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This paper presents a brief summary of the various topics, 
connected with the invariant expansion of relativistic amplitudes. Most of the 
details of calculations can be find in three papers [1, 2, 61 where a complete list 
of references is also given. 

1. Parametrization of 4-point amplitude 

Instead of constructing amplitudes from one particle states 
(3), we treat the amplitude as a function of two variables. Choosing as indepen­
dent variables the components of 4-velocity of one of the particles we define the 
amplitude as a function on the upper sheet of hyperboloid u2 = 1. There are 5 
possible parametrizations (coordinate systems): spherical (S) and hyperbolical 
(H) ones connected by the crossing transformation; two kinds of horispherical 
systems (O) and cylindrical system (G). Each of the systems corresponds to dif­
ferent reductions of the Lorentz group. The unitary transformation coefficients 
between different parametrizations appear to be essentially products of Clebsch — 
Gordon coefficients for complex values of angular momenta [7] . Another way 
for the parametrization of the amplitudes is connected with a complex sphere 
[4 i 7] z2 = 1. In this case the complex vector z is built from two 4-velocities z ~ 
= u + iv. This method gives rise to the extremely simple form of matrix ele­
ments of the Lorentz group. 

654 



2. Expansion 

The amplitude can be expanded into a series of orthonormal 
functions which give the representation of the group of motion: either Lorentz group 
or complex rotation one in three dimensions. In this way the Lorentz amplitudes 
or Wigner functions in a complex domain come into play. The most powerful 
method for expansion and normalization is the so-called horispherical method 
developed by Shapiro, Gelfand, Graev (see [1] for refs.). It starts with the expan­
sion into a series of homogeneous functions (on the cone) which is followed by 
the transformation to the hyperboloid. In this way it is also possible to get the 
functions for nondegenerate representations of the Lorentz group. This is due to 
the fact that the helicity of a massless particle (connected with the light cone) 
is a Lorentz invariant quantity and can be identified with the second quantum 
number v of the Lorentz group [5]. 

Some interesting features appear in the expansion into a series of functions 
defined on the complex sphere of a zero radius (a complex cone). 

3. Crossing 

Casimir operators of the Lorentz group generate new quantum 
numbers. In the spin zero case the expansion in S system produces the partial 
amplitude a\ (p) which is a function of one discrete parameter I and the continious 
parameter p (which is also invariant with respect to crossing). In H system the par­
tial amplitude depends upon two continious parameters a (p, q). The second va­
riable q is interpreted as a complex angular momentum. The amplitudes ai (p) and 
a (p, q) are determined in an invariant way as integrals over the physical region 
in which the amplitudes are defined. Let us call them Lorentz amplitudes. 
In S system the coordinates are chas (energy in c. m. s. divided by the mass of the 
particle) and cos a s (as s is a scattering angle). The transformation in i-shannel is 
given by as + at = £-^-and fit — ias, where at and fit are two hypergeometrical 
«angles» in //-system. The horispherical system is defined by constructing the 
isotropic (photon-like) vector ks — uxeA — u2, with ks = 0, or kH — uxeA — us; 
ku = 0; the crossing transformation is defined in a similar way. 

The Lorentz two-dimensional amplitudes define amplitudes in all physical 
parts of the Mandelstam plane provided the two conditions are fulfilled (usually 
they are not): 

a) Integrals, which define the expansion coefficients, converge, 
b) under the crossing transformation the boundary of the physical region 

in 5-channel transforms into one in t- (or u-) channel. 

4. Unequal masses 

Condition b) is violated in the case of unequal masses. In this 
case the expression for coefficients in ^-channel can not be used in ^-channel be­
cause of the difference of the integration regipns. 

In order to improve the situation we consider instead of c. m. system the 
one in which two particles have equal (but opposite) 4-velocities. We define two 
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4-vectors of a unit length 

The first vector is time-like, the second is space-like. In order to complete 
the set we introduce a spatial vector which is orthogonal to the scattering plane 
(this vector is irrelevant) and one more space-like vector which is orthogonal to 
all the three. We call the latter n2. Now consider the components of 4-velocity 
of one of the particles (say, 1) along these vectors; we denote them by x0, xx, x2, 
(x3 = 0) . Then XQ — x\ — x\ = 1, and x2 appears to be proportional to the func­
tion <P defining the boundary of the physical region [9] . Then it is not difficult 
to prove that in these coordinates the integral representations of Lorentz amplitu­
des are the same in all channels, since the physical boundary is now invariant 
with respect to cross-transformation. 'However the equal velocity frame is bad 
from the physical point of view; in physical applications we use the angular mo­
mentum partial wave expansion in c. m. system. I . e., we have to perform the 
Lorentz transformation in both channels. The transformation matrix for «boost» 
(the Wigner function) must be calculated, since only extremely unconvenient 
forms of this function (the double series of hypergeometric functions) are known 
in the literature. «Boost» functions will be discussed below. 

5. Convergence 

We have assumed that all the integrals converge, i. e. ampli­
tudes vanish at infinity. The Regge behaviour results in the divergence of in­
tegrals. 

In the invariant classification we start with the so-called Lorentz poles in 
the invariant variables p. The Lorentz poles induce Regge-poles of two sorts, 
depending on the parametrization of an amplitude. If we parametrize the ampli­
tude by 4-velocity of particles the poles are essentially excited states. The true 
Regge poles appear as singularities in the two-particle parametrization (complex 
sphere). In both cases the Lorentz poles give rise to a family of poles and the con­
nection between Lorentz poles and so-called daughter trajectories seems to be 
established. 

6. Spins 

So far we have discussed the spinless case only. For helicity 
the cross-transformation have a simple geometrical meaning: it is essentially the 
three-dimentional rotation. However in more complicated cases when we need 
all three components of spin, the analytical properties of the coordinate system 
become important. Here we have to build the coordinate system from 4-veloci­
ties and to pass on momenta only after performing the cross-transformation. 
This supplementary relativistic rotation gives rise to kinematical singularities 
which become factorized when we use the velocity frame as an intermediate coor­
dinate system. 
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7. Matrix elements of Lorentz group 

In order to make all the transformations mentioned above, 
we need the expression for matrix elements of the Lorentz transformation. The 
derivation of matrix elements starts from the observation that two sets of genera­
tors F, K built upon usual generators of the Lorentz group M and N 

generate two (independent) algebras O (2, 1). Using C-system of coordinates, 
which corresponds to the diagonal form of Fs and K3 we can express the matrix 
element of the Lorentz group in terms of the Clebsch—Gordon coefficients for ad­
dition of two complex angular momenta into a real one. This result is verified by 
the explicit calculation using the expansion into a series of hypergeometrical 

i 1 

functions 3F2. The complex momenta to be added are (a + v) and -y (a — v), 
where in unitary case a = — 1 + ip, and v is an integer. 

( ± for Im t ^ 0, N is a normalization constant). 
This opens the way for definition of complex angular momentum addition 

coefficients. 
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