equate currents of transistors in series and summing currents to

zero at intersections of three or more transistors. For example, looking at Figure 3-4

transistors M4, M6, and M8 have equal currents translating to the following constraints:

iM4 = iM6

iM6 = iM8

Furthermore, the current in M10 is the sum of the currents in M2 and M8:

M10 = 'M8 + iM2 *

Applying KVL is much more involved, but can be categorized into 6 different

applications: 1) setting source-to-bulk voltages, 2) summing voltages in transistor stacks,

3) setting diode connections, 4) gate biasing, 5) stage connection, and 6) input and output

common mode. The necessary constraints are rather straightforward and can be found in

Appendix A.5; however we include a comment on the common-mode feedback nodes,

Vcmi and Vcm2. These nodes are not defined to and exact voltage, but rather are floating

within a range of voltages, because in the practical implementation of the op-amp there

would be a common-mode feedback circuit adjusting these voltages. This is another

example of a circuit designer mimicking design practice in the formulation of the circuit.

3.4.4.2 Gain

Another functionality constraint is the DC gain of the op-amp. The importance of a high

gain was described in Section 2.4, and therefore we impose a minimum constraint to

reduce finite-gain errors in the pipeline.

Gain > spec.gainDC

Op-amp gain is defined as the input transconductance over the output conductance of

the op-amp, and we can calculate the gain as the product of the gain of each stage:

Gain = Gainstgl GainStg2

Gain = gm,In,Stgl . gm,In,Stg2 •

gout,Stg gout,Stg2

For exact definitions of each variable, see Appendix A.5.

3.4.4.3 Phase margin

Also discussed in section 2.4 was frequency compensation in an op-amp, and its

importance to ensure stability. We chose to use cascode compensation and from [19] can

write the denominator of the op-amp transfer function as

D(s) = s3d3 + s2 d2 + sd1 + dO,

where

d3 = gm,M6 CC 'out,Stg Cout,Stg2 1 + + CcasN

d2 =gm,M 6 gm,M 8 Cout,Stgl (CC + Cout)
d, = gm,M6'gm,M8 gm,In,Stg2 C

do = gm,M6 gm,M8 gout,Stg l gout,Stg2

The dominant pole is the ratio

do gout,Stgl' gout,Stg2

d, gm,In,Stg2' C

which, when multiplied by the gain, is equal to the gain-bandwidth calculated in 3.4.3.

Since we assume a dominant pole, at high frequencies, D(s) can be approximated to

D'(s) = s3d3 + s2d 2 + Sdl,

and the non-dominant poles are the zeros of this transfer function. However, we don't

care about the location of the poles, but rather the phase shift induced by them.

If we assume tj and t2 to the be the non-dominant poles, we can re-write D'(s):

D'(s) = s(1+ stl)(1+ st2),

where

d, dz
tl + t2 = and tt 2 = d 3

d, d,

We can simplify our equations by dealing with the tangents of the phase shifts, instead of

the actually phase shifts. Let al and a2 be the phase shifts due to pole tj and t2

respectively, thus

al=tan-l(tl) and a 2 =tan-'(t 2).

Furthermore,

tan(a 1) + tan(a 2)
S+ a2) - tan(a 1)tan(a 2)
tl + t 2

1- tit2

We calculated the tangent of the phase shift caused by the non-dominant poles, however

we want to calculate the shift at the unity-gain frequency, therefore the desired value is:

CBW(t + t2)tan(PS) = G
1- tlt2 .GBW 2

Substituting in for tl and t2, we get

GBW d2
tan(PS) =-

1 _) .GBW 2

which we can constrain with an upper limit:

tan(PS) < tan(30°).

Along with the evaluation of the phase margin, we add 'good design practice'

constraints to ensure the poles created at the cascode nodes are non-dominant and to

prevent peaking. More detail is shown in Appendix A.5. The next section elaborates on

'good design practice'.

3.4.5 Good design practice

It must be stressed that at the core of any formulation is the circuit designer and her

circuit analysis, experience and intuition. Therefore we mention the ratio constraints

imposed on transistors sharing a gate-to-source voltage. This constraint stems from

layout practice, which calls for those transistors to have the same dimensions except for

the number of fingers, thereby accounting for layout parasitic effects. The ratio

constraints are in essence added for 'good design practice', though all of the formulation

is rooted in 'good design practice'.

Chapter 4

ADC hierarchical formulation

At the system level, the hierarchical formulation is identical to the flat formulation;

however, instead of instantiating a pipeline stage, the system formulation instantiates a

hierarchical module abstracted from the pipeline stage, which encapsulates the system

design variable tradeoffs. This section describes the hierarchical module and

quantification of the tradeoffs.

4.1 Hierarchical stage module

The system design variables shown in Section 3.1 are treated as independent variables

with constraints imposed on them, which describe the tradeoff interactions among them.

The constraints are necessary to ensure that our solution is a feasible solution in the

design space of the real problem. In other words, the constraints allow only physically

attainable designs. To derive these constraints we fit monomial functions to Pareto-

optimal surfaces, which were obtained as will be explained in Sections 4.2 and 4.3. This

results in the following constraints:

power = c power slewRatea l
,power . C•a2,power

area = c area slewRateal,area . Ca 2,area

cLH = CcLH slewRateal,cLH CL 2,cLH

clIS = CciS - slewRateal,cIs . Ca2,cIS

nPO = Cnpo • slewRateal,nPo . Ca2,nPO

Thold = CThold SlewRatealThod . C22,Thold

where the coefficients and exponents, cx and ai,x, were found in the aforementioned

monomial fitting. The pipeline stage from the flat formulation can now be replaced with

a stage module, which consists of these few constraints and bounds on the system design

variables. Code for the hierarchical module (hier stage) is given in Appendix B.

Using the new hierarchical module, the system formulation is now of this form:

minimize Pto, + At,,
N

s. t. Ptot = PSHA + Pk (slewRate,CL)
k=l

N

Atot = ASHA + 2Ak(slewRate,CL)
k=1

fSample > fSample,Spec

1
tsetl e =

2ts fsample

tsettle,k (hold (slewRate,CL), slewRate) < tsettle V k = 1...N

SNR > SNRspec

V2

SNR = pp,max
2

• vn,to
t

2 (LSB nPOk(slewRate,CL)
n'tot -,'l 2 22k

k=1

cLHk (slewRate,CL) clISk+l(slewRate,CL) V k = 1...N -1

where the system design variables are now replaced with monomial functions describing

the tradeoffs between them shown in bold.

4.2 Pareto-optimal surface generation

The H-BU method is nondiscriminatory on how the Pareto-optimal surfaces are

generated. In [20] genetic algorithms are used to generate Pareto surfaces, and in [21]

yield-aware Pareto surfaces are obtained. Though the surfaces are generated by

simulation-based techniques, they are still well behaved and amenable to monomial fits.

In this thesis, the Pareto-optimal surfaces for a pipeline stage are generated using

equation-based optimization by sweeping the specs on the design variables while

minimizing power and area. The set of optimal design points makes up the Pareto

surface, which spans the entire design space. Once the set is determined, we can perform

a log transformation and linear regression on the data points to obtain the monomial fits

used in the hierarchical module. The following sections give more detail on this process.

4.2.1 Design space exploration

First, each pipeline stage was formulated as an optimization problem including sampling

capacitors and an internally compensated two-stage folded cascode operational amplifier

as seen in Figure 3-2. The objective was constructed to minimize the normalized sum of

power and area while meeting specs placed on nPO, Thold, slewRate, and CL. Values for

clS and cLH were chosen such that the objective was minimized and CL spec was met. A

simplified formulation is as follows:

min 1' P + L2 -'A

s.t. Stage Functionality

slewRate > slewRatespec

thold < thold,Spec

nPO < nPOspec

CL = CL,Spec

To generate the Pareto-optimal set, each spec is swept to span the entire practical

design space. In sweeping the specs, we increased the spec on nPO for increasing specs

on slewRate, thereby imposing a dependency between the two variables, which mimics

the physical problem constraints. This is an example of designer insight improving the

efficiency of the H-BU method. The code for generating the Pareto-optimal surfaces is in

Appendix C.1 and C.2.

Figure 4-1 shows plots of the Pareto-optimal surface for a pipeline stage. In both

figures all four variables, nPO, Thold, slewRate, and CL, are swept, and the results are

plotted on two different sets of axes. The Pareto surfaces are well behaved and thus apt.

Pipeline Stage Pareto Surface - Power vs. nPO vs. slewRate

......
................

.........-............... •~~ ~ ~ ~~~~~~-...
..... ."" i " "•

V.VI0"

0.014-

0.012-

0.01-

o 0.008-

. 0.006-

0.004-

0.002--

0.

0 8

x 108 nPO (W)
slewRate (V/s)

(a) Pipeline stage Pareto surface I showing the design space and
tradeoffs between nPO, slewRate, and power for each pipeline stage.

Pipeline Stage Pareto Surface - Power vs. 1rhold VS, CL

C
C

X10.5

x 10-

h~i (s)

(b) Pipeline stage Pareto surface II showing the design space and
tradeoffs between CL, Thold, and power for each pipeline stage.

Figure 4-1. Pareto surfaces.

" i"• " " ' '
•...!i"•'"•' ~ ~ ~ ~ ~~".. .. ' : i•,....
i :~~~~ ~~..... ••,\k! ~~~~~~~~~~~~~~~ !.....

.... ~~~ ~~~~~~~~~~~~~~~~ .i•........ !,• • •......
.....

to monomial fitting. This is further evidence that equation-based optimization is suitable

at the system level, regardless of the method selected to generate the Pareto surface of

each system block

4.2.2 Surface fitting

The Pareto surfaces obtained in Section 4.2.1 are well behaved and lend themselves to

low order functions. Therefore, we can then fit a monomial function to describe the

tradeoffs. A monomial function in n dimensions is of form

n

f (x) = c Xiai
i=O

where c > 0 and ai E R. Therefore, given a data set

(x(i)f(i) i = 1,..., N ,

where x (i) E R n are positive vectors and P/ are positive constants, we can perform a

logarithmic transformation on the data and use linear regression to solve for c and

al, ... , a, such that f (x (i)) (i)

In more detail, we define y(i)=logx('i) and replace f(x(i)) f(i) with

f(ey(i) log f (') giving us

n

logc+ ~a) - log f (i), i ,.N.
k=1

Using a least squares method, we can find a solution by minimizing the sum of the

squared errors,

• a·M -(i) g Milog c + a•kyk -logf 2
i=-1 k=1

The code used to form this fitting is in Appendix C.3 and C.4.

Table 4-1 shows the mean relative errors of each monomial fit used in the hierarchical

module in Section 4.1. The relative error is defined as

f(i) - c akyi)

relative error = k=1
f(i)

We see that all relative errors are less than 10%, which amplifies the point that the

tradeoffs are well behaved and very amenable to simple monomial fits.

TABLE 4-I

MEAN RELATIVE ERRORS FOR MONOMIAL FITS

Design variable Mean Relative Error (%)

power 3.4

area 1.9

cLH 8.2

clIS 7.9

nPO 3.5

Thold 5.8

Chapter 5

Optimization results

The pipeline was optimized to achieve a sampling frequency of 100 MHz with an SNR

greater than 60 dB. The flat and hierarchical solutions can be found in Table 5-I along

with the percentage difference between the solutions. For convenience only power and

nPO are shown since these are the most familiar characteristics of a pipeline stage. Also

included are the total power comparisons for both variables along with the flat-

TABLE 5-I

FLAT AND HIERARCHICAL SOLUTIONS

Power (mW) nPO (uW)

Flat Hierarchical % difference Flat Hierarchical % difference

1 17.44 14.83 15 0.05 0.03 30.4

2 8.34 7.62 8.6 0.09 0.08 6.8

3 4.12 4.26 3.5 0.17 0.19 10.2

4 2.19 2.49 13.6 0.31 0.41 34.9

5 1.32 1.78 34.8 0.52 0.65 24.8

6 0.9 1.28 42.3 0.93 1.04 11.7

7 0.69 0.94 36.1 1.52 1.65 8.8

8 0.58 0.92 57.7 2.64 1.73 34.7

9 0.52 0.92 77.9 4.54 1.73 62

10 0.39 0.77 98 6.69 1.48 77.9

Total: 36.49 35.81 1.9 0. 156* 0.145* 7.6

* Noise numbers for individual stages are output-referred noise;
noise numbers for the whole system are referred to the system
input.

hierarchical percentage difference. The total noise power is calculated as the pipeline

input referred noise power contributed by all 10 stages.

Figure 5-1 plots the operating point of each stage in the pipeline. The solution lines

plot the operating point of each pipeline stage where stage 1 consumes the most power

and stage 10 the least. We can see the stage power decreases along the pipeline, which

coincides with current design practice of decreasing stage performance, and thus the

power, while still meeting the ADC performance specs. Though the percentage

differences cited in Table 5-I are high for some of the performance specs in the later

stages, looking at Figure 5-1 we can see that the hierarchical solution trends the same

way as the flat solution and follows the design space. Also, the total power and noise

power have only a 1.9% and 7.6% difference respectively, indicating that both

distributions of power can meet the desired specifications.

Pareto Surface with Flat and Hierarchical Solutions

Stage 1-

.. Flat Solution

Hierarchical Sclution........

.... . .".__ _ _ .. 5 ..

7 6 5 4 3 2 1 0 x 15

nPO (W)

slewRate (V/s)

(a) System solution plot I. Each solution line plots the operating point
of each pipeline stage against the design space from Figure 4-1(a)
where stagel consumes the most power and stage 10 the least.

Pareto Surface with Flat and Hierarchical Solutions

....... ta ge ..

...... -...

4--- 4
6

x 10"o

CL (F) rhold (s)

(b) System solution plot II. Each solution line plots the operating
point of each pipeline stage against the design space from Figure 4-
1(b) where stage 1 consumes the most power and stage 10 the least.

Figure 5-1. System solution.

41

0.018-

0.016-

0.014-

0.012--

0.006-

0.004-

0.002-

8

x 10S

0.018

0.016

0.014-

0.012

0.01

0.008-

0.006.

0.004

0.002

02
2

1.5

x 10"

0.01-

0.008-

.····

"""

..j.···

We optimized both the flat and hierarchical formulations for an increasing number of

stages in the pipeline to demonstrate the speed improvement of a hierarchical formulation

over a flat optimization. The optimizations were run on an Intel® XeonTM 2.80GHz

processor, and times can be seen in Figure 5-2. It is clear that the hierarchical

optimization is faster than the flat and for 10 stages has a 25x improvement in optimize

time.

Optimize Time vs. Number of Stages in Pipeline

350

300

250

W' 200E
I--,

150

100

50

1 2 3 4 5 6
Number of Stages

7 8 9 10

Figure 5-2. Optimize times for the flat and hierarchical optimizations.

This speed up is directly a cause of the slower increase of variables and constraints in

the hierarchical formulation. Table 5-2 summarizes the number of variables and

constraints in the flat and hierarchical formulations for an increasing number of stages in

the pipeline. In the hierarchical case, the number of variables has a rate of increase 17x

smaller than the flat case. This is primarily due to the behavioral characterization of the

op-amp, so that instead optimizing hundreds of variables, we are only optimizing the

performance specs of the op-amp. Similarly, the rate of increase of the number of

constraints is 7x smaller.

+Flat
L--Hierarchical

//

/

-/-p

7 • --..... - -- .-........... -.... " "•' - '-- -- ---

At%#

TABLE II

FLAT AND HIERARCHICAL FORMULATION SIZES

Flat Hierarchical

Stages Number of Number of Number of Number of
Variables Constraints Variables Constraints

10 1563 2060 221 435

9 1421 1873 213 410

8 1279 1686 205 385

7 1137 1499 197 360

6 995 1312 189 335

5 853 1125 181 310

4 711 938 173 285

3 569 751 165 260

2 427 564 157 235

1 285 377 149 210

Chapter 6

Conclusions

System design heavily relies on seasoned designers for their extensive experience and

intuition. However, they are not yet able to make system level tradeoffs on a purely

quantitative basis. The reason for this is that although optimization methods have been

used in circuit design, they are so far not scalable to truly large systems. The H-BU

method applied here addresses this need by describing the design space using Pareto-

optimal surfaces and abstracting the design tradeoffs to the system level creating a

hierarchical optimization of the system. Because the Pareto surfaces are well behaved in

nature, we can use low order functions in the abstraction resulting in a low complexity

system optimization.

Application of the H-BU method was done to optimize a 10 stage pipelined ADC in a

0. 18-um CMOS process and matched it with a flat optimization. Using equation-based

optimization, we generated Pareto surfaces encompassing the entire design space of each

stage in the pipeline. The surfaces were then quantitatively modeled with monomial fits,

which all had less than a 10% relative error. The hierarchical optimization achieved a

25x improvement in optimization time compared to the flat optimization.

The value of the H-BU method lies in the Pareto-optimal surfaces. The surfaces

provide a compact global perspective to system designers, and allow them to formulate

low complexity system optimizations. We see that the proposed methodology restores

the tractability of system-level design problems and is a powerful aid to designers of

large, mixed-signal systems.

6.1 Future work

The next step in this work is to simulate both the flat and hierarchical solutions in a

circuit simulator like SPECTRE. In doing so, we can show that in both cases the

optimizations result in practical designs, meaning that the hierarchical optimization is a

valid substitute for the flat optimization. This would require design of the pipeline's

supporting circuits including common-mode feedback circuitry and a comparator. The

formulation can also be extended to include the supporting circuits as well as models for

the switches, which are considered ideal in this work. However, we have early evidence

that the inclusion of these details wouldn't result in a significantly different design.

Long-term future work would be to apply the H-BU method to a more complex

system like a complete receiver or a wireless link, where a flat optimization is not

practical to implement. We can then use the hierarchical method to obtain a design,

simulate the design in a circuit simulator, and fabricate an integrated circuit. This would

be an example of the entire bottom-up system design process. Because of the generality

of the H-BU method, we are not limited to optimizing only the circuits. For example

with the wireless link, choice of modulation and coding strategies can be brought into the

formulation. Furthermore, the optimization framework can be used to create a Pareto-

surface for system performance. Thus given a system topology, the entire performance

space of the system can be described instead of one or two design points.

An even longer term goal would be to port the optimization framework-including

system formulation, Pareto surface generation, and simulation verification-to a different

CMOS technology to show the design flexibility achieved with optimization techniques.

Appendix A

MATLAB flat formulation code

A.1 Top-level system code (ADC_top)

function ckt = ADCtop(name,spec)
% system level code

ckt = CKT_begin(name);

% Instantiating stages and SHA
CKT-subckt('SHA','sampleAndHold',spec);
CKT-subckt('stagel','pipelineStage',spec);
CKT-subckt('stage2','pipelineStage',spec);
CKT-subckt('stage3','pipelineStage',spec);
CKT-subckt('stage4','pipelineStage',spec);
CKT-subckt('stage5','pipelineStage',spec);
CKT-subckt('stage6','pipelineStage',spec);
CKT-subckt('stage7','pipelineStage',spec);
CKT-subckt('stage8','pipelineStage',spec);
CKT-subckt('stage9','pipelineStage',spec);
CKTsubckt('stagelO','pipelineStage',spec);

% Writing power and area constraints
power = SHA.power + stagel.power + stage2.power + stage3.power ...

+ stage4.power + stage5.power + stage6.power ...
+ stage7.power + stage8.power + stage9.power ...
+ stagel0.power ;

area = SHA.area + stagel.area + stage2.area + stage3.area ...
+ stage4.area + stage5.area + stage6.area ...
+ stage7.area + stage8.area + stage9.area ...
+ stagelO.area ;

% Writing settling time and noise constraints
CKTvar tSettle;

% Instantiating 'connect' modules which contain settling time, noise, and interface
variable constraints

% The pipeline is broken into Hold-Sample blacks for circuit isolation and formulation
purposes

% Case where SHA is in Sample mode
CKTsubckt('SampleSHA' , 'connectSample', spec , SHA , 1 , tSettle, 2A(-11), 1);

% Case where SHA is in Hold mode and Stage 1 is in Sample mode
CKTsubckt('HoldSHASamplel' , 'connectHoldAndSample', spec , SI
2^(-11));
% Stage 1 is in Hold mode and Stage 2 is in Sample mode
CKTsubckt('HoldlSample2' , 'connectHoldAndSample', spec , sta

tSettle, 2^(-10));
% Following pattern to Stage 9

HA , stagel , 1, tSettle,

gel , stage2 , 2A1,

tSettle, 2A(-9));
CKT-subckt('Hold3Sample4' , 'connectHoldAndSample', spec , stage3 , stage4 , 2'

tSettle, 2A(-8));
CKT-subckt('Hold4Sample5' , 'connectHoldAndSample', spec , stage4 , stage5 , 2'

tSettle, 2A(-7));
CKT-subckt('Hold5Sample6' , 'connectHoldAndSample', spec , stage5 , stage6 , 2'

tSettle, 2A(-6));
CKT-subckt('Hold6Sample7' , 'connectHoldAndSample', spec , stage6 , stage7 , 2'

tSettle, 2A(-5));
CKT-subckt('Hold7Sample8' , 'connectHoldAndSample', spec , stage7 , stage8 , 2'

tSettle, 2^(-4));
CKT-subckt('Hold8Sample9' , 'connectHoldAndSample', spec , stage8 , stage9 , 2'

tSettle, 2^(-3));
CKT-subckt('Hold9Sample10' , 'connectHoldAndSample', spec , stage9 , stagelO ,

tSettle, 2A(-2));
% Case where Stage 10 is in Hold mode
CKT-subckt('HoldlO' , 'connectHold', spec , stagelO , 2A10, tSettle, 2A(-1));
% Ensuring final stage load capacitance meets minimum capacitance requirements
CKTconstraint('final_stagecload' , stagel0.cLoadHold , '==' , spec.minCap);

% Summing noise from each scenario for total
noisePowerThermal= SampleSHA.noisePower ...

+ HoldSHASamplel.noisePower ...
+ HoldlSample2.noisePower ...
+ Hold2Sample3.noisePower ...
+ Hold3Sample4.noisePower ...
+ Hold4Sample5.noisePower ...
+ Hold5Sample6.noisePower ...
+ Hold6Sample7.noisePower ...
+ Hold7Sample8.noisePower ...
+ Hold8Sample9.noisePower ...
+ Hold9SamplelO.noisePower...

+ HoldlO.noisePower;

^3,

k4,
%5,

^6,

^7,

^8,

2A9,

noisePower

% Writing SNR constraints
LSB=spec.vMax/(2A(spec.numStages*spec.bitsPerStage));
noisePowerQuantization=(LSB/(12A0.5))A2;
noisePowerTot = noisePowerThermal + noisePowerQuantization;
SNR=(spec.vMaxA2/8)/noisePowerTot;

%assume we need to settle within half a period of the sampling frequency
fSample = .5/tSettle;

CKTsave noisePowerThermal noisePowerQuantization noisePowerTot power area SNR;

% Add spec constraints

T KC subckt('Hold2
3' '"^^^="*"^1 ^nacommier en., runna ess-2 '~I\,JU~RL IILULU II~Lp ~vllll~~~r Ivrrr~ctuJulll~~~) 3~~~) 3LUY~L) 3L·UY~-)) L~̂ 2,

CKTconstraint('SNR' , spec.SNR , '<' , SNR);
CKT_constraint('fSample' , spec.fS , '<' , fSample);

% Add objective
CKTobjective('min', 'power' , le3*power + le9*area);

A.2 Pipeline stage code (pipelineStage)

function ckt = pipelineStage(name, spec);
% A stage in a pipeline ADC
% The noise and area of a stage in a pipelined ADC is
% expressed in terms of two design variables:
% CI Sampling capacitor of the stage, and
% C2 Feedback capacitor of the stage.
% C=C1=C2

ckt = CKTbegin(name);

% Instantiating Op-amp and Capacitors
% We only need one capacitor because they are equal
CKTsubckt('C' , 'capADC' , spec);
CKTsubckt('Amp' , 'two.stagehalf' , spec);

% Constraining Cap Sizes for circuit design
CKTconstraint('CAmp.cIn', C.C, '>', 2*Amp.cIn);
CKTconstraint('C-minCap', C.C, '>', spec.minCap);

% Defining power ane area of stage
power = Amp.power;
area = 4 * C.area + Amp.area;
% Feedback factor in hold mode
fFB = C.C/(2*C.C + Amp.cIn);

% Defining time constant and slewRate of stage for settling time constraints
loopGain=2;
tauHold = loopGain/Amp.GBW;
slewRate = Amp.slewRate;

% Calculate node capacitances for interface interaction
CKTvar cLoadHold;
cInSample = 2 * C.C;
cFB = C.C*(C.C + Amp.cIn)/(2*C.C + Amp.cIn);
CKTconstraint('Amp_CL', Amp.CL, '==', cLoadHold +cFB);

% Defining noise of stage
noisePowerOut = (Amp.iNoiselSq)/(4*Amp.gmIn*Amp.cOutStgl*fFB) +

(Amp.iNoise2Sq)/(4*Amp.gmIn*(Amp.cOut + Amp.CC));

A.3 SHA code (sampleAndHold)

function ckt = sampleAndHold(name, spec);
% Sample and hold amplifier

% Instantiating Op-amp and Capacitor
ckt = CKTbegin(name);
CKTsubckt('C' , 'capADC' , spec);
CKT_subckt('Amp' , 'twostage-half' , spec);

% Constraining Cap Sizes for circuit design
CKTconstraint('CAmp.cIn', C.C, '>', 2*Amp.cIn);
CKTconstraint('C-minCap', C.C, '>', spec.minCap);

% Defining power one area of stage
power = Amp.power;
area = 2*C.area + Amp.area;
% Feedback factor in hold mode
fFB = C.C/(C.C + Amp.cIn);

% Defining time constant and slewRate of stage for settling time constraints
loopGain=1;
tauHold = loopGain/Amp.GBW;
slewRate = Amp.slewRate;

% Calculate node capacitances for interface interaction
CKTLvar cLoadHold;
cInSample = C.C;
cFB = C.C*Amp.cIn/(C.C + Amp.cIn);
CKTconstraint('AmpCL', Amp.CL, '==', cLoadHold +cFB);

% Defining noise of stage
noisePowerOut = (Amp.iNoiselSq)/(4*Amp.gmIn*Amp.cOutStgl*fFB) +
(Amp.iNoise2Sq)/(4*Amp.gmIn*(Amp.cOut + Amp.CC));

A.4 'Connect' codes

A.4.1 connectHoldAndSample

function ckt = connectHoldAndSample(name , spec , hStg, sStg, gSig, tSettlevar,
precision)
% hStg : hold stage
% sStg : sample stage
% gSig : signal voltage gain
% tSettle : settling time
% precision: settling precision

ckt = CKTbegin(name);

% Noise
noisePower = hStg.noisePowerOut/(gSigA2);
CKTsave noisePower;

% Interface capacitance constraint
CKTconstraint('hStg_cLoadHold', hStg.cLoadHold, '==', sStg.cInSample);

% Settling time constraints
tLinearSettling = -log(precision)*hStg.tauHold;

tSlew = .5*spec.vMax/hStg.slewRate;
tSettle = tLinearSettling + tSlew;
CKT_constraint('tSettle', tSettle, '<', tSettle_var);

A.4.2 connectSample

function ckt = connectSample(name ,
% hStg : hold stage
% sStg : sample stage
% gSig : signal voltage gain
% tSettle : settling time
% precision: settling precision

spec , sStg, gSig, tSettle_var, precision)

ckt = CKT_begin(name);

% Noise
noisePower = sStg.noisePowerOut/(gSigA2);
CKT_save noisePower;

% Settling time constraints
tLinearSettling = -log(precision)*sStg.tauHold;
tSlew = .5*spec.vMax/sStg.slewRate;
tSettle = tLinearSettling + tSlew;
CKT_constraint('tSettle', tSettle, '<', tSettle_var);

A.4.3 connectHold

function ckt = connectHold(name , spec , hStg, gSig, tSettle_var, precision)
% hStg : hold stage
% sStg : sample stage
% gSig : signal voltage gain
% tSettle : settling time
% precision: settling precision

ckt = CKT_begin(name);

% Noise
noisePower = hStg.noisePowerOut/(gSigA2);
CKT_save noisePower;

% Settling time constraints
tLinearSettling = -log(precision)*hStg.tauHold;
tSlew = .5*spec.vMax/hStg.slewRate;
tSettle = tLinearSettling + tSlew;
CKT_constraint('tSettle', tSettle, '<', tSettlevar);

A.5 Operational amplifier code

function ckt = twostage_half(name, spec)
ckt = CKT-begin(name);

% Import process constants and parameters
const = physicalconstants;
proc = getprocess.params(spec.process);

%------------
% components
%------------
disp('Instantiating components..');
spec.noports = 1;
CKTsubckt({'CA'}, 'capIdeal', spec);
CKTsubckt({'M10', 'M17', 'M8', 'M34', 'M23', 'M19', 'M16'}, 'xstrsat-inv', spec,
'nmos');
CKTsubckt({'M15', 'M20', 'M13', 'M6', 'M2', 'M4', 'M32', 'M26', 'M18'}, 'xstrsat_inv',
spec, 'pmos');

%---------------
% Ratio devices
%---------------
disp('Creating Ratio topology constraints');
CKTvar rl r10 r2 r19 r16 r18 -discrete -independent;

% Ratio:M20,M13
%---------------------------
%CKT_ratio(rl, M20.nf, M13.nf);
CKT-constraint(", M20.nf*rl, '==', M13.nf);
CKT-constraint('M20M4_Ratio_r23_9_M4_wf', M13.wf, '==', M20.wf);
CKT-constraint('M20M4_Ratio_r23_9_M4_If', M13.1f, '==', M20.1f);
CKT-constraint('M20M4Ratior23_9_M4_count', M13.count, '==', M20.count);

% Ratio:M10,M19
%---------------------------
%CKTratio(rl, M19.nf, M10.nf);
CKTconstraint(", M19.nf*rlO, '==', M1l.nf);
CKTconstraint('M13M23_Ratior_M13_wf' M19.wf, '==', M10.wf);
CKT-constraint('M13M23_Ratior_M13_If', M19.1f, '==', M10.1f);
CKTconstraint('M13M23_Ratior_M13_count', M19.count, '==', M10.count);

% Ratio:M16,M19
%---------------------------
%CKTratio(r16, M19.nf, M16.nf);
CKTconstraint(", M19.nf*r16, '==', M16.nf);
CKT_constraint('M13M23_Ratio_r_M13_wf', M19.wf, '==', M16.wf);
CKTconstraint('M13M23_RatiorM13_If', M19.1f, '==', M16.1f);
CKTconstraint('M13M23_RatiorM13_count', M19.count, '==', M16.count);

% Ratio:M20,M18
%---------------------------
%CKTratio(r18, M20.nf, M18.nf);
CKT-constraint(", M28.nf*rl8, '==', M18.nf);
CKTconstraint('M20M4_Ratior23_9_M4_wf', M18.wf, '==', M20.wf);
CKTconstraint('M20M4_Ratior23_9_M4_If', M18.1f, '==', M20.1f);
CKTconstraint('M20M4_Ratio_r23_9_M4_count', M18.count, '==', MZ0.count);

% Ratio:M23,M19
%---------------------------
%CKT-ratio(r19, M23.nf, M19.nf);
CKTconstraint(", M23.nf*r19, '==', M19.nf);
CKTconstraint('M23M10_Ratior23_9_M10_wf', M19.wf, '==', M23.wf);
CKTconstraint('M23M10_Ratior23_9_M10_If', M19.1f, '==', M23.1f);
CKTconstraint('M23M10_Ratior23_9_M10_count', M19.count, '==', M23.count);

% Ratio:M26,M20
%---------------------------
%CKTratio(r2, M20.nf, M26.nf);
CKTconstraint(", M20.nf*r2, '==', M26.nf);
CKTconstraint('M23M10_Ratio-r23_9_M10_wf', M26.wf, '==', M20.wf);
CKTconstraint('M23M10_Ratio-r23_9_M10_If', M26.1f, '==', M20.if);
CKTconstraint('M23M10_Ratio-r23_9_M10_count', M26.count, '==', M20.count);

%----------------------
% kcl for internal nets
%----------------------
% This section assumes differential symmetry from above
CKT-constraint('kclM23', M23.ids, '==', spec.iref);

CKT-constraint('kcIM20', M20.ids, '==', M19.ids);
CKTLconstraint('kcIM15', M15.ids, '==', M16.ids);
CKT-constraint('kclM17', M17.ids, '==', M18.ids);

CKT-constraint('kclM13M2', M13.ids, '==', 2*M2.ids);
CKT-constraint('kclM4M6', M4.ids, '==', M6.ids);
CKTconstraint('kcIM6M8', M6.ids, '==', M8.ids);
CKT-constraint('kcIM10M8M2', M10.ids, '==', M2.ids + M8.ids);
CKT-constraint('kcIM26M32', M26.ids, '==', 2*M32.ids);
CKT_constraint('kcIM32M34', M32.ids, '==', M34.ids);

%----------------------
% kvl for internal nets
%----------------------
% This section assumes differential symmetry from above
% setting correct vsbs
CKT-constraint('M23vsb', M23.vsb, '==', 0);
CKTLconstraint('M19vsb', M19.vsb, '==', 0);
CKT-constraint('M18vsb', M18.vsb, '==', 0);
CKT-constraint('M16vsb', M16.vsb, '==', 0);
CKT-constraint('M13vsb', M13.vsb, '==', 0);
CKT-constraint('M10vsb', M10.vsb, '==', 0);
CKT-constraint('M20vsb', M20.vsb, '==', 0);
CKT-constraint('M4vsb', M4.vsb, '==', 0);
CKT-constraint('M17vsb', M17.vsb, '==', 0);
CKT-constraint('M15vsb', M15.vsb, '==', 0);
CKT-constraint('M26vsb', M26.vsb, '==', 0);
CKTLconstraint('M34vsb', M34.vsb, '==', 0);

CKT-constraint('M2vsb', M2.vsb, '==', M13.vds);
CKT-constraint('M6vsb', M6.vsb, '==', M4.vds);
CKT-constraint('M8vsb', M8.vsb, '==', M10.vds);
CKTconstraint('M32vsb', M32.vsb, '==', M26.vds);

% transistor stacks

CKTconstraint('kvlstackM13M2M10', M13.vds + M2.vds + M1O.vds, '==', spec.vdd);
CKTconstraint('kvlstackM10M8M6M4', M1O.vds + M8.vds + M6.vds + M4.vds, '==',
spec.vdd);
CKT-constraint('kvlstackM26M32M34', M26.vds + M32.vds + M34.vds, '==', spec.vdd);
CKT-constraint('kvlstack_M19M20', M19.vds + M20.vds, '==', spec.vdd);
CKT_constraint('kvl_stackM18M17', M18.vds + M17.vds, '==', spec.vdd);
CKT_constraint('kvl_stackM16M15', M15.vds + M16.vds, '==', spec.vdd);

% diode connections
CKT-constraint('M23_diode', M23.vgs, '==', M23.vds);
CKT-constraint('M15_diode', M15.vgs, '==', M15.vds);
CKT-constraint('M17_diode', M17.vgs, '==', M17.vds);
CKTconstraint('M20_diode', M20.vgs, '==', M20.vds);

% gate biasing
CKT-constraint('M6_vgs', M6.vgs + M4.vds, '==', M15.vgs);
CKT-constraint('M8_vgs', M8.vgs + M1O.vds, '==', M17.vgs);
CKT-constraint('M1lOvgs', M10.vgs, '==', M23.vgs);
CKT-constraint('M13 vgs', M13.vgs, '==', M20.vgs);
CKT-constraint('M16_vgs', M16.vgs, '==', M23.vgs);
CKT-constraint('M18_vgs', M18.vgs, '==', M20.vgs);
CKT-constraint('M19_vgs', M19.vgs, '==', M23.vgs);
CKT-constraint('M26_vgs', M26.vgs, '==', M20.vgs);

% M4.vgs and M34.vgs left floating for cmfb, but we still bound them
CKT-constraint('cmfblLower', M4.vgs, '>', 0);
CKT-constraint('cmfblUpper', M4.vgs, '<', spec.vdd);
CKT-constraint('cmfb2Lower', M34.vgs, '>', 0);
CKTconstraint('cmfb2Upper', M34.vgs, '<', spec.vdd);

% stage connections
CKT-var voutl;
CKT-bounds voutl .1 1.7;
CKT-constraint('outputStgl', M8.vds + M1O.vds, '==', voutl);
CKT-constraint('inputStg2', M26.vds + M32.vgs, '==', spec.vdd - voutl);

% input voltage
CKTLconstraint('input', M13.vds + M2.vgs, '==', spec.vdd*(1-spec.vcmFactor));

% output voltage
CKT-constraint('nmosoutput-bias', M34.vds, '==', spec.vdd*(spec.voutFactor));
CKT_constraint('pmos_outputbias', M26.vds + M32.vds, '==',spec.vdd*(1-spec.voutFactor));

%------
% Power
%------
powerBias = spec.vdd*(spec.iref + M19.ids + M17.ids + M15.ids);
powerStgl = spec.vdd*(2*M10.ids);
powerStg2 = spec.vdd*(M26.ids);
power = powerBias + powerStgl + powerStg2;

%------
% Area
%------
areaBias = M16.area + M17.area + M18.area + M19.area + M23.area + M15.area + M20.area;
areaStgl = M13.area + 2*(M2.area + M4.area + M6.area + M8.area + M10.area);
areaStg2 = M26.area + 2*(M32.area + M34.area);
areaCap = 2*CA.area;

area = areaBias + areaStgl + areaStg2 + areaCap;

% DEFINE SPECIFICATIONS (TOPLEVEL)
%---------------------------------
%------
% Gain
%------
disp('writing small signal constraints ');
gmInStgl = M2.gm; %differential transconductance
gmIn = gmInStgl;
CKT-var gOutStglNmos gOutStglPmos;
CKT-constraint('gOutStglNmos' , (M2.gds+M10.gds)*M8.gds/M8.gm , '<' , gOutStglNmos);
CKT-constraint('gOutStglPmos' , M4.gds*M6.gds/M6.gm , '<' , gOutStglPmos);
gOutStgl = gOutStglNmos + gOutStglPmos; %output conductance of the first stage

gmInStgZ = M32.gm;
gOutStg2 = M34.gds + M32.gds + 1/spec.RL; %output conductance of the second stage

gainStgl = gmInStgl/gOutStgl;
gainStg2 = gmInStg2/gOutStg2;

sblGain = gainStgl*gainStg2; %DC gain

%------
% Gain-Bandwidth
%------
disp('adding gain-bandwidth constraint');
CKTvar CC -independent; % Compensation capacitor for stability
CKT-constraint('CC' , CC , '==' , CA.capacitance);

sblGBWHz=1/(2*pi)*gmIn/CC;
GBW = sblGBWHz*2*pi;

% capacitances at nodes
% Introduce variables for the capacitances and define with parasitic capacitances

cIn = M2.cgs + M2.cgd;
CKT_var CL;
cOutStgl = M8.cdb + M8.cgd + M6.cdb + M6.cgd + M32.cgs + M32.cgd;
cOut = CL + M32.cdb + M32.cgd + M34.cdb + M34.cgd;
cOutCasN = M10.cdb + M10.cgd + M8.cgs + M8.csb + M2.cdb + M2.cgd;
cOutCasP = M4.cdb + M4.cgd + M6.csb + M6.cgs;

% Phase margin qualities are evaulated
% nonDomTauPoles solution of sA2*d3+s*d2+dl=0
% tan(Phase Shift) = GBW*(d2/dl)/(1-GBW^2*d3/dl) = GBW*nonDomTauPoleEff
rd2dl = cOutStgl*(1+cOut/CC)/gmInStg2;
rd3dl = cOutStgl*(cOu*((l+cOutCasN/CC)+cOutCasN)/(M8.gm*gmlnStg2);
nonDomTauPoleEff = (rd2dl)/(l-GBWA2*rd3dl);
sbltanPhaseShift = GBW*nonDomTauPoleEff;

% constraints for the other non-dominant poles
% Ensure poles from cascode nodes are non-dominant
CKTconstraint('nondom-cOutCasP' , GBW*cOutCasP/M6.gm , '<', 0.5);
CKTconstraint('nondom cOutCasN' , GBW*cOutCasN/M8.gm , '<' , 0.5);

% ensure no peaking
CKT-constraint('no-peaking',8*GBWA2*(1+cOutCasN/CC)*(1+cOut/CC)*(CC*coutStgl)/(M8.gm*gmln
Stg2),'<',1);

%------
% noise
%------
disp('adding noise power');
iNoiselSq = (2*M2.ids-nd+2*M10.idsnd+2*M4.idsnd);
iNoise2Sq = (2*M32.ids-nd+2*M34.idsnd);

% slew rate
% ------

disp('adding slew rate constraint');
sblSlewRateStgl = M8.ids/(cOutStgl);
sbISIewRateStg2 = 0.5*M26.ids/(cOut);

CKTvar slewRate
CKTconstraint('slewRateStgl', sblSlewRateStgl,
CKTconstraint('slewRateStg2', sblSlewRateStg2,

disp('adding DC gain constraint');
CKT-constraint('gainDCSpec' , spec.gainDC , '<'

'>', slewRate);
'>', slewRate);

sblGain);

disp('adding stability constraint');
%phase margin of 60 degrees or shift of 30 degrees
CKT-constraint('phaseMargin', sbltanPhaseShift, '<', tan(pi/2 - 60/180*pi));

Appendix B

Pipeline stage module (hier stage)

function ckt = hierstage(name, spec);
% An hierarchical stage module%

ckt = CKTbegin(name);

load modelfits;

CKT_var sblArea noisePowerOut cLoadHold cInSample tauHold slewRate CL sblPower;

CKT-constraint('power', sblPower,'==', powerc * sblAreaApowera(1) *
noisePowerOutApower-a(2) * cInSampleApower-a(3) * cLoadHoldApowera(4) *
tauHold^power_a(5) * slewRateApowera(6) * CLApower-a(7));

CKT-constraint('area', sblArea,'==', areac * noisePowerOut^areaa(1) *
cInSampleAareaa(2) * cLoadHoldAareaa(3) * tauHoldAareaa(4) * slewRateAarea-a(5) *
CLAareaa(6));

CKT-constraint('cLoadHold', cLoadHold,'==', cLoadHold-c * noisePowerOutAcLoadHolda(l) *
cInSompleAcLoadHolda(2) * tauHoldAcLoadHolda(3) * slewRateAcLoadHolda(4) *
CLAcLoadHolda(5));

CKT-constraint('cInSample', cInSample,'==', cInSample-c * noisePowerOutAcInSamplea(1) *
tauHoldAcInSamplea(2) * slewRateAcInSample-a(3) * CLAcInSample-a(4));

CKT-constraint('nPO', noisePowerOut, '==', noisePowerOutc * tauHoldAnoisePowerOuta(1) *
slewRateAnoisePowerOuta(2) * CLAnoisePowerOuta(3));

CKT-constraint('tauHold', tauHold, '==', tauHoldc * slewRateAtauHolda(1) *
CLAtauHold_a(2));

CKT-bounds sblPower 100e-6 100e-3;
CKT-bounds sblArea le-12 le-3;
CKTbounds noisePowerOut le-9 le-3;
CKT-bounds cLoadHold 200e-15 le-12;
CKT-bounds cInSample 400e-15 Ze-12;
CKTbounds tauHold le-12 le-6;
CKT-bounds slewRate 1e6 1e9;
CKT-bounds CL 200e-15 2e-12;

Appendix C

Pareto-optimal surface generation

C. 1 Pipeline stage with objective (pipelineStage_objective)

function ckt = pipelineStageobjective(name, spec);
% A stage in a pipeline ADC with objective for optimization of single stage
% The noise and area of a stage in a pipelined ADC is
% expressed in terms of two design variables:
% C1 Sampling capacitor of the stage, and
% C2 Feedback capacitor of the stage.
% C=C1=C2

ckt = CKTbegin(name);

% Instantiating Op-amp and Capacitors
% We only need one capacitor because they are equal
CKT-subckt('C' , 'capADC' , spec);
CKT-subckt('Amp' , 'two-stage_half' , spec);

% Constraining Cap Sizes for circuit design
CKT-constraint('CAmp.cIn', C.C, '>', 2*Amp.cIn);
CKT-constraint('C-minCap', C.C, '>', spec.minCap);

% Defining power ane area of stage
power = Amp.power;
area = 4 * C.area + Amp.area;
% Feedback factor in hold mode
fFB = C.C/(2*C.C + Amp.cIn);

% Defining time constant and slewRate of stage for settling time constraints
loopGain=2;
tauHold = loopGain/Amp.GBW;
slewRate = Amp.slewRate;

% Calculate node capacitances for interface interaction
CKT-var cLoadHold;
cInSample = 2 * C.C;

cFB = C.C*(C.C + Amp.cIn)/(2*C.C + Amp.cIn);
CKT_constraint('AmpCL', Amp.CL, '==', cLoadHold +cFB);

% Defining noise of stage
noisePowerOut = (Amp.iNoiselSq)/(4*Amp.gmIn*Amp.cOutStgl*fFB) +

(Amp.iNoise2Sq)/(4*Amp.gmln*(Amp.cOut + Amp.CC));

% Bound design variables
CKTconstraint('min.power', power, '>', le-9);
CKT_constraint('max.power', power, '<', le3);

CKTconstraint('min-area', area, '>', le-18);
CKTconstraint('max.area', area, '<', le-6);

CKTconstraint('min-cLoadHold', cLoadHold, '>', spec.minCap);
CKT_constraint('max-cLoadHold', cLoadHold, '<', le-9);

CKTconstraint('minclInSomple', cInSample, '>', 2*spec.minCap);
CKT-constraint('maxclInSample', cInSample, '<', le-9);

% Modify specs with new value for sweeping
CKT-constraint('min-nPO', noisePowerOut, '>', le-9);
CKT-constraint('max-nPO', noisePowerOut, '<', le-3);
CKT-constraint('nPOSpec', noisePowerOut, '<', spec.lambdal*spec.nPO);

CKT-constraint('min-tauHold', tauHold, '>', le-12);
CKT-constraint('max-tauHold', tauHold, '<', le-9);
CKT-constraint('tauHoldSpec', tauHold, '<', spec.lambda2*spec.tauHold);

CKT-constraint('minslewRate', slewRate, '>', le6);
CKT-constraint('maxslewRate', slewRate, '<', le10);
CKT_constraint('slewRateSpec', slewRate, '>', spec.lambda3*spec.slewRate);

% Minimize power and area
objective = le2*power + le8*area;
CKTobjective('min', 'objective', objective);

C.2 Sweep constraints to get set of Pareto-optimal designs

(tradeoffpipelineStage)

% use lambda as weights on the constraints to tighten or loosen them
clear all;
close all;

% create vector of CL values to be swept
CLspecs=CLmin:CLstep:CLmax;

% create arrays to store pareto-optimal points
power-array=[];
area-array=[];
noisePowerOutaorray=[];
cLoadHold array=[];
cInSample-array=[];
tauHold array=[];
slewRate_array=[];

CLarray=[];

for k=l:length(CLspecs)
lambda=lambdaGen; % generates the set of specs to sweep in a 3 row matrix
load working_specs; %loads default specs

% modify specs with CL value and correct lambda vector
specs.CL=CLspecs(k);
for i=1:size(lambda, 2)

specs.lambdal=lambda(1,i);
specs.lambda2=lambda(2,i);
specs.lambda3=lambda(3,i);

% optimize pipeline stage
res=sosRun('pipelineStagetradeoff', 'specs', specs, 'OpenBrowser', 'off');
sosAssign(res(1), 'variables', '-force');

% store optimal result as point on pareto-optimal surface
if (strcmp(res.status, 'OPTIMAL'))

powerarray=[powerarray power];
areaarray=[areaarray area];
noisePowerOut-array=EnoisePowerOut-array noisePowerOut];
cLoadHoldarray=EcLoadHold-array cLoadHold];
cInSamplearray=[cInSamplearray cInSample];
tauHold-array=EtauHoldarray tauHold];
slewRatearray=[slewRatearray slewRate];
CL_array=[CLarray specs.CL];

end

end
end

save data

C.3 Fit Pareto-optimal data set with monomial

(processData)

function processData(filename)

% Load data file with pareto-optimal set
load(filename)

ind=1:length(power array);

% perform monomial fit on power
% power=powerc*areaApower_a(1)*noisePowerOut^power-a(2)*cInSample^power-a(3)*
% tauHoldApowera(4)*slewRateApower.a(5)*CLApowera(6)
grd=[areaarray(ind);noisePowerOutLarray(ind);cInSample-array(ind);cLoadHold-crray(ind);

tauHold_array(ind);slewRatearray(ind);CLarrayCind)];
[powerc,power_a,power fit]=monomialfit(powerarray(ind), grd);

% perform monomial fit on area
grd=[noisePowerOutarray(ind);cInSamplearray(ind);cLoodHoldarraycind);

tauHoldarray(ind);slewRatearray(ind);CLarray(ind)];

[area-c,area a,areafit]=monomialfit(areaarray(ind), grd);

% perform monomial fit on cLoadHold
grd=[noisePowerOut_array(ind);cInSamplearray(ind);tauHold-array(ind);

slewRatearray(ind);CLarray(ind)];
[cLoadHoldc,cLoadHolda,cLoadHold-fit]=monomialfit(cLoadHoldarray(ind), grd);

% perform monomial fit on cInSample
grd=[noisePowerOut-array(ind);tauHoldarray(ind);slewRate-array(ind);CL-array(ind)];
[cInSamplec,cInSamplea,cInSamplefit]=monomialfit(cInSample-array(ind), grd);

% perform monomial fit on noisePowerOut
grd=[tauHold-array(ind);slewRatearray(ind);CL-array(ind)];
[noisePowerOutc,noisePowerOuta,noisePowerOutfit]=

monomialfit(noisePowerOutarray(ind), grd);

% perform monomial fit on CL
grd=[slewRatearray(ind);CLarray(ind)];
[tauHoldc, tauHolda, tauHoldfit]=monomialfit(tauHoldarray(ind), grd);

save modelfitsconservative power-c power.a areac areaa cInSample_c cInSample-a
cLoadHold-c cLoadHolda noisePowerOutc noisePowerOuta

C.4 Monomial best fit code (monomial fit)

function [c,a,fitdata]=monomialfit(data,grid)

% This should do monomial fit for provided
% data to given grid (sample) set ...

% Returns weights and exponents

% It gives c.*x.^a monomial params and
% [c,a,my-data]=monomialfit(data,grid)

% extract only positive data
ind=find(data>O);
for jj=1:size(grid,1)

indl=find(grid(jj,:)>O);
ind=intersect(ind,indl);

end

logdata=log(data(:,ind));
log_grid=log(grid(:,ind));
% we add 1-column to treat c the same way as alpha
effective_grid=[ones(1,size(loggrid,2)); log-grid];

% alpha=sdpvar(size(effective grid,1),1);

% Performs a best fit on data with minimal error
X=[ones(size(log_grid,2),1) log_grid'];
alpha=X\logdata';

c=exp(alpha(1,:));
a=alpha(2:length(alpha),:);

% rebuilding data and taking care of zeros

fit_data=c;
for i=l:size(grid,1)

temp_data=grid(i,:).^a(i);
fit_data=fit_data.*temp_data;

end

Bibliography

[1] S. Boyd and L. Vandenerghe. (2004) Introduction to convex optimization with

engineering applications. [Online]. Available: http://www.stanford.edu/-boyd/

cvxbook/

[2] E. Zitzler, "Evolutionary algorithms for multi-objective optimization: Methods and

applications," PhD thesis, Swiss Federal Institute of Technology, Zurich,

Switzerland, Nov. 1999.

[3] J. Zou, D. Mueller, H. Graeb, and U. Schlichtmann, "A CPPLL hierarchical

optimization methodology considering jitter, power and locking time," Design

Automation Conference, San Francisco, CA, pp. 19-24. July 2006.

[4] M. Hershenson, S. Boyd, and T. Lee, "Optimal design of a CMOS op-amp via

geometric programming," IEEE Transactions CAD, vol. 20, pp. 1-21, Jan. 2001.

[5] T. Eekeleart, T. McConaghy, and G. Gielen, "Efficient multiobjective synthesis of

analog circuits using hierarchical Pareto-optimal performance hypersurfaces," in

Proceedings of the 42nd annual conference on Design Automation and Test in

Europe Conference, pp. 1070-1075, June 2005.

[6] T. Eekeleart, R. Schoofs, G. Gielen, M. Steyeart, and W. Sansen, "Hierarchical

bottom-up analog optimization methodology validated by a delta-sigma A/D

converter design for the 802.11 a/b/g standard," Design Automation Conference, San

Francisco, CA, pp. 25-30, July 2006.

[7] F. Bernardinis, P. Nuzzo, and A. Vincentelli, "Robust system level design with

analog platforms," IEEE/ACMICCAD, San Jose, CA, Nov. 2006.

[8] M. Hershenson, "Design of pipeline analog-to-digital converters via geometric

programming," IEEE/ACMICCAD, pp. 317-324, Nov. 2002.

[9] M. Hershenson, S. Boyd, and T. Lee, "Efficient description of the design space of

analog circuits," IEEE/A CMDAC, June 2003.

[10] X. Li, J. Wang, L. Pileggi, T.-S. Chen, and W. Chiang, "Performance-centering

optimization for system-level and analog design exploration," IEEE, pp. 421-428,

2005.

[11] Sabio Home Page. Sabio Labs, Inc. Retrieved 18 Oct. 2007

<http://www.sabiolabs.com>.

[12] W. Sanchez. 2007. A Hierarchical, bottom-up, equation-based optimization design

methodology. Masters Thesis, Massachusetts Institute of Technology. 82 p.

[13] B. Razavi. Design ofAnalog CMOS Integrated Circuits. McGraw-Hill, 2000.

[14] D. Johns, K. Martin. Analog Intgrated Circuit Design. John Wiley & Sons, Inc.

2004.

[15] T. Lee. The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge

University Press. 1998.

[16] B. K. Ahuja, "An improved frequency compensation technique for CMOS

operational amplifiers," IEEE Journal of Solid-state Circuits, vol. sc-18, no. 6, pp.

629-633, 1983.

[17] D. R. Ribner, M. A. Copeland, "Design techniques for cascaded CMOS op amps

with improved PSRR and common-mode input range," IEEE Journal ofSolid-state

Circuits, vol. sc-19, pp. 919-925, 1984.

[18] R. Tadeparthy, "An improved frequency compensation technique for low power,
low voltage CMOS amplifiers," IEEE ISCAS, pp. 497-501, 2004.

[19] M. Yavari, O. Shoaei, F. Svelto, "Hybrid cascode compensation for two-stage

CMOS operational amplifiers," IEEE ISCAS, pp. 1565-1568, 2005.

[20] G. Gielen, T. McConaghy, T. Eeckelaert, "Performance space modeling for

hierarchical synthesis of analog integrated circuits," IEEE/ACM DAC, pp. 881-885,

June 2005.

[21] S. K. Tiwary, P. K. Tiwary, R. A. Rutenbar, "Generation of yield-aware pareto

surfaces for hierarchical circuit design space exploration," IEEE/ACM DAC, pp. 31-

36, July 2006.

