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GENERAL PROBLEMS OF FIELD THEORY 

K. Hepp 

According to the rnle that everybody gets promoted to his 
level of incompetence, I have the honour to report on recent results in quantum 
field theory in perturbation theory, in axiomatic and in constructive quantum 
field theory. It requires a superhuman mind to do justice to all the fine points 
of the numerous contributions in the two parallel sessions on field theory which 
have lasted for more than eight hours. With due reference to the creativity of 
all people present I start my talk with my sincere apology for all the omissions 
and distortions which I am going to make. My language will appear to some of 
you unduely mathematical. My justification is the experimental fact that physi
cal observations can be cast in mathematical formulae which have predictive 
power. I t is also well-known that we, human beings, are very incomplete: in the 
same way as my experimental colleagues need more sophisticated measuring 
instruments to extend their senses, similarly we theorists need the most compli
cated mathematical structures in order not to be led astray in our exploration of 
Nature. 

Most of our present knowledge about quantum field theory has been first 
guessed from formal perturbation theory or by using functional «intégration» for 
a closed representation of the «solutions» of the field equations. Significant pro
gress has been made at this conference on two interesting topics, on the definition 
of the ^-operator for non-polynomial Lagrangians and on the m 0 limit in 
massive Yang — Mills theories. In my review on non-polynomial Lagrangians 
I shall restrict myself to interaction densities F 0 (x) which are functions of a free 
neutral scalar field <P0 (x). The ill-defined formal perturbation expansions of 
quantum field theory are in this case 
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for the space-time cut-off scattering operator, 

for the truncated Green's functions (where ... )o is equivalent to taking only 
connected graphs) and 

The interaction density VQ (y) is assumed to be a Wick ordered formal power se
ries in 0>0 (*/), 

I t is a plausible extrapolation from the careful analysis by Jaffe [1] on the entire 
functions of the free field to conjecture that the space of generalized functions, 
in which (1), (2) and (3) should have non-formal meaning in every order of F 0  

(«major coupling constant») is determined by the 2-point function 

Let me start with the Jaffe class [2] of strictly localizable interactions, where 
the two-point function belongs to cg ( i? 4 ). The test function space cg (i? 4) is 
the Fourier transform of the space 7Rg (i? 4) of all C°° functions / with finite semi-
norms 

for all integers m, n ^> 0 and A >> 0. The indicator function g is entire and cho
sen consistently with the nuclear theorem and characterizes the growth of the 
Wightman functions in momentum space. In the abstract manner of Bogolubov 
and co-workers [3] we shall define a renormalization as a mapping which maps 
every ft-tuple (Vx (yx) ... Vn {yn)) of entire functions of <D0 (y) of type g (i. e. de
fined as operator valued generalized functions with test functions in Cg (I? 4) into 
operator-valued generalized functions T (Vt {y^ ... Vn (yn)) and T (Vt (yt) ... 

Vn (yn)) over ( i? 4 n ) which satisfy the following three axioms 
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Of course, the T (V1 (xx) ... Vn (xn)) should have a common dense invariant do
main in the Fock space F of CP0 (x) and then (8) and (9) are well-defined in the 
sense of operator-valued generalized functions. 

Let us require that the time-ordering T is not only defined for entire functi
ons of <D0 (y) of type g, but also for series of type g in generalized Wick monomials 
of the type 

(10) 

(quasi-local operators of the type g). 
The very heated discussion about the «almost unique» renormalizability of 

non-polynomial Lagrangians at this conference can be supplemented by the fol
lowing. 

Conjecture. For every g of strictly localizable type, there exist definitions 
of time-ordered products satisfying the axioms (A, B , C) of renormalization. 
Every two renormalizations differ by a finite renormalization, i. e. by the recur
sive addition of a quasi-local operator of type g9 when going from n — 1 to n in 

(—) 
the definition of T (V1(y1) ... Vn (yn))- Within the class of polynomial interacti
ons this conjecture is true, as we have learnt from the work of Bogolubov and 
Parasiuk [4] . Epstein and Glaser [5] have recently given a concrete construction 
of time-ordered products in the polynomial case which is based on the structural 
properties (A, B , C). One can verify that very different renormalization prescrip
tions for Feynman graphs, as the /^-operation, analytic renormalization [6] and 
the construction based on Hôrmander's solution of the division problem by poly
nomials within S' (presented by Stepanov at this conference), that all these see
mingly very different analytical operations lead to time-ordered products with 
the (A. B . C) structure. Therefore [ 7 ] there exists an algorithm for computing the 
finite renormalizations by which any two axiomatic renormalizations differ. 

As indicated before, the above conjecture is not yet proved, but the Epstein — 
Glaser method does not need serious modifications in order to become applicable. 
Let me indicate this idea for V0(x) = : exp <P0 (x) :, where the two-point function 
has been treated by many different methods in the work of Volkov [8], Arbuzov, 
Atakishiev and Filippov [9 ], Lehmann and Pohlmeyer [10], Gonstantinescu [11] 
and by Christ [12]. 

Here a renormalization amounts to defining-

which is to start with only given for arguments (x 1 ? xn) where (x% — Xj)2 0 
( - ) A ( - ) 

for all i / . With the notation EF (x) — exp (A^ (x)) — 1 one has for instance 
(-) > 

to define II EF (xi — xj) as iX_L — invariant symmetric generalized functions 
of type g, where g can be taken of the form C%T = l / (3r — er)!, 0 < e <C 1 [2] . 
The requirements (A, B, C) become besides symmetry and Lorentz invariance 
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(where 2 extends over all disjoint partitions X , Y of {1 , n) and | X j is the 
number of elements in X ) . Finally one needs that the support of 

For /2 = 2 Jaffe [2] has given a definition of EF(x) satisfying (12), (13) and (14). 
In this construction the ambiguity is 

which has to be a generalized function in cg (i? 4) with support {0} . The Epstein — 
Glaser construction can be viewed as follows: By the causality requirement (14) 
the expressions 

should have the property of retarded (support: x t — x 2 £ F+) and advanced 
(support: x 2 — x ± £ V+) generalized functions. The difference 

is well-defined and has support in { (x ± — x2)* >- 0} = V+UV^, in a union of 
opposite closed convex cones. Thus i? and A are obtained by giving non-formal 
meaning to 0 (x? — x% C (xx — x 2 ) which has to be consistent with (12), (13) and 
(14). This is a well-known operation on strictly localizable generalized func
tions, which can be performed in p-space by a subtracted dispersion integral. 
Here the vanishing of C (p) for p2 << m2 is very helpful. By induction, the general 
case can be treated in the same way. Here one needs retarded and abvanced solu
tions 

where Rf and Ar are already well —defined lower — order contributions and 
C =zR — A = R' — A' (19) 

has support in r + # T _ , 

r ± = £ F ± , K k < n ) . (20); 

A consistent cutting in cg is possible and defines n EF {x% — Xj) non-uni quel y 
up to a quasi—local generalized function of the type g. 

What is the relation of this definition of superpropagators to the ones dis
cussed at this conference? The almost uniqueness of EF (x) in the work of the above 
mentioned authors stems from additional regularity requirements [10] or from 
seeking the solution of the cutting problem within a somehow physically motiva
ted regularization scheme [8, 9 ] . A typical regularization is the transition to the 
Euclidean region, analytic interpolation and integral transformations, while 
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a typical regularity requirements has been given by Filippov [131: 

(21) 

It is clear that such postulates are physically very important. In the polyno
mial case one only considers renormalizations, which in addition to (A, B, C) 
are minimal in the sense that the power counting index is preserved in the renor-
malized amplitudes. Only in the minimal renormalization schemes the distinction 
between finitely renormalizable theories (with finitely many different counter-
terms in VQ (y) for all orders n) and finitely non-renormali z able theories makes 
sense. A further clarification of the minimality conditions for non-polynomial 
interactions is highly desirable. 

The advantage of the general distribution theoretical setting for the defini
tion of superpropagators is that one automatically obtains the unitarity of S (h) 
for hÇ^tg (iž4) in every order of h, and the definition of the terms in the Gell-
Mann — Low series (2) as iL\. — invariant generalized functions. However, with
out proper care of the vacuum diagrams and the finite mass renormalizations 
the adiabatic limit 

and the interpolating fields (3) have no hope to exist. It is a shame that a complete 
and rigorous proof of the adiabatic theorem in all orders in V0 has not yet been 
given, even for polynomial interactions, although some progress has recently 
been made [7] . At any rate it has to be stressed that even in the most well-defined 
approach to superpropagators the finite mass- and amplitude renormalizations 
have to be carried out. 

Papers at this conference (see Efimov [14], Salam and Strathdee [15] and 
Keck and Taylor [16]) have discussed the definition of time-ordered products 
for non-localizable interactions, with the following clear motivation: 
(a) occurence of these interactions in a non-linear realization of the chiral group 

or in quantum gravity, 
(b) existence of entire functions of non-localizable type, which decrease as cut-offs 

in propagators in the Euclidean infinity p 2 — co. 
Clearly, the locality axioms (A) has to be weakened in this case to macro

scopic locality, saying that the local support properties should be rapidly appro
ximated at infinity for large translations. One has to operate in a function space 
compatible with the singularities of the 2-point function E+ (x) in (5). The con
struction of superpropagators EF (x) in second order and the proof of unitarity 
can now meet any standard of mathematical rigor, and Ep (x) can show many in
teresting properties. In higher orders the usual Euclidean approach meets the 
difficulty of analytic continuation. The observation of Efimov [14] is interes
ting: the local singularities in /?-space for certain non-localizable interactions 
are the same as for the renormalized Feynman amplitudes of polynomial interac
tions. Since we have only little control about these analyticity properties in hi
gher orders of perturbation theory, a distribution-—theoretic proof of unitarity in 
the sense of (8) is desirable. 

Let me turn to the Yang — Mills theory of massive vector mesons. Here the 
contributions by Slavno v and Faddeev [17], Fradkin and Tyutin [18], Kallosh 
[19] and Khriplovich and Vainshtein [20] at this conference present the following 
picture: 
(a) The hope that in the massive theory the current conservation leads to a signi

ficant cancellation of diagrams and makes the ^-operator finitely renormali
zable has not been materialized. 

(22) 
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(b) The passage to the limit m 0 is singular in perturbation theory, where in 
transitions involving k longitudinal external particles the behavior is of the 
type m2~~h. 

(c) In the functional integral representation of the ^-operator a continuous tran
sition from the massive to the massless theory of Faddeev and Popov [21] can 
be seen with non-analyticity in the coupling constant around m = 0. Here some 
reservations are necessary, since the infinite renormalizations have not been 
incorporated in the functional representation. 

Unfortunately there is no time to do justice to the contributions by 
H. P. Durr, Yu. A. GoFfand, D. D. Ivanenko, V. N- Melnikov, M. B . Mensky, 
V. Pavlov, D. Petrina, J . C. Polkinghorne, J . Rayski and A. E . Shabad at this 
conference. 

The second part of my talk is devoted to axiomatic quantum field theory. 
The Wightman axioms require the existence of field operators CD (x) as operator-
valued tempered distributions on a common dense invariant domain D in a Hil-
bert space ffi, with a unitary representation U (a, A) of energy-momentum 
spectrum in F + , a vacuum Q £ D and satisfying for a scalar field <D (x): 

(23) 

(24) 

It was realized by Jaffe [22] that all consequences of the Wightman axioms 
can be obtained, if oûe only requires the fields to be strictly localizable operator-
valued generalized functions. Parallel to the investigation of non-polynomial 
interactions in perturbation theory the question was discussed at this conference, 
how to generalize the Wightman axioms to strictly non-locallizable interactions 
and which of the main consequences of axiomatic quantum field theory can be 
retained: 

(a) TCP-invariance and weak locality, 
(|3) relation between spin and statistics, 
(y) asymptotic condition, 
(ô) dispersion relations, 
(e) bounds on scattering amplitude. 
A recent result by Epstein, Glaser and Martin [23] shows that for the proof 

of dispersion relations and the Froissart bound s (ln s)2 on the forward scattering 
amplitude locality is not needed in the sense of the sharp local commutativity 
(24). What is needed is a local field operator B or a local observable in the sense 
of Haag and Araki, such that BQ is a 1-particle state and 

[U(x)BU(—x)9 B]^0 (25) 

for all x such that (x + j / ) 2 < 0 for all y £ i ? 4 with |] y || <C p. Here p can be as 
large as our galaxy, and still the ^-operator computed from B and its Lorentz 
transforms satisfy twice-subtracted dispersion relations (for favorable mass spec
tra) and the Froissart bound. 

Fainberg, lofa and Soloviev (see [24]) at this conference relax strict locali-
zability further to localizable quantum field theories, by admitting as indicator 
functions g (t2) for the test function space those with growth of order < 1/2: 

g(t2)<zC(&)expsyrT2 (26) 

(with C (s) << co for any 8 > 0) , and by requiring locality as a topological sup
port property of the Wightman functionals. In such a framework, (a), (p) and (y) 
continue to hold. Although a cut-plane analyticity domain for T (s, t) is still 
unknown, the authors obtain by real methods that T (s, 0) (the averaged forward 
scattering amplitude) does not grow faster than s2 (ln g (s))2. 
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It is very interesting that one can further relax in a sensible way the Wight-
man axioms to /»localizable interactions, where the above weak localization only 
holds up to an elementary length I and where technically 

g(t2)~exvlVt* for t ^ o o . (27) 
Again [24] TCP is equivalent to weak local commutativity, spin and statistics 
are correctly related, the asymptotic condition holds and the bounds on the avera
ged scattering amplitude are proportional to s 3 ~ s2 (In g (s))2. A further genera
lization of locality would be macroscopic causality in the sense that the trunca
ted vacuum expectation values decrease in space-like direction faster than every 
power of the inverse radius of the point configuration. Under this assumption on 
the short range of the forces the asymptotic condition can again be proved and, 
if the indicator function g (t2) increases not faster than exp (ct2) for £-> co, the 
asymptotic bound on the scattering amplitude would be c • (In g (s))2 • s2 with 
c < co [25]. 

At this conference, Taylor has proposed another axiomatic generalization 
of strict locality. In his framework the /z-point Wightman function Wn Ç (Sa)' 
[26] can have in momentum space a growth as exp || p | | 1 / a with any a >> 0. There 
should exist a family of tempered Wightman fields <DV with vacuum expectation 
values Wn and an energy spectrum independent of v, such that uniformly for 
translations a P i? 4 { n~~ i ) 

(28) 

in the topoly of (Sa)f. In this generalized local quantum theory TCP, spin and sta
tistics and the asymptotic condition hold, while bounds on the scattering ampli
tudes have not yet been obtained. The condition (28) is satisfied for the Wightman 
functions of the field: < D 0 (x) (1 — XQ)0 (x))—1: and this observation merits cer
tainly interest among the experts. 

Let me take the rapporteur's liberty of collecting exotic butterflies in his 
field: Unitarity in the sense of asymptotic completeness, 

M = Min — Mouh (29) 

has been often involved as a necessary ingredient of any physically reasonable 
theory. The following theorem by Rinke [27] will certainly trouble all those who 
pretend to understand what unitarity means in a quantum field theory: 

Theorem: Let {A (x), O, U (a, A)} be a tempered local quantum field with 
a physical mass spectrum. Let A (x) be asymptotically complete and S its scat
tering operator. 

Define A (x) = (A (x) 0 1 + 1 0 A (x)) 2- 1 '*, Q = Q ® Q and ffl as the 

closure of the polynomial algebra in A applied to Q and U (a, A) as the restricti-
/ \ Ss. 

on of U (a, A) 0 U (a, A) to j ^ . Then {A (x), Q, U (a, A)} is again a tempered 
local quantum field with a physical mass spectrum, and M = Mm if and only if 
A (x) is a free field, 

Mm = Mont if and only if S = 1. (30) 
The energy-momentum spectrum is called physical for a scalar theory of par

ticles of mass m, if M = M0 © M± © Ma where Mq is the 1 — dimensional va
cuum, subspace, Mx carries an irreducible representation of iL\. with mass m and 
spin zero, induced by U (a, A), and U (a, A) restricted to Mc has a continuous mass 
spectrum above 2 TO. 
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It is challenge to supplement the Wightman axioms and the spectrum condi
tion by a further physical axiom which allows us to understand and to prove uni
tarity 

SS* - 1 = S*S ( 3 1 ) 

which is different from the partial isometry which is implied by the asymptotic 
condition. 

Another interesting contribution at this conference has been made by Korushy 
and Sushko. The authors imbed the Haag — Kastler framework of local obser
vables into a Hilbert space formalism with a very aesthetic structure of superse-
lection rules. A Haag — Kastler local quantum theory [28] is a rigorization of the 
concept of a local Heisenberg field: To every open bounded region B cz i ? 4 one 
associates a C*-algebra % (B). Furthermore on the C*-algebra % generated by 
UB 2ï (B) there is a representation (a, A) ->- cC(a,A) G $ 0 °^ *^e Lorentz group 
iZJjl such that 

Finally one requires that 21 has at least one faithful irreducible representation. 
If 51 (B) is the algebra generated by all observables which can be measured 

in B, then all unobservable local quantities, as charged or fermion fields, should 
be constructed from the observable algebra 91, if 8T has the correct structural 
properties. This program has been pursued b y Borchers [29] . Recently Doplicher, 
Haag and Roberts [30] have investigated the structure of 8Ï implied by the exi
stence of a local field algebra 
[F (B)}. With this program i n mind 
the structure proposed b y Korushy 
and Sushko at this conference is 
very reasonable. A global von Neu
mann algebra R acts in a Hilbert 
space 3t = 0 Ma with superselec-
tion sectors tf£a in such a way that 
for every Wi £ Hai (i = 1, 2, 

^=a 2 ) the state (ù\pt+w2 on R, deter
mined b y + *P2, is a mixture. 
Furthermore, the set of all states 
f Ç for which coxp- is a pure 
state on R, is assumed to be dense 
in ffl. Then one obtains naturally 
by restriction to ffla that R = @ Ra, 
where all Ra are type I factors and 
are Haag — Araki theories, if R 
has this structure. Furthermore all 
superselection rules, w h i c h here are 
affiliated with the centre Q = 
= R f] R\ commute and, if the sub-
spaces ffl*a ( i ) and MÏÏa {i) generated 
by R and Rf applied to a pure sta
te qpa(i) G j t ë a ( i ) ( * = 1 , 2) h a v e 
equal dimension for i = 1, 2, then 
the coherent sectors {/?«<!), J # a ( i ) } Fig. 1. The field-theory tree (after A. M, Jaffe [31]). 
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and {Ra(2)j Ma (2)} are locally nnitarily equivalent. This is an interesting step 
forward towards the solution of the Fermi field problem within algebraic quan
tum field theory. 

Again the time is lacking to characterize the contributions by V. P. Gachok, 
L. Sli. Knodzaev, J . Lukierski, M. E . PerePman, Yu. M. Shirokov and 
B . L . Voronov at this conference. However, the names of all omitted authors 
should be sufficient to call to your attention their unbroken creativity. 

The conclusion of my talk is devoted to constructive quantum field theory, 
where many interesting new results have been obtained in the past two years. 
The variety of possible models is seen in a drawing by A. Jaffe called «the field-
theory tree» (Fig. 1) . The notation is as follows: upper indices — exponents; lo
wer indices — space-time dimension, O is a scalar, W a Dirac spinor field over 
an appropriate dimensional momentum space. 

The main stem (in double lines) has many intermediate steps. Each step is 
characterized by a new serious difficulty. One can proceed along the side lines, 
once the branching point has been climbed. P and Q are polynomials, E and F 
entire and R a rational function in <I>. 

Let me start with an open question: For none of the models on the field theory 
tree (except for <Dn) the existence of solutions have been shown which satisfy all 
Wightman or Haag — Araki axioms. The greatest difficulty still to overcome is 
the control of the infinite volume limit, the proof of Lorentz covariance in the 
physical representation with a physical mass spectrum. In view of the celebrity 
of this problem I propose that we start collecting founds for a prize for the first 
climber who reaches a non-tri vial iS-operator. 

For <I>! the present status is the following 
Theorem: For every % I> 0 and m > 0 there exist operator — valued tempered 
solutions of the field equations 

( 3 3 ) 

in Fock space F, with the initial conditions 

which are local and satisfy canonical commutation relations. Here 

and g £ S (R1) is any space-cut-off with g = g and g (y) = 1 for y £ [x — 
— J t\, x + ) t\ ]. The Heisenberg fields <D (/) = J dxdt 0> (x, t) f (x, t), f£D (B) 
are affiliated with local C*-algebras % (B) with a normcontinuous representa
tion a ( a ,A ) of îZ/4-, {%{B), a(a,A)} satisfies all Haag — K as tier axioms. There 
exists a physical representation n of {31 (B), a ( a 4)} (with only translation in
variance) in a separable Hilbert space with a unitary continuous representation 
Un (a, 1) of the translations with positive energy Hn^>0 and a cyclic invariant 
vacuum Qn. The vacuum expectation values (Qn, n (A) Qn) are limits of a se

quence of expectation values (Q n , AQn) 
of smeared-out ground states of H (gn), 
gn 1. For every bounded open B cz 
cz: i ? 2 , 8t (B) and n (2t (B)) are unitarily 

Fig. 2. equivalent. 
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These now almost classic results are mainly dne to Glimm and Jaffe (see 
132]). The main progress in the past two years has been 

(a) the proof of the Lorentz co variance of {9f (B)} [33], 
(b) a great simplification in the treatment of the local time evolution [34], 

2n 

(c) the extension of most of the <D2 results to polynomials P = ^ am : 

: <D0 (x)n: where a2n > 0 and to certain entire functions [34], [35], 
(d) for a class of anharmonic oscillators with N degrees of freedom and pro

bably for the space cut-off < D | — interaction the perturbation series for the ground-
state energy E (X) determines E (X) uniquely by an Abeli an summation [36]. 

The present state of ( ¥ ¥ < P ) 2 is rapidly approaching that of <P|, in spite of 
a considerable increase of difficulty. For the ^-operator one has logarithmic di
vergencies (Fig. 2). Thus perturbation theory suggests to study instead of H0 + 
+ VK (g), where with an ultraviolet cut-off % 

(37) 

the renormalized Hamiltonian 

£TX (g) = H0 + F x (g) + RK (g). (38) 

The renormalization part i ? x (g) should comprise the second order mass renormali
zation and the self-energy of Fig. 2. 

Theorem: There exists a choice of JRH (g) = MH (g)* and a positive self-adjoint 
H (g) = H (g) * >- 0 with a ground state Q (g), which is approximated by HH (g) 
for z f [0, oo) as 

(39) 

The proof of this theorem is due to Glimm and Jaffe [32] as well as the following 
remarkable result: 

Theorem: H (g) defines a local propagation in Fock space with a velocity not 
exceeding the speed of light. 

These results lead to the existence of solutions of the field equations 

where j (x, t) is defined as in (35) in the form Î (¥<P) (x, t), while / (xr t) is the 
weak limit [37] of % ( ¥ K ¥ K ) (x, t) — ômZ<DK (x, t)z 

The lesson to learn from <D| and from (¥¥<P) 2 is the following: In <p| 
one has presumably a 1—1 correspondence over a continuous range between the 
parameters of the theory m, X and the physical masses and coupling constants 

TO, X in the physical representation without space cut-off (as it is suggested by 
perturbation theory). For ( ? T O ) 2 one has to specify m, M, X and a family of 
mass renormalizations ôm^ (g) in order to obtain in the no cut-off limit the phy-
sical values my M, X. There is necessarily an infinite mass renormalization in 
ômi (g), while one can shift a finite mass renormalization from ômû (g) to w, M 
and X. The «bare» and the physical parameters are no longer equally well-defined. 
Quantum field theory as it emerges here in a completely rigorous and non-perturba-
tive setting gives no theory of the coupling constants which distinguishes bet-

ween ni, M and X over a continuous range. However, once these three parameters 
have been fixed, the predictive power of Yukawa models should be phantastic: 
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all nuclei in a two-dimensional world would emerge and hadron dynamics for all 
energies! The next level in the field theory tree is scarcely populated, in spite 
of the following beautiful result by Glimm [38]: 

Theorem: Let VK (g) = \&xg(x) : G>t Or, 0) : g - g* £ S ( i? 2 ) . There exist 
renormalizations RK (g) = RK (#)* in the form predicted by the divergent graphs 
(Fig. 3) and a truncation TK (g) of the perturbation series of the wave operator 
TK (g), such that for all cp, W from a dense domain D cz F 

Here TK (g): D F is invertible for x < oo, T (g) : D $C = T (g) D is an 
invertible mapping into a new Hilbert space J £ (with scalar product ( •, • )) 
and H (g) is a real, symmetric operator on T (g) D . From <D| on upwards the van 
Hove phenomenon forces us out of Fock space even for a space cut-off g £ S: Only 
on states with infinitely many high momentum particles (with probability one) 
the singularities of ZZ0, VK (g) and Rn(g) cancel for x oo. H (g) is expected to 
be bounded from below, but the proof of this highly non-trivial result has not yet 
been given. Osterwalder [39], however, has constructed the <P4-Hamiltonian 
by similar methods and has shown that its unboundedness from below is not 
destroyed by the rather violent positive infinite mass and energy renormalizati
ons and by the multiplication with zero in the wave function renormalization. 
Hence beware of classically non — sensical boson Hamiltonians! 

If one climbs further the field-theory tree towards ( ^ P ^ O j g , one encoun
ters the following obstacle: while the theory is still super-renormalizable and 
while the counterterms Ryc(g) ior the 5-operator can be easily found, not all 
divergent graphs cancel for x —>- oo in the wave-operators T% (g) in perturbation 
theory. One has reached the frontier of the «Stueckelberg divergencies)) [40] 
associated with an inappropriate sharp time propagation. Since one has always 
the identities (see [7]) 

in every order in VK (g) + RK (g), one is still tempted to generalize the O 3 — 
results, by finding a truncation TK(g) of (g) which (a) is given by a convergent 
series (b) and compensates all divergencies in the weak limit (41). However, (a) 
necessitates a rapid truncation in order to cope with the particle number diver
gence of quantum field theory, wThile (b) requires a very weak truncation. I t might 
be that (a) and (b) are incompatible. 

Thus there is not yet any indication how to generalize the present techni
ques to O f , (^^FcD)4 and quantum electrodynamics. Nevertheless, the past de
cade in constructive q u a n t u m field theory has brought to light many unexpected 
saving graces due to the interplay of locality and spectrum conditions and very 
physical results, which give us today more hope than ever that quantum field 

Fig. 3. 
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theory is a good framework for relativistic quantum mechanics. However, 4-di-
mentional quantum field theories might remain difficult to reach and to analyse 
for quite a long time. 

There is the wild hope among some of you that the difficulties on the field-
theory tree will decrease again, if one climbs higher in the non-polynomial interac
tions. This is an interesting idea which will should be tested with the full power 
of functional analysis. 

Diffusely-optimistically I see many fundamental and not completely unsol-
vable problems for the next decade. 

DISCUSSION 

M o r a v c s i k : 
You said that perturbation theory did not contain a theory of coupling constants, unless 

one fixed of the parameters in the theory. Does this imply something about the existence or 
non-existence of bootstrap type theories? 

H e p p : 
The two-dimensional local quantum field theories qp| and (Wx¥q>)2 do not show any «boot-

strap behaviour» which would single out discrete values for the masses and coupling constants. 
F a i n b e r g : 
I should like to ask you about Rinke's result. If we have the Wightman formulation of the 

theory with the asymptotic condition and the completeness (H = Hin)y is then Wightman's 
scheme empty, i. e. is it true that S = 1? 

H e p p : 
No. From any Wightman quantum field theory with a non-trivial unitary ^-operator we 

can construct a new theory (which according to our present criteria looks as good as the old one), 

where S is not unitary. It would be extremely satisfying to prove the converse of Rinke's theorem, 
that the equality of Hin and Hont and hence the unitarity of S on -ff0ut> can be obtained by simple 
algebraic changes within- the class of local quantum field theories. 

P o 1 i v a n o v: 
My question is again on the Rinke theorem, which seems to be very interesting in the respect 

of triviality criteria and model producing. Is the 5-matrix in it unitary or only a partially iso
metric operator with respect to the product Hilbert space? 

H e p p : 
The 5-operator is always partially isometric whenever the Haag-Ruelle construction of 

scattering states works. However, S needs not to be unitary. 
T o d o r o v: 
I have one question and one remark. 
1. I would like to ask about the relation between the work on non-localizable theories 

presented at this conference (and covered in the rapporteur's talk) and the published work of 
Hoegh — Krohn. I t was rigorously shown in this latter work that a non-polynomial interaction 
with bounded Lagrangian density leads to a trivial 5-matrix in the canonical quantization scheme. 
I think that this paradox is explained by the fact that Efimov et al . postulate quite arbitrarily 
the form of the superpropagator and do not deduce it from the non-polynomial Lagrangian. 
I would like to know whether Prof. Hepp would agree with this interpretation. 

2. My comment is concerned with the discussion of the generalizations of the Wightman 
axioms. It seems to me that most natural extension of the class of distributions which still 
gives room for local fields is the class of localizable theories in the terminology of Prof. Hepp 
(or «nonrenormalizable theories of the first kind» in the terminology of B . Schroer, J . Math. 
Phys. 5, 1361 (1964). I think that this type of theories, whose significance seems to have been 
underestimated untill recently, is both general and simple enough to apply in concrete problems. 
One such application was made by A. I . Oksak and myself «Degeneracy of the mass spectrum for 
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local infinite component fields». Proceedings of the Coral Gables Conference (1970) and Phys. 
Rev. D (1970) (to appear). It extends the Grodsky and Streater «no-go» theorem to nonrenorma-
lizable theories. The theorem says that an irreducible infinite-component local field yields an 
infinitely degenerate mass spectrum. 

H e p p: 
The work reported here on nonpolynomial interactions is a natural generalization of the 

perturbative treatment of polynomial interactions. In the same sense as there, the 5-operator is 
nontrivial. 

E f i m o v : 
Firstly I would like to answer the question of Prof. Todorov. The result of Hoegh — Krohn 

follows from the assumption that the interaction Lagrangian is chosen in nonnormally ordered 
form. It is not valid in the usual case when we choose the normally ordered interaction Lagran
gian. Secondly, 1 want to say something about the ambiguity in the construction of the S-matrix 
with nonlinear interaction Lagrangians. The main problem is to find such methods which con
centrate all the ambiguity in the second order of the perturbation theory and secure unitarity 
and causality of our theory in the highest orders. There are not so many methods of such a kind 
and it is not so simple to find them. These are methods suggested by E . Fradkin and myself in 
1963, nonlocal methods and Volkov's methods. Now the problem is to give the physical meaning 
of these methods. 

I would like to say several words about Christ's work. This model was considered by 
M. Volkov several years ago. Dr. Christ have to introduce the new prescription in the highest 
orders of the perturbation theory to secure unitarity. 

J . G. T a y l o r : 
I have a comment to make about what it could be like at the top of the Jaffe tree. Whilst 

it is expected to be greener up there it could also be a lit t le dizzy up there. In particular, not all 
nonlocalizable interactions give finite results, and in some cases even have an infinity of different 
divergences, or ambiguities, even though they are all at most quartic or cubic, etc. , according 
to the model. This means that in order to get a theory of the renormalization constants it is ne
cessary to make a choice of theory, for example by using general relativity along the lines sugges
ted by Markov and Salam. It is here that physics enters; I hope that those working at the top 
of the tree, doing physics and those at the bottom, doing functional analysis, keep good contact 
and remain good friends! 

B o g o 1 u b o v: 
It is interesting to note that the profound remarks of Stueckelberg about the particular 

type of divergences which was made about 20 years ago, was not appreciated for a long time after 
and now in the report of Prof. Hepp we have seen a concrete example of «Stueckelberg diver
gence». 

A. T . F i 1 i p p o v: 
I would like to make a comment on the problem of the unique prescription for constructing 

the super propagator. The two essentially different approaches to this problem were developed 
simultaneously and independently by M. K. Volkov and by B . A. Arbuzov, N. Atakishiev and 
myself (Yadern. Fiz. 8, (1968) 385), both of them leading to the same expression for the super-
propagator. The essential feature of the expression is its non-analytic behaviour in the coupling 
constant g for g = 0 (in fact it has the logarithmic branch point). This fact has the close analogy 
in the behaviour of the Green's functions for nonrelativistic scatte ring on singular potentials 
and we have obtained the superpropagator by the method which is closely related to one used 
in the singular potential case. In fact, we have directly summed all the Feynman diagrams in 
Euclidean momentum space (with a cut-off) by converting the integral equation for the super-
propagator into the differential one. It is very important that there exists a class of problems 
(e. g. the summation of the ladder-type diagrams for the vertex functions or scattering ampli
tudes), for which our method gives the unique result, rigorously obtainable by the direct summa
tion of diagrams in the Minkovsky momentum or coordinate space. So, I would like to conclude 
that the prescription used to obtain the unique (up to one arbitrary real constant) superpropaga
tor is indeed the most natural one from the physical point of view. 
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P o l i v a n o v : 
You mentioned a demonstration by Jaffe that his models satisfy Haag — Araki axioms. 

Within this formalism, translation invariance and Lorentz invariance differ because only for 
translation invariance it is known that it is affiliated with the algebra of observables. 

Is Lorentz covariance in Jaffe models proved by usual means of the Haag — Araki approach 
or is it directly demonstrated by construction from Lorentz-covariant fields? 

H e p p: 
In the proof of Lorentz covariance one constructs for every bounded region B a R% 

a Lorentz boost M which satisfies CD (x ch £5 + čsh P, t ch P -f- x sh |3) — exp (i$M) <D (x, t) exp X 
X ( - * P M ) . 

P o l i v a n o v : 
It is very instructive in my opinion that cluster decomposition proves to be such a loose 

condition, that i t is satisfied even by the theories having no vestige of locality as is shown by 
an example given by Martin et al . From the light-minded point of view that is good, because it 
seems we can abandon the notion of field and preserve in a sense ^-matrix and Haag — Ruelle 
theory. But we lose in this way all the space-time structure which is so characteristic of a field 
theory and it seems to me to lose also a possibility of any real description of processes in which 
we are interested and which place in the same space-time. 

C h r i s t : 
I would like to reply to Efimov's criticism of the work which I presented in the Conference. 

Although my work in 2nd order corresponds to that which Volkov performed several years ago, 
I extend his method to give unitary results in higher order. I believe that I do not introduce new 
methods to overcome new difficulties that occur in higher order but use to same method to 
define higher order amplitudes that was used in 2nd order. The result is a prescription to define 
a unique scattering matrix 2nd, 3rd and 4th orders, and perhaps higher order. 
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