
Simulation of Human Motion Data using

Short-Horizon Model-Predictive Control

by

Marco da Silva

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2008

@ Marco da Silva, MMVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author
Department of hlectrical Engineering and Computer Science

February 1, 2008

Certified by
Jovan Popovid

Associate Professor
Thesis Supervisor

A ccepted by
Terry P. Orlando

Chairman, Department Committee on Graduate Students

LIBRARIES

ARCHIVES

MASSACHI
OFT

APR
vswrrf sparrmn.1
ECHNOLOGY

07 2008Ia; I

Simulation of Human Motion Data using Short-Horizon

Model-Predictive Control

by
Marco da Silva

Submitted to the Department of Electrical Engineering and Computer Science
on February 1, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Many data-driven animation techniques are capable of producing high quality mo-
tions of human characters. Few techniques, however, are capable of generating mo-
tions that are consistent with physically simulated environments. Physically simu-
lated characters, in contrast, are automatically consistent with the environment, but
their motions are often unnatural because they are difficult to control. We present a
model-predictive controller that yields natural motions by guiding simulated humans
toward real motion data. During simulation, the predictive component of the con-
troller solves a quadratic program to compute the forces for a short window of time
into thile future. These forces are then applied by a low-gain proportional-derivative
component, which makes minor adjustments until the next planning cycle. The con-
troller is fast enough for interactive systems such as games and training simulations.
It requires no precomputation and little manual tuning. The controller is resilient to
mismatches between the character dynamics and the input motion, which allows it
to track motion capture data even where the real dynamics are not known precisely.
The same principled formulation can generate natural walks, runs, and jumps in a
number of different physically simulated surroundings.

Thesis Supervisor: Jovan Popovik
Title: Associate Professor

Acknowledgments

I would like to thank my research advisor, Jovan Popovid, for his guidance and ideas.

Yeuhi Abe was an invaluable source of insight and knowledge on this project. I would

like to thank my family, Telmo, Cila, and Marta, for their constant support and

encouragement. Most of all, I would like to thank my wife, Lisa. This project would

not have been completed without her love.

Contents

1 Introduction 12

2 Related Work 15

3 Controller Design 17

3.1 The Predictive Component 18

3.1.1 Short-Horizon Tracking 18

3.1.2 The Desired Acceleration 19

3.1.3 Dynamics Constraints 20

3.1.4 Quadratic Programming Optimization 21

3.2 Proportional-Derivative Component 22

3.3 Maintaining Balance 23

4 Results 25

4.1 New Environments 25

4.2 Tracking 26

4.3 Modeling Errors 27

4.3.1 Inertial Modeling Errors 28

4.3.2 Contact Modeling Errors 29

4.3.3 Foot Modeling Errors 30

4.3.4 Motion Quality 31

4.4 Experimental Setup 32

5 Conclusions

5.1 Linear Quadratic Regulator . . .

5.2 Full-State Feedback

5.3 Under-Actuated Approximations

5.4 Future Approximations......

A Tables

B Additional Snapshots

35

38

39

40

43

46

49

....................

....................

.

....................

List of Figures

1-1 McSim is a controller for tracking reference motions in simulated envi-

ronments. It is capable of tracking walking motions in different envi-

ronments and styles. It can also track running and jumping. 13

1-2 An overview of McSim's design. At 40 to 100 Hz, the predictive model

solves a quadratic program for the joint and external forces that track

the reference motion. These forces are adjusted by a low gain propor-

tional derivative component that computes feedback forces at every

simulation time step (1-10kHz). Our controller can work with any

black-box simulator. 14

3-1 A friction cone in 2D. Legal contact forces lie within the cone which

can be represented using a linear basis. Non-negative combinations of

the basis vectors yield forces in the cone. 20

4-1 A sequence of frames from a walking sequence. The reference motion is

a person marching in a military style. In this simulation, the character

punches through some heavy blocks blocking the path. 26

4-2 A time-lapse image of a walking sequence. The reference motion was

captured from a person walking on flat ground. Our controller was

able to adapt this motion to walk over a moving see-saw. 27

4-3 A rendering from a frame of a jumping sequence in 3D. McSim was

able to track the character through three consecutive jumps. 28

4-4 Shown are plots of squared error over time for four selected motions.

The plots illustrate several interesting features of the tracking system.

First, the beginning of the walk motion is a period of standing. The

system has little trouble tracking this portion of the motion. More

energetic motions lead to more error. The spikes in the error curves

coincide with changes in contact state suggesting that the predictive

model could be improved by accounting for mismatches in the current

contact state and the contact state in the reference motion. 29

4-5 Shown are plots of squared error over time for four versions of the 2D

model tracking the walking motion. The modifications are described

in the legend. McSim is more sensitive to errors in the mass properties

of the legs. 30

4-6 In these plots, the squared error is shown for a walking motion where

the coefficient of friction in the predictive component is varied from

0.5 to 1.5. The simulator's coefficient of friction was fixed at 1. For

walking motions, the error is not greatly effected by the coefficient of

friction used in the model. When the predictive model's coefficient of

friction exceeds the actual coefficient of friction, performance is worse,

but only slightly. 31

4-7 Shown are plots of squared error over time for versions of the 2D model

with different sized feet. The big feet were 4 centimeters larger than

the standard feet. The small feet are 4 centimeters smaller than the

standard while the smallest feet are 8 centimeters smaller. These plots

show that, at least for walking, slightly better results can be achieved

by shrinking the foot. This might suggest that the actor performing

the motion had slightly smaller feet. However, the results indicate that

McSim is robust to small discrepancies in foot size. 32

4-8 The models. A free joint has six degrees of freedom and is represented

by a position and a quaternion. A pin joint has one degree of freedom

and is represented by an angle of rotation. The center of mass of each

link is located at the center of the link. Inertial and joint stiffness

properties are listed in Table A.2 and A.3. 33

5-1 Shown are plots of squared error over time for two different tracking

controller designs: the design discussed in §3 and the design discussed

in §5.2. The LQR based controller has less error and is much smoother.

FA stands for fully-actuated and 1,1,1 indicates the relative scaling of

the terminal, position, and control costs used when solving for the LQR

policy. 41

5-2 The mapping from a simulated character to a simple model. The first

link in the simple model is anchored to the ground and is unactuated.

It represents the support leg of a character balancing on one foot. The

second link represents the upper body. The final link is anchored at

the same location as the joint between the upper body and the support

leg and represents the swing leg. The lengths, relative positions, and

inertial properties of each link on the simple model are determined by

aggregate properties of links on the original character. For example,

the foot, lower leg, and upper leg links of one leg are used to determine

the properties for the swing link. Given the state of the simple model,

we can compute LQR control forces and apply them to the full model

using a QP. 42

5-3 A character is hit on the head with a ball but maintains balance. The

state of the character is mapped onto a three-link model. A precom-

puted LQR policy is executed on the simple model to generate desired

accelerations for three center of mass positions on the character. These

desired accelerations are achieved as well as possible by a QP. 44

5-4 An action graph. Edges represent reference motions (which may be

empty) and associated control policies. Nodes indicate allowable tran-

sitions. At runtime, a higher level controller can decide which edge to

take once each node is reached given the current character state and

goals. Making these decisions optimal and automatic is an interesting

area of future work 45

List of Tables

A.1 This table lists the relevant parameters used to generate selected re-

sults. k is a scale factor that multiplies the intrinsic joint stiffness

parameters of the character listed in Tables A.2 and A.3 which are

then used in the PD feedback component of the system. k,, is a gain

used to calculate a modification to the acceleration from the input mo-

tion as in Equation 3.4. These two parameters were tuned manually to

achieve a desired tracking result but reasonable results are achieved for

a range of settings. For most 2D motions, values of k in the range be-

tween 0.005 and 0.5 worked. The setting of ko,, is also flexible. Values

in the range of 300 to 2000 typically work for this parameter. In many

cases, the same settings achieved good results for many different mo-

tions. Starred motions were simulated using stiff springs at contacts.

Despite using a different contact model, McSim tracks these motions

well. 46

A.2 This table lists the inertial properties of each link in the 2D model and

the stiffness of the associated joint. Note that there is no stiffness for

the unactuated root joint. It is also important to note that the stiff-

nesses listed here are not directly used by the PD feedback component.

They are first scaled by a single scale parameter that is typically much

less than one. This scaled value is used to calculate a critical damp-

ing gain. The units are as follows: newtons per radian for the gains,

kilograms for the mass, and kilogram meters cubed for the inertias. 47

A.3 This table lists the inertial properties of each link in the 3D model and

the stiffness of the associated joint. Again, there is no stiffness for the

unactuated root joint 47

A.4 Timing results for the QP solver as a function of the number of variables

in the QP. The number of variables is a function of the number of

degrees of freedom in the character and the current contact state. Note

that, for ease of implementation, we used dummy variables for the

acceleration of each degree of freedom. This is not strictly necessary

and would result in a much smaller QP problem. 48

Chapter 1

Introduction

Many data-driven animation techniques are capable of producing high quality motions

of human characters. These approaches extend the usefulness of captured motions by

allowing applications to adapt existing motions to meet different needs. Applications

can create motions that satisfy new user constraints while maintaining the input

motion style [2, 16] or exhibit new styles while preserving content [15]. Interactive

applications such as games can respond to user input and synthesize new results in

real-time.

Few techniques, however, are capable of generating motions that are consistent

with physically simulated environments. The implicit assumption made by all kine-

matic synthesis approaches is that the performance environment is the same as the

capture environment. This assumption is invalid when motions are performed in

physically simulated environments. In a physical simulation, the character can en-

counter new or unpredictable circumstances such as being hit by a ball or standing on

a shaky platform. Ignoring these interactions leads to physically inconsistent motion.

In contrast, physically simulated character motions are automatically consistent

with the environment but are often unnatural because they are difficult to control.

Recorded motions provide an intuitive control specification but simulating any such

motion remains a difficult problem. Human characters, in particular, have many de-

grees of freedom (dofs) subject to non-smooth, non-linear dynamics. This makes it

hard to find the forces that reproduce a desired motion, particularly in new environ-

ments.

Figure 1-1: McSim is a controller for tracking reference motions in simulated environ-
ments. It is capable of tracking walking motions in different environments and styles.
It can also track running and jumping.

We present a controller, McSim (motion capture in simulation), that yields nat-

ural motions by guiding simulated humans toward real motion data. McSim can be

categorized as an instance of model-predictive control (MPC). In MPC, the controller

predicts a control signal that achieves a desired change in system state based on the

current system state and a model of the system's dynamics. Our controller uses a

predictive component (§3.1) based on a linearized model of linked rigid body and

contact dynamics. The linear dynamics model is used as a constraint in a quadratic

program (QP) that solves for the joint and external forces that track the provided

input motion for a short window of time into the future.

McSim combines the predictive component with a low gain proportional-derivative

(PD) component (§3.2) as depicted in Figure 1-2. The predictive component's control

has errors due to high latency and modeling assumptions. The PD component com-

pensates for these errors. The PD component also provides a low-latency response to

unexpected perturbations. For certain motions, robustness can be further improved

by adapting the input motion according to heuristic feedback rules (§3.3).

McSim is fast enough for application in interactive systems such as games and

training simulations. It can adapt to differences between the character dynamics and

the input motion allowing it to track motion capture where the character model can

only be estimated. With no precomputation and little manual tuning, McSim is able

to produce walking, running, and jumping motions similar to the reference motion

while also adapting to new physical surroundings (§4) at interactive rates.

Motion
data

Motion
data

Figure 1-2: An overview of McSim's design. At 40 to 100 Hz, the predictive model
solves a quadratic program for the joint and external forces that track the reference
motion. These forces are adjusted by a low gain proportional derivative component
that computes feedback forces at every simulation time step (1-10kHz). Our controller
can work with any black-box simulator.

Chapter 2

Related Work

Most prior online control techniques in the graphics literature have been based on

manually designed PD controllers [7,13,24,25,29, 41]. These approaches are typically

sensitive to gain parameters and not intuitively directed. In contrast, off-line au-

thoring tools based on continuous optimization leverage the benefit of time to search

for physical motions that are optimal according to some metric and satisfy user con-

straints [22,31,38]. The predictive component of McSim is inspired by these off-line

approaches but sacrifices global optimality for computation speed by restricting the

search to a short amount of time into the future. The predictive component of our

controller allows the PD component to use relatively small gain parameters, resulting

in more stable simulations and more natural motion [40].

McSim can be guided by an arbitrary input motion. Recently, both off-line and

online physically based character animation have used data to produce life-like ani-

mations, though the role of data differs for each approach. Since the goal of an off-line

approach is to produce a new motion with new content, data is used to restrict the

search space of possible solutions [26], to model simplified equations of motion [4,33],

and to learn parameters of motion style [19]. In online control, the goal is often to

simply track a provided input motion in a dynamically simulated environment [42].

Recent approaches, however, have been limited to special cases of motion such as

cyclic motions [41] or standing [1, 42]. Our approach can track arbitrary motions

exhibiting stylistic variations and transitions such as walking to standing.

Many recent approaches to tracking motion data find globally optimal control

policies using off-line precomputation methods such as feedback error learning or

simplex methods [28, 29, 34, 41]. However, global optimality is only guaranteed if the

playback environment does not differ significantly from the environment simulated

during optimization. Furthermore, these global search methods are not easily ap-

plicable to 3D animation where the number of dofs is large. While McSim could

incorporate a precomputed feedforward control signal, it produces plausible motions

without precomputation. This enables it to be coupled with kinematic motion syn-

thesis techniques [20, 21] to track newly created 2D or 3D motions at run-time.

Among instantaneous optimization approaches, McSim is closely related to Mul-

tiobjective Control [1]. McSim adds the ability to track motions where the contact

state changes regularly as in locomotion. Furthermore, we illustrate how the input

motion can be modified to improve tracking performance. There are many previous

approaches from robotics that propose some form of optimization over a short time

horizon to achieve a motion objective [10,14,36,37], each with key differences in the

details. In this work, we propose an alternative formulation of the tracking problem

that is capable of handling arbitrary motions and couple it with robust low-latency

feedback mechanisms. Others have argued that this form of control is employed by

biological systems [40].

Chapter 3

Controller Design

McSim's design is guided by three goals. The output motion should be directed by

specifying any input motion. It needs to work at interactive rates without requiring

expensive precomputation. Finally, it has to work with existing black-box simulators.

We would like our controller to work as a plug-in module with any simulator without

any modification to the simulator itself. Achieving these objectives would make the

system suitable for tracking kinematically specified motions in interactive applications

such as games and training simulations. In the following sections, we describe how

McSim achieves these three goals.

At each time step, t, McSim computes a control signal of the form:

u(t, X, Xr(t)) = uf(t, X, x, (t)) + Ub(t, X, Xr(t)) (3.1)

where u is the control signal, x is the current system state consisting of joint values

and velocities, [q,], and x, is the desired state. The total control signal consists

of the predictive component's signal, uf, added to the PD component's signal, ub.

A predictive dynamics model computes uf. The PD controller computes ub which

provides low-latency feedback to deal with unexpected perturbations. Stability is

achieved by tracking the velocity of the root of the character and modifying the

reference motion, z, as described in Section 3.3.

3.1 The Predictive Component

The predictive component's task is to track the reference motion, xr(t). A long-

horizon approach to tracking the reference motion would solve a single optimization

for the control forces exerted over the entire motion [38]. For human motions, this

form of tracking is a high-dimensional, non-linear, non-convex minimization problem.

This makes an exact solution impractical at interactive rates. Furthermore, in inter-

active applications, long-horizon optimal plans are quickly invalidated by changes in

the dynamic environment. Rather than plan optimally for situations that may never

come to pass, we plan a over a small interval into the future using a linearized dy-

namics model and re-plan at regular intervals, incorporating changes in system state.

We call this form of the problem, short-horizon tracking.

3.1.1 Short-Horizon Tracking

In a physical simulation, a character's motion is determined by integrating a dynam-

ical system forward in time from some initial configuration,

x(T) = x(O) + J (t) dt. (3.2)

For an active character modeled as a system of linked rigid bodies with actuators

between each joint, the equations of motion depend on the current state, x(t), the

control signal, u(t), and the external forces, u,(t). The precise equations can be

derived from classical mechanics [9] but are summarized here as

M(t) = f(x(t), u(t) + uc(t)). (3.3)

A motion that perfectly tracks the reference satisfies 4(t) = 4r(t) for all t, where

~r is the acceleration of the reference motion. The predictive component computes

a u1 that tries to reproduce the reference acceleration over a window of size h. In

practice, it is usually not possible to achieve the reference acceleration, r, exactly

due to dynamics constraints of the character and environmental disturbances. As

a result, the simulated motion will drift from the reference motion. To correct this

drift, feedback terms are added to the reference acceleration to form the desired

acceleration, qd, as described in the next section. Once the desired acceleration is

known, a constrained optimization is solved for the joint torques and external forces

that achieve it.

3.1.2 The Desired Acceleration

The desired acceleration consists of the reference acceleration and a correction term.

It is computed separately for each joint.

qd = r + kosd(q,, q) + kod(qr - q). (3.4)

The correction terms act as a damped feedback acceleration on any errors that oc-

cur. The function d compares the current joint configuration, q, to the reference

configuration, qr, and computes an angular acceleration that will move q closer to

qr. The scale of this acceleration is determined by the gain parameter, kos. For rota-

tional joints with one degree of freedom (dof), known as pin joints, di(a, b) = a - b.

Three dof joints, known as ball joints, are represented using quaternions. In this case,

di(a, b) = veci(a - ' b) where - represents quaternion multiplication and veci maps the

quaternion to the equivalent axis-angle rotation's i'th component. The last term in

Equation 3.4 corrects for errors with respect to the reference velocity q, obtained from

the motion capture data.

With the exception of the root translation, all desired accelerations are computed

using the same values of ko, and kod. If ko, = c, then kod = 2f/c. Errors in the current

position of the root are ignored when computing the desired acceleration of the root.

Thus, for the root translation, ko,, = 0. This prevents the controller from trying to

correct for errors that are unavoidable due to the environment such as the character

walking down hill. The velocity gain is not zero, however. This feedback uses the

same gain as the other joints, kod = 2V. The controller is fairly insensitive to the

particular value of c chosen as shown in section 4.

3.1.3 Dynamics Constraints

Computing the control input u needed to achieve the desired acceleration just de-

scribed would be easy if we could simply invert Equation 3.3. Unfortunately, humans

and animals have more degrees of freedom than forces to control them. Simple inverse

dynamics algorithms such as those used for robotic arms rely on being rooted to the

environment. Humans, however, are not rooted to the ground. They can use their

feet to push, but not pull, on the ground. They must manipulate these unilateral con-

tact constraints while respecting frictional limits to effect their overall motion [1, 36].

These contact constraints are a key component of the dynamic model used by the

predictive component.

Figure 3-1: A friction cone in 2D. Legal contact forces lie within the cone which can
be represented using a linear basis. Non-negative combinations of the basis vectors
yield forces in the cone.

Contact forces are computed using a polygonal approximation to Coulomb's model

of friction [8]. The model is depicted in 2D in Figure 3-1. Legal contact forces lie

within a friction cone at each corner of the foot in contact with the ground. The

cone is oriented normal to the contacting surface with a swept angle determined by

the coefficient of friction. In 3D, we use a polygonal approximation (4 facets) to this

cone which can be described with a linear basis, V. Contact forces are equal to VA

with A > 0. The non-negative bound on A insures that the ground reaction force

resides within the approximation to the friction cone and prevents contacting bodies

from pulling on each other. The i'th contact force induces generalized torques on the

character which are calculated as JiVi•A where J is the gradient of the contact point

with respect to the joint configuration of the character. The total contact force on

the character, then, is u, = E• JTViAi.

For this static contact model to hold, the contact forces must act only on contact

points with zero acceleration [3]. This is known as the no-slip condition:

Ji + Ji4q = 0. (3.5)

In addition to constraints on possible contact forces, achievable accelerations are

constrained by the dynamics of the character. Since the predictive component plans

over a short-horizon, the dynamics of the character are described by a linear relation-

ship between applied forces and resulting accelerations:

q(t) = f(q(t), q(t), 0) + W(u + uc) (3.6)

where W is the gradient of f with respect to the control input. Note that the internal

torques, u, are limited by bounds on the strength of the character's actuators, uf E U,

further restricting possible accelerations.

3.1.4 Quadratic Programming Optimization

Given all of these constraints, we can now formulate an optimization problem that

solves for the joint and external forces, uf and J•ViAi, that best achieve the desired

acceleration, qd:

min - 12 (3.7a)
Ufj 2

subject to A2i 0 (3.7b)

uf E U (3.7c)

= f(q, q, 0) + W(uf + E JTV A) (3.7d)
i

Jmi + Jiq = 0. (3.7e)

The predicted acceleration of the character is q. The objective penalizes accelerations

different than the desired acceleration, qd, which was chosen to track the reference

motion. This minimization problem can be solved efficiently: it features a quadratic

objective with a positive-semidefinite Hessian, and the constraints are linear. This

yields a convex quadratic programming (QP) problem. The QP is solved at a much

slower rate than the simulation. At time steps where it is not solved, the previously

calculated forces are used.

3.2 Proportional-Derivative Component

Solving the QP in the predictive component is fast but not immediate. The drawback

of this latency is that the predictive component cannot adapt to disturbances in

between updates to its control signal. We resolve this problem with a PD control that

adjusts the QP solution at each simulation step. The PD control guides the character

through contact transitions and provides immediate responses to disturbances.

McSim's PD component computes ub in Equation 3.1 at each step of the sim-

ulation. It is implemented using a critically-damped proportional-derivative (PD)

controller [25]. The form of this control varies according to the particular joint. Since

the root joint of the character is unactuated, no feedback forces are computed for the

root dof's. Pin joints are computed using a standard critically damped feedback law

Ub = ks(qr - q) - 2V 4q. (3.8)

To compute the feedback forces of a ball joint, we first compute the composite

rotational inertia of all of its child links in world coordinates:

Ic,= R1IR T . (3.9)
Iec(j)uj

The resulting feedback force is then computed as

Ub = kIcd(qr, q) + 2 k (VsIc(qr - 4). (3.10)

Note that the term /ks means taking the square root of each element of the matrix

kIc. Multiplying by the world-space inertia matrix insures that the feedback force is

scaled by the appropriate amount relative to the actual current distribution of mass

supported by the joint. The resulting force, ub, is added to the current predictive

force uf to give the total force at each time step.

3.3 Maintaining Balance

McSim maintains balance by tracking the input motion with forces that are consistent

with the current contact environment. Other works employ a similar approach by

using formulations specific to static contact [42] or infinite friction and planar contacts

[14, 17, 35]. In contrast, McSim uses a model of contact dynamics that can account

for more general geometric and frictional properties of the contacting surfaces [1,36].

In certain cases, heuristic methods can adapt the input motion directly to improve

tracking robustness. For example, one could track a parameterized family of motions

rather than a single motion [37] or adapt the center of mass motion through a feedback

[1]. For some of the 2D motions presented in the results section, we employed a

feedback scheme similar to the heuristic used in the SIMBICON system [41]:

-d = OdO + cdd + CVV (3.11)

where 0d is the desired angle of the swing hip, Odo is the value of the swing hip in the

reference motion, d is the horizontal distance between the root link and the support

foot, and v is the horizontal velocity of the root link. Contrary, to SIMBICON's

approach, we do not change the gains, Cd and cv, with changes in contact state. They

are fixed for a particular motion.

McSim is largely insensitive to the particular choice of the gains. Normally, McSim

tracks the input motion even when the gains are set to zero. However, adding this

form of balance feedback improved the robustness of a character walking on a moving

platform and allowed the controller to track a run cycle indefinitely. A drawback

to using this particular form of balance feedback, however, is that it is specific to

walking and running motions. Similar methods of adapting the input motion have

been applied to other motions [39].

Chapter 4

Results

McSim produces life-like character motion similar to a provided input motion. In the

following section we highlight results that demonstrate McSim's ability to adapt mo-

tion capture data to new physical environments and track a variety of input motions.

We also explore the sensitivity of the approach to various modeling errors and discuss

the quality of the results. Finally, we provide implementation details. Please refer to

the video accompanying this paper for the animations corresponding to the presented

results [6].

4.1 New Environments

An exciting application of McSim is adapting motion data to new physical environ-

ments. This is illustrated in several demos presented in the accompanying video [6].

For example, a motion recorded on flat ground can be adapted to walk up or down an

inclined ground plane. In our experiments, successful walks were created for uphill

slopes as large as five degrees and downhill slopes as large as 10 degrees. Simple

kinematic playback of the motion would walk through the ground or into the air.

In a physical simulation, the environment can change dynamically and a character

must react to maintain plausibility. Our controller allows motion data to adapt to

its environment. We generated several animations where the character is perturbed

by flying balls or obstructed by blocks (Figure 4-1). The ground too can evolve

Figure 4-1: A sequence of frames from a walking sequence. The reference motion
is a person marching in a military style. In this simulation, the character punches
through some heavy blocks blocking the path.

dynamically as evidenced by simulations of the character walking over a moving

platform and a see-saw (Figure 4-2).

4.2 Tracking

McSim is capable of tracking a wide range of motions in 2D and 3D. The video

accompanying this paper presents results of tracking walking, running, and jumping

motions [6]. These motions exhibit stylistic variations and transitions between modes

such as from standing to walking and walking to standing.

A key feature of McSim is that there are few parameters that require tuning. To

generate the results, two parameters were tuned manually: the optimal feedback gain

used in Equation 3.4 and a scale factor on the intrinsic joint stiffness parameters used

in Equations 3.8 and 3.9. In most cases, it was not difficult to find a satisfactory

setting of these parameters as a large range of values led to satisfactory results as

explained in Table A.1. Even across different types of motion, identical parameter

values lead to good results.

Though McSim does not satisfy any global optimality criterion, it achieves good

tracking results in practice. In the absence of large disturbances to the physical system

or large errors in the physical character model, McSim will succeed in tracking the

input motion. The plots in Figure 4-4 depict the squared tracking error (squared

Euclidean distance between the actual state vector and the desired state vector) over

time for selected motions. The plots illustrate several interesting features of the

Figure 4-2: A time-lapse image of a walking sequence. The reference motion was
captured from a person walking on flat ground. Our controller was able to adapt this
motion to walk over a moving see-saw.

tracking system. First, the beginning of the walk motion is a period of standing.
The system has little trouble tracking this portion of the motion. More energetic
motions lead to more error. The spikes in the error curves coincide with changes in
contact state suggesting that the predictive model could be improved by accounting
for mismatches in the current contact state and the contact state in the reference
motion.

4.3 Modeling Errors

The tracking quality of McSim is adversely effected by physical mismatches between
the character model and the capture subject. To explore the effect of modeling
errors we introduce various modeling changes and measure the change in tracking

Figure 4-3: A rendering from a frame of a jumping sequence in 3D. McSim was able
to track the character through three consecutive jumps.

performance.

4.3.1 Inertial Modeling Errors

One potential source of error in tracking motion capture data is an incorrect physical

model of the subject. The mass distribution and inertial properties are often based

on statistical models that are often quite different than the actual properties of the

recorded subject. This mismatch can make an input motion physically infeasible for

the character. To illustrate the sensitivity to errors in mass distribution, we plot the

squared error for different versions of the 2D model for the walking motion in Figure

4-5. The mass of the character was redistributed to create three new versions of the

original. One version of the character has a left leg that is twice as heavy as the right

leg. In the next version, the upper body's mass is doubled while the lower body mass

Tracking Error

0 500 1000 1500
Frames

2000 2500 3000

Figure 4-4: Shown are plots of squared error over time for four selected motions. The
plots illustrate several interesting features of the tracking system. First, the beginning
of the walk motion is a period of standing. The system has little trouble tracking
this portion of the motion. More energetic motions lead to more error. The spikes in
the error curves coincide with changes in contact state suggesting that the predictive
model could be improved by accounting for mismatches in the current contact state
and the contact state in the reference motion.

is cut in half. Finally, we double the mass of both legs. For walking motions, McSim

is more sensitive to errors in the mass properties of the legs.

4.3.2 Contact Modeling Errors

Contact geometry was modeled using four small spheres placed at the corners of each

foot. The controller is somewhat insensitive to the simulator's contact dynamics. To

illustrate this, we compared the performance of the controller on a walking motion

with varying coefficients of friction in 4-6. Tracking performance was not greatly

effected. Contact dynamics were approximated using a friction cone model with a

coefficient of friction ranging from 0.75 to 2.0 or stiff springs as in [29].

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Effect of Mass Error

1

0.8

o
I-
uJ 0.6
-0(D

-3 0.4

0.2

n S--

0 500 1000 1500 2000 2500 3000 3500 4000

Frames

Figure 4-5: Shown are plots of squared error over time for four versions of the 2D
model tracking the walking motion. The modifications are described in the legend.
McSim is more sensitive to errors in the mass properties of the legs.

4.3.3 Foot Modeling Errors

The feet present another difficulty when tracking motion capture data. Our motion

capture data for the ankle is fairly inaccurate. We offset the ankle angle by a constant

so that the character's contact points are flush with the ground while standing. To

get a feel for how sensitive McSim is to variations in foot geometry, we varied the

foot size of the 2D model and plotted the results in Figure 4-7. The big feet were 4

centimeters larger than the standard feet used in most of the results in this work. The

small feet were 4 centimeters shorter than the standard while the smallest feet were 8

centimeters shorter. The results indicate that McSim is robust to small discrepancies

in foot size.

Varying Coefficient of Friction
U.4

0.35

0.3
0

0.25

"D 0.2

S0.15
C/)

0.1

0.05

nS--

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frames

Figure 4-6: In these plots, the squared error is shown for a walking motion where
the coefficient of friction in the predictive component is varied from 0.5 to 1.5. The
simulator's coefficient of friction was fixed at 1. For walking motions, the error is not
greatly effected by the coefficient of friction used in the model. When the predictive
model's coefficient of friction exceeds the actual coefficient of friction, performance is
worse, but only slightly.

4.3.4 Motion Quality

The results of McSim's tracking often look robotic and abrupt. For example, the 3D

marching motion makes hard contacts with the ground that are not present in the

reference motion. The 2D walk uphill sways a bit unnaturally as well. There are a

couple of factors that affect the quality of the results. The first is that the short-

horizon approach to tracking is a greedy approach. It applies large torques to try and

immediately cancel any errors. These large forces can lead to unnatural accelerations

and motion. The other factor effecting quality is the fact that gain parameters are

manually set by hand. This was more of an issue for the 3D examples which were

more sensitive to the gain parameter settings.

1

Effect of Foot Size
I\ rC

0.3

0.25

0 0.2-O

CO 0.15
c-
/) 0.1

0.05

0
0 500 1000 1500 2000 2500 3000 3500 4000

Frames

Figure 4-7: Shown are plots of squared error over time for versions of the 2D model
with different sized feet. The big feet were 4 centimeters larger than the standard
feet. The small feet are 4 centimeters smaller than the standard while the smallest
feet are 8 centimeters smaller. These plots show that, at least for walking, slightly
better results can be achieved by shrinking the foot. This might suggest that the
actor performing the motion had slightly smaller feet. However, the results indicate
that McSim is robust to small discrepancies in foot size.

4.4 Experimental Setup

The motion data for this work came from two sources. The 2D examples were down-

loaded from http://mrl.snu.ac.kr/research/ProjectSimulBiped/SimulBiped.

html. This data was converted to 2D from motion capture data as described in [29].

The 3D data was captured and processed using a standard motion capture system.

A prerequisite of simulating character motion is a physical model of the inertial

and stiffness properties of the character's limbs and joints. A good model is important

as significant errors make the input motion physically infeasible for the model. For

the 2D examples, the physical model (see Figure 4-8) has the same properties as the

Model Descriptions

0.0898

(D free joint B a 2 J
Ppin joint 104

@ ball joint ' 0.226, 2

3D Model 0398

0.392

1 8 0.164

2D Mod,

lengths in meters

Figure 4-8: The models. A free joint has six degrees of freedom and is represented by
a position and a quaternion. A pin joint has one degree of freedom and is represented
by an angle of rotation. The center of mass of each link is located at the center of
the link. Inertial and joint stiffness properties are listed in Table A.2 and A.3.

one used in [29]. The root link, however, is three dimensional. Its state is represented

with a position vector, an orientation quaternion, and linear and angular velocity. The

resulting model has 18 dofs. The inertial properties and joint stiffness parameters are

presented in Table A.2. These stiffness parameters are first scaled uniformly by a

gain factor that is smaller than one and then used as the PD gains in 3.8 and 3.9.

The 3D model has 57 dofs. The parameters for the 3D model are presented in Table

A.3.

The simulations were executed in DANCE [27] using the Open Dynamics Engine

(ODE) as the simulator. The step size was 1 ms for the 2D examples and 0.lms for the

3D examples. We use a smaller step size for 3D examples as ODE was unstable with

larger step sizes. A simulator using an implicit or semi-implicit integration scheme

could presumably use a larger step size.

The controller implementation sets up the QP problem described in section 3.1

using the current contact state from the simulation. It uses our C++ implementation

of recursive dynamics equations [9] to compute various dynamical quantities needed

for the optimization such as the inertial matrix of the system and gravitational and

centrifugal forces on the system. The QP is solved using SQOPT [12]. Timings for

the QP solver on a Pentium 4 2.8 Ghz processor are presented in Table A.4. The

code for the PD component took roughly 0.4 ms on the 3D character and 0.05 ms on

the 2D character.

Chapter 5

Conclusions

Motion data is an intuitive way to direct the actions of a physically simulated charac-

ter. Determining the forces that track the motion faithfully while respecting physical

and environmental constraints is a difficult problem. The controller presented in this

work, McSim, offers advantages over previous kinematic and physical approaches to

the problem of tracking motion data. First, McSim finds forces that track motion

data while remaining physically consistent. Also, McSim requires less manual tun-

ing than previous controllers. Finally, McSim can run at interactive rates making it

suitable for the control of characters in interactive applications such as games and

training simulations. McSim has limitations with respect to quality and robustness

which point to interesting directions of future work.

Physically Consistent McSim produces a motion that is physically consistent

with the environment. The reference motion provided to McSim may have been

captured in a physical setting that differs from the simulated setting. In the simulated

world, kinematic playback of the reference motion may hover over the ground or

penetrate it. A kinematically driven character is unnaturally stiff and does not react

to external disturbances. McSim allows the animator to change the environment and

add external disturbances to produce a new motion that is like the reference motion

but physically consistent. This physically based approach to motion tracking extends

the utility of recorded motion data.

Parameters McSim requires less manual tuning than previous controllers. All

physically based character animation tools require parameters that model the in-

trinsic physical properties of the character and the environment. In many previous

approaches to control, a change in these intrinsic properties would require tuning

many control parameters such as PD gains. McSim has two manually tuned parame-

ters that were used to generate the results in this work: a gain on desired accelerations

in the QP and the scale factor on PD gain. Changes in the physical parameters of

the environment such as the mass of the characters limbs or the coefficient of friction

required little or no adjustment to these parameters. McSim lessens the need for

manual tuning by incorporating a dynamics model in its control decisions.

Speed McSim can run at interactive rates making it suitable for the control of

characters in interactive applications such as games and training simulations. Fur-

thermore, it requires no expensive precomputation step. The quadratic programs

used by the controller can be solved efficiently by currently available hardware. How-

ever, solving the QP is the bottleneck in the controller and limits how often it can be

run in an interactive system. While a parallel system could solve multiple QP's for

decoupled characters, the computation effort does not scale well for multiple coupled

characters or equivalently characters with many more degrees of freedom.

Robustness McSim is fairly robust to changes in motion type or style and changes

in the physical environment. McSim tracks motions that stop and and start, walk,

run, and jump. The motions were tracked thru obstacles and changes in the ground

terrain. With the help of a heuristic balance mechanism in 2D, the controller tracked

a running motion indefinitely and tracked a walk on a moving platform.

There are several cases where McSim can fail. McSim is not a high-level motion

planner and cannot make large changes to the reference motion to adapt to large

changes in the environment. For example, it cannot alter a walk to account for steps

placed in its path. As a result, tracking the reference motion may result in the feet

colliding with the steps and a fall. Also, tracking a single input motion is not a good

strategy for robust and stable control of a physically simulated character. In this

work, we experimented with a simple heuristic in 2D that adjusts the desired angle

of the swing hip to help stabilize walking and running. In addition to finding an

equivalent balance scheme in 3D, we would like to incorporate long range planning

to allow for anticipatory actions that should increase robustness.

Quality While McSim's robustness can be improved, its main limitation is quality.

Tracked motions can often appear more abrupt and robotic than the reference motion.

While some changes to the motion are necessary to make it physically feasible, we

believe that the quality of the controller can be improved by addressing some of the

factors that currently limit quality. The first factor that limits quality is the tradeoff

between computational performance and optimal performance over the entire motion.

We are exploring ways making the controller optimal over longer time ranges without

sacrificing performance. Quality was also impacted by the manually set parameters

of the controller. For some 3D motions, it was more difficult to find parameters that

produced nice results. Also, there were certain motions that we could not track well

such as turning motions. An interesting area of future work would be to apply global

optimization techniques that automatically tune the manually set parameters. In

addition to reducing dimensionality, parameterizing control with our approach may

help smooth the energy landscape, making it easier to find solutions.

Preliminary Improvements A key to addressing McSim's limitations is incorpo-

rating long-range optimal planning into the control. Incorporating long-range plan-

ning without adversely impacting computational effort is difficult. Some promising

preliminary experiments indicate that long range planning can indeed improve track-

ing performance. Furthermore, the added cost comes in the form of precomputation,

allowing the run-time controller to operate at similar rates as McSim. This prelim-

inary work is based on linear quadratic regulators (LQR) [30,32]. While LQR is a

well-known approach to optimal control, applying it to the control of human char-

acters is non-trivial because the dynamics are non-linear and non-smooth. In the

sections that follow, we review LQR, describe approaches to applying LQR to human

locomotion, and demonstrate improvements over McSim.

5.1 Linear Quadratic Regulator

Optimal control problems, when tractable, are typically solved using expensive nu-

merical approximation techniques. LQRB is a special case of optimal control than can

be solved analytically and computed efficiently because it assumes linear dynamics

and quadratic costs. Interested readers should reference more complete discussions

of optimal control theory for background [5,30,32]. Here we sketch the LQR solution

using dynamic programming on the Bellman equation.

The Bellman equation defines the optimal value function. A value function,

v(x, k), is the minimum cost of completing a task starting from the given state,

x, at step k. The optimal value function is defined recursively as the minimum over

all possible actions, u, of the current cost, O(x, u, k), and the optimal value function

evaluated at the next state, v(F(x, u, k), k + 1), where F(x, u, k) maps the current

state and action onto a new state.

v(x, k) = min (x, u, k) +v(F(x, u,k),k + 1). (5.1)

In LQR, the cost function is quadratic

1 T 1
q(x, u, k) = x Qkx + IuT ku (5.2)

2 2

with terminal cost O(x, u, n) = xTQux and the transition function is linear

F(x, u, k) = Akx+ Bku. (5.3)

Substituting Equations 5.2 and 5.3 into Equation 5.1 yields

v(x, k) = min xTQkX + 'u Rku + v(AkX + Bku, k + 1). (5.4)
u2 2

This equation can be solved by guessing a quadratic form for the optimal value

function, v(x, k)= 2x PkX with Pn = Qn. Using this guess, Equation 5.4 becomes

1z = m Qkx + RkU + -(AkX + BkU)TPk+l(AkX + Bku). (5.5)
2 u 2 2 2

The optimal control action is found by minimizing the right side

S= -(Rk BT Pk+lBk)- 1Bk Vk+lAk (5.6)

which is abbreviated as u = Kkx. Substituting Equation 5.6 into Equation 5.5 yields

a discrete Ricatti equation for Vk which can be solved for all k by starting at k = n

and iterating backwards.

5.2 Full-State Feedback

The first application of LQR we have tried linearizes the dynamics of the character

around the reference motion. At each sample of the reference motion, we assume an

Euler integration step yielding the Ak and Bk matrices defining the linear transition

function. Furthermore, we assume that the linearized dynamics are fully-actuated.

The control cost is Rk = rI. The positional cost penalizes deviations from the

reference motion and is Qk = diag(O, 0, 0, q, q,... , q) where diag is a diagonal 2N x 2N

matrix. The first three entries are 0 meaning that deviation in the root position is

not penalized.

The optimal gain matrices, Kk, from Equation 5.6 are found in a precomputa-

tion step by solving the Ricatti equations. At runtime, the current gain matrix is

multiplied by the current tracking error to yield the desired feedback force. Unfor-

tunately, applying the resulting feedback force directly is not possible because of two

assumptions. First, since we assumed a fully-actuated model the feedback forces will

have forces on the root of the character. Applying these forces directly will likely

render the motion physically implausible. The real character is not fully-actuated

and must make use of contact forces to accelerate the center of mass. Second, the

linear approximation to the dynamics is only good in a neighborhood about the nom-

inal trajectory. In our prototype system, these assumptions are maintained through

the use of a QP. The QP tries to reproduce the desired force as closely as possible

using feasible internal torques and ground reaction forces. It also tries to match the

observed acceleration of the reference motion. This extra force acts as a feedforward

control that maintains the validity of the linearized dynamics model used to compute

the LQR controller.

In 2D, applying this full-state feedback control through the QP improves the visual

quality of the animation and reduces tracking error as seen in Figure 5-1. These

results were somewhat surprising given the crudeness of the dynamics model used. In

particular, we thought that assuming full actuation would be a poor approximation.

These results would indicate that at least for planar walking models, the character

does have good control over the center of mass through the use of ground contacts.

5.3 Under-Actuated Approximations

The fully-actuated assumption turned out to be too crude for the control of 3D

systems. For our next experiment, we tried to find a better model for LQR. LQR

has been shown to maintain balance of simple under-actuated systems such as the

acrobot [18]. We leveraged this capability by mapping the state of the character onto

a simple under-actuated system geometrically, computing control forces using LQR,

and then mapping these forces onto the full character through the use of a QP. This

control scheme improved not only static balance but also the stability of controllers

for walking in 2D and 3D.

The particular simple model we used for balance was a three-link model as shown

in Figure 5-2. After it is constructed, the dynamics equations for this model were

linearized about the upright equilibrium point where the model is statically balanced.

This provides the Ak and Bk matrices needed to solve for the LQR control policy as

in Equation 5.6. In this particular case, the Ricatti equations were solved over a long

interval to approximate the optimal control over an infinite time interval. This yields

McSim vs FA LQR: Normal Walking
U.0

0.4

0L-
w 0.3

0.2

0.1

n
0 500 1000 1500 2000 2500 3000

Frames

Figure 5-1: Shown are plots of squared error over time for two different tracking
controller designs: the design discussed in §3 and the design discussed in §5.2. The
LQR based controller has less error and is much smoother. FA stands for fully-
actuated and 1,1,1 indicates the relative scaling of the terminal, position, and control
costs used when solving for the LQR policy.

a single optimal gain matrix, K.

The performance of this simple control policy was evaluated on the simple model

by perturbing it slightly and applying K directly to the deviation of the model from

the equilibrium point. Qualitatively, the behavior of this controller is simple to de-

scribe. If the model is falling, it can rapidly swing its upper body in the direction of

the fall and rotate the swing leg in the opposite direction to raise the center of mass

over the swing leg. Previous heuristic approaches to balance have demonstrated a

similar strategy on the linear inverted flywheel model [23].

Next, we examined whether this successful balance controller for the simple model

could be used to balance a complex character. The QP from Equation 3.7 is altered

ing to a Simple Model

Characte
Three Link Model

Figure 5-2: The mapping from a simulated character to a simple model. The first
link in the simple model is anchored to the ground and is unactuated. It represents
the support leg of a character balancing on one foot. The second link represents the
upper body. The final link is anchored at the same location as the joint between the
upper body and the support leg and represents the swing leg. The lengths, relative
positions, and inertial properties of each link on the simple model are determined by
aggregate properties of links on the original character. For example, the foot, lower
leg, and upper leg links of one leg are used to determine the properties for the swing
link. Given the state of the simple model, we can compute LQR control forces and
apply them to the full model using a QP.

with three new objectives of the form

IIJJq + - adll 2 (5.7)

where Ji is the Jacobian of the center of mass of the links associated with the i'th link

of the simple model and ad is the desired acceleration for that point as determined by

the LQR policy computed on the simple balance model. These objectives are weighted

to trade off between maintaining a rest pose and matching the accelerations of the

simple model. This control strategy was able to maintain balance under external

disturbances as shown in Figure 5-3.

5.4 Future Approximations

To move beyond balancing, we need to examine new simple linearized models. Con-

sider walking. The three-link model used for balancing should be able to stabilize

walking motions by manipulating the center of mass trajectory as it does when bal-

ancing. Linearizing about a static equilibrium point, however, is insufficient since the

character must briefly lose balance to propel the center of mass forwards. Instead,

we could linearize about a reference trajectory of the simple model as created by

mapping the character's stepping motion onto the simple model. For jumping and

running motions, we need a model that can operate while in contact and in free-flight

such as the slip model [11].

To stably reproduce anl arbitrary human motion, multiple simple models would

have to be used over the duration of the motion. For a simple walking motion, at

least two models are needed: one for each support foot. If the walking motion is

more complex, exhibiting steps of different speeds, lengths, and styles, it is possible

that a simple model would need to be constructed for each corresponding segment of

the motion. More generally, all reference motions would need to be annotated with

the appropriate control policy that should be used during tracking. Furthermore,

the controller should only be allowed to switch between simple models at predefined

nodes. It may not be advisable to switch from a right foot step to a two foot jump for

example. These control policies and the associated switching points together define

an action graph as shown in Figure 5-4. Defining this graph and deciding which edges

to take at run time given the character's state and high-level goals is an exciting area

of future research.

Figure 5-3: A character is hit on the head with a ball but maintains balance. The
state of the character is mapped onto a three-link model. A precomputed LQR policy
is executed on the simple model to generate desired accelerations for three center of
mass positions on the character. These desired accelerations are achieved as well as
possible by a QP.

44

Action Graph

transition
to and from
standing

transition
to and from
standing

standing

Figure 5-4: An action graph. Edges represent reference motions (which may be
empty) and associated control policies. Nodes indicate allowable transitions. At
runtime, a higher level controller can decide which edge to take once each node is
reached given the current character state and goals. Making these decisions optimal
and automatic is an interesting area of future work.

I

rig

I

Appendix A

Tables

Motion k kos
2D Punchy 0.02 1000
Downhill 0.02 300
Walk Wave 0.02 1000
Sneaky* 0.005 500
2D Jump 0.05 1000
Run 0.2 600
Backwards 0.05 1000
Soldier 0.01 600
March 0.05 1000
Limp 0.08 1000

Table A. 1: This table lists the relevant parameters used to generate selected results. k
is a scale factor that multiplies the intrinsic joint stiffness parameters of the character
listed in Tables A.2 and A.3 which are then used in the PD feedback component of
the system. ko, is a gain used to calculate a modification to the acceleration from
the input motion as in Equation 3.4. These two parameters were tuned manually to
achieve a desired tracking result but reasonable results are achieved for a range of
settings. For most 2D motions, values of k in the range between 0.005 and 0.5 worked.
The setting of ko,, is also flexible. Values in the range of 300 to 2000 typically work
for this parameter. In many cases, the same settings achieved good results for many
different motions. Starred motions were simulated using stiff springs at contacts.
Despite using a different contact model, McSim tracks these motions well.

Link k8 Mass Inertia
head 3000 3 0.011
upper arm 4000 2 0.022
lower arm 3000 1 0.009
torso N/A 10 0.176
thigh 4000 7 0.121
shin 4000 5 0.077
foot 4000 4 0.019

Table A.2: This table lists the inertial properties of each link in the 2D model and
the stiffness of the associated joint. Note that there is no stiffness for the unactuated
root joint. It is also important to note that the stiffnesses listed here are not directly
used by the PD feedback component. They are first scaled by a single scale parameter
that is typically much less than one. This scaled value is used to calculate a critical
damping gain. The units are as follows: newtons per radian for the gains, kilograms
for the mass, and kilogram meters cubed for the inertias.

Link ks Mass
trunk N/A 12.92
thigh 4000 9.0853
shin 4000 3.944
foot 1000 1
toes 4000 0.3
thorax 3000 17.155
clavicle 4000 2.535
upper arm 4000 1.435
lower arm 3000 0.575
hand 3000 0.5

Table A.3: This table lists the inertial properties of each link in the 3D model and
the stiffness of the associated joint. Again, there is no stiffness for the unactuated
root joint.

Num. Vars. QP Solve Time (secs)
36 0.0013
44 0.0015
52 0.0023
68 0.003
150 0.007
154 0.0075
158 0.0097

Table A.4: Timing results for the QP solver as a function of the number of variables
in the QP. The number of variables is a function of the number of degrees of freedom
in the character and the current contact state. Note that, for ease of implementation,
we used dummy variables for the acceleration of each degree of freedom. This is not
strictly necessary and would result in a much smaller QP problem.

Appendix B

Additional Snapshots

Additional snapshots of animations created using McSim. Motions of different style

and content can be plausibly adapted to new simulated environments.

Bibliography

[1] Yeuhi Abe, Marco da Silva, and Jovan Popovi6. Multiobjective control with

frictional contacts. In Symposium on Computer Animation (SCA), pages 249-

258, August 2007.

[2] Okan Arikan, David A. Forsyth, and James F. O'Brien. Motion synthesis from

annotations. A CM Transactions on Graphics, 22(3):402-408, July 2003.

[3] David Baraff. Analytical methods for dynamic simulation of non-penetrating

rigid bodies. In Computer Graphics (Proceedings of SIGGRAPH 89), Annual

Conference Series, pages 223-232. ACM SIGGRAPH, July 1989.

[4] Jernej Barbi6 and Doug James. Real-time subspace integration for st. venant-

kirchhoff deformable models. ACM Transactions on Graphics, 24(3):982-990,

August 2005.

[5] John T. Betts. Practical Methods for Optimal Control Using Nonlinear Program-

ming. SIAM, Philadelphia, PA, 2001.

[6] Marco da Silva, Yeuhi Abe, and Jovan Popovi6. Simulation of human motion data

using short-horizon model-predictive control. Technical report, Massachusetts

Institute of Technology, Cambridge, MA, 2007.

[7] Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. Compos-

able controllers for physics-based character animation. In Proceedings of ACM

SIGGRAPH 2001, Annual Conference Series, pages 251-260, August 2001.

[8] Anthony C. Fang and Nancy S. Pollard. Efficient synthesis of physically valid

human motion. ACM Transactions on Graphics, 22(3):417-426, July 2003.

[9] R. Featherstone and D. E. Orin. Robot dynamics: Equations and algorithms. In

International Conference on Robotics and Automation (ICRA), pages 826-834,

2000.

[10] Y. Fujimoto, S. Obata, and A. Kawamura. Robust biped walking with active

interaction control between foot and ground. In International Conference on

Robotics and Automation (ICRA), pages 2030-2035. IEEE, 1998.

[11] R. J. Full and D. E. Koditschek. Templates and anchors: Neuromechanical

hypotheses of legged locomotion on land. The Journal of Experimental Biology,

202:3325-3332, 1999.

[12] Philip E. Gill, Walter Murray, and Michael A. Saunders. User's guide for SQOPT

5.3: A fortran package for large-scale linear and quadratic programming. Tech-

nical Report NA 97-4, University of California, San Diego, 1997.

[13] Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O'Brien.

Animating human athletics. In Proceedings of ACM SIGGRAPH 95, Annual

Conference Series, pages 71-78, August 1995.

[14] A. Hofmann, S. Massaquoi, M. Popovic, and H. Herr. A sliding controller for

bipedal balancing using integrated movement of contact and non-contact limbs.

In International Conference on Intelligent Robots and Systems (IROS), volume 2,

pages 1952 1959. IEEE/RSJ, 2004.

[15] Eugene Hsu, Kari Pulli, and Jovan Popovid. Style translation for human motion.

ACM Transactions on Graphics, 24(3):1082-1089, August 2005.

[16] Lucas Kovar, Michael Gleicher, and Frdelric Pighin. Motion graphs. ACM

Transactions on Graphics, 21(3):473-482, July 2002.

[17] Shunsuke Kudoh, Taku Komura, and Katsushi Ikeuchi. The dynamic postural

adjustment with the quadratic programming method. In International Confer-

ence on Intelligent Robots and Systems (IROS), pages 2563-2568, 2002.

[18] Kangsik Lee and Victoria Coverstone-Carroll. Control algorithms for stabilizing

underactuated robots. Journal of Robotic Systems, 15(12):681--697, December

1998.

[19] C. Karen Liu, Aaron Hertzmann, and Zoran Popovid. Learning physics-based

motion style with nonlinear inverse optimization. ACM Transactions on Graph-

ics, 24(3):1071-1081, August 2005.

[20] James McCann and Nancy Pollard. Responsive characters from motion frag-

ments. A CM Transactions on Graphics, 26(3):6, 2007.

[21] Tomohiko Mukai and Shigeru Kuriyama. Geostatistical motion interpolation.

ACM Transactions on Graphics, 24(3):1062-1070, August 2005.

[22] Zoran Popovid and Andrew P. Witkin. Physically based motion transformation.

In Computer Graphics (Proceedings of SIGGRAPH 99), Annual Conference Se-

ries, pages 11-20. ACM SIGGRAPH, August 1999.

[23] J.; Drakunov S.; Goswami A. Pratt, J.; Carff. Capture point: A step toward

humanoid push recovery. Humanoid Robots, 2006 6th IEEE-RAS International

Conference on, pages 200-207, 4-6 Dec. 2006.

[24] Marc H. Raibert. Legged Robots That Balance. MIT Press, Cambridge, MA,

1986.

[25] Marc H. Raibert and Jessica K. Hodgins. Animation of dynamic legged locomo-

tion. In Computer Graphics (Proceedings of SIGGRAPH 91), Annual Conference

Series, pages 349--358. ACM SIGGRAPH, July 1991.

[26] Alla Safonova, Jessica Hodgins, and Nancy Pollard. Synthesizing physically re-

alistic human motion in low-dimensional, behavior-specific spaces. ACM Trans-

actions on Graphics, 23(3):514- 521, August 2004.

[27] Ari Shapiro, Petros Faloutsos, and Victor Ng-Thow-Hing. Dynamic animation

and control environment. In Proceedings of Graphics Interface (GI), pages 61-70,

2005.

[28] Daniel Sharon and Michiel van de Panne. Synthesis of controllers for sylized

planar bipedal walking. In International Conference on Robotics and Automation

(ICRA), pages 2387-2392, 2005.

[29] Kwang Won Sok, Manmyung Kim, and Jehee Lee. Simulating biped behaviors

from human motion data. In Computer Graphics (Proceedings of SIGGRAPH

07), Annual Conference Series, page 107. ACM SIGGRAPH, aug 2007.

[30] Robert F. Stengel. Optimal Control and Estimation. Dover Publications, New

York, 1994.

[31] Adnan Sulejmanpasi6 and Jovan Popovi6. Adaptation of performed ballistic

motion. ACM Transactions on Graphics, 24(1):165-179, January 2005.

[32] E. Todorov. In Bayesian Brain: Probabilistic Approaches to Neural Coding,

Doya K (ed). MIT Press, 2006.

[33] Adrien Treuille, Andrew Lewis, and Zoran Popovid. Model reduction for real-

time fluids. In Computer Graphics (Proceedings of SIGGRAPH 06), Annual

Conference Series, pages 826-834. ACM SIGGRAPH, 2006.

[34] M. van de Panne and A. Lamouret. Guided optimization for balanced locomo-

tion. In Eurographics Workshop on Computer Animation and Simulation, pages

165-177, 1995.

[35] Miomir Vukobratovic and Branislav Borovac. Zero-moment point - thirty five

years of its life. International Journal of Human Robotics, 11(1):157-173, 2004.

[36] P. B. Wieber. On the stability of walking systems. In International Workshop

on Humanoid and Human Friendly Robotics, pages 1-7, 2002.

[37] Pierre-Brice Wieber and Christine Chevallereau. Online adaptation of reference

trajectories for the control of walking systems. Robotics and Autonomous Sys-

tems, 54(7):559--566, July 2006.

[38] Andrew Witkin and Michael Kass. Spacetime constraints. In Computer Graphics

(Proceedings of SIGGRAPH 88), volume 22, pages 159-168, August 1988.

[39] J.K. Wooten, W.L.; Hodgins. Simulating leaping, tumbling, landing and bal-

ancing humans. Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE

International Conference on, 1:656--662 vol.1, 2000.

[40] K. Yin, M. Cline, and D. K. Pai. Motion perturbation based on simple neuro-

motor control models. In Pacific Conference on Computer Graphics and Appli-

cations (PG), pages 445-449, 2003.

[41] KangKang Yin, Kevin Loken, and Michiel van de Panne. Simbicon: simple

biped locomotion control. In Computer Graphics (Proceedings of SIGGRAPH

07), Annual Conference Series, page 105. ACM SIGGRAPH, 2007.

[42] Victor B. Zordan and Jessica K. Hodgins. Motion capture-driven simulations

that hit and react. In Symposium on Computer Animation (SCA), pages 89-96,

July 2002.

