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Abstract

Many data-driven animation techniques are capable of producing high quality mo-
tions of human characters. Few techniques, however, are capable of generating mo-
tions that are consistent with physically simulated environments. Physically simu-
lated characters, in contrast, are automatically consistent with the environment, but
their motions are often unnatural because they are difficult to control. We present a
model-predictive controller that yields natural motions by guiding simulated humans
toward real motion data. During simulation, the predictive component of the con-
troller solves a quadratic program to compute the forces for a short window of time
into the future. These forces are then applied by a low-gain proportional-derivative
component, which makes minor adjustments until the next planning cycle. The con-
troller is fast enough for interactive systems such as games and training simulations.
It requires no precomputation and little manual tuning. The controller is resilient to
mismatches between the character dynamics and the input motion, which allows it
to track motion capture data even where the real dynamics are not known precisely.
The same principled formulation can generate natural walks, runs, and jumps in a
number of different physically simulated surroundings.

Thesis Supervisor: Jovan Popovié
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Chapter 1

Introduction

Many data-driven animation techniques are capable of producing high quality motions
of human characters. These approaches extend the usefulness of captured motions by
allowing applications to adapt existing motions to meet different needs. Applications
can create motions that satisfy new user constraints while maintaining the input
motion style [2,16] or exhibit new styles while preserving content [15]. Interactive
applications such as games can respond to user input and synthesize new results in
real-time.

Few techniques, however, are capable of generating motions that are consistent
with physically simulated environments. The implicit assumption made by all kine-
matic synthesis approaches is that the performance environment is the same as the
capture environment. This assumption is invalid when motions are performed in
physically simulated environments. In a physical simulation, the character can en-
counter new or unpredictable circumstances such as being hit by a ball or standing on_
a shaky platform. Ignoring these interactions leads to physically inconsistent motion.

In contrast, physically simulated character motions are automatically consistent
with the environment but are often unnatural because they are difficult to control.
Recorded motions provide an intuitive control specification but simulating any such
motion remains a difficult problem. Human characters, in particular, have many de-
grees of freedom (dofs) subject to non-smooth, non-linear dynamics. This makes it

hard to find the forces that reproduce a desired motion, particularly in new environ-
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ments.

Figure 1-1: McSim is a controller for tracking reference motions in simulated environ-
ments. It is capable of tracking walking motions in different environments and styles.
It can also track running and jumping,.

We present a controller, McSim (motion capture in simulation), that yields nat-
ural motions by guiding simulated humans toward real motion data. McSim can be
categorized as an instance of model-predictive control (MPC). In MPC, the controller
predicts a control signal that achieves a desired change in system state based on the
current system state and a model of the system’s dynamics. Our controller uses a
predictive component (§3.1) based on a linearized model of linked rigid body and
contact dynamics. The linear dynamics model is used as a constraint in a quadratic
program (QP) that solves for the joint and external forces that track the provided
input motion for a short window of time into the future.

McSim combines the predictive component with a low gain proportional-derivative

(PD) component (§3.2) as depicted in Figure 1-2. The predictive component’s control
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has errors due to high latency and modeling assumptions. The PD component com-
pensates for these errors. The PD component also provides a low-latency response to
unexpected perturbations. For certain motions, robustness can be further improved
by adapting the input motion according to heuristic feedback rules (§3.3).

McSim is fast enough for application in interactive systems such as games and
training simulations. It can adapt to differences between the character dynamics and
the input motion allowing it to track motion capture where the character model can
only be estimated. With no precomputation and little manual tuning, McSim is able
to produce walking, running, and jumping motions similar to the reference motion

while also adapting to new physical surroundings (§4) at interactive rates.

PD < Motion
\ data

~1000 Hz
Motion
data —>®_ QP »@_ S >

~10 Hz

Figure 1-2: An overview of McSim’s design. At 40 to 100 Hz, the predictive model
solves a quadratic program for the joint and external forces that track the reference
motion. These forces are adjusted by a low gain proportional derivative component
that computes feedback forces at every simulation time step (1-10kHz). Our controller
can work with any black-box simulator.
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Chapter 2

Related Work

Most prior online control techniques in the graphics literature have been based on
manually designed PD controllers [7,13,24,25,29,41]. These approaches are typically
sensitive to gain parameters and not intuitively directed. In contrast, off-line au-
thoring tools based on continuous optimization leverage the benefit of time to search
for physical motions that are optimal according to some metric and satisfy user con-
straints 22, 31,38]. The predictive component of McSim is inspired by these off-line
approaches but sacrifices global optimality for computation speed by restricting the
search to a short amount of time into the future. The predictive component of our
controller allows the PD component to use relatively small gain parameters, resulting
in more stable simulations and more natural motion [40].

McSim can be guided by an arbitrary input motion. Recently, both off-line and
online physically based character animation have used data to produce life-like ani-
mations, though the role of data differs for each approach. Since the goal of an off-line
approach is to produce a new motion with new content, data is used to restrict the
search space of possible solutions [26], to model simplified equations of motion [4,33],
and to learn parameters of motion style [19]. In online control, the goal is often to
simply track a provided input motion in a dynamically simulated environment [42].
Recent approaches, however, have been limited to special cases of motion such as
cyclic motions [41] or standing [1,42]. Our approach can track arbitrary motions

exhibiting stylistic variations and transitions such as walking to standing.
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Many recent approaches to tracking motion data find globally optimal control
policies using off-line precomputation methods such as feedback error learning or
simplex methods [28,29,34,41]. However, global optimality is only guaranteed if the
playback environment does not differ significantly from the environment simulated
during optimization. Furthermore, these global search methods are not easily ap-
plicable to 3D animation where the number of dofs is large. While McSim could
incorporate a precomputed feedforward control signal, it produces plausible motions
without precomputation. This enables it to be coupled with kinematic motion syn-
thesis techniques {20, 21] to track newly created 2D or 3D motions at run-time.

Among instantaneous optimization approaches, McSim is closely related to Mul-
tiobjective Control [1]. McSim adds the ability to track motions where the contact
state changes regularly as in locomotion. Furthermore, we illustrate how the input
motion can be modified to improve tracking performance. There are many previous
approaches from robotics that propose some form of optimization over a short time
horizon to achieve a motion objective [10,14,36,37], each with key differences in the
details. In this work, we propose an alternative formulation of the tracking problem
that is capable of handling arbitrary motions and couple it with robust low-latency
feedback mechanisms. Others have argued that this form of control is employed by

biological systems [40].
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Chapter 3

Controller Design

McSim’s design is guided by three goals. The output motion should be directed by
specifying any input motion. It needs to work at interactive rates without requiring
expensive precomputation. Finally, it has to work with existing black-box simulators.
We would like our controller to work as a plug-in module with any simulator without
any modification to the simulator itself. Achieving these objectives would make the
system suitable for tracking kinematically specified motions in interactive applications
such as games and training simulations. In the following sections, we describe how
McSim achieves these three goals.

At each time step, ¢, McSim computes a control signal of the form:
u(t, ,2,(t)) = us(t, 2, 2 (1)) + us(t, 7, 2-(2)) (3.1)

where u is the control signal, z is the current system state consisting of joint values
and velocities, [g, 4], and z, is the desired state. The total control signal consists
of the predictive component’s signal, u¢, added to the PD component’s signal, uy.
A predictive dynamics model computes uy. The PD controller computes u, which
provides low-latency feedback to deal with unexpected perturbations. Stability is
achieved by tracking the velocity of the root of the character and modifying the

reference motion, z, as described in Section 3.3.
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3.1 The Predictive Component

The predictive component’s task is to track the reference motion, z,(¢f). A long-
horizon approach to tracking the reference motion would solve a single optimization
for the control forces exerted over the entire motion [38]. For human motions, this
form of tracking is a high-dimensional, non-linear, non-convex minimization problem.
This makes an exact solution impractical at interactive rates. Furthermore, in inter-
active applications, long-horizon optimal plans are quickly invalidated by changes in
the dynamic environment. Rather than plan optimally for situations that may never
come to pass, we plan a over a small interval into the future using a linearized dy-
namics model and re-plan at regular intervals, incorporating changes in system state.

We call this form of the problem, short-horizon tracking.

3.1.1 Short-Horizon Tracking

In a physical simulation, a character’s motion is determined by integrating a dynam-

ical system forward in time from some initial configuration,

T
#(T) = (0) + / a(t) dt. (3.2)
0

For an active character modeled as a system of linked rigid bodies with actuators
between each joint, the equations of motion depend on the current state, z(t), the
control signal, u(t), and the external forces, u.(t). The precise equations can be

derived from classical mechanics [9] but are summarized here as

z(t) = f(z(t), u(t) + uc(t))- (3.3)

A motion that perfectly tracks the reference satisfies §(t) = §.(t) for all t, where
gr is the acceleration of the reference motion. The predictive component computes
a uy that tries to reproduce the reference acceleration over a window of size A. In
practice, it is usually not possible to achieve the reference acceleration, g, exactly

due to dynamics constraints of the character and environmental disturbances. As

18



a result, the simulated motion will drift from the reference motion. To correct this
drift, feedback terms are added to the reference acceleration to form the desired
acceleration, §z, as described in the next section. Once the desired acceleration is
known, a constrained optimization is solved for the joint torques and external forces

that achieve it.

3.1.2 The Desired Acceleration

The desired acceleration consists of the reference acceleration and a correction term.

It is computed separately for each joint.

da = Gr + kosd(gr, q) + k'od(dr - q). (3.4)

The correction terms act as a damped feedback acceleration on any errors that oc-
cur. The function d compares the current joint configuration, g, to the reference
configuration, g., and computes an angular acceleration that will move g closer to
gr- The scale of this acceleration is determined by the gain parameter, k,;. For rota-
tional joints with one degree of freedom (dof), known as pin joints, d;(a,b) = a — b.
Three dof joints, known as ball joints, are represented using quaternions. In this case,
di(a, b) = vec;(a™! - b) where - represents quaternion multiplication and vec; maps the
quaternion to the equivalent axis-angle rotation’s i’th component. The last term in
Equation 3.4 corrects for errors with respect to the reference velocity ¢, obtained from
the motion capture data.

With the exception of the root translation, all desired accelerations are computed
using the same values of kos and k,q. If k,s = ¢, then k,q = 24/c. Errors in the current
position of the root are ignored when computing the desired acceleration of the root.
Thus, for the root translation, k,s = 0. This prevents the controller from trying to
correct for errors that are unavoidable due to the environment such as the character
walking down hill. The velocity gain is not zero, however. This feedback uses the
same gain as the other joints, koq = 24/c. The controller is fairly insensitive to the

particular value of ¢ chosen as shown in section 4.
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3.1.3 Dynamics Constraints

Computing the control input v needed to achieve the desired acceleration just de-
scribed would be easy if we could simply invert Equation 3.3. Unfortunately, humans
and animals have more degrees of freedom than forces to control them. Simple inverse
dynamics algorithms such as those used for robotic arms rely on being rooted to the
environment. Humans, however, are not rooted to the ground. They can use their
feet to push, but not pull, on the ground. They must manipulate these unilateral con-
tact constraints while respecting frictional limits to effect their overall motion [1,36].
These contact constraints are a key component of the dynamic model used by the

predictive component.

Figure 3-1: A friction cone in 2D. Legal contact forces lie within the cone which can
be represented using a linear basis. Non-negative combinations of the basis vectors
yield forces in the cone.

Contact forces are computed using a polygonal approximation to Coulomb’s model
of friction [8]. The model is depicted in 2D in Figure 3-1. Legal contact forces lie

within a friction cone at each corner of the foot in contact with the ground. The
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cone is oriented normal to the contacting surface with a swept angle determined by
the coefficient of friction. In 3D, we use a polygonal approximation (4 facets) to this
cone which can be described with a linear basis, V. Contact forces are equal to V)
with A > 0. The non-negative bound on A insures that the ground reaction force
resides within the approximation to the friction cone and prevents contacting bodies
from pulling on each other. The i’th contact force induces generalized torques on the
character which are calculated as JTV;)\; where J is the gradient of the contact point
with respect to the joint configuration of the character. The total contact force on
the character, then, is uo = Y, JTV;\;.

For this static contact model to hold, the contact forces must act only on contact

points with zero acceleration [3]. This is known as the no-slip condition:
Jig + Jig = 0. (3.5)

In addition to constraints on possible contact forces, achievable accelerations are
constrained by the dynamics of the character. Since the predictive component plans
over a short-horizon, the dynamics of the character are described by a linear relation-

ship between applied forces and resulting accelerations:

§(t) = f(q(£),4(2), 0) + W(u + uc) (3.6)

where W is the gradient of f with respect to the control input. Note that the internal
torques, u, are limited by bounds on the strength of the character’s actuators, u feU,

further restricting possible accelerations.

3.1.4 Quadratic Programming Optimization

Given all of these constraints, we can now formulate an optimization problem that

solves for the joint and external forces, u s and J;T Vi, that best achieve the desired
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acceleration, §y:

gfl}g §|Iq — G| (3.7a)
subject to A, >0 (3.7b)
ur €U (3.7¢)
§=£(g,4,0)+ W(us +>_ JIViN) (3.7d)

i
Jig+ Jig = 0. (3.7¢)

The predicted acceleration of the character is §. The objective penalizes accelerations
different than the desired acceleration, ¢z, which was chosen to track the reference
motion. This minimization problem can be solved efliciently: it features a quadratic
objective with a positive-semidefinite Hessian, and the constraints are linear. This
yields a convex quadratic programming (QP) problem. The QP is solved at a much
slower rate than the simulation. At time steps where it is not solved, the previously

calculated forces are used.

3.2 Proportional-Derivative Component

Solving the QP in the predictive component is fast but not immediate. The drawback
of this latency is that the predictive component cannot adapt to disturbances in
between updates to its control signal. We resolve this problem with a PD control that
adjusts the QP solution at each simulation step. The PD control guides the character
through contact transitions and provides immediate responses to disturbances.
McSim’s PD component computes up in Equation 3.1 at each step of the sim-
ulation. It is implemented using a critically-damped proportional-derivative (PD)
controller [25]. The form of this control varies according to the particular joint. Since

the root joint of the character is unactuated, no feedback forces are computed for the
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root dof’s. Pin joints are computed using a standard critically damped feedback law

up = k(qr —q) — 2\/"79Q (3.8)

To compute the feedback forces of a ball joint, we first compute the composite

rotational inertia of all of its child links in world coordinates:

ILj= Y, RIR]. (3.9)

lee(7)us

The resulting feedback force is then computed as

up = ksIod(gr,q) + 2/ kel (Gr — 4)- (3.10)

Note that the term v/k;I, means taking the square root of each element of the matrix
ksI.. Multiplying by the world-space inertia matrix insures that the feedback force is
scaled by the appropriate amount relative to the actual current distribution of mass
supported by the joint. The resulting force, u, is added to the current predictive

force uy to give the total force at each time step.

3.3 Maintaining Balance

McSim maintains balance by tracking the input motion with forces that are consistent
with the current contact environment. Other works employ a similar approach by
using formulations specific to static contact [42] or infinite friction and planar contacts
[14,17,35]. In contrast, McSim uses a model of contact dynamics that can account
for more general geometric and frictional properties of the contacting surfaces [1,36].

In certain cases, heuristic methods can adapt the input motion directly to improve
tracking robustness. For example, one could track a parameterized family of motions
rather than a single motion [37] or adapt the center of mass motion through a feedback

[1]. For some of the 2D motions presented in the results section, we employed a
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feedback scheme similar to the heuristic used in the SIMBICON system [41]:
Bq = 40 + cqd + cyv (3.11)

where 6, is the desired angle of the swing hip, 849 is the value of the swing hip in the
reference motion, d is the horizontal distance between the root link and the support
foot, and v is the horizontal velocity of the root link. Contrary, to SIMBICON’s
approach, we do not change the gains, ¢z and c¢,, with changes in contact state. They
are fixed for a particular motion.

McSim is largely insensitive to the particular choice of the gains. Normally, McSim
tracks the input motion even when the gains are set to zero. However, adding this
form of balance feedback improved the robustness of a character walking on a moving
platform and allowed the controller to track a run cycle indefinitely. A drawback
to using this particular form of balance feedback, however, is that it is specific to
walking and running motions. Similar methods of adapting the input motion have

been applied to other motions [39].
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Chapter 4

Results

McSim produces life-like character motion similar to a provided input motion. In the
following section we highlight results that demonstrate McSim’s ability to adapt mo-
tion capture data to new physical environments and track a variety of input motions.
We also explore the sensitivity of the approach to various modeling errors and discuss
the quality of the results. Finally, we provide implementation details. Please refer to
the video accompanying this paper for the animations corresponding to the presented

results [6].

4.1 New Environments

An exciting application of McSim is adapting motion data to new physical environ-
ments. This is illustrated in several demos presented in the accompanying video [6].
For example, a motion recorded on flat ground can be adapted to walk up or down an
inclined ground plane. In our experiments, successful walks were created for uphill
slopes as large as five degrees and downhill slopes as large as 10 degrees. Simple
kinematic playback of the motion would walk through the ground or into the air.

In a physical simulation, the environment can change dynamically and a character
must react to maintain plausibility. Our controller allows motion data to adapt to
its environment. We generated several animations where the character is perturbed

by flying balls or obstructed by blocks (Figure 4-1). The ground too can evolve
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a b

Figure 4-1: A sequence of frames from a walking sequence. The reference motion
is a person marching in a military style. In this simulation, the character punches
through some heavy blocks blocking the path.

dynamically as evidenced by simulations of the character walking over a moving

platform and a see-saw (Figure 4-2).

4.2 Tracking

McSim is capable of tracking a wide range of motions in 2D and 3D. The video
accompanying this paper presents results of tracking walking, running, and jumping
motions [6]. These motions exhibit stylistic variations and transitions between modes
such as from standing to walking and walking to standing,.

A key feature of McSim is that there are few parameters that require tuning. To
generate the results, two parameters were tuned manually: the optimal feedback gain
used in Equation 3.4 and a scale factor on the intrinsic joint stiffness parameters used
in Equations 3.8 and 3.9. In most cases, it was not difficult to find a satisfactory
setting of these parameters as a large range of values led to satisfactory results as
explained in Table A.1. Even across different types of motion, identical parameter
values lead to good results.

Though McSim does not satisfy any global optimality criterion, it achieves good
tracking results in practice. In the absence of large disturbances to the physical system
or large errors in the physical character model, McSim will succeed in tracking the
input motion. The plots in Figure 4-4 depict the squared tracking error (squared
Euclidean distance between the actual state vector and the desired state vector) over

time for selected motions. The plots illustrate several interesting features of the
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Figure 4-2: A time-lapse image of a walking sequence. The reference motion was
captured from a person walking on flat ground. Our controller was able to adapt this
motion to walk over a moving see-saw.

tracking system. First, the beginning of the walk motion is a period of standing.
The system has little trouble tracking this portion of the motion. More energetic
motions lead to more error. The spikes in the error curves coincide with changes in
contact state suggesting that the predictive model could be improved by accounting
for mismatches in the current contact state and the contact state in the reference

motion.

4.3 Modeling Errors

The tracking quality of McSim is adversely effected by physical mismatches between
the character model and the capture subject. To explore the effect of modeling

errors we introduce various modeling changes and measure the change in tracking
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Figure 4-3: A rendering from a frame of a jumping sequence in 3D. McSim was able
to track the character through three consecutive jumps.

performance.

4.3.1 Inertial Modeling Errors

One potential source of error in tracking motion capture data is an incorrect physical
model of the subject. The mass distribution and inertial properties are often based
on statistical models that are often quite different than the actual properties of the
recorded subject. This mismatch can make an input motion physically infeasible for
the character. To illustrate the sensitivity to errors in mass distribution, we plot the
squared error for different versions of the 2D model for the walking motion in Figure
4-5. The mass of the character was redistributed to create three new versions of the
original. One version of the character has a left leg that is twice as heavy as the right

leg. In the next version, the upper body’s mass is doubled while the lower body mass

28



Tracking Error

-

0.4
0.35
0.3
0.25
B2
0.15
0.1
0.05

T
(I

T
T

Squared Error

I

1500 2000 2500 3000
Frames

0 500 1000

Figure 4-4: Shown are plots of squared error over time for four selected motions. The
plots illustrate several interesting features of the tracking system. First, the beginning
of the walk motion is a period of standing. The system has little trouble tracking
this portion of the motion. More energetic motions lead to more error. The spikes in
the error curves coincide with changes in contact state suggesting that the predictive
model could be improved by accounting for mismatches in the current contact state
and the contact state in the reference motion.

is cut in half. Finally, we double the mass of both legs. For walking motions, McSim

is more sensitive to errors in the mass properties of the legs.

4.3.2 Contact Modeling Errors

Contact geometry was modeled using four small spheres placed at the corners of each
foot. The controller is somewhat insensitive to the simulator’s contact dynamics. To
illustrate this, we compared the performance of the controller on a walking motion
with varying coefficients of friction in 4-6. Tracking performance was not greatly
effected. Contact dynamics were approximated using a friction cone model with a

coefficient of friction ranging from 0.75 to 2.0 or stiff springs as in [29].
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Figure 4-5: Shown are plots of squared error over time for four versions of the 2D
model tracking the walking motion. The modifications are described in the legend.
McSim is more sensitive to errors in the mass properties of the legs.

4.3.3 Foot Modeling Errors

The feet present another difficulty when tracking motion capture data. Our motion
capture data for the ankle is fairly inaccurate. We offset the ankle angle by a constant
so that the character’s contact points are flush with the ground while standing. To
get a feel for how sensitive McSim is to variations in foot geometry, we varied the
foot size of the 2D model and plotted the results in Figure 4-7. The big feet were 4
centimeters larger than the standard feet used in most of the results in this work. The
small feet were 4 centimeters shorter than the standard while the smallest feet were 8
centimeters shorter. The results indicate that McSim is robust to small discrepancies

in foot size.
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Figure 4-6: In these plots, the squared error is shown for a walking motion where
the coefficient of friction in the predictive component is varied from 0.5 to 1.5. The
simulator’s coefficient of friction was fixed at 1. For walking motions, the error is not
greatly effected by the coefficient of friction used in the model. When the predictive
model’s coefficient of friction exceeds the actual coefficient of friction, performance is
worse, but only slightly.

4.3.4 Motion Quality

The results of McSim’s tracking often look robotic and abrupt. For example, the 3D
marching motion makes hard contacts with the ground that are not present in the
reference motion. The 2D walk uphill sways a bit unnaturally as well. There are a
couple of factors that affect the quality of the results. The first is that the short-
horizon approach to tracking is a greedy approach. It applies large torques to try and
immediately cancel any errors. These large forces can lead to unnatural accelerations
and motion. The other factor effecting quality is the fact that gain parameters are
manually set by hand. This was more of an issue for the 3D examples which were

more sensitive to the gain parameter settings.
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Effect of Foot Size
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Figure 4-7: Shown are plots of squared error over time for versions of the 2D model
with different sized feet. The big feet were 4 centimeters larger than the standard
feet. The small feet are 4 centimeters smaller than the standard while the smallest
feet are 8 centimeters smaller. These plots show that, at least for walking, slightly
better results can be achieved by shrinking the foot. This might suggest that the
actor performing the motion had slightly smaller feet. However, the results indicate
that McSim is robust to small discrepancies in foot size.

4.4 Experimental Setup

The motion data for this work came from two sources. The 2D examples were down-
loaded from http://mrl.snu.ac.kr/research/ProjectSimulBiped/SimulBiped.
html. This data was converted to 2D from motion capture data as described in [29)].
The 3D data was captured and processed using a standard motion capture system.
A prerequisite of simulating character motion is a physical model of the inertial
and stiffness properties of the character’s limbs and joints. A good model is important
as significant errors make the input motion physically infeasible for the model. For

the 2D examples, the physical model (see Figure 4-8) has the same properties as the
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Figure 4-8: The models. A free joint has six degrees of freedom and is represented by
a position and a quaternion. A pin joint has one degree of freedom and is represented
by an angle of rotation. The center of mass of each link is located at the center of
the link. Inertial and joint stiffness properties are listed in Table A.2 and A.3.

one used in [29]. The root link, however, is three dimensional. Its state is represented
with a position vector, an orientation quaternion, and linear and angular velocity. The
resulting model has 18 dofs. The inertial properties and joint stiffness parameters are
presented in Table A.2. These stiffness parameters are first scaled uniformly by a
gain factor that is smaller than one and then used as the PD gains in 3.8 and 3.9.
The 3D model has 57 dofs. The parameters for the 3D model are presented in Table
A3.

The simulations were executed in DANCE [27] using the Open Dynamics Engine
(ODE) as the simulator. The step size was 1 ms for the 2D examples and 0.1ms for the
3D examples. We use a smaller step size for 3D examples as ODE was unstable with
larger step sizes. A simulator using an implicit or semi-implicit integration scheme
could presumably use a larger step size.

The controller implementation sets up the QP problem described in section 3.1
using the current contact state from the simulation. It uses our C++ implementation
of recursive dynamics equations [9] to compute various dynamical quantities needed
for the optimization such as the inertial matrix of the system and gravitational and
centrifugal forces on the system. The QP is solved using SQOPT [12]. Timings for
the QP solver on a Pentium 4 2.8 Ghz processor are presented in Table A.4. The
code for the PD component took roughly 0.4 ms on the 3D character and 0.05 ms on
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the 2D character.
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Chapter 5

Conclusions

Motion data is an intuitive way to direct the actions of a physically simulated charac-
ter. Determining the forces that track the motion faithfully while respecting physical
and environmental constraints is a difficult problem. The controller presented in this
work, McSim, offers advantages over previous kinematic and physical approaches to
the problem of tracking motion data. First, McSim finds forces that track motion
data while remaining physically consistent. Also, McSim requires less manual tun-
ing than previous controllers. Finally, McSim can run at interactive rates making it
suitable for the control of characters in interactive applications such as games and
training simulations. McSim has limitations with respect to quality and robustness

which point to interesting directions of future work.

Physically Consistent McSim produces a motion that is physically consistent
with the environment. The reference motion provided to McSim may have been
captured in a physical setting that differs from the simulated setting. In the simulated
world, kinematic playback of the reference motion may hover over the ground or
penetrate it. A kinematically driven character is unnaturally stiff and does not react
to external disturbances. McSim allows the animator to change the environment and
add external disturbances to produce a new motion that is like the reference motion
but physically consistent. This physically based approach to motion tracking extends

the utility of recorded motion data.
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Parameters McSim requires less manual tuning than previous controllers. All
physically based character animation tools require parameters that model the in-
trinsic physical properties of the character and the environment. In many previous
approaches to control, a change in these intrinsic properties would require tuning
many control parameters such as PD gains. McSim has two manually tuned parame-
ters that were used to generate the results in this work: a gain on desired accelerations
in the QP and the scale factor on PD gain. Changes in the physical parameters of
the environment such as the mass of the characters limbs or the coefficient of friction
required little or no adjustment to these parameters. McSim lessens the need for

manual tuning by incorporating a dynamics model in its control decisions.

Speed McSim can run at interactive rates making it suitable for the control of
characters in interactive applications such as games and training simulations. Fur-
thermore, it requires no expensive precomputation step. The quadratic programs
used by the controller can be solved efficiently by currently available hardware. How-
ever, solving the QP is the bottleneck in the controller and limits how often it can be
run in an interactive system. While a parallel system could solve multiple QP’s for
decoupled characters, the computation effort does not scale well for multiple coupled

characters or equivalently characters with many more degrees of freedom.

Robustness McSim is fairly robust to changes in motion type or style and changes
in the physical environment. McSim tracks motions that stop and and start, walk,
run, and jump. The motions were tracked thru obstacles and changes in the ground
terrain. With the help of a heuristic balance mechanism in 2D, the controller tracked
a running motion indefinitely and tracked a walk on a moving platform.

There are several cases where McSim can fail. McSim is not a high-level motion
planner and cannot make large changes to the reference motion to adapt to large
changes in the environment. For example, it cannot alter a walk to account for steps
placed in its path. As a result, tracking the reference motion may result in the feet

colliding with the steps and a fall. Also, tracking a single input motion is not a good
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strategy for robust and stable control of a physically simulated character. In this
work, we experimented with a simple heuristic in 2D that adjusts the desired angle
of the swing hip to help stabilize walking and running. In addition to finding an
equivalent balance scheme in 3D, we would like to incorporate long range planning

to allow for anticipatory actions that should increase robustness.

Quality While McSim’s robustness can be improved, its main limitation is quality.
Tracked motions can often appear more abrupt and robotic than the reference motion.
While some changes to the motion are necessary to make it physically feasible, we
believe that the quality of the controller can be improved by addressing some of the
factors that currently limit quality. The first factor that limits quality is the tradeoff
between computational performance and optimal performance over the entire motion.
We are exploring ways making the controller optimal over longer time ranges without
sacrificing performance. Quality was also impacted by the manually set parameters
of the controller. For some 3D motions, it was more difficult to find parameters that
produced nice results. Also, there were certain motions that we could not track well
such as turning motions. An interesting area of future work would be to apply global
optimization techniques that automatically tune the manually set parameters. In
addition to reducing dimensionality, parameterizing control with our approach may

help smooth the energy landscape, making it easier to find solutions.

Preliminary Improvements A key to addressing McSim’s limitations is incorpo-
rating long-range optimal planning into the control. Incorporating long-range plan-
ning without adversely impacting computational effort is difficult. Some promising
preliminary experiments indicate that long range planning can indeed improve track-
ing performance. Furthermore, the added cost comes in the form of precomputation,
allowing the run-time controller to operate at similar rates as McSim. This prelim-
inary work is based on linear quadratic regulators (LQR) [30,32]. While LQR is a
well-known approach to optimal control, applying it to the control of human char-

acters is non-trivial because the dynamics are non-linear and non-smooth. In the
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sections that follow, we review LQR, describe approaches to applying LQR to human

locomotion, and demonstrate improvements over McSim.

5.1 Linear Quadratic Regulator

Optimal control problems, when tractable, are typically solved using expensive nu-
merical approximation techniques. LQR is a special case of optimal control than can
be solved analytically and computed efficiently because it assumes linear dynamics
and quadratic costs. Interested readers should reference more complete discussions
of optimal control theory for background [5,30,32]. Here we sketch the LQR solution
using dynamic programming on the Bellman equation.

The Bellman equation defines the optimal value function. A value function,
v(z, k), is the minimum cost of completing a task starting from the given state,
z, at step k. The optimal value function is defined recursively as the minimum over
all possible actions, u, of the current cost, ¢(x,u, k), and the optimal value function
evaluated at the next state, v(F(x,u,k),k + 1), where F(x,u, k) maps the current

state and action onto a new state.
v(z, k) = min ¢(x, u, k) + v(F(z,u, k), k+ 1). (5.1)
u
In LQR, the cost function is quadratic

1 1
oz, u k) = ixTQk:E + §uTRku (5.2)

with terminal cost ¢(z,u,n) = %xTQna; and the transition function is linear
F(z,u, k) = Az + Biu. (5.3)
Substituting Equations 5.2 and 5.3 into Equation 5.1 yields

1 -
v(z, k) = min %xTQkx + §u1 Riu + v(Agx + Bru, k + 1). (5.4)
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This equation can be solved by guessing a quadratic form for the optimal value

function, v(z, k) = 327 Pz with P, = Q,. Using this guess, Equation 5.4 becomes

1 1
%xTPka: = min %xTQkx + §uTRku + §(Ak:c + Byu)T Poy1(Agz + Byu). (5.5)
u

The optimal control action is found by minimizing the right side
u=—(Rx+ ngk+1Bk)_lB£W¢+1Akx (5.6)

which is abbreviated as u = Kjz. Substituting Equation 5.6 into Equation 5.5 yields
a discrete Ricatti equation for Vi which can be solved for all k by starting at k = n

and iterating backwards.

5.2 Full-State Feedback

The first application of LQR we have tried linearizes the dynamics of the character
around the reference motion. At each sample of the reference motion, we assume an
Euler integration step yielding the Ay and By matrices defining the linear transition
function. Furthermore, we assume that the linearized dynamics are fully-actuated.
The control cost is Ry = rI. The positional cost penalizes deviations from the
reference motion and is Q = diag(0,0,0,4q,q,...,q) where diag is a diagonal 2N 2 2N
matrix. The first three entries are 0 meaning that deviation in the root position is
not penalized.

The optimal gain matrices, K}, from Equation 5.6 are found in a precomputa-
tion step by solving the Ricatti equations. At runtime, the current gain matrix is
multiplied by the current tracking error to yield the desired feedback force. Unfor-
tunately, applying the resulting feedback force directly is not possible because of two
assumptions. First, since we assumed a fully-actuated model the feedback forces will
have forces on the root of the character. Applying these forces directly will likely
render the motion physically implausible. The real character is not fully-actuated

and must make use of contact forces to accelerate the center of mass. Second, the
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linear approximation to the dynamics is only good in a neighborhood about the nom-
inal trajectory. In our prototype system, these assumptions are maintained through
the use of a QP. The QP tries to reproduce the desired force as closely as possible
using feasible internal torques and ground reaction forces. It also tries to match the
observed acceleration of the reference motion. This extra force acts as a feedforward
control that maintains the validity of the linearized dynamics model used to compute
the LQR controller.

In 2D, applying this full-state feedback control through the QP improves the visual
quality of the animation and reduces tracking error as seen in Figure 5-1. These
results were somewhat surprising given the crudeness of the dynamics model used. In
particular, we thought that assuming full actuation would be a poor approximation.
These results would indicate that at least for planar walking models, the character

does have good control over the center of mass through the use of ground contacts.

5.3 Under-Actuated Approximations

The fully-actuated assumption turned out to be too crude for the control of 3D
systems. For our next experiment, we tried to find a better model for LQR. LQR
has been shown to maintain balance of simple under-actuated systems such as the
acrobot [18]. We leveraged this capability by mapping the state of the character onto
a simple under-actuated system geometrically, computing control forces using LQR,
and then mapping these forces onto the full character through the use of a QP. This
control scheme improved not only static balance but also the stability of controllers
for walking in 2D and 3D.

The particular simple model we used for balance was a three-link model as shown
in Figure 5-2. After it is constructed, the dynamics equations for this model were
linearized about the upright equilibrium point where the model is statically balanced.
This provides the Ay and By matrices needed to solve for the LQR control policy as
in Equation 5.6. In this particular case, the Ricatti equations were solved over a long

interval to approximate the optimal control over an infinite time interval. This yields
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Figure 5-1: Shown are plots of squared error over time for two different tracking
controller designs: the design discussed in §3 and the design discussed in §5.2. The
LQR based controller has less error and is much smoother. FA stands for fully-
actuated and 1,1,1 indicates the relative scaling of the terminal, position, and control
costs used when solving for the LQR policy.

a single optimal gain matrix, K.

The performance of this simple control policy was evaluated on the simple model
by perturbing it slightly and applying K directly to the deviation of the model from
the equilibrium point. Qualitatively, the behavior of this controller is simple to de-
scribe. If the model is falling, it can rapidly swing its upper body in the direction of
the fall and rotate the swing leg in the opposite direction to raise the center of mass
over the swing leg. Previous heuristic approaches to balance have demonstrated a
similar strategy on the linear inverted flywheel model [23].

Next, we examined whether this successful balance controller for the simple model

could be used to balance a complex character. The QP from Equation 3.7 is altered
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Mapping to a Simple Model

Three Link Model

Character Model

Figure 5-2: The mapping from a simulated character to a simple model. The first
link in the simple model is anchored to the ground and is unactuated. It represents
the support leg of a character balancing on one foot. The second link represents the
upper body. The final link is anchored at the same location as the joint between the
upper body and the support leg and represents the swing leg. The lengths, relative
positions, and inertial properties of each link on the simple model are determined by
aggregate properties of links on the original character. For example, the foot, lower
leg, and upper leg links of one leg are used to determine the properties for the swing
link. Given the state of the simple model, we can compute LQR control forces and
apply them to the full model using a QP.

with three new objectives of the form
17:G + Jig — aql|® (5.7)

where J; is the Jacobian of the center of mass of the links associated with the i’th link
of the simple model and aq4 is the desired acceleration for that point as determined by
the LQR policy computed on the simple balance model. These objectives are weighted
to trade off between maintaining a rest pose and matching the accelerations of the
simple model. This control strategy was able to maintain balance under external

disturbances as shown in Figure 5-3.
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5.4 Future Approximations

To move beyond balancing, we need to examine new simple linearized models. Con-
sider walking. The three-link model used for balancing should be able to stabilize
walking motions by manipulating the center of mass trajectory as it does when bal-
ancing. Linearizing about a static equilibrium point, however, is insufficient since the
character must briefly lose balance to propel the center of mass forwards. Instead,
we could linearize about a reference trajectory of the simple model as created by
mapping the character’s stepping motion onto the simple model. For jumping and
running motions, we need a model that can operate while in contact and in free-flight
such as the slip model [11].

To stably reproduce an arbitrary human motion, multiple simple models would
have to be used over the duration of the motion. For a simple walking motion, at
least two models are needed: one for each support foot. If the walking motion is
more complex, exhibiting steps of different speeds, lengths, and styles, it is possible
that a simple model would need to be constructed for each corresponding segment of
the motion. More generally, all reference motions would need to be annotated with
the appropriate control policy that should be used during tracking. Furthermore,
the controller should only be allowed to switch between simple models at predefined
nodes. It may not be advisable to switch from a right foot step to a two foot jump for
example. These control policies and the associated switching points together define
an action graph as shown in Figure 5-4. Defining this graph and deciding which edges
to take at run time given the character’s state and high-level goals is an exciting area

of future research.
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Figure 5-3: A character is hit on the head with a ball but maintains balance. The
state of the character is mapped onto a three-link model. A precomputed LQR. policy
is executed on the simple model to generate desired accelerations for three center of

mass positions on the character. These desired accelerations are achieved as well as
possible by a QP.
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Figure 5-4: An action graph. Edges represent reference motions (which may be
empty) and associated control policies. Nodes indicate allowable transitions. At
runtime, a higher level controller can decide which edge to take once each node is
reached given the current character state and goals. Making these decisions optimal
and automatic is an interesting area of future work.
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Appendix A

Tables

Motion k kos

2D Punchy | 0.02 1000
Downbhill 0.02 300
Walk Wave | 0.02 1000
Sneaky* 0.005 500
2D Jump 0.05 1000

Run 0.2 600
Backwards | 0.05 1000
Soldier 0.01 600
March 0.05 1000
Limp 0.08 1000

Table A.1: This table lists the relevant parameters used to generate selected results. k
is a scale factor that multiplies the intrinsic joint stiffness parameters of the character
listed in Tables A.2 and A.3 which are then used in the PD feedback component of
the system. ks is a gain used to calculate a modification to the acceleration from
the input motion as in Equation 3.4. These two parameters were tuned manually to
achieve a desired tracking result but reasonable results are achieved for a range of
settings. For most 2D motions, values of k in the range between 0.005 and 0.5 worked.
The setting of k,, is also flexible. Values in the range of 300 to 2000 typically work
for this parameter. In many cases, the same settings achieved good results for many
different motions. Starred motions were simulated using stiff springs at contacts.
Despite using a different contact model, McSim tracks these motions well.
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Link ks | Mass Inertia
head 3000 | 3 0.011
upper arm | 4000 2 0.022

lower arm | 3000 1 0.009
torso N/A| 10 0.176
thigh 4000 7 0.121
shin 4000 5 0.077
foot 4000 4 0.019

Table A.2: This table lists the inertial properties of each link in the 2D model and
the stiffness of the associated joint. Note that there is no stiffness for the unactuated
root joint. It is also important to note that the stiffnesses listed here are not directly
used by the PD feedback component. They are first scaled by a single scale parameter
that is typically much less than one. This scaled value is used to calculate a critical
damping gain. The units are as follows: newtons per radian for the gains, kilograms
for the mass, and kilogram meters cubed for the inertias.

Link kg Mass
trunk N/A | 12.92
thigh 4000 | 9.0853
shin 4000 | 3.944
foot 1000 1
toes 4000 0.3

thorax 3000 | 17.155
clavicle 4000 | 2.535
upper arm | 4000 | 1.435
lower arm | 3000 | 0.575
hand 3000 0.5

Table A.3: This table lists the inertial properties of each link in the 3D model and
the stiffness of the associated joint. Again, there is no stiffness for the unactuated
root joint.
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Num. Vars. | QP Solve Time (secs)
36 0.0013
44 0.0015
52 0.0023
68 0.003
150 0.007
154 0.0075
158 0.0097

Table A.4: Timing results for the QP solver as a function of the number of variables
in the QP. The number of variables is a function of the number of degrees of freedom
in the character and the current contact state. Note that, for ease of implementation,
we used dummy variables for the acceleration of each degree of freedom. This is not
strictly necessary and would result in a much smaller QP problem.
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Appendix B

Additional Snapshots

Additional snapshots of animations created using McSim. Motions of different style

and content can be plausibly adapted to new simulated environments.
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