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Abstract

With the computer hardware industry and the academic world focused on multi-
processor systems, the RAMP project is aiming to provide the infrastructure for
supporting high-speed emulation of large scale, massively-parallel multiprocessor sys-
tems using FPGAs. The RAMP design framework provides the platform for building
this infrastructure. This research utilizes this design framework to emulate various
microprocessor memory systems through a model built in an FPGA.

We model both the latency and the bandwidth of memory systems through a
parameterized emulation platform, thereby, demonstrating the validity of the design
framework. We also show the efficiency of the framework through an evaluation of
the utilized FPGA resources.
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Chapter 1

Introduction

To continue improving system performance both the computer hardware industry

and the academic world shifted its focus from high speed single core systems to

massively-parallel multi-core systems. The RAMP (Research Accelerator for Multi-

processors) project was initiated with an aim to develop infrastructure for supporting

high-speed emulation of large scale, massively-parallel multiprocessor systems us-

ing Field-Programmable Gate Arrays (FPGA) platforms, thereby, enabling research

on multicore operating systems, compilers, programming languages and scientific li-

braries as well as hardware multiprocessor systems to be carried out [1].

FPGAs became the platform of choice for the following reasons.

" They provide a very rapid turnaround for new hardware designs.

" They provide operating speeds of 100 to 200 MHz which are slower than real

hardware but are orders of magnitude faster than those of software simulators.

* Exploiting Moore's Law, their density is growing at about the same rate as the

number of cores per microprocessor die.

" They are cheap and have low power consumption.

In order to meet the goals of the RAMP project a standardized design framework

called the RAMP design framework (RDF) [1, 2] was developed. In this thesis we use

this framework to to emulate various microprocessor memory systems through a model
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built in an FPGA. We model both the latency and the bandwidth of memory systems

through a parameterized emulation platform, thereby, demonstrating the validity of

the design framework. We also show the efficiency of the framework through an

evaluation of the utilized FPGA resources.

1.1 Related Research

FPGA-based emulation platforms for parallel systems date back to the RPM project [3].

With the computer hardware Industry and the academic world focused on multicore

systems and the increasing FPGA densities, there is a renewed interest for such sys-

tems. FAST [4] is an FPGA-based framework for modeling chip multiprocessors

(CMPs) with MIPS cores, and ATLAS [5] is the first prototype for CMPs with hard-

ware support for transactional memory.

Research efforts have also focused on using the FPGAs to accelerate simulators [6,

7, 8]. Hong et al. have used FPGAs in a working system to quickly simulate various

configurations of lower level caches [9]. Finally, there have been efforts to map large

out-of-order processors using FPGAs as a prototyping medium [10].

1.2 Thesis Outline

Chapter 2 describes the RAMP design framework in detail. We begin by defining

the RAMP target model where we provide the details of the RAMP unit. We then

define the notion of time in the RAMP target model. We also provide the details

of the RAMP channel model. We conclude the chapter with a description of the

components of the RAMP host model.

Chapter 3 provides a description of the emulation platform while chapter 4 pro-

vides the details of the host model. We describe all the components of the emulation

platform in detail and provide an example implementation of the host model.

In chapter 5 we configure the emulation platform with five different sets of pa-

rameters. Using these parameter sets, we model both the latency and the bandwidth

9



of memory systems. We then analyze the performance of the platform using SMIPS

benchmarks. We also provide the details of the resources utilized by the host model.

The thesis concludes with chapter 6, which provides a summary of the research.
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Chapter 2

RAMP Design Framework

In order to enable high-performance simulation and emulation of large scale, massively

parallel systems on a wide variety of implementation platforms and to enable a large

community of users to cooperate and build a useful library of inter-operable hardware

models, a standardized framework, called the RAMP design framework (RDF), was

developed [1, 2]. The design framework has a number of challenging goals.

* The framework must support both cycle-accurate emulations of detailed param-

eterized machine models and rapid functional-only emulations.

" The framework should also hide changes in the underlying RAMP implemen-

tation from the designer as much as possible, to allow groups with different

hardware and software configurations to share designs, reuse components and

validate experimental results.

* In addition, the framework should not dictate the implementation language

chosen by the developers.

In RDF the design of interest, e.g. the one being emulated, is referred to as the

target, whereas the machine performing the emulation is referred to as the host.

'The RAMP design framework description presented in this chapter is a condensed version of a

previous publication [2]. It is included here for completeness.
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2.1 RAMP Target Model

A RAMP target model [2] is a collection of loosely coupled units communicating

using latency-insensitive protocols implemented by sending messages over well-defined

channels. In practice, a unit will typically be a relatively large component, consisting

of tens of thousands of gates in a hardware implementation, e.g. a processor with Li

cache, a memory controller or a network controller. All communication between units

is via messages sent over unidirectional point-to-point inter-unit channels, where each

channel is buffered to allow the units to execute decoupled from each other.

Sending Unit Receiving Unit

........Channel

Datao~u4;4 Datain

_ ata~ut_READY Dataln READ

_Data~ut_WRCTE Datain READY

Port "DataOuf --- Port "Datain

Figure 2-1: RAMP Target Model

RAMP is designed to support a wide range of accuracy with respect to timing,

from cycle accurate simulations to purely functional emulations. Purely functional

emulations of course represent the simple case, where no measurement of time is

required, and any which exist are incidental. However, because a RAMP simulation

may require cycle accurate results, an implementation must maintain a strict notion

of time with respect to the target system. Thus the term target cycle is introduced

to describe a unit of time in the target system [2].

In order to take into account semi-synchronous systems a unit is defined as a single

clock domain. This means that the target clock rate of a unit is the rate at which

it runs relative to the target design. For example, the CPUs will usually have the

highest target clock rate and all the other units will have some rational divisor of the
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target CPU clock rate. This implies that two units at each end of a channel can have

different target clock rates, further complicating cycle accurate simulation.

Two units at each end of a channel are only synchronized via the point-to-point

channels. The basic principle followed is that a unit cannot advance by a target

clock cycle until it has received a target clock cycle's worth of activity on each input

channel and the output channels are ready to receive another target cycle's worth

of activity. This scheme forms a distributed concurrent event simulator, where the

buffering in the channels allows units to run at varying target and host rates while

remaining logically synchronized in terms of target clock cycles.

It should be noted that time in the target system is purely virtual, and thus

is not tightly coupled to either the real time or the host system's notion of time.

The primary goal of the RAMP Design Framework is to support research through

system emulation, not to build production computing systems. This distinction is

particularly important for hardware (FPGA) host implementations: the goal is not

to build computers from FPGAs.

Start __Done

A

AREAD

_AREADY C

Port "A" UJnit _C_READY

B _C_WRITE

Port "C"
B_READ

_B_READY

Port "B"

Figure 2-2: RAMP Target Unit Interface
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Figure 2-2 shows a schematic of the interfaces of the RAMP target unit [2]. Each

port has a FIFO-style interface which provides a natural match to the channel se-

mantics. Input messages are consumed by asserting the appropriate _XREAD when

the associated _X-READY is asserted. Similarly output messages are produced by as-

serting -X_WRITE, when the associated _X-READY is asserted. Each port is also given a

message size or bitwidth. In addition to the ports, there are two connections, -Start

and -Done, which are used to trigger the unit to perform one target cycle worth of

action.

2.2 RAMP Channel Model

The key to inter-unit communication, as well as many of the fundamental goals of

the RAMP project, lies in the channel model.

The target channel model [2] is lossless, strictly typed, point-to-point, and unidi-

rectional with ordered delivery. This should be intuitively viewed as being similar to

a FIFO or a circular queue with single input and output, which carries strictly typed

messages.

Channels are strictly typed with respect to the messages they can convey. A

message in RAMP is the unit of data which a channel carries between units, however,

this does not in any way restrict the use or movement of data within a unit. In

keeping with the flexibility goal of RAMP, and to expand its utility as a performance

simulation platform, the concept of a message fragment is introduced. It is the unit

of data which a channel carries during one target cycle. Figure 2-3 illustrates the

difference between a message and a message fragment.

Fragments provide RAMP with a great deal of flexibility in the performance of

channels. Fragmentation allows RAMP to decouple the size of messages, which is

a characteristic of a unit port, from the size of data moving through the channels.

This allows channels to be parameterized with respect to key performance parameters

without sacrificing interoperability.

There are three primary variables associated with every channel: bitwidth, latency
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Sending Unit Message (4ob) Receiving Unit

Channel
b 8b

8b 8b

-- 7

4b 8b

Fragment (8b)

Figure 2-3: Message Fragmentation

and buffering. Of course to be useful a channel must have a minimum bitwidth of 1.

However in order to ensure that the RAMP architecture can be feasibly implemented

and maintain a complete decoupling between units, both the latency and buffering

must be at least 1.

The minimum latency of 1 simply states that the receiving unit cannot receive

a message in the same cycle that the sender sends it in. This is required in order

to ensure that all messages may be presented to a unit at the beginning of a target

cycle, while it may send a message at any point during the target cycle.

The minimum buffering requirement of 1 exists so that two units connected by a

channel may not have a control dependency of zero cycles. This is because without

this minimum buffering the sending unit's ability to send a message in a certain cycle

will depend directly on whether or not the receiver receives a messages in that same

cycle.

With these two minimum requirements, a natural and efficient implementation of

the handshaking is a credit based flow control as shown in figure 2-4.

The benefit of enforcing a standard channel-based communication strategy be-

tween units is that many features can be provided automatically. Users can vary the

latency, bandwidth and buffering on each channel at configuration time.

15



Latency Buffering
data-

-- l rdy
Z enq- credit - - d 0

count A s M d
.S; rdy --- 4+- deq Z.

I I C
V)

Figure 2-4: RAMP Target Channel

2.3 RAMP Host Model

The RAMP host model [2] is composed of the following constructs.

2.3.1 Wrappers

Wrappers encapsulate units and provide the functionality described below.

" Multiplexing of messages down to fragments. In fact, the wrapper is also re-

sponsible for converting from whatever data representation is supported by the

target level, to whatever representation is required to actually transport data

over links.

* Demultiplexing of fragments to messages.

" Target cycle firing. This includes the logic used for determining when a target

cycle may begin based on incoming fragments.

" Enforcement of channel semantics. This includes ensuring that no more than

one message is read or written through each port on a given target cycle. It also

includes ensuring that message transmission and reception is atomic, despite the

fact that message delivery, because of fragmentation, is not.

16



2.3.2 Links

Links are the host level analog of channels. Unlike channels though, RDF imposes

almost no restrictions on links other than their ability to support the channel model

described earlier. Examples of links include direct hardware implementation of reg-

isters and FIFOs and software circular buffers.

2.3.3 Engine

In addition to wrappers and links, most implementations of a RAMP design will

require some way to drive them, e.g. a clock in hardware or a scheduler in software.

The exact job of an engine is to decide when and which wrappers are allowed to run,

often in conjunction with the wrappers themselves.

17



Chapter 3

Emulation Platform

The goal of this research was to build a platform for emulating various microprocessor

memory systems using the design framework described in chapter 2. Figure 3-1 is

a schematic that shows the emulation platform. This chapter describes the various

components of this platform in detail.

3.1 Processor Unit

The components of the processor unit and their functionality are outlined below.

3.1.1 SMIPS Processor

SMIPS is a version of the MIPS instruction set architecture (ISA), and it stands for

Simple MIPS, since it is actually a subset of the full MIPS ISA. It has the following

features.

* It includes all of the simple arithmetic instructions except for those which throw

overflow exceptions. It does not include multiply or divide instructions.

" It only supports word loads and stores.

* All jumps and branches are supported.

" It does not support interrupts, and most of the system co-processor instructions.

18
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For a complete listing of the SMIPS instruction set, please refer to Appendix A.

BTB Register File

Fetch -- - - - Execute - --- - - Writeback

epoch P -*pcQ wbQ

instReqQ dataReqQ

Figure 3-2: SMIPS Processor

Figure 3-2 shows the SMIPS Processor. It is a 3-stage pipeline and implements the

above-described subset of the MIPS ISA. It also includes an 8-entry Branch Target

Buffer (BTB) for predicting branch instructions. It is connected to the instruction-

side and data-side caches by instruction request and response queues and data request

and response queues, respectively.

The processor was developed as an assignment in course 6.375: Complex Digital

Systems. It was coded in Bluespec [11].

3.1.1.1 Operation

The Fetch stage generates the next instruction address using the pc register, and sends

it to the instReqQ FIFO. It also writes the current pc+4 to the pcQ FIFO for use in

branch instructions. The response from the instruction-side cache is placed into the

instRespQ FIFO. Then the Execute stage takes the response out of the FIFO, reads

20



the register file, and performs the required operation. The result of the execution is

placed into the wbQ FIFO. If the instruction is a load or a store, a memory request

is placed into the dataReqQ FIFO. The Writeback stage is responsible for taking the

final result from the wbQ FIFO and the dataRespQ FIFO, and actually updating the

register file.

The processor correctly detects dependencies - in this case only the read-after-

write (RAW) hazards - and stalls the pipeline when these dependencies occur. De-

pendency checking is achieved by implementing the wbQ FIFO as a searchable FIFO

with two find methods. There are two find methods because an instruction can have

a maximum of two source operands.

In order to handle mispredicted branches we use a register called the epoch. An

epoch is a conceptual grouping of all instructions in between branch mispredictions.

The Fetch stage sends the epoch as the tag for all load requests. When a mispredict

occurs we clear all the queues which are holding the instructions issued after the

branch instruction, and increment the epoch. Then the Execute stage discards all

responses from the wrong epoch.

All the FIFOs are sized appropriately and have good scheduling properties for

achieving high throughput. In case of a hit, both the caches have a read/write latency

of 1 cycle, hence, the maximum achievable instruction per cycle (IPC) count is 0.5.

3.1.1.2 Branch Prediction

In order to improve performance we implemented a simple direct-mapped branch-

target-buffer (BTB). We predict only branch instructions. The predictor contains an

eight-entry table where each entry in the table is a <pc+4,target> pair. There is a

valid bits associated with each entry so that we can correctly handle the uninitialized

entries.

In the Fetch stage, the predictor uses the low order bits of pc+4 to index into

the table. We use pc+4 instead of pc because it makes the pipelining simpler. The

predictor reads out the corresponding <pc+4,target> pair from the table, and if

the pc's match then it is declared a hit. The predicted target then gets clocked into
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the pc register on the next cycle. If the pc, s do not match, then it is declared a miss

and we use pc+4 as the next pc. Our simple predictor uses the following invariant: If

a pc is in the table then we always predict taken, but if a pc is not in the table then

we always predict not-taken. Entries are never removed from the table they are only

overwritten. Since we are not predicting jump instructions, we know that the target

address is always correct even if our taken/not-taken prediction is incorrect. Hence,

we do not need to verify the target address, only the taken/not-taken prediction.

We pipeline the predictor hit/miss signal to the Execute stage. Because of the

invariant mentioned above, this hit/miss bit also tells us if the branch was predicted

taken or not-taken. In the Execute stage, the predictor compares the predicted

taken/non-taken bit to the calculated taken/not-taken bit. This is how the pre-

dictor determines if there as a misprediction. Four possible scenarios may arise for

the predictor, they are depicted in table 3.1.

Predicted Actual_ Mispredict? Action Taken

taken taken no No action

Kill the instruction in Fetch stage, update
the BTB, pc:=branch or jump target

Kill the instruction in Fetch stage, do not
update the BTB, pc:= correct pc+4

not taken not taken no No action

Table 3.1: Branch Prediction - Possible Scenarios

If the branch was predicted not-taken, but it should actually be taken, we update

the table by adding the appropriate pc+4 and branch target. If the branch was

predicted taken and it was actually not-taken, then we do not update the table. We

can invalidate the appropriate entry in the table, but to keep things simplified we

just leave the table unchanged.
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3.1.2 Data-side and Instruction-side Caches

The instruction-side cache supports only read requests but the data-side cache sup-

ports both read and write requests. Other features of both the caches are similar and

are outlined below.

Both the caches are direct-mapped and follow writeback and write-allocate poli-

cies. They are both blocking caches, hence, there can be only one outstanding read

or write request at a time. They are composed of two arrays: data array and tag

array. Both the arrays have 512 lines, however, each line in the data array is 128-bit

long, while each line in the tag array is 20-bit long. This particular configuration is

chosen to optimize the implementation of the caches in FPGAs. Table 3.2 provides

the breakdown of the 32-bit address.

Field Bit Index

Byte offset 1:0
Word offset 3:2
Index 12:4

Tag 31:13

Table 3.2: Address Fields

On receiving a read/write request from the SMIPS processor, the cache searches

its tag array using the index bits of the address. If the tag array entry is valid and

the tag bits of the address match the tag array entry, it is declared a hit. The cache,

in case of a read request, then returns the data to the processor, or in case of a write

request, updates the entry in the data array. The caches have a read and write latency

of 1 cycle for cache hits.

If neither the tag array entry is valid nor the tag bits of the address match the

tag array entry, the cache sends a read request to the main memory. On receiving

the response from memory, the cache performs the required operation.

If the tag array entry is valid but the tag bits of the address do not match the

tag array entry, the cache first writes the 128-bit data array entry back to the main

memory and then sends a read request to the main memory. On receiving the data
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from memory, the cache performs the required operation. This situation can only

arise in the data-side cache.

There can be two outstanding requests (a write request followed by a read request)

to the memory from the data-side cache, but there can be only one outstanding read

request from the instruction-side cache.

3.1.3 Memory Arbiter

The memory arbiter is a fair round-robin scheduler. It arbitrates between the instruction-

side cache and the data-side cache requests, and directs them to the memory unit.

On receiving responses from the memory unit it appropriately directs them to the

caches.

3.2 Processor Wrapper

The wrapper has two main functions. If required, it breaks down the 128-bit request

from the processor unit into smaller fragments and sends them to the memory unit,

and it combines the fragments from the memory unit into a 128-bit response and

forwards it to the processor unit. The size of the fragments can be specified through

the Bitwidth parameter.

It also handles target cycle firing of the processor unit using the _Start and -Done

signals. In our target model, the target clock frequency for the processor unit is the

same as its host frequency, so there is no need to maintain any state for _Start and

-Done signaling.

3.3 Memory Unit

The components of the memory unit are outlined below.
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3.3.1 Memory Controller

Two separate memory controllers were used in this thesis. One, that I had developed

earlier, was coded in Verilog and was used for simulating the target model using Syn-

opsys VCS. The other was obtained from the University of California, Berkeley, and

was used for emulating the target model in an FPGA. Following is a brief description

of these memory controllers.

The memory controller is responsible for all of the low-level DRAM management

data transfer tasks. The tasks performed by the controller include the following.

" Reset, initialization, and clock generation

" Automatic refresh

* Issuing of Read and write command

* Automatic bank management

The memory controller is divided into three main stages. In the the first stage,

which is the Bank Request stage, we accept and buffer memory access requests until

they are ready to be processed by the corresponding Bank Command Translator.

The next stage is the Command Translate stage which translates the memory

access requests into DDR2 DRAM commands. It generates commands from all of the

Bank Command Translators and the Master Translator, and verifies them against

timing constraints. It then selects one command and forwards it to the Issue stage.

It also determines the new timing constraints based on the command it forwards.

The last stage is the Issue stage which is a simple pipeline that issues commands

onto the DDR2 DRAM command bus, and reads and writes data when required.

The controller allows access to ECC storage bits, but does not actually implement

ECC. It presents a FIFO-style interface [12] to the user as shown in figure 3-3.

The memory controller only sends read responses; no responses are given for write

requests.
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Figure 3-3: Memory Controller Interface

3.3.2 Physical Memory

The physical memory is Micron MT18HTF12872AY-53E [13]. Its salient features are

outlined below.

* It is a DDR2 SDRAM unbuffered DIMM with a capacity of 1GB.

* It has a CAS latency of 4 cycles.

9 The data transfer width is 72 bits, out of which only 64 bits are utilized. The

remaining 8 bits may be utilized as ECC storage bits.

3.4 Memory Wrapper

The memory wrapper is one of the key components of the target model. If required,

it breaks down the 128-bit response from the memory unit into smaller fragments and

sends them to the processor unit, and it combines the fragments from the processor

unit into a 128-bit request and forwards it to the memory unit. The size of the

fragments can be specified through the Bitwidth parameter.
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It also handles target cycle firing of the memory unit using the _Start and _Done

signals. The target clock frequency for the memory unit can be specified in terms of

the target clock frequency of the processor unit using the two parameters described

in table 3.3.

Parameter Description

mem-lati1 number of cycles required by the first read/write
request fragment of a 128-bit processor request

mem-lat2 number of cycles required by the subsequent
read/write request fragments of a 128-bit processor request

Table 3.3: Memory Wrapper Parameters

For simplicity, read and write requests are assumed to have the same access la-

tency. It is also assumed that the first request fragment accesses a new page in the

main memory and has a longer latency. The subsequent request fragments of a 128-bit

processor request access the same page and have a shorter latency.

The memory wrapper maintains a counter and uses time stamping for _Start and

_Done signaling.

3.5 Channel

The channel is the other key component in the target model. It is capable of configur-

ing the physical link in terms of bitwidth, latency and buffering. It uses credit based

flow control to implement handshaking between the processor unit and the memory

unit.

The channel and the memory wrapper work together to handle the uncertainties

in the memory unit, such as delays due to refresh. Together they are capable of

handling multiple requests in flight and block the processor unit from making more

requests when the uncertainties in the memory unit arise.
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3.6 Physical Link

There exists a 128-bit physical link to and from the memory unit. The link is in the

form of an asynchronous FIFO because the host clock frequency for the memory unit

is much higher than the host clock frequency of the processor unit.
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Chapter 4

Implementation on Host

4.1 BEE2

The Berkeley Emulation Engine 2 (BEE2) board [14] is used as the host platform.

The BEE2 is a general purpose processing module with a host of features. Some of

the features relevant to this thesis are outlined below.

" A large amount of processing fabric is provided by five Xilinx Virtex II Pro 70

FPGAs.

* The BEE2 provides up to 20GB of high-speed, DDR2 DRAM memory. Each of

the five FPGAs has four independent channels to DDR2 DIMMs which provides

very high memory bandwidth.

* The FPGAs on the BEE2 are highly connected with both high-speed, serial and

parallel links.

4.2 Host Model

Figure 4-1 shows a schematic of the host model as implemented on the BEE2 board.

This schematic can be viewed as an experimental setup for implementing the emula-

tion platform.
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Figure 4-1: Host Model

The multiport memory switch connects the processor unit and the PowerPC

core [15] present in the FPGA to the memory unit via the asynchronous FIFO. The

multiport memory switch presents the same FIFO interface to the processor unit as

the asynchronous FIFO.

The details of the operation of the host model are outlined below.

" We use the PowerPC core to write the instructions and the data to the main

memory.

" Then we sends a start signal to the processor unit, upon receiving which the

processor unit reads the instructions out of the memory and executes them. It

also reads/writes the data as necessary.

* When the processor unit finishes executing the instructions it sends a done

signal to the PowerPC core.

" Upon receiving the done signal from the processor unit, the PowerPC reads out

the statistics from the processor unit and sends them to a PC through a serial

link.

The memory unit operates at a host frequency of 200MHz, whereas the processor

unit and the PowerPC core operate at 50MHz. This difference in frequencies warrants

the use of the asynchronous FIFO.
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4.3 Operation of the Emulation Platform

In this section we provide a cycle-accurate description of how the emulation platform,

described in chapter 3, operates. We do it through an example implementation.

We emulate a processor unit, operating at 1GHz, connected to a memory unit

through a 32-bit channel, operating at 100MHz. The features of the memory unit are

outlined below.

DRAM Type SDRAM

Bitwidth 32
Speed 100MHz
Precharge 20ns

Row Access 30ns

Column Access 30ns

Data Transfer 10ns

Since the host clock rate of the processor unit is one-twentieth of the clock rate

of the processor unit that we are looking to emulate, the emulation platform scales

down the frequency of the target model by 20.

The 128-bit read/write requests from the processor unit are broken down into four

32-bit requests. Similarly, the 128-bit responses from the memory unit are broken

down into four 32-bit responses. The first 32-bit request is treated as a page miss

in the memory unit and has a longer latency equal to the sum of the four latency

parameters given above. The following three 32-bit requests are treated as page hits

in the memory unit and have a shorter latency equal to the sum of column access

time and the data transfer time.

In order to emulate the model described above, we configure the processor wrap-

per, the memory wrapper and the channel through the parameters given below. All

the latency parameters are specified in terms of the processor cycles.
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Parameter Value

memlat_1 90

mem-lat_2 40

Bitwidth 32

Latency 10

Buffering 1

Table 4.1: Parameter Values for the Example Implementation

4.3.1 Read Requests and Responses

On receiving a 128-bit read request from the processor unit, the processor wrapper

breaks the request down into four 32-bit requests, and sends request 1 down the

channel in cycle 0. The memory wrapper receives request 1 in cycle 10, turns it into

a 128-bit request and sends it to the memory unit. It also sends a credit to the

processor wrapper so that it can send the next request. In order to keep track of time

the memory wrapper also starts its counter, m-count.

Cycle Processor Wrapper Memory Wrapper

0 sends reqi

10 - receives reql

20 sends req2

100 - receives req2, sends respi

110 sends req3, receives respi -

140 - receives req3, sends resp2

150 sends req4, receives resp2 -

180 - receives req4, sends resp3

190 receives resp3 -

220 - sends resp4

230 receives resp4 -

Table 4.2: Read Requests and Responses

When m-count=90 it accepts request 2 and sends response 1 to the processor

wrapper. The processor wrapper receives response 1 in cycle 110 and sends a credit

to the memory wrapper so that it can send the next response.
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When m-count=130 the memory wrapper accepts request 3 and sends response

2. When m-count=170 it accepts request 4 and sends response 3. And finally when

m-count=210 it sends response 4, and resets m..count to 0. When the processor

wrapper receives response 4 in cycle 230 it combines the four 32-bit responses and

sends the 128-bit response to the processor unit.

In case either the memory unit is unable to accept more requests or the processor

unit is unable to accept more responses, the credit-based flow control prevents the

wrappers from sending more messages down the channel.

4.3.2 Write Requests and Responses

Cycle Processor Wrapper Memory Wrapper

0 sends req-
10 - receives reqi

20 sends req2

100 - receives req2

110 sends req3

140 - receives req3

150 sends req4

180 - receives req4

Table 4.3: Write Requests and Responses

On receiving a 128-bit write request from the processor unit, the processor wrapper

breaks the request down into four 32-bit requests, and sends request 1 down the

channel in cycle 0. The memory wrapper receives request 1 in cycle 10 and sends a

credit to the processor wrapper so that it can send the next request. In order to keep

track of time the memory wrapper also starts its counter, m.count.

When m-count=90 the memory wrapper accepts request 2. When m-count=130

it accepts request 3. When m-count=170 it accepts request 4. It then combines the

four 32-bit requests and sends the 128-bit request to the memory unit. And finally

when m-count=210 it resets m-count to 0 and gets ready to accept the next request.
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In case the memory unit is unable to accept more requests, the credit-based flow

control prevents the processor wrapper from sending more requests down the channel.
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Chapter 5

Analysis and Evaluation

The emulation platform can model various microprocessor memory systems through

the interaction of the processor wrapper, the memory wrapper and the channel, and

through the specification of the parameters mentioned in chapter 3. The platform

is then analyzed for performance through SMIPS benchmarks, and the resource uti-

lization of all the units and wrappers is determined from the Xilinx Synthesis Tool

(XST). In this chapter we present this analysis in detail.

5.1 Experimental Methodology

Table 5.1 describes the parameters for the five different sets of configuration that are

used to analyze the emulation platform. All the latency parameters are expressed as

the number of processor cycles, where the processor target clock frequency (same as

the processor host clock frequency) is 50MHz.

Configuration mem-latA1 memlat-2 Bitwidth Latency Buffering
A processor unit and memory unit connected directly
B 16 16 128 1 1
C 90 40 32 10 1
D 70 30 32 5 1
E 50 20 32 3 1

Table 5.1: Modeled Configurations with Parameters
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Configuration A includes only the processor and the memory units. It does not in-

clude the wrappers and the channel. Hence, it provides the functional-only emulation

model.

Configuration B includes the wrappers and the channel and sets their parameters

so as to emulate the functional-only emulation model. We set the latency and the

buffering in the channel to their minimum possible values of 1 in order to meet the

requirements of the RAMP design framework.

In configurations C, D and E we emulate a processor unit, operating at 1GHz,

connected to a memory unit through a 32-bit channel. The features of the three

memory systems are outlined in table 5.2.

DRAM .Row Column DataBitwidth Speed Precharge
Type Access Access Transfer

SDRAM 32 100MHz 20ns 30ns 30ns iOns
DDR 32 100MHz 20ns 30ns 20ns iOns
DDR2 32 200MHz 15ns 15ns 15ns 5ns

Table 5.2: Modeled Memory Systems

Since the host clock rate of the processor unit is one-twentieth of the clock rate

of the processor unit that we are looking to emulate, the emulation platform scales

down the frequency of the target model by 20.

5.2 Performance Evaluation

In order to evaluate the performance of our emulation platform, we use five SMIPS

benchmarks: median, multiply, qsort, towers and vvadd. Figures 5-1, 5-2, 5-3, 5-4

and 5-5 depict the instruction per cycle (IPC) counts for each of these benchmarks,

respectively. A set of four different IPC counts is shown for each of the five configu-

rations. sim-1 and sim-2 are calculated by simulating the platform using Synopsys

VCS, while bee2-1 and bee2-2 are calculated by emulating the platform on the BEE2

board. The first two bars, sim-1 and bee2-1, represent the IPC count for caches that
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have been warmed up, whereas the remaining two bars, sim-2 and bee2-2, represent

the full IPC counts.

The memory units in the simulation platform and the emulation platform are in-

herently different because we are using different memory controllers and the Verilog

DDR2 SDRAM cannot simulate the physical DDR2 SDRAM accurately. These dif-

ferences show up in the IPC counts for configurations A and B, with the IPC counts

for the emulation platform being slightly higher. But these differences disappear

in configurations C, D and E, which proves that the RAMP design framework was

successfully implemented.

The graphs also show that the IPC counts for configuration D are higher than

those for configuration C, and that the IPC counts for configuration E are higher

than those for configuration D. This proves that the bandwidth of the three memory

systems was successfully modeled using the RAMP design framework.
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Figure 5-1: IPC count for median
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Figures 5-6, 5-7, 5-8, 5-9 and 5-10 show the cycles utilized by the memory unit to

process the read/write request. Here again a set of four different cycle counts is shown

for each of the five configurations. sim-1, sim-2, bee2-1 and bee2-2 are calculated

in the same manner as before.

The cycle counts for the simulation platform and the emulation differ slightly for

configurations A and B because of the differences in the memory units of the two

platforms mentioned earlier.

The graphs also show that the cycle counts for configuration D are lower than

those for configuration C, and that the cycle counts for configuration E are lower

than those for configuration D. This proves that the latency of the three memory

systems was successfully modeled using the RAMP design framework.
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5.3 Analysis of Resource Utilization

For resource utilization analysis we consider the following components of the host

model, which was described in chapter 4.

* Asynchronous FIFO

* DDR2 memory controller

" Processor unit

* Processor wrapper

" Memory wrapper

" Channel

Table 5.3 provides the values for the total resources utilized by our functional-

only emulation model in configuration A. These values are the sum of the resources

utilized by the asynchronous FIFO, the DDR2 memory controller and the processor

unit, and they serve as the baseline for calculating the resource overhead of using the

RAMP design framework for memory system emulation.

Slices

Slice Flip-flops

4-input LUTs

BRAMs

Available

33088
66176
66176

328

Utilized

3526
3424
5388

10

% Utilized

10.66.
5.17
8.14

3.05

Table 5.3: Total Resources Utilized in Configuration A

Tables 5.4, 5.5, 5.6 and 5.7 provide the values for the resources utilized by the

emulation platform in configurations B, C, D and E, respectively. These values are

the sum of the resources utilized by the asynchronous FIFO, the DDR2 memory

controller, the processor unit, the processor wrapper, the memory wrapper and the

channel. The tables also provide a comparison of these values with those in table 5.3,

43



and we see that the resource overhead of using the RAMP design framework is quite

significant in our case.

From table 5.3 it can be noted that the resources utilized by the target model

are quite limited. When we add the wrappers and the channel to the target model,

resource utilization increases quite significantly. The increase will not be as significant

in a multiprocessor emulation platform, the development of which is the goal of the

RAMP project.

Available Utilized % Utilized % Increase from
Configuration A

Slices 33088 4233 12.79 20.05

Slice Flip-flops 66176 4639 7.01 35.48

4-input LUTs 66176 5724 8.65 6.24

BRAMs 328 10 3.05 0

Table 5.4: Total Resources Utilized in Configuration B

Available Utilized % Utilized % Increase from
Configuration A

Slices 33088 4654 14.07 31.99

Slice Flip-flops 66176 5223 7.89 52.54

4-input LUTs 66176 5731 8.66 6.37

BRAMs 328 10 3.05 0

Table 5.5: Total Resources Utilized in Configuration C

Available Utilized % Utilized % Increase from
Configuration A

Slices 33088 4325 13.07 22.66

Slice Flip-flops 66176 4675 7.06 36.54

4-input LUTs 66176 5702 8.62 5.83

BRAMs 328 10 3.05 0

Table 5.6: Total Resources Utilized in Configuration D
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Available Utilized % Utilized % Increase from
Configuration A

Slices 33088 4229 12.78 19.94

Slice Flip-flops 66176 4481 6.77 30.87

4-input LUTs 66176 5727 8.65 6.29

BRAMs 328 10 3.05 0

Table 5.7: Total Resources Utilized in Configuration E
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Chapter 6

Conclusion

In this thesis we described the development of an emulation platform for modeling

microprocessor memory systems using the RAMP design framework (RDF). Through

this emulation platform we demonstrated the validity and the efficiency of the design

framework.

RDF aims to provide a standardized design framework to enable high-performance

simulation and emulation of massively parallel systems on a wide variety of implemen-

tation platforms. In this thesis we highlighted the components of RDF and described

how these components interact to provide the emulation platform required for this

research.

The first challenge in this thesis was the development of a target model that would

serve as the basis of the emulation platform. We provided a detailed description of

the various components of this target model and their operation. The next task was

to build a parameterized host model on top of the target model. We discussed the

development of the components of this host model and described their operation and

interaction.

We concluded with an analysis of the performance and an evaluation the resource

utilization of our platform. Using both simulation and emulation in an FPGA, we

showed that the platform successfully modeled both the latency and the bandwidth

of different memory systems.
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Appendix A

SMIPS Instruction Set

31 26 25 21 20 16 15 11 10 6 5

opeode rs rt rd shlamt funct
opcode rs rt immediate
opcode target

Load and Store Instructions
100011 base dest signed offset
101011 base dest signed offset

I-Type Computational Instructions
001001 src dest signed immediate
001010 src dest signed immediate
001011 src dest signed immediate
001100 are dest zero-ext. immediate
001101 Src dest zero-ext. immediate
001110 are dest zero-ext. immediate
001111 00000 dest zero-ext. immediate

R-Type Computational Instructions
000000 00000 SJC dest shamt 000000
000000 00000 JrC dest shamt 000010
000000 00000 src dest shamt 000011
000"00 rshamt are dest 00000 000100
000000 rshat src dest 00000 000110
000000 rshamt src dest 00000 000111
000000 srci src2 dest 00000 100001
000000 srci src2 dest 000D0 100011
000000 srl src2 dest 00000 100100
000" src src2 dest 00000 100101
000000 srci src2 dest 00000 100110
000000 src src2 dest 00000 100111
000000 sr1 src2 dest 00000 101010
000000 -qrcl src2 dest 100000 101011 1

R-type
I-type
J-type

LW rt, ofikettra)
SW rt, offset(rs)

ADDIU rt, rs, signed-imm.
SLTI rt, rs, signed-imnim.
SLTIU rt, rs, signed-imm.
ANDI rt, rs, zero-ext-imm.
ORI rt, rs, zero-ext-imm.
XORI rt, rs, zero-ext-imm
LUI rt, zero-ext-imm.

SLL rd, rt, shamt
SRL rd, rt, shanit
SRA rd., rt, shamt
SLLV rd, rt, rs
SRLV rd, rt, is
SRAV rd, rt, rs
ADDU rd, rs, rt
SUBU rd, rs, rt
AND rd, rs, rt
OR rd, rs, rt
XOR rd. rs, rt
NOR rd, rs, rt
SLT rd, rs, rt
SLTU rd, rs, rt

47

0



Jump and Branch Instructions
00001.0 target

000011 target
000000 sre 00000 00000 00000 001000
000000 sr 00000 dest 00000 001001
000100 arel src2 signed offset
000101 src1 src2 signed offset
000110 are 00000 signed offset
000111 Sre 00000 signed offset

000001 arc 00000 signed offset
000001 src 00001 signed offset

System Coprocessor (COPO) Instructions

010000 00 dest cops rc 00000 000000
010000 00100 src copOdest 00000 000000

J target

JAL target
JR rs
JALR rd, rs
BEQ rs, rt, offset
BNE rs, rt, offset
BLEZ rs, offset
BGTZ rs, offset
BLTZ rs, offset
BGEZ rs, offset

MFCO rt,
MTCO rt,

rd
rd
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