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Unified theory of beam bending within
flexoelectricity with including piezoelectricity

Vladimir Sladek™™ Jan Sladek?

Lnstitute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava, Slovakia

Abstract. The behaviour of small size dielectric elastic beams is described
within higher-grade theory with including electric polarization. The
coupling between strain gradients and polarization is incorporated into the
constitutive laws in the form of flexoelectricity, while piezoelectricity is
involve in the classical form. Both the governing equations and boundary
conditions are derived using variational formulation for electro-elastic
continuous media and deformation assumptions employed in three various
beam bending theories such as the classical theory (Euler-Bernoulli theory),
the 1% order shear deformation theory (Timoshenko theory) and 3" order
shear deformation theory. The unified formulation allows switching
between theories with various bending assumptions by a proper selection of
two key factors.

1 Introduction

In non-centre-symmetric dielectric crystals, the polarization vector is related to the 2™ order
strain tensor through the 3™ order piezoelectric tensor which must vanish for all dielectrics
with inversion-centre symmetry. Therefore piezoelectricity is not observed in centre-
symmetric dielectric crystals [1,2]. However a net electrical dipole moment is generated also
upon application of non-uniform strain, i.e. strain gradients, even in originally centre-
symmetric dielectric crystals. The existence of non-uniform strain due to relative
displacements between the centres of oppositely charged ions is physically possible only
provided that the centre-symmetry is broken and the contribution of macroscopic strain
gradients to induced polarization is known as flexoelectric effect [3,4]. Thus the flexoelectric
effect can be incorporated into macroscopic phenomenological theory by consideration of
higher-grade continuum theory involving also the 2™ order derivatives of displacements
besides the strains. Having used such a continuum model, we shall deal with behaviour of
elastic dielectric beams under electro-mechanical loading [5,6]. The 1D formulation will be
derived in a unified form with including the deformation assumptions of three theories for
bending of elastic beams. Making use such a unified formulation, one can switch between
three various theories by a proper selection of two key factors. The derivation of the
governing equations and the boundary conditions is performed in a consistent way with using
variational principle.
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2 Stationary electro-elasticity with including piezo- and flexo-
electric effects

In contrast to higher-order theories, the number of degrees of freedom is not changed as
compared with classical theory, i.e. the independent field variables are the same as in classical
theory, but some additional field-gradient measures appear in higher-grade theories.
Therefore also the number of governing equations is not changed, while the order of the
differential equations as well as and the number of boundary conditions are increased.
Assuming small derivatives of field variables, the general linear constitutive laws can be
derived from the quadratic energetic functional of the derivatives of field variables. In case
of dielectric solids, the electric enthalpy can play the role of the energetic functional.
Assuming the higher-grade theory of dielectric solids with including the 2™ order derivatives
of field variables, the electric enthalpy density is considered as quadratic functional

1 1 1
H(eij, Ei Ui jk) == Sijagijén + = Jijamnbi, jkUimn — = 2 B Ej — & Eigj —
2 2 2 €))
= fij Eilj i + diji Ei, jUk
with elastic displacements Uj(X) and electric field scalar potential ¢(X) playing the role of
degrees of freedom, while the field gradients such as elastic strains Eij » second gradient of
displacements Uj jx and intensity of electric field E;j are defined by standard formulae
gij =(Uj,j+uji) /2, Ei=-g;. @)
Note that the index following a comma denotes the partial derivative with respect to the
corresponding Cartesian coordinate. In Eq. (1), Cijki is the tensor of elastic coefficients,
Jijkimn is the tensor of material coefficients introduced in strain gradient elasticity, yjj is

the tensor of material dielectric coefficients, and €jjy , fijkl , dijkl are the piezoelectric, direct

flexoelectric and converse flexoelectric coefficients, respectively. The third-rank
piezoelectric tensor vanishes in crystalline centrosymmetric dielectrics. In the above
formulation, the contribution to the piezoelectric as well as flexoelectric polarization is
considered as a response to an applied macroscopic strains and its gradients. Bearing mind
the bulk contribution to the polarization, the direct and converse flexoelectricity terms in (1)

can be expressed in only one term [5,6] as _hijkl Ejuj ki, because of using the integration by

parts in variational formulation. The governing equations remain unchanged.
The symmetry properties of tensors of material coefficients depend on symmetry of
elastic dielectric crystals. For crystals of cubic symmetry [7] these tensors are given as

Cijki = (C11 — C12 — 2C44) St +C126i;0i1 + Ca4 (Sik S ji + 51 Sk )
hijia = (b = Po = 2Ng4) i + M265i 0 + haa (Gik Sy + Gt Ok )
Zij = Xij 3)
Gijkimn = C11l 28 6ndim + €441 > (618 S — GijSendim) =
= (c11l"? ~ €441%)85 Sk S + Caal *1 8 kS
with €y —Cjp —2Cg4 =0 and hyq —hyo —2hyy =0 for isotropic materials. Note that |

and |' are two new material coefficients (micro-length scale parameters) characterizing
microstructure of the continuum in higher-grade elasticity theory.
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In non-centrosymmetric crystals exhibiting mm2 class of symmetry with X3 being the poling
axis, the piezoelectric coefficients are given as
erjk = (0j10k3 + Fj3dk1)ers . €2jk =(Jj20k3 +Ij3dk2)€2
€3jk =0j10k1831 + 820k 2832 + Fj35k3E33 4)
with €3p =€31, €y =€gfor the mm6 class of symmetry, while €y = 0 for
centrosymmetric crystals.

From (1), we have the constitutive equations

. OH
Tij == = Cijlu &k —&ij Bk

a&’ij
oH
Tijk === ijkimnU1,mn — Niij Ey (5)
8uiljk
oH
Dj =-——=ZijEj +eijk&jk +hijaljk
OE;

with ojj, Tjj , and Dj being the stress tensor, higher order stress tensor, and the electric

displacements, respectively.

3 Derivation of the formulations for beam bending

Let us consider a beam of thickness b (X, €[-b/2, b/2]), height h(x3 €[-h/2, h/2])
and the length L (% €[0, L]), with h= L. Assuming the translational symmetry along

X9 , we may write the displacement field distribution as
Ui (%0, %) = S {U0x) + [0(Xg) = X [ W1 (%) + L 0(X )0 (%) | + SigW(X)  (6)
with U(X), @(X), W(X ) being axial displacement, rotation of the beam cross-section and

2
4( X
deflection, respectively, and @(X3) = X3 —Coy/(X3), w(X3):= g(fj X3. The proper

selection of two key-factors Ciand C, allows us to switch between three various theories

(EBT — Euler-Bernoulli theory, FSDT — 1% order shear deformation theory, i.e. Timoshenko
theory, and TSDT — 3 order shear deformation theory) for bending of the beam

_[0.EBT  __[0.FsDT
“11,8DT ° % |1, TSDT’

From (6), one can obtain displacement gradients, strains and U; ji . Owing to the deformation

(7

assumptions in beam bending theories, we know explicitly the dependence of all mechanical
fields on the Xg-coordinate. In order to get a pure 1D formulation for considered electro-

elastic problems in thin beam structures, it is meaningful to adopt the assumption for
distribution of electric potential as

2
¢<xl,x3)z¢o(x1)+x—rf¢l(x1)+(x—,fj AN ®



MATEC Web of Conferences 310, 00063 (2020) https://doi.org/10.1051/matecconf/202031000063
SPACE 2019

where ¢, (%), (a=0,1,2) are three new field variables, with two of them being determined
by the boundary conditions on the bottom and top surface of the beam as

(%)= Ao () + AU (%) + Ao (X)) + AgWqq (Xg)
$2 (%) = Bp(X1) + B (X1) + Bogp1 (%) + Bawy1(Xq) &

in which Ag and Bg coefficients are specified in Table 1 according to considered either
1 1
Dirichlet b.c. @(x,£h/2)=¢y(x) £ E@(Xl) + Z¢2 (%)= ¢* (%), or Neumann b.c.

+
nk (Xl! X3) Dk (X11 X3)|X3=ih/2 =0 (Xl) p nk (Xl’ X3)|X3:ih/2 = i5|(3 .

Table 1. Specification of coefficients used in Eq. (9).

Dirichlet b.c. Neumann b.c.
Al) | g7 (x) -9 (%) (ot 0y -0 ()
2233
A 0 hesy
X33
0 2hh
& —H¢1-cy)
X33
A 0

h
——[2hy4(c; —1-¢iCp) + hyy |
X33

By(¥) 2(¢+(x1)+¢7(X1)) —L(G+(X1)+U_(X1))

233
B, 4 0
B 0 2
; "o 1-c, /9
X33
B 0 2
3 D51 (- 1-¢0,/3)
233

Thus, ¢(X, X3) is replaced by explicitly known dependence on X3 -coordinate and unknown
1D field variable ¢y (X;) as

2
¢(x1,x3)=[1+[x—§] Bl}ﬁo(xﬂ+X—h3{/so(x1)+X—h~°*Bo(x1)}+XfAlu,1(x1)+
(10)

X X X X
+F3(A2 +F3|32j(/’,1(><1) +F3(A3 +F353JW,11(X1)

If we consider a beam without free bulk electric charge and external body forces, the 1D

formulation (governing equations and boundary conditions) can be derived from the
variational principle
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L
O[HAV =W, =0, OW, =b|zowdx (11)
\ 0

where OW, is the work of external transversal loading with the axial density '[_3(X1) . The
electric boundary conditions on the bottom and top surfaces of the beam have been yet
incorporated into the formulation. It can be seen that

SoH (&ij, Ej Ui jk) = (Cijkl eq —&ijk Ei )58ij +(9ijk|mnuij,kul,mn = hiij Ey )5Uij,k -
—(}[ij EJ + eijkgjk + hijkluj,kl )5EI = Gijé‘gij + Tijké‘uij’k - Di5Ei

Since the dependence of the integrand on transversal coordinates is known, the integrations
within the cross-section can be performed explicitly and the volume integration in (11) is

reduced to axial integration
L

[ {(Tl(lu) +QW )5U,1 +(T1(1“1) +Q )5u111 + (Ml((f) +T@ Q) )5(p71 +
0
(2 0o =1 T o 1 TG o~
~(ME? -T@ -1 -l Jswy; - (MG - QM |swyy - bTpsw+
Q™ gy + Q)i ax 0
where the semi-integral fields are defined as
D) h/2 b/2 h/2
Tll (Xl) = I J. O-ll(xl7x3)dX2dX3 =b I O'll(Xl,XS)dXS (13)
—h/2—-b/2 -h/2
h/2 2%, )2
T1(3W<o) (%):=he, | [(1— Cy)K+Cy—Cy (TSJ }7130(1, X3)dxX3
—h/2

h/2
'V'ﬂ”) (x)=b [ [X3—Cro(x3)]o11 (X, X3) X3
_h/2

h/2

Ml(f )(x):=b r{/2010)0(3)011()(1' X3)dX3
W N2
T () =b [ 7391(%,%3)dx3
—h/2
W N2
M1 (%) =b r{/z[xs —C(X3)] 7111 (%, X3)dxX3

h/2
Ml(l(pl)(xl) =b [ qo(x3)r111(%,%3)dxg
—h/2

) h/2 2x3 )
T (xq)=b | g 1—C2[—h j (7113 (X1, X3) + 7131 (X1, X3) ) dXg
—h/2
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h/2
TM(x):=b | (7311(%0, X3) — 7113 (X4, X3) — 7131 (¥4, X3) ) X3
—h/2

h/2 8x
TS (0g) =b I/z C1Co h_23 7133 (%, X3) X3

h/2 2
Q) (x)=b | {1{%} Bl}Dl(xl,x3)dx3

—h/2
hi2 y
QY 0g):=boy [ =2 AD1 (4, X)X
—h/2
) hi2 x, Xa
Q" (%) =D r{/2F A2+FBZ Dy (%1, X3)dx3
W) hi2 x, X
Q™ (x)=b r{/2F A3+F83 Dy (¥, %3)dx3
Qé%)(xl) =b I TSB_I_DS(X]_vXS)dXS
—h/2
h/2
QM (x)=b | %D3(x1,x3)dx3
~h/2
Q3§<0) () =b r{/zﬁ(Az +TS Bz] D3 (%1, X3)dX3
Q5" () =b J/ZH(A“Tg jDs(xl,x3>dx3

where the shear correction factor [(1— Co)K + Cz]is introduced in the FSDT according to

Reissner modification of shear stresses. Note that all the integrations in (13) can be performed
in closed form. Furthermore, making use of the integration by parts, one can eliminate the
derivatives of variations of field variables in the integrand of (12) as

(T4 -1 - Jou+(Ty + Q) Jouy + (14)
H(MIP T+ Q7 -Mif); - Qff g + (M{ED + Qg +
#(ME2 - -7 -l T T - M+l Jow -

_(Ml(XV) _T1(0) _7(W) _Q:gW) _ Mlqvl),l"'Ql(,‘iV))gW,l_
L
_<M1(\1N1) - 1(W))5W,11+Q1(¢0)5¢0}‘0 -

L
-T](18 08 -7, -0 -+
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+HMP T+ Q) TR -8 - M{P; -} +

+(M1(X\,/1)1 _Tff) _T,ﬂv) - :gvlq + T1(3V,V1¢) —Tl(g"g‘ﬁ) - Ml(le),lll + Ql(,\ivil + bt—3)5W+

+(Qf - Qi) )6¢o}dx1 =0
Introducing the notations
M 0g) =M (x) =T ) =T () - Q" (x0) -V ()
VD (0) =M 00) - Q™M™ (%)
T (00) =T () - TS (%)
M) () =M () + T (xg) + QY (xg) - mP () (15)
M@ (x) = M) (%) + QL (%)
T ) =T (0) + Q5 (xg) ~ 11 (%)

t0q) =T () + (%)
one can simplify Eq. (14) as
TOsu+1Wou; + MO sp+ mPsp +

L
(MY 79 ow— M Wswy v Wswy; + Ql(%)éyﬁo}‘ -
L ’ (16)
{150+ (MP) =10 )50+ (MED + T b | sw+
0

(0 -0 o -0
Hence, one can deduce the governing equations

T () =0
M,(fo) (x)-T™) (3q) =0
MEP 00) +T{" () = -bB () a7
QP (x9) — Q™ (xg) =0
at X, €(0, L), and the set of boundary restrictions

L L
T(”)éu‘o -0, t(”)éuyl‘o =0

L L
M (¢)5¢‘0 =0, m((p)é'go’l‘o =0
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L L L
(M +TW‘”))5W‘O =0, M®Wsw,| =0, v®swy| =0 (18)

L
Q| =0

For the sake of brevity, we concise to expressions of the semi-integral fields (15) in terms of
the primary field variables U(X;), W(X;), ¢(¥ ) and their derivatives by

MO = A Dw gy + Ay + APy + AP, +
+ AUy Ay 1+ AP g A g 4 A )
TO0) g0y B0, 4 By + B0y, + B+
+BU2uy, +BWgy, + B
MO —COy 1 CODyy 4 CEp WD
+CUyyy, +CMuy +CW2ygy 0, + Py 1 C
T = Dwyyy; +DMPwy; + DW¥p 1y, + DWgy +
+D™uyp; + DMy + DDy, +D
VW 0By 4 HOW) (Wi +p)+H @2, +
+HYDu, + H g, + H
@ = DOy DOD (w, + ) - D,
D™y, -DYgy, +G
M@ <Oy O O (wy )
Iy, @y P
Q1(¢°) =EM™ Dy + EMw, +E0Dg  +EPp 1
+EUDy +EWg, +E
Q) 02y, L E @D F @y

without presenting the explicit expressions for the coefficients A(g), B(g), C(g), D(g),
E9 FO HO A B,C,D,E,F,H,G,P.
Now the governing equations (17) can be rewritten as

D(W4)W,11111 + D(WZ)W,111 + D(¢3)¢,1111 + D((pl)(P,ll +
(20)
+Duyyqy + DWuyy + DYy 1y =Dy
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A(W4)W,111111 + (A(Wz) +BM3) )W,1111 + B(WZ)W,111 + B(M)W,ll +

+ A9 140+ (A((pl) +B(%) )(0,111 +BWp, +

+ A+ (A(“1) +BU2 )U,111 + e
+ Ao 1111+ (Aw) +BWY )¢o,11 =—bly - A1 -8B
CMwyyy, + (C(WZ) - )W,111 -8y, ~BMwy +
+CO¥gp11 + (C(col) _g®? )60,11 —B@gp
+CUyyyyy + (C(“1) -2 )u,ll + .
g+ (C B gy, -, -8
£ +(EOD - FOD g, 4 £ 4 (E6) - FOD) g, 4 -

+Euyyy + Egyyy -FPg =F - E,

Thus, the governing equations are given by the system of the 6™ order ordinary differential
equations. Similarly, one can rewrite also the Neumann boundary conditions resulting from
the boundary restrictions (18) with using the expressions given by (19). From this general
formulation, one can obtain the formulations corresponding to deformation assumptions of

particular beam bending theories by proper selection of two key-factors C;andC, .

4 Conclusions

In this paper, we presented the consistent derivation of 1D formulation for behaviour of
dielectric elastic beams subject to stationary electro-mechanical loading. The derivation starts
from the higher-grade continuum theory for elastic dielectrics with including flexoelectric
and piezoelectric effects. The deformation assumptions of three beam bending theories are
incorporated in the derived unified formulation and switching among these three theories is
allowed by proper selection of two key-factors.
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