
DIGITAL SIGNAL PROCESSING TECHNIQUES
FOR

LASER-DOPPLER ANEMOMETRY

by

PATRICK P. ERK

B.S., Technische Universitdit Berlin, West Germany
(1987)

Submitted to the Department of
Aeronautics and Astronautics

in Partial Fulfillment of the Requirements
for the Degree of

Master of Science
in Aeronautics and Astronautics

at the

Massachusetts Institute of Technology
September 1990

© Patrick P. Erk 1990

The author hereby grants to M.I.T. permission to reproduce and
to distribute copies of this thesis document in whole or in part.

Signature of Author-
Department of Aeronautics and Astronautics

September 28, 1990
/

C. Forbes Dewey, Jr.
Profes on of Mechanical Engineering

Thesis Supervisor

Accepted by ..

MASSACHUSEfTfS INSTITLWlE
OF rEC~on.oEY

SEP 19 1990
LIBRARIES

V Professor Harold Y Wachman
Chairman, Departmental Graduate Committee

I

Certified by__ ___
, , , , , , , ,_

F



DIGITAL SIGNAL PROCESSING ALGORITHMS
FOR

LASER-DOPPLER ANEMOMETRY

by

PATRICK P. ERK

Submitted to the Department of Aeronautics and Astronautics
on September 28, 1990 in Partial Fulfillment

of the Requirements for the Degree of
Master of Science in Aeronautics and Astronautics

Abstract

Digital signal processing algorithms in laser-Doppler anemometry still lag behind the
standards used in Doppler-radar or sonar technology. The two main problems in laser-
Doppler signal processing are signal detection and frequency estimation. In this Thesis, a
software system for use in flow experiments with laser-Doppler anemometry has been
developed. It features programs for digital prefiltering, for FIR filter design, for burst
detection, and for frequency estimation. Spectral estimation is done with an algorithm
based on the discrete Fourier transform or with an auto-regressive moving-average algo-
rithm based on a Pade approximation to the signal spectrum. The Modified Covariance
Algorithm and the Iterative Filtering Algorithm have also been tested on synthetically
generated Doppler signals. Flow experiments with a cone-and-plate flow show the wor-
kability of the software system. These results also confirm the validity of the assumptions
made in the numerical simulations.
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I. Introduction

Laser-Doppler anemometry (LDA) has proven to be an extremely useful experi-

mental tool for measuring fluid flow velocities. Its advantages over the complementary

technique in fluid mechanics, hot-wire anemometry, are the non-intrusive nature of LDA

measurements, the large dynamic range from zero to supersonic speeds, and a versatility

and extendibility to special experimental conditions such as 3-dimensional velocity

measurements and measurement of the different phase velocities in multi-phase flows.

The fundamental principle behind laser-Doppler anemometry is the detection of

the Doppler frequency of light scattered from particles traversing the point of intersection

of two laser beams. This Doppler frequency is directly proportional to the velocity of the

particle. Due to the finite size of the measurement volume, inaccuracies occur in the pres-

ence of velocity gradients or turbulence. Proper averaging techniques (cf. Section VI)

may reduce the systematic error in the measurements for these cases.

Noise in laser-Doppler anemometry is mainly non-Gaussian [9] and comes from

the photodetector or from scattered light from surfaces or distant particles. The signal-

to-noise ratio can be significantly improved if fluorescent rather than scattering particles

are used [20][34].

Recent publications concentrate on the use of Fourier transform of either the data

or the autocorrelation function of the data [2][9][11][17][18][22][26][31]. Both methods

represent the classic way of doing spectral analysis. New methods of spectral estimation

have been developed over the last ten years [14][19][25]. They are based on fitting the

coefficients of a linear constant coefficient equation (cf. Section V.1) to the data using

some error minimizing criterion (e.g. least squares). These newer algorithms are now

routinely used for detection and analysis of sonar and radar signals [13][14][29]. Their

use in laser-Doppler signal processing is only limited [33]. This Thesis applies some of



-11-

these more "advanced" algorithms to laser-Doppler anemometry.

Numerical simulations were carried out in order to assess the performance of the

different algorithms for LDA signals . The "traditional" spectral analysis procedure in

LDA is compared to three other methods: an auto-regressive estimator, the Modified

Covariance Method (cf. Section V.3.4), an enhancement of this algorithm, the Iterative

Filtering Algorithm (cf. Section V.4), and an auto-regressive moving-average estimator

based on the Pade approximation (cf. Section V.5). Then, the most promising method,

the Pade estimator, is tested in a real flow experiment (cone-and-plate flow, cf. Section

IX.1). For these flow experiments, it was necessary to implement a system of programs

for processing LDA signals (i.e. sampling, filtering and digital filter design, burst valida-

tion, spectral estimation, averaging, plot of spectrum/velocity).

The present paper is divided into three major parts: the first part explains the

underlying principles of LDA and of the digital signal processing techniques. The second

part describes the numerical simulations, their results, and the software system for the

flow experiments. The third section introduces the cone-and-plate flow and the experi-

mental set-up and discusses the results obtained by the software system. A final discus-

sion and evaluation is then presented.
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II. The Laser-Doppler Anemometer

The laser-Doppler anemometer (LDA) is an optical experimental method which

allows the instantaneous, non-intrusive measurement of the velocities within a flow field.

It is based on the interference of two Gaussian laser beams, and on the light scattering

properties of particles within the flow. Generally, the analytical treatment can be kept

quite simple, because all mathematical approximations are of higher accuracy than the

usually noisy signal. Recent improvements in the signal quality involve the use of

fluorescent rather than scattering particles [20][34].

A typical set-up of a one-component, fringe-mode LDA is shown in Fig. 1.

Detector

Laser

Figure 1. Single-component, fringe-mode laser-Doppler anemometer [from 7]

A Gaussian laser beam is split and the resulting two parallel branches are focused at a

point of interest within the flow field. At the point of intersection, a fringe pattern will be
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formed. Particles crossing that fringe pattern will scatter the light with a frequency which

is directly proportional to the particle velocity (Doppler frequency). This signal is

received by a photodetector and then further processed.

II. The Probe Volume

The volume contained in the -L-intensity contour of the interference field created

by the intersecting laser beams is called the probe volume. It is of ellipsoidal shape and

filled with an equidistant and parallel fringe system.

In order for the system to be applicable, the probe volume must meet the following

two requirements:

The probe volume has to be as small as possible, as the velocities at a point in the

flow field have to be measured; a large probe volume would only give the spatial

average of the velocities around the point of intersection. In addition, a larger

probe volume would increase the probability that more than one particle crosses

the fringe pattern at the same time. This would result in a random superposition of

Doppler frequencies, reducing the signal quality in the case of destructive interfer-

ence of the two signals (cf. Fig. 2). In practice, the signal processing procedures

and optics impose a lower limit on the number of fringes and on the size of the

probe volume.
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* The fringe pattern has to be symmetric, so that particles traversing the probe

volume at different locations cross fringes with the same distance. If this is not the

case, the measured velocity will depend on the crossing path of the particles.

The system is maximized with respect to both items if the waists of the focused

laser beams coincide with the point of intersection.

AB C D A A 8 A,B: signals are

A c C,D: signals are
out of
phase

D

If there is more than 1 particle present in the measuring control
volume, constructive or destructive superpositions of signals can
occur.

Figure 2. Effect of several particles crossing the probe volume at the same time [ from 8]

Misalignment of the laser beams may result in an elongated and diverging fringe

pattern (cf. Fig. 3) and the probe volume will not be the smallest possible one. If the

waist of the focused beam, wf, lies within the probe volume the formulas of Table 1

describing the geometry of the probe volume apply. For computing wf and the angle of

intersection, ý, see Section II.4 below.

Usually, these effects can be neglected except for large distances between lens and

probe volume. The geometry of the probe volume depends on the angle of intersection, 0:

If 0 increases, the length of the ellipsoid, d,, its height, dy, the fringe spacing, Ax, and the

number of fringes, N, will decrease.
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Figure 3. Misalignment of the beams creates an asymmetric fringe pattern [from 8]

The system will detect only the velocity component perpendicular to the fringes.

Oblique passing with the same absolute velocity results in a corresponding decrease of

the Doppler frequency.

The analytical description of the time behavior of the Doppler signal is:

s(t)= so{ 1+ Ssin Cos 21 (U t +r,o (II.1)

r : radius of the particle
Ax: fringe spacing
re.o: location of center of particle at time t=O
Uo: velocity component perpendicular to fringes
so: scaling factor for intensity

Uo
The Doppler frequency is immediately recognized in the argument of the sine as - -AXx

Noise in the Doppler signal may come from the following sources:
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TABLE 1. Geometry of the probe volume. See Fig. 1 for definition of the variables

* Light from particles not crossing the fringe pattern may hit the photodetector. This

effect is taken care of by pinholes in front of the photomultipliers which limit the

depth of the optical field.

* Noise generated in the photoelectric cells stems either from the random emission

of photons (shot noise, Poisson character), from the random movements of elec-

trons (Johnson noise), and from thermal excitation of electrons. All three types of

noise are broad band and signal-independent. The shot noise depends on the mean

photocurrent: The higher the mean photocurrent the higher the random fluctuations

the higher the shot noise.

Waist diameter of focused beam df
wavelength of laser X
focal length of front lens f
angle of intersection 0
half-angle of intersection 0=

axes of measurement volume d. = d/
d_

cos 0
sin e

fringe spacing Ax =

number of fringes N1 = -AXx
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11.2 The Scattering Process

The expressions up to now relate only the Doppler frequency to the particle velo-

city. Statements about the field distribution of the scattered light are necessary to optim-

ize signal detection. Analytical results exist only for the case of spherical and ellipsoidal

particles (Mie's Scattering).

Figure 4. Intensity distribution due to scattering [from 8] (direction of the incident light
indicated by arrow, particle size decreasing from from (a) to (b))

The most important result is the non-uniformity of the intensity distribution of the

scattered light (cf. Fig. 4). The intensity of the scattered light will be highest in the direc-

tion away from the focusing optics. This is exploited in the forward-scatter LDA (cf. Fig.

1). The backscatter mode (cf. Fig. 20), the type used in this project, results in a more

compact design but suffers from less intense scattering. Thus, in the backscatter mode, a

smaller signal-to-noise ratio can be expected.

The size of the particles has to be matched to the geometry of the probe volume.

Particles which are too large will cross more than one fringe at a time, but will scatter

I
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more light; particles which are too small produce very weak signals (Fig. 5). It is recom-

mended that the particle diameter is a fourth of the fringe distance [9].
S t. 6.6 :

disti

A

Figure 5. Signal quality and signal strength depend on the particle size (from [9])

11.3 Fluorescent Particles

The signal-to-noise ratio in the backscatter mode can be greatly improved if

fluorescent particles are used. Fluorescent particles absorb the incident light and emit

radiation at a longer wavelength. In contrast to the scattering process fluorescent radia-

tion is emitted in all directions.

The different wavelength of the fluorescent light allows the use of optical filters to

block all other wavelengths. These filters will reduce the total amount of light at the pho-

tomultiplier and therefore decrease the amount of shot noise in the signal as the mean

photocurrent is reduced.

.. _ _ .__·_.__ _ __. ··

g 

ntensity
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11.4 Computing the Probe Volume Size

The most efficient way to compute the propagation of laser beams is done with ray

transfer matrices (cf. [16]). Each optical element has a particular 2x2 transfer matrix. The

transfer matrix of a system of optical components is simply the product of the transfer

matrices of the single components. Although developed originally for the study of the

propagation of paraxial rays, it can also describe the propagation of laser beams without

changing the matrices for the different optical building blocks.

A paraxial ray is characterized by its distance x from the optical axis (the z -axis)

and by the angle 0 with respect to this axis. For paraxial rays, 0 will be small enough to

allow the approximations sin 0 = 0 and cos 0 = 1.

If we define a ray vector, r, by r- [], the ray vector behind an optical arrangement,

r, is obtained by multiplying r from the right to the system ray transfer matrix, X:

r =X r.

The optical system used in this project is depicted in Fig. 6. The paraxial laser

beams are focused by a front lens, propagate through a glass plate, and intersect in a

medium of different refractive index. The laser beams are not complanar with the optical

axis. The ray transfer matrices for the different stages are:

For the focusing lens (focal length f 1):
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Detail of point of intersection
(Probe volume) :

Position of the two
intersecting laser beams

Figure 6. Optical configuration for LDA in this project

X 1= i
X f 1

(II.2)

For the translation between lens and first surface of the glass plate (index of refrac-

tion =1, distance dl):

~__ . __

dz

9...4
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1 di

For the refractions at the air-glass and the glass-fluid interfaces, the ray transfer

matrices will be unity (Snell's law). Thus, they do not contribute to the overall system

matrix and can be omitted.

For the propagation within the glass (thickness d2, index of refraction n,):

1-
X3= 0  1 (11.4)

For the propagation of the laser beams through the fluid (index of refraction n2) to

the point of intersection (distance d3 from the wall):

X4 = 0 1 (11.5)

The resulting system matrix is:

dz d3
nt n2 d2 d3

1- d + - +

X = X4 X3 X2 XI = CD= _ 1 (11.6)

fi- - 1

The ray vectors at position 1, rt = , and position 4, r4 = [0 are related via:
0.- 101
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r4= X r1. This yields two equations for the two unknowns d, and 0':

dl =f d (II.7a)

'= - (II.7b)
li

The half angle of intersection is found from geometry:

sinO = sine' (118)
-42

A laser beam of wavelength X and waist diameter w0 propagating along the x-axis

has a -- intensity envelope given by:
e

w(z)=wo 1 + [ ] " (11.9)

and a curvature of the wave front

R(z)=z [1+ [ ]2 (11.10)

Defining a complex propagation parameter at a location z1,

__ _ 2
q(z1) = R (z) - j 2 or, equivalently, q (z) = z + j , the beam diameter and the

field curvature at a position z2 behind an optical system can be obtained with the complex

propagation parameter at this location and the system's transfer matrix via:

__
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A q(zl)+B
q(z9= (II.11)C q(zl)+D

This approach will be used in Section IX.2.1, where we calculate the approximate

geometry of the probe volume.
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III. Digital Spectral Estimation: Survey of Methods

In the previous chapter we defined the basic problem of measuring the flow velo-

city as a problem of detecting the burst and estimating the Doppler frequency of a

sinusoidal signal in non-Gaussian noise. Estimation of the frequency content (i.e. spectral

analysis) from sampled data is a problem occurring in many fields of research. There-

fore, a variety of algorithms suitable for implementation on a general purpose computer

has been developed. Fig. 7 presents an overview which is by no means exhaustive.

We can roughly divide the available spectral analysis techniques into three

categories: classical methods, methods based on parameter estimation, and other

methods.

Classical methods are primarily characterized by their robustness at low SNRs and

their computational speed. They comprise the periodograms, where the data record is

segmented, each segment is then multiplied with a time-window function. Then the

power spectral density (PSD) is estimated by averaging the Fourier-transformed data seg-

ments. The unmatched speed of the classical spectral estimators results from the use of

the fast Fourier transform algorithm (FFT) for evaluating the discrete-time Fourier

transform.

Spectral estimators based on parameter models assume that the - unknown - spec-

trum of the observed data stems from filtering a driving white noise process with a linear

time-invariant system (filter) (cf. Fig. 8). Their basic feature is a very high spectral reso-

lution which enables for example the detection of closely spaced sinusoids. If the data

contain additive white noise (so-called observation noise), the whole process is

_ _·
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h

high spectral resolution

Figure 7. Survey of Digital Spectral Estimation Techniques as applicable to LDA

approximately modeled by a white-noise source whose output is added to the system out-

put.

The underlying assumption of a linear-time invariant filter yields linear constant-

coefficient difference equations for the unknown filter coefficients. These may be solved

by minimizing for example the mean square error between the actual data and the data
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Figure 8. Spectral Estimation by Parameter Models

one would obtain by the filtering process.

Although most real processes do not follow these linear difference equations, i.e.

are non-linear, the methods are widely used with good results in many fields [14][16].

As this approach generally requires the data to have zero mean, high-pass filtering

the data before their evaluation is indispensable. This, however, is of no major concern in

LDA, as this kind of filtering is advisable for removing the signal pedestal and the dc

component.

According to the filter type adapted to the data we distinguish between autoregres-

sive (AR) models where the frequency response of the filter driven by white noise has

only poles, and autoregressive moving-average (ARMA), where the filter possesses both

zeros and poles.

The AR estimation techniques now can be subdivided into block data algorithms

and sequential data algorithms [14][19]. Sequential data algorithms update the filter

__ _ _·X
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coefficients each time a new datum comes in. As each update requires a certain number

of operations, these methods cannot be applied in steady-state sense with the data

acquisition. The time required for the update exceeds - at least at the sampling frequen-

cies typical for LDA (500 kHz to a few MHz - by far the time between incoming data.

Block data algorithms, on the other hand, take one batch of data at a time and process it.

Their performance is slightly superior to that of sequential data algorithms [14][19].

Also, many data acquisition systems, including the one of the computer system used in

this project, operate with buffer queues: they fill one buffer in the memory with the sam-

pled data; when the buffer is full it is released to the operating system; then the next

buffer waiting in the queue is fetched and so on. A processed buffer is put back in the

queue. Thus, block data algorithm seem to be a more natural way to handle spectral esti-

mation.

A widely-used sequential data algorithm is the Kalman filter. Two examples for

ARMA methods are the Modified Covariance Method - explained in some detail further

below - and the Burg method. Both are very similar, but the former method has - at the

same order of computational complexity - more favorable features [14].

ARMA methods are mathematically somewhat more complicated. The resulting

least-squares equations are non-linear and cannot be solved efficiently. Certain assump-

tions, however, lead to linearized forms. ARMA models have the advantage of being

able to model noisy processes which are characterized by zeroes in the spectrum.

The method we tested is based the approximation of a high-order polynomial by a

quotient of two (finite) polynomials, termed Pade approximation. At the core of this
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algorithm lies the Euclidean algorithm.

The other methods, the best known is probably Prony's method - do not really pro-

duce results of higher quality than the preceding two classes. Also, as their computational

complexity is not superior to the parameter estimation techniques, they are not con-

sidered in the remainder of this paper. The Pisharenko Harmonic Decomposition for

instance is based on the eigenvalues and eigenvectors of the autocorrelation matrix.

Further information about parameter models in spectral estimation may be found in

[14][19].

The Iterative Filtering Algorithm finally is a technique which enhances the results

of the AR spectral estimators, which usually perform poorly in the presence of noise

[12][13][14].

_I _ _____·_~_·
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IV. Classical Methods of Spectral Estimation

All Classical Methods are based on the computation of the discrete Fourier

transform (DFT) either directly (DFT of the data) or indirectly (DFT of the autocorrela-

tion function). In both cases the properties of the DFT are of importance, the are outlined

in the first section of this chapter.

For the two situations in LDA, scarcely seeded flow and discontinuous signals

(burst-type LDA), and densely seeded flows and continuous signal, we have to use dif-

ferent methods for correctly computing the mean Doppler frequency.

The proper averaging strategy for the burst-type LDA, a method termed

residence-time weighting will be introduced in Section VI.3.

In the case of densely seeded flows, we may apply a simple arithmetic averaging

strategy. Therefore the correlogram and periodogram become valid signal processing

algorithms. The computationally most efficient periodogram method is termed the

Nuttall-Cramer method and is explained below.

If we are more interested in the velocity fluctuations than in the mean we can

present the data in the form of a spectrogram, the way all results of the numerical simula-

tions in Section VII are depicted. In a spectrogram the variation of the spectrum with

respect to time is shown.
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IV.1 Properties of the Discrete Fourier Transform

The resolution of all classical spectral estimators using the DFT depends on the

length of the data set x[n]: For a data set of length N, sampled with an effective1 sam-

pling frequency of f,, frequencies spaced less than - cannot be resolved (cf. Fig. 9).

Also, zero-padding of the data - i.e. lengthening the data record by adding zeros - does

not increase the resolution. The only way to accomplish higher resolution is to include

more data points.

The power spectral density (PSD) of a data set x [n] which tells us how the energy

is distributed over the frequency bands is the modulus squared of the DFT:

1 -1 j -2Ck
P. (f) = U I x[n]e N 12 (IV.1)

k
f = -f,, k =0, 1,.-,N-1

f,: Sampling frequency
x [n ] = x [n ] w [n ]: windowed time series
w [n ]: time-window function (e.g. rectangular window: w [n ] = 1,0 5n < N-1, w [n] =0)

The DFT in Eq. (IV.1) can be evaluated most efficiently by an FFT algorithm which

gives rise to the unmatched speed of these methods.

1. the reason I mention an effective sampling frequency is because we can change the sampling rate with a
discrete-time process: Downsampling (and preceding lowpass filtering) reduces the sampling
frequency, upsampling (with successive highpass filtering) increases the sampling frequency.
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Figure 9. Low resolution resulting from finite-length data set [from 10]

The following argument illustrates the limited resolution of the DFT: If we win-

dow an infinite-length data set x.[n] with a time-window function w [n] which is zero for

all n <0 and n 2N:

+_.2r• .2f.kn
_21n IN-,I2

Sx[n] w [n]e N - x,[n ] w[n]e , (IV.2)

then this multiplication in the time domain corresponds to a convolution in the frequency

domain. We can rewrite the product in the previous expression:

x [n ]w [n ]--> X[k]* W[k]

If the length of the time window increases, i.e. N - co, it follows that W[k] - 8[k], the

Fourier transform of the window approaches a delta function and we are left with the
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original spectrum of our data, as x [k] * 8[k]. X [k].

For a finite window length however, W[k] will be some function depending on the

detailed form of w[n], and will smear the spectrum in the convolution process shown in

Fig. 9. As we decrease the distance between two frequency peaks we eventually reach a

point where the two peaks are smeared into one single peak and we have come to the

limit of our resolution. This whole phenomenon is called spectral leakage.

Highest Main Lobe 3-dB 6-dB
Window Side-lobe Bandwidth Bandwidth Bandwidth

Level (dB) (Bins) (Bins) (Bins)

Rectangular -13 1.00 0.89 1.21
Hamming -43 1.36 1.30 1.81

Dolph-
Chebyshev -50 1.39 1.33 1.85
(a = 2.5)

Equation of Window for 0 < n s N-1

Rectangular Hamming Dolph-Chebyshev
s•kcos Ncos-' [ cosJ

w[n] = 1 w [n] = 0.54 - 0.46 cos W[k] = (-1)
N cosh IN cosh-I '

S= cosh - - cosh-a

TABLE 2. Properties of Rectangular, Hamming, and Dolph-Chebyshev window2 [10]

The choice of the window can be important, as the width of the main lobe

influences the resolution and the height of the side lobes control partly the variance in the

estimate. Three windows - Rectangular, Hamming, and Dolph-Chebyshev - are presented

in Figs. 10, 11, 12, their properties are listed in Table 2. The rectangular window

possesses the narrowest main lobe and the highest side lobes of all windows. The

_ __ _··__I_
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Hamming and the Dolph-Chebyshev window have somewhat broader main lobes and

considerably smaller side lobes. They are mostly recommended because they optimize

both quantities.

T
117
I I

tl
1 'I .1

-10 -! 0 10

(0)

1.25

1.00

II sI

1• is
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* ! I I I i I ;
2 25-, 0
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Figure 10. Rectangular window: (a) time series, (b) log-magnitude of DFT [from 10]

IV.2 Periodogram: The Nuttall-Cramer Method

The Nuttall-Cramer Method computes the mean spectrum of a long data record by

taking the average of the spectra of segments of this record. This approach yields a low

variance in the estimate. The procedure is summarized as follows:

2. The Dolph-Chebyshev window is given by its Fourier Transform. Here, k, the discrete frequency
index, has the same range as n.

-25 -20

-I i - FIILl.UI

--

I

20 25
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Figure 11. Hamming window: (a) time series, (b) log-magnitude of DFT [from 10]

We divide the data record x[n] of length N into S non-overlapping segments of

length M. Then the ih segment is represented by:

xj 1(=x[iM+m1] 05i VS-1 ; Om _M-1

For each of the segments we compute the PSD via:

M-1 .2-km

Pj[k]= I x[m]e M I1
m=O

(IV.3)

Then the arithmetic mean is taken:

s-1
P,[k] = P, [k]

i=O

The inverse DFT of the averaged spectrum is an estimate for the autocorrelation func-

tion:

[...i
iiiiiiiiiliiiilrrll,, I . . . . J

I - ----~~-

-i
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Figure 12. Dolph-Chebyshev window a = 2.5: (a) time series, (b) log-magnitude of DFT
[from 10]

.2idm1 M-1 j-

r ,[n ] f[n] P[k] e M
k=O

(IV.4)

We have to consider the conjugate-complex symmetry of the autocorrelation function:

I [-n] =7 [n ].

The final estimate of the mean PSD is obtained by windowing the estimate of the

autocorrelation function:

M-1 -. 2rkn

Pxx[k] w.[n]r,[n]e 2D-1
n=-M+1

(IV.5)

where

wi[n]
rrwc n ] =

r [0]

(IV.6)

where
wi [n ]: lag window function, (wi [n ] = 0 for In I L where L > M)

~

!

!!
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r,.,, [n]: autocorrelation function of the window used for the DFT of the data segments (here: autocorrela-

tion function of the rectangular window)

IV3 Spectrograms

If we are more interested in the time fluctuations of the velocity we can analyze the

bursts with a time-dependent Fourier transform [25]:

M-l --- -
X[n, k ]= x [m+n ] w[m]e M (IV.6)

M=0

w[m] =Oform <O,m >M
n: discrete time
k denotes the discrete frequency.

The process can be visualized as the data sliding behind a window of length M. A time-

varying power spectrum results if the PSD of the windowed data is computed.

The use of a spectrogram implies that the signal is continuous, i.e. in terms of

LDA, the particle arrival rate must be high. From the spectrogram, the frequencies of

velocity fluctuations may be obtained by taking the Fourier transform of the time-varying

velocity.

_ __ __
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V. Adaptive Spectral Estimation

A great part of the spectral estimation algorithm used in this project relies on so-

called adaptive methods. As they are less common than the classical methods, an intro-

duction to the underlying principles is given in this chapter. Given these principles the

performance of the algorithms in the numerical simulations and in the real experiment is

easier understood.

In the first section the general terms in adaptive spectral estimation are presented.

The auto-regressive and the auto-regressive moving-average models are described.

Then, auto-regressive spectral estimation and its relationship with linear prediction

is discussed with some detail. The next section is concerned with the implementation of

auto-regressive models on computers and the influence of noise on the spectral estima-

tion. The Modified Covariance Algorithm, the auto-regressive method used in this pro-

ject is also presented.

The poor performance of auto-regressive estimators in the presence of strong noise

lead to the development of enhancement algorithms. In this project the Iterative Filtering

Algorithm was tested.

In the last section, the theoretical foundations of a particular method for auto-

regressive moving-average spectral estimation are presented. This method is based on

Pade approximation of a high-order polynomial by the quotient of two lower order poly-

nomials.
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V.1 General Introduction

A stochastic process producing the sampled data x [n] may be approximated by the

output of linear time-invariant system driven by white noise. The linear time-invariant

system is represented in the time domain by the linear constant-coefficient difference

equation:

p q
x[n]=- Za[k]x[n-k]+ bb[k] u[n-k] (V.1)

k=1 k=O

and in the frequency domain by the frequency response, or transfer function, H(z):

B Eb[k] z(-
H(z)= = k (.2)A(z) P+A + a [k] z "*

k=1

This formulation implies that a [01=1.

An autoregressive moving-average model of order (p, q ) for the discrete time

series x [n] is the minimum-phase system of Eq. (V.2) whose coefficients a [k] and b [k]

have been determined such that the Eq. (V.1) is satisfied in a mean square sense for all

data points x [n], 0n 5 N-1.

The first sum of Eq. (V.1), ,a [k]x[n-k], forms the autoregressive (AR) branch.
k-=1

Its z-transform, A (z), is responsible for the poles in the system (zeroes of the denominator

polynomial in z). The second sum, lb[k] x [n-k], is termed the moving-average (MA)
k=o

branch of the (p, q) ARMA model. Its z-transform, B (z), is responsible for the zeroes in

_ __ _· __I·_ · ~_···
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the system (zeroes of the numerator polynomial of z).

V.2 Autoregressive Spectral Estimation

We obtain a pure AR model of order p if we set b [k]= 0 for all k •0, i.e.

P
x[n] =-a[k ] x[n-k ] + u[n] (V.3)

k=1

Taking the modulus squared of the Fourier transform of Eq. (V.3) and noting that

u [n] is a white noise sequence with mean power .2 we get an expression for the power

spectral density (PSD) of the AR model, PAR:

TaoV
P()IA()1 (V.4)

where T is the sampling interval.

Eq. (V.4) shows that an AR model can only represent peaks (poles) in the fre-

quency response, i.e. IA(f) 12= 0.

The autocorrelation function can be determined from the linear constant-coefficient

difference equation for the AR model
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r[n] =E{x[n] x [n-m]} =

p
-I a[k]r,[m-k] for

k=1

-Za[k] r,[m-k] ]+
k=1

r'[-m] for m<0

E {} denotes the expected value of the quantity in brackets.

The autocorrelation function r [k] is related to the PSD for an AR process, PA,

via:

PAR (f ) A= ) = T r,[k ] e-'•
IA (f)12

k.-

(V.6)

Note that the autocorrelation r,[k] for 0Ok _5p alone describes the PSD. The impli-

cit recursive extension of the autocorrelation sequence for Ik I >p,

r, [m] =-Ya [k] r, [m-k] is responsible for the superior resolution of the AR spectral esti-
k=1

mators. The classical methods all assume the autocorrelation function to be zero outside

the interval [-p,p]. Their data set for the Fourier transform is shorter, therefore their

spectral resolution is lower.

An estimate for the AR parameters and thus an estimate of the PSD can be

obtained with the following approach:

Consider the forward linear prediction equation:

m>0

for mr= (V.5)

·__·_· _ I__
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p

£i [n] = - a, [k] x[n-k ] (V.7a)
k=1

where the sample at lag n is to be estimated based on knowledge of the p previous sam-

ples, x [n-k ], 1 :k p p.

Similarly, the backward linear prediction equation:

p

b[n ] = - •a[k] x [n-k] (V.7b)
k=1

which is anticausal: the sample at lag n is to be estimated based on knowledge of the p

future samples.

Define also the respective errors in the prediction, the forward prediction error

power:

ef [n]= E{x[n]-xf [n]l 2  (V.8a)

And the backward prediction error power:

eb [n ] = E {x [n ]-b [n ]2l (V.8b)

The linear prediction coefficients are chosen in such a way that they minimize the

corresponding error powers. As we assume a stationary random process the linear predic-

tion coefficients will be in addition time-invariant.
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V.3 Algorithms for AR Spectral Estimation

During the course of the project two algorithms for estimating the PSD with AR

models have been tested: the Modified Covariance Algorithm and the Iterative Filtering

Algorithm. Before these two algorithms are described, some general remarks on AR

spectral estimators are made.

V3.1 Block Data or Sequential Data Algorithms

There are two different approaches to AR parameter estimation, block data algo-

rithms and sequential data algorithms. Block data algorithms process an entire block of

data at a time. Sequential data algorithms update the estimate as soon as a new sample

becomes available. An example of a sequential data algorithm would be the fast Kalman

filter.

Sequential algorithms seem to be less suited for frequency estimation of laser-

Doppler signals than block data algorithms: Sampling rates of the order of 1 to 10 MHz

do not allow continuous updating of the AR estimates, which requires approximately N

computations per incoming sample (N being the number of previous samples on which

the prediction is based). Also, the design of the MASSCOMP data acquisition system (one

filled buffer from a buffer queue is released at a time) is best used by employing block

data algorithms.

Among the block data algorithms, the Burg method and the covariance method are

the most popular ones. Both rely on a minimization of the arithmetic mean of the forward

and the backward prediction error power (Eq. V.10). As, according to the literature, the

__
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statistic properties of the modified covariance method (bias and variance in the estimated

PSD) are more advantageous than the ones of the Burg algorithm, it was decided to run

the tests exclusively with the former method. However, the modified covariance method

does not necessarily generate a minimum-phase system, but fortunately in normal cir-

cumstances does so. All numerical simulations during this project, for instance, resulted

in minimum phase systems.

V.3.2 Influence of Noise on AR parameter estimation

A common property of autoregressive spectral estimators is their susceptibility to

additional observation noise.

Assume this additional observation noise to have zero mean and variance a.. Then

from Eq. (V.5) we get (including the constant factor T - the sampling interval - in a.2:

PA+, =.2+ +a IA(z)2  (V.9)
P+uo IA(z)1 2  `0 IA(z) 12

Thus, even if the system has AR character, additional observation noise will add zeros to

the frequency spectrum of the process which the all pole model cannot represent. The

appropriate model for this case would be an ARMA model, for which only sub-optimal

algorithms exist due to the non-linear least-squares equations.

The effect of observation noise on the AR PSD is a flattened (i.e. the variance is

significantly decreased) and biased estimate for low signal-to-noise ratios (SNR). This

disadvantage can be overcome to a certain degree by the iterative filtering algorithm for

sinusoids in white noise.
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V3.3 Order Selection and Sinusoidal Parameter Estimation

For parameter spectral estimation the order of the chosen model is crucial for

obtaining valid estimates. In general there is a resolution-variance trade-off for the spec-

tral estimators when applied to noisy data. If the model order is chosen too low the

resulting spectrum will not resolve all spectral peaks. On the other hand, too high a

model order will cause spurious peaks to appear in the spectrum: The variance of the

estimate increases. These spurious peaks appear because the AR estimator tries to model

the noise zeros instead of the signal zeros. Here, the Iterative Filtering Algorithm reduces

the variance for a given order and SNR. These properties will be illustrated in Section

V.4.

AR estimators can be used for modeling the PSD of sinusoidal processes, if the

available data x In] are stationary and the phase of the sinusoid is a random variable of

uniform distribution. Then the PSD of such a process can be viewed as the limit of a

band limited random process.

An appropriate model order for sinusoidal processes is 2M where M is the number

of real sinusoids. However, the model order in actual simulations tends to be chosen

somewhat larger.

V3.4 The Modified Covariance Method

As mentioned above, the modified covariance method tries to minimize the arith-

metic mean of the forward and the backward prediction error power (p, and Pb):

_· _11__~__1
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(V.10a)S1
p = 2 (Pf+Pb) -+ min!

where

Pf =- p lefI[n]12

N-1
Pb=- Np leb[n]l12

(e [n ],eb [n ] were defined in eqns. (V.9a) and (V.9b))

(V.10Ob)

(V.lOc)

Complex differentiation of Eq. (V.1 la) with respect to a [k] and setting the result to

zero yields the following matrix equation for the parameters a [k]:

C, a = -c, (V.11a)

where

rN-1 N-i
S( ,k)= x'x[n-j]x[n-k]+ x[n+j]x [n+k]1CO',k (N-p- ). p (V.11llb)

for j,k = 1.... p

and

c, [1,01

c [2,0]
c ,= .p .

c.[p ,0]

a [2]

a [p]

(V.llc)
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The behavior of the modified covariance as described in the literature shows some

very desirable properties especially for frequency estimation of sinusoids in white noise.

[19] provided a fast algorithm which takes Np + 6p2 operations for an AR model of

order p and a data segment length of N points. It relies on a special partition of the matrix

C, .

V.4 The Iterative Filtering Algorithm

This algorithm enhances the performance of AR estimation algorithms for low

signal-to-noise ratios.

The PSD of an AR process plus observation noise as given by Eq. (V.10) is:

S+aA() = 2  (V.12)
IA (z)12

At low SNR's a2 >> a2 IA(z) 12. Hence Eq. (V.13) can be approximated with:

PASNRlow IA(z) 2 =PAR (V.13)
I A((z)|

The roots of the numerator polynomial IB (z) 12 af2+ a2 lA (z) 12 are of small magnitude

(i.e. negligible) and located near the origin (IB (z)12 is nearly constant).

For high SNR's a.2 >> 2 Eq. (V.13) becomes:

__ I _ ·_I·_I_~
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PAR sRuhg = o2 (V.14)

Eq. (V.15) results from Eq. (V.13) if the roots of IB(z)12 = 0 are close to the roots of

IA (z) I2 = 0, i.e. if pole-zero cancellation takes place.

Furthermore, eqns. (V.14) and (V.15) demonstrate that with decreasing SNR the

zeros in the noisy spectrum, PAR•,,,, approach the poles of the AR estimator. The spec-

trum flattens more and more.

If the data are prefiltered with 1 pole-zero cancellation can be avoided, as
IA (z)2 pole-zero cancellation can be avoided, as

double-poles are created.

Because IA(z)12 itself is an unknown, we have to use an approximation of IA(z)12

to filter the data as follows

* Filter the data segment with the estimate A1(z) l2 . Start the algorithm with

IA(z)I~= 1.

* Determine the new estimate IA (z) I21 = 1 based on the previously filtered data.

* Continue with the first step with IA(z)12 = -ýIA(z)1 2.

These steps define the Iterative Filtering Algorithm.

For the estimation of IA(z)1 2 any AR algorithm can be used. We decided to take

the Modified Covariance Method because of its properties. The combination "Iterative

Filtering Algorithm plus Modified Covariance Method" is not documented in the litera-

ture, as the latter produces not necessarily a stable filter. During all simulations, however,
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Figure 13. Iterative Filtering Algorithm

the poles fell into the unit circle.

The computational complexity of the IFA is relatively high: At each iterative step,

the Modified Covariance Method is applied to the data (Np +p2) and the data segment is

filtered with the current filter estimate (N log2N). Thus, assuming i iterations, the number

of operations for each data segment of length N is approximately i (Np+p2)(N log2N) which

is for small p (note that p is around twice the number of real sinusoids in the signal)

i^p^N sup 2 ~ log sub 2 N, the computational complexity of the Iterative Filtering Algo-

rithm.

V.5 Autoregressive-Moving Average Spectral Estimation

ARMA spectral estimation results in nonlinear least-squares equations which are in

practice not solved efficiently. Therefore, research has been directed towards so-called

suboptimal algorithms resulting from linearization of the least-squares equations. In the

following section, one of these algorithms, based on a Pade approximation, is described.

At the core of the method is the Euclidean algorithm for the division of two poly-

nomials. The Euclidean is described in the first part of this chapter.

_ _ ·_ ··_ _·· II ·
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The second part defines the Pade approximant to a given polynomial as the quo-

tient of two polynomials of lower degree: the Pade approximant and the original polyno-

mial have the same remainder if divided by another polynomial. For Pade theory to hold,

the degrees of all these polynomials must satisfy certain relationships.

It is then demonstrated that the Euclidean algorithm yields Pade approximants if

the two initial polynomials are defined properly.

In the last section it is shown that Pade approximation is applicable to ARMA

spectral estimation: we approximate the spectrum of our data (which can be represented

with a polynomial using the z-transform) with the quotient of the AR and the MA branch

(cf. Section V.1). This is exactly the problem treated in Pade theory. The final Pade esti-

mator with the Euclidean algorithm is then presented.

V.5.1 Greatest Common Divisor of Polynomials: The Euclidean Algorithm

The Euclidean algorithm computes the polynomial of highest degree dividing two

given polynomials. Thus, it yields the greatest common divisor (GCD) of two polynomi-

als, which is determined up to a scalar factor. However, it is convenient to use monic

polynomials (monic polynomials are normalized with their leading coefficient)[1][3][15].

The common form of the Euclidean algorithm for two input polynomials A (z) and

B (z) with deg [B (z)] > deg [A (z)] is given by the following series of recursive equations:

(V.15a)
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ro(z)= A(z) (V.15b)

ri-24(z) = q~(z) ri-_1(z) + ri (z). (V.15c)

Where q1(z) is the quotient polynomial of and r (z) the remainder polynomial of

this division. It is common to write the remainder of such a division as:

r (z) = ri-2(z) mod (ri-1(z)). (V.16)

The Euclidean algorithm terminates if for a particular i = i0: r3.(z)= 0, if the remainder

becomes the null polynomial. The greatest common divisor is then equal to r,-_(z). A

basic property of the Euclidean algorithm is that the remainder sequence r,(z) is of des-

cending order:

deg [ri(z)] < deg [ri-,(z)].

Although the Euclidean algorithm is structurally very simple, its computational complex-

ity of n3 floating-point operations renders it quite inefficient for finding the GCD.

An efficient recursive doubling (divide-and-conquer) strategy has been developed,

depending on the observation that not all coefficients of the two input polynomials con-

tribute to the quotient polynomials [5][32]. The computational complexity of this fast

version is M(n) log22 n (M (n) some linear function of n). This fast version of the Euclidean

algorithm was also implemented and tested (cf. Section VI.2). It is, however, only of

limited use in LDA.

I__ ·_ ~___·
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V.5.2 A Glance at Pade Approximants

Pade theory deals with the approximation of an infinite-order polynomial by the

ratio of two finite polynomials. For a general polynomial G (z)= go+ g1 z + g Z + " ", the

(j,v) Pade approximant to G (z) is defined as the quotient B(z) [21], where B(z) and A(z)
A (z)

are two polynomials of lowest degree satisfying the following equations:

deg [B (z)] t (V.17a)

deg [A (z)] Sv (V.17b)

pg+v=N (V. 17c)

B (z) (mod (xN')) = G (z) G (z). (V.17d)
A (z)

GN(z)= o0+ gl z + + + g9 zN, GN(z) is theNh truncation of G (z).

Here " -" denotes congruence: The left-hand and the right-hand side in Eq. (V.17d) have

the same remainder if divided by XN+L.

V.5.3 Pade Approximation and the Euclidean Algorithm

The Euclidean Algorithm algorithm described in Section V.5.1 can be used to gen-

erate the Pade approximants to a polynomial if the initial polynomials are initialized in

the proper way [21][27]. To apply the Euclidean algorithm to Pade theory we have to

define a second sequence of polynomials, the so-called co-multiplier polynomial.

The co-multiplier sequence, t4 (z), for the remainder sequence r; (z) and the quotient

sequence qi(z) is defined as:
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t-l=0; to= 1 (V.18a)

ti(z) = ti-2(z)- q (z) ti-(z) (V.18b)

then the (",v) Pade approximant to GN(z) is i for the iteration index io which is
4(Cz)

uniquely defined by:

deg [ri-l(z)] + 1 (V.19a)

deg [ri(z)] p. . (V. 19b)

r, denotes the remainder polynomial of the Euclidean Algorithm as given by Eq. (V.15c).

The Euclidean Algorithm has to be initialized with ro(z) = GN(Z) and r-_(z) = xN+I.

V.5.4 Pade approximation and ARMA spectral estimation

The z-transform, or equivalently, the discrete Fourier transform (DFT), of our

actual data sequence x (n] of length N is defined by the following complex polynomial:

N-I
X(z)= x [n] z" (V.20)

A=O

(we obtain the DFT from (V.20) if we set z a e , i.e. if we evaluate (V.###) on the unit

circle).

The frequency response of the ARMA (p, q) filter was given by B . This fre

quency response - a quotient of two finite polynomials of orders p and q, respectively -

should be the best approximation in the mean square sense to the actual spectrum of our

I __ ·_ I__ __·_ ~_ _·_·___·_ _
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data, X(z). The problem becomes identical to the problem in the theory of Pade approxi-

mation.

Using the co-multiplier polynomial ti(z), as defined by Eqs. (V.18), we can apply

the Euclidean algorithm to ARMA spectral estimation [21][27]. We set

r-l(z) = zN+1 (V.21a)

ro(z) = x [n ] z-" (V.21b)

x [n ] are the sampled data.

Then the (j,v) Pade approximant to x (z) is the quotient - . The recursion index

io is hereby uniquely determined by:

deg [rit(z)] > lt + 1; deg [ti.7(z)] < v;

deg [ri(z)] < g; deg [ti(z)] 2 v + 1.

If we employ the Euclidean algorithm in our spectral estimation we will obtain an

ARMA (j,v) estimation for X(z). The remainder polynomial, ri(z), (cf. Eq. (V.15)), is of

decreasing order and the co-multiplier polynomial ti(z) is of increasing order, with

deg [ti (z)] =0 for i=--0. Therefore, we start the algorithm with a pure MA model, i.e.

1 1
x(z) =B(z)= rl(z), and terminate with a pure AR model, (z) --- Thus, we

A(z) - Tuw

can control the character of our spectral estimate, if we exit the Euclidean Algorithm at a

given iteration index.
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A discussion of the performance of the Pade spectral estimator for laser-Doppler

signals is found in Section VII.2.3.

_ ~ I·_·_ ____ ·_ __
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VI. Preliminary Processing of LDA Signals

The Doppler signal has to be preconditioned before spectral estimation with any of

the methods presented in the previous chapter can be done. Prior to the A/D conversion

high frequency components of more than half the sampling frequency have to be

removed with an analog filter to avoid aliasing. Discussion of this standard procedure in

digital signal processing is found throughout the literature.

Furthermore, it is advisable to remove the Gaussian pedestal and de components

with a (digital) lowpass filter. This gets rid of high energy contents in the low frequency

region which carries no velocity information. An efficient way to implement this filtering

is the overlap-add method, described below. This topic and the following glance at digi-

tal filter design are kept very short, as they again can be found in a variety of books on

digital signal processing (eg. [24][25])

Two modes of operation of the laser-Doppler anemometer are: the continuous

mode, where at each instant one or more particle are traversing the probe volume, result-

ing in a continuous signal at the photomultiplier; and the burst mode, where information

about the flow velocity is only available at the random times at which a particle crosses

the fringe pattern. Different sampling strategies arise for the two different types if the

signal is instationary. Instationary Doppler signals result from eg. velocity gradients or

turbulent flows.
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VI.1 Digital Filtering with the Overlap-Add Method

Given a filter impulse response h[n] with h [n ]=0 for n > (P-1) and n < 0 (the filter is

said to be of order P), the filtering of an input x [n ] can be done in the time domain via a

convolution:

P-1

y [n]= Y h[k]x[n-k] (VI.1)
k=0

It is straightforward to show that if the input x [n] has length L the resulting filtered

signal will have length P+L-1. Use of the convolution is only efficient for very short

impulse responses or very short input data. The computational complexity of this

approach goes like P (P +L - 1).

A very long signal can be divided into segments xi [n] of length L (very much like a

periodogram) which are convolved separately (cf. Fig. 14). As the filtered segments will

be of length (P +L - 1), (P - 1) points leak over into the next segment and have there to be

added to the first (P - 1) points of the filtered data. This method is called the overlap-add

method (see for example [25]).

The computational effort can be reduced if filtering is done in the Fourier domain.

The convolution in the above equation is replaced by the product of the discrete Fourier

transform of the filter impulse response (i.e. the filter frequency response), H [ k], and the

Fourier transform of the data segment, X[k].

Y [k]=H [k]X [k]

The computational complexity in this case is of the order S log2S for an FFT of length S.

I__ __·_··· I_ ~_Y·___
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xo[n]

L n

--- Rp~n ~sees

v rnl

Figure 14. The overlap-add method (from [25]). (a) segmentation of the input data, (b)
each segment is convolved with the filter impulse response and overlapped
with the following segment

As the discrete Fourier transform implements a circular convolution (see [24][25]), the

FFT has to be at least of length (L +P- 1). One way to ensure proper filtering is to adjust

the length of the data segments according to a desired length of the FFT, S, and the filter

/
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order P: L = S +1-P.

VI.2 Design of Finite-Impulse Response (FIR) Filters

An ideal low-pass filter with a cut-off frequency o, and a frequency response of

H(o)= 1 for -om, w o< c, and zero otherwise, has an infinitely long impulse response and

is therefore in practice not available. The infinitely long impulse responses of these ideal

filters are therefore approximated by finite impulse responses.

In the course of this project only two of the many ways to design an FIR filter were

considered. One way, called the Kaiser window method, multiplies the impulse response

of an ideal filter with a particular window function to approximate the desired filter. The

resulting FIR filters are not the shortest ones possible for the given specifications, but the

design procedure is fast and simple.

The most common design procedure, the Parks-McClellan algorithm (also termed

optimum filter design), ensures the shortest possible impulse response for the given filter

specifications. This routine is available as a FORTRAN program from IEEE [8].

The design of FIR filters is a very active field of research and detailed description

of the underlying principles would go beyond the scope of this paper. For further refer-

ence I may recommend [24][25].

_ I __ __
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VI.3 Corrections for Velocity Gradients and Velocity Fluctuations

Most experiments in LDA are carried out in the presence of either velocity gra-

dients or velocity fluctuations. Their effect on the signal properties is basically the same:

the Doppler frequency will change with time and thus an nonstationarity is induced in the

record. For the single burst, however, we can still assume wide-sense stationarity3 pro-

vided that the Doppler frequency stays constant during one burst. Wide-sense stationar-

ity is thus satisfied if the microscale of the flow is larger than the probe volume.

VI3.1 Sampling Strategies

A continuous signal (there is always a particle present in the probe volume), may

be analyzed with periodograms or correlograms [25]. The record is divided into seg-

ments of equal length, the final spectral estimate results from averaging the PSDs of the

segments. Computationally most efficient in this class of spectral estimators is the

Nuttall-Cramer method which is explained in Section IV.2.

A different situation arises for a discontinuous signal where velocity information

exists only at the times where a particle traverses the probe volume: One batch of data

consisting of (in time) randomly distributed bursts must be much longer than the integral

scale of the flow. The bursts can then be thought of as random samples of the flow. The

3. Wide-sense stationarity requires the autocorrelation function to be time-independent, it must only
depend on the time-lag.
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periodograms are not applicable to this case as they yield a particle-averaged and not a

time-averaged velocity. Therefore residence-time weighting has to be employed.

VI3.2 Burst-type LDA: Residence-Time Weighting for Averages

A velocity gradient over the probe volume (or a time-varying velocity profile) will

lead to a biased estimate in the burst-type LDA (towards higher velocities) if simple

arithmetic averaging is done, i.e. if we compute the mean velocity via:

N

-- ui
N

where N is the number of all bursts and u, is the estimated velocity from the i' burst.

This bias is due to the fact that (assuming uniform particle distribution) more particles

with higher velocity will cross the probe volume than particles with lower velocity. In

this case the particle-average as expressed in the preceding equation will not equal the

time-averaged velocity, as the arrival rate and the velocity are correlated. This situation

is depicted in Fig. 15. In the continuous case, the higher arrival rate of faster particles is

balanced by the longer signal duration of bursts from slower particles through the fixed-

length processing.

An unbiased averaging process - the so-called residence-time averaging - is

derived as follows [6][9]:

The mean velocity of the measurement is a result of both spatial and temporal

averaging, i.e.

·__ __·_
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For a given time t
all particles in the

enclosed area will cross
the probe volume

z~

o o0o 0

0
0o

O0 0

0

Figure 15. More particles with higher velocity will cross the probe volume than parti-
cles with lower velocity

w=1 .ID~ldd1(VT - u(x, t)dV dt0rov (VI.3)

V: size of measuring volume
T: duration of sampling

In order to assign the mean velocity to one point within the probe volume, we

separate the velocity into the mean at a fixed point xo within the measuring volume, i(xo),

the difference of the velocity at a point x to that mean velocity, Mai(x), and a fluctuating

part, u'(x, t):

u (x, t)= W(xo) + Ai(x) + u'(x, t) (VI.4)

Inserting this expression into Eq. (VI.1) yields:

0
I I

0

0 0

0
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T

VT= ff [ J(xo) + AW(x) dx + u'(x,t) ] dV dt

If we assume that the duration of one measurement is long enough for the fluctuations to

cancel4 then, after interchanging the order of integration, f u' dt will vanish and we are

left with:

u = i(xo) + - a(x)dV (VI.5)

For a certain choice of xo the integral in Eq. (VI.5) will be zero. Clearly, this point

can only be exactly computed if we have information about the mean velocity gradient.

The form of the recorded signal, however, gives no information about the the loca-

tion of the transition path of the particle. Therefore we can only employ temporal averag-

ing to reconstruct the theoretical mean velocity:

T
utWAy = f u (t) dt.

which becomes the residence-time weighted sum

4. This requires also that the presence of a particle within the probe volume is not correlated in any way
with the velocity fluctuations.

·__I· I~ __ _· L·_ ~
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N

U•DA- (VI.6)

With the following substitutions:
u(t) -~ ui: velocity estimate of the iV burst
T -• Ati: duration of the measurements
Ati: duration of the iP measurement (burst)
N: number of measurements (bursts).

Eq. (VI.6) (and therefore residence-time weighting) makes sense only in sparsely

seeded flows, where a at& is well defined. In practice, exact determination of the

residence time is hard to accomplish. It is recommended that At, is taken as twice the

time from the signal maximum to half this value [9].

In order for i(xo)= 1LDA to hold exactly, f Ai dV -0 must be satisfied. Obviously,

this is the case for a uniform mean velocity or a antisymmetric velocity difference Au (x)

in the mean around the point x0. In the case of linear mean velocity gradient x0 is the

location of the center of the probe volume.

In general, however, we have to keep the integral in Eq. (VI.5) as correction term:

i(x0)= ULDA - 4 J Al(x) dV. (VI.7)
V V

where ULDA is obtained by residence-time weighting the data record.
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VII. Numerical Simulations with the MATLAB Software Package

Using the MATLABT M (The MathWorks) software package, power spectrum esti-

mates based on the direct Fourier transform of windowed data segments, the Modified

Covariance Algorithm, the iterative filtering algorithm, and the Pade spectral estimator

were tested on a typical laser-Doppler signal with additive white noise. Computer simu-

lations on the MATLAB package allow a fast adaptation of different algorithms due to

the object-oriented programming language and the large library of mathematical and

signal-processing routines. In addition, as the algorithms can be written in vector nota-

tion, transfer of the programs to the MASSCOMP array processor is greatly facilitated.

The numerical simulations can be divided into two separate tasks: The generation

of signals and the application of the spectral estimators to these signals.

The purpose of these preliminary tests was twofold: The performance of the dif-

ferent methods (and their robustness from the programming point of view) in the numeri-

cal simulations allowed to decide whether their implementation on an array processor

will be reasonable. Secondly, comparing their performance with artificial signals and sig-

nals arising in a real experiment should yield some information about the predictive

value of the models for the artificial signals.

VII.] Signal Generation

The signal generator, a MATLAB script-file, (mks i g. m) models as close as possi-

ble the signal encountered in a "real" laser-Doppler experiment to predict more easily the

I· _ __ ___~·
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performance of the frequency estimators. Therefore, the produced signal can represent

different experimental set-ups (different seeding densities, velocities, velocity gradients,

SNRs etc.).

The data for the optical set-up are based on the DISA 55X Modular LDA Optics

with a X51 160 mm front lens and a 124B laser type [40].

In the literature, computer generated laser-Doppler signals usually consist of one

single burst of well defined signal-to-noise ratio. In my point of view this may not be an

appropriate testing procedure. First of all, the local SNR of a laser-Doppler signal varies

as different particles cross the probe volume at different paths. This results in signals

with different signal intensities in front of the constant background noise.

The following assumptions were made for the signal:

* The photocurrent and the intensity of the scattered light are linearly related: An

ideal photodetector is modeled. The three-dimensional intensity distribution within

the probe volume is known.

* The particles are assumed to be point-sized. The Doppler-signal of a real particle

will be more smoothed out.

* The velocity has just one component perpendicular to the fringe system. There are

no directional fluctuations of the velocity.

* The velocity of the particles stays constant within the probe volume. I.e. in

unsteady flows the Kolmogoroff microscale must be larger than the probe volume.
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The MATLAB routines for the signal generation listed in the Appendix, work as

follows:

After initialization of all parameters (lines 10-7 0), the time of occurrence (line

76) y-z-coordinates of the transition path of a particle are randomly chosen by the pro-

gram (function transit). The mean pause between the particle crossings can be

adjusted to simulate different seeding densities of the flow (line 21, variable

meapaus). Thus the created signal may either simulate a burst-type or a continuous

LDA signal.

The signal generator stops if a predefined number of bursts has been created (loop

over lines 73-91). Next, white noise is added to the signal (lines 97-115). In order to

achieve a specified signal-to-noise ratio, the variance of the noise is adjusted in the fol-

lowing manner (lines 105, 107).

From the definition of the signal-to-noise ratio:

SNR = 20 log1o var (signal) (VII. 1)
var (noise )

(var () stands for the variance of the quantity in parentheses). We can adjust the ampli-

tude of the noise by

-SNR
amp = var (signal) 10 10 (VII.2)

var (noise) J

where var (amp noise) = amp2 var (noise) has been used to obtain the desired SNR.

I_· · _F ____·_ _~ __LI__ ;_ _·n·__
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In the last step, the signal is quantized to 12 bits simulating an optimally adjusted

A/D converter.

As mentioned above, the signal generation facility exceeds in its complexity the

ones described in the literature, where usually one single high-pass filtered burst with

additive white noise is used as a test signal. For the evaluation especially of autoregres-

sive frequency estimators, a "real" signal can yield totally different results:

Different envelopes and pedestals in the signal which are not completely removed

by high-pass filtering may influence the performance of the algorithms. Employing a

sliding time window will also result in different local SNRs as the amplitude of the

sinusoid varies in front of noisy background. In addition, several particles crossing the

probe volume with different velocities will cause beating effects in their Doppler fre-

quencies. Therefore, the behavior of for example an AR estimator at a given order cannot

be predicted offhand.

The presented signal generator is easily extended to include simulation of a velo-

city gradients of arbitrary shape: After the location of the transition of a particle is deter-

mined another function may be called where the velocity u is changed accordingly.

VII.2 Testing of the Algorithms Using the MATLAB software

The algorithms are tested on signals with four different SNR's: 2000 dB, 10 dB, 0

dB, and -10 dB. The 2000 dB signal was used to determine the order and the window

length of the estimator which best represents the known Doppler frequency. All DFTs
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used in the simulations were 512 points long. Before computing the PSD the actual data

segment is high-pass filtered using an IIR Butterworth filter with the following

specifications:

stopband edge frequency 20000 Hz
deviation from unity in stopband 0.001
passband edge frequency 60000 Hz
deviation from zero in stopband 0.001

TABLE 3. Filter specifications for Butterworth filter

Filtering is done in the frequency domain: The discrete Fourier transform (DFT) of

the current data segment is multiplied with the frequency response of the filter and then

transformed to the time domain. Filtering is also a prerequisite of the AR estimators as

they require data with zero mean i.e. with the dc-component removed. The filtering step

has not been carefully implemented, as the DFT circularly convolves the signal with the

infinitely long filter impulse response. However, the results seem to indicate that this

error had no effect on the spectral estimation process.

In most applications of laser-Doppler anemometry the frequency of the signal will

change with time due to the flow properties (turbulence, oscillatory flows, velocity gra-

dients over the probe volume). The most appropriate way to show the time-dependence

of the spectra of non-stationary signals is to plot the PSD over both time and frequency in

a spectrogram. The results are 3-dimensional graphs, where the "height" is the PSD esti-

mate at that particular time-frequency point.

__ ·



-69-

VII2.1 Description of the Generated Signal

Table 4 lists the data set used for the simulations. Examples of actual signals pro-
duced by the MATLAB-routines are shown in the Appendix.

number of bursts 20
sampling rate f, 1IMHz

velocity (x-component only), u = u, 1 -
S

mean pause between burst 0.0001 s
focal length of front lens, f 300 mm
wavelength of laser, X 633 nm
angle of intersection, 0 7.440
waist diameter of unfocused beam, d, 1.1mm
Doppler frequency, fd 204,99 kHz
half axis of ellipsoid, dx,dy,d, 0.1101 mm, 0.1099 mm, 1.6939 mm

TABLE 4. Data set for the numerical simulations

The value of the parameter determining the seeding, meapaus was set to 0.0001. This

resulted in an almost continuous signal. Fig. 26 in the Appendix shows 20 bursts with a

practically infinite signal-to-noise ratio. This signal was used as test input in all subse-

quent tests. Only the amplitude of the additive white noise was changed to obtain the

desired SNR. Fig. 27 shows the same signal with a SNR of 0 dB, Fig. 28 shows the local

variation of the SNR of the signal in Fig. 27. The SNR varies depending on the strength

of the bursts in front of the uniform noise.

The Doppler frequency of 205 kHz corresponds to bin 105 in the DFT.
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VII.2.2 Results of the DFT-based Spectral Estimator with a Hamming Window

The behavior of the classical method is as expected: The peak in the spectrum

corresponding to the Doppler frequency is clearly visible. Fig. 29 shows that the method

is sensitive to the local SNR in the signal: at the location of lowest SNR in the signal, the

method failed (Segment numbers 1,3,5,19,28). Also the Doppler frequency is not

resolved over parts of the spectrogram.

VII2.3 Results of the Modified Covariance Algorithm (AR Method)

First, the appropriate order of the AR model for an LDA signal was chosen at a

practically noiseless (2000 dB SNR) signal (cf. Appendix). Best results with the least

computational effort were obtained with model orders 3 and 4. Both correspond to a

model order used for AR representation of Doppler-radar signals [29]. The results for the

third order Modified Covariance Algorithm are shown in Figs. 31 to 34.

The behavior of the Modified Covariance Algorithm applied to laser-Doppler sig-

nals corresponds to the general behavior of AR estimators. The resolution-variance

trade-off is obvious if Figs. 31 and 35 are compared: At order 3 the spectrum is flat and

has no spurious peaks but the spectral resolution is lower because of the low model order,

at order 20 the variance in the spectrum is increased by the presence of spurious peaks.

The modified covariance shows some bias for lower order models at SNR's of 10 dB and

0 dB respectively.

A look at the local SNR's leads to the conclusion that the modified covariance

method seems to work only for SNR's of more than 0 dB to 10 dB.

_ ~___~_ __
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VII.2.4 Results of the Iterative Filtering Algorithm

The fluctuations in the main spectral line were much smaller with Iterative Filter-

ing Algorithm throughout the tested SNR's. In fact, the IFA turned out to have the lowest

variance in the PSD of all tested methods (Fig. 36). However this technique fails also at

very low SNRs (Fig. 37).

The simulations were carried out at 10 dB and 0 dB SNR. The results indicate that

the IFA indeed represents an improvement of the Modified Covariance Method at low

SNRs, however with considerably higher computing effort.

VII.2.5 Results of the Pade Spectral Estimator

The preliminary MATLAB tests were first carried out with the fast recursive

Euclidean algorithm, along the line of [27]. There exist different versions of this algo-

rithm in the literature, [1][4][27][32], however the formulations in [4] and [32] did not

work. Therefore, the algorithms as shown in [1] was used.

In general, the adoption of this recursive process is quite cumbersome for the rela-

tively high-order polynomials occurring in the present case (64-point or 128-point data

segments lead to 64th or 128th order polynomials). The leading coefficients of the poly-

nomials have to be constantly checked whether they in fact represent floating-point zeros

Also, the stack operations for the recursive calls of the routine become significant. The

last version computed the test data spectrum provided in [14]. Some data segments in an

arbitrary Doppler signal, however, let the program terminate with an error.
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The recursive Euclidean algorithm will return an AR branch whose degree is

approximately half the degree of the input denominator polynomial. I.e. if our input poly-

nomials were S [ z] with deg T [ z ] = N, for N input data points, then after one call to the
T [z]

recursive routine the ARMA estimatorB E[z] will have an AR branch of deg [A (z)]=
A [z] 2

From the discussion of the AR estimators we learned that too high an AR order of

the Pade spectral estimator will result in spurious peaks. For our purpose we may there-

fore conclude that the Pade spectral estimator using the fast recursive Euclidean algo-

rithm is not appropriate for LDA. Also the highly recursive structure is not easily imple-

mented on an array processor with limited memory capacities. Therefore, the idea of

using the fast version of the Pade estimator was abandoned.

We obtain good results, however, if we employ the common Euclidean Algorithm

(eqns. (IV.16)) and exit if deg [ti(z)], the order of the AR branch, exceeds a preset order.

This order will eventually be low, approximately twice the number of real sinusoids in

the signal. As the n3 Euclidean Algorithm is executed only for the first few i it loses

much of its computational complexity.

The results of the Pade estimator employing the Common Euclidean algorithm

appear to be comparable with the IFA if not superior (Figs. 38 to 41). The variance in the

spectral estimator may be higher but as seen in Figs. 39 and 41 the peak in the spectrum

really corresponds to the Doppler frequency. It also yields the correct results at the loca-

tions of low local SNR where the DFT estimator failed. Considering also its computa-

tional complexity this method seems to be highly recommendable.

_ __ ·_I _·~ _·· __
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VIII. A Software System for Processing LDA Signals

Based on the results of the MATLAB simulations, it was decided to compare the

performances of the Pade ARMA spectral estimator to the performance of the classical

approach in a real flow experiment (cone-and-plate flow). For this, it was necessary to

implement a system of programs capable of analyzing LDA signals.

The first section of this chapter describes the available computer resources with

which the LDA signals are to be processed. As most programs make extensive use of the

high computational power of an off-board pipelined array processor, some of its proper-

ties are mentioned. The programs, listed in the Appendix, are well commented and go

along the lines of the underlying theories introduced in the foregoing chapters. There-

fore, more emphasis is put on how the programs interact than on a minute description of

their operations.

VIII.1 Available Computational Resources

The programs run on two different UNIX machines, an older MASSCOMP 550

machine and a new CONCURRENT 6400. The MASSCOMP is used mainly for sampling the

data as it is equipped with a 12-bit 1 MHz A/D converter. All computations are done on

the faster CONCURRENT which features also an off-board vector accelerator rated at 14.25

MFlops [38].

The vector accelerator operates independently from its host CPU. It consists of two

units, a DMA unit responsible for the data transfer from host memory to the vector
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memory (32768 locations of 32 bit floats) and back, and a math unit doing all the number

crunching (in single floating point accuracy) on the vector memory. The action of the two

independent units has to be synchronized to prevent transfer of data by the DMA while

the math unit is still working on them.

Unfortunately, the vector memory is not accessible from a debugger, which makes

programming somewhat cumbersome. Two C language macros, DUMP and MAGC, have

proven to be very useful for program development. They synchronize math and DMA

unit, transfer a specified vector to the host, print the contents (DUMP) or the complex

magnitude squared (MAGC), and exit.

VIII.2 Descriptions of the Programs

The system of programs for LDA signal processing consists of eight independent C

routines (SampleData, FilterData, Variance, GetBursts, MeanSpec,

DoPlot, CreateFIR, and MakeWindow) communicating via data files. A Bourne

shell script (MasterP lan) allows the setting of the most relevant parameters and exe-

cutes the programs in the proper order from the MASSCOMP over the Ethernet. The struc-

ture of the system is depicted in Fig. 16.

VIII.2.1 SampleData - Program for Data Acquisition

The data are sampled by SampleData at the MASSCOMP and then copied over

the Ethernet to the CONCURRENT. The user can - as with the rest of the programs -

specify all filenames, as well as the sampling frequency and the duration of the sampling

__1_ _~·_ ______ ·__ · _~~_·_ I~ __
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sampling durations had to be implemented by repeatedly setting up the A/D board, sam-

pling, and writing to disk (Loop over lines 2 93-341 and 34 6-375)[36].

The data record is then transferred to the CONCURRENT host, with a system call to

rcp (lines 382-388).

VIII2.2 FilterData - Program for Filtering Input Data

FilterData filters the raw data (still in integer format) with a digital FIR filter

(eg. designed by the routine CreateFIR) using the overlap-add method (cf. Section

VI.1).

VII.2.3 CreateFIR - Digital Filter Design Routine

CreateFIR consists of three routines (CreateFIR, KaiserFIR, and

OptFIR). The function KaiserFIR designs a FIR filter with the Kaiser window

method. OptFIR is the IEEE routine for the optimum filter method slightly modified to

serve as a subroutine. CreateFIR writes the frequency response of the filter together

with the filter order and the length of the DFT on file.

VIII.2.4 Variance - Program Computing First Order Statistics of the Signal

Variance computes the mean, the rms value, and the standard deviation of the

data. The -S option must be used if the first order statistics of the unfiltered data are

computed. The data are then first converted to float format which is usually first done by

___ .· I ·_ ___I__I I _~_·_ II: I _·_I __
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FilterData. If GetBursts (see below) is run with the -M option, Variance

has to be used for int to float conversion (-CS options).

VIII.2.5 GetBursts - Burst Validation Algorithm

The filtered data are now screened for particle bursts by the routine GetBursts.

This program basically implements a DISA burst validation circuit [41]. Fig. 17 shows

the flowchart of the routine.

The first part of the program performs all initialization tasks: Command line pars-

ing (lines 188-252), memory allocation, opening of all files (lines 282-338), and

setting the real-time priority of the process (lines 274-280). The flags, which

correspond to the output of the Schmitt-Triggers in the DISA circuit, are initialized

(lines 132, 133), the number of bursts processed up to now is read from file, if present,

or set to zero (lines 311-338), the number of samples in the source file is read as the

first item in the source file (line 347).

The trigger levels can be either set directly with the -M option or as multiples of a

threshold level. The reference trigger level in the file given under the -t option, may for

example come from the routine Variance which computes the first order statistics.

The burst detection algorithm itself is embedded in a loop which exits if all items

in the source file are read (lines 410-587) or if the number of bursts specified under

command line option -b is reached (lines 486-494).
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Figure 17. Flowchart of the burst validation algorithm

Figure 17. Flowchart of the burst validation algorithm

A crossing of trigger level 2 causes the burst flag to be set and the position of the

---- I--~
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triggering sample in the file to be saved (lines 572-580). If a crossing of trigger 2

occurred, i.e. the burst flag has been set, the burst is terminated if a maximum falls

between trigger levels 1 and 2 (lines 443-519).

Rejection of a burst occurs because the value of the sample was too large (this usu-

ally is the case if the scattering particle was too large, lines 424-430), the isolated

burst was either too long or too short (line 453), or if a criterion involving the ratio of

the times needed for knLow and knHi (defaults are 5 and 8, respectively) crossings

of trigger level 2 (line 553) is violated.

Once a burst is validated, it is written to file, the first item written to file being its

length.

The program returns to the calling environment the number of burst it has collected

since the last call with the -N option which deletes the file containing the current burst

count.

In the present form it seems to be straightforward to implement a counter by using

either the crossing rate at one of the trigger levels (for example computing

nTimeHi/nTimeLo) or by using the zero crossing rate. Unfortunately, time did not per-

mit any further experiments in this direction. For the relationship between the zero cross-

ing rate and the frequency see for example [23].



-80-

VIII.2.6 MeanSpec - Program for Computing the Mean Spectrum of the Bursts

Once the bursts in a record are validated MeanSpec obtains the mean spectrum

by using either the classical method or the Pade approximation (option -m). Averaging

is done with residence-time weighting (cf. Sec. VI.3)(lines 579-580). The -DDEBUG

compiler option computes the mean spectrum and the variance without the use of the

vector accelerator.

The flowchart of the Pade spectral estimator based on the Euclidean algorithm is

shown in Fig. 18. The algorithm consists of six routines. PadeApprox initializes the

polynomials according to Eq. (V.21). A vectorized version of the Euclidean algorithm is

implemented by EucAlgVA. It calls routines for multiplication of polynomials, Con-

volveVA, for polynomial division, PolyDivVA, and for removal of zero leading

coefficients, CheckOrderVA. The estimate of the power spectrum, the quotient of

remainder and co-multiplier polynomial (cf. Section V.5.4), is finally computed by

ArmaP sd.

CheckOrderVA is important to adjusts the length of the polynomial if leading

coefficients represent floating point zeroes. The polynomial is normalized with the

coefficient of the highest absolute value. All leading coefficients smaller than a certain

parameter FLTEPSILON (e in the flow chart) are removed from the polynomial. The

function PolyDivVA is a vectorized version of the program for polynomial division in

[28].

As discussed in Section V.5., the spectral estimate of the Pade technique is the

quotient of remainder and co-multiplier polynomial if the desired AR branch order (i.e.

_ · _1_ ___·__~ __~·I_*I^_ __
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Figure 18. Flowchart of the Pade spectral estimator

the order of the co-multiplier) has been reached.
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VIII.2.7 MeanVel - Program for Compiling the Velocity Profile

The incentive for MeanVel is to automatically obtain a velocity profile by com-

puting the Doppler frequency from the mean spectrum as obtained by MeanSpec: First,

the bin of the discrete spectrum is found where the mean over a region of the spectrum of

length nWindowLen reaches a maximum (lines 328-339). Then, the first and second

moment with respect to the dc value (bin 0) of this region is computed (lines 352-

357). The first moment is the estimate of the Doppler frequency, the second moment is

an estimate of the variance in this estimate. The -C option allows a calibration factor to

be specified for the conversion from [Hz ] to [ m-]. The -B option may be used for passing
S

the Bragg cell frequency shift to the routine, so that even in the case of opto-electronic

frequency shifting a correctly scaled velocity profile may be obtained.

VIII.2.8 DoPlot - Plot Routine

DoPlot, the plot routine is capable of displaying both the output from Mean-

Spec and MeanVel. Axis scaling and title of the plot can be specified via a command

line option. It uses MASSCOMP /CONCURRENT graphics system calls [37].

VIII.2.9 MasterPlan - Shell Script

MasterPlan, a Bourne shell script, is the actual file to be called when running

the programs described above: For a given number of measurement positions (specified

under the -n command line option) the routines are executed as shown in Fig. 16 until

the required number of bursts (-b option) has been collected at each particular measure-

ment position (line 182-235. The script then stops and prompts the user for further

~··____·XI _ _· · ___· ___II__
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input (lines 244-277). At this point, the user may change some parameters (lines

389-454), discard the present spectrum and repeat the measurement (line 302-313),

go to the next measurement position, (lines 27 9-2 99), or plot the data obtained so far

(lines 317-37 9). The graphs can all be saved in PostScript.

To keep it more transparent, MasterPlan uses only a small selection of all pos-

sible options of the single routines. Instead, it makes use of the default values which are

consistent throughout the programs.

VIII.3 Caveats of the Programs and Some Hardware Recommendations

* CreateFIR does not allow for setting the filter specifications at the command

line. This is due to different formats for parameter passing in the functions

KaiserFIR and OptFIR. I leave it to my successor, should there be any, to

think of a uniform format. I'd say it's worth the effort, both design procedures

work nicely.

* FilterData works best if strong low frequency components whose period is

much larger than the filtering segment length, nSegLen, are removed. Also,

results were improved by manually setting the de coefficient in the filter frequency

response to zero. Experiments with a gated linear sweep signal (the frequency of

the signal increases linearly with time) showed that without these precautions the

portions of the signal of low frequency and the discontinuities were distorted.
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* Comparison of the Pade routines at the vector accelerator and MATLAB for some

test polynomials shows that after the fourth iteration in the Euclidean algorithm

accumulation of round-off errors prevent the routine CheckOrderVA from elim-

inating leading coefficients which should be "zero". For the routine to work prop-

erly, the value FLT_EPSILON would need to be something like 50, i.e. a leading

coefficient of the polynomial is considered as a zero if it is only a - of the max-

imum coefficient. This seems terribly inaccurate to me. I kept the value of

FLT_EPSILON as it is, as everything works fine for an AR order of two, or three.

* In order to set the trigger in the routine GetBursts correctly, some fine tuning

is still necessary. The trigger levels were determined after one test run: After the

first-order statistics of the signal were determined, the data record (or parts of it)

was displayed on the computer and the approximate trigger levels were determined

by looking at a typical burst in the record. If the trigger levels are entered as abso-

lute values (-M option) their values can be estimated from an oscilloscope.

* If the number of bursts validated by GetBursts is 255, it will be mixed up with

exit status -1 and the shell function ErrorCheck will signal an error and exit.

The exit status of a program is a byte integer (unsigned) thus GetBurst cannot

return a value higher than 254 to the calling environment. One way to avoid this is

to make GetBurst return the number of bursts it just validated, but then this

number may in turn not exceed 254.

* GetBursts locks the whole data record into physical memory. This ensures

maximum speed but limits the length of the data records.

_ __ ·~_·L_ ~·i __· ____~_ I^
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* At some occasions the vector accelerator MeanSpec signaled some error if only

one burst was validated by GetBursts. In the given time this bug could not be

fixed.

* All routines using the vector accelerator (CreateFIR, FilterData, Vari-

ance, and MeanSpec) need an error trapping routine which preserves all the

data up to the error and exit with grace. At the moment any error in the vector

accelerator simply causes the routines to continue with the false data.

* The CPU would have been spared of much computational burden if only the A/D

converter would allow more programming. Some time of the project was spent

going through the microcode of the data acquisition processor. the ultimate goal

was to place part of the routine GetBursts right there: Sampling should occur

only if the signal exceeded a specified threshold and stop if it falls between two

other thresholds. However, the instruction cycles of the processor would permit

addition of commands only with lower sampling frequencies. Hopefully, at some

point, an equally fast (or faster) A/D converter would allow some tapering in his

microcode for conditional sampling.
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IX. Application of Software System for LDA to Cone-and-Plate Flow

Experiments with a cone-and-plate apparatus were performed to demonstrate the

viability of the software system. The properties of the cone-and-plate flow are presented

in the first section. The second section describes the experimental set-up, i.e. the optical

configuration of the LDA system, the flow apparatus, and the parameters of the flow.

IX.1 The Cone-and-Plate Flow

Similarity analysis of the Navier-Stokes Equation in cylindrical coordinates,

assuming radial symmetry and a very small cone angle a, yields the local parameter:

r,=2m2
12v (IX.1)12v

r,: radial position of fluid element from apex
o: angular velocity of cone
v: kinematic viscosity of fluid
a: cone angle in rad

W may be interpreted as the ratio of centrifugal to viscous forces acting on a fluid

element. For f << 1 centrifugal forces are negligible, the velocity profile in azimuthal

direction is essentially that of a plane Couette flow.

Secondary flow will not be present for k <0.0625. Secondary flow becomes

significant for W = 1 and is directed radially outwards at the upper half of the gap and

inwards at the bottom half. Transition to turbulence occurs for k = 4.

I
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In primary flow the velocity gradient is independent of the radial position and is

equal to [30]:

aV av 0I = W

Saz , j
(IX.2)

z: direction of cone axis
v (z): azimuthal velocity of fluid
co: angular velocity of cone
oc cone angle in rad
'w: wall shear stress
g: dynamic viscosity of fluid

The boundary conditions at cone and plate surface are: v(z=0O)=0 at the plate and

v(zo(r,))= (or,,(r,: radial position, cf. Fig. 19) at the cone.

Figure 19. Geometry of the cone-and-plate flow

For the tests of the software system, R was kept small so that no secondary flow

occurred.

More detailed descriptions of the cone-and-plate flow may be found in [30].
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IX.2 Experimental Design

IX.2.1 The Optics

Experimental equipment included a Lexel 95-3 argon ion laser emitting both green

(514.5 nm) and blue (488 nm) light, 2 mirrors on kinematic optical mounts redirecting

the beam into the 55X DISA LDA modular optics, a 160 mm anti-reflection coated front

lens on a microtranslation stage and a 450 mirror (cf. Fig. 20), reflecting the focused

through the bottom glass plate into the flow.

The DISA modular optics consisted of (in order of assembly starting from the laser
side):

* 55X20/21 cover and retarder

* 55X22 beam waist adjuster

* 55X25 beam splitter

* 55X29 Bragg cell

* 55X28 beam splitter

* 55X23 support

* 55X30 backscatter section

* 55X31 pinhole section

* 55X32 beam translator

* Another 55X23 support

* 55X33 lens mounting ring

* Two 55X12 beam expanders

The photomultiplier section, mounted on the backscatter section, has a 55X39

polarization separator, two 55XO8 PM sections (with two 55L97 power supplies), a

55X36 (488 nm) and a 55X37 interference filter (514.5 nm).

_II~LIII_-.l--^~ll- I~I-_1_I ---_l_·~IIP--
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The front lens, 55X56, is an achromatic lens of focal length 160 mm. It can be
moved in the x- and y-direction on microstages. The 450 mirror, the microtranslation
stages with the front lens, the LDA Optics, and one of the redirecting mirrors were
mounted on an optical bench. The optical bench, the laser, and the second redirecting
mirror were mounted on a shock absorbing granite table (cf. Fig. 21).

Figure 20. Photo 1 of the experimental set-up: cone-and-plate apparatus with LDA frontlens and mirror. The dial indicator is used to determine when the apex of thecone hits the glass plate. The support in the middle of the glass plate preventsbending.
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Photo 2 of the experimental set-up. From left to right, bottom to top: oscillo-
scope, filter; DISA Photomultiplier power supply and counter for blue light,
dito for green light, DISA frequency mixer, laser, LDA optics.

Table 5 presents the optical parameters of the experimental set-up for the two visible
wavelengths of an argon ion laser.

6. From: International Critical Tables

Figure 21.
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Beam waist before 1.3 mm
focusing optics
distance of beams
from optical axis x1 = 65 mm
before beam expanders
distance of beams
from optical axis xl = 17.3 mm expansion ratio e, = 3.7540
after beam expanders
refractive index
of glass n, = 1.52
refractive index
100% Glycerine n2 = 1.47306
250 C
thickness of
glass barrier d2= 4.7 mm

width of gap
at r, = 160 mm d3= 2.79 mm
from apex
focal length
of front lens fl = 160 mm
half angle of Eqs.(II.7b) and
intersection 0 = 0.076456 (II.8)
fringe spacing Ax =2.28 mun(514.5 nm)

= 2.17 im (488 nm) Tbl.(1), sin0 = 0

beam diameter at d,=4 f= = 14.6pm (514.5nm)
t ezwo n2

point of intersection = 13.8 pm (488 nm)

length of probe volume d, = 191.0 mun (514.5 nm), = 180.5 pm (488 nm) Tbl. (1)
number of fringes N 6 = 6

TABLE 5. Optical parameters for X = 514.5nm, 488nm

IX.2.2 The Flow Apparatus

The flow apparatus (cf. Fig. 20), was originally designed for another project (see

Acknowledgements). The body is an Enco Milling and Drilling Machine Model 105-

1100. The motor is a Bodine Gearmotor, type 4205BEPM-B2, with a torque of 68 lb. in.,

which can be adjusted between 0 and 200 rpm with a potentiometer. The rotational speed
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of the cone is monitored over a tachometer

The 0 400 mm, 10 cone made of transparent Lucite is mounted on the shaft of the

drill press. In order to limit reflections from the cone surface it has been spray-painted

with ultra-flat black color. The bottom plate was made of a 4.7 mm thick glass plate.

The angular velocity determined the necessary sampling frequency which may not

exceed 500 kHz. Requiring the Doppler frequency to be about a third of the sampling fre-

quency ensures that all aliasing frequencies will be removed with the given filter roll-off.

The settings in Tbl. 6 were used.

maximum Doppler frequency fD = 350 kHz
maximum sampling frequency f, = 1 MHz

maximum azimuthal velocity Uo =fD Ax = 0.798 m
s

U0  radrotational speed for r, = 160mm = -= 299.25
r, min
f = 47.6 rpm

density of fluid p = 1.2609 .
ml
m

2

viscosity of fluid v = 0.001120 m
S

(100% Glycerine, 20* C)
cone angle a= 1 = 0.0174 trad

if < 0.0015

TABLE 6. Flow parameters

IX.2.3 The Signal Path

The signals from the photomultiplier tubes were fed into two DISA 55L96 Counter

Processors. The Counter Processors permits attenuation of the signal in 1 dB steps up to

-31 dB and lowpass (edge frequencies 256 kHz, 4, 16, 100 MHz, roll-off 60 dB/decade)

-
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and highpass filtering (edge frequencies 1, 4, 16, 64, 256 kHz, 2, 4, 16 MHz, roll-off 40

dB/decade). The signal was then amplified with an Amplifier Research 50A15, anti-alias

filtered with a Krohn-Hite 3202 filter, and then digitized by the MASSCOMP A/D con-

verter. The signal strength may not exceed ± 5 V in bipolar mode or 10 V in unipolar

mode, otherwise clipping in the A/D converter occurs.

IX.3 Experimental Results

The software system was used for the cone-and-plate flow with the parameters of

Table 6. Originally, it was decided to use fluorescent Fluoresbrite TM particles of 0.77 am

diameter (corresponding to roughly a I of the fringe spacing) together with a Hoya Y-52

optical filter to block out all wavelengths below 520 nm (the maximum emission line of

Fluoresbrite is at 540 nm). The specific gravity of 1.05 of these particles was matched by

a 20:80 glycerine:water solution. The use of these particles, however, resulted in seeding

problems.

A particle concentration of 1 particle = 10 particles was already so high that
probe volume ml

most of the laser light was absorbed before it hit the cone surface. Lower particle concen-

trations resulted in only sporadic bursts, which make the software system very inefficient

to use: in order to find a burst, batches of data have to be repeatedly sampled, transferred

over the net to the second machine, and analyzed. The transfer over the network

accounts for most of the processing time. Sparsely seeded flows, on the other hand,

require a large data throughput for validation of a sufficient number of bursts. Limitations

on the disk space also did not permit acquisition of the data for the whole experiment
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followed by automated processing.

In a second attempt, particles covered with silver oxide and a diameter of 2 pm

were used. Unfortunately, no other information about these particles was available. Prel-

iminary tests showed that 100% glycerine has to be used in the flow to avoid immediate

sedimentation. Approximately 4 mm3 of theses particles were put in 1 1 glycerine. This

resulted in almost continuous transitions of particles through the probe volume. Due to

the high viscosity of glycerine, special care must be given to keep the flow free of bub-

bles from the very beginning.

The system was first calibrated by measuring the Doppler frequency at the cone

surface, the gap filled with 100% glycerine. The angular velocity of the cone was

increased in steps of 2 rpm from 15 rpm to 41 rpm. A first order polynomial was then

fitted to the data. Its two coefficients can then be entered on the command line of the

shell script MasterPlan. Only one such calibration experiment was conducted, as the

goal of the experiments was only to demonstrate the workability of the software system.

The result of this calibration are shown in Fig. 22.

The measurements started at the cone surface, where proper focusing was easily

monitored: the fringe pattern was propagating in one direction as one of the laser beams

was shifted by 40 MHz. This resulted in a sinusoidal signal in the photomultipliers which

attained its maximum if the center of the probe volume hit the cone surface. Starting

from this position the lens was moved in steps of Ad, = 0.127 mm corresponding to a trans-

lation of the probe volume by Ad3=Adl nz= 0.187mm (cf. Eq. II.7a) which corresponds

_I___ii_______l ~·~____ __ _I_ _ ~__~_ ____ _· _·_ ·__ ___I_
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Results from calibration experiments, the gap was filled with 100% glycer-
ine, the angular velocity of the cone was increased from 15 rmp to 41 rpm in
2 rpm steps,

approximately to the length of the probe volume for X = 488 nm. Thus, at r, = 160 mm, 15

measurements across the gap could be taken. The motion of the probe volume will be

parallel with the axis of the cone.

Fig. 23 shows one measurement of the velocity profile in the z-direction. The

velocity gradient as obtained by a first order polynomial fit, 169 mm/sec is 13% over the
mm

theoretical velocity gradient of 150.1 mm'sec . Higher accuracy can be expected with a
mm

,,7pA A
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Figure 23. Results from investigation of cone-and-plate flow. At each each position of
the probe volume within the flow, 40 bursts of minimum length 15 samples
were collected. The signal was bandpass-filtered 20 kHz to 250 kHz, and
sampled with f, = 500 kHz.

higher

number of bursts and careful adjustment of the cone and plate surfaces. The velocity

profile in Fig. 23 reaches zero velocity already after 14 positions, 1 less than theoretically

necessary. This discrepancy may have resulted from bending of the glass plate if the apex

touched the plate and from a tilted cone. Subsequent measurements of the cone showed

_I __ _L_ ___ ·· ~ ~_~~~_I_~_~ ____~_~~~____
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indeed deviations of up to 0.127 mm. These deformations were most likely due to fre-

quent disassembly for cleaning. A more sturdy apparatus should use an aluminum cone

and plate with glass inlets for the laser beams as used in [20].

Of major interest was also whether the general behavior of the algorithms under

real flow conditions matches the behavior in the numerical simulations. Fig. 24 shows a

representative mean spectrum of two bursts with the DFT-based method. In Fig. 25, the

mean spectrum of the Pade estimator, the spectral peak in the Pade estimation is much

more visible, in agreement with the numerical simulations. This leads to the conclusion

that the numerical simulations with additive white noise indeed predict reliably the

behavior of the spectral estimators under real conditions.

Finally the viability of the digital prefiltering was tested. In the resulting sample

spectrum, Fig. 42, the filter roll-off is visible in the region around 50 kHz.
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Figure 24. Mean spectrum of two bursts with the DFT method. The signal was bandpass
filtered with cut-offs 20 kHz and 200 kHz. The dotted line is the variance at a
frequency as computed by MeanSpec

X. Conclusions and Direction of Future Work

The applicability of adaptive spectral estimation methods to laser-Doppler

anemometry has been demonstrated in numerical simulations using synthetically

_·L_ _~· · _·I· _I _~_~_~___·_~ ~~~~~__~
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Figure 25. Mean spectrum of two bursts with the Pade estimator.

generated Doppler signals. Adaptive methods for finding the Doppler frequency are not

widespread in LDA, although it is shown that for low signal-to-noise ratios their perfor-

mance is superior to the traditional methods, the direct computation of the DFT of the

data.

^'^^
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Three different adaptive algorithms have been compared with the DFT: The

Modified Covariance Algorithm, an auto-regressive method, performs poorly for noisy

signals. The Iterative Filtering Algorithm, a procedure which enhances the results of

auto-regressive estimators, for signals with low signal-to-noise ratio, leads indeed to

greater insensitivity against noise. Its computational complexity however makes it not

very attractive for high speed data analysis. The last algorithm is an auto-regressive

moving-average estimator based on a Pade approximation to the spectrum of the data

record. It performed very well even for noisy signals. Its simple algorithmic structure

permits easy implementation.

In a second step, a software system for processing LDA signals has been

developed. It comprises programs for digital finite impulse response filters and for digital

filtering. Burst validation is done in the time domain and is based on the envelope of the

signal, triggering can be done either using first order statistics for the trigger levels, or

using absolute trigger values. The velocity at a point of a flow field is determined after a

specified number of particle transitions has been processed. First, the mean spectrum is

computed with the residence-time weighting method. The Doppler frequency is com-

puted as the first moment of the local region in the spectrum having the highest mean.

Programs for obtaining the velocity profile and for plotting were also designed.

The viability of this software system was verified in an experimental investigation

of a cone-and-plate flow.

The behavior of the auto-regressive moving-average estimator and the DFT

corresponds closely to the behavior observed in the numerical simulations. This indicates

· ·~··*I_ _ ~_ __· _·I_



-101-

that for laser-Doppler anemometry the testing of spectral estimation algorithms on sig-

nals with additive white noise predicts the behavior in real experiments.

Future work should be directed towards the development of more reliable burst

detection algorithm. The procedure used in this project still requires fine tuning from the

user to produce an efficient data rate.
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List of Symbols

The following symbols are used throughout this paper:

A (z): denominator polynomial, AR branch of H (z)
a [n ]: coefficients of A (z)
a: AR coefficient vector
A B ,C ,D : elements of the system ray transfer matrix
B (z): numerator polynomial, MA branch of H(z)
b [n ]: coefficients of B (z)
C,: covariance matrix
c,: covariance vector
dl: distance from front lens to glass plate
d2: thickness of glass plate
d3: width of gap between cone and glass plate
d.: length of probe volume in x -direction
dy: length of probe volume in y -direction
d,: length of probe volume in z -direction
deg [* ]: degree of polynomial *
E [* ]: expected value, mean of *
ef [n ]: forward prediction error
eb [n ]: backward prediction error
f , f 1: focal length of front lens
f,: sampling frequency
fD: Doppler frequency
floor [* ]: floor operation
G (z): general arbitrary polynomial
GN(z): N ' truncation of G (z)
gi: coefficients of G (z)
H (z): system transfer function, frequency response
i: iteration index
io: arbitrary but fixed iteration index
k: discrete frequency index
L: length of discrete-time series
1: discrete time index
m: discrete time index
(1)(mod [(2)]): remainder of polynomial (1) divided by polynomial (2)
M: length of a discrete-time series
n: discrete time index
N: length of a discrete-time series

1
Nf: number of fringes in 1 -- contour

e2

n 1: refractive index of glass plate
n2: refractive index of fluid
p: order of AR branch
P: length of discrete-time series
PAR: PSD for AR model
P,: PSD (auto-spectral density) of discrete-time series x [n ]
Pi: PSD of i h data segment
P,: mean PSD for data record x In ]
q: order of MA branch
qi (z): quotient polynomial of i" iteration (Euclidean Algorithm)
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q (z): complex propagation parameter for Gaussian laser beams
R: dimensionless similarity parameter for cone-and-plate flow
R (z): curvature of Gaussian laser beam along optical axis
ri (z) remainder polynomial after ijh iteration (Euclidean Algorithm)
r i: paraxial ray vector at position i
re.o: location of center of particle at time t = 0
r.: particle radius
r,: autocorrelation function of discrete-time series x [n ]
r,,: autocorrelation function of the rectangular time window
S: length of discrete-time series
s (t): Doppler signal in continuous-time
so: scaling factor for Doppler signal
T: sampling period
t: continuous time
ti (z): co-multiplier polynomial after iV iteration (Euclidean Algorithm)
Uo: velocity component perpendicular to fringe system
u (x, t): velocity field
W(xo): mean velocity at point xo in flow field
u'(x, t): velocity fluctuations
iLDA: measured mean velocity
u [n ]: white-noise input to a system
V: size of probe volume
v (z): azimuthal velocity in cone-and-plate flow
w [n ]: discrete-time window function
w,[n ]: normalized lag-window function
W[k]: DFT of w [n ]

w (z): -- radius of Gaussian laser beam along optical axis
e

wo: beam waist diameter before focusing optics (after beam expansion)
w : waist diameter of focused laser beam
x: optics: distance of beam to optical axis
x: cone-and-plate flow: radial direction
x [n ]: discrete-time series (usually data or input)
X (z): z-transform of x [n ]
x,, [n ]: windowed discrete-time series
x.[n]: infinite-length discrete-time series
xi [n ]: ih segment of a discrete-time series
X [n ,k]: time-varying spectrum of instationary x [n ]
fx1 [n ]: forward-predicted sample
xb [n ]: backward-predicted sample
Ax: fringe spacing
Xi: ray transfer matrix of i' optical component
X: system ray transfer matrix
y: cone-and-plate flow: azimuthal direction
z: complex variable
z: optics: direction along optical axis
z: cone-and-plate flow: direction of axis of cone

o: cone angle
S[n]: unit impulse function
8: half-angle of intersection
X: wavelength of laser
(gt, v): order of Pade estimator
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v: kinematic viscosity of fluid
p: density of fluid
pf : forward prediction error power
Pb: backward prediction error power
a•: variance of observation noise (white)

2a(: variance of input noise (white)
tw: wall shear stress
4: angle of intersection at probe volume
(o: angular velocity of cone
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Appendix 1: MATLAB Routine mksig .m for Generating LDA Signals

clear;
% create a Doppler signal with random time intervals between the bursts

% DEFINITIONS

------------------------------------------------
nburst-20; % we take nburst bursts:

fs - 1000000; % fix the sampling rate [Hz]:

SNR--10; % define the signal-to-noise ratio:

% flow parameters

u-1000.000; % set the velocity [mm/sec]

meapaus-0.0001; % define the mean pause between the bursts [s]:
meapaus-meapaus*fs; * convert the mean pause in number of samples:

aa-0.5; % velocity fluctuations in percent of u

ff-300; % frequency for oscillatory flow

s-----------------------------------------------------------------------------

% set the parameters of the optical set-up:
% we simulate a DISA 55X Modular Optics LDA
% with Laser Type 124B and Front Lens X51

f-300;

lambda-633/1000000;

th-7.44;

dw-l.1;

focal length of the front lens (mm]:

wavelength of the laser (mm]:

angle of intersection [grad]:

waist diameter of the unfocused beam (mm]:

% -------------------------------------------------------

th-(th*pi)/180; % convert angle of intersection into rad:

co-cos (th/2); % abbreviations
si-sin (th/2);

%--------------------------------------------------------------------

delt-1/fs;

df-(4*lambda*f)/(pi*dw);

var - (df/4)'2;

fd-2*u*si/lambda;

a-df/(2*co);
b-df/2;
c-df/(2*si);

scale-[b c)];

save; % ... t

tint-0;

get the time step:

1/e'2-diameter of the focused laser beam:

get the variance of the Gaussian laser beam:

the Doppler frequency of the burst:

a,b,c: half axes of the ellipsoid:

he parameters on disk
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sig-([];
n=O;

while (n < nburst)

% get the 'time' (sample number) of the burst:
tint-tint + round(rand * 2 * meapaus);

% get the burst:
temp-transit (fs, length (sig), scale, delt, var, co, si, u, fd, a, b, c, aa, ff);

temlen-length (temp);
sigend-tint+temlen-i; % new length of vector 'sig'

* fill sig with zeros to allow addition of new burst
sig-[sig zeros(1,sigend-length(sig))];

% now add the new burst allowing for superposition of bursts:
sig(tint:sigend)-sig(tint:sigend)+temp;

n-n+l

save sig sig;
% now add noise to the "pure" signal such
* ratio is maintained:

that given signal-to-noise

temp-rand(1,length(sig));

* the variances of the vectors containing
sigvar-cov (sig);
noivar-cov (temp);

burst and noise are:

* compute the factor we have to multiply the noise with in order to
4 obtain desired snr:
fac-sqrt(sigvar*(10^(-SNR/10))/noivar);

temp - fac .* temp;
save temp temp;
noivar-cov(temp);

if noivar "- 0
snrist-10*logl0(cov(sig)/cov(temp));

end;

sig - sig + temp;

* quantize the signal with 12bit resolution:
V (assume no clipping takes place)
sig-quant(sig, 12,max(sig));

save dcsig sig;

1 function [i]-transit(fs,siglen,scale,delt,var,co,si,u,fd,a,b,c,aa,ff);
2

% simulate the transition of a particle through the probe volume
% of a laser-Doppler anemometer and return the resulting signal

% the location of the crossing in the z-y-plane is arbitrary

8 % pick random y-z-coordinates for the transition path of the particle

xo-rand (2,1);
while ((1-(xo(1))'2-(xo(2))^2) < 0)

xo-rand (2, 1);
end

xo-xo .* scale'; % scale the xo-vector accordingly:

% the x-coordinate of the point of intersection with the probe volume:
xstart--a*sqrt(1-(xo(1)/b)^2-(xo(2)/c)^2);
xend--xstart;

end

_ _ _·_ __· _~·· I_ · _~_I
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21 delx-u*delt; % path in one time step
22
23 ut-u;
24 n-1;
25
26
27 x-[xstart:delx:xend+delxj;
28
29 % CHANGE FOR FLOW SIMULATION:
30
31 4 oscillatory flow
32 % ut-u + aa*sin( ( (siglen)/fs)*ff*2*pi);
33
34 % for white turbulent fluctuations uncomment the next line;
35 % ut - u + aa*rand;
36
37 i-intens(x,xo(l),xo(2),var,co,si,ut,fd);
38
.sp
1 function [i1 - intens(x,y,z,var,co,si,u,fd)
2
3 4 computes the intensity at the point (x,y,z) in the probe volume
4
5 il - 1./(4.*pi*var)*exp(-.5*( ((x*co)-(z*si)).'2 +y'2)/var);
6 12 - 1./(4.*pi*var)*exp(-.5*( ((x*co)+(z*si)). 2 +y"2)/var);
7 i - il+i2+2* sqrt(il.*i2) .* cos(2*pi*fd*x/u);

8
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Figure 28. Changes in the local SNR ratio over 128 point long segments overlapping by 50 %. For a con-
stant background noise, the SNR will be lowest for particles crossing the center of the probe
volume (strongest signal)
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Appendix 3: Spectrograms of Spectral Estimators with Simulated LDA Signals

Appendix 3.1: Results of Classical DFT-based Method

frequei

Figure 29. Result of classical spectral estimator: DFT of Hamming windowed (128 points) data. The seg-
ments were overlapped 50 %. SNR = 10 dB same signal as in Fig. ####. The variance in the
spectral estimate is high.

25
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number of segment
Figure 30. Location of the spectral peaks in the previous Fig. Although the spectral peaks are hardly

recognizable in the spectrogram, they correspond well to the Doppler frequency of the signal.

Appendix 32: Results of the Modified Covariance Algorithm
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PSD

Vý*
frequency

Figure 31. Third order AR model with the 10 dB signal. Note the very low variance in the spectral esti-
mate. The spectra are of 128 point long segments overlapped by 50 %.

number of segment
Figure 32. Location of spectral peaks in the previous Fig. The Doppler frequency

drop-outs correspond to the locations of lowest local SNR
is well resolved. The
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PSD

frequency

Figure 33. The estimator from the previous two Fig. applied to a 0 dB. The low SNR results in a decrease
of the performance.

number of segment
Figure 34. The location of the spectral peaks for the Modified Covariance Algorithm and a 0 dB LDA sig-

nal (previous Fig.) shows that the Doppler frequency is not resolved very well.
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PSD

4/rn
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Figure 35. A 20th order AR estimate for a 2000 dB signal again with 128-point segments demonstrates
that too high a model order results in spurious peaks in the spectrum. The variance in the esti-
mate increases.

Appendix 33: Results of the Iterative Filtering Algorithm

PSD

frequency

Figure 36. IFA with a third order AR Modified Covariance Agorithm after 8 iterations. The SNR of the
signal is 0 dB. The spectrogram is very smooth and of very low variance.

Y
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number of segment

Figure 37. The spectral peaks in
at very low local SNR.

the previous Fig. correspond to the Doppler frequqncies. The IFA failed

Appendix 3.4: Results of the Pade Estimator Using the Common Euclidean Algorithm

PSD Lfreque
time

Figure 38. Pade estimator applied to a 10 dB SNR signal. The order of the AR branch is 4. Again, 128
point segements overlapping by 64 points were taken. The variance in the spectra is higher than
for purely auto-regressive algorithms but still smaller than for the classical methods.
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Figure 39. The location of the spectral peaks of the previous Fig. corresponds closely to the Doppler fre-

quency. The estimator has fewer drop-outs at the very low local SNRs indicating a smaller
noise sensitivity.

quency

time

Figure 40. Generally, if shorter data segments were taken, the performance of the auto-regressive models
decreased. The Pade estimator seemed to be less sensitive in this case. This Figure shows the
performance with 64-point segments overlapped by 50 %. SNR is 10 dB, order of the AR
branch is 4.
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Figure 41. In the case of the shorter data segments of the previous Figure the Dopplier frequency is still
resolved very well. However, more drop-outs occur at low local SNR.
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Appendix 4: Experimental Results
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Figure 42. Spectrum of Pade estimator after digital lowpass filtering with FilterData. Comparison
with Figs. 24 and 25 shows that the low frequncies are indeed attenuated.
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Appendix 5: Programs for Processing LDA Signals

Appendix 5.1: #include file FileOp.h for File Operations

1 fifndef FILEOP
2

#define FILEOP
#include <errno.h>
#include <stdio.h>
#include <unistd.h>

8 /*

Open a file for write access

#define FpOpenW(FileName, FilePointer)
if ( (FilePointer - fopen(FileName,"w")) -- NULL ) \

perror();
fprintf(stderr, "k%%%ERROR: Could not open %s\n", FileName);
exit (-1);

/*
* open a file for read access
*/

#define FpOpenR(FileName, FilePointer)
if ( (FilePointer - fopen(FileName,"r")) -- NULL )

perror();
fprintf(stderr, "%%%%ERROR: Could not open %s\n", FileName);
exit (-1);

* open a file for read and write access
*/

#define FpOpenRW(FileName, FilePointer)
if ( (FilePointer - fopen(FileName,"rw")) -- NULL

perror();
fprintf(stderr, "%%%%ERROR: Could
exit(-1);

not open %s\n", FileName);

/*

* Open a file for write and read access, update
*/
#define FpOpenRWU(FileName, FilePointer)

if ( (FilePointer - fopen(FileName,"r+")) -- NULL )

perror();
fprintf(stderr, "%%%%ERROR: Could
exit (-I);

not open %s\n", FileName);

Open a file with system calls for read access

#define FdOpenR(FileName, FileDescriptor)
if ( (FileDescriptor - open(FileName,O RDONLY)) - -1 )

perror();
fprintf(stderr, "%%'%ERROR: Could not open %s, errno: %d\n", FileName, errno);
exit(-1);

I

i
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63 * Open a file with system calls for read and write access
64 */
65 #define FdOpenRW(FileName, FileDescriptor)
66 if ( (FileDescriptor - open(FileName,ORDWR) ) -- -1)
67 \
68 perror();
69 fprintf(stderr, "%%%%ERROR: Could not open %s, errno: %d\n", FileName, errno);
70 exit(-l);
71 )
72
73 /*
74 * Open a contiguous file for write access
75 */
76 #define FdOpenCW(FileName, FileDescriptor, FileSize)
77 if ( (FileDescriptor - open(FileName,OWRONLY I _CREAT I O_CTG, 0600, Filesize) ) - -1)
78 ( \
79 perror();
80 fprintf(stderr, "%%%%ERROR: Could not open %s, errno: %d\n", FileName, errno);
81 exit(-1); \
82
83
84 /*
85 * Open a file for write access using system calls
86 */
87 #define FdOpenW(FileName, FileDescriptor)
88 if ( (FileDescriptor - creat(FileName, 0666) ) -- -1)
89
90 perror();
91 fprintf(stderr, "%%%%ERROR: Could not open %s, errno: %d\nw, FileName, errno);
92 exit(-1);
93
94
95
96 /*
97 * Write to a file (buffered)
98 */
99 #define FpWrite(FilePtr, ArrayPtr, NItems)

100 if (fwrite( (char *)ArrayPtr, sizeof(*ArrayPtr), NItems, FilePtr ) !I NItems Il ferror(FileP
101 ( \
102 perror(); \
103 fprintf(stderr, "t%%%ERROR: Write error, errno: %d\n", errno); \
104 exit(-1); \
105
106
107
108 /*
109 * Read from a file (buffered)
110 */
111 #define FpRead(FilePtr, ArrayPtr, NItems) \
112 if (fread( (char *)ArrayPtr, sizeof(*ArrayPtr), NItems, FilePtr ) !- NItems I ferror(FilePt
113 { \
114 perror(); \
115 fprintf(stderr, "%%%%ERROR: Read error, errno: %d\n", errno); \
116 exit(-1); \
117 )
118
119
120 /*
121 * Read to a file (unbuffered)
122 */
123 #define FdRead(FileDescriptor, ArrayPtr, BytesToRead) \
124 if (BytesToRead !- read(FileDescriptor,(char *)ArrayPtr, BytesToRead))
125 ( \
126 perror(); \
127 fprintf(stderr, "%%%%ERROR: Read error, errno: %d\n", errno); \
128 exit(-l); \
129
130
131
132 /*
133 * Write to a file (unbuffered)
134 */
135 #define FdWrite(FileDescriptor, ArrayPtr, BytesToWrite) \
136 if (BytesToWrite !- write (FileDescriptor, (char *)ArrayPtr, BytesToWrite)) \

_ ___L ~ ·__·· _I _~__ ___ · ____L
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perror();
fprintf(stderr, "%%%%ERROR: Write error, errno: %d\n", errno);
exit (-1);

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

#define FpGetPos(FilePointer, Position)
Position = ftell(FilePointer);
if (errno)

fprintf(stderr,"Cannot get position, errno: %d\n", errno); \
perror );
exit(-1);

Set current position in file

#define FpSetPos(FilePointer, Position, StartingFrom)
fseek(FilePointer, Position, StartingFrom);
if (errno)

fprintf(stderr,"Cannot reposition, errno: %d\n", errno);
perror();
exit(-1);

#define FdSetPos(FileDescriptor, Position, StartingFrom)
if (lseek(FileDescriptor, (long)Position, StartingFrom) - (-1))

fprintf(stderr,"Cannot move file pointer, errno: %d\n",errno);
perror();
exit (-1);

#endif

Appendix 52: SampleData - Program for Data Acquisition

1 /************************************************************

2 *
3 * SampleData.c
4 *

************t**~t*************+*tt*************************

DESCRIPTION
This program samples data from the AD12F and writes them to a file
Due to restricted contiguous disk space and the poor overall
performance of the MASSCOMP at the highest sampling frequencies
we have to take a suboptimal approach, which does not permit
continuous sampling over long periods:
We fill one buffer at a time (of the order of a MB, that's all the
system permits) write it to disk while the sampling is suspended
and then continue until an amount of data has been accumulated
corresponding to the total desired sampling duration.
Let's hope that there is not too much information in the breaks
between the sampling...

USAGE

Get current position in file

I
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22 * SampleData -o <Output File>
23 * -r <Remote File>
24 * -t <Sampling Duration>
25 * -f <Sampling frequency>
26 * -B <Buffer size in items (short)>
27 * -G <A/D converter gain>
28 * -h Print information about usage
29 *
30 * DEFAULTS
31 * Output File: /usr/data/erk/Direct.dat
32 * Remote File: /usr/erk/DSP/DAT/RawData.dat
33 * Sampling Duration: 410 [msec]
34 * Sampling frequency: 1 [MHz]
35 * Buffer size: 100 * 4096 [items short]
36 * A/D converter gain: 0 (lxl
37 *
38 * Default sampling duration and buffer size were chosen such that
39 * one buffer is filled during the whole sampling duration
40 */
41
42 #include <stdio.h>
43 #include <aplib.h>
44 #include <fcntl.h>
45 #include <errno.h>
46 #include <math.h>
47 #include <mrerrs.h>
48 #include "/usr/erk/DSP/FileOp.h"
49
50 #define regl register
51 #define reg2 register
52 #define reg3 register
53 #define reg4 register
54
55 typedef int bool;
56
57 void exit();
58 void is an error();
59 void perror();
60 double atof();
61 char *strcat();
62 char *malloc();
63
64 /*
65 * real-time priority for process
66 */
67 #define knRealTime -20
68
69 /*
70 * Parameters for setting up the A/D clock
71 */
72 #define SQUARE 4
73 #define LOW 0
74 #define NEAREST 0
75
76 /*
77 * Input channel numbers
78 */
79 #define CHANNEL 0 0
80 #define CHANNEL 1 1
81 #define CHANNEL 2 2
82 #define CHANEL 5
83
84 /*
85 * Actions taken by data acquisition upon error
86 */
87 #define IMMEDIATELY 1
88 #define FOR REUSE 0
89
90 /*
91
92 */
93
94 void Usage()
95

_ __·· · ·· II I·_
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96 fprintf(stderr, "\n");
97 fprintf(stderr,"USAGE:\n\n");
98 fprintf(stderr,"-o <output file>\n");
99 fprintf(stderr,"\t[DEFAULT: /usr/data/erk/Direct.dat]\n");

100 fprintf (stderr, "\n");
101 fprintf (stderr, "-f <sampling frequency>\n");
102 fprintf(stderr,"\t[DEFAULT: 1.0e6 (Hz) ]\n");
103 fprintf (stderr, "\n");
104 fprintf(stderr,"-r <remote file name>\n");
105 fprintf(stderr, "\t [DEFAULT: /usr/erk/DSP/DAT/RawData.dat] \n");
106 fprintf (stderr, "\n");
107 fprintf (stderr, "-t <sampling time>\n");
108 fprintf(stderr,"\t[DEFAULT: 410 (msec) ]\n");
109 fprintf(stderr,"\n");
110 fprintf(stderr,"-B <Buffer size in items short>\n");
111 fprintf(stderr,"\n");
112 fprintf(stderr,"-G <AD12F amplifier gain [-1:3]>\n");
113 fprintf (stderr,"\t [DEFAULT: 01 \n");
114 fprintf (stderr, "\n") ;
115 fprintf(stderr,"-h print this message\n");
116 fprintf(stderr, \n");
117
118 exit(-l);
119
120
121 /*
122 ------------------------------
123 */
124
125
126 main (argc, argv)
127 int argc;
128 char **argv;
129 1
130 static short *pasData, *pasDataSAV, *pasReturnedBuf;
131
132 float fSampDur - 410.00/1000.00;
133
134 double fSampFreq - 1.0e6;
135 double fRFreq, fRWidth;
136
137 int i,j;
138
139 int nAdPathNo - -1;
140 int nClkPathNo - -1;
141
142 int nGain - 0;
143
144 int choption;
145
146 int nSamples;
147 int nFileSize;
148 int nItemsWritten - 0;
149 int nItemsLeft;
150 int nLoops;
151
152 int nItemsInBuf - 100 * 4096;
153 int nBytesInBuf;
154
155 static char achCommand[100] - "rcp ";
156 static char *pachOutputFile - "/usr/data/erk/Direct.dat";
157 static char *pachCommand;
158 static char *pachMorgana - " morgana:";
159 static char *pachMorganaFile - "/usr/erk/DSP/DAT/RawData.dat";
160
161 extern char *optarg;
162 extern int optind;
163
164 int fdOutput;
165 int *pnDummy;
166
167 pachCommand - &achCommand[0];
168
169 /*-----------------------------------------------------------------------*
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if (14 < argc)
(

fprintf (stderr,"Too many options\n\n");
Usage ();

((chOption - getopt(argc, argv, "o:f:r:t:B:G:h")) !- EOF)

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

fSampFreq
break;

- atof(optarg);

case 't':
fSampDur- atof(optarg) / 1000.00;
break;

case 'B':
nItemsInBuf
break;

case 'G':
nGain
break;

case 'h':
Usage();
break;

case '?':
Usage();
break;

- atoi(optarg);

- atoi(optarg);

Get real-time priority

(int) (nice(knRealTime)) !- knRealTime )

fprintf(stderr, "\nGot different priority than requested, errno: %d\n", errno);
perror();
exit(-1);

if ( (nGain<-l) II (3<nGain) )

fprintf(stderr,"\nWrong gain specified\n");
Usage();

nBytesInBuf - (nItemsInBuf<<l);

/*

* Allocate the A/D buffer
*I

pasDataSAV - (short*)malloc(nBytesInBuf+2);

/*alignment on long-word boundary
* alignment on long-word boundary

*/

while
(

switch (chOption)

case o* :
pachoutputFile - optarg;
break;

case 'r':
pachMorganaFile - optarg;
break;

case 'f':

if (

--------------------------------------------------------

Jý -----------------------------------------------------

-- ~" ~"`



pasData - (short *)((int)(pasDataSAV+2) & ('0x3));

/* --------------------------------------------------------------------

/*
* Lock the buffer into memory
*/

if (plockin(pasData, nBytesInBuf) -- -1)

fprintf(stderr,"\nCannot lock buffers, errno: %d\n",errno);
perror ();
exit (-i);

244
245
246
247
248
249
250

251
252
253
254
255

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

FdOpenW(pachOutputFile, fdOutput)

* the number of samples to fetch,
* buffer

nSamples - (int) (fSampDur * fSampFreq );
nFileSize - (nSamples<<l);

fprintf(stderr,"\n\nTotal sampling time:
fprintf(stderr,"File size:
fprintf(stderr,"Total number of samples:

The first number in the file is
samples contained therein

should fit into the

%f [secl\n", fSampDur);
%d [bytes]\n",nFileSize);
%d \n",nSamples);

the number of

pnDummy - &nSamples;
FdWrite(fdOutput,pnDummy,sizeof(int))

nLoops - (int) ( (float)nSamples / (float)nItemsInBuf);

fprintf(stderr, "\n\nd Loops necessary\n", nLoops);

for (i-1; i <- nLoops; i++)

open the A/D board

mropen(&nAdPathNo, "/dev/dacp0/adf0",l);

we use clock 5 on the CK10 board

mropen(&nClkPathNo,"I/dev/dacpO/clk5",O);

/*

set up clock speed

mrclkl(nClkPathNo, NEAREST, fSampFreq, &fRFreq, SQUARE, 0.0, fRWidth, LOW);

mrclktrig(nAdPathNo, l,nClkPathNo);

/*

* define the input channel
mradin*/ (nAdPathNoCHANNEL

mradinc(nAdPathNo, CHANNEL_0, 1, 0, nGain);

fprintf(stderr,"\n\nBuffer size: %d [bytes]\n",nBytesInBuf);
fprintf(stderr,"\n%d bytes locked into memory\n*, nBytesInBuf);

/*----------------------------------------------------------------------*/
/*
* Open the Output file for unbuffered write access
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318
319 /*
320 * allocation of the buffers
321 */
322 mrbufall(nAdPathNo, pasData, 1, nBytesInBuf);
323
324 mrxinq(nAdPathNo, ntemsInBuf,nItemsInBuf,0);
325
326 mrbufwt(nAdPathNo,0);
327 mrbufget (nAdPathNo,0, &pasReturnedBuf);
328
329 /*** for (J-0; J <- nItemsInBuf-1; j++)
330 *** printf("%d\n",*(pasReturnedBuf+j));
331 ***/
332
333 FdWrite(fdOutput,pasReturnedBuf,sizeof(short)*nItemsInBuf)
334
335 nItemsWritten +- nItemsInBuf;
336
337 fprintf(stderr,"\nd: %d Samples written to disk\n*i, nItemsWritten);
338
339 mrclosall();
340
341
342
343
344 nItemsLeft - nSamples - nLoops * nItemsInBuf;
345
346 if (nItemsLeft)
347 {
348
349 mropen(&nAdPathNo, "/dev/dacpO/adf0",1);
350
351 mropen(&nClkPathNo,"/dev/dacp0/clk5",0);
352
353 mrclkl (nClkPathNo,NEAREST, fSampFreq, &fRFreq, SQUARE,0.0,&fRWidth, LOW);
354
355 mrclktrig (nAdPathNo, 1,nClkPathNo);
356
357 mradinc(nAdPathNo, CHANNEL 0, 1, 0, nGain);
358
359 mrbufall(nAdPathNo, pasData, 1, nBytesInBuf);
360
361
362 mrxinq (nAdPathNo, nItemsInBuf, nItemsLeft, 0);
363
364 mrbufwt (nAdPathNo,0);
365
366 mrbufget (nAdPathNo, 0, &pasReturnedBuf);
367
368 /*** for (J-0; J <- nItemsInBuf-1; j++)
369 ** printf("%d\n, * (pasReturnedBuf+j));
370 ***/
371 FdWrite (fdOutput,pasReturnedBuf, sizeof (short) *nItemsLeft);
372
373 nItemsWritten +- nItemsLeft;
374
375 )
376
377 fprintf(stderr,"\nTotal: %d items written to disk\n\n", nItemsWritten);
378
379 /*** fclose(fpOutput);
380 ***/
381
382 pachCommand - strcat(pachCommand, pachoutputFile);
383 pachCommand - strcat(pachCommand, pachMorgana);
384 pachCommand - strcat (pachCommand, pachMorganaFile);
385
386 fprintf(stderr, "\n>>>>Transfer to morgana<<<<\n");
387
388 system (pachCommand);
389
390 exit(0);
391
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392

Appendix 5.3: FilterData - Program for Filtering Input Data with FIR Filter

1 /*********************************** * ***********

2 *
3 * FILTERDATA.C
4 *
5 **************************************************************************

6 *
7 * DESCRIPTION
8 * This routine filters a string of data with an FIR filter.
9 * The filtering is done in the frequency domain using the overlap-save

10 * method. This avoids unnecessary calculations usually done if the
11 * filter order is much smaller than the length of the data record.
12 *
13 * For creating the FIR Filter see the routine Create FIR.c.
14 * The input data are assumed to be short integers, i.e. to come
15 * unmodified from the A/D board.
16 *
17 * This routine becomes more efficient the higher the order of the
18 * FIR filter. For low-order FIR filter use the routine AP conv.c
19 * which performs a linear convolution in the time domain. I would say
20 * the limit is about FIRorder - 20.
21 *
22 * USAGE
23 * FilterData -o <Output File Name>
24 * -i <Input File Name>
25 * -v <rms File Name>
26 * -H <Filter File Name>
27 * -h
28 *
29 * OPTIONS
30 * Output File Name: Name of the file which will contain the filtered data
31 * Input File Name: Name of the file containing the raw data from the A/D
32 * Filter File Name: Name of the file containing the frequency response
33 * of an FIR filter (cf. CreateFIR.c for the format)
34 * rms File Name: Name of the file containing the root-mean-square of
35 * of trhe filtered data
36 *
37 * DEFAULTS
38 * Output File Name: /usr/erk/DSP/DAT/Filtered.dat
39 * Input File Name: /usr/erk/DSP/DAT/RawData.c
40 * Filter File Name: /usr/erk/DSP/DAT/FIR.dat
41 * rms File Name: /usr/erk/DSP/DAT/Threshold.dat
42 *
43 * COMPILING OPTIONS
44 *
45 * -DVARIANCE
46 * The mean square of the filtered data is returned to the environment.
47 * If filtered with a low pass filter (zero mean) this is equal to the
48 * variance of the filtered data
49 *
50 */
51
52 #include <stdio.h>
53 #include <math.h>
54 finclude <aplib.h>
55 linclude <errno.h>
56 #include <fcntl.h>
57 #include <sys/types.h>
58 #include <sys/stat.h>
59 #include <unistd.h>
60 #include "/usr/erk/DSP/FileOp.h"
61
62 typedef int vector;
63 typedef int bool;
64
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65 #define regl register
66 #define reg2 register
67 #define reg3 register
68 idefine reg4 register
69 #define reg5 register
70 #define reg6 register
71
72 void perror();
73 void exit();
74 char *malloc();
75 long Iseek();
76
77 #ifdef DEBUG
78 #define DUMP(Y,length) mapsyncdma(-l,VA0);
79 mapstrfv(Y,l,pafFilterData,4,length);
80 mapbwaitdma(VA0);
81 for (i-0; i<- length-i; i++) \
82 printf("%f \n", pafFilterData(i]); \
83 exit(0);
84
85
86 #define MAGC(Y,y_len) mapsyncmath(-l,VA0); \
87 mapnrmsqcfv(Y,2,Y, 1,y_len);
88 DUMP (Y, ylen)
89 exit(0);
90 #endif
91
92 #define knMaxFFTLen 1024
93 #define knMaxLogLen 10
94
95 #define knPageLen 4096
96 #define knNumPages 20
97 #define knArraySize knNumPages * knPageLen
98
99 #define knfUpperBound 4100.0

100
101 #define knRealTime -20
102 /*
103103 ------------------------------------------------------------------------------
104 */
105
106 void Usage()
107 {
108 fprintf (stderr, "\n");
109 fprintf(stderr, "This program filters data of format short with a FIR filter \n");
110 fprintf(stderr,"using the overlap-add method\n");
111 fprintf(stderr,"\n");
112 fprintf(stderr, "USAGE:\n");
113 fprintf(stderr, "\n");
114 fprintf(stderr,"-i\tInput file containing the data as short (unformatted)\n");
115 fprintf(stderr,"\t [Default: /usr/erk/DSP/DAT/RawData.datl\n");
116 fprintf(stderr,"\n");
117 fprintf(stderr,"-o\tOutput file containing the filtered data as float (unformatted)\n");
118 fprintf(stderr,"\t (Default: /usr/erk/DSP/DAT/Filtered.dat]\n");
119 fprintf(stderr,"\n");
120 fprintf(stderr, "-H\tFile containig the FIR filter frequency response\n");
121 fprintf(stderr,"\t\t see CreateFIR.c for format of this file\n");
122 fprintf(stderr,"\t [Default: /usr/erk/DSP/DAT/FIR.dat]\n");
123 fprintf (stderr, "\n");
124 fprintf(stderr,"-h\tPrint this message\n");
125 fprintf(stderr,"\n");
126
127 exit(-1);
128
129
130 /*
131
132 */
133
134 main (argc, argv)
135 int argc;
136 char **argv;
137
138 vector VTemp1 vTemp ;
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vector
vector
vector
vector
vector

vnScall, vnScal2, vnScal3;
vCoeff, vH;
vData;
vAdd;
vFFTRes, vIFFTRes, vIFFTAux;

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

int nLoops;
int j;

float fScale;

int fdInput;
int fdOutput;

FILE *fpFilter;

regl int nItemsWritten - 0;
reg2 int nSegLen;
reg3 int nRemLen;
reg4 int i;

static
static
static

static
static
static
static
static

char *pachOutputFile
char *pachInputFile
char *pachFilterFile

short
short
float
float
float

- "/usr/erk/DSP/DAT/Filtered.dat";
- "/usr/erk/DSP/DAT/RawData.dat";

- "/usr/erk/DSP/DAT/FIR.dat";

*pasRawData;
*pasRawDataDummy;
*pafFilterData;
*pafFreqResp;
nfVar;

extern char *optarg;
extern int optind;

if (5 < arqc)

while
(

fprintf(stderr," Too many options\n\n");
Usage();

((chOption - getopt(argc, argv, "hi:o:H:n:")) !- EOF)

switch (chOption)

case 'h':
Usage();
break;

case 'i':
pachInputFile - optarg;
break;

case 'o':

int chOption;

int *pnDummy;

int nRetriedAlready - 0;
int nBytesToRead;
float nfMaxValue;
float nfUpperLimit;
reg int nBytesRead - 0;

int nItemsRead - 0;
int nOutputFileSize;
int nItemsInFile;

int nOrderFIR;
int nLenFFT;
int nLogLen;
int nHalfLenFFT;

/***
***

***

***

***

***/
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213 pachOutputFile - optarg;
214 break;
215
216 case 'H':
217 pachFilterFile - optarg;
218 break;
219
220
221 case '?':
222 Usage();
223 break;
224
225
226 /*-------------------------------------- -------------- */
227 /*
228 * Get Real-time priority
229 */
230 if ( (int) (nice(knRealTime)) !- knRealTime )
231
232 fprintf(stderr, "Got different priority than requested, errno: %d", errno);
233 perror();
234 exit(-1);
235 }
236
237 /*--------------------------------------------------------------------*/
238 /*
239 * Open the input and the output data files
240 */
241
242 /***
243 *** FpOpenR(pachInputFile, fpInput)
244 ***/
245 FdOpenR(pachInputFile, fdInput)
246
247 /*** FpOpenW(pachOutputFile, fpoutput)
248 ***/
249
250 FdOpenW(pachOutputFile, fdOutput)
251
252 /*
253 * the first entry in the input file is the number of samples
254 * contained therein
255 */
256 /***
257 *** fscanf(fpInput,"%d:\n", &nItemsInFile);
258 ***/
259 pnDummy - &nItemsInFile;
260
261 FdRead (fdlnput,pnDummy, sizeof (int))
262
263 fprintf(stderr, "\n Input file %s contains %d samples\n",pachInputFile, nItemsInFile);
264
265 /*-------------------------------------- ------------ *
266
267 * Open the file containing the frequency response
268 */
269
270 FpOpenR(pachFilterFile, fpFilter)
271
272 fscanf(fpFilter,"%d:%d\n", &nOrderFIR, &nLenFFT);
273
274 nLogLen - mapilog2(nLenFFT);
275 nHalfLenFFT - (nLenFFT>>I);
276 nSegLen - nLenFFT - (nOrderFIR - 1);
277 fScale = 1.0 / (float)(nLenFFT << 1);
278
279 /*
280 * the first item in the output file is the number of items in there
281 */
282 nOutputFileSize - nItemsInFile + nOrderFIR - 1;
283
284 /*** fprintf(fpOutput,"%d:\n", nOutputFileSize);
285 ***/
286
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pnDummy - snOutputFileSize;
FdWrite(fdOutput,pnDummy, sizeof(int))

fprintf(stderr, "\n Filter file %s contains an FIR filter of order %d\n",pachFilterFile, nOrderFIR)
fprintf(stderr, "\n Length of the FFTs will be %d,\tlength of a segment %d\n",nLenFFT, nSegLen);

/*----------------------------------------------------------------------

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

339
340

341
342
343
344
345
346

347
348
349
350

351
352
353
354
355
356
357
358
359
360

- array containing the raw data

pafFreqResp = (float *)malloc( sizeof(float) * (nLenFFT+2) );

paffilterData - (float *)malloc( sizeof(float) * nSegLen );

pasRawDataDummy
pasRawData

- (short *)malloc( sizeof(short) * nSegLen + 2);
- (short *) ((int) (pasRawDataDummy+2) & ('0x3));

/*--------------------------------------------------------------------/

/*

* Initializing the VA
*/

mapinitva (1,1,0);

/*** if (plockin(&nfTempVar,4)---1)

vData
vTempl
vTemp2
vCoeff
vH
vnScall
vnScal2
vnScal3
vAdd

perror (FilterData:u);
fprintf(stderr, "Cannot lock

- 0;
- vData + (nLenFFT<<1);
- vTempl + (nLenFFT<<1);
- vTemp2 + (nLenFFT<<1);
- vCoeff + nLenFFT + 2;
= vH + nLenFFT + 2;
= vnScall+ 1;
- vnScal2+ 1;
- vnScal3+ 1; /* contains

nfTempVar. errno: ", errno);

(nOrderFIR-1) elements */

/*-----------------------------------------------------------------------*/

Read in the frequency response of the filter

for (i-0; i<- (nLenFFT + 1); i++)
fscanf(fpFilter, "%f\n", pafFreqResp+i );

maplodfv(pafFreqResp,4,vH,1,nLenFFT+2);

maprffttab(vCoeff, nLogLen);

maplodfs(&fScale,vnScall);

/*------------------------------------------------------------------------*

* Determine the location of the FFT and IFFT results
*/

if (nLogLen&l)

) else i

vFFTRes
vIFFTAux
vIFFTRes

vFFTRes
vIFFTAux
vIFFTRes

- vTempl;
- vData;
- vFFTRes;

= vData;
- vTempl;
- vIFFTAux;

* Allocate memory for:
* - frequency response of FIR filter
* - array containing the filtered data

0 0

I r

I



361
362 /*----------------------------------------------------------*/
363
364 nLoops - (int) ( (float)nItemsInFile/(float)nSegLen );
365
366 fprintf(stderr, "\nd loops necessary\n", nLoops);
367
368
369 mapclrfv(vAdd,1, nOrderFIR-1);
370 mapclrfv(vTemp2, 1,nSegLen);
371
372 for (J-1; j <- nLoops; j++)
373 {
374 /*** for (i-0; i<-nSegLen-1; i++)
375 *** fscanf(fpInput, "%f\n", (pasRawData+i));
376 ***/
377 FdRead(fdInput,pasRawData,nSegLen*sizeof(short));
378
379 nItemsRead +- nSegLen;
380
381 /*
382 * Shows whether data are read correctly
383 * comment out if necessary
384 *
385 *** for (i-0; i<nSegLen; i++)
386 *** printf("%d \n", *(pasRawData+i) );
387 *** exit (0);
388 ***/
389
390
391
392 /*

393 * Clear the vector (performs zero padding)
394 * Get the data, convert them to float and filter
395 */
396
397 mapclrfv(vData, 1, nLenFFT);
398
399 mapsyncdma (-1,VA0);
400
401 maplodwv(pasRawData, 2, vData, 1, nSegLen);
402
403 mapsyncmath (-1,VA0);
404 mapcvtifv(vData,1,vData,1,nSegLen);
405 maprfftnc(vData, l,vCoeff,2,vTempl, 1,nLnFFT);
406
407
408 * Result of the Fourier transform in vFFTRes
409 */
410
411 mapmulcfvv(vFFTRes,2,vH,2,vFFTRes,2,nHalfLenFFT + 1);
412
413 mapirfftnc(vFFTRes,2,vCoeff,2,vIFFTAux,2,nLenFFT);
414
415 /*
416 * Result of the inverse Fourier transform in vIFFTRes
417 */
418
419 mapaddfvv(vIFFTRes, 1, vAdd, 1, vIFFTRes, 1, nrderFIR-1);
420
421 mapmulfsv(vnScall, vIFFTRes, 1, vIFFTRes, 1, nSegLen);
422
423 mapcopfv (vIFFTRes+nSegLen, 1,vAdd, 1, nOrderFIR-1);
424
425 mapsyncdma(-1,VAO);
426
427 mapstrfv(vIFFTRes,l, pafFilterData, 4, nSegLen);
428
429
430
431 mapbwaitdma (VAO);
432
433 /*** for (i-0; i<-nSegLen-1; i++)
434 *** fprintf(fpoutput, "%f\n", * (pafFilterData+i));
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435 ***/
436 FdWrite(fdOutput,pafFilterData,sizeof(float)*nSegLen)
437
438 nItemsWritten +- nSegLen;
439
440
441
442
443 nRemLen - nItemsInFile - nItemsRead;
444
445 if (nRemLen)
446
447
448 /*** for(i-0; i<- nRemLen-1; i++)
449 *** fscanf(fpInput,"%f\n",(pasRawData+i));
450 ***/
451 FdRead(fdInput,pasRawData,nRemLen*sizeof(short));
452
453 nItemsRead +- nRemLen;
454
455 mapclrfv(vData, 1, nLenFFT);
456
457 mapsyncdma(-1,VAO);
458
459 maplodwv( pasRawData, 2, vData, 1, nRemLen);
460
461 mapsyncmath(-1,VAO);
462 mapcvtifv(vData,1,vData,1,nRemLen);
463
464 maprfftnc(vData,l,vCoeff,2,vTempl,l,nLenFFT);
465
466 mapmulcfvv(vFFTRes,2,vH,2,vFFTRes,2,nHalfLenFFT + 1);
467
468 mapirfftnc(vFFTRes,2,vCoeff,2,vlFFTAux,2,nLenFFT);
469
470 mapaddfvv(vIFFTRes,l,vAdd, l,vIFFTRes,l,nOrderFIR-l);
471
472 mapmulfsv(vnScall, vIFFTRes, l,vIFFTRes,1,nRemLen+nOrderFIR-1);
473
474 mapsyncdma(-1,VA0);
475
476 mapstrfv(vIFFTRes,l,pafFilterData,4,nRemLen+nOrderFIR-l);
477
478
479 mapbwaitdma(VAO);
480
481 /*** for (i-0; i<-nRemLen+nOrderFIR-2; i++)
482 *** fprintf(fpoutput,"%f\n",*(pafFilterData+i));
483 ***/
484 FdWrite(fdOutput,pafFilterData,sizeof(float)*(nRemLen+nOrderFIR-1))
485
486
487 nItemsWritten +- nRemLen + nOrderFIR - 1;
488
489 ) else (
490
491
492 mapmulfsv(vnScall, vAdd,l,vAdd,l,nOrderFIR-1);
493
494 mapsyncdma (-1,VA0);
495
496 mapstrfv(vAdd,l,pafFilterData, 4, nOrderFIR - 1);
497
498
499 mapbwaitdma(VAO);
500
501 /*** for (i-0; i<-nOrderFIR-2; i++)
502 *** fprintf(fpOutput,"%f\n",*(pafFilterData+i));
503 ***/
504 FdWrite(fdOutput,pafFilterData, sizeof(float)*(nOrderFIR-1));
505
506
507 nItemsWritten +- nOrderFIR - 1;
508
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509
510 fprintf(stderr, "\ntd items read from file %s\n", nItemsRead, pachInputFile);
511 fprintf(stderr, "%d items written to file %s\n", nItemsWritten, pachOutputFile);
512
513 /***
514 *** fclose(fpInput);
515 *** fclose(fpOutput);
516 ***/
517
518 close(fdInput);
519 close(fdOutput);
520
521 fclose (fpFilter);
522
523 exit(0);
524
525

Appendix 5.4: CreateFIR - Program for FIR Filter Design

1 /*******************************************************************

2 * *
3 * Create FIR.c *
4 * *
5 ***********************************************************************

6 *
7 * DESCRIPTION
8 * This program creates a finite impulse response (FIR) filter and
9 * write its frequency response into a file.

10 * At the moment the Kaiser window method (program KaiserFIR.c)
11 * and the Optimum FIR filter method (program OptFIR.f) are
12 * supported.
13 * Both programs require different specifications.
14 *
15 * Kaiser window method:
16 * Specify edge frequencies (either 2 or 4) and tolerance.
17 * The tolerance must be uniform. The program returns the
18 * filter length which - with a certain range - satisfies
19 * the specifications. The Kaiser window design supports
20 * only low-, high-, and bandpass filter (edge is an array
21 * of four elements)
22 *
23 * Optimum filter design:
24 * Input is an array of edge frequencies and a weighting
25 * function allowing for different tolerances in the filter
26 * bands. The filter length has to be specified, the tolerance
27 * has to be checked and the filter length eventually increased.
28 * The program takes its time compared with the Kaiser method,
29 * however, the shorter filter length is worth the effort.
30 * The program is the IEEE routine using the Parks-McClellan
31 * approach with the Remez exchamge algorithm. This is a FORTRAN
32 * program.
33 *
34 * USAGE
35 * MakeAFilter -t <Sampling Period>
36 * -m <Design Method>
37 * 1 --> Kaiser
38 * 2 --> Optimum Filter Design
39 * -1 <length of impulse response [optimum filter design only]>
40 * -o <Output File>
41 *
42 * DEFAULT VALUES
43 * Sampling Period: 1.0e-6 [sec]
44 * Design Method: Kaiser Window Method
45 * Output File: /usr/erk/DSP/DAT/FIR.dat
46 * Filter length: 70
47 *
48 * COMMENTS
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49 * - I deliberately did not use option switches for the cut-off
50 * frequencies. The reason being that the filter design routines
51 * allow bandpass and bandstop (Kaiser) or multiple bandstop/pass
52 * (optimum filter design).
53 *
54 */
55
56 typedef int vector;
57 typedef int bool;
58
59 #include <aplib.h>
60 #include <errno.h>
61 #include <values.h>
62 #include <stdio.h>
63 #include "FilterSpecs.h"
64
65 void exit();
66 void is an error()O
67 void opt fir();
68 double atof ()0;
69
70 #define knMaxLenFFT 2048
71
72 fifdef DEBUG
73
74 /*
75 * watch out for proper synchronisation of math and dma processor
76 * if using these routines
77 */
78
79 #define DUMP(Y,y_len) mapstrfv(Y,1,afImpulseResponse,4,y_len);\
80 mapbwaitdma(); \
81 for (i-0; i <- y_len - 1; i++) \
82 printf("'%f\n",afImpulseResponse[ i]);
83
84
85
86 #define MAGC(Y,y_len) mapnrmsqcfv(Y, 2,Y,2,y_len>>l) ;
87 DUMP(Y, y_len);
88 #endif
89
90
91 #define FpOpenW(FilePointer, FileName) if ( (FilePointer - fopen(FileName,"w")) -- NULL ) \
92 (
93 perror(errno);
94 fprintf(stderr, "%%%%ERROR: Could not open %s\n", FileName); \
95 exit(-1);
96
97
98 /*
99

100 */
101
102 void Usage()
103 (
104 fprintf(stderr,"\n");
105 fprintf(stderr,"This program creates the frequency response of a FIR Filter\n");
106 fprintf(stderr,"\n");
107 fprintf(stderr,"USAGE:\n");
108 fprintf(stderr,"-o file in which frequency response is to be stored\n");
109 fprintf(stderr,"[Default: /usr/erk/DSP/DAT/FIR.dat]\n");
110 fprintf(stderr,"\t Storage format: \n");
111 fprintf(stderr,"\tlength of impulse response : ");
112 fprintf(stderr,"length of FFT used\n");
113 fprintf(stderr,"\tFrequency Response (one float per line)\n");
114 fprintf(stderr,"\n");
115 fprintf(stderr,"-m Method of filter design:\n");
116 fprintf(stderr,"\t 1 uses Kaiser windows [Default]\n");
117 fprintf(stderr,"\t 2 uses Optimum Filter Design\n");
118 fprintf(stderr,"\n");
119 fprintf(stderr,"-l Length of the Filter Impulse Response");
120 fprintf(stderr,"\t only with optimum filter design");
121 fprintf(stderr,"\t [Default:70]");
122 fprintf(stderr,"\n");
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fprintf(stderr,"-t Sampling period [sec), [Default: 1.0e-6]\n");
fprintf (stderr, "\n");
fprintf(stderr,"-F Length of the Fourier transform \n");
fprintf(stderr,"\n");
fprintf(stderr,"-h Print this message\n");
fprintf(stderr,"\n");

exit (0);

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

nLenFFT I1;
nLogLen - 0;
nMethod - 1;
jtype-1, nbands,
nOrderFIR - 71;
nHalfOrderOfFIR;
nTest;
chOption;

igrid-0, neg-0;

static char *achOutputFileName - "/usr/erk/DSP/DAT/FIR.dat";

vector vH, vCoeff, vTempl, vTemp2;

static float
static float

afImpulseResponse[knMaxFilterLen];
afFreqResponse [knMaxLenFFT+21;

float edge(20], fx[10], wtx[10], deviat[10];
float nfSampTime - 1.0e-6;

double nfDel;

FILE *fpOutputFile;

extern char *optarg;
extern int optind;

if ( 7 < argc)
Usage ();

FpOpenW(fpOutputFile,achOutputFileName)

Organizing the vector memory

vTempl
vTemp2
vCoeff

vTempl + (knMaxLenFFT<<l);
vTemp2 + (knMaxLenFFT<<l);

while ((chOption - getopt(argc, argv, "ho:m:t:l:F:")) !- EOF)

switch (chOption)

case ' h' :
Usage ();
break;

case '1':
nOrderFIR -

break;
atoi (optarg);

case o' :
achOutputFileName - optarg;
break;

*/

main(argc, argv)
int argc;
char **argv;

.. . . .. . .. . i . . ... .... .. . ! .. ... i ll --i i-- -i I li t II l i l t -

.I .



case 'm':
nMethod - atoi(optarg);
if ( (nMethod<1) II (nMethod>2))

fprintf(stderr, "Specify either (1) Kaiser Window or (2) Optimum
exit (1);

break;

case ' F':
nLenFFT - atoi(optarg);
break;

case 't':
nfSampTime
break;

- atof(optarg);

case '?:
Usage();
break;

mapinitva (1,1,0) ;

switch (nMethod)
(

/* Kaiser window nMethod */

fprintf(stderr, "Creating Kaiser FIR filter ...");

edge[0] - kfStopBandEdge;
edge(1) = kfPassBandEdge;
edge(2] - 0;
edge[3] - 0;

nfDel - kfPassBandDeviation;

/* filter design routine */
Kaiser_FIR(nfDel, edge, nfSampTime, afImpulseResponse, &nOrderFIR);

break;

/* Optimum filter design */

fprintf(stderr, "\n Creating optimum filter \n");

nbands - 2;

/* the frequency bands */
edge[0] - 0.0;
edge[l] - 0.1;
edge[2] - 0.15;
edge[3] = 0.5;

/* the
wtx[0]
wtx[l]
wtx[21

weighting function */
- 10.0;
- 1.0;
= 20.0;*/

/* desired filter frequency response */
fx[O] = 0.0;
fx(1] - 1.0;
fx[2] - 0.0;*/

f init();

/* filter design routine */
opt_fir

(&nOrderFIR, &type,&nbands,&igrid,edge, fx, wtx,&neg,afImpulseResponse,deviat);

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

case 1:

case 2:
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f exit () ;

if ((nOrderFIR) & 1)
nHalfOrderOfFIR - ((nOrderFIR + 1) >> 1);

else
nHalfOrderOfFIR - (nOrderFIR >> 1);

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

if (neg)

for (i-0; i<-nHalfOrderOfFIR-1; i++)

afImpulseResponse[nOrderFIR-1-i] - (-1.0) * afImpulseResponse[i];

else

for (i-0; i<-nHalforderOfFIR-1; i++)

afImpulseResponse[nOrderFIR-l-iI - afImpulseResponse[i];

break;

fprintf(stderr, "\n\n Length of FIR Filter: %d \n", nOrderFIR);

/*
* Determine the length of the
* response of the FIR filter

Fourier transform for the frequency

if (nLenFFT C nOrderFPIR)

nTest - nOrderFIR;

while (nTest)

nTest >>- 1;
nLogLen ++;

nLenFFT - (l<<nLogLen);

else
(

nTest - nLenFFT - 1;

while (nTest)

nTest >>= 1;
nLogLen ++;

fprintf(stderr,"\nLength of FFTs will be: %d - 2**%d\n",nLenFFT,nLogLen);

if (knMaxLenFFT < nLenFFT)

is_anerror("Create FIR: filter too long for FFT\n\t--> change specs\n" , (-2));
exit (-2);

I had bad experiences with the reverse copy of
vectors in VA/AP memory
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345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
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371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

vH - vTempl;
vTempl - vTemp2;

) else (

vH - vTemp2;

mapmulfsv(AP OneHalf, vH, ,vH, 1,nLenFFT+2);

mapsyncdma (-1,VAO);

mapstrfv(vH, l,afFreqResponse, 4,nLenFFT+2);

/*----------------------------------------------------------------------
filter frequency response now in vH

------------------------------------------------------------------------*

mapbwaitdma();

* write the frequency response to the file
*/

fprintf(fpOutputFile,"%d:%d\n",nOrderFIR, nLenFFT);

for (i-0; i<- (nLenFFT+1); i++)
fprintf (fpOutputFile,"%f\n",*(afFreqResponse+i));

*ifdef DEBUG
for (i-0; i<- (nLenFFT+1); i +- 2)

*(afFreqRaesponse+i)
*(afFreqResponse+i) * *(afFreqResponse+i) +
*(afFreqResponse+i+1) * *(afFreqResponse+i+l);

fprintf (stderr, "%f\n", *(afFreqResponse+i) );

#endif

fclose(fpOutputFile);

mapfree(VAO);

fprintf (stderr, "Filter frequency response in file %s\n",achOutputFileName);

return (nOrderFIR);

mapclrfv (vTemp2, 1, nLenFFT);
mapsyncdma (-1, VAO);

maplodfv (afImpulseResponse, 4, vTemp2, 1, nOrderFPIR);

/*----------------------------------------------------------------------

Create coefficient table for all subsequent FFTs
----------------------------------------------------------------------

maprffttab(vCoeff, nLogLen);

/*----------------------------------------------------------------------
Compute frequency response of the filter

---------------------------------------------------------------------- *

maprfftnc (vTemp2, 1, vCoeff, 2,vTempl, 1, nLenFFT);

if (nLogLen&l)
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Appendix 5.5: KaiserFIR - Routine for Kaiser Window Design

1 /************* ************** **********************************

Kaiser FIR.c

DESCRIPTION
Creates the frequency response of an FIR filter using the Kaiser
window method.
Either lowpass, hipass, or bandpass filters are possible, the
filter type is selected according to the stop- and passband edge
specifications.

* The programm does not support at the moment multiple bandpass or
* bandstop filters.

* An accurate description of the alorithm can be found in
* Discrete-time Signal Processing" by Alan V. Oppenheim and
* Roland W. Schafer, Prentice-Hall Signal Processing Series

SYNOPSIS
int Kaiser FIR(del, edges, T, h, order)
double del, edges[], T;
float hf];
int *order;

PARAMETERS
del ...

edges[] ...
T ...

*order ...
h ...

tolerance (uniform over all bands)
array of edge frequencies (in [Hz])
sampling rate (in (sec])
resulting length of the filter
pointer to impulse responseof filter

RETURN VALUES
0 ... in ANY EVENT

*/

void is an error();

#include <math.h>
#include <values.h>
#include <stdio.h>

#define MAX LEN
#define DBLEPSILON

#define swap(a,b)
idefine min(a,b)

256
1.0e-9

(temp) - (a); (a)-(b); (b)-(temp);
((a) < (b)) ? (a) : (b)

/* mdi Bd--------------------------------------
modified Bessel function of the zeroth order

------------------------------------------

double iO(x)
double x;

double
double
double
double

- 0.0;
- 1.0;
- 0.0;

e = 0.25 * x *x;

do

s +- ds;
f +- 1.0;
ds *- e / (f*f);

I
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I while ( DBL EPSILON <- (ds/s) );

return s;

int Kaiser_FIR(del, edge, T, h, order)
double del, T;
float h[], edge[);
int *order;

double del_om, delom_2, omc, om c 2, scale;
double alpha, beta;
double Nyq - 1.0 / (2.0 * T);
double A;
double i_beta;
double temp;

int M;
int i;

char LoPass - 0;
char HiPass - 0;
char BandPass - 0;

(edge(21) a& (edge(31) ))

if (edge[l] < edge[0])

LoPass = 1;
fprintf(stderr,

} else
HiPass - 1;
fprintf(stderr,

"\n Creating lowpass filter ... \n");

"\n Creating hipass filter ... \n");

if ( (edge[2] < edge[3]) I (edge[2] < edge[l]) )

isan error(" Kaiser FIR: Conflict in bandpass edges: ", -2);
return (-2);

if ( (edge(2] < edge(3]) && (edge(0] < edge[l)) )

BandPass - 1;
fprintf(stderr, "\n Creating bandpass filter... \n");

) else {
isanerror("KaiserFIR: Bandstop not supported: ", -3);
return (-3);

if ( ((HiPass) &a ( Nyq < edge[l))) II ((LoPass) && (Nyq < edge[0])) II ((BandPass) && (Nyq < edge[3])
{

isanerror("Kaiser_FIR: Nyquist frequency in specs exceeded: ", -4);
return (-4);

/* scalin for discrete-time sampling frequency */
scale - M PI / Nyq;

if ( (HiPass) II (BandPass) )

swap(edge[l], edge[0])

/* center frequency of transition band */
om c - (( edge[l] + edge[0)) / 2.0) * scale;

if (I(

) else I

) else {

----------- ý=W- = = =-M-M-M =M==== -11



/* width of the transition band */
del om - (edge[0) - edge[l]) * scale;

if (BandPass)

144
145
146
147
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164
165
166
167
168
169
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171
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173
174
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176
177
178
179
180
181
182
183
184
185
186
187
188
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190
191
192
193
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195
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212
213
214
215
216
217

A - -20.0 * logl0(del);

if (50.0 < A)
beta - 0.1102 * (A - 8.7);

else if (A < 21.0)
beta - 0.0;

beta - A - 21.0;
beta - 0.5842 * pow(beta,0.4) + 0.07886 * beta;

ibeta - i0(beta);

/* the prediction of the filter length to keep the specs is
of accuracy +-2. Make sure that the filter specifications are

satisfied by adding 2 */

*order - M - ceil((A-8.0) / (2.285 * del_om)) + 2;

/* hipass filters have to be FIR type I (M must be even) */
if ( (HiPass) && (M&I) )

M++;
(*order)++;

alpha - 0.5 * (double) (M);

for (i-0; i <- M; i++)

if ( (i<<1) M )

temp - (double)(i) - alpha;
h[i] = (sin (omc * temp) / (MPI * temp));

if (HiPass)
h[i] - (sin (M_PI * temp) / (M_PI*temp)) - h[i];

if (BandPass)
h[il - (sin (om_c 2

) else

* temp) / (M PI*temp)) - h[i];

temp /- alpha;
temp *- temp;
temp - beta * sqrt(1.0 - temp);

h[il * - i0(temp) / i_beta;

h[i] - om c / M PI;

if (HiPass)
h[il - 1.0 - h[i];

if (BandPass)
h[i) om c 2 / M PI - h[i];

else (

om c 2 - ( (edge(21 + edge[31) / 2.0 ) * scale;
del om 2 - (edge(31 - edge[21) * scale;
delom - min(del om, delom 2);
del /- 2.0;

M++;(*order} ++;



-145-

218
219
220

return (0);

Appendix 5.6: Variance - Program Computing First Order Statistics of Signal

1 /**************************************************************************

* Variance.c

* DESCRIPTION

* Computes the Mean, the Rms,
* Vector Accelerator

#include
#include
#include
#include
#include
#include
#include
#include
#include

and the Variance of data with the

<stdio.h>
<math.h>
<aplib.h>
<errno.h>
<fcntl.h>
<sys/types.h>
<sys/stat.h>
<unistd.h>
"/usr/erk/DSP/FileOp.h"

typedef int vector;
typedef int bool;

idefine
*define
#define
#define
#define
#define

regl
reg2
reg3
reg4
reg5
reg6

register
register
register
register
register
register

void perror();
void exit();
char *malloc();
long Iseek();

#ifdef DEBUG
#define DUMP(Y,length) mapsyncdma (-1,VAO);

mapstrfv(Y,, pafFilterData, 4, length);
mapbwaitdma (VA0);
for (1-0; i<- length-1; i++)

printf(%tf \n", pafFilterData[il);
exit (0);

*define MAGC(Y,y_len)

fendif

#define knRealTime

mapsyncmath (-l,VAO);
mapnrmsqcfv (Y, 2, Y,1, y_len);
DUMP (Y, y len)
exit (0);

-20

1*

*1

void Usage()
I
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63 fprintf(stderr,"\n");
64 fprintf(stderr,"This program computes the mean, the rms, and the variance of a given data file \n")
65 fprintf(stderr,"\n" );
66 fprintf (stderr, "USAGE:\n");
67 fprintf(stderr,"\n");
68 fprintf(stderr,"-C\tDo only short to float conversion\n");
69 fprintf(stderr,"\t[with -S option onlyl\n");
70 fprintf(stderr,"\n");
71 fprintf(stderr,"-i\tInput file containing the data \n");
72 fprintf(stderr,"\t [Default: /usr/erk/DSP/DAT/Filtered.dat]\nm);
73 fprintf(stderr,"\n");
74 fprintf(stderr,"-v\tFile containing the standard deviation of the filtered data\n");
75 fprintf (stderr,"\t [Default: /usr/erk/DSP/DAT/Threshold.dat]\n");
76 fprintf(stderr,"\n");
77 fprintf(stderr,"-S\tInput data are short\n");
78 fprintf(stderr,"\n");
79 fprintf(stderr,"-o\tOutput file for data converted to float\n");
80 fprintf(stderr,"\t [only with the -S option]\n");
81 fprintf(stderr,"\t [DEFAULT: /usr/erk/DSP/DAT/Filtered.dat]\n");
82 fprintf (stderr, "\n");
83 fprintf(stderr,"-h\tPrint this message\n");
84 fprintf(stderr,"\n");
85
86 exit(0);
87 }
88
89 /*
90 ------------------------------------------- --------------
91 */
92
93 main(argc, argv)
94 int argc;
95 char **argv;
96 {
97 vector vMean;
98 vector vMeanSq;
99 vector vData;

100
101 bool tFloat;
102
103 int chOption;
104
105 int nItemsRead - 0;
106 int nItemsInFile;
107 int *pnDummy;
108
109 int nChunkSize - 4096;
110
111 int fdInput;
112 int fdoutput;
113
114 FILE *fpVariance;
115
116 bool tInputIsShort - 0;
117 bool tComputeStatistics - 1;
118
119 regl int nLoops;
120 reg2 int nRemLen;
121 reg3 int i;
122
123 static char *pachOutputFile - "/usr/erk/DSP/DAT/Filtered.dat";
124 static char *pachInputFile - "/usr/erk/DSP/DAT/Filtered.dat";
125 static char *pachVarFile - "/usr/erk/DSP/DAT/Threshold.dat";
126
127 static float *pafData;
128 static short *pasData;
129
130 static float fMean;
131 static float fMeanSq;
132 static float fStdDev;
133
134 extern char *optarg;
135 extern int optind;
136

__
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/*---------------------------------------------------------------------*

/*

* Get Real-time priority
*/

if ( (int) (nice(knRealTime)) !- knRealTime )

fprintf(stderr, "Got different priority than requested,
perror();
exit (-1);

/*----------------------------------------------------------------------

/*
* Open the input and the output data files
*/

errno: %d", errno);

FdOpenR(pachlnputFile, fdInput)

/*

If the input data are short they are converted to float
and written to the file in pachOutputFile

if (tInputIsShort)

FdOpenW(pachOutputFile, fdOutput)

FpOpenW(pachVarFile, fpVariance)

/*

* the first entry in the input file is the number of samples
* contained therein
*/

fscanf(fpInput,"%d:\n", &nItemsInFile);

while ((chOption - getopt(argc, argv, "hi:o:v:SC")) !- EOF)

switch (chOption)

case 'h':
Usage ();
break;

case 'i':
pachInputFile - optarg;
break;

case 'o':
pachOutputFile - optarg;
break;

case 'v':
pachVarFile - optarg;
break;

case 'S':
tInputIsShort = 1;
break;

case 'C':
tComputeStatistics * 0;
nChunkSize - 8192;
break;

case '?':
Usage ();
break;

/***
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211 ***/
212
213 pnDummy - &nItemsInFile;
214
215 FdRead (fdInput,pnDummy, sizeof(int))
216
217 fprintf(stderr, "\n Input file %s contains %d samples\n",pachInputFile, nItemsInFile);
218
219 if (tInputIsShort)
220 {
221 FdWrite (fdOutput, pnDummy, sizeof (int));
222 fprintf(stderr, "\n Output file %s contains %d samples\n",pachOutputFile, nItemsInFile);
223
224
225 /*---------------------------------------------------------------------*
226 /*
227 * Allocate memory for the data
228 */
229
230 pafData - (float *)malloc( sizeof(float) * nChunkSize );
231
232 if (tInputIsShort)
233 pasData - (short *)malloc( sizeof(float) * nChunkSize );
234
235 /*----------------------------------------------------------------------
236 /*
237 * Initializing the VA
238 */
239
240 mapinitva(1,1,0);
241
242 vData - 0;
243 vMean - vData + nChunkSize;
244 vMeanSq - vMean + nChunkSize;
245
246 /*------------------------------------------------------------------------*/
247
248 nLoops - (int) ( (float)nItemsInFile/(float)nChunkSize );
249
250 fprintf(stderr, "\n%d loops necessary\n", nLoops);
251
252 mapclrfv(vMean,l,nChunkSize);
253 mapclrfv(vMeanSq,l,nChunkSize);
254
255 while (nLoops--)
256 (
257
258 /*** for (i-0; i<-nChunkSize-l; i++)
259 *** fscanf(fpInput, "%f\n*, (pafData+i));
260 ***/
261 if (tInputIsShort)
262 {
263 FdRead(fdInput,pasData, nChunkSize * sizeof(short))
264
265 /*** for (i-nChunksize; 0<i; i--)
266 *** printf("%d\n",*(pasData+i));
267 ***/
268 nItemsRead +- nChunkSize;
269
270 mapsyncdma(-1,VA0);
271
272 maplodwv(pasData,2,vData,l,nChunkSize);
273
274 mapsyncmath(-1,VA0);
275
276 mapcvtifv(vData,l,vData,l,nChunkSize);
277
278 mapsyncdma(-l,VA0);
279
280 mapstrfv(vData,l,pafData,4,nChunkSize);
281
282 mapbwaitdma(-l,VAO);
283
284 FdWrite(fdOutput, pafData, nChunkSize *sizeof(float))

_ · _ ·_._··__



285
286 else
287
288
289 FdRead(fdInput, pafData, nChunkSize * sizeof (float))
290
291
292 nItemsRead +- nChunkSize;
293
294 /*
295 * Shows whether data are read correctly
296 * comment out if necessary
297
298 *** for (i-0; i<-(nChunkSize-1); i++)
299 *** printf("%d \n", *(pafData+i) );
300 *** exit(0);
301 ***/
302
303 mapsyncdma (-, VAO);
304
305 maplodfv(pafData, 4, vData, 1, nChunkSize);
306
307 mapsyncmath (-1,VA0);
308
309
310 if (tComputeStatistics)
311 (
312 /*
313 * Add new data to mean
314 */
315 mapaddfvv (vData, 1,vMean, 1, vMean, 1, nChunkSize);
316
317 /*
318 * Add square of new data to mean square
319 */
320 mapmafvwv(vData, l,vData, l,vMeanSq,1,vMeanSq,1, nChunkSize);
321
322
323
324
325 /*
326 * Take care of eventually remaining data
327 */
328
329 nRemLen - nItemsInFile - nItemsRead;
330
331 if (nRemLen)
332
333
334 /*** for(i-0; i<- nRemLen-1; i++)
335 *** fscanf(fpInput,"%f\n", (pafData+i));
336 ***/
337 if (tInputIsShort)
338 {
339 FdRead(fdInput,pasData, (nRemLen * sizeof(short)) )
340
341 nItemsRead +- nRemLen;
342
343 mapsyncdma(-1,VAO);
344
345 maplodwv(pasData,2,vData,1,nRemLen);
346
347 mapsyncmath (-1,VAO);
348
349 mapcvtifv(vData,1,vData,1,nRemLen);
350
351 mapsyncdma (-1, VAO);
352
353 mapstrfv(vData,1,pafData,4,nRemLen);
354
355 mapbwaitdma (-1,VAO);
356
357 FdWrite(fdOutput, pafData, nRemLen *sizeof(float))
358 }
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359 else
360 (
361
362 FdRead(fdInput, pafData, (nRemLen * sizeof(float))
363
364
365 nItemsRead +- nRemLen;
366
367 /*
368 * Shows whether data are read correctly
369 * comment out if necessary
370 *
371 *** for (i-0; i<-(nRemLen-1); i++)
372 *** printf("%d \n", *(pafData+i) );
373 *** exit(0);
374 ***/
375
376 mapsyncdma(-l,VA0);
377
378 maplodfv(pafData, 4, vData, 1, nRemLen);
379
380 mapsyncmath(-1,VAO);
381
382 if (tComputeStatistics)
383 1
384 mapaddfvv(vData,l,vMean,l,vMean,l,nRemLen);
385
386 mapmafvvv(vData,l,vData,l,vMeanSq,l,vMeanSq,1, nRemLen);
387
388
389
390 fprintf(stderr,"\n %d items read\n",nItemsRead);
391
392 if (tComputeStatistics)
393
394 mapsumfv(vMean, 1, vMean, nChunkSize);
395
396 mapsumfv(vMeanSq,l,vMeanSq, nChunkSize);
397
398 mapsyncdma(-1,VA0);
399
400 mapstrfv(vMean,l,&fMean, 4, 1);
401
402 mapstrfv(vMeanSq, l,&fMeanSq,4,1);
403
404 mapbwaitdma(VAO);
405
406 fMean /I (float)nItemsRead;
407 fMeanSq /- (float)nItemsRead;
408
409 fprintf(stderr,"\nMean of input file:\t%f\n", fMean);
410
411 fprintf(stderr,"\nRms of input file:\tf\n",sqrt(fMeanSq));
412
413 fStdDev - fMeanSq - fMean *fMean;
414
415 if (fStdDev < 0.0 )
416 fStdDev - (-1.0) * fStdDev;
417
418 fStdDev - sqrt(fStdDev);
419
420 fprintf(stderr,"\nStandard Dev of input file:\tf\n",fStdDev);
421
422 fprintf(fpVariance,"%f:\n", fStdDev);
423
424
425 close (fdInput);
426
427 if (tInputIsShort)
428 close(fdOutput);
429
430 /*** fclose(fpInput); ***/
431 fclose(fpVariance);
432

__I_ _~ __ __Y_
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433 exit(0);
434 1
435

Appendix 5.7: GetBursts - Program for Burst Validation

1 /*******************************************************************

2 *
3 * GetBursts.c
4 *
5 **********************************************************************

6 *
7 * DESCRIPTION
8 * Isolates the bursts from the data. As they data are expected to be
9 * prefiltered in the discrete-time domain, the input array is supposed

10 * to be float.
11 * The bursts are written to file in the following way:
12 * First comes the length of the validated burst in samples
13 * then the burst follows as an array of float.
14 *
15 * USAGE
16 * Lots of options check function Usage() below for details
17 . or run the program with the -h option
18 *
19 * COMMENTS
20 * out of some reasons the implemented system acts close to the DISA
21 * LDA counter processor, blame it on insufficient creativity.
22 * it seems only straightforward to me to include an option which
23 * performs zero crossing counting on the bursts, presumably this
24 * would be pretty fast, too.
25 * The way the DISA validation scheme works it looks like there is
26 * a weak spot for a rapidly decreasing signal: If one maximum at the
27 * end of a burst is well over Trigger._2 but he next maximum is below
28 * Trigger 1 then the burst is not considered as terminated.
29 *
30 * The trigger levels can either be specified as a multiple of a threshold or
31 * - together with the -D option - as direct values
32 */
33
34 #include <errno.h>
35 #include <fcntl.h>
36 #include <stdio.h>
37 #include <unistd.h>
38 #include "/usr/erk/DSP/FileOp.hm

39
40 #define regl register
41 #define reg2 register
42 #define reg3 register
43 #define reg4 register
44 #define reg5 register
45 #define reg6 register
46
47 void exit();
48 void perror();
49 double atof 0();
50 char *malloc();
51 long ftell();
52
53 typedef int bool;
54
55 Idefine knLow 5
56 #define knHigh 8
57
58 idefine knRealTime -20
59
60 #define READ 04
61 #define WRITE 02
62 #define EXISTS 00
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63
64 #define Reset nThresholdCrossings - 0; \
65 tWithinBurst - 0; \
66 tFirstCrossing - 1; \
67 nDuration - 0;
68
69
70 /*
71
72 */
73
74 void Usage ()
75 4
76 fprintf(stderr,"This program implements the DISA burst validation\n");
77 fprintf(stderr,"scheme for laser Doppler anemometry \n");
78 fprintf (stderr, "\n");
79 fprintf(stderr,"\tUSAGE:\n");
80 fprintf (stderr, "\n");
81 fprintf(stderr,"-i <input file name>\n");
82 fprintf(stderr, "\t [Default: /usr/erk/DSP/DAT/Filtered.dat]\n");
83 fprintf(stderr,"\n");
84 fprintf(stderr,"-o <output file name>\n");
85 fprintf(stderr,"\t (Default: /usr/erk/DSP/DAT/Bursts.dat]\n");
86 fprintf (stderr, "\n");
87 fprintf(stderr,"-t <file containing the threshold>\n");
88 fprintf(stderr,"\t [Default: /usr/erk/DSP/DAT/Variance.datl\n");
89 fprintf (stderr, "\n");
90 fprintf(stderr,"-f <file containing the number of bursts\n");
91 fprintf(stderr,"\t (Default: /usr/erk/DSP/DAT/NOfBursts.dat] \n");
92 fprintf (stderr,"\n");
93 fprintf(stderr,"-D <maximum duration>\n");
94 fprintf(stderr,"\t This option MUST be specified\n");
95 fprintf (stderr, "\n");
96 fprintf(stderr,"-b <Number of Bursts>\n");
97 fprintf (stderr, "\n");
98 fprintf(stderr,"-d <minimum duration>\n");
99 fprintf(stderr,"\t This option MUST be specified\n");

100 fprintf (stderr, "\n");
101 fprintf(stderr, "-A Factor for obtaining Trigger 1 from threshold");
102 fprintf(stderr,"\t [Default: 0.51\n");
103 fprintf (stderr, "\n");
104 fprintf(stderr,"-B Factor for obtaining Trigger_2 from threshold");
105 fprintf(stderr,"\t [Default: 1.5]\n");
106 fprintf(stderr,"\n");
107 fprintf(stderr,"-C Factor for obtaining Trigger_3 from Threshold");
108 fprintf(stderr,"\t (Default: 3.0]\n");
109 fprintf(stderr,"\n");
110 fprintf(stderr,"-M The values specified under -A, -B, and -C are not factors");
111 fprintf(stderr,"\n");
112 fprintf(stderr,"-N Start with a new burst count \n");
113 fprintf(stderr,"\t (Delete file specified under the -f option\n");
114 fprintf (stderr, "\n");
115 fprintf(stderr,"-Q Comparator Accuracy (see DISA counter manual)\n");
116 fprintf(stderr,"\n");
117 fprintf(stderr,"-h Print this message\n");
118 fprintf (stderr, "\n");
119
120 exit(-1);
121
122
123 /*
124
125 */
126
127 main (argc,argv)
128 int argc;
129 char **argv;
130 (
131
132 bool tWithinBurst - 0;
133 bool tFirstCrossing - 1;
134
135 float fMax=0.0;
136

_ __ __



float fTrigger_1;
float fTrigger 2 - -1;
float fTrigger 3 - 1800.0;

float fFactorForTrigl
float fFactorForTrig2
float fFactorForTrig3

- 0.5;
- 1.0;
- 3.0;

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

nTimeLo, nTimeHi;
nThresholdCrossings = 0;
nItemsInFile;
i;
choption;

int *pnDummy;

regl
reg2
reg3

static

static
static
static
static

float *pfPrevSample;
float *pfSample;
int nDuration - 0;

int nBursts - 0;

char *pachBurstFile
char *pachOutputFile
char *pachInputFile
char *pachThreshFile

- "/usr/erk/DSP/DAT/NOfBursts.dat";
- "/usr/erk/DSP/DAT/Bursts.dat";
- "/usr/erk/DSP/DAT/Filtered.dat";
- "/usr/erk/DSP/DAT/Threshold.dat";

int fdInput;

FILE *fpOutput;
FILE *fpThresh;
FILE *fpBurst;

extern char *optarg;
extern int optind;

/*-------------------------------------- --------------------------- */
/*
* Parse the command line
*/

while ((chOption = getopt(argc, argv, "hb:d:f:i:o:t:D:MNA:B:C:Q:")) !- EOF)

switch (chOption)

case 'h':
Usage();
break;

case 'i':
pachInputFile - optarg;
break;

case 'o':
pachOutputFile optarg;
break;

case 'f,:
pachBurstFile - optarg;
break;

case 'b':
nBurstsSpecified - atoi(optarg);
break;

float fCompAcc;

bool tDelFile - 0;
bool tFactor = 1;

int nMinDur - 5;
int nMaxDur - 512;

int nBurstsSpecified;

switch 

(chOption)

I
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case 't' :
pachThreshFile - optarg;
break;

case 'D':
nMaxDur - atoi(optarg);
break;

case 'd':
nMinDur - atoi(optarg);
break;

case 'A':
fFactorForTrigl
break;

case 'B':
fFactorForTrig2
break;

case 'C' :
fFactorForTrig3
break;

case 'M':
tFactor - 0;
break;

- (float)atof(optarg);

- (float)atof(optarg);

- (float)atof(optarg);

case 'N':
tDelFile - 1;
break;

case 'Q':
fCompAcc - (float)atof(optarg);
break;

case '?':
Usage ();
break;

(nMaxDur < 0)

fprintf(stderr,"No maximum duration specified, but required\n");
Usage ();
exit (-1);

if (nMinDur < 0)

fprintf(stderr,"No minimum duration
Usage ();
exit (-1);

specified, but required\n");

/*-----------------------------------------------------------------------*

/*

* Get Real-time priority
*/

if ( (int) (nice(knRealTime)) !- knRealTime )

fprintf(stderr, "Got different priority than requested, errno: %d", errno);
perror();
exit (-1);

/*---------------------------------------------------------------------
FdOpenR(pachInputFile,fdInput)

FpOpenW (pachOutputFile, fpoutput)

***

***

***

***

***

***

*rt*/

_ I _· I·



FpOpenR(pachThreshFile, fpThresh)

if(tDelFile)

285
286
287
288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

309
310
311
312
313
314
315
316
317
318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

347
348
349
350
351
352
353
354
355
356
357
358

if (errno !- ENOENT)

fprintf (stderr,"\nCannot unlink/delete %s, errno: %d\n",pachBurstFile,errr
perror (pachBurstFile);
exit (-1);

else

errno - 0;

/*--------------------------------------------------*/

* Check whether we processed already a data record

if (access (pachBurstFile, READ I WRITE I EXISTS) < 0)
(

Input file does not exist yet, create it

FpOpenW(pachBurstFile, fpBurst)

nBursts - 0;

/*

Clear errno, which is 2 (no such file) if we're here

errno-0;

else

File exists, open for update

FpOpenRWU (pachBurstFile, fpBurst)

fscanf(fpBurst, "%d:\n", inBursts);
rewind(fpBurst);

/*-------------------------------------- --------------

* The first number in the input file
* gives the amount of data contained
*/

pnDummy - &nItemsInFile;
FdRead(fdInput,pnDummy,sizeof(int))

fprintf(stderr, "\nInput file %s contains %d items\n", pachInputFile, nItemsInFile);

if ( (pfSample - (float *) malloc (nItemsInFile*sizeof(float))) -- NULL )

fprintf(stderr,"Cannot allocate memory, errno: %d\n",errno);
perror();
exit (-1);

if (plockin(pfSample,nltemsInFile*sizeof(float)) < 0)

if (unlink(pachBurstFile) -- -1)
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359
360
361
362
363
364
365
366

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

383
384
385
386
387
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402

403
404

405
406
407
408

409
410

411
412
413
414
415
416

417
418
419
420
421
422
423
424
425
426

427
428

429
430
431
432

if (tFac

Read the trigger value from file
The trigger value may come from the routine Variance
which computes the rms value
The rms value is agood approximation for the standard
deviation if the data are low pass filtered

tor)

fscanf(fpThresh,"%f:\n", &fTrigger_2);
fTrigger 1 - fFactorForTrigl * fTrigger_2;
fTrigger 3 - fFactorForTrig3 * fTrigger_2;
fTrigger_2 - fFactorForTrig2 * fTrigger_2;

else

fTrigger l
fTrigger 3
fTrigger 2

- fFactorForTrigl;
- fFactorForTrig3;
- fFactorForTrig2;

_Next Sample_:

while(nItemsInFile--)
(

pfPrevSample - pfSample++;

/*
* Check whether we have already found a burst
* if yes then look for reset conditions or its end
*/

if (tWithinBurst)

/*
* Duration of the burst
*/

nDuration++;

/*
* Overshoot resets
*/

if (fTrigger 3 < *pfSample)

Reset

goto _Next_Sample_;

* Look out for a maximum

fprintf(stderr,"Cannot lock memory, errno: %d\n",errno);
perror();
exit (-1);

fprintf (stderr, "\n %d bytes locked into memory\n",sizeof (float) *nItemsInFile);

FdRead(fdInput,pfSample,(sizeof(float)*nItemsInFile))

fprintf (stderr, "\n %d bytes read from %s\n",sizeof(float) *nItemsInFile, pachInputFile);

nItemsInFile--;

/*---------------------------------------------------------------------*

I - - - -- --- - - --- - -- - ---------------------

--- II ----- ---
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* If a maximum falls between fTrigger_1 and fTrigger_2
* then our burst is terminated
*/

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

((fMax < fTrigger_2) && (fTrigger 1 < fMax))

Get the duration of the burst
If it has the right length, read it
from the input file and copy it to
the output file

( (nMinDur < nDuration) && (nDuration < nMaxDur) )

/*

*/

fprintf (fpoutput, "%d:\n",nDuration);
for (i - --nDuration; i>-0; i--)

printf("%f\n",*(pfSample-i));

fprintf (fpoutput, "%f\n", * (pfSample+i));

/*

* Update the count of validated bursts
*/

nBursts++;

/*

* Print a period on standard error for each burst
*/

fprintf(stderr,".");

/*

* The specified number of bursts occured,
* exit
*/

if (nBursts =- nBurstsSpecified)

if (unlink(pachBurstFile) -- -1)

fprintf(stderr,"\nCannot unlink %s at ex
exit (-1);

goto _Exit_;

else
(

Reset

goto _Next_Sample ;

/*

too short

if (

else
(

*pfPrevSample < *pfSample)

fMax - *pfSample;

F



Reset

goto NextSample_;

* We are going downhill again, reset the maximum

fMax - 0.0;

( (*pfPrevSample < fTrigger 2) && (fTrigger_2 < *pfSample ) )

nThresholdCrossings ++;

/*

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

* low count of threshold crossings, get event time

if (nThresholdCrossings -- knLow)
nTimeLo - nDuration;

/*
* high count of threshold crossings, get event time
*/

if (nThresholdCrossings =- knHigh)

nTimeHi - nDuration;

/*

* that's the way DISA does it, aha-aha, I like it
* see manual for handwaving argument why this is good and s
*/

if ( (0.625 * (float) (nTimeHi) - (float) (nTimeLo)) > (0.625 * (f.

Reset

goto _Next_Sample_;

* A positive crossing of fTrigger_2 sets
* tWithinBurst

f ( (*pfPrevSample < fTrigger_2) && ( fTrigger_2 < *pfSample ) )

tWithinBurst ++;

nDuration - 1;

nThresholdCrossings = 1;

a positive crossing of Trigger_2 occured
get time between crossings
obtain times for a number of knLow and knHigh threshold crossings

else

_· I

i
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/*
* Nothing happened: take next sample
*/

)

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

611
612
613
614
615
616
617
618
619
620
621
622

623
624
625
626
627
628
629

Exit :

fprintf(fpBurst,"%d:\n",nBursts);

/*
* The label Exit is branched to if the number of
* specified bursts has been reached
*/

fclose(fpThresh);
fclose(fpOutput);
fclose(fpBurst);

close (fdInput);

fprintf (stderr, "\n");

fprintf(stderr," Total of %d bursts\n",nBursts);

if(! (nBursts))

if (unlink(pachOutputFile) -- -1)

fprintf(stderr,"\nCannot unlink/delete %s, errno: %d\n",pachOutputFile,errno);
perror (pachOutputFile);
exit(-1);

fprintf(stderr,"\nDeleted burst file\n");

exit (nBursts):

Appendix 5.8: MeanSpec - Program Computing the Mean Spectrum

1 /*****************************************************************************

2 *
3 * MeanSpec.c
4 *
5 *****************************************************************************

6 *
7 * DESCRIPTION
8 * This routine comutes the mean spectrum and the standard deviation
9 * from the mean on the vector accelerator.

10 * It allows for different methods for the spectral estimation. Presently,
11 * classical direct DFT (via FFT) computation and an ARMA (auto-regressive
12 * moving average) estimator based on Pade approximation to quotient
13 * of polynomials (see thesis) are implemented.
14 * The men is obtained by residence-time weighting: The length of the data
15 * record contributing to the mean is taken into account.
16 *

We reached the end of the file containing the sampled data
without getting the required number of bursts:
exit with the number of bursts processed so far



USAGE
-h print information about usage
-i input file containing the data records. See GetBursts.c for format
-o output file containing the mean and the mean square spectrum
-r file containing the result, i.e. the latest mean spectrum
-v file containing the latest standard deviation
-D expected maximum duration of the bursts, see GetBursts.c
-F length of the FFT
-N remove output file before computing starts
-m method to use for the spectral estimation

1 ... direct computation via FFT
2 ... ARMA Pade estimator

DEFAULTS
Again all default values are organized to provide smooth operation
with the rest off the files used in LDA signal processing. In this
case, the input files stem from the routine GetBursts.c

Input file:
Output file:
Result in:
Standard dev in:
Sampling frequency:
Length of FFT:
Method:

/usr/erk/DSP/DAT/Bursts.dat
/usr/erk/DSP/DAT/Working.dat
/usr/erk/DSP/DAT/Result.dat
/usr/erk/DSP/DAT/SpecVar.dat
1.0e6

512
1

(note that the file Variance.dat is used by FilterData.c)

#include <math.h>
#include <stdio.h>
#include <signal.h>
#include <aplib.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/file.h>
#include <unistd.h>
#include "/usr/erk/DSP/FileOp.h"

void exit();
void perror();
double atof();
char *malloc();

#ifdef DEBUG

#define DUMP(Y,y_len)

#define MAGC(Y,y_len)

#endif

#define READ
#define WRITE
#define EXISTS

#define knRealTime

#define MAX FFT LEN

#define vR
#define vT

mapsyncdma (-1,VAO);
mapstrfv(Y,l,r,4,y_len); \
mapbwaitdma ();
for(j-0; j<-y_len-1; j++) \

printf("%e\n",r[jl);

mapsyncmath (-1,VAO);
mapnrmsqcfv (Y,2,Y,1,y_len);
DUMP(Y, y len)

04
02
00

-20

1024

vTempl
vTemp2

#define FOREVER for(;;)

typedef int vector;
typedef int bool;
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91 /*-------------------------------------------------------------------
92
93 void Usage()
94 {
95 fprintf (stderr, "\n");
96 fprintf(stderr,"This program computes the mean spectrum from \n");
97 fprintf(stderr,"the output as obtained by the routine GetBursts\n");
98 fprintf(stderr,"\n");
99 fprintf(stderr,"USAGE:\n");

100 fprintf (stderr, "\n");
101 fprintf(stderr, "-i\tInput file containing the isolated burst\n");
102 fprintf(stderr,"\t (Default: /usr/erk/DSP/DAT/Bursts.dat]\n");
103 fprintf(stderr,"\n");
104 fprintf(stderr,"-o\tOutput file containing the mean and mean square spectrum\n");
105 fprintf(stderr,"\t (Default: /usr/erk/DSP/DAT/Working.dat]\n");
106 fprintf(stderr,"\n");
107 fprintf(stderr,"-r\tFile containing the latest mean spectrum\n");
108 fprintf(stderr, "\t [Default: /usr/erk/DSP/DAT/Result.dat\nN);
109 fprintf(stderr,"\n");
110 fprintf(stderr,"-v\tFile containing the latest standard deviation\n");
111 fprintf(stderr,"\t\t of the spectrum\n");
112 fprintf(stderr,"\t [Default: /usr/erk/DSP/DAT/SpecVar.dat]\n");
113 fprintf(stderr,"\n");
114 fprintf(stderr,"-F\tLength of the Fourier transform to use\n");
115 fprintf(stderr,"\t [Default: 512]\n");
116 fprintf(stderr,"\n");
117 fprintf(stderr,"-D\tMaximum duration of bursts\n");
118 fprintf(stderr,"\tMUST BE SPECIFIED\n");
119 fprintf(stderr,"\n");
120 fprintf(stderr,"-T\tSampling frequency\n");
121 fprintf(stderr,"\t [Default: 1.0e6)\n");
122 fprintf(stderr, \n");
123 fprintf(stderr,"-N\tRemove file specified under -o first\n");
124 fprintf (stderr, "\n");
125 fprintf(stderr,"-m\tl ... spectral estimation using FFT\n");
126 fprintf (stderr, "\t2 ... spectral estimation using ABMA Pade estimator\n");
127 fprintf(stderr, "\t (Default: l]\n");
128 fprintf(stderr,"\n");
129 fprintf(stderr,"-h\tPrint this message\n");
130 fprintf (stderr, "\n");
131
132 exit (-1);
133
134
135 /*
136
137 */
138
139 main(argc, argv)
140 int argc;
141 char **argv;
142 {
143 #ifdef DEBUG
144 static float r(MAX FFT LEN];
145 float m[MAX FFT LENI;
146 float v[MAX FFTLENI;
147
148 int j;
149 fendif
150 vector vTempl, vTemp2, vTemp3, vTemp4, vTemp5;
151 vector vResult;
152 vector vVar;
153 vector vMeanSq;
154 vector vMean;
155 vector vCoeff;
156 vector vfScall, vfScal2;
157 vector vResFFT;
158 vector vBurst;
159 vector vEndOfMem;
160
161 bool tFileExists - 0;
162 bool tDelFile = 0;
163
164 int nMethod = 1;
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int nDegR;
int nDegT;

nLenFFT - 512;
nLogLen;
nHalfLenFFT;
nLenFFTFromFile;

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

nProcessed - 0;
i;

int chOption;

static float nfDurationOfBurst;
static float nfTotalTime - 0.0;

static
static
static
static
static

static
static
static
static

float *pafBurst;
float *pafMean;
float *pafMeanSq;
float *pafResult;
float *pafVar;

char *pachOutputFile - "/usr/erk/DSP/DAT/Working.dat";
char *pachInputFile - "/usr/erk/DSP/DAT/Bursts.dat";
char *pachVarFile - "/usr/erk/DSP/DAT/SpecVar.dat";
char *pachResFile - "/usr/erk/DSP/DAT/Result.dat";

FILE *fpInput;
FILE *fpOutput;
FILE *fpVariance;
FILE *fpResult;

extern char *optarg;
extern int optind;

* Get real-time priority

if ( (int)nice(knRealTime) !- knRealTime )

fprintf(stderr,"\nNice: Got different priority than requested, errno: %d\n", errno);
perror();
exit (-1);

/*---------------------------------- ----------------------------------- */

while ((chOption - getopt(argc, argv, "hi:o:D:F:Nr:v:m:")) !- EOF)

switch (chOption)
I

case 'h':
Usage();
break;

case 'i':
pachInputFile - optarg;
break;

case 'D':
nMaxDur - atoi(optarg);
break;

case 'v':
pachVarFile - optarg;
break;

case 'o :

int nSamplesInBurst;
int nMaxDur - -1;

/W ---------------------------------

_ --- --

if ((Int)nice(knRealTlme) !-knRealTime )

switch 

(chOpt lon)

!
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239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

case 'N':
tDelFile - 1;
break;

case '7':
Usage();
break;

/*-------------------------------------- -------------------------------- */

if (tDelFile)

if(unlink(pachOutputFile) -- -1)

fprintf(stderr,"\nCannot unlink/delete %s, errno: %d\n",pachOutputFile, errno)
perror (pachOutputFile);
exit(-1);

(nMethod < 1) II (nMethod > 2) )

fprintf (stderr, "\nWrong argument for method to be used\n");
Usage();

if (nMaxDur < 0)

fprintf(stderr,"\n No or negative maximum duration specified\n\n");
Usage();

/*-------------------------------------- ---------------------------- */

/*
* If the data file is missing we gracefully exit here
*/

if (access(pachInputFile, EXISTS) < 0)

fprintf(stderr,"\nMeanSpec: Did not find an input file, presumably,");
fprintf(stderr,"\n\tbecause GetBursts didn't find anything");
exit (0);

}

* If an output file already exists, read it
* otherwise open it for write
*/if (accessacututi READ I WRITE

if (access(pachOutputFile, READ | WRITE I EXISTS) < 0)

/*
* Input file does not exist yet, create it
*1

FpOpenW(pachOutputFile, fpOutput)

pachOutputFile = optarg;
break;

case 'r':
pachResFile - optarg;
break;

case 'F':
nLenFFT - atoi(optarg);
break;

case 'm':
nMethod - atoi (optarg);
break;

I r

I
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nLogLen - mapilog2(nLenFFT);
nHalfLenFFT - (nLenFFT>>1);

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

- (float *)malloc((nHalfLenFFT+1)<<2);
- (float *)malloc((nHalfLenFFT+1)<<2);

(float *)malloc (nMaxDur<<2);
- (float *)malloc((nHalfLenFFT+l)<<2);
- (float *)malloc((nHalfLenFFT+1)<<2);

else
I

* File exists, open for update

tFileExists - 1;

FpOpenRWU(pachOutputFile, fpoutput)

/*
First entry in input file must be length of FFT
if length is not the same as in command line
option: override

fscanf(fpOutput, "%d:\n", &nLenFFTFromFile);

if (nLenFFTFromFile !- nLenFFT)

fprintf(stderr, "\nPrevious spectrum has different length\n");
fprintf(stderr, "...overriding command line option\n");

fprintf(stderr,"\nNew length of FFTs: %d\n",nLenFFTFromFile);

nLenFFT - nLenFFTFromFile;

nLogLen - mapilog2(nLenFFT);
nHalfLenFFT - (nLenFFT>>1);

/*

* Now that we know with which FFT length we
* have to deal we allocate the memory
*/

pafMean - (float *)malloc((nHalfLenFFT+1)<<2);
pafMeanSq - (float *)malloc((nHalfLenFFT+1)<<2);

pafBurst - (float *)malloc(nMaxDur<<2);
pafVar - (float *)malloc((nHalfLenFFT+1)<<2);
pafResult - (float *)malloc((nHalfLenFFT+1)<<2);

* Read the old mean and mean square spectrum
* they are of length (nLenFFT + 2) each

for (i - 0; i <- nHalfLenFFT; i ++)

fscanf(fpOutput, "%f:%f\n", pafMean+i, pafMeanSq+i);

m[i] - *(pafMean+i);
v[i] - *(pafMeanSq+i);

*endif

Last entry is number of averaged spectra
and total observation time

pafMean
pafMeanSq
pafBurst -
pafVar
pafResult

fifdef DEBUG

____· · _ __ ____
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fscanf(fpOutput,"%d:%f",&nProcessed,&nfTotalTime);

Rewind for subsequent write

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

Open the file containing the data to analyze,
the file which will contain the standard deviation
and the file which will contain the result

*/

FpOpenR(pachInputFile, fpInput)

FpOpenW(pachVarFile, fpVariance)

FpOpenW(pachResFile, fpResult)

*--Organization of the vector memory-------------------------------------------------------------------

* Organization of the vector memory

vBurst
vTempl
vTemp2
vMean
vMeanSq
War
vResult
vfScall
vfScal2
vCoeff
vTemp3
vTemp4
vTemp5

0;
- vBurst + (nI
- vTempl + (nl
- vTemp2 + (nW
= vMean + (nl
- vMeanSq + (ni
- vVar + (nl
- vResult + (nl
- vfScall + 1;
- vfScal2 + 1;
- vCoeff + (nI
- vTemp3 + (ni
- vTemp4 + (nW

vEndOfMem

LenFFT<<1);
LenFFT<<1);
LenFFT<<1);
HalfLenFFT +
HalfLenFFT +
HalfLenFFT +
HalfLenFFT +

LenFFT + 2);
HalfLenFFT + 1);
HalfLenFFT + 1);

- vTemp5 + (nHalfLenFFT + 1);

maprffttab(vCoeff, nLogLen);

if (tFileExists)

mapsyncdma (-1, VAO);
maplodfv(pafMean,4,vMean,1,nHalfLenFFT+1);
maplodfv (pafMeanSq, 4,vMeanSq, 1, nHalfLenFFT+1);

else

mapclrfv (vMean, i, nHalfLenFFT+1);
mapclrfv(vMeanSq, 1,nHalfLenFFT+1);

/*----------------------------------------------------------------------

vResFFT - (nLogLen&l) ? vTempl : vBurst;

FOREVER
I

* Clear VA memory for the new burst
mapclrfv(vurst, , nenFFT/
mapclrfv(v~urst, 1, nLenFFT+2);

rewind (fpOutput);

/*-------------------------------------------------------------------......
mapinitva(1,1,0);

/*---------------------------------------------------------------------

/* -'----'--------------------------------------------- *



mapsyncdma(-1, VAO);

get the length of the burst

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

483
484
485
486
487
488
489
490

491
492
493
494
495
496
497
498
499
500

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

523
524
525
526
527
528
529
530

531
532
533
534

if (fscanf(fpInput, "%d:\n", &nSamplesInBurst) -- EOF)
break;

fprintf(stderr,"%d\t%d\n",nProcessed,nSamplesInBurst);

/*
* Compute duration of the burst and
* load it into array processor memory
*/
nfDurationOfBurst - (float)nSamplesInBurst;

maplodfs(&nfDurationOfBurst,vfScall);

Load burst from file to VA memory

for (i - 0; i <- nSamplesInBurst - 1; i++)
fscanf(fpInput, "%f\n", pafBurst+i);

maplodfv(pafBurst, 4, vBurst, 1, nSamplesInBurst);
mapsyncmath(-l,VA0);

if (nMethod -- 1)

/*
* Do FFT
*/

maprfftnc(vBurst,l,vCoeff, 2,vTempl,l,nLenFFT);

else
(

* Do Arma Pade estimation
* (note that vR and vT are #define'd

PadeApprox
(vBurst,nSamplesInBurst,vTemp3,vR,&nDegR,vT,&nDegT,vEndOfMem);

Remainder polynomial now in vR
Comultiplier polynomial now in vT
Clean them before FFT

mapclrfv(vR+nDegR+1,1,nLenFFT+2-nDegR);
mapclrfv(vT+nDegT+1,1,nLenFFT+2-nDegT);

vBurst is used as a temporary vector here
In ArmaPsd vR, vT, and vBurst MUST be
aligned on nLenFFT boundaries

vResFFT - ArmaPSD(vR, vT,vCoeff,vBurst,nLenFFT, nLogLen);

fifdef DEBUG

As a check, we perform all the computations in
parallel the usual way

#ifdef CONTROL

fendif

____ __· __ I __~ __ ~_·_ ·· ____



mapsyncdma(-1,VAO);
mapstrfv(vResFFT,, r,4,nLenFFT+2);
mapbwaitdma(VAO);

(j-0; J<- nHalfLenFFT; j++)

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

#endif

* scale FFT, get PSD squared, square root
*/

mapnrmsqcfv(vResFFT,2,vResFFT,l, nHalfLenFFT+1);
mapsqrtfv(vResFFT,1,vTemp3,1,vTemp4,1,vTemp5,1,nHalfLenFFT+l);
mapmulfsv(AP_OneHalf,vTempS,l,vTemp5,1,nHalfLenFFT+1);

/*
* Mean spectrum
*

* M - M + del t * PSD
*/

mapmafsvv(vfScall,vTemp5,1,vMean,l,vMean,1,nHalfLenFFT+1);

/*
* Mean Square Spectrum (still in vResFFT)

* MSQ <- MSQ + (delt * PSD^2)
*/

mapmulfvv(vTemp5,1,vTemp5, l,vResFFT,1,nHalfLenFFT+1);
mapmafsvv(vfScall,vResFFT, l,vMeanSq,l,vMeanSq, l,nHalfLenFFT+1);

nfTotalTime +- nfDurationOfBurst;
nProcessed ++;

/*

* Load inverse of total observation time for normalizing
*/

nfTotalTime - 1.0 / nfTotalTime;

maplodfs(&nfTotalTime, vfScal2);

mapsyncdma(-1, VAO);

mapstrfv(vMean,1, pafMean,4,nHalfLenFFT+1);
mapstrfv(vMeanSq,l,pafMeanSq,4,nHalfLenFFT+1);

mapsyncmath(-1,VAO);
/*

* Normalize mean and mean square with total observation time

Save present mean as result

mapmulfsv(vfScal2,vMean, l,vMean,l,nHalfLenFFT+1);
mapmulfsv(vfScal2,vMeanSq,1,vMeanSq,l,nHalfLenFFT+1);

mapsyncdma(-1,VA0);

/*

* After a 30 min. discussion we came to the
* conclusion that this is the fastest way to implement i-2j+l !!!
*/

i (j<<1) I Ox1;

rJ]1 - 0.5 * sqrt(r[i] * r[i) + r[--i] * r[il);

m[J] +- nfDurationOfBurst * r[J];

v[j] +- nfDurationOfBurst * r[J] * r[j];
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609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682

for ( i-0; i<-nHalfLenFFT; i++ )

m[i] *- nfTotalTime;

v[ii *- nfTotalTime;

v[i] -- m(i] * m[i];

v[il] sqrt( v[i] );

#endif

* Write everything in the corresponding files

* First the headers then the data
*/

fprintf(fpoutput, "%d:\n",nLenFFT);
fprintf(fpVariance, "%d:\n", (nHalfLenFFT+1) );
fprintf(fpResult, "%d:\n", (nHalfLenFFT+1) );

for (i-0; i<-nHalfLenFFT; i++)

fprintf(fpOutput,"%f:%f\nN,* (pafMean+i), * (pafMeanSq+i));
fprintf(fpVariance, "%f\n", *(pafVar+i));
fprintf(fpResult, "%f\n", *(pafResult+i));

#ifdef WARNING
if ((m[i]-v[il)<O.O)

fprintf(stderr, "Pos: %d\tFPP-Min: %f\t",i,m[i]-v[i]);
v[i] -- *(pafVar+i);
m[il -- *(pafResult+i);

#endif

fprintf(stderr,"(FPP-VA) Mean: %f\tStdDev: %f\n",m[i],v[i]);

fprintf(fpOutput,"%d:%f\n", nProcessed, (1.0 / nfTotalTime) );

fclose(fpInput);
fclose(fpOutput);
fclose(fpVariance);
fclose(fpResult);

return(0);

mapstrfv(vMean,l,pafResult, 4,nHalfLenFFT+1);
mapsyncmath (-1,VAO);

/*
* Square of the present mean spectrum
*/

mapmulfvv (vMean, 1, vMean, 1, vMean, 1, nHalfLenFFT+1);

/*
* Var[x] - E[x^2] - E[x]'2
*/

mapsubfw (vMeanSq, 1, vMean, 1,vVar, 1, nHalfLenFFT+1);

/*
* Square root of variance yields standard deviation
*/

mapsqrtfv(vVar,l,vTempl, 1,vTemp2,1,vTemp3,1,nHalfLenFFT+1);
mapsyncdma (-l, VAO);
mapstrfv (vTemp3, 1,pafVar, 4, nHalfLenFFT+1);

mapbwaitdma (VA0);

fifdef DEBUG

_ _·_ _Y
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Appendix 5.8.1: PadeApprox - Initializes polynomials for Euclidean Algorithm

1 /********************************************************************

* PadeApprox.c

5 t*t***********t********** **t*********** ** ***** *** **** **

DESCRIPTION
Prepares an incoming data recording of length nDegA1 in vA1
for auto-regressive moving-average (ARMA) spectral estimation
using Pade approximation.

SYNOPSIS
int PadeApprox
(vA1, nDeqA1, vAO, vR, pnDegR, vT, pnDegT, vEndOfMemInMain)
int nDegAl;
int *pnDegR, *pnDegT;
vector vAO, vAl, vR, vT, vEndOfMemInMain;

PARAMETERS
vAl
nDeqAO
vA0
vR
*pnDegT
vT
*pnDegT
vEndOfMem

offset to numerator polynomial (loaded with data)
length of the filtered input data
offset to denominator polynomial
offset to returned remainder polynomial
returned degree of remainder polynomial
offset to returned co-multiplier polynomial
returned degree of co-multiplier polynomial
end of VA memory occupied by calling routine

#include <stdio.h>
#include <aplib.h>

typedef int vector;

/* order of the co-multiplier polynomial */
#define AR Order 2

#define swap(a,b)

lifdef DEBUG

static float r[400];
int i;

#define DUMP(vY, nIncY, nLenY)

(temp)-(b); (b)-(a); (a)-(temp);

mapsyncdma (-1,VA0);
mapstrfv (vY, nIncY, r, 4, nLenY);
mapbwaitdma ();
for (i-0; i<-nLenY-1;i++) \

printf("%f\n", r[i);
exit (0);

#endif

int PadeApprox
(vAl, nDegAl, vAO, vR, pnDegR, vT, pnDegT, vEndOfMemInMain)
int nDegAl;
int *pnDegR, *pnDegT;
vector vAO, vAl, vR, vT, vEndOfMemlnMain;

int nDegAO;

vector
vector
vector
vector
vector

vTempl - vEndOfMemInMain;
vTemp2 - vTempl + nDegAl;
vfScall = vTemp2 + nDegAl;
vfScal2 - vfScall+l;
vEndOfMem - vfScal2+1;

nDegAl--; /* from length to degree of polynomial */



/*- ------------------------------------------------------------------- *

#ifdef DEBUG
fprintf(stderr, "\nEntering CheckOrderVA from PadeApprox...\n");

fendif

CheckOrderVA(vA1, &nDegAl, vTempl, vfScall, vfScal2);

Degree of numerator polynomial

nDegAO - nDegAl + 1;

mapclrfv(vAO, 1, nDegAO);

/*

Initialize numerator polynomial

mapcopf a (AP , vAO+nDegAO, 1,1);

mapbwaitmath();

/* ----------- ,--- ,---- - ---- -----, --,---- - - - - - - - -- - - - - - - -
start of the Euclidean Algorithm

--------------- ------------------------------------------------*
lifdef DEBUG

fprintf(stderr,"\n Entering EucAlgVA...\n");
#endif

EucAlgVA
(vAO, &nDegAO, vAl, &nDegAl, vR, pnDegR, vT, pnDegT, AR Order, vEndOfMem);

fifdef DEBUG
fprintf(stderr,"\nIn PadeApprox: Degree of remainder polynomial:\t%d\n", *pnDegR);
fprintf(stderr,"\nIn PadeApprox: Degree of comultiplier polynomial:\t%d\n", *pnDegT);

#endif

return (0);

Appendix 5.8.2: EucAlgVA -Vectorized Euclidean Algorithm

/**********************************************************************

* EucAlgVA.c
*

5 **********************************************************************

*

DESCRIPTION
Extended Euclidean algorithm using the array processor
Terminates if the co-multiplier polynomial reaches the
order prescribed in nOrderAR

SYNOPSIS
int EucAlg
(vR2,pnDegR2,vRl,pnDegRl,vR, pnDeR, T,pnDegT, nOrderAR, vEndOfMem)
vector vR2, vRl, vR, vT;
int *pnDegR2, *pnDegRl;
int *pnDegR, *pnDegT;
int nOrderAR;
vector vEndOfMem;

PARAMETERS
vR2
pnDegR2
vR1
pnDegR1
vR
*pnDegR
vT

AP offset of numerator polynomial
degree of numerator polynomial
AP offset of denominator polynomial
degree of denominator polynomial
AP offset of returned remainder polynomial
pointer to degree of remainder polynomial
AP offset of co-multiplier polynomial

------- ---- -` ~~~~



-171-

* *pnDegT
* AR order apl
* vEndOfMem

*1

#include <aplib.h>
#include <stdio.h>

pointer to degree of co-multiplier polynomial
proximate prescribed order of co-multiplier polynomial

End of vector memory used so far

39
40 typedef int vector;

idefine MAXLEN

44 #define FOREVER for (;;)
45

#ifdef DEBUG
static float r[1000];
#define DUMP(Y,y_length)

#endif

int ConvolveVA();
int PolyDivVA();
int CheckOrderVA ();
void is an error ();
void exit();

int EucAlgVA
(vR2, pnDegR2, vR1l, pnDegR1,
vector vR2, vRl, vR, vT;
int *pnDegR2, *pnDegRl;
int *pnDegR, *pnDegT;
int nOrderAR;
vector vEndOfMem;

vector
vector
vector
vector
vector
vector

int
int
int

mapsyncdma (-1,VAO);
mapstrfv (Y, 1, r, 4,y length);
mapbwaitdma();
for (i-0; i<-y_length-l; i++)

printf( "%f\nm ,r[i]);
exit (l);

vR, pnDegR, vT, pnDegT, nOrderAR, vEndOfMem)

vQ - vEndOfMem;
vT2 - vQ + (*pnDegR2 + 1);
vT1 - vT2 + (*pnDegR2 + 1);
vTemp - vTl + (*pnDegR2 + 1);
vfScall - vTemp + (*pnDegR2 + 1);
vfScal2 - vfScall + 1;

nDegT1 = 0;
nDegQ;
i;

if (*pnDegR2 < *pnDegR1)

is an error
("\nEucAlgVA: Numerator polynomial smaller than denominator polynomial\n");
exit (-1);

if (MAX LEN < *pnDegR2)

is an error
("\nEucAlgVA: Numerator polynomial too large\n");
exit (-I);

if (nOrderAR <- 0)

is an error
("\nEucAlgVA: Missing or negative order of AR branch\n");
exit (-1);
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104 /*
105 * Clear the whole vector memory needed by EucAlgVA
106 * and all its functions
107 */

108 mapclrfv(vQ,l,vfScal2-vQ+1);
109

110 /*
111 * Co-multiplier polynomial: highest coefficient set to 1
112 */
113

114 mapcopfs(APl,vTl,1,1);
115
116 FOREVER
117 {
118 /*
119 * Divide the polynomials
120 */
121
122 #ifdef DEBUG
123 fprintf(stderr,"\nEntering PolyDivVA...\n");
124 #endif
125

126 PolyDivVA
127 (vR2,*pnDegR2,vRl,*pnDegRl,vQ,&nDegQ,vR,pnDegR,vfScall,vfScal2,vTemp);
128
129 #ifdef DEBUG

130 fprintf(stderr,"\nEucAlg: Degree remainder polynomial:\t%d\n",*pnDegR);
131 #endif
132

133 *pnDegT - nDegQ + nDegTl;
134
135 /*
136 * Compute the co-multiplier polynomial
137 */
138
139 #ifdef DEBUG

140 fprintf (stderr, "\nEntering ConvlolveVA\n");
141 #endif

142 ConvolveVA(vQ, nDegQ+1, vTl, nDegTl + 1, vT, *pnDegT+1);
143
144
145 mapsubfvv(vT2, 1, vT, 1, vT, 1, *pnDegT+1);
146
147
148 /*
149 * Eliminate eventual leading zeros in the coeffs
150 */
151

152 #ifdef DEBUG
153 fprintf(stderr,"\nEntering CheckOrderVA from EucAlgVA...\n");
154 #endif
155

156 CheckOrderVA(vT,pnDegT, vTemp, vfScall, vfScal2);
157
158 #ifdef DEBUG
159 fprintf(stderr,"\nEucAlg: Degree comultiplier polynomial:\t%d\n",*pnDegR);
160 #endif
161
162 /*
163 * The co-multiplier polynomial (responsible for the
164 * AR branch) reached the specified order, back to
165 * calling routine
166 */
167
168 if (*pnDegT >- nOrderAR)
169 {
170 mapbwaitrbe();
171 return(0);
172 )
173
174 /*
175 * Update the polynomials for the next recursion:
176 *
177 * R1 --> R2

__ 111_ ~^L__1·__)I___ __I___ _IY 11I--I..-IXI·· _--~.- -··--*~j



178 * R --> R1
179 * T1 --> T2
180 * T -- > T1
181 */
182 mapcopfv(vRl,l,vR2,1,*pnDegRl+1);
183 *pnDegR2 - *pnDegRl;
184
185 mapcopfv(vR,l,vR1,1,*pnDegR+1);
186 *pnDegRl - *pnDegR;
187
188 mapcopfv(vTl,l,vT2,1,nDegTl+1);
189
190 mapcopfv(vT,l,vTl,1,*pnDegT+1);
191 nDegT1 = *pnDegT;
192
193 1

Appendix 5.8.3: PolyDivVA -Polynomial Division on the Vector Accelerator

1 /************************************************************************

2 *
3 * PolyDivVA.c
4 *
5 ************************************************************************

6 *
7 * Divides two polynomials f(x) and g(x) with deg(f) > deg(g) and returns
8 * the quotient and remainder polynomial using the array processor or the
9 * vector accelerator

10 *
11 * SYNOPSIS
12 * int PolyDivVA
13 * (vAO,nDegAO,vAl,nDegAl,vQ,pnDegQ,vR,pnDegR,vfScall,vfScal2,vTemp)
14 * vector vAO, vAl, vQ, vR;
15 * vector vfScall, vfScal2, vTemp;
16 * int nDegAO, nDegAl;
17 * int *pnDegQ, *pnDegR;
18 *
19 *
20 * INPUT
21 * vAO offset for denominator polynomial
22 * nDegA0 degree of denominator polynomial
23 * vAl offset for numerator polynomial
24 * nDegAl degree of numerator polynomial
25 * vQ offset of quotient polynomial
26 * *pnDegQ degree of quotient polynomial
27 * vR offset of remainder polynomial
28 * *pnDegR degree of remainder polynomial
29 * vfScall etc auxialiary vectors
30 *
31 * RETURN VALUES
32 * 0 ... normal execution
33 * -1 ... deg_f < deg_g
34 * -2 ... deg f > MAX DEG
35 *
36 */
37
38 *include <aplib.h>
39
40 #define MAXLEN 512
41
42 fifdef DEBUG
43 #define DUMP(Y,y_length) mapsyncdma(-1,VA0); \
44 mapstrfv(Y,l,r,4,y_length);
45 for (i=0; i<-y length-1; i++)
46 printf( "[%d] - %f \n",i,r[i]); \
47 printf( "+++++++++ \n");
48 #endif
49
50 typedef int vector;
51
52 int CheckOrderVA();
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void exit();
void is an error();

int PolyDivVA
(vAO,nDegAO,vAl,nDegAl,vQ, pnDegQ, vR, pnDegR, vfScall,vfScal2,vTemp)
vector vAO, vAl, vQ, vR;
vector vfScall, vfScal2, vTemp;
int nDegAO, nDegAl;
int *pnDegQ, *pnDegR;

#ifdef DEBUG
static float r[1000);

#endif

int i;

if (nDegAO < nDegAl)

is an error
("PolyDivVA: Numerator polynomial larger than denominator\n");

if ( (MAX LEN-1) < nDegAO)

is an error
("PolyDivVA: Denomiator polynomial too long\n");

*pnDegQ - nDegAO-nDegA1;
*pnDeqR - nDegAl-1;

mapcopfv(vAO, , vR, , nDegAO+1);

mapclrfv(vQ, 1, *pnDegO+l);

maprcpfv(vAl+nDeqAl,l,vTemp,l,vfScall,l,1);

for (i-nDegAO-nDegAl; i >- 0; i--)

mapmulfsv(vfScall, vR+nDegAl+i,l,vQ+i,1,1);

mapmsfsvv(vQ+i, vAl, 1, vR+i, 1, vR+i, 1, nDegAl);
mapnegfv(vR+i, 1, vR+i, 1, nDegAl);

CheckOrderVA (vR, pnDegR, vTemp, vfScall, vfScal2);

return (0);

Appendix 5.8.4: ConvolveVAfR - Program for Polynomial Mutliplication

1 /***************************************************************************

2 *
3 * ConvolveVA.c
4 *
5 ***********************************************************************

6 *
7 * DESCRIPTION
8 * this routine performs a linear convolution of two vectors
9 * already present in vector memory (if the vectors correspond

10 * to the coefficients of a polynomial, the convolution is
11 * equivalent to polynomial multiplication).
12 * Convolution is done in the time domain in the form that
13 * shifted and scaled replica of vector vY are added.
14 *
15 * SYNOPSIS

I------------------------------------------------------

·1
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16 * int ConvolveVA(vX, nLenX, vY, nLenY, vZ, nLenZ)
vector vX, vY, vZ;
int nLenX, nLenY, nLenZ;

* PARAMETERS
* vX ...

* nLenX ... its
* vY ...

* nLenY ... its
* vZ ...v

* nLenZ ... its

AP offset
length
APOffset
length
AP memory
length

for source vector 1

for source vector 2

offset for the resulting vector

* RETURN VALUES
* 0 ... in any event

*/

#include <aplib.h>
#include <stdio.h>

typedef int vector;

#ifdef DEBUG
#define DUMP(vY,nLenY)

#endif

int ConvolveVA(vX, nLenX,
vector vX, vY, vZ;
int nLenX, nLenY, nLenZ;

mapsyncdma(-1,VA0);
mapstrfv (vY, 1, r, 4, nLenY);
for (i-0; i<-nLenY-1; i++)

printf( '[%dl - %f

vY, nLenY, vZ, nLenZ)

#ifdef DEBUG
static float r[1000];

#endif
int i;

#ifdef DEBUG
if (nLenY < nLenX)

fprintf(stderr,"\n Swap vX and
#endif

vY input to increase performance \n");

mapclrfv(vZ,1,nLenZ);

for (i-0; i<- (nLenY-1); i++)
mapmafsvvw(vY+i, vX, 1, vZ+i, 1, vZ+i, 1, nLenX);

return (0);

Appendix 5.8.5: CheckOrderVA -Program Removing Leading Zero Coefficients

/ ****~****+**t*********** C*********,*+****** *

t***************************~*****,****t******************

Returns the adjusted order of the polynomial A in AP memory.
Leading coefficients which representF floating point zeroes
have been removed.

* NOTE
* TEMP needs space for (dega+l) elements
* ADDR is one element long
* MvAX is one element long

* SYNOPSIS
* int CheckOrderVA( vA,deg_a, vTemp, vfScall, vfScal2)
* vector vTemp, vfScall, vfScal2;

\n",ir[i]);

ChacknrderVA cr·rsrnv~us~r~·r



* int *pnDegA

PARAMETERS
vA ...

*pnDegA
vTemp ...
vfScall .
vfScal2 .

vector offset of source vector
degree of polynomial represented by vA
temporary vector
temporary scalar for maprcpfv
temporary scalar for the maximum coeficient

* RETURN VALUES
* 0 ... in any case

*/

#include <aplib.h>

idefine FLT EPSILON 1.0e-05
#define MAX LEN 512

typedef int vector;

int CheckOrderVA(vA,pnDegA, vTemp, vfScall, vfScal2)
vector vA, vTemp, vfScall, vfScal2;
int *pnDegA;

static float a[MAX LEN];

int nLenA - *pnDegA + 1;

* Absolute value of the polynomial coefficients
*/

mapabsfv(vA,1 ,vTemp, 1, nLenA);

/*
* Find the maximum coefficient and normalize
* the polynomial with this coefficient
*/

mapmaxfv(vTemp,l,vfScall,vfScal2, nLenA);
maprcpfv (vfScall, 1, vfScal2,1, vfScall, 1, 1);

mapmulfsv (vfScall,vTemp, 1, vTemp, 1, nLenA);
mapsyncdma (-1, VAO);

mapstrfv (vTemp, 1, a, 4, nLenA);
mapbwaitdma ();

If any leading (and previously normalized) coefficient
is small discard it

while (a[*pnDegA] < FLT EPSILON)
*pnDegA -- 1;

return (0);

Appendix 5.8.6: ArmaPsd - Program Computing the ARMA Spectrum

1 /*****************************************************************

2 *
3 * ArmaPSD.c
4 *
5 ******************************************************************

6 *
7 * DESCRIPTION
8 * Calculates the PSD estimate from the remainder polynomial
9 * and the co-multiplier polynomial as obtained by the Pade

10 * Arma estimation
11 *

_ I ~ ··_·^ ·_I _·_



SYNOPSIS
int ArmaPSD(vR, vT, vCoeff, vTempl,
vector vR, vT, vCoeff, vTempl;
int nLenFFT, nLogLen;

nLenFFT,nLogLen)

PARAMETERS
vR remainder polynomial (aligned on nLenFFT-boundary)
vT co-multiplier polynomial (aligned on nLenFFT-boundary)
vCoeff offset for FFT coefficient table
vTempl auxiliary vector (aligned on nLenFFT-boundary)
nLenFFT length of the FFT
nLogLen log2(nLenFFT)

RETURN VALUE
Offset of vector containing the FFT estimate for
the current data set

#include <stdio.h>
#include <aplib.h>

typedef int vector;

static int temp;
#define swap(a,b) (temp)-(b); (b)-(a); (a)-(temp);

Array processor macro for division of two complex vectors
Implements:

(a+jb)/(c+jd) - (a+jb)(c-jd)/(c^2+d^2)

* The coriginal content of the two input vectors is lost !!!
* Also, the vA, vB, and vC have two be distinct !!! (alas)

#define mapdivcfvv(vA,nIncA,vB,nIncB,vC,nIncC,nItems);
mapmulcgcfvv(vA,nIncA,vB,nIncB,vC,nIncC,nItems);
mapnrmsqcfv (vB,nIncB, vB, nIncB, nItems);
maprcpfv (vB, nIncB, vA, nIncA, vB, nIncB, nItems);
mapmulfvv(vC,nIncC,vB,nIncB,vC,nlncC,nItems);
mapmulfvv (vC+l,nIncC,vB,nIncB,vC+1, nIncC, nIncntems);

#ifdef DEBUG
static float r[1000);
int i;

#define DUMP (vY, nIncY, nLenY) mapsyncdma (-1,VAO);
mapstrfv (vY, nIncY, r, 4, nLenY);
mapbwaitdma ();
for (i-0; i <= nLenY-l; i++)

print f ("%f\n", ri]) ;
exit (0);

fendif

int ArmaPSD(vR, vT, vCoeff, vTempl, nLenFFT, nLogLen)
vector vR, vT, vCoeff, vTempl;
int nLenFFT, nLogLen;

int nHalfLenFFT - (nLenFFT>>1);

/*

* Fourier transform of remainder polynomial vR
*/

maprfftnc(vR, l,vCoeff, 2,vTempl,l,nLenFFT);

if (nLogLen&l)
swap (vR,vTempl);

/*Fourier transform of comultiplier polynomial vT
* Fourier transform of co-multiplier polynomial vT

(sorry)

I f

I
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*/
maprfftnc(vT, l,vCoeff, 2,vTempl,l,nLenFFT);

if (nLogLen&l)
swap(vT,vTempl);

The estimate of the Fourier transform for the current data
set is the quotient of remainder polynomial (MA branch) and
co-multiplier polynomial (AR branch)

mapdivcfvv(vR, 2,vT, 2,vTempl,2,nHalfLenFFT+l);

return(vTempl);

Appendix 5.9: MeanVel - Program Computing the Mean Velocity Profile

MeanVel.c

*

DESCRIPTION
This program finds the maximum value in the spectrum of the data
and then gets the variance at this point
These values, taken as the velocity estimates, are appended on the
file containing the previous maxima.
The idea behind this all is to create a velocity profile from the
spectra at the different loactions of the probe volume.
For the conversion frequency --> velocity a conversion factor
is needed

USAGE
-i Input file containing the input data\n");
[Default: /usr/erk/DSP/DAT/Result.dat]\n");

-o Output file containing the mean\n");
[Default: /usr/erk/DSP/DAT/MeanVel.dat]\n");

* -B Frequency shift at the mixer

* -v File containing the variance\n");
* [Default: /usr/erk/DSP/DAT/VarVel.datl\n");

* -f Calibration factor for conversion frequency to velocity\n");

* -N Remove file specified under -o first\n");

* -h Print this message\n");

*/

#include <math.h>
#include <sys/file.h>
#include <stdio.h>
#include <unistd.h>
iinclude <errno.h>
#include "/usr/erk/DSP/FileOp.h"

double atof();
char *malloc();

_ -- -·I·

--
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void perror();
void exit();

typedef int bool;

#define READ
#define WRITE
#define EXISTS

#define knRealTime

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

exit (-1);

---------------- =*=======*----------------------------------

*/

main (argc,argv)
int argc;
char **argv;

float *pafMeanSpec;

float *pafMeanVel;
float *pafVarVel;

float fFrequencyShift
float fCalibration
float fSampFreq

float fSum;

double dMax;
double dMean;
double dMeanSq;

bool tDelFile

- 0.0;
- 1.0;
= 1000000.0;

- 0;

/*-----------------------------------------------------------------------------*

void Usage()

fprintf (stderr, "\n ") ;
fprintf(stderr,"This program computes the first and second moment\n");
fprintf(stderr,"of an input array of data\n");
fprintf (stderr, "\n");
fprintf(stderr, "USAGE:\n");
fprintf(stderr,"\n");
fprintf(stderr,"-f\tCalibration factor for conversion frequency to velocity\n");
fprintf (stderr, "\n");
fprintf(stderr,"-B\tFrequency shift at DiSA mixer\n");
fprintf(stderr,"\t [Default: 0 Hz]\n");
fprint f (stderr, "\n");
fprintf(stderr,"-i\tInput file containing the input data\n");
fprintf(stderr, "\t [Default: /usr/erk/DSP/DAT/Result.dat]\n");
fprintf(stderr, "\n");
fprintf(stderr,"-o\toutput file containing the mean\n");
fprintf(stderr,"\t [Default: /usr/erk/DSP/DAT/MeanVel.dat]\n");
fprintf (stderr, "\n");
fprintf(stderr,"-v\tFile containing the variance\n");
fprintf(stderr,"\t [Default: /usr/erk/DSP/DAT/VarVel.dat]\n");
fprintf (stderr, "\n") ;
fprintf (stderr,"-N\tRemove file specified under -o first\n");
fprintf (stderr, "\n");
fprintf(stderr,"-T\tSampling frequency [Hz]\n");
fprintf(stderr, "\n");
fprintf(stderr,"-W\tLength of window for determining Doppler frequency\n");
fprintf(stderr,"\t [Default 11 samples]\n");
fprintf (stderr, "\n") ;
fprintf(stderr,"-h\tPrint this message\n");
fprintf (stderr, "\n");



bool tFileExists - 1;

i-0;

10-0;

nMeans;
nMeans2;
nSpecLen;

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

static
static
static

char *pachMeanSpecFile
char *pachMeanVelFile
char *pachVarVelFile

- "/usr/erk/DSP/DAT/Result.dat";
- "/usr/erk/DSP/DAT/MeanVel.dat";
- "/usr/erk/DSP/DAT/VarVel.dat";

extern char *optarg;
extern int optind;

Get real-time priority

if ( (int) nice (knRealTime) !- knRealTime )

fprintf(stderr,"\nNice: Got different priority than
perror();
exit(-1);

while
(

requested, errno: %d\n", errno);

((chOption - getopt(argc, argv, "hi:o:Nv:f:s:T:B:W:")) !- EOF)

switch (chOption)

case 'h':
Usage();
break;

case 'B':
fFrequencyShift - (float)atof(optarg);
break;

case 'i':
pachMeanSpecFile - optarg;
break;

case 'v':
pachVarVelFile - optarg;
break;

case 'o':
pachMeanVelFile - optarg;
break;

case 'N':
tDelFile - 1;
break;

case 'f':
fCalibration - (float)atof(optarg);
break;

case 'T':
fSampFreq - (float)atof(optarg);
break;

int nWindowLen - 11;

int chOption;

FILE *fpMeanSpec;

FILE *fpMeanVel;
FILE *fpVarVel;

---------- -- -- -- -- - --------- --

_ _ __ _
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case 'W':

nWindowLen - atoi(optarg);
break;

case '?':
Usage ();
break;

/ --- - - - - - - - - - - - - - - --------------- --- *I

if (tDelFile)
i
if(unlink(pachMeanVelFile)-P-1)

fprintf(stderr,"\nCannot
perror(pachMeanVelFile);
exit (-1);

unlink/delete %s, errno: %d\n",pachMeanVelFile, errno);

if(unlink(pachVarVelFile) --- 1)

fprintf(stderr,"\nCannot
perror(pachMeanVelFile);
exit (-1);

unlink/delete %s, errno: %d\n",pachVarVelFile, errno);

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

.f ( (access(pachMeanVelFile, READ ) WRITE I EXISTS) < 0) II (access(pachVarVelFile, READ I WRITE I EXI

/*
* Input files do not exist yet, create them
*/

FpOpenW(pachMeanVelFile, fpMeanVel)
FpOpenW(pachVarVelFile, fpVarVel)

tFileExists - 0;
nMeans - 0;

pafMeanVel
pafVarVel

- (float *)malloc((nMeans+l)<<2);
- (float *)malloc((nMeans+l)<<2);

Input files exist, open them for read/write access
Read number of items contained therein

FpOpenRWU(pachMeanVelFile,fpMeanVel)
FpOpenRWU(pachVarVelFile,fpVarVel)

fscanf(fpMeanVel,"%d:\n",anMeans);
fscanf(fpVarVel,'%d:\n",&nMeans2);

if (nMeans != nMeans2)

fprintf(stderr,"Files for mean and standard deviation have different length\n");
exit(-l);

i
(

* If an output file already exists, read it
* otherwise open it for write

}
else
I

I ---- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ----------- ~

I

IppnhJpc~a~e~lf~a~l



pafMeanVel - (float *)malloc((nMeans+l)<<2);
pafVarVel - (float *)malloc((nMeans+l)<<2);

Read the velocity profile so far, so that the new data can
be appended by a write of the whole array back on to the file

for(i-0; i<nMeans; i++)

fscanf(fpMeanVel,"%f\n", (pafMeanVel+i));
fscanf(fpVarVel,"%f\n", (pafVarVel+i));

rewind (fpMeanVel);
rewind (fpVarVel);

* Write updated number of items to file
fprintf (fpMeanVel, Nd:\nunMeans+l);

fprintf(fpMeanVel, m d:\no,nMeans+l);
fprintf(fpVarvel,nxd:\nt,nMeans+1);

if (tFileExists)

* Write back to the file the velocity profile so far

for(i-0; i<nMeans;i++)

fprintf(fpMeanVel, "%f\n", *(pafMeanVel+i));
fprintf(fpVarVel, "%f\n", * (pafVarVel+i));

* Open the input file

FpOpenR(pachMeanSpecFile,fpMeanSpec)

fscanf(fpMeanSpec,"%d:\n*,&nSpecLen);

pafMeanSpec - (float *)malloc(nSpecLen<<2);

for (i-0; i < nSpecLen; i++)
fscanf (fpMeanSpec, "%f\n",(pafMeanSpec+i));

Find the location where a windowed mean is maximum

dMax - 0.0;

for (i-0; i < (nSpecLen-nWindowLen); i++)

fSum - 0.0;

for ( j-0; J < nWindowLen; j++)
fSum +- * (pafMeanSpec + i + j);

if (dMax < (double)fSum)

10 - i;
dMax - (double)fSum;

* Compute the first moment of this region
* this will be our Doppler frequency

_I ~ _ ~_· _ _ _·_

for(i-0; i<nMeans; i++)

fprlntf(fpMeanVel,"%d:\n",nMeans+l);fprlntf(fpVarVel,"%d:\n",nMeans+l);
if (tFileExists)

for(i-0; i<nMeans;i++)

* 

Open the input file



* Also comp
*/

dMean - 0.0;
dMeanSq - 0.0;

for (j - 10; J <
(

pute the variance346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

380
381

382

dMean +, (double)j * (double) (*(pafMeanSpec + j));
dMeanSq +- (double)j * (double) (j) * (double) (*(pafMeanSpec+j));

dMean /- dMax;
dMeanSq /= dMax;

dMeanSq -- dMean * dMean;

/*
* Convert the frequency to velocity

*/

dMean -dMean * (double)fSampFreq / (2.0 * (double)(--nSpecLen)) - (double)fFrequencyShift;
dMean *- fCalibration;

if (0.0 < dMeanSq)

/*

Compute the standard deviation in the Doppler frequency estimate

dMeanSq - sqrt (dMeanSq);

dMeanSq - dMeanSq * (double)fSampFreq / (2.0
dMeanSq *- fCalibration;

* (double)nSpecLen);

else
(

If negative variance due to float round-off the nothing at all

dMeanSq - 0.0;

* Append new velocity points of velocity
* profile to already present ones

fprintf(fpMeanVel,"%f\n",dMean);
fprintf(fpVarVel,"%f\n*,dMeanSq);

fclose(fpMeanVel);
fclose(fpVarVel);
fclose(fpMeanSpec);

exit (0);

Appendix 5.10: DoPlot - Plot Program

1 /**********************************************************************

2 * *

3 * DOPLOT.C *

4 *

(10 + nWindowLen); j++)
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5 **************** * ******* *****

6 *

7 * DESCRIPTION
8 * Plots the data contained in two input files
9 * This routine also features an arbitrary linear scaling of the x-axis

10 *
11 * USAGE
12 *
13 * COMPILER OPTIONS
14 * -DMARK marks the points in the graph with circles
15 *
16 */
17
18 #include <math.h>
19 #include <libmp.h>
20 #include <stdio.h>
21 #include <stdio.h>
22 #include <errno.h>
23 #include "/usr/erk/DSP/FileOp.h"
24
25 #define knRealTime -20
26 #define knMaxNumLabels 100
27 idefine NUM DIGITS IN FLOAT 15 /* Each label has 15 digits */
28
29 #define FOREVER for(;;)
30
31 typedef int bool;
32
33 void perror (o;
34 void exit ();
35 double atof ();
36 char *malloc();
37
38 /*---------------------------------------------------------------------*/
39
40 void Usage ()
41 (
42 fprintf (stderr, "\n");
43 fprintf(stderr,"This program plots the data in one data file and\n");
44 fprintf(stderr,"subtracts and adds the data (same length) of another file\n");
45 fprintf(stderr,"Idea: plot (mean+-standard deviation)\n");
46 fprintf (stderr, "\n");
47 fprintf (stderr, "USAGE:\n");
48 fprintf (stderr, \n");
49 fprintf(stderr,"-i\tInput file containing the data\n");
50 fprintf(stderr,"\t (Default: /usr/erk/DSP/DAT/Result.dat]\n");
51 fprintf (stderr, "\n");
52 fprintf(stderr,"-n\tNo logarithmic scale on y-axis\n");
53 fprintf(stderr,"\n");
54 fprintf(stderr,"-v\tFile containing the second set of data\n");
55 fprintf(stderr,"\t [Default: /usr/erk/DSP/DAT/Variance.dat]\n");
56 fprintf(stderr,"\n");
57 fprintf (stderr,"-o\tOutput graphics file \n");
58 fprintf(stderr,"\t (Default: /usr/erk/DSP/DAT/Plot.graphl\n");
59 fprintf (stderr, "\n");
60 fprintf(stderr,"-l\tPut labels on x-axis as specified under -L and -H\n");
61 fprintf (stderr, "\n");
62 fprintf(stderr,"-L\tLabel of first data point on x-axis\n");
63 fprintf(stderr,"\tREQUIRED\n");
64 fprintf (stderr,"\n");
65 fprintf(stderr,"-H\tLabel of last data point on x-axis\n");
66 fprintf (stderr,"\tREQUIRED\n");
67 fprintf (stderr, "\n");
68 fprintf(stderr,"-N\tNumber of labels on x-axis\n");
69 fprint f (stderr, "\n") ;
70 fprintf(stderr,"-T\tText to be displayed on graph\n");
71 fprintf(stderr,"\t [Default: DoPlot Output]\n");
72 fprintf(stderr,"\n");
73 fprintf(stderr,"-X\tTitle for x-Axis\n");
74 fprintf(stderr,"\n");
75 fprintf(stderr,"-Y\tTitle for y-Axis\n");
76 fprintf (stderr, "\n");
77 fprintf(stderr,"-h\t Print this message\n");
78 fprintf(stderr, "\n");

_ _I _·_ ·^~ ·_~



exit (-1);

main(argc, argv)
int argc;
char **argv;

#ifdef MARK
int

#endif
anChars(3], anBundle(3];

float *pfDatal;
float *pfData2;

float
float
float
float

int
int
int
int

fLow
fHi
fTicInt;
fDelX;

- -1.0;

= -1.0;

nItems;
nItems2;
nLabels - 11;

bool tLogScale - 1;
bool tLabels - 0;

FILE *fpInput;
FILE *fpVariance;

char ach2dAxisX[knMaxNumLabels][NUMDIGITS IN_FLOATI;
char *pachStr[knMaxNumLabels];

int chOption;

static
static
static
static
static
static

char
char
char
char
char
char

*pachInputFile
*pachVarFile -
*pachGraphFile
*pachRemark
*pachAxisXTitle
*pachAxisYTitle

- "/usr/erk/DSP/DAT/Result.dat";
"/usr/erk/DSP/DAT/SpecVar.dat";

- "/usr/erk/DSP/DAT/Plot.graph";
- "Output DoPlot";

u *N;

98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

long int alGca[SIZEOFGCA];

extern char *optarg;
extern int optind;

/* --------------------------------------------------------------------------- *

* Get real-time priority

if ( (int)nice(knRealTime) !- knRealTime )

fprintf(stderr,"\nNice: Got different priority than requested, errno: %d\n", errno);
perror();
exit(-1);

/*---------------------------------------------------------------------------*
while ((chOption - getopt(argc, arqv, "i:nv:o:IL:H:T:X:Y:N:h")) !- EOF)

switch (chOption)

case 'h':
Usage ();
break;

case 'i':

- sn;I

I I

* Get real-time priorityI

if ((int) nice (knRealTime) != knRealTime )
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pachInputFile - optarg;
break;

case 'n':
tLogScale - 0;

break;

case 'v':
pachVarFile - optarg;
break;

case 'o':
pachGraphFile - optarg;
break;

case '1':
tLabels-1;
break;

case 'L':
fLow - (float)atof(optarg);
break;

case 'N':
nLabels - atoi(optarg);
break;

case 'H':
fHi - (float)atof(optarg);
break;

case 'T' :
pachRemark - optarg;
break;

case 'X':
pachAxisXTitle - optarg;
break;

case 'Y':
pachAxisYTitle - optarg;
break;

case '?':
Usage ();
break;

(knMaxNumLabels < nLabels)

fprintf(stderr,"Number of
exit (-i);

labels too large\n");

(tLabels)

if (fLow < 0.0)

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

if (fHi < 0.0)

fprintf(stderr,"\nNo or negative last label defined\n");
Usage();

FpOpenR(pachInputFile, fpInput)

FpOpenR(pachVarFile,fpVariance)

fprintf(stderr,"\nNo or negative first label defined\n");
Usage();

_ _____ _ ___



227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

fscanf(fpInput,"%f\n", (pfDatal+i));
fscanf(fpVariance,"%f\n",(pfData2+i));

if (tLogScale)

if ( (*(pfData2+i) < 0) 1(*(pfDatal+i) < 0) )

fprintf(stderr,"\nNegative value, system does not permit log-scale\n");
tLogScale - 0;

fTicInt - (float) (nItems) / (float) (nLabels-1);

/*

* nLabels marks on the x axis
*/
fDelX-(fHi-fLow)/(float) (nLabels-1);

/*

* the nLabels labels for the x-Axis
*/for (i

for (i-0; i<-nLabels-1; i++)

sprintf(ach2dAxisX[i], "%f", (fLow + i*fDelX));
pachStr[i) - ach2dAxisX[i];

mpinit (alGca);

/*

* y-axis with logarithmic scale
*/

if (tLogScale)
mplogax(alGca,2,3);

mplotsrcy(alGca,1,nItems,0,pfDatal,"F",1,1,NULL,NULL);
mplotsrcy (alGca, 2, nItems,0, pfData2, "F", 1,1, NULL, NULL);

#ifdef MARK
anBundle(0]120;
anBundle([1-22;

anChars [0]-0;
anChars[11-1;

mplines(alGca,2,anBundle,anChars);

/*
* mark each data point with "o"

/*

* The first entries in the input file are the number of data
* points in the file
*/

fscanf(fpInput,"%d:\n", &nItems);
fscanf(fpVariance,"%d:\n", anItems2);

if (nItems !- nItems2)
fprintf(stderr,"DoPlot: The two data files have not same length\n");

/*----------------------------------------------------------------------*/

pfDatal - (float *)malloc(nItems<<2);
pfData2 - (float *)malloc(nItems<<2);

/*-----------------------------------------------------------------------

for (i-0; i <- nItems-1; i++)



-188-

mplotchrs (alGca, "o", 1, NULL, NULL);

send plot to mc graphics screen

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

mpaxvals(alGca,1,UNDEF,UNDEF,fTicInt, (nLabels-1));

labels

mplabel(alGca, 1, nLabels, 1, -45.0, -1, -1, pachStr);

/*

* axis titles
*/

mptitle (alGca, 1,-1, -1, pachAxisXTitle);
mptitle (alGca, 2, -1, -1,pachAxisYTitle);
mptitle (alGca,4,-l,-1," ");
mptitle (alGca, 4,-1, -1,pachRemark);

save graph on file

mpfile(alGca,pachGraphFile, 1,2);

mplot(alGca,O,0, 0);
mpend(alGca);

return(0);

Appendix 5.11: MasterP lan - Shell Script / User Interface

This is the stomach (or the arm [see Agrippina: De ventro et membris])
of all the routines for LDA signal processing:
it takes a reasonable amount of options (for the sake of clarity far
less than all the programs would permit) and cares for the
correct order of processing.

# Note that it uses some default values of the programs, for example
# the names internally used by the programs for the input and output
i files.
# If somebody is bothered by that she/he can control the names of these
i files with command line switches.

# Some reasonable definitions for a start

# Sampling frequency
SAMPFREQ1000000

# Length of one batch as sampled by the routine SampleData [msec]
SAMPDUR-409

# Number of bursts required at each point of measurement
NBURSTS-0

# Required minimum duration of bursts for the routine GetBursts [Samples]
MINDUR-10

fendif

mpdevice(alGca,"xmcd",2,0);

if (tLabels)
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# Required maximum duration of bursts for the routine GetBursts [Samples]
MAXDUR-512

# Flag for the removal of files from previous runs of this script
DELFILE-1

# Number of measuring points for the velocity profile
NPOS-2

# Spectral estimator to use, default is Pade estimator
METHOD-2

# Flag dis/enabling digital prefiltering of the data
FILTERON-0

#Gain in the A/D converter (preamplification of the signal
GAIN-0

by 2**S{GAIN)

#Frequency Shift at the DISA Mixer
FREQSHIFT-40000

#Calibration factor for conversion m/s to Hz (velocity to Doppler frequency)
CALFAC-1.0

SThe usual on------------------------------------------------------------------------

* The usual on-line documentation

Usage () ( \
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo

exit

"USAGE:";\
""

"-B
"-b

14-C
"-d

"-F

"-f

"-G
"-n

"-S

N-t

N-u

Frequency shift at the DISA frequency mixer unit [40000 Hz]"
Number of bursts to collect [0]";\
Calibration factor [1.0 (m/s)/Hzl";\
Expected minimum duration of bursts [10 Samples]";\
Enable digital prefiltering [Off-0]";\
Sampling frequency [1000000 Hz]";\
Gain in A/D converter [0]";\
Number of measuring points [2]";\
Method for spectral estimation [Pade-2]";\
Sampling Duration [0 msec]";\
Use results from a previous run of this script [Off-0]";\

-- ;\
">>>>The -b option must be present<<<<";\
MR;\
2;\

# All programs are designed to exit with (-1) upon an error
# If (-1-255) was the last exit status then skip the whole business
# and return to the shell

ErrorCheck () {\
if [ s? - 255 ]
then

echo "Last Program exited with error, back to shell"
exit 1

fi;\

# --------------------------------------------------------

# Parse the argument line

set -- 'getopt B:b:C:d:f:FG:hn:s:t:u $S*

if [ S? !- 0 ]
then

Usage



102 for i in S*
103 do
104 case Si in
105 -B) FREQSHIFT-$2; shift 2;;
106 -b) NBURSTS=$2; shift 2;;
107 -C) CALFAC=$2; shift 2;;

108 -d) MINDUR-S2;shift 2;;
109 -f) SAMPFREQ-$2;shift 2;;

110 -F) FILTERON=1;shift;;
111 -G) GAIN-S2;shift 2;;

112 -n) NPOS-$S2;shift 2;;
113 -s) METHOD-$2;shift 2;;
114 -t) SAMPDUR-S2;shift 2;;
115 -u) DELFILE-0;shift;;

116 -h) Usage;shift;;
117 esac
118 done
119
120 # the Nyquist frequency
121 NYQUIST-'expr SSAMPFREQ / 2'
122 VELPOS-0
123 CURPOS-0
124
125 if [ SNBURSTS - 0 ]
126 then
127 echo

128 echo "The -b option has to be specified"
129 Usage
130 fi
131

132 /usr/bin/clear
133
134 if [ SDELFILE - 1 ]
135 then

136 # These are default output files of the routines MeanSpec and
137 # MeanVel.

138 # They can be changed via command line switches
139

140 echo "Deleting intermediate files at morgana before starting"
141

142 rm /usr/erk/DSP/DAT/Working.dat
143 rm /usr/erk/DSP/DAT/MeanVel.dat
144 rm /usr/erk/DSP/DAT/VarVel.dat
145 rm /usr/erk/DSP/DAT/Bursts.dat
146 rm /usr/erk/DSP/DAT/NOfBursts.dat
147 rm /usr/erk/DSP/DAT/Threshold.dat
148 rm /usr/erk/DSP/DAT/SpecVar.dat
149 rm /usr/erx/DSP/DAT/Filtered.dat
150 else

151 echo "Using old results"
152 echo "Enter number of measurement positions already done:"
153

154 CURPOS=""
155 until ( SCURPOS
156 do
157 read CURPOS
158 done
159

160 VELPOS-SCURPOS
161

162 echo "Saving old mean velocity profile in /usr/erk//DSP/DAT/MeanVel.SAV"
163 my /usr/erk/DSP/DAT/MeanVel.dat /usr/erk/DSP/DAT/MeanVel.SAV
164
165 echo "Saving old mean velocity profile in /usr/erk//DSP/DAT/VarVel.SAV"
166 my /usr/erk/DSP/DAT/VarVel.dat /usr/erk/DSP/DAT/VarVel.SAV
167

168 fi
169
170 # The following series of programs is executed as long as there
171 # are not enough bursts found
172
173 # The program GetBursts exit value equals the number of burst it has

174 # processed so far
175
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176 OLDNYQUIST-SNYQUIST
177 OLDSAMPFREQ-$SAMPFREQ
178 OLDFREQSHIFT-SFREQSHIFT
179
180 PROCESSED-0;
181
182 until [ SCURPOS - $NPOS
183 do
184
185 CURPOS-'expr SCURPOS + 1'
186
187 until [ SPROCESSED - SNBURSTS I
188 do
189
190 I The program which samples the data and transfers them to morgana
191 /usr/bin/clear
192 echo ">>>>>>>>>>SampleData@merlin<<<<<<<<<<<<"
193 rsh merlin /usr/erk/DSP/SAMPLEDATA/SampleData -t SSAMPDUR -f SSAMPFREQ -G SGAIN
194
195 I No error check as rsh does not pass exit status
196
197 /usr/bin/clear
198
199 # Program on morgana which filters the data and gets the rms value
200 if [ $FILTERON - 1 ]
201 then
202 echo ">>>>>>>>>>FilterData@morgana<<<<<<<<<<<"
203 /usr/erk/DSP/FILTERDATA/FilterData
204 ErrorCheck
205 echo
206 echo ">>>>>>>>>>Variance@morgana<<<<<<<<<<<<"
207 /usr/erk/DSP/VARIANCE/Variance
208 ErrorCheck
209 else
210 echo ">>>>>>>>>>Variance@morgana<<<<<<<<<<<<"
211 /usr/erk/DSP/VARIANCE/Variance -S -C -i /usr/erk/DSP/DAT/RawData.dat
212 ErrorCheck
213 fi
214
215 # Program on morgana for isolating and validating LDA bursts
216 echo
217 echo ">>>>>>>>>>GetBursts@morgana<<<<<<<<<<<<"
218 echo
219 echo "Minimum length of burst is SMINDUR "
220 echo "Found already SPROCESSED bursts of SNBURSTS"
221 echo
222 /usr/erk/DSP/GETBURSTS/GetBursts -Q 0.1 -b SNBURSTS -C 2000 -B 300 -A 100 -M -d SMINDUR -D
223
224 PROCESSED-S?
225 echo "SPROCESSED bursts found"
226 echo "SNBURSTS needed"
227
228 1 Program on morgana for obtaining the mean spectrum and its variance
229 echo
230 echo ">>>>>>>>>>MeanSpec@morgana<<<<<<<<<<<<"
231 /usr/erk/DSP/SPECANALYSIS/MeanSpec -D SMAXDUR -m SMETHOD
232
233 ErrorCheck
234
235 done
236
237 PROCESSED-O;
238
239 ANSWER-9
240
241 until [ SANSWER - 0
242 do
243
244 /usr/bin/clear
245
246 echo
247 echo " <<<<<<requires ATTENTION:>>>>>>"
248 echo
249 echo " SCURPOS measurement positions out of SNPOS "
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" Calibration factor: SCALFAC "

"Type:"
" 1 ... good measurement & ready for next position"
" 2 ... not a good measurement, repeat "
" 3 ... plot the spectrum at current position "

" 4 ... plot the velocity profile after SVELPOS positions"
" 5 ... plot final velocity profile & exit"
" 6 ... Change the values listed below"

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo
echo

$SAMPFREQ [Hz] "

SNBURSTS "

SMINDUR "

SSAMPDUR [msec]"
SFREQSHIFT [Hz]"

echo " Sampling frequency at previous position: SOLDSAMPFREQ"
echo " Opto-electronic frequency shift at previous position: $OLDFREQSHIFT"

ANSWER-""
until [ SANSWER ]
do

read ANSWER
done

SANSWER - 1 I

echo ">>>>>>>>>>MeanVel@morgana<<<<<<<<<<<<"

# For Doppler frequency at previous position we
i need the old sampling frequency and the old
# frequency shift
/usr/erk/DSP/MEANVEL/MeanVel -T $OLDSAMPFREQ -B
ErrorCheck

$OLDFREQSHIFT -f SCALFAC

rm /usr/erk/DSP/DAT/Working.dat
rm /usr/DSP/DAT/NOfBursts.dat

OLDNYQUIST-$NYQUIST
OLDSAMPFREQ-$SSAMPFREQ
OLDFREQSHIFT-$SFREQSHIFT

ANSWER-0
VELPOS-'expr SVELPOS + 1'

if [ SANSWER - 2
then

echo "Repeat measurement at same position"

echo "Deleting intermediate files at morgana"
rm /usr/erk/DSP/DAT/Working.dat

CURPOS-'expr SCURPOS - 1'

ANSWER-0

if [ $ANSWER - 3 ]
then

echo ">>>>>>>>>>DoPlot@morgana<<<<<<<<<<<<"
/usr/erk/DSP/PLOT/DoPlot -L 0.0 -H SOLDNYQUIST -T "Spectrum at S{CURPOS)th positio

ErrorCheck
echo

" 9 ... Exit "

if [
then

Current sampling frequency:
Number of bursts per position:
Minimum number of samples in burst:
Duration of sampling:
Opto-electronic frequency shift:

__ __



324 echo "Save current spectrum in PostScript format ??? [y/*]"
325 echo "Filename /usr/erk/DSP/DAT/PosS(CURPOS).Spec"
326
327 ANSWER-""
328 until ( SANSWER ]
329 do
330 read ANSWER
331 done
332
333 if [ SANSWER = y
334 then
335 echo
336 echo "Saving current spectrum"
337 echo
338 psgps /usr/erk/DSP/DAT/Plot.graph > /usr/erk/DSP/DAT/PosS{CURPOS).PS &
339 echo
340 echo "Done
341 fi
342 fi
343
344 9------------------------------------------------------
345
346 if ( SANSWER - 4 ]
347 then
348 # the files specified under -i and -v are the
349 # default output files of the routine MeanVel
350 # see also the call to DoPlot below
351
352 echo ">>>>>>>>>>DoPlot8morgana<<<<<<<<<<<<"
353 /usr/erk/DSP/PLOT/DoPlot -T "Velocity profile after $(VELPOSI positions" -i /usr/e
354
355
356 ErrorCheck
357
358 echo
359 echo "Save current velocity profile in PostScript format ??? [y/*]"
360 echo "Filename: /usr/erk/DSP/DAT/ProfS(CURPOSI.PS"
361
362 ANSWER-""
363 until [ SANSWER ]
364 do
365 read ANSWER
366 done
367
368 if [ SANSWER - y ]
369 then
370 echo
371 echo "Saving current velocity profile"
372 echo
373 psgps /usr/erk/DSP/DAT/Plot.graph > /usr/erk/DSP/DAT/ProfS(CURPOS).PS &
374 echo
375 echo "Done ...
376 fi
377 fi
378
379 #-------------------------------------------------------
380 if [ SANSWER - 5 ]
381 then
382 echo "Experiment finished"
383 echo "Plotting final velocity profile"
384 break 2;
385 fi
386
387 #-------------------------------------------------------
388
389 if [ $ANSWER - 6 ]
390 then
391 /usr/bin/clear
392
393 echo "Current sampling frequency is: S(SAMPFREQ) fHz]"
394 echo "Enter new one"
395
396 SAMPFREQ-""
397 until [ $SAMPFREQ ]



read SAMPFREQ
done

NYQUIST-'expr $SAMPFREQ / 2'

echo "Current necessary number of bursts is: S{NBURSTS} "

echo "Enter new one"

NBURSTS-""
until [ $NBURSTS ]
do

read NBURSTS
done

echo "Current mimimum number of samples per burst is ${S(MINDUR) "
echo "Enter new one"

MINDUR-""
until [ SMINDUR ]
do

read MINDUR
done

echo "Current number of measurement positions is S{NPOS)"
echo "Enter new one"

NPOS-""
until [ SNPOS ]
do

read NPOS
done

echo "Duration of sampling is ${SAMPDUR) [msec]"
echo "Enter new one"

SAMPDUR-""
until [ $SAMPDUR ]
do

read SAMPDUR
done

echo "Opto-electronic frequency shift is S(FREQSHIFT} [Hz]"
echo "Enter new one"

FREQSHIFT-""
until [ $FREQSHIFT
do

read FREQSHIFT
done

if [ SANSWER - 9
then

echo
echo "Exiting..."
echo
exit

done

done
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472 echo
473 echo ">>>>>>>>>>MeanVel@morgana<<<<<<<<<<<<"
474 /usr/erk/DSP/MEANVEL/MeanVel -T SSAMPFREQ -B SFREQSHIFT -f SCALFAC
475 ErrorCheck
476
477 # At this point, the measurement at one point is considered to be
478 I finished
479
480 I Program on morgana to plot the data
481 echo ">>>>>>>>>>DoPlot@morgana<<<<<<<<<<<<"
482 /usr/erk/DSP/PLOT/DoPlot -T "Velocity profile after SICURPOS) positions" -i /usr/erk/DSP/DAT/MeanVel.dat -v
483
484 ErrorCheck
485
486 echo
487 echo "Plot the profile before exiting ??? [y/*]"
488 ANSWER-""
489 until [ SANSWER
490 do
491 read ANSWER
492 done
493
494 if [ SANSWER - y
495 then
496 rcp /usr/erk/DSP/DAT/Plot.graph merlin:/usr/data/erk/VelProf.g
497 rsh merlin psgps /usr/data/erk/VelProf.g "I" Ip
498 echo
499 echo "Done
500 fi
501
502 /usr/bin/clear
503 echo
504 echo
505 echo " Pheeewww!"
506 echo
507 echo
508
509 exit 0


