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Abstract. The capacitated arc routing problem (CARP) is a challenging vehicle routing problem with numerous

real-world applications. In this paper, an extended version of CARP, the multi-depot multi-objective capacitated arc

routing problem (MDMOCARP) is proposed to tackle practical requirements. Firstly, the critical edge decision

mechanism and the critical edge random allocation mechanism are proposed to optimize edges between depots.

Secondly, a novel adaptive probability of local search with fitness is proposed to improve the Decomposition-Based

Memetic Algorithm for Multi-Objective CARP (D-MAENS). Compared with the D-MAENS algorithm, experimental

results on MD-CARP instances show that the improved memetic algorithm (IMA) has performed significantly better

than D-MAENS on convergence and diversity in the metric IGD and the metric HV.

1 Introduction
Capacitated Arc Routing Problem (CARP) [1] has wide
real-world applications such as snow removal [2], urban
waste collection [3-4], pipeline repair [5] etc. Today, these
practical issues that are closely related to the logistics
transportation have become very important to the
government administration. For example, in order to
prevent roads from freezing and reduce the traffic
accidents, the UK spends millions of pounds on salting in
the relevant streets each year.

With the development of society, the typical CARP
model cannot meet the actual needs of complexity.
Therefore, the application of the CARP model has been
widely concerned by researchers. To fulfil the needs of
application, some extended versions of CARP were
considered, such as the multi-objective CARP [6], the
multi-depot CARP [7], the periodic CARP [8] and so on.

Recently, a number of researchers have done a lot of
work on multi-depot and multi-objective. Multi-depot
CARP (MDCARP) is the CARP with more than one
depot or one center. Amberg et al. [9] described a minimal
Euler graph, and transformed the problem into the
capacitated minimum spanning tree to solve MDCARP
early. However, the method only applied to the undirected
graph and found the local optimal solution. Kansou et al.
[10] insert the ant colony into the sequence of tasks and
uses heuristic information to insert the appropriate
location, thus proposed a new ant colony algorithm (ACs)
to solve MDCARP. Xing et al. [11] improved

augment-merge, path-scanning, and the Ulusoy-split,
which seeks good quality feasible initial solutions.
Krushinsky et al. [7] proposed a dual-index MILP model
based on asymmetric multi-depot problem. Oliveira et al.
[12] proposed a problem decomposition approach. The
task or customer is allocated to the depot based on the
distance so that each sub-problem becomes a single depot
problem. But the repair operator needs to remove
duplicate tasks which lead to the new cost.

On the other hand, in the multi-objective CARP
(MOCARP), Lacomme et al. [13] studied the
two-objective capacitated arc routing problem model to
meet the needs of Troyes in waste collection, and solved
the problem by using NSGAII algorithm. Mei et al. [14]
proposed the decomposition based memetic algorithm for
multi-objective capacitated arc routing problem
(D-MAENS), which combines the MAENS algorithm
with a multi-objective evolutionary algorithm framework
based on problem decomposition. Shang et al. [15]
improved the update mechanism and intended to an
improved decomposition-based memetic algorithm for
MOCARP. Shang et al. [16] used the routing distance
grouping strategy to reduce the scale of the problem in
large-scale MOCARP.

However, little attention has been paid to the
multi-depot multi-objective capacitated arc routing
problem (MDMOCARP). In part, these observations
motivated our study. Therefore, this paper contributes to
constructing a MDMOCARP model. An improved
memetic algorithm (IMA) with the critical edge decision
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mechanism and the critical edge random allocation
mechanism is proposed. In order to control local search
frequency, we develop an adaptive probability of local
search. In order to better solve the MDMOCARP model
and increase its application range.

This paper is organized as follows. The next section
gives the mathematical description of the problem and the
improved memetic algorithm. The third section presents
the results of our experimental studies, which compare
the D-MAENS algorithms using the MDCARP instances.
The conclusion is provided in section 4.

2 Model establishment and algorithm
improvement

2.1 The MDMOCARP model

In this section, the mathematical model is described for
the multi-depot multi-objective CARP. The main purpose
of the model is to minimize the total cost of all the tours
and to minimize the largest consumption of m vehicles.
Because in the actual CARP, if the area of the vehicle
requiring service is expanded, it is necessary to use
multiple-depot for service. At the same time, only
minimizing the total cost cannot meet the actual demand.
In addition, minimizing the maximum loop cost is needed
to ensure the optimization effect of arc path. For
convenience, the following necessary assumptions are
given:
1. Each route must start and end the same depot.
2. The vehicle only serves once for the task side.
3. The total demand of served tasks cannot exceed the
capacity Q of the vehicle.
4. All edges in the connected graph are allowed to
traversed by vehicles of different depots, but only
serviced by the vehicle of the belonging depot.

Table 1. The definition of variables.

Variables Definition
iv The vertices of the graph
( , )i jtc v v The cost of traversing the edge
( , )i jsc v v The cost of serving the edge
( , )i jd v v The service demand of the edge ( , )i jv v

( , )i j

d
h v vx The 0-1 variable, ( , ) 1

i j

d
h v vx  is the depot

d and the vehicle h serves from iv
to jv ; otherwise ( , ) 0

i j

d
h v vx 

( , )i j

d
h v vy The 0-1 variable, ( , ) 1

i j

d
h v vy  is the

depot d and the vehicle h traverses
from iv to jv ; otherwise ( , ) 0

i j

d
h v vy 

d The depot ID number
h The vehicle ID number
n The depot total number
m The vehicle total number
d
hL The length of the task sequence of the

vehicle h in the depot d

( )dhTc L The total cost of the h vehicle in the
depot d

As Table 1 shows, the key variables are defined. The
graph is presented by ( , )G V E , as shown in Figure 1.

  1 2= , , w nV v v v  is the set of vertices in a graph.

  1 1 2, ,w w w nV v v v V    indicates that there are n

depots in the graph. An edge ( , )i jv v E is directed
edge from iv to jv .

Figure 1. The schematic diagram of MDMOCARP model.

Based on that, the mathematical model can be given
as follows.
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Here, the target 1f is to minimize the total cost and
the target 2f is to minimize the largest consumption of
m vehicles. The constraint (3) is the total cost of the
vehicle h of the depot d . The constraint (4) ensures
that vehicle h start at the depot and return to it when the
service is completed. The constraint (5) means that the
task side is served only once. The constraint (6) is that all
sides in the graph allow the vehicle to pass through
indefinitely. The constraint (7) requires that the total
demand cannot exceed the capacity Q of the service
vehicle. When the vehicle is servicing a task edge, it must
pass through the task edge by constraint (8).
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and increase its application range.

This paper is organized as follows. The next section
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Here, the target 1f is to minimize the total cost and
the target 2f is to minimize the largest consumption of
m vehicles. The constraint (3) is the total cost of the
vehicle h of the depot d . The constraint (4) ensures
that vehicle h start at the depot and return to it when the
service is completed. The constraint (5) means that the
task side is served only once. The constraint (6) is that all
sides in the graph allow the vehicle to pass through
indefinitely. The constraint (7) requires that the total
demand cannot exceed the capacity Q of the service
vehicle. When the vehicle is servicing a task edge, it must
pass through the task edge by constraint (8).
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2.2 Improved memetic algorithm

For MDMOCARP, an improved memetic algorithm (IMA)
is proposed based on D-MAENS [14]. In the section, we
first described the critical edge decision mechanism
considering two indicators of distance from the task side
to depots and demand on the task side. Then we design
the critical edge's random allocation mechanism. Finally,
we present the adaptive probability of local search.

2.2.1 Critical edge decision mechanism

In the multi-depot problem, we generally need to convert
multiple depots into a single depot. Different conversion
strategies affect the final optimization results. In order to
gain the global optimization, this paper uses the critical
edge optimize. The distance between the task edge and
the depots and the demand of the task edge are the
criterion for determining the critical edge.

1

2

( ,( , ))
*( ( , ) / )

( ,( , ))
w i j

i j
w i j

task v v v
d v v capacity

task v v v
  




(9)

Where,  is the threshold. 1( ,( , ))w i jtask v v v and

2( ,( , ))w i jtask v v v are the distance from the edge to
depot 1w and 2w . ( , ) /i jd v v capacity denotes the
proportion of the demand of the edge and the capacity of
vehicle.  refers to the weight parameter.

2.2.2 Critical edge random allocation mechanism

In order to efficiently handle MDMOCARP, we
propose the critical edge random allocation mechanism.
The critical edge random allocation mechanism is
described as follows:
Algorithm 1: Critical edge random allocation mechanism
Input:
Critical edge set ( , )i jv vT E

The present best solution: S
Output:
The best solution: *S
1. Randomly select n edges from the set ( , )i jv vT

2. Assign n edges randomly to a depot
3. Use the IMA algorithm to solve the problems of each
depot, and generate a global new solution
4. Replace if the offspring solution is better than the
previous solution
5. Count the number of new solutions without
replacement with numb
6. If numb reaches _MAX numb , it will exit or it will be
converted to step 1

2.2.3 Adaptive probability of local search

In the process of evolution, local search occupied a lot of
computer resources, and it is not efficient that the same
local search probability is applied to the search
individuals. we design an adaptive probability of local

search with the fitness of the individual for
multi-objective optimization. The main ideas are local
search is only allowed when needed and adaptive
probability which increases with the fitness of the
individual.
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0,
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 
 

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(13)

Here, avefit and bestfit represent the average value
of fitness of the individual and the best value of fitness.
the deviation rate denoted by  in the formula (10).

ifit is the fitness of the i . k means adjustment factor,
0.1k  . popsize is the population size. P represents

the adaptive probability of local search.  is set as
0.01.

3 Experiment analysis

3.1. MDCARP instances and parameter settings

The MDCARP instances [10] called md-Golden are
obtained by adding depots in the basic CARP instances. It
includes the 23 CARP instances. The size of instances is
from 7 to 27 vertices and 11-55 required edges. It has two
depots, at the first node and at the final node.

The IMA was implemented in Visual C language, and
all experiments were run on a personal computer with the
3.0GHZ processor and 8GB memory. The parameters
were: The population size is 30. The maximum number of
iterations was 1000. The maximum number

_MAX numb of depot cycle was 100. The parameter
settings of the probability of local search for D-MAENS
was 0.2.

3.2 IMA algorithm threshold value  analysis

The IMA algorithm uses threshold  to determine
critical edge, so we need analyze it. Seven kinds of
thresholds  were analyzed, which were 0.5, 0.6, 0.7,
0.8, 0.9, 1.0, 1.1, respectively with the instance g12. IMA
algorithm was run 10 times independently, and gained the
average of the total cost. The results are presented in
Figure 2.

In the Figure 2, it can be found that when the
thresholds are in the middle of 0.6 and 0.8, the total cost
can get better optimization results. Therefore, the
threshold of 0.7 is more reasonable in the IMA.
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Figure 2. The total cost for different thresholds value  .

3.3 Comparison between D-MAENS and IMA

The two performances metrics evaluate the performance
of the two algorithms. one is the inverted generational
distance from reference set (IGD) [17], which indicates
the convergence and diversity of a solution set in
multi-objective problem. Another one is hypervolume
(HV) [18], which mainly describes the convergence and
diversity of a solution set in a sense. Each algorithm was
run 30 times on each test instance and the average of the
indicators was calculated for comparison. If an indicator
of the algorithm is better than other algorithms, it will be
bolded.

Table 2. Results of D-MAENS and IMA.

Instances V E d D-MAENS IMA
IGD HV IGD HV

g1 12 22 1, 12 8.64 658 8.28 735
g2 12 26 1, 12 10.75 633 9.71 577
g3 12 22 1, 12 9.86 900 8.79 719
g4 11 19 1, 11 35.06 434 35.31 414
g5 13 26 1, 13 15.42 851 13.09 1056
g6 12 22 1, 12 17.46 1121 15.25 962
g7 12 22 1, 12 18.43 1862 18.31 1977
g8 27 46 1, 27 23.36 291 23.11 380
g9 27 51 1, 27 5.76 356 5.91 384
g10 12 25 1, 12 16.17 1620 16.08 1502
g11 22 45 1, 22 13.55 5129 14.60 1312
g12 13 23 1, 13 7.27 900 7.15 970
g13 10 28 1, 10 80.38 7624 93.98 9500
g14 7 21 1, 7 6.34 274 6.56 365
g15 7 21 1, 7 1.37 412 1.22 150
g16 8 28 1, 8 7.07 221 6.55 253
g17 8 28 1, 8 1.15 76 1.68 78
g18 9 36 1, 9 14.64 569 13.11 315
g19 8 11 1, 8 0.02 55 0.023 55
g20 11 22 1, 11 13.03 96 1.56 343
g21 11 33 1, 11 14.97 495 9.23 352
g22 11 44 1, 11 13.29 514 12.34 683
g23 11 55 1, 11 10.13 363 10.64 432

Table 2 shows the attributes of the instances and the
experimental result for the IMA performance. It can be
seen that the IMA performs better than D-MAENS on 15
out of the 23 instances in the metric IGD. The average
HV result is obtained by IMA and D-MAENS. It can be
found that IMA obtains a better solution on 13 out of the
23 instances.

Table 3. The best solution of D-MAENS and IMA.

Instances V E d
D-MAENS IMA

1f 2f 1f 2f
g1 12 22 1, 12 320 76 300 63
g2 12 26 1, 12 352 62 321 59
g3 12 22 1, 12 307 63 263 59
g4 11 19 1, 11 310 63 266 59
g5 13 26 1, 13 379 63 361 64
g6 12 22 1, 12 323 68 301 60
g7 12 22 1, 12 345 72 326 72
g8 27 46 1, 27 350 38 334 39
g9 27 51 1, 27 305 37 286 35
g10 12 25 1, 12 284 66 282 63
g11 22 45 1, 22 397 84 387 84
g12 13 23 1, 13 480 77 446 81
g13 10 28 1, 10 536 151 515 120
g14 7 21 1, 7 107 21 92 21
g15 7 21 1, 7 58 15 58 15
g16 8 28 1, 8 125 29 125 20
g17 8 28 1, 8 91 13 91 13
g18 9 36 1, 9 168 26 140 24
g19 8 11 1, 8 55 21 55 21
g20 11 22 1, 11 121 30 121 34
g21 11 33 1, 11 158 30 128 28
g22 11 44 1, 11 201 29 184 31
g23 11 55 1, 11 233 26 223 28

In the Table 3, the nondominated solutions of the
multi-objective functions are indicated. It can be seen that
the IMA gains the better solutions for 14 out of 23
instances, while the D-MAENS only gains one better
solutions. Figure 3 shows the nondominated solutions of
the two algorithms after 30 independent runs. Due to
limited space, the test instances of g1, g10, g14 and g21
only are displayed. It can be seen clearly that the IMA
solution sets are better close to the Pareto-Optimal Front
than D-MAENS.

Therefore, it can conclude that the performance of
IMA is much better than the D-MAENS in the
convergence and diversity of a solution set for
MDMOCARP. The IMA considers the critical edge
assignment problem in arc path optimization. The overall
optimization of the arc path can effectively reduce the
total cost and the largest consumption of vehicles.
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solutions. Figure 3 shows the nondominated solutions of
the two algorithms after 30 independent runs. Due to
limited space, the test instances of g1, g10, g14 and g21
only are displayed. It can be seen clearly that the IMA
solution sets are better close to the Pareto-Optimal Front
than D-MAENS.

Therefore, it can conclude that the performance of
IMA is much better than the D-MAENS in the
convergence and diversity of a solution set for
MDMOCARP. The IMA considers the critical edge
assignment problem in arc path optimization. The overall
optimization of the arc path can effectively reduce the
total cost and the largest consumption of vehicles.
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Figure 3. The nondominated solutions of the two algorithms.

4 Conclusion
In this paper, we study the multi-depot multi-objective
Capacitated Arc Routing Problem, which is a more
practical version of the CARP, and propose the
multi-depot multi-objective CARP model. this model has
two objective functions in the multi-depot, minimizing
the total cost and minimize the largest consumption of
vehicle. The IMA is proposed to solve the problem, which
has the critical edge decision mechanism, the critical edge
random allocation mechanism and a novel adaptive
probability of local search with fitness of the individual.

Simulation results show that the IMA is competitive
with respect to improving the quality of the non-dominant
solution. Appropriate selection and distribution of critical
edges can better optimize the routing, and reduce costs
greatly.

In the future, some practical problems remain
unsolved. Firstly, we will study the arc routing problem
with the fuel consumption or the carbon dioxide
emissions. Secondly, more efficient local searches
probability needs to be studied to reduce computational
costs and time. Finally, we only analyse the threshold, so

we need to analyse more parameters in the future so that
the algorithm achieves better results.
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