
Design and Implementation of a
Multiprocessor System for

Position and Attitude Control of an
Underwater Robotic Vehicle

by

Ella Marie Atkins

B.S., Massachusetts Institute of Technology (1988)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Master of Science

in
Aeronautics and Astronautics

at the
Massachusetts Institute of Technology

May, 1990

© Massachusetts Institute of Technology

Signature of Author
Department of Aeronautics and Astronautics

May 17, 1990

Certified by
Professor David Akin

Thesis Supervisor

IXMASSACHUSETTS INST!;UTE
OF TECFo'iMOOGy

Professor Harold Y. Wachman
- Chainan-D rtnent Graduate Committee

JUN 191990 Ac70
LIBRARIES

Accepted by

'L-t-

Design and Implementation of a Multiprocessor System for
Position and Attitude Control of an Underwater Robotic Vehicle

by

Ella Marie Atkins

Submitted to the Department of Aeronautics and Astronautics
on May 17, 1990, in partial fulfillment of the requirements

for the degree of Master of Science in
Aeronautics and Astronautics

ABSTRACT

The Multimode Proximity Operations Device (MPOD) is a neutral buoyancy
simulation telerobot with the capability to fly in three dimensions and dock with an
underwater satellite mockup. The vehicle may be flown from onboard, underwater remote,
or surface control station. MPOD electronic systems are used to control motors, issue
pneumatic commands, and read sensors. An onboard multiprocessor control system has
been implemented. Five parallel processors are used to communicate with MPOD
hardware and the pilot, read available sensors, calculate the vehicle state, and determine the
desired control outputs.

MPOD position and attitude are determined in software via an extended Kalman
filter. Sensors include a 3-axis rate sensor package, pressure transducer, pendulum
inclinometers, and the 3-Dimensional Acoustic Positioning System (3DAPS), a group of
underwater sound emitters and receivers.

Once the vehicle state has been determined, the control computer calculates the
motor commands required to implement the desired position and/or attitude changes. For
attitude and position hold, the control equations are linearized. During large angle or
position maneuvers, nonlinear terms are incorporated using feed-forward linearization.

This thesis describes the electronic design, sensor integration, and multiprocessor
system implementation for MPOD flight control. Simulation and experimental results are
presented for vehicle state calculation. The vehicle's estimate for its state vector
consistently converged to within the expected error of MPOD's sensors.

Thesis Supervisor: David L. Akin
Assistant Professor of
Aeronautics and Astronautics

Acknowledgements

This thesis is dedicated to the three people who made the current MPOD and its exploits
possible: Robert M. Sanner, Lisa K. Evelsizer, and Matt "I have a Llama" Machlis.

Rob waved his fingers over the computer keys, and proclaimed, "Let there be elegant,
dependable MPOD software." And it was done. Besides writing PiVeCS and the filter
software, he became a bottomless well of control system knowledge and guided me toward

equations that often appeared to be written in a foreign tongue. He was a most excellent
roommate, from providing fine kitchen smells and sugar-laden foods to shovelling the
sidewalk during violent snow and ice storms. Perhaps someday he'll even learn to drive.

Lisa began her SSL life in the summer of 1988. Her expertise at building things and
dedication to work many hours began immediately. She impressed all when she treaded
water during an entire episode of Star Trek. In addition to displaying her tongue often
during January 1989, she won the invisible "Most Sacrificial Student" award in Huntsville
by stripping live wire with her teeth, while underwater. During the Spring of 1989, Lisa
was led down the path of digital electronics and one Todd Barber. She was never the
same, entering the world of circuit design, wire wrapping, and Barry Manilow. In the
future, she may be remembered as the "Fiberglassing Goddess" of the laboratory.
However, I will forever be thankful that her dedication to MPOD and the laboratory never
disappeared, even during her final term at MIT, when I couldn't have supported pool tests
without her.

Matt was once rumored to be "King of the One-Shots" among exclusive SSL circles.

His work with 3DAPS both educated him about electronics and trapped him in the position

of assisting needy lab types with 3DAPS. He learned FORTH and programmed MPOD's

68HC1 l's. Debugging MPOD's onboard 3DAPS with Matt was a true joy. It meant being
exposed to his desert-like sense of humor and the fine Elmer Fudd laugh. Fortunately, his

violent behavior with guns has to date only caused the destruction of paper and parking
tickets.

In addition to Lisa, Rob, and Matt, Colleen Daugherty, a transient but wonderful

member of the MPOD crew, is most heartily thanked. She was always excited about work,
even when I moped about the lab. I hope she is happy in Ohio or wherever she may be.

MPOD and I miss you.

Vicky, Vicky, (Vicky Rowley). I need to kiss your neck. From being the control

station and initial software part of the MPOD team to building stereo cameras to help

MPOD see in 3-D, she immensely aided my association with MPOD. But most

importantly, she was my bestest friend, and always made me laugh. Then there was this

weekend during June 1988, when she wanted to visit her friend Deano in Connecticut...
She has made my life much happier and mushier. I hope to frequently meet her at random

times and locations, even if she does live in Philadelphia.

From a purely emotional standpoint, I wish to express all my deepest feelings for one
Mr. Deano R. Smith. Although he lives some 3000 miles away and was out to sea for
many moons, he is my constant source of happiness, even if he is still a little too excited
about physics and mathematics. After all, the human body may be described by equations.
Of course, more experimentation may be necessary...

Merci beaucoup to all the main MPOD divers: Wisdom Franchot Coleman, the perfect
fighter pilot, Paul Duncan, Karl von Ellenreider, and (Professor) Sandy Alexander. Much
gratitude to the Fong Unit, SPAM owner, acronym maker, and programmer extrordinaire.
Also, Russ Howard is worshipped for his valuable auto advice and assistance, although he
may never get Fang to Alaska on its own power. Praise be to the still pure Karl "Killer"
Kowalski, for initiating loud arguments and providing amusing but useful critiques of my
thesis. Much gratitude and jealousy to Kurt "Smut-Man" Eberly, who typed my lost data
into the Macintosh at the last minute, for $1.75, and whose car is 6" longer than mine.
Thanks to all the other lab types who made life so much better: Jud the engaged man,
Ender, Anna my dive class buddy, Sayan, and Ali. Finally, thanks to Professor Dave,
who trusted me with MPOD, provided an element of stability in the violent world of
graduate students, and who is one of the nicest people I know. I hope both SSL's are
tremendously successful.

Table of Contents

1.0 Introduction .. 8
1.1 MPOD: Previous Electronic Systems and Experiments 8
1.2 Scope of This Thesis .. 9

2.0 The MPOD System 10
2.1 Physical Description 10
2.2 Electronics 20

2.3 Computer Systems 33
2.4 Surface Control Station ... 39

3.0 MPOD Dynamics and Physical Parameters 44
3.1 MPOD Equations of Motion ... 44
3.2 MPOD Physical Constants .. 47
3.3 Sensor Feedback -- Calibration and Accuracy 49

4.0 The Control System 52
4.1 State Calculation 53
4.2 Position and Attitude Hold 56
4.3 Automated Maneuvers ... 63

5.0 Experiments and Test Results .. 67
5.1 MPOD Simulation 68
5.2 Underwater Static Tests ... 81
5.3 Underwater Dynamic Tests 84

6.0 Conclusions and Recommendations .. 110
6.1 System Accuracy and Robustness 110
6.2 Future Control and Human Factors Experiments 112
6.3 Conclusion ... 114

7.0 R eferences ... 115
8.0 A ppendices ... 117

8.1 Appendix A -- Circuit Diagrams .. 117
8.2 Appendix B -- MPOD and Control Station Software 125
8.3 Appendix C -- Parameter and Calibration Calculations 183
8.4 Appendix D -- Simulation Software 188
8.5 Appendix E -- Control System Parameter Calculations 199

List of Figures

Figure 1.

Figure 2.

Figure 3.

Figure 4a.

Figure 4b.

Figure 5.

Figure 6.

Figure 7a.

Figure 7b.

Figure 8.

Figure 9.

Figure 10a.

Figure 10b.

Figure 11.

Figure 12a.

Figure 12b.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

Figure 22.

Figure 23.

Figure 24a.

Figure 24b.

Figure 25a.
Figure 25b.

Figure 26a.
Figure 26b.
Figure 27a.

MPOD During Docking Task ...
MPOD Assembled Side View ...

MPOD Top Cutaway View ..
MPOD Disassembled Left Side View
MPOD Disassembled Right Side View
Docking Probe and Target ..

Pressurization System Diagram
3DAPS Thumper Locations -- MIT Pool
3DAPS Hydrophone Locations on MPOD
Electronics System Diagram ...
Control Box Internal Layout ..
Pneumatic System Diagram ...
Solenoid Circuit: Single Channel
Motor Control Circuit: Single Channel
Pendula Diagram ..
Pendula Circuit ..
3DAPS System Diagram ...
Multiple Processor Interface Diagram
Fiber Optics Connections ..
Yoda Software Logic ...
Obi-Wan Software Logic ..
Lando Software Logic ...
Control Station Layout ..
Control Station Functional Diagram
Luke Keyboard Functions ...
Luke Software Diagram ...
3DAPS Range Calibration Plot
Position Hold Block Diagram
Position Hold Control Diagram
Attitude Hold Block Diagram
Attitude Hold Control Diagram
Position Maneuver Block Diagram
Position Feed-Forward Control Diagram
Attitude Maneuver Block Diagram

11

12

12

14

14

15

17

19

19

21

22

24

24

26

27

27

29

31

32

34

36

38

40

41

42

43

52

59

59

60

60
64
64
66

Figure 27b.

Figure 28.
Figure 29.
Figure 30.

Figure 31.

Figure 32.
Figure 33.
Figure 34.

Figure 35.
Figure 36.
Figure 37.

Figure 38.
Figure 39.

Figure 40.

Figure 41.

Figure 42.

Figure 43.

Figure 44.

Figure 45.

Figure 46.

Figure 47.

Figure 48.

Figure 49.

Figure 50.

Figure 51.

Figure 52.

Figure 53.

Figure 54.

Figure 55.

Figure 56.

Figure 57.

Figure 58.
Figure 59.

Attitude Feed-Forward Control Diagram 66

Static Simulation Position Plots with Low Initial Covariance

Static Simulation Position Plots with High Initial Covariance

Static Simulation Attitude Plots with Low Initial Covariance

Static Simulation Attitude Plots with High Initial Covariance

State Estimator Position Tracking

State Estimator Linear Velocity Tracking

State Estimator Attitude Tracking (qO & ql)

State Estimator Attitude Tracking (q2 & q3)
State Estimator Angular Velocity Tracking
Static Test Pool Locations ...

Constrained (-y) Flight -- Positions

Constrained (-y) Flight -- Linear Velocities

Constrained (-y) Flight -- Quaternions and Angular Velocities

Constrained (-y) Flight -- Thumper 0-3 Unblocked Ranges

Constrained (-y) Flight -- Thumper 5-7 Unblocked Ranges

Docking Run -- Positions ...

Docking Run -- Linear Velocities

Docking Run -- Attitudes (qO & q1)

Docking Run -- Attitudes (q2 & q3)

Docking Run -- Angular Velocities

Docking Run -- Thumper 0-3 Unblocked Ranges

Docking Run -- Thumper 5-7 Unblocked Ranges

Flight with Roll -- Positions ..

Flight with Roll -- Linear Velocities

Flight with Roll -- Attitudes (qO & ql)

Flight with Roll -- Attitudes (q2 & q3)

Flight with Roll -- Angular Velocities

Attitude Maneuvers -- Positions

Attitude Maneuvers -- Linear Velocities

Attitude Maneuvers -- Attitudes (qO & ql)

Attitude Maneuvers -- Attitudes (q2 & q3)

Attitude Maneuvers -- Angular Velocities

70

71

73

74

76

77

78

79

80

82

86

87

88

89

90

92

93

94

95

96

97

98

100

101

102

103

104

105

106

107

108

109

1.0 Introduction

The LOOP (Lab of Orbital Productivity) Group of MIT's Space Systems Laboratory
(MIT SSL) was begun in 1978 to study possible applications of space systems in an

underwater environment. Zero-gravity is simulated by making all submerged hardware
neutrally buoyant, both in depth and attitude. Currently, NASA projects such as space

station assembly and maintenance can benefit from the use of either teleoperated or partially
autonomous robots. As a major requirement, proposals are under development for the
systems and algorithms required to enable automated docking of a free-flying space
vehicle. Neutral buoyancy simulation tests are producing useful results for the

development of this and other space hardware.

The MIT Space Systems Lab has studied robotics during neutral buoyancy simulation
for the past ten years. The Beam Assembly Teleoperator (BAT) was the lab's first
functional underwater robotic vehicle. Its main task was to assemble truss structures, such
as the SSL's EASE (Experimental Assembly of Structures in EVA) project. During
structural assembly, a person operating BAT from a surface control station received stereo
video feedback and uses master/slave systems for manipulation, with joysticks for open-
loop flight (Reference 1).

The Multimode Proximity Operations Device (MPOD) was built concurrently with BAT
to study different modes of pilot operation and possible control algorithms during vehicle
free flight. MPOD's main task was designed to be docking to an underwater mockup of a
satellite. An onboard cockpit with removable controls allows the pilot to be at either an
onboard or remote control site. The importance of various motion and visual feedback
situations can be quantitatively studied through pilot performance comparisons during
vehicle free-flight and docking runs.

Because docking was a relatively simple task, MPOD research evolved from primarily
human factors studies to control system experimentation. The final goal of this research
phase is autonomous underwater docking. Sensors which enable completion of this task
include 3-axis rotational rate transducers, pendulum inclinometers, a depth sensor, and an
acoustic emitter/receiver system (3DAPS) which would enable an estimate of vehicle
position and attitude (Reference 2).

1.1 MPOD: Previous Electronic Systems and Experiments

When MPOD was first designed (Reference 3), it was flown open-loop, using two
underwater discrete hand controllers. Next, a closed-loop control system was

implemented, which used a 3-axis rate gyro package as its sole sensor input. Since only

angular velocity was measured, the system provided angular rate damping but no actual

attitude control.

The second generation of MPOD development incorporated pendulum inclinometers

with the rate gyros to enable a proportional-integral-derivative (PID) attitude control system

(Reference 4). While using the PID system, human factors comparisons of onboard vs.

remote pilot control were performed. Because of limited test time, the results were not

definitive, but did suggest that remote control with direct visual feedback was the preferred

mode of operation.

The third generation of tests used a similar PID control system (Reference 5). Pilot

visual feedback comparisons were performed during docking maneuvers. An operator

flew the vehicle from a surface control station, where graphics video overlays and stereo

vision were used. Results showed that a cross-hair graphic overlay on the MPOD video

screen enhanced pilot docking performance.

During the set of visual experiments, the idea for MPOD's autonomous flight and
docking was first spawned. It was determined that multiple processors for calculations

and integration of the 3DAPS data into MPOD's electronics were necessary. The current

MPOD system is based on these requirements. All design and experimentation described in
this thesis may be considered the fourth generation MPOD.

1.2 Scope of this Thesis

The sensing capabilities and calculation algorithms for autonomous MPOD flight
required reliable hardware, fast computer processing, and extensive system integration.
The old system had experienced numerous electronic failures primarily due to leaky
connectors. To solve this problem, the electronic systems were integrated into a single
control box, thus minimizing underwater connections. In addition to leakage problems, the
old onboard computer possessed little RAM, could not support a math coprocessor, and
had to be programmed by EPROM. This computer was replaced by a series of three
single-board processors (one V40, two 80C286's with coprocessors). These computers
run IBM-PC compatible software and may be programmed as would any IBM-standard
device. The 3DAPS system and a depth sensor were added to MPOD's sensors to enable
both position and attitude calculation.

This thesis describes the design and implementation of the current MPOD electronics
and computer systems, software, and algorithms used for vehicle control. Sensor
calibration tests are shown. Results displaying the accuracy of the estimated vehicle state

vector are presented. Because of time constraints, the final implementation of the

automated docking control software was never completed. However, the algorithms and

computer simulation test results are presented with the expectation that these algorithms will

enable autonomous MPOD docking in future tests.

2.0 The MPOD System

2.1.0 Physical Description

The MPOD vehicle's primary task is satellite docking. Figure (1) shows the final

stages of an underwater docking run. MPOD's octahedral configuration was a compromise
between ease of construction and minimization of water drag. A perfect sphere would be

the most efficient shape, but would be almost impossible to construct. An octagonal body
approaches a sphere, but allows the frame and surface to be constructed from rectangular
and triangular components. The vehicle's frame is composed of 1" aluminum box beams,

inter-connected with riveted gusset plates and covered by foam and fiberglass panels.
Overall dimensions are approximately 2 meters along each of the vehicle axes. MPOD's
size was primarily determined by the requirement of an onboard cockpit. The cockpit and
pilot entry area comprise the upper and central portion of the vehicle. Pressurization,
electronic, and power supply components are contained below and to the sides of the open
cockpit.

Figure (2) shows a simplified side view of the assembled MPOD with docking probe.
With twelve motors driving ducted propellors, the vehicle has the ability to move in the six
degrees of freedom associated with three-dimensional free-flight. Since the motors are
located in pairs along the vehicle principal axes at a distance of 0.81m from MPOD's
center, there are equal thrust levels for all translational directions and equivalent torques
about all rotational axes.

The motors are driven by MPOD's onboard electronics and power system. Thruster
magnitude and direction are determined by either the open-loop commands from a pilot or
onboard closed-loop control routines. Sensors for the control system include: 3-axis
fluidic rate transducers, pendulum inclinometers, a depth sensor, and the Three-
Dimensional Acoustic Positioning System (3DAPS). The sensor information is converted

10

Figure 1. MPOD During Docking Task

11

- Y/Roll Thruster Pair

(Yaw Thruster Pair

' Z/Pitch
Thruster Pair

Y/Roll Thruster Pair

Figure 2.

Scale:
1" = 2.0 MPOI

0

Main battery box

MPOD Assembled Side View

Hand
Controllers

box

,ra Pair

[ain battery box

trol Box

t. air tank

I %--- I

80 cu. ft air tank

tank

Battery Box

Figure 3. MPOD Top Cutaway View

12

Pr

z

J I-s Tri a-'

into a state vector estimate by the state calculation computer, hereafter referred to as Lando.

Obi-Wan, the control computer, uses the estimated state to calculate appropriate thrust

values. A third processor, Yoda, communicates with MPOD hardware and continually

looks for new instructions from the operator. See Section 2.3 for computer system details.

2.1.1 Components and their Locations

Since MPOD is submerged during operation, all electrical components must be housed

in water-tight enclosures. Figures (3), (4a), and (4b) show the locations and relative sizes

of MPOD's various boxes and air tanks. Most waterproof housings were constructed from

foam and fiberglass (see Reference 6 for construction details). The side main battery boxes

each contain three lead-acid battery packs supplying +18V for driving the vehicle's motors.

This power is switched on and off by a pneumatically-driven relay, housed inside the

cylindrical plexiglass power relay box. Since the instantaneous current draw on this

system approached -100A, all cables and connections were constructed accordingly.

The control battery box, located under MPOD's rear air tank, holds three +12V battery
packs which run all onboard electronics and computer systems. These batteries also power
the cockpit when the vehicle is flown from onboard. Two switches attached to the battery
box enable divers to turn electronics on and off from underwater. Current draw from the
control batteries during normal operation is -5.5A.

MPOD's control box rests on rails under the pilot seat. Nearly all onboard electronics
are contained within this box, with the exception of the solenoids for pneumatic cylinders,
the 3DAPS hydrophone amplifier circuit, and the heat-generating motor power transistor
block, which is mounted under the pilot seat right arm. Contained within the control box
are: 3 computers, 2 microcontroller boards, the pendulum inclinometers, rate sensors,
motor control circuitry, and 3 wire-wrapped boards which interface all the hardware I/O
and the 3 processors. Note that the 3DAPS receivers and the depth sensor are not shown
in Figures (2) - (4), but will be discussed in Section 2.2.

Two 80 ft3 side tanks supply air for an onboard pilot. They are strapped to MPOD's
sides with scuba belts. Connected in parallel, they supply the pilot air through a standard
scuba regulator. The 50 ft3 rear air tank provides pressurization for all MPOD systems. A
high pressure line runs to the solenoid box for driving the pneumatic cylinders, while a
modified second-stage regulator is used to pressurize the vehicle's waterproof boxes.

13

k

oid Box

Command Box

Left Main Battery Box Small Air Tank

Control Battery Box

Control Box

Figure 4a. MPOD Disassembled Left Side View

Right Lar

Regulator / Purge
ox

ntrolle r

Box

Figure 4b. MPOD Disassembled Right Side View

14

2.1.2 Docking Mechanism

As mentioned in previous sections, MPOD's primary task is docking to an underwater

satellite mockup. This is accomplished via a removable probe, which latches and then rams
its target for secure attachment. Figure (5) shows a close-up view of the probe and its
mating drogue.

Jettison Clips

le of pool)

-2

securing
nuts

MPOD front
panel

Figure 5. Docking Probe and Target

During flight, the conical ram fixture remains in a retracted state. The
spring-loaded latches are set to capture and engage the circular target opening. Upon
MPOD's penetration of the docking fixture, the ram is activated to extend into the target's
conical opening. The secure fit of the probe prevents all relative motion between MPOD
and the satellite. Both the latches and ram are activated by pneumatic cylinders. The latch
cylinder and driving mechanism are contained within the probe, while the ram is activated
by the two cylinders visible on the probe's exterior.

15

N

2.1.3 Pressurization System

Air pressurization systems play an important role during vehicle operation. Shown in

Figure (6) is a diagram of all MPOD pressure systems. Onboard air for a pilot is required

primarily because the cockpit is not large enough for a diver in scuba equipment to fit. The
double tank system allows even a heavy breather to fly for an entire test session.

The small air tank supplies pressure to all MPOD systems. As a precaution against
leakage, all water-tight boxes that do not contain hydrogen-venting batteries are pressurized
at 2-3 psi above the outside water pressure. This system has two major advantages: the air
leaks out instead of allowing water to leak into the boxes, and the bubbles exuded by a box
quickly show the presence and location of leakage before the contents become wet. Air is
constantly used, but it has been noted that an onboard operator breathes much faster than
MPOD. Depending on the frequency of depth changes, a typical test run in the MIT Pool
will use approximately 200 psi of air per hour from the small tank.

High pressure lines from the small air tank's first stage reducer activate the vehicle's
pneumatic cylinders. These solenoid-activated cylinders operate the main power relay and
docking probe. Because pneumatic state changes are activated infrequently during testing,
they do not cause a significant drain on MPOD's air supply.

2.1.4 Video

A pilot flying MPOD from the surface needs visual information to determine an
appropriate command sequence. Currently, two video systems are available for MPOD: a
set of color stereo cameras with surface signal decoding circuitry (Reference 23), and one
black and white camera with wide-angle lens. Figures (4a) and (4b) show the camera
positions on MPOD. Each video system's waterproof housing is mounted inside the
vehicle's front panel, with each lens pointing along the +x axis. This location enables the
pilot to view the docking probe and the target during approach. Power is sent from the
surface to each camera. The video signal runs back through a shielded cable to a surface
monitor.

Since an operator's ability to fly the vehicle was not the emphasis of this thesis,
sophisticated video feedback was unnecessary. The single black and white camera was
used for all experiments. It provided a clear view of the target, and enabled the operator to

16

.4--

125 psi.

Onboard Monitors
and Command Box

(if present)

(ambient)+(2-3 psi)

Low Pressure
Distribution Box

Figure 6. Pressurization System Diagram

keep a close watch over MPOD's flight progress. The video feedback was also used to

determine the exact point at which MPOD engaged the docking target.

2.1.5 Control Box Description and Contents

The MPOD control box contains almost all the vehicle's onboard circuitry, and was
built to enable relatively simple electronics modifications. Its size was determined by the
vehicle frame dimensions, with the box filling the entire space below the pilot seat to within
a few centimeters. The control box lid was made of anodized aluminum, serving the dual
purposes of covering the box and dissipating the electronics-generated heat. Tension
latches and a rubber gasket provided the seal between lid and box.

All external connections were made on the box ends, both for sizing and connectability
reasons. Small gauge electrical wires were attached with AmphenolTM connectors. The
larger (14 AWG) wires exit the box through resin and epoxy-filled threaded brass
bulkheads, then terminate with Sure-SealTM connectors. Fiber optic signals travel through
the control box via plastic connectors with waterproofed internal box cables. Since a
bulkhead connector significantly lowers the line's light intensity, the 3DAPS fast fiber optic
line connects directly with the receiver chip, which has been insulated and mounted on the
control box outer surface.

MPOD's control box is installed and removed by sliding it along mounting rails out the
right side of the vehicle. When not inside MPOD, the box rests on a rollered cart which
has the necessary sliding rail system and is the same height from the ground as MPOD's
rails. The box lid may be removed and all connectors attached while the control box is not
inside the vehicle. This is necessary for efficient debugging of electronics and software.

2.1.6 3DAPS Physical Aspects

The 3-Dimensional Acoustic Positioning System (References 2 and 7) was originally
built to function independently of MPOD. 3DAPS mechanisms include a series of acoustic
emitters, or thumpers, and acoustic receivers, or "hydrophones". Circuitry contained in a
metal box at the surface called the sequencer serially fires the thumpers at regular intervals,
set by the operator. It also detects when each thumper fires, and sends this information to
the underwater receiver. The thumpers are positioned along the corners of a rectangular
parallelopiped, and pointed toward the figure's central point. See Figure (7a) for the MIT
Alumni Pool thumper locations.

Thumpers are constructed of rapid-firing solenoids which move a metal hammer into

18

12.6 m

Figure 7a

Figure 7b.

m

Target

3DAPS Thumper Locations -- MIT Pool

H2

3DAPS Hydrophone Locations on MPOD

19

3

contact with a plate. This contact produces an acoustic pulse designed to be centered at a
frequency of 100 kHz. Also, the solenoid and plate surfaces are connected to wires which
produce an electrical pulse upon contact. This pulse is returned to the sequencer, which in
turn sends the signal and corresponding thumper number via a 1 Mbaud serial fiber optic
line to the 3DAPS receiver system.

Because MPOD processors needed real-time access to 3DAPS ranges, the original
receiver system was redesigned and built to fit within MPOD's control box. Four Briiel
and Kjaer hydrophones (Reference 8) send the received low-level (2-3 mV) acoustic
vibration signals to the amplifier circuit.

After amplification, the hydrophone signals are sent to the control box, where distances
between the four hydrophones and the fired thumper are calculated, and then sent to
MPOD's computers for processing. Unfortunately, when the signal was being amplified
inside MPOD's control box, RFI noise produced by the twelve motor relays corrupted the
acoustic pulse. Thus the hydrophone amplifier circuit was moved to a separate small
waterproof box outside the MPOD control box (see Figure (7b) for box location on
MPOD). Because noise on the MPOD power and ground lines were also corrupting the
low-level 3DAPS signals, a small 6V battery was placed in the 3DAPS box for powering
the amplifier circuitry.

Since the hydrophones are fragile, they were enclosed in anodized aluminum "cages" to
avoid damage from contact with pool walls, divers, and other obstacles. Figure (7b)
shows the mounted locations on MPOD of the enclosed hydrophones. The large distance
of each hydrophone from the vehicle center enables a better attitude estimate from 3DAPS.
Because the long, narrow rods are easily bent, break-away bolts were used for hydrophone
attachment to MPOD.

2.2.0 Electronics

MPOD's electronic systems may be divided into three categories: (1) hardware control
electronics, (2) circuitry for interfacing all the hardware with all the computers, and (3)
computers for communication and calculation. Figure (8) shows a block diagram of all
MPOD electronic systems and their interconnections. RAM shared between the computers
contains common variables and measurements. Intel 8255A multiplexers provide
interfacing between all the hardware and computer data buses. A 12-bit A/D converter with
multiplexer is used for reading the analog rate and depth sensor outputs, while HCTL-
2000's read encoder counts for the pendula. 3DAPS ranges are determined by FORTH-
programmed 68HC11 microprocessor boards. RS232 serial ports provide communication

20

+12V

Figure 8. Electronics System Diagram

t'

with the surface computer and pilot via the fiber optic lines.

The following sections describe the MPOD electronic functions. First, a description of

control box internal component locations and circuit card functional division is given to
provide an overall picture of the actual hardware. Next, each major circuit is examined in
detail.

2.2.1 Electronic Components and their Functions

The MPOD control box was designed to hold all onboard circuitry and computer
systems. Shown in Figure (9) is the internal layout of the components. The three main
computers, Yoda, Obi-Wan, and Lando, are mounted next to each other. The disk drive
and NOVRAM (non-volatile RAM) cartridges used to store software are mounted near the
computers to minimize ribbon cable length. Two 68HC11 microprocessor boards are
mounted between the pendula and motor circuitry. They are connected only to the
processor interface card, hence, the boards do not have the need to be near any supporting
components.

NOVRAM #1 Terminal

Voltage -
Regulator #1L

+12V, +5V
Fuses -*

Terminal-I
Blocks

Voltage
Regulator #2

t MPOD 1AXES L

0

E

~1

I I W
o c

Ce0 .0 N

E
E

r

fiber optics

U,

I
0

-r
a-

(0 U0
o 0

0 (D
W 0
S 0CL

V

C

Pendula

Gyros
(under Pendula
mounting)

I

Co

m
a,
e
0

co
0
0 -2!

I I

I ,LS I

SIi

,D

o0
m

o
I

Figure

9. Control Box Internal Layout

Figure 9. Control Box Internal Layout

2

.5.

0

C.,

I I
I I
I I
I I
I I

EI
I I

Blocks

*-Motor
Fuses

+18V
SFuse

.. Terminal
-Blocks

22

'I

Pendula

r

As seen in Figure (9), there are five wire-wrapped circuit cards in MPOD's control

box. The three cards opposite the pendula and rate sensors share information and power

along a common edge connector. Together, they perform all the interfacing between the

hardware and the processors.

The MPOD Hardware Interface Card, or MIC, is connected to Yoda's data bus. Motor

magnitudes and directions as well as solenoids are commanded from this card. Also, MIC

contains circuitry to process rate sensor, pendula, and depth information. The processed

sensor readings are sent to Yoda via 8255's. Appendix A-i shows the complete circuit

diagram for MIC.
The Processor Interface Card, or PIC, has two primary functions. First, it connects the

three computers (Yoda, Obi-Wan, and Lando) together with dual port RAM. Next, the

68HC11 ports are connected via 8255's to Obi-Wan's data bus for the reading of 3DAPS
ranges. Appendix A-2 shows the complete circuit diagram for PIC.

The third card opposite the pendula is the 3DAPS Interface Card. The 3DAPS
sequencer serial signal decoding circuitry is contained on this card. It also sends power to

and receives signals from the 3DAPS hydrophone amplifier circuit (see Appendix A-6 for

the amplifier circuit diagram). The 3DAPS Interface Card circuit diagram is shown in

Appendix A-3.
Almost the entire +y section of the control box is devoted to motor circuitry and its

wiring connections. The pulse-width modulation circuit is contained on the PWM circuit
card, as labelled in Figure (9). Because of the high current requirement of each motor (20
amp maximum), 14-gauge wire was used for all power and motor signal connections.
Relays are mounted in two groups of six (see Figure (8)). Each motor is fused, with the
fuse mountings along the +y wall of the control box.

The final wire-wrapped circuit is used for the conversion of fiber optics light to/from
electrical signals. There are five lines: two for Yoda, two for Obi-Wan, and one fast fiber
optics line for 3DAPS. The conversion circuit card is mounted next to the onboard disk
drive. Appendix A-5 shows the 5-channel fiber optics circuit diagram.

2.2.2 Solenoids

Both the docking probe and main power relay are driven by +12V pneumatic solenoids.
Figure (10a) shows a single solenoid circuit. The TIP31 transistor is switched by a 1-bit
signal from Yoda. The signal then travels from the control box to the solenoid box, where
the appropriate device is activated. Upon switching of a solenoid, the pressurized

23

Exhaust

+5
+12 Line 1

Switched High Pressure Out

Line 2

High Pressure In

Bit

Figure lOa. Solenoid Circuit: Single Channel

Figure 10b. Pneumatic System Diagram

line is vented, then the excess air escapes the solenoid box through a purge valve.

Mounted on a six-solenoid manifold, the solenoids switch high pressure from one line

to another, depending on the current flow through the electrical lines. Figure (10b) shows

the functions of the three solenoids currently used by MPOD. The main power relay is

driven by one high pressure hose. Nominally, this line is not pressurized. Upon solenoid

activation, the metal relay plate is driven up to meet another matching plate. An electrical

connection is then made between the positive leads on the main batteries and the MPOD

control box + 18V lines. If no pressure is supplied to this line, the relay plate is held away

from its mate by springs, and no electrical connection is made. The extension of the

docking probe is accomplished by two cylinders driven by the same solenoid pressure

lines. The default setting (i.e. with no current passing through the solenoid) is the ram

retracted position. Finally, the disengagement of the probe's latches is accomplished by a

single pneumatic cylinder. No solenoid current flow results in engaged latches, thus

allowing target capture before the line is activated.

2.2.3 Motor Control

The motors are activated via a 4-bit magnitude, 1-bit direction command from Yoda, the
onboard PC. The actual thrust output by each motor motor is obtained by pulse-width
modulation of the driving voltage, determined by the computer's magnitude outputs. Each
motor's direction is controlled by a relay. Shown in Figure (11) is a diagram of the circuit
for one motor. The 4-bit magnitude command passes through 74HC85 channel A, and is
compared to the constantly counting output of an HC163. Since the twelve motors are
organized in pairs, only six independent commands are sent from the computer. After
passing through the comparator, these six signals are buffered and split into two lines, one
for each motor of a pair. Then, the signal passes through a resistor and transistors before
reaching the relay. Each motor direction bit was buffered and split into two lines, as was
the magnitude signal. The direction bit triggers the relay, which is connected so that the
motor is running either forward or backward, for non-zero magnitudes.

Because of the high current requirement (maximum of 20A per motor), multiple
transistors are necessary for TITL signal amplification. Motor power lines are fused in two
separate locations to help prevent circuit components from overloading during the inevitable
current spikes. Each 11028 power transistor dissipates a significant amount of heat, so the
twelve transistors were waterproofed and mounted on a heat sink outside MPOD's control
box. The control box internal layout (see Figure (9)) shows the box location of the motor
circuitry. Appendix A-4 shows the complete PWM circuit card diagram.

25

DIRECTION:
(1 BIT)

MAGNITUDI

1N4004

(4 BITS)
+18V

DIR

MOATYORrD

9 -MOTOR

relay

I RV

Motor Control Circuit: Single Channel

+5V

+18V

HC85

10K 10K

CLOCK
(555/163)

MR821

OND-

I

I

I +-.r •

I,I V

Figure 11.

HC240

2.2.4 Pendulum Inclinometers

A pendulum inclinometer consists of an aluminum weight hung from a rod which is

then attached to a freely rotating encoder shaft. One such device aligned with each of the

MPOD vehicle's axes. Figure (12a) shows a 3-axis arrangement and possible pendulum

positions when the vehicle and inertial axes are aligned. The pendula constantly move to
follow the gravity vector, which is assumed to be much greater in magnitude than any
feasible vehicle acceleration.

y

z 51, PkP4 ýW~I·C>r;r·:P P2vu~ ~R

P,>4,P P P P~
Pad~

Pb~~~~~ P s~
Ap %~I

Figure 12a. Pendula Layout Figure 12b. Encoder Circuit

Pendula positions are determined by BEI Motion Systems quadrature encoders with
12-bit resolution. Figure (12b) shows the basic circuit for one channel. The HCTL-2000
(Reference 9) decodes the a and b pulsing lines, which are 900 out of phase with each
other. This phase shift enables the determination of the direction of pendulum motion.
Also, an index pulse once per shaft resolution is used to reset the counter in case some
counts are missed. At system startup, the HCTL-2000 begins counting from zero. To
ensure proper encoder readings after startup, each pendulum must be rotated such that its
index pulse is passed. The zero-count for each encoder is then properly initialized.

27

2.2.5 Depth and 3-axis Rate Sensors

A 12-bit Analog Devices A/D converter and multiplexer combination (Reference 10) is
used to read a pressure sensor and 3-axis rate transducer package. The pressure sensor,
Omega PX240 Series (Reference 11), is located at approximately the vehicle's center of

mass, and is used to determine MPOD's depth in the water. This sensor receives a +15V
input signal and emits an analog voltage between 0 and +7V. The Omega PX240 package
is capable of measuring depths up to 20 meters in the water. MIT's Alumni Pool is less
than five meters deep.

The 3-axis rate transducer package measures MPOD's angular velocity about all three
vehicle axes. Driven by +12V input, a fluidic sensor package, Humphrey, Inc., Series
RT02, measures rates between ±x/2 rad/sec (Reference 12). Its analog output voltage
ranges from -5V to +5V for full scale angular velocities.

Calibrations and accuracy of the rate and pressure sensors are described in Chapter 3.
Because the sensors were converted by the same A/D, its gain and range were required to
be compatible with both sensor outputs. Since the lower bit of depth and lower 3-bits of
the rate sensors were noise, the maximum input range of the A/D was set at ±10V.

The A/D and multiplexer system is controlled by Yoda. The process of reading an
analog sensor value includes the following steps: (1) output desired multiplexer channel,
(2) sample and hold the chosen channel, (3) begin A/D conversion process, (4) upon
completion of conversion, read the 12-bit converted value. See "yodafuns.c" in Appendix
B-1 for the software implementation of the sensor reading.

2.2.6 3DAPS Receiver Electronics and Microprocessor Software

3DAPS, the 3-Dimensional Acoustic Positioning System, consists of both surface and
underwater electronics. Figure (13) shows a complete system diagram of 3DAPS. The
sequencer drives and receives signals from the eight thumpers, while the receiver system
analyzes hydrophone signals and receives contact and thumper identification signals from
the sequencer. The sequencer, thumpers, and hydrophones are identical to those in the
systems described in References 2 and 7. However, the receiver system was designed and
built to function inside MPOD's control box.

The previous 3DAPS receiver was primarily hardware-based, with individual counters
and gates determining thumper-to-hydrophone ranges. In an attempt to simplify circuitry

28

SERIAL SEQUENCER SIGNAL
(transmitted via fast fiber optic line)

Hydrophone
Amplifier
Circuitry

3DAPS System Diagram

1 IRQ

READY #2

Figure 13.

and facilitate system modifications, most of the prior receiver electronics were replaced by
68HC11 microprocessors (Reference 13) programmed in MAX-FORTH. Upon thumper
activation, the sequencer sends a serial signal to MPOD. This signal is decoded into a
contact signal bit and 3-bit thumper identification number. Appendix A-3 shows the serial

decoding circuit, which is contained on the 3DAPS Interface Card inside MPOD's control
box. The contact signal bit triggers a hardware interrupt line on the two 68HC11's. Then,
the microprocessors begin counting until they receive a hydrophone pulse on a specified
counter interrupt line. Note that each 68HC11 handles two of the four acoustic receivers.

Hydrophone signals are amplified by a series of AD521 instrumentation amplifiers,
then sent through one-shots to produce a TTL-level pulse. H11L1 Schmitt Trigger
optoisolators are used to convert the 3DAPS one-shot signals into MPOD control box
signals. This eliminates all electrical connections between the amplifier circuitry and all
other MPOD systems. See Appendix A-6 for the complete diagram of the 4-channel
hydrophone amplification circuit. Amplifier gains are set such that acoustic interference
from other systems is minimized, but all thumpers are received from anywhere in the
specified rectangular parallelopiped of flight. 74HC123 pulse lengths are adjusted to
prevent post-pulse triggering from acoustic reflections.

After the 68HC1 l's have received all hydrophone signals or counter rollover has
occurred, they interrupt Obi-Wan in a declaration of new data. Obi-Wan then reads the
current thumper's data, and each 68HC 11 awaits the next contact signal. See Appendix B-
5 for a complete listing of the software used by the 68HC11 l's, named Crumb and Cake.
The program USMV6811.TXT is used for downloading a program to the 68HCl1 for
booting and running from the onboard 8Kbyte EPROM (Erasable Programmable ROM).
Because a programmed EPROM may not be modified, run-time data is stored on an 8K
NOVRAM (Dallas Semiconductor 1225Y non-volatile RAM). A program called
INT6811.TXT is stored on the EPROM to perform the 3DAPS counting functions. Each
68HCll was programmed from RS232 serial lines from an IBM PC. The serial
communication program PC-Talk was used on the surface computer for 68HC11 program
downloading.

2.2.7 Multiprocessor Interfacing

The 68HC11 microprocessors are interfaced to Obi-Wan via 8255A's, arranged in
parallel to accommodate Obi-Wan's 16-bit data expansion bus. When data is passed
between the two systems, handshaking must occur via two bits on an 8255 line. A block

30

diagram of connections is shown in Figure (14). Appendix A-2 shows the complete

interface circuit between Obi-Wan and the 68HC1 l's.
MPOD's three main onboard computers, Yoda, Obi-Wan, and Lando, share common

RAM. An Advanced Micro Devices AM2130 Dual Port Ram (DPR) 1 Kbyte device is

used for each processor interconnection (Reference 14). Figure (14) also shows the

expansion bus connections for the three computers. Yoda and Obi-Wan are connected via

one DPR chip, while Obi-Wan and Lando are connected via a second chip. For parameter

sharing between Yoda and Lando, Obi-Wan must perform a memory transfer. This was

an acceptable solution, due to the fact that Obi-Wan uses all the Yoda and Lando shared
data in its own control calculations.

Figure 14. Multiple Processor Interface Diagram

2.2.8 Fiber Optics

Serial communications between MPOD and the surface station are performed through
fiber optic cables. This technology allows relatively thin umbilical lines running from the
vehicle to the control station. Also, communication problems may be diagnosed by
unplugging the cable and examining the light being transmitted through the cables, even

31

while the vehicle is underwater. A bright transmitted light signal indicates proper cable

operation, while constant darkness or dull ambient light may suggest a cut in the cable.

Hewlett-Packard optical sensing chips, connectors, and cables were chosen

(Reference 9). Their products were relatively inexpensive and included bulkhead

connectors which could easily be mounted on waterproof boxes. The RS232 serial signals

travel at the relatively slow rate of 9600 baud, so the optical transmitter/receiver chips

chosen for this system were low-speed, high sensitivity devices. It has been noticed that

small cuts through the cable insulation do not affect this system.

The 3DAPS sequencer serial signal is transmitted at 250 Kbaud. Hence, the low-speed

devices were not sufficient. The required 3DAPS transmission rate meant using high-

speed transmitter/receiver chips which, unfortunately, are not sensitive to low level light.

Shown in Figure (15) is a diagram of MPOD and surface serial communication

connections. Note that the lines from Yoda and Obi-Wan can both connect with the control

station computer's (Luke's) COM1 lines. Since Obi-Wan's serial line is used only for data

transmission between test runs, the lines may be switched by the surface operator as

needed. Also, because the sequencer does not receive data from the 3DAPS receiver

system, only one line is needed.
Converter Plastic End Fiber Optic
Chip Connector Cable-1----- L - --

Luke -- Control Station

Blue14_>=L %h
I DI- Wan

Blue GreyI i

4 5
3DAPS Receiver 3DAPS Transmitter

Figure 15. Fiber Optics Connections

32

k3
2 I

i
3

kk

I

I

I

I

I

I

I

I

I

I

-2503
ZHFBR:

8-1!512
I
i

For a complete circuit diagram for all five fiber optics channels, see Appendix A-5.

The RS232 signals are converted to fiber optic transmitter levels by a +5V to +12V voltage
conversion chip, while received signals are converted back to RS232 levels by a +12V to

+5V voltage conversion IC. As depicted in Figure (15), the light conversion chips are

shaped to accommodate the snap-in fiber optic end connectors.

2.3.0 Computer Systems

MPOD onboard computer processing tasks are divided among three AMPRO single
board computers (References 15-18). One processor, Yoda, performs communication
tasks, both with the surface operator and all MPOD onboard hardware. A second
computer, Obi-Wan, provides interfacing between the three computers, reads 3DAPS data,
computes control outputs, and saves all data. Finally, the third computer in the series,
Lando, calculates the MPOD state vector from all the available sensor measurements.

The three computers have slightly different components and operate at different clock
speeds, but the interfacing and support components are identical for the two 286 boards,
and similar for the PC. All the boards run under MS-DOS, and are programmed with
Microsoft C, version 5.1. The programs execute within a startup batch file, so that the
programs will continuously run without keyboard commands.

Each single-board computer may be attached to a standard IBM monitor and AT
keyboard (PC keyboard for Yoda). Video signals for each board are provided by a
mono/CGA card that attaches directly to each computer's expansion bus. Expansion bus
signals are sent through ribbon cables to the MPOD wire-wrapped circuit boards. Because
of the CMOS computer components and lengthy ribbon cables required inside MPOD's
control box, expansion bus signals are terminated by buffers, except for the low-power
dual port RAM.

The AMPRO computers are powered by +5V, with a current draw of -~A, including
video card. With maximum dimensions of 6" x 8" x 1" thick, the boards mount easily
within MPOD's control box. Because the computers are constructed from CMOS
components, the power and heat dissipation requirements are far lower than those for
conventional computers.

2.3.1 Yoda the Communications PC

Running at a clock speed of 8MHz, the single-board PC communicates with both the
surface pilot and MPOD hardware. Yoda software is stored on the 3 1/2", 720Kbyte disk

33

Initialize serial port, Yoda variables, Dual Port Ram
variables, MPOD hardware, and PiVeCS messages

Turn MPOD pneumatics
and motors OFF

Activate MPOD
Pneumatic changes

Read depth, rate sensors,
and encoder values

Figure 16. Yoda Software Diagram

34

drive mounted within MPOD's control box. A relatively slow PC was acceptable for

communication tasks, due to the minimal number of mathematical computations and speed
limitation of RS232 serial ports. Figure (16) shows the logic diagram of Yoda software.

Serial communications are performed at a rate of 9600 baud through the fiber optics
lines. A software package known as PiVeCS (Pilot-Vehicle Communication System) was
written within the Space Systems Laboratory to enable reliable data exchange between
robots and their pilots. Operator commands or data streams are transmitted in "Messages",
groups of seven bytes or less. The messages begin with an identification header byte and
are sent as requested by the user. The total length of the serial data stream may be varied
during run-time by turning on or off a particular message transmission. PiVeCS contains a
special function called "ShutDown" which turns off all hardware during periods of
communications loss between the surface computer and Yoda. This feature is especially
useful for the avoidance of a runaway vehicle due to communications problems during
flight.

In addition to communicating with the surface operator, Yoda performs all the MPOD
hardware input/output. Thruster values, calculated by Obi-Wan, are sent by Yoda to the
PWM card. The six motor commands corresponding to MPOD's pairs of motors are sent
in four bytes: three magnitude bytes (4-bits per motor pair) and one direction byte (1-bit
per motor pair). Pneumatic settings requested by the surface operator are output in one
byte. Pendulum encoder values are read by Yoda from the HCTL-2000's. Depth and rate
transducer data is read by Yoda through the A/D converter. All the data is stored in dual
port RAM to enable easy access by Obi-Wan and Lando. A complete listing of all Yoda
software is shown in Appendix B-1. PiVeCS source code is presented in Reference 19.

2.3.2 Obi-Wan the Control 286 Board

Obi-Wan has four primary functions: (1) saving data on NOVRAM, (2) reading
3DAPS ranges, (3) transferring dual port RAM data between Yoda and Lando, and (4)
calculating control outputs from the estimated state vector. Figure (17) shows the complete
software diagram for Obi-Wan. The 80286-based computer runs at a clock speed of
12MHz, with an 80C287 CMOS math coprocessor. A 512Kbyte Dallas Semiconductor
NOVRAM cartridge (DS 1217M/4) connects directly with a 25-pin socket on the AMPRO
computer board. Because of the its speed advantages over a disk drive, all data during
MPOD runs is stored on Obi-Wan's NOVRAM. After each run's completion, the data is
uplinked via Kermit (Reference 20) to Luke, the surface control station computer, for

35

Upon 'BYE' command
from surface, exit Kermit

Run Kermit; set in Server
Mode for sending data

Use hand controller readkigs
for motor commands

Transfer required
Dual Port RAM data

between Yoda and Lando

Figure 17. Obi-Wan Software Diagram

36

storage on its hard disk drive. Data uplinking is necessary due to the limited memory
available on the NOVRAM.

3DAPS range reading is triggered by hardware IRQ9 on Obi-Wan. The interrupt
handler routine sets a flag, then when the main driver program sees the flag, the 3DAPS
range reading routine is called. First, the thumper ID is read from the sequencer decoding

circuit. Then the ranges are read. Handshaking with the two 68HC11l's is necessary

because of the limited I/O ports available for the 16-bit range values. Each time a 3DAPS
interrupt is generated, four ranges are read. To conserve memory and time, range data is
only written to the NOVRAM when new values arrive.

The third function performed by Obi-Wan is that of dual port RAM data transfer.
During closed-loop runs, the only necessary transfers between Yoda and Lando should be
the pendula, depth, and rate sensor values. Note that when the surface operator wishes to
observe the state, the values must be transferred from the Lando dual port RAM to Yoda's
dual port RAM.

The primary calculations performed by Obi-Wan involve converting the state estimate
into control outputs for the MPOD thrusters. First, Obi-Wan determines the desired state,
dependent on which part of a control path MPOD is traversing. Next, the control routine
determines MPOD motor commands by multiplying the feed-forward linearized state error
values by gains. See Chapter 4 for a detailed description of the control algorithms. The
complete listing of Obi-Wan software is shown in Appendix B-2.

2.3.3 Lando the State Calculation 286 Board

The sole purpose of Lando is to estimate the current position, attitude, and rates of the
MPOD vehicle. Figure (18) shows a logic diagram of the Lando software. Lando is an
80286-based computer running at a clock speed of 16MHz. Like Obi-Wan, Lando has an
80C287 coprocessor and runs from a 512Kbyte NOVRAM cartridge. 3DAPS ranges and
the depth sensor are used for position determination. The pendulum encoders and 3DAPS
provide attitude measurements, while the rate sensors directly measure vehicle angular
velocity about each of the three axes. Unfortunately, no direct measurement of linear
velocity is available. An extended Kalman filtering routine with state propagation is used
for the estimation process. Chapter 4 describes in detail the implementation of this state
calculation algorithm.

37

Call filter once for
each accurate new range

Call filter for chosen
sensor measurement

Figure 18. Lando Software Diagram

38

The filter is called with one measurement at a time. Since 3DAPS ranges are available

relatively infrequently, Lando hardware interrupt IRQ9 is activated by Obi-Wan upon
receipt of new 3DAPS data. Lando only calls the filter for range measurements when its
interrupt line has been triggered and the new ranges are non-zero. Since new pendula, rate,
and depth measurements are available as frequently as Lando updates the state for one
measurement, Lando cycles through these sensor readings in order, except when
interrupted with 3DAPS data.

State calculation may be turned "off" and "on", and the state estimate may be re-
initialized by the surface operator. Because the filter initially guesses that MPOD is at the
center of the 3DAPS thumper parallelopiped, the state calculation routines should be turned
"on" when MPOD is near that location.

2.4.0 Surface Control Station

For MPOD human factors testing, an attempt was made to make a remote control
station as similar as possible to the onboard cockpit. However, the tests performed in this
thesis had no human factors component. Therefore, the control station was designed to be
easy to assemble and centered around the fastest available IBM-compatible computer. This
computer was used for developing all the MPOD onboard programs as well as the control
station software.

2.4.1 Pilot Interface and Hardware Description

An operator flies MPOD with two hand controllers and the surface computer keyboard.
During open loop flight, the left hand controls MPOD translational motion, while the right
hand dictates rotational maneuvers. The keyboard is used for controlling MPOD
pneumatics, commanding data transmission, and turning on and off the various calculations
being performed on MPOD.

The operator receives two types of feedback from MPOD: (1) Black and white video
from MPOD's camera, and (2) the computer display of PiVeCS, the current switch
settings, and uplinked data values. Shown in Figure (19) is a diagram of the surface
control station used for the MPOD experiments.

39

Computer Fiber Optics
Monitor ,-, :.

otational
and Controller7

Figure 19. Control Station Layout

The computer used for these experiments was a 10MHz 286-clone, hereafter referred to

as Luke. Luke has a 40Mbyte hard disk, one 5 1/4" floppy drive, and a 3 1/2" 720K disk
drive. An EGA monitor and video card are used. One RS232 serial port is connected to

the external fiber optics conversion box for serial transmissions to and from MPOD.

A wire-wrapped circuit card, attached to Luke's data bus, connects the hand controllers

with the rest of the system. See Appendix A-7 for the card's circuit diagram. The hand

controllers used are "bang-bang", meaning they provide on/off signals but no variable

magnitude. They use magnets and redundant magnetic field sensors to produce the

electrical signals sent to Luke. For a more detailed description, see Reference 6. Note that

these hand controllers are waterproof and are also used in MPOD's cockpit during onboard
flight control. Figure (20) shows a complete diagram of the surface control station
components and their functions.

2.4.2 Software

During underwater testing, Luke is used to interface with a surface operator and store
data between MPOD runs. Besides communicating with Yoda, Luke displays switch

40

LUKE (or Marc) --

Standard 286 Machine

MPOD Video
Display Monitor

MPOD Video Lines
(Color or B&'W Camera)

Figure 21. Control Station Functional Diagram

+12V

settings and MPOD data on its monitor. The computer constantly looks for operator

commands from the keyboard and hand controllers. Figure (21) shows the keyboard

layout of commands a pilot may initiate. Figure (22) is a block diagram of the control

station software logic. Appendix B-4 shows a complete source code listing of the Luke

software.

Serial communications with Yoda are performed using the PiVeCS protocols.

Messages are passed between Luke and Yoda via COM1, running at a rate of 9600 baud.
The operator controls the quantity of serial data transmission through Luke's keyboard.

During many debugging situations, it is important for an operator to have the ability to see

certain sensor readings, the calculated state, and/or control outputs. However, viewing of
MPOD data at the surface significantly slows the loop times of Yoda and Luke. Also, a
large data stream delays serial exchange of important parameters, such as hand controller
commands. Therefore, during closed-loop control runs, the operator should view only a
minimal number of the data parameters.

A pilot may use Luke's display to judge the performance of MPOD in real-time.
Besides printing the requested vehicle data, the monitor also provides the user with
communication and message passing status. In addition to serial port handling, PiVeCS
provides a graphic display atop Luke's monitor which enables the pilot to constantly view
the status of communications and the current message being transmitted or received.

State Calculation Control Calculation

Hold Enter

ITQ Esrc sc- r e ee-- M Cal v

I POWER

Figure 21. Luke Keyboard Functions

42

Initialize Luke variables,
serial port, PiVeCS messages

Does
WN-0 Operator wish YTs

to escape from STOP
rogram?

No

Parse and dispatch all received
PiVeCS messages

Request data from MPOD
as commanded by operator

Read keyboard;
send messages to MPOD

Read Hand Controllers

Print important information
on computer screen for operator

Figure 22. Luke Software Diagram

43

3.0 MPOD Dynamics and Physical Parameters

Before the implementation of a control system, sensors must be calibrated, relevant

vehicle physical parameters determined, and an estimated state vector formed using these

values and the available sensor measurements. All equations and calculations were

standardized with SI units. This chapter describes the vehicle equations of motion, MPOD

physical parameters, and results from the sensor calibration tests.

3.1.0 MPOD Equations of Motion

MPOD travels through the water in 3 dimensions with no constraining tether, and has

no significant dynamic modes during free-flight. Therefore, MPOD may be treated as a

rigid body moving through a viscous fluid. During vehicle motion, hydrodynamic drag

significantly affects MPOD's behavior, both in translation and rotation. Because the drag
is proportional to the square of velocity, both the translational and rotational equations of
motion are nonlinear. MPOD's motors provide the only known linear forces and torques.

Unmodelled effects on MPOD include buoyancy offsets from the vehicle's center and
water currents produced by MPOD motors, divers, or pool water jets. Because MPOD is
balanced each time it enters the water, a buoyancy term in the equations of motion would be
a function of balancing success by the divers. MPOD is usually balanced within 0.5 kg of
neutral (i.e. one 1-lb. balancing weight), thus buoyancy offsets may be assumed negligible
and considered as constant disturbances in the control system. Water currents may also
cause significant MPOD motion, but they are unknown in direction and strength. Hence,
they cannot be adequately modelled in the equations of motion and were therefore ignored..

3.1.1 Rigid Body Translation

MPOD locomotive force is provided by twelve motors. Linear acceleration is a
function of the instantaneous forcing and vehicle linear velocity. The equations of motion
along the inertial translational axes are shown in Equations (3.1-1).

44

x 1 (Fx - Cdt I k)

; = (Fy - Cdtl~ ')

S= Ml(Fz- Cdtli) (3.1-1)

where x,y,z = inertial translation state variables, Cdt = the MPOD translational drag
coefficient, Fn = external forcing about the n inertial axis, and m = total apparent vehicle
mass. These equations determine the location of the MPOD vehicle's center with respect to
the inertial coordinate system. The mass term includes water that is accelerated with the
vehicle. The external force, Fn, is produced by MPOD's thrusters. Later in Chapter 3, it
is determined that the drag coefficients are the same about each axis.

Because the coordinates x, y, and z are in inertial space, each forcing term Fn is a
function of both MPOD motor commands and vehicle attitude. The twelve motors arranged
in pairs along the vehicle axes are the control actuators. Linear force in body coordinates is
provided by two motor pairs aligned with each of the vehicle x, y, and z axes. The
direction cosine matrix, [C] , is used to transform the motor forces along MPOD body
coordinates into linear force values along the inertial x, y, and z axes. In Equation (3.1-2),
xn,i and Xn,b are positions along the inertial and body n-axes, respectively. The Fnj and
Fnk in Equation (3.1-3) are forces along the inertial and body n-axes, respectively.

Xxi Xx,b C11 C12 C13 Xxb
Xy = [C] Xyb = C21 C22 C23 Xyb (3.1-2)
Xzi Xzb 31 C32 C33 Xzb

Fy,i = c21 C22 C23 Fy,b (3.1-3)
Fzji c3 1 c32 C33 Fz,b

3.1.2 Rigid Body Rotation

Vehicle rotation is described in a similar manner. Torques due to motor thrust and
hydrodynamic drag dominate the equations of motion. The important difference between

45

the rotation and translation equations is axial cross-coupling due to the moment of inertia

matrix, [I]. The moment of inertia matrix is approximated as diagonal, although there are

inevitably small off-diagonal terms which may be considered as "noise" in the equations of

motion. From calculations described in Section 3.2 and Appendix C. 1, it is shown that the

diagonal terms of the [I] matrix are not equal. The equations of motion for MPOD's 3-axis

rigid body rotation are hence given by Equations (3.1-4).

= 1X (Tx + (I, -Iz) xo- Cdrx W Ox)
Ixx

I = (Ty + (Izz - xx) coxOz- Cdry IqO) Y)

= 1 (Tz + (Ixx -Iyy) Cxy -Cdrz 1o~ 0W) (3.1-4)
Izz

where Inn = moment of inertia about the n axis, Tn = motor torque about the n axis, Cdm =
rotational coefficient of drag about the n body axis, and On = angular velocity about the n

body axis.
A method of describing attitude is in terms of Euler angles, roll (0), pitch (0), and yaw

(N). Using this method, the final attitude is dependent on the order of command execution.

For this thesis, the standard aircraft system was used in which the Euler angles describe the

following sequence of maneuvers: (1) yaw, (2), pitch, then (3) roll. If the maneuvers
were performed in any other sequence, a different final vehicle attitude would result.

Relating changes in the angular velocities to changes in the Euler angles results in a
system of coupled nonlinear equations populated with trigonometric terms. A great
simplification can be achieved if the attitude is instead expressed in the quaternion system.
Expressed in this manner, the evolution of the attitude is still a set of coupled nonlinear
ODE's, but involving only arithmetic computations. Reference 21 contains a complete

discussion of quatemions and their applications. The four quaternion elements uniquely
describe the three-dimensional attitude of an object. They consist of three coordinates
describing an axis in 3-D space and a fourth describing a rotation about that axis, as shown
in Equation (3.1-5).

S= qo + q= qo + qli + q2 + q3k (3.1-5)

46

In terms of the Euler angles 4, 0, and V, the quaternion vector is defined by:

qo = cos -cosl(V +)2 2
ql = sin cos Yv - o)2 2

q2= sin 0sin Y(v - 0

q3= cos ksin y-• + (3.1-6)
2 2

The derivatives of the quaternion vector in terms of the vehicle angular velocities, con, are:

co = - (oxql + oyq2 + (OA3)

41 = l(o2qo - oq3 + o q2)

q2= (coxq3 + coyqo - o1)

q3= I(- oq92 + O• + qo) (3.1-7)

For all state and most control calculations, the quaternion coordinate system is used. The

direction cosine matrix, [C], is calculated from the quaternion estimate using the following
conversion matrix:

c11 c12 C13 1 - 2(q2 + q3) 2(qlq2 - q0q3) 2(qlq3 + qq12)
[C]= c21 C22 C23 2(qlq2 + qq03) 1 - 2(q2 + q3) 2(q23 - qoql) (3.1-7)Lc31 C32 C33 2(qlq3 -qq2) 2 q2q3 + qoql) 1- 2(q + q)

3.2.0 MPOD Physical Constants

3.2.1 Apparent Mass

For an underwater object, the dynamic equations are best modeled by the use of an
"apparent" mass, not the actual mass of the object. In Reference 22, it was shown that the
apparent mass of a body moving in water is approximately twice the actual mass of the
body. This increase in apparent mass is due to induced water velocity around the moving
object.

47

Upon construction, MPOD's dry mass was determined to be approximately 1100 lbs,

or 500 kg (Reference 30). This value may have changed slightly with the addition of the

new control box. However, due to the inability to reassess the MPOD vehicle's mass, the

approximate value of 500 kg is assumed still valid. Multiplying the actual vehicle mass by

a factor of two, the apparent vehicle mass is:

m = 1000 kg (3.2-1)

3.2.2 Moments of Inertia

The moment of inertia matrix, [I], is assumed to be diagonal. This simplifies the

equations of motion considerably, and is a reasonable approximation given MPOD's

symmetric properties. It would further simplify the equations to assume that all diagonal

elements of[I] were equal; however, calculations show that this is not the case.

The most accurate way of calculating MPOD's moments of inertia would be to create a

finite element model of MPOD, then compute each element's moment of inertia with respect

to the vehicle axes. Due to limited time and computer resources, the [I] values for MPOD
were determined using "lumped masses". Major MPOD components were measured,
weighed, then modelled as boxes or cylinders. Components used in moment of inertia
calculations included: main battery boxes (2), control battery box, 80 ft3 air tanks (2), 50
ft3 air tank, control box, motors (12), docking probe, and solid aluminum panels. The
remaining MPOD frame mass was modelled as a spherical shell of radius 0.5 m to simplify

moment of inertia calculations. Appendix C-1 shows the calculation breakdown. The
composite results used in the MPOD equations of motion are:

Ixx 0 0 80.5 0 0
[I = 0 yy 0 = 0 85.9 0 (kg-m 2) (3.2-2)
0 0 Izz 0 0 94.1

3.2.3 Maximum Thrust and Torque

The twelve MPOD motors each provide an equal amount of thrust. Although the
propellers were designed to provide peak thrust at a non-zero velocity, only static tests
could completely separate MPOD thrusters from dynamic effects. The maximum output of
the thrusters was determined by attaching a spring scale to the MPOD vehicle, then
measuring the full-scale force output along each vehicle axis. Each group of four motors
produce a maximum thrust of 120 N, or 30 N/motor. The maximum torque was calculated

48

by multiplying the maximum thrust of the four motors by the moment arm from the vehicle

center to the MPOD motor location. This moment arm was measured as 0.85 m about each

axis. The maximum thrust and torque available for each axis are shown in Equation

(3.2-3).

Fmax = 120 N

Tmax = Fmax (0.85 m) = 102 N-m (3.2-3)

3.2.4 Translational Coefficients of Drag

MPOD translational coefficients of drag were experimentally determined during

terminal velocity tests. Shortly after a constant thrust command was initiated, the vehicle

reached a steady state in which the acceleration approached zero. Then, the only terms

remaining in translational equations of motion (3.1-1) were the known forcing and drag. It
was experimentally determined that the maximum translational velocity along each of
MPOD's axes is approximately 0.5 m/sec. Because all axes also have the same maximum
thrust value, all translational coefficients of drag are equal. Thus the single translational
coefficient of drag, Cdt, is given by Equation (3.2-4).

dt/ _ 120 _ 480.0 kg (3.2-4)
C v (0.5)2 m

3.2.5 Rotational Coefficients of Drag

MPOD rotational drag coefficients were also evaluated with terminal velocity tests.
Analogous with the translation experiments, a constant torque command produced a
rotational steady state in which the angular acceleration was zero. Because the tests were
done one axis at a time, the cross-coupling velocity term in each equation also vanished.
The maximum thrust terminal velocities about the x, y, and z axes are 0.74, 0.62, and
0.62 rad/sec, respectively. The resulting drag coefficients are:

Cdrx ma 102 = 186.3. kg-m 2

Omax (0.74)2

C Cd drz_ Taxl - 102 =265.3 kg-m 2 (3.2-5)
SCT max (0.62)2

49

3.3.0 Sensor Feedback -- Calibration and Accuracy

3.3.1 3-axis Rate Transducer Package

The rate sensors, as described in Section 2.2, measure angular velocities between ± x/2

radians/sec. These rates correspond with rate sensor voltage outputs of ±5V and A/D

readings ranging from 1024 - 3071, with a theoretical null reading of 2048. However,

through all tests, the zero reading of the rate sensors was not consistently 2048, as shown
in Appendix C-2. The expected offsets were countered in the state calculation software

listed in Appendix B-3.

Rate sensor calibration was determined by dividing the maximum A/D reading by the

maximum rate sensor reading. Timed terminal velocity tests agreed with the theoretical

calibration. The following calibration factor to SI units was used in the MPOD software:

Rate Factor = Max A/D count - A/D zero _ (3096 - 2048) = 651.9 counts (3.3-1)
Maximum Angular Velocity i_ (rad

2 'sec

The rate sensor noise was within a two-bit count, or 0.006 rad/sec. See Appendix C-2 for
static test results showing rate sensor null offset and noise.

3.3.2 Depth Sensor

The depth sensor was calibrated by taking MPOD to known water depths and
calculating the corresponding sensor readings. The depth sensor has a maximum output of
approximately +8V at a depth of 20 or more meters. Because the same 12-bit A/D
converter was used for both the angular rate (0-±5V) and depth (0-+8V) measurements,
the full-scale readings were set at ±flV. The zero depth value of (2430 ± 2) counts was
determined by the surface depth sensor reading. The conversion factor from these
experiments is calculated in Equation (3.3-2).

Depth Factor = Depth A/D Count - Zero depth A/D count = 60.2 counts (3.3-2)
Depth in Meters m

50

The depth sensor reading was accurate to two bits, or 0.066 m. See Appendix C-2 for the

depth sensor standard deviation during static testing with MPOD on various areas of the

pool floor.

3.3.3 Pendulum Inclinometers

The pendulum encoders and HCTL-2000's provide a 12-bit value which ranges from 0

to 4095, as described in Section 2.2. This encoder count corresponds to angles of 0 - 21

radians, thus the calibration factor is given by:

Pendula Factor = 12-bit HCTL-2000 Count = 651.9 counts (3.3-3)
2nt radians per revolution radian

Pendulum inaccuracies are produced by dynamic modes of the swinging pendulum weights

during MPOD motion. These pendulum modes have a maximum magnitude no greater

than four bits, or (0.024 radians), as determined by studying dynamic data.

3.3.4 3DAPS Ranges

The range calibration equation depends on the speed of sound in water and the delay

between thumper contact and counter initialization. Experimental calibration is the most

practical method for precisely determining these parameters. To perform the calibration,

MPOD was weighted to the bottom of the pool, then a series of range data was collected.

Next, divers manually measured the distances for each thumper-hydrophone combination

(8 thumpers x 4 hydrophones).

After the experiments were completed, averages and standard deviations of 3DAPS-

determined counts for each thumper-hydrophone combination at each static location were

determined. The average ranges were plotted against the measured ranges. Next, a linear

curve fit was performed to determine the offset and range factor for the conversion from

counts to meters. Equation (3.3-4) shows the calibration equation used in the state

calculation software. Figure (23) shows the composite range calibration plot for three
different MPOD locations. The standard deviation of the ranges averaged 42.7 counts, or
0.032 meters.

Range (m) = 1.011 + (0.000748) Range (counts) (3.3-4)

51

20000

0
C 10000

Cu

0
2 4 6 8 10 12 14

Range(m)

Figure 23. Static Range Calibration Plot

4.0 The Control System

The goal for the current MPOD multiprocessor system is automated docking from any

initial starting point. A fully operational control system would include: 3-axis position

hold, 3-axis attitude hold, and inertial trajectory following. Any combination position and

attitude maneuver should be possible. The controller should be sufficiently robust to

counter slight MPOD buoyancy offsets and water currents, which may be considered
disturbances by the control system.

This thesis does not present a thoroughly tested and proven controller. However,
algorithms and MATLAB linearized control results are presented for possible future
implementation. With gain adjustments, it is expected that the current algorithms are
capable of performing many of the control system goals, from station-keeping to automated
flight.

Before the implementation of a control system, sensor measurements must be used to
estimate vehicle position, attitude, and velocity. This chapter first describes the state
estimation equations and their implementation. Next, a position and attitude hold control
system is developed by linearizing the equations of motion about a set point. Finally, the

52

I

full nonlinear dynamic model is incorporated into a feed-forward linearization control

scheme for large position and attitude maneuvers.

4.1.0 State Calculation

4.1.1 State Vector Elements and their Derivatives

In order to fully examine the dynamic properties, MPOD's translational and rotational
position and velocity must be estimated. Also, the unpredictable null offset in the rate

sensor readings, bn), must be estimated for each measurement sequence. Equation (4.1-1)

shows the components of the 16-dimensional estimated state vector.

Y= [Yl Y2 Y161 T

= [x y z q0q 1 q2q3 Vx Vy Vz ox y a bx by bz]T (4.1-1)

A new estimate of this state vector is determined each time the filter incorporates a new
measurement. Because the equations of motion are integrated during the state estimation
process, the derivatives of all state vector elements must be calculated. These equations
were described in Chapter 3. Equation (4.1-2) shows the complete state derivative vector.

V

q0 2
.. q to + q x

y = = (4.1-2)
1 [Cdt] (V2) sgn())

[I]-'(T-[Cd0r]; x [I] 0)

53

4.1.2 Extended Kalman Filter Equations

Reference 23 describes in detail the derivation and implementation of the extended

Kalman filter equations for MPOD. Equations (4.1-3) show the extended Kalman filter

equations used in the MPOD state calculation software.

[P]+ = ([I] - kjii [P

y = y + ki (gi-zi) (4.1-3)

where

[P] = error covariance matrix

gi = ith expected measurement

zi = ih actual measurement

y = State vector estimate

-" agi
hi = - = Sensitivity of ith measurement to variations in y

ay
ki = [P]- hi = Measurement gain

where a = 2 + hi [P]- hl and

02 = variance of sensor i output

+/- superscripts = quantities after/before measurement incorporation

These equations are updated upon receipt of each new measurement, zi. MPOD filter
software is listed in Appendix B.3, "filter.c". The filter update rate during MPOD runs is
approximately 50 measurements per second.

4.1.3 Measurement Incorporation and State Propagation

Each of the measurements gives information about a combination of state vector
elements. To predict MPOD's 39 sensor measurements, correlation between these
measurements and state vector elements must be determined. Equations (4.1-4) show the
relationship between the thirty-two 3DAPS range readings and state vector elements.

54

(---) -* --gij = dij d =(rij)2

do = i + [C] ii - tj (4.1-4)

where rij = range value from hydrophone i to thumper j, dU = range vector from

hydrophone i to thumper j, [C] = direction cosine matrix defined in Chapter 3, 1 =

hydrophone i position vector with respect to MPOD body coordinates, and tj = thumper j

position vector with respect to inertial coordinates. Note that it and tj are constant

vectors.

The pendula produce the most complex combinations of state vector measurements.

Because they measure only the gravity vector, the inertial yaw reading cannot be

determined with pendulum feedback. The following equations relate the three pendulum

measurements to the inertial space. Note the loss of yaw angle sign information due to

taking the cosine of pendulum angles. To restore the yaw angle sign information, the pitch

angle sign is incorporated into the measurement. Equation (4.1-5) shows the state

parameters relating to the pendulum measurements.

= c33 -= COS(), g = C33 = cos(O),
(c32 + (c33) =(c31) 2 + (C33)

= - sgn(g) c31 = cos(yr) (4.1-5)

/(c31)2 + (C32

where the cij are elements of the direction cosine matrix.

The three-axis rate sensors proportionally affect only the angular velocity (o0) elements

of the state vector, while the depth sensor provides a direct inertial z - coordinate

measurement. Equations (4.1-6) show the correlation between measurements and the
corresponding state vector elements.

- Ox, meas
go = + b= oy,meas , gz = z = (depth) (4.1-6)

In order to determine, at each iteration, how to adjust the current state vector estimate, it
is necessary to evaluate the effect on the expected measurements of first order perturbations
in the estimated state. For this reason, it is necessary to calculate all measurement

55

derivatives with respect to the estimated state vector elements, aY . Equation (4.1-7)

shows the elements of this measurement derivative matrix. Because of the complexity of
the 624 results, they will not be presented in this thesis. Reference 23 shows the complete

set of derivatives used in the MPOD filter calculations.

air agr ar a•r agr
rx ar aW; aD ab
g-P rgp rg p r p r P

agz a a_ a-- * a-

at a * aV ao ab

(4.1-7)

where gr = range measurement vector, gp = pendula measurement vector, gz = depth

sensor measurement vector, and go = rate sensor measurements.

In addition to incorporating measurements during the state estimation process, MPOD

equations of motion must also be integrated. Estimates of vehicle positions, velocities, and

applied forces are used to calculate vehicle acceleration components. See Equations (4.1-2)

A

derivatives, the Yi equations are integrated using a second-order Runge-Kutta algorithm.

The integration procedure uses an intermediate estimate y(t + At /2) between the times t and
(t + At). See Reference 23 for details. Appendix B.3 shows the MPOD state propagation

software in "pstate.c".

4.2.0 Position and Attitude Hold

4.2.1 Linearized Equations of Motion

Because more theory is available for linear control systems analysis, an attempt was
made to linearize MPOD equations of motion whenever possible. For small attitude or

56

ag _
a•y

position changes, the second order terms may be ignored, thus producing linear equations
about which a linear PID control system may be implemented.

MPOD maneuvers may be considered small during station-keeping, or set point
regulation. If the desired position is given by xn,o and the current position is Xn, then
position perturbations from the nominal value are given by (x,,0 - x). The linear velocity
is given by V7. For attitude, small perturbations about a set point may easily be represented
by the use of Euler angles instead of quaternions. The conversion from quaternions to the
Euler angles is given by:

0 = -arcsin (C13) = -arcsin (2*(qlq3 - q2qo))

=-arctan2 c23 , 33 -arctan2 2(q2q3 + qoql) 1 - 2(q + q

os () c()' os()) cos () cos(O)
_) = -arctan arctan2 2(qlq +qq 1- 2(q + (4.2-1)

Scos (0) cos(8)) cos() cos(0) (4.2-1)

Under the small perturbation assumption, second order drag and cross-coupled inertia
terms in the equations of motion may be neglected, such that both the translational and
rotational equations described in Chapter 3 become double integrators. The state-space
form of linear equations of motion is given by:

X = [A] + [B] 6' (4.2-2)

The MPOD linearized equations of motion are:

0n 01 [(xno - Xn) \+ 0lF, (4.2-3a)=-+ Fn (4.2-3a)

n & 0 1 in J-m

1O0 = + Tn[(4.2-3b)
0 0

An

57

where Equations (4.2-3a) represent translation and (4.2-3b) rotations. For convenience,

the matrices in (4.2-3a) will be denoted by [Ax and [Bx] while the matrices in (4.2-3b) will

be [A¢] and [B0].

4.2.2 Proportional-Integral-Derivative (PID) Control Structure

For a double integrator system, the actuator outputs are determined by multiplying

position and velocity estimate errors with "proportional" and "derivative" controller gains,

respectively. To prevent steady-state errors, the position is integrated with respect to time,

then multiplied by a gain to provide the "integral" term of the controller.

Because each position loop and each attitude loop is completely independent, the PID

controller was designed for a single-axis system, then the individual gains were applied to

all axes of the multivariable system. A complete position control diagram is shown in

Figure (24a). For position regulation, the set point, xo, is initialized upon control system

activation. Errors from the nominal position value are fed into the PID system. Note that

the control system only receives the estimated state determined from sensor measurements.

The detailed PID position diagram is shown in Figure (24b). The proportional gain

corrects the current position error, while the derivative gain is used to damp non-zero
velocities. The integral gain is used to keep steady-state errors in line. With a nonzero
position error, the integral terms grow with each time step, inducing MPOD to return to its

set point position. For software implementation, a maximum limit was placed on the

integral feedback term, due to the possibility of an unstable system.

During attitude regulation, MPOD must point in a constant direction with respect to the
inertial coordinate system. Figure (25a) shows the complete attitude system diagram. As

with position, the initial attitude upon control system initiation is used as 10, the set point.

Then errors between the estimated attitude, 0, and set point attitude are fed to the PID
controller, which is depicted by Figure (25b).

The structure of the open-loop MPOD system is shown in Equations (4.2-4), where
T(s) is the PID open loop transfer function, where the Kn are gains to be determined.

T(s)= - (+KI+ Kp+ Ks) KI + Kps+ KD s (4.2-4)

58

Figure 24a. Position Hold Block Diagram

Figure 24b. Position Hold Control Diagram

Figure 25a. Attitude Hold Block DiagramD

Attitude Hold Control DiagramFigure 25b.

Note that for certain gains, the system may contain unstable right half-plane poles. The

PID closed loop poles and zeros of a double integrator dynamic system are given by the
transfer function, C(s), shown in Equation (4.2-5). The next section describes one method

by which control system gains may be determined. The results are only an example of

many possible methods for gain calculation, and should be considered accordingly.

T(s) (s2 KD + s Kp + K) (4.2-5)
1 + T(s) (S3+S2KD+S Kp + K)

4.2.3 LQ-Servo with Integrator Results

The Linear Quadratic Servo problem (Reference 24) provides an optimal stable solution
for the gains of a linear PID control problem. The solution relies on the minimization of a
cost function, J, which is described in Equation (4.2- 6).

J = (; [Q] - + i-r [R] ii)dt (4.2-6)

The matrices [Q] and [R] are to a certain extent arbitrary. For simplicity, the [Q] matrix
was chosen to be the identity matrix. Because MPOD has only one forcing input per
equation, [R] was one-dimensional, hereafter labelled p.

To incorporate the integrator into the state-space equations, the state vector is
augmented. Equations (4.2- 7a) and (4.2- 7b) show the position and attitude augmented
state equations for control gain analysis. Note the addition of two new variables: w, the
position integral variable, and a, the attitude integral variable.

010 0
=0 0 1 (xn,o- n) + 0 Fn (4.2- 7a)

Lx 000 [o j
-M

61

E0 0010

0

0 TIn (4.2- 7b)

1
Inn

For a closed loop LQ-Servo system, the forcing is determined by the estimated state

feedback and desired set point. The control and closed-loop state-space equations are:

u = -[K] x - xse

S= ([A]- [B] [K]) ' + [K] Xset (4.2- 8)

Note that Xset in the above equations replaces the xo and o elements of xi in Equations

(4.2-7).

The LQ-Servo gain matrix is calculated with the Control Algebraic Ricatti Equation

(CARE). Equation (4.2- 9a) shows the CARE. The solution of CARE, [L], is used for

determination of the control system gain matrix, [K] = [KI Kp KD]. Equations

(4.2-9b) shows solution for [K].

- [L] [A] - [A] T [L] - [Q] + [L] [B] [R]- [B]T [L] = 0. (4.2- 9a)

[K] = [R]-I [B]T [L] (4.2- 9 b)

Appendix E.1 shows the position LQ-servo results. The Macintosh MATLAB program
was used for all control system analysis. For the "cheap" control problem with p = 0.0001,

optimal position gains were determined to be:

[Kx]= [K,x Kp,x KD,x]=[100.0 447.5 951.3] N (4.2- 10)

The limiting factor in control system gains was the maximum available actuator output.
The value of p was chosen such that the thrusters would saturate when MPOD was a

distance of 0.3 m from the desired set point. The system gains were tested by simulations
of the linearized equations with an initial position offset of 0.3 m from the desired set point,
then with a constant disturbance of magnitude 10 N, to represent water currents. Resulting
plots are shown in Appendix E. 1. The response time of the system, due to control gains

62

limited by available control authority, was approximately 10 seconds. Overshoot was

50%. This value is quite large, indicating the need to introduce more system damping.

.Appendix E.2 shows the attitude LQ-servo results. Note that this sample single-axis

LQ-Servo used the average of the three moment of inertia values for gain determination.
For p = 0.0001, optimal rotation set point gains were determined to be:

[KO] = [Ki, Kp,, KDA,] = [100.0 242.0 242.8] N-m (4.2- 11)

As with position, the value of p, and hence the system gains, were limited by thruster

power. Gains were chosen such that the thrusters would saturate at 0.5 radians from the

set point. The system gains were tested with an initial attitude offset of 0.5 radians, then

with a constant disturbance of magnitude 10 N-m which represents a buoyancy offset.

Note that this disturbance value is much larger than would be expected in real applications.

Plots of the tests are shown in Appendix E.2. The response time was approximately 5

seconds, half that of the position response. The maximum overshoot is 25%. As with the

position response, this high value should be countered with more system damping.

4.3.0 Automated Maneuvers

4.3.1 Feed-Forward Linearization Structure

When performing large magnitude position and attitude maneuvers, velocities are not

small, so the equations of motion may not be linearized as in Section 4.2. A control

scheme known as feed-forward linearization has been developed to enable nonlinear

dynamic systems to be controlled as if they were linear. Reference 25 describes the
rationalization behind this linearization procedure.

The main purpose of feed-forward linearization is the cancellation of nonlinear
dynamics by feeding forward these terms through the control output. For position, the
only nonlinear term in the equations of motion is drag, which is proportional to the square
of velocity. Because the state estimator provides a value for the linear velocity, the drag
may be estimated. By subtracting the drag term from the control force, the net drag force
entering the MPOD plant is zero. Thus the system behaves as if drag were not present.

Figure (26a) shows the position feed-forward control diagram. Note the addition of
drag to the plant dynamics. The control block of Figure (26a) is expanded in Figure (26b).
Except for gain values, the PID portion of the controller is identical to that described in

63

Figure 26a. Position Maneuver Block Diagram

Figure 26b. Position Feed-Forward Control Diagram

64

Section 4.2 for regulation about a set point. However, a new feedback path is introduced.

Equation (4.3-1) describes the control forcing output, Fn, given estimated states values of

(n , xn) and desired state values of (Xn,d, Xn,d).

Fn G,x (n,d -in) + GI,x f (Xn,d (t) - n(t)) dt + GD,x (n,d) + Cdt J n (4.3-1)

For attitude, drag is only one of two nonlinear terms in the equations of motion. The

other term arises from cross-coupling produced by the term o X [I] (0. As with drag, this
nonlinear inertia term may be cancelled by the actuator torque, Tn. Figure (27a) shows the
complete system diagram for large attitude maneuvers. The plant dynamics are affected by
both the drag and cross-coupled inertia terms.

Because the attitude is expressed in inertial coordinates while the angular velocity and
acceleration are in body coordinates, the nonlinear kinematic inversion depicted in Figure
(27a) must be performed on the desired and estimated vehicle attitude elements. The
attitude controller then receives the angular velocity discrepancy from a desired value, so
that a proportional-derivative control system may be implemented with respect to each of
the body axes.

Figure (27b) shows the detailed control scheme with the feed-forward nonlinear terms.
Hydrodynamic drag and inertia cross-coupling are fed through the control system to cancel
the nonlinear dynamics. Equation (4.3-2) shows the elements of the control torque, Tn,
with angular velocity estimate Cn and desired angular velocity COn,c.

Tn = GP((nd(t) - (t)) dt + GD,(Od-) + Cdmnj ' - x([I] ()' (4.3-2)

4.3.2 Feed-Forward System Gains

The PID feed-forward system gains may be determined as for any linear PID system.
The only limiting factor is the control authority used by the feed-forward terms. The
maximum expected force required to cancel the translational drag term would occur when
MPOD is moving at terminal velocity, x = 0.5 m/sec. The required force to completely

cancel this term is equal to the MPOD maximum thrust value of 120 N, by the definition of
terminal velocity in Chapter 3. This means that the feed-forward drag term will always

65

Figure 27a. Attitude Maneuver Block Diagram

Figure 27b. Attitude Feed-Forward Control Diagram

66

have the capability to cancel nonlinear plant dynamics, but may also limit the PID control

authority.
For attitude, the maximum required torque to completely cancel rotational drag is

also equal to the terminal angular velocity about each axis. The same thruster saturation

condition is true for attitude as was true for position. Finally, the nonlinear inertia term

is always small in magnitude, due to only slight differences in axis moments of

inertia. Therefore, there is no chance that the cross-coupled inertia term will alone cause

thruster saturation.

The feed-forward linearization scheme is easy to implement, while still accounting

for nonlinear terms in the equations. This system should be considered for the MPOD
control system used for large attitude maneuvers.

5.0 Experiments and Test Results

MPOD underwater tests were conducted at the MIT Alumni Pool. Because the pool

was used for swimming during normal hours, tests were held every 2-3 weeks on

Saturday nights and the following Sunday mornings. The main disadvantage to such a
schedule was the infrequency of testing and inability to debug many problems in time for
the rest of the test session. For example, 3DAPS on MPOD could only be tested while
both were completely submerged, so that with each modification, a long wait followed
during which there could be little debugging. MPOD and 3DAPS would then be placed
back in the pool, only to find that the supposed "solution" to the problem had not actually
been effective. Many MPOD pool tests were used for debugging 3DAPS in this manner,
primarily because of the inability to find errors between test sessions.

All pool test data presented in this thesis was gathered during the weekend of April
21-22, 1990. Static data from previous pool tests was valid; however, the 3DAPS
calibration offset had changed with the conversion from NOVRAM to EPROMs in the
microcontroller boards. This range offset will be the same so long as the 68HC11 software
is not modified. The calibration parameters in Chapter 3 were valid for all pool test data
presented in this thesis.

The experiments were conducted and analyzed in the following order. First, static
tests were performed in which MPOD's location could be determined empirically without
relying on the data. Second, to distinguish translation maneuvers from attitude
movements, a balanced MPOD was flown in an upright attitude between two fixed points.
Finally, attitude maneuvers were included in free flight testing.

67

Before studying the state estimator's performance in underwater tests, relatively
ideal surface experiments were performed in simulation. In addition to providing unlimited
time for data collection, the simulator provided its own state calculations, with which the
state estimations were quantitatively compared. This chapter presents a description of the
simulation algorithms and test results for the study of state estimator performance.
Following simulation results, state calculation data from underwater MPOD tests is
presented with a qualitative performance analysis.

5.1.0 MPOD Simulation

Two simulation programs were written to run on the MPOD computers. They were
performed on Obi-Wan because it was a 286 processor with math coprocessor, had access
to all dual port RAM, and had the least responsibility during state calculation tests.

5.1.1 Dynamic Simulation Description

The simulation software was implemented on MPOD because of the speed of the
available parallel processing and the ability to debug most of the software in its flight
configuration. The first of the two simulations was written to enable testing of both the
state calculation and future control systems. The operator may choose any initial position
and attitude, assuming a zero initial velocity. For dynamic tests, the control station hand
controllers may then be used to "fly" the simulator as the vehicle would be flown. Both
simulated and estimated data were viewed on the screen, with the option of data saving on
Obi-Wan's NOVRAM.

The dynamic simulation software is shown in Appendix D. 1. The hand controller
commands are converted to thrust and torque values which are used in the simulation
equations, then sent to the filter. For integration of the equations of motion, the dynamic
simulator uses a fourth order Runge-Kutta algorithm. Reference 26 describes the software
used in the MPOD simulation. After the simulator calculates the expected MPOD states,
sensor measurements are calculated. Because the real sensors contained a known amount
of uncertainty, the simulated sensor measurements were each corrupted by random noise
proportional to twice the corresponding actual expected sensor noise. This value was
chosen to account for unexpected sensor behavior, and examine the filter response when
suboptimal conditions were present.

Because the simulation and filter software were running on different computers, the
loop times were slightly different. Therefore, the simulation and filter time steps used in
the equation of motion integrations did not precisely match. This could have been

68

advantageous for analysis purposes, due to the fact that the state estimation loop does not

exactly integrate at real-time.

The simulation software contained the same dynamic parameters as the filter

software. Because the actual MPOD parameters most likely do not agree with the

numerical estimates, MPOD dynamics could later be modified in the simulator in order to

observe the resultant estimated state discrepancies. It is expected that at least the linear

velocity estimate will not match nearly so well, due to the fact that no sensor feedback is

available.

Another useful addition to the simulator would be disturbance modelling. By

applying disturbances to the simulator equations of motion only, the filter would be forced

to rely on the sensor measurements for disturbance rejection. In this manner, MPOD's

ability to calculate its state despite water currents or buoyancy offsets may be examined.

5.1.2 Simulation Static Tests

Although the filter should ideally be started when inertial and MPOD body axes are

aligned, this is not always feasible. When starting near the filter initialization point, the
state estimate consistently converges to the proper value. However, the filter may not
converge to the actual state if MPOD is sufficiently far from the initial estimate. The
simulator was used to test the filter's ability to converge to a new state, given the initial
state estimate of the pool center, or x=0, y-0, z=2 m, with inertial and body axes aligned.

Figures (28) and (29) show the position results for different static locations. The
first figure shows estimates derived from a low initial covariance (P = 0.2 m), which
indicates to the filter that the state estimate is "close" to the actual state. Figure (29) shows
the state estimates when a high initial covariance (P = 3.0 m) is passed to the filter,
indicating a high level of uncertainty in the current state estimate. Three possible static
positions are shown.

With all the runs, the large initial covariance produces a large overshoot in state
estimate. However, the low initial covariance runs require much more time to stabilize to
the final value; for example, in the second run, with x=-3m, y=Om, z=3m, the low initial
covariance barely converges after 35 seconds, while the high initial covariance run for the
same static point overshot by up to a meter, but settles to the correct value within 6
seconds. Except for the z=lm coordinate in the third static position run, all the static
positions shown in these figure settle to their correct steady-state values. In both the high
and low initial covariance runs, the z=lm location in the third run settles to -1.2 m.
Perhaps with more testing and further covariance parameter tests, the position behavior

69

Figure 28. Static Simulation Position Plots with Low Initial Covariance

Static Simulation Positions (x=3m, y=3m, z=3m)
3.5

3 -

2 .5......
2 /

1 .5 ------- ------------i-------- ---- ---------i-------- -------------i--------1.5

91 x (m)

0.5 ------------------------------- y (m)
- 1 -zc(m)

-0.5

0 1 2 3 4 5 6
time (sec)

0 5 10 15 20 25 30 35
time (sec)

Static Simulation Positions (x=2m, y=-4m, z=lm)

-.1 -- -- -- -- 8---x-(m)0- 2 . -- I--------- - -. -z.m.

-34L EJ- 3

-4

0 5 10 15 20 25
time (sec)

70

Figure 29. Static Simulation Position Plots with High Initial Covariance

Stati
6

5

4

3

2

1

0

-1

0 2 4 6
time (sec)

8 10 12

Simulation Positions (x=-3m,I I I I 1=Om, z=3m)

................ ----------.---- ---- ---- --.-- ----

- x (m)..................... ---.......------ .m)..--- -y(m)
............ - - (m)

............ ---- - --

/i , "..

†.. . 1-"
0 2 4 . 6 8 10 12

time (sec)

c Simulation Positions (x=2m, y=-4m, z:

-I -

. . .. ----------.... •- -- .

.' ..- .- --.- .. -- -- --

............ ;----.----- - .----- ------- ---------------------
: : ', i •

Stati
4

3

2

1

O0

-1

-2

-3

-4

Statii
8

6

4

2

0

-2

-4

-6

2 4 6 8
time (sec)

=1m)

x (m)
y (m)
z (m)

10 12 14

71

C

i

i

as

mm

I I I I I I I

m

may be assessed and better predicted. However, the current recommendation remains to

start the filter near the pool center, which is the defined zero point in the software.
Figures (30) and (31) show the static test results for attitude convergence to a

known value. Three distinct convergence cases were shown in static tests, one with the
low initial covariance value of P=0.02, and the other with the high initial covariance value
of 1.0. For a 1800 pitch angle, the initially high covariance system converges to the proper
attitude within 6 seconds, while the initially low covariance run shows the beginnings of
convergence after 30 seconds of testing.

The worst steady-state error in the static simulations was observed during the
second test, representing a -900 yaw attitude. This discrepancy may partially be due to the
fact that pendula do not assist in the state estimation, while in the other two runs, the
pendula do provide information about the altered vehicle state. The quaternion elements qi
and q3 converge to the proper values within 5 seconds, however, qO is low by
approximately 0.1 in both runs, while q2 is unexpectedly nonzero, at a steady-state
magnitude of -0.3. A long-duration run of more than a minute was conducted which
confirmed that the quaternion elements were indeed experiencing steady-state errors, not
just slow transient responses. No solution to this problem has yet been found, although it
is suggested that initial covariance and state variance parameters be varied, with the hope of
finding some relation between convergence and filter parameters.

The final attitude test shown in Figures (30) and (31) is a static 900 roll angle. Yet a
third convergence case was observed. The low initial covariance run produced quaternion
elements to within 0.1 of the desired value within 4 seconds, but the high initial covariance
run never converged. Note the interesting sinusoidal behavior of the zero quaternion
elements.

As previously stated, the best guarantee of a filter with no steady-state error is to
start the state calculations with the vehicle near the initialization point of the filter software.
From the static tests, it appears that position converges to the proper steady-state value
more easily than attitude, and is not as sensitive to the choice of initial covariance.
However, further tests need to be performed to quantify the affects of filter parameters on
static state estimate convergence.

5.1.3 Simulation Dynamic Tests

By using the simulator to generate dynamic MPOD data, the "actual" vehicle state is
always known. Performance of the state estimator may then be determined by comparing
its estimate with the actual state as a function of time. Figure (32) shows the positions

72

Figure 30. Static Simulation Attitude Plots with Low Initial Covariance

1

0.5

0

-0.5

-1
0 5 10 15 20 25 30

time (sec)

1

0.5

0

-0.5

-1
0 5 10 15 20 25

time (sec)

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Static Simulation Attitudes (900 Roll)_
. I I I .

,m::

.
... - l

-

--

q

............... . . q3
R 6

-

:I

4 6
time (sec)

73

10

,,m

m" m l • m

Figure 31. Static Simulation Attitude Plots with High Initial Covariance

1.5

1

0.5

0

-0.5

-1

0 2 4 6 time 8 10 12
time (sec)

Static Simulation Attitudes (-900 Y w
1.5 --e-CIO

--- E -q1

1
- -x--q3

0.5..0.5.................................. .- -"-...... ----

......- -......×... ...--x ---.--- x--i -..

-1-X
0 2 4 (8 10 12 14

time (sec)

Static Simulation Attitudes (900 Roll)
1.5 I I

!4 Ir
1

0.5

0

- e -q2...................................... I3
.......... :..--.....-... :.......... -.

--

--

-o .5 - -- ----. ------------------------ I..-0.5 --- e--

-1
0 5 10 15

time (sec)

74

during a typical dynamic state calculation run. The x and y estimated position curves match

the actual state curves in both shape and magnitude. However, the estimated z value does

not agree, by up to a -1.7 m discrepancy.

As expected, the estimated linear velocity curves shown in Figure (33) are not quite

so accurate as the position plots. The estimated z-velocity matches the actual value up to

approximately 20 seconds into the run, at which point it appears to mirror the actual value.

This seems to indicate that the z-thrust is being used in an inverse sense by the estimator.

Currently, the source of this error is unknown.

Figures (34) and (35) show the quaternion elements of the state vector. The first

quaternion shows two distinct spikes at times of approximately 38 and 44 seconds into the

run. It is suspected that these are associated with the "state variance" being added to the

covariance during each filter loop. Although its magnitude is only 0.0001 for these

calculations, the state variance boosts the covariance values by 0.005 every second. This

may be significant in attitude calculations.

Except for the initial startup transient and two spikes of maximum amplitude 0.4,

the quatemion estimates qO, ql, and q2 match the actual state to within 0.006 of their actual

values, while q3 has a maximum error of magnitude 0.12. By studying Figure (36), the q3
discrepancy may at least partially be explained by the yaw velocity error. This error is due

to the simulated null offset of the yaw rate sensor. Starting at a simulated initial offset of

0.15 rad/sec from the filter expected offset value, the estimated yaw velocity underwent

transient behavior to account for the unexpected rate sensor null offset. Note that the roll

and pitch angular velocities shown in Figure (36) are accurate to within 0.05 rad/sec for the

entire simulation run.

Although no definite conclusions may be drawn from the dynamic simulation
results performed to date, it seems that the state estimator is performing its job reasonably
well. Two positions and three quaternion elements were acceptably accurate, with one
quaternion possibly corrupted by rate sensor null offset and one position corrupted from an
undetermined source. Hopefully with insight gained by more covariance and state variance
analysis, all elements of the state vector will consistently agree with dynamic simulation
results.

5.1.4 Real-time Simulation using Pool Test Data

The state calculation software had not been thoroughly debugged before the MPOD
pool test in which the data was collected. Therefore, a simulation was developed in which
the pool test data could be fed into the state estimation software exactly as it would have

75

Figure 32. State Estimator Position Tracking

Dynamic Simulation
U i

M- x Im)
Ul

------- x(m)

.... l -x(est)

.

...

i

.......... \.....
-y

10 20
time

4

40 50
I

30
(sec)

0 10 20 30 40 50
time (sec)

Dynamic Simulation -- z (m)- II

0.5

0

-0.5

-1

-1.5

-2

-2.5

-3

7

6

5

4

3

2

1

0

-1

10 2time (sec) 0 40 50

76

1-

0-

-1-2-

-2-

3- %

-4-

-6

-6

-- E -z(m)

..

I _ _ _ _ _

~_L ·-L1 F ·- --· n .~.\...1..................~....... ..ow

-I I

-I

..

..

..
.....

...

I

I _

..

.......

A-_

-r L-

-41

-- 0

--II

State Estimator Linear Velocity Tracking

0 10 20 30 40 50
time (sec)

0 10 20me (s 40 50
time (sec

77

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

0.1

0

-0.1

-0.2

-0.3

-0.4

0.6

0.4

0.2

0

-0.2

-0.4

0 10 20 ?o30 40 50
time (sec)

Figure 33.

State Estimator Attitude Tracking (qO & ql)

Simulation --
1.2

1

0.8

0.6

0.4

0.2

0

-0.2

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

Simulation --

78

0 10 20 30 40 50
time (sec)

0 10 20 30 40 50
time (sec)

Figure 34.

Figure 35. State Estimator Attitude Tracking (q2 & q3)

Simulation --
1

0.8

0.6

0.4

0.2

0

-0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

79

0 10 20 30 40 50
time (sec)

0 10 20 30 40 50
time (sec)

Figure 36. State Estimator Angular Velocity Tracking

Dynamic
0.2

0

-0.2

-0.4

-0.6

-0.8

Simulation -- Roll Velocity (rad/sec)
a I "

83...
....................------------------- ----------- ---------

II

II

II

i

0 10 20,, (,,? 0 40 50

Dynamic Simulation -- Pitch Velocity (rad/sec)
0.7

0.6

0.5

0.4 -9-.--wy
0.3 -- E - wy (est)

0.2

0.1

0

-n i i
I I-I 1 1 I

2 time (sec 0 4010 50

80

-0.

-0.

-0.

-0.

-0.
-0.

0 10 20 30 40 50
time (sec)

S- w x (est)
- -wx(est)

I

I IFm, :A A f--- -

-v.II

occured during real-time underwater experiments. Because MPOD was flown open-loop,

sensor data and thrust commands could be used to recreate each underwater test.

All MPOD state calculation results presented in the remainder of this chapter were

produced during post-test simulation with the pool data. The only software changes from

the flight Obi-Wan software involved reading motor commands the sensor data instead of

calculating or writing them. Because less 3DAPS data was generated than for the other

sensors, the data was read from the range data file at an infrequent interval. By trial and

error, the software was set such that 3DAPS ranges were read at approximately the same

rate as they were originally generated. The minimal changes to the Obi-Wan software

meant a program which ran at approximately the same speed with the same sensor and

thrust values during the actual underwater tests. Note that the Lando software was not

modified for the simulation, so that the state calculations occur precisely as they would at

the pool. Appendix D.2 shows the main driver program for Obi-Wan as modified for

these simulation runs.

5.2.0 Underwater Static Tests

5.2.1 Test Procedure

Sensor calibration and underwater static state estimation tests could only be

assessed if MPOD's position was known and remained constant during data collection.

For the pool test, three different physical locations were chosen to assess MPOD sensor

and state calculation performance in a variety of static situations. To prevent MPOD from

drifting, the cage surrounding MPOD's bottom motor ducts was anchored to the pool floor

with 50 lbs. of diving weights. Figure (37) shows the three locations used for static tests.

They will hereafter be referred to as Loci, Loc2, and Loc3.

Static testing was performed in the following sequence: (1) MPOD was firmly
stabilized on the pool floor, (2) sensor data was taken, (3) divers measured from each

thumper to each hydrophone while the static test data was uplinked to Luke. Between static
tests, data was collected as MPOD flew in a triangular pattern from Locl to Loc2, from
Loc2 to Loc3, then back to Locl.

81

Docking Target

Location 2

Location 1
Location 3

O
(x=-3, y=3, z=3)

(x=-2.8, y=0.4, z=3.5)

Figure 37. Static Test Pool Locations

5.2.2 Static Testing for Sensor Calibrations and Accuracies

The easiest method for calibrating 3DAPS was to take static data from a constant
underwater locations, then perform a linear curve fit on a plot of range data vs. measured
ranges. The static testing described in this section was used for the chapter 3 range
calibration. Appendix C.3 shows the range calibration plots for each location. Note that
the curve fits are approximately the same for each of the three locations. In calibrating the
ranges, hydrophones that were blocked from a thumper by MPOD were removed from the
data. Blocked hydrophone-thumper combinations produced either a completely ridiculous
range value, or a range which was consistently wrong by a few thousand counts. The
consistently erroneous range is suspected to result from either a reflection or non-straight
line component of the thumper acoustic pulse.

Other sensors examined during the static tests include the rate and depth sensors.
Although the rate sensor static properties were also examined at the surface, the underwater
static tests were used to verify that a closed control box underwater did not affect their
properties. The depth sensor was calibrated during MPOD static tests. By measuring the
distance from the water surface to the MPOD center, the sensor reading was calibrated.
Also, it was observed that the depth sensor had far more static error during underwater
tests than for the zero depth at the surface. The source of this error is suspected to be water
currents which produce pressure changes across the depth sensor inlet. Appendix C.2
shows a chart of observed averages and standard deviations of MPOD's sensors during
static tests. Significant non-zero rate sensor null offsets were present in roll and yaw rates.
Depth standard deviation was less than 0.1m, while the average range standard deviation
was 42.7 counts, which corresponds to a 0.05 m standard deviation.

5.2.3 State Estimation Properties

Because only ranges were measured during static tests, there was no method for
precisely determining MPOD's location in the water. By visual inspection, the upright
MPOD attitude was determined to within a few degrees, while the 3-axis position elements
were assessed to within a meter. Note that the depth was deterministic because MPOD was
resting on the pool floor.

Table 5.2-1 shows the static locations as determined by the filter. Except for the x
value at Loc3, the estimated locations, both quaternions (N0.1) and positions (+0.5 m),

83

agreed with actual values. Also shown in the table are the standard deviations of state

calculations during each test.

x (m) y (m) z (m) qO q1 q2 q3

Location 1: average -2.79 0.438 3.601 0.087 0.066 0.07 0.99

standard 0.025 0.034 0.027 0.052 0.018 0.012 0.007
deviation

Location 2: average 3.935 2.68 3.736 0.095 0.019 -0.07 -0.98

standard 0.11 0.133 0.201 0.136 0.049 0.04 0.033
deviation

Location 3: average -3.21 3.137 2.94 0.793 0.232 -0.19 -0.52

standard 0.082 0.169 0.197 0.047 0.06 0.026 0.05
deviation

Table 5.2-1 State Estimate Averages and Standard Deviations

5.3 Underwater Dynamic Tests

5.3.1 Test Procedure and Limitations

For dynamic state estimation tests during MPOD flight, the vehicle was flown from
the surface control station. Data was recorded on MPOD, then uplinked to the surface
between runs. At the beginning of each test, the vehicle was held in place for two complete
3DAPS iterations to enable some stabilization of the state estimation software. Then,
MPOD was flown in some maneuver which was visually assessed as well as possible.

Because there was no way to measure MPOD movements during flight, the actual
vehicle position and attitudes are completely unknown. Therefore, the state estimation
results cannot numerically be assessed. They may, however, be qualitatively studied from
the general pattern and directions of motion.

84

5.3.2 Constrained Straight and Level Flight

The first series of dynamic underwater tests was performed with the assistance of

divers. The MIT Pool is separated into lanes, each marked by a black stripe along the "y-
axis" of the pool floor. To assess MPOD's ability to calculate a known single-axis

translation maneuver, divers prevented the vehicle from drifting as the pilot flew along a

black stripe. The test results presented in Figures (38) - (42) were made from a flight

beginning near the +y pool wall and continuing along the black stripe until -2 m past the

plane containing thumpers 2,3,6, and 7.

Figures (38) and (39) show the position and linear velocity plots, respectively, for

the constrained test run. The y-position performs as expected, with a linear slope

corresponding to the predicted y-velocity. The x and z curves are difficult to assess. The

only position problem observed in the state plots is the unexpected increase in depth near
the end of the run. This currently cannot be explained, but corresponds with the velocity
estimate.

Attitude plots are shown in Figure (40). The known direction MPOD was facing

corresponded with quaternion values of qO = 0.7, ql = 0, q2 = 0, and q3 = -0.7. This

attitude was the same as in the -90' yaw static simulation tests described in Section 5.2. It
is useful to note that the -0.3 offset of quaternion element q2 was present in both the

simulated static calculations and the actual pool test attitude calculations. If nothing else,
this result lends an assurance of accuracy of the simulator to predict actual system behavior.
Note that the angular velocities are zero except for an unexpected transient due to a yaw rate
sensor null offset.

Figures (41) and (42) show ranges from hydrophones to thumpers. Because of
their inaccurate values, the hydrophone-thumper paths which were blocked by the MPOD
vehicle were not included in these plots. It may be of interest to note the local minima on
the thumper 2, 3, 6, and 7 plots. The range values reach a minimum as the vehicle passes
through the plane containing the thumpers. Then, the range values again increase. Ideally,
all motion should be completed within the 3DAPS area, due to both thumper pointing and
calculation accuracy. However, in this test, no instabilities were noticed after exiting the
defined 3DAPS area.

85

Figure 38. Constrained (-y) Flight -- Positions

2.2

2

1.8

1.6

1.4

1.2

1

0.8

4

2

0

-2

-4

-6

-8

5.5

5

4.5

4

3.5

3

2.5

2

0 5 10 15 20 25 30 35 40
time (sec)

86

0 5 10 15 20 25 30 35 40
time (sec)

0 5 10 15 20 25 30 35 40
time (sec)

Figure 39. Constrained (-y) Flight -- Linear Velocities

0 5 1 0 15 20 25 30 35 40
time (sec)

0 5 10 15 20 25 30 35 40
time (sec)

Constrained

-y

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

-0.05

I I -
Flight -- z-velocitv (m/sec)
U - II I I U

..
r ---------- -- ------- -- ----- -..-.....

............·.·-...... .-..~...

.............................:............ ...-..........

...........................

SI-e--gIvz
....

0 5 10 15 20 25
time (sec)

30 35 40

87

0.25
0.2

0.1,

0.1

0.05

C

-0.05

C
0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

]
mill

L

J
Lm

I

F -IJ

.............. -----

M

F m /i i...........4 ý
L 1 -- - - - -

I -

_r _

-

-I

3

Figure 40. Constrained (-y) Flight -- Quaternions and Angular Velocities

Constrained -y Flight -- Quaternions (.900 Yaw)
1*

0.5

O0

-0.5

-1

U

U

r N ~ -"'~~~S-J

..

U

oqO
-ql

-9I -qI
- e -q2

-- x--q3
4

* 1 I L I I -

0 5 10 15 20 25
time (sec)

Constrained -y Flight
I I I "I

30 35 40

-- Ang. Velocities (rad/sec)
I - I I , -

~-------- ·--; -- -- - ·-- ---- --- - --- -- ----- ------------- - -t! :• 0

.

'

*u J ,........ • •........ l......

G- wx

-wy

$ -wz

U

0 5 10 15 20 25 30 35 40
time (sec)

88

•I 4

U

U

U.I

0.05

0

0.05

-0.1

0.15

-0.2

0.25

-0.3 I I I I I I

mmmmý I

............ L -

r

I
I

w

L-

Figure 41. Constrained (-y) Flight -- Thumper 0-3 Unblocked Ranges

-y Flight: Thumper 0 Ranges

0

1/3

Cu0

Cu0€o

au

0ca

Pc8

a
M

Ad

18000
16000
14000
12000
10000
8000
6000

18000
16000
14000
12000
10000
8000
6000

13000
12000
11000
10000
9000
8000
7000
6000

14000

12000

10000

8000

6000

0 U

*. .1
U U

" 5
m I
I

I1

I * I * I I * I * I

2 4 6 8 10 12 14

-y Flight: Thumper 2 Ranges

) 2 4 6 8 10 12 14
-y Flight: Thumper 3 Ranges

10 12

89

El'
U

I I I I· * I *

-y Flight: Thumper 1 Ranges

(

(1

0 0
*

0

* a
[]

m []* ***
U *

* . = , . * ...* 0 * 00 0
U U

U U

--

I I 1 T I · 1 · i

I

0 2 4 6 8 10 12

I

-

-

-

-

Figure 42. Constrained (-y) Flight -- Thumper 5-7 Unblocked Ranges

+X: Thumper 5 Ranges
18000

16000
14000

12000

10000

8000
6000

4000

14000

12000

10000

8000

6000

4000

0 2 4 6 8 10

+X Flight: Thumper 6 Ranges

2

il

14000

12000

10000

8000 -

6000 -

4000 -

2000

* *

0

**U

His
ii i

U * *
- I - I -

0 2 4 6 8 10 12 14

+X Flight: Thumper 7 Ranges

10 12

90

[]

. *U·

S l! *

I

in i

S* I I
•I I " I " I '

*l 0
03 *

* *

SI * I * I *

-

-l

-

1

-

-

" I | I I

5.3.3 Free-Flight

To assess the state calculation performance during position maneuvers only, several

flight tests were performed in which MPOD was kept at an upright attitude. Straight and

level flight was achieved through good balancing and minimal use of motor torque

commands. Also, because vehicle control is most intuitive from a straight and level
attitude, this orientation was desirable for tests conducted through pilot flight with hand

controllers. After completion of the constrained tests, straight and level flight was

performed with only pilot control. Several flights were performed, including docking to

the underwater target, flying along the x and y axes, and flying straight and level with yaw.

Figures (43) - (49) show the results of an MPOD docking run. The positions move

in the expected pattern, with the x and y positions levelling off near the docking site.

Because data collection stopped due to Obi-Wan NOVRAM overflow before the final

satellite docking was completed, no precise comparisons of known target position and
MPOD state calculations are possible. The final levelled y-position of MPOD, y=2.5 m,
agrees with the measured target y-location. However, the x-estimate of 5.0 m is too large
by approximately one meter from the expected docked value. As with the depth value in

the constrained -y flight, the docking run z value increases to greater than expected near the
end of the run. With multiple runs producing the same problem, it may be suspected that
some consistent calculation error is occuring. This could be due to either filter parameters
or some other software calculation which has not yet been discovered.

The attitude during the straight and level docking run should approximately hold the

quaternion coordinates (1,0,0,0), indicating alignment of body and inertial axes. Although
the actual flight cannot be numerically compared with this value, the results show some
general agreement with this trend. During the Sunday MPOD tests, the balancing was such
that MPOD wanted to roll slightly to one side. The quaternion elements and angular
velocity plots document accidental roll during the supposed straight and level flight. The
angular velocity plots in pitch and roll depict brief attitude commands dictated by the
operator to correct for attitude drift during the docking run.

Figures (48) and (49) show ranges during the docking run. Note the convergence
upon the target location, apparent in the ranges by the levelling of range value slope. The
final horizontal "line" of ranges for each thumper roughly corresponds to a straight and
level MPOD preparing to dock.

After completion of the straight and level flight tests, single-axis attitude maneuvers
were incorporated into flight. Figures (50) - (54) show the results of -x cross-pool flight
with an intermediate roll maneuver. The x and y positions follow the correct MPOD

91

Figure 43. Docking Run -- Positions

..----- -

S-G--x (m)

ii-------------------------------------
I I I I I

0 10 20 30
time (sec)

40 50 60

0 10 20 30 40 50 60
time (sec)

92

6

4

2

U-

2-

4-

4

3

2

1

0

-1

4

3.5

3

2.5

2

0 10 20 30 40 50 60
time (sec)

I

Figure 44. Docking Run -- Linear Velocities

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

0.3

0.25

0.2

0.15

0.1

0.05

0

-0.05

0.4

0.3

0.2

0.1

0

-0.1

-0.2

0 10 20 30 40 50 60
time (sec)

93

0 10 20 30 40 50 60
time (sec)

0 10 20 30 40 50 60
time (sec)

Docking Run -- Attitudes (qO & ql)

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65
0 10 20 30

time (sec)

Docking Run

0 10 20 30
time (sec)

40 50 60

i .. ql

40 50 60

94

0.8

0.6

0.4

0.2

0

-0.2

Figure 45.

Figure 46. Docking Run -- Attitudes (q2 & q3)

0.6

0.4

0.2

0

-0.2

-0.4

0 10 20 30
time (sec)

0 10 20

40 50 60

30 40 50 60
time (sec)

95

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

Figure 47. Docking Run -- Angular Velocities

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.6

0.5

0.4

0.3

0.2

0.1

0

SI - -- - 1 T

10 20 30
time (sec)

40 50 60

96

0 10 20 30 40 50 60
time (sec)

Dockini Run -- Pitch Velocity (rad/sec)

-wy

pI !.......... .. ---------------------------- ----
. ----------- -----------.1

.2

-0.05

-0.1

-0.15

-0.2

-0.25
0 10 20 30 40 50 60

time (sec)

Figure 48. Docking Run -- Thumper 0-3 Unblocked Ranges

Thumper 0 Ranges During Dock
16000

14000

12000

10000

8000

6000

4000

14000

12000

10000

8000

6000

4000

2000

20000

10000

0

18000

16000
14000

12000
10000

8000
6000

4000

ThumpO, HO
ThumpO, H2
ThumpO, H3C

O 10 20

Thumper 2 Ranges During Dock

as I

O 10 2(

Thumper 3 Ranges During Dock

2 Thumpl, HO
* Thumpl, H2
U Thumpl, H3

a Thump2, HO
* Thump2, H2
U Thump2, H1

0

Thump3, HO
Thump3, H2
Thump3, H1

97

g*Uu
Eu.

I.· · I.
21 *gE

Ia m
E3 *3

°"" ·
a... **U

I·~ * ·

;O a *

10 2(

Thumper 1 Ranges During Dock

2

so •
m mU

2 U *

2u eA
SEWA··

I r · 1 7 iI
-

-II I . Ii

-

-

Figure 49. Docking Run -- Thumper 5-7 Unblocked Ranges

Thumper 5 Ranges During Dock
20000

10000

16000

14000-

12000 -

10000-

8000-

6000

16000

14000

12000

10000

8000

6000

0

0 10 2(

Thumper 6 Ranges During Dock• iU *0
Thumper 6 Ranges During Dock

0 10 2(

Thumper 7 Ranges During Dock

0

0
••·

0 Thump5, HO
* Thump5, H3

3 Thump6, HO
* Thump6, H1

Thump7, HO
Thump7, H1

98

0*

00
[]

0[] []

motion pattern, with x decreasing as a function of time, and y located near the center of the
coordinate system. The z plot shows the characteristic increase in estimated depth near the
end of the data run. During the first 30 seconds, the z position is located between 1.8 and
2.0 m. This is a reasonable estimate due to the fact that the roll maneuver was performed
near the water surface to prevent hydrophone contact with the pool floor. However, the z
estimate then depicts an increasing depth which may not have occured.

The quaternion plots are shown in Figures (52) and (53). There are three distinct
components to the plots, all of which agree with expected results. Because MPOD is flying
in the -x direction, the initial attitude corresponds to a 1800 yaw angle, or quaternion value
of (0,0,0,1). Then, at a time of 20 seconds into the run, the roll maneuver is initiated. At a
time of 40 seconds, the roll maneuver concludes. Then, MPOD yawed such that the
vehicle and body axes are aligned, corresponding to a quaternion value of (1,0,0,0). The
angular velocity plots shown in Figure (54) shows the roll and yaw velocities
corresponding to the MPOD attitude maneuvers.

The final test results presented in this thesis were conducted solely for attitude
analysis. Figures (55) - (59) show the state estimation results. The test run was begun
from a near-central pool location to prevent pool wall or floor contact during the inevitable
vehicle drift. Torque commands dominated the translational force commands applied to the
vehicle. For comparison purposes, an attempt was made to keep the maneuvers simple
enough to allow a visual record of maneuvers which could later be compared with the state
estimations. Therefore, large attitude maneuvers were performed one axis at a time,
starting with roll, then pitch, and ending with yaw.

The position and velocity plots are shown in Figures (55) and (56). Note that the x
and y positions are near the pool center, while the z position indicates a near constant depth
after the first 10 seconds. Note that the z and z-velocity plots do not show their
characteristic increase near the end of the run. This suggests that the z-computation
problem involves either translational movements or z-thrust commands.

Quaternion and angular velocity plots are shown in Figures (57) - (59). The
angular velocity plots show the roll, pitch, and yaw maneuvers in the sequence they were
performed. Each was done for approximately 20 seconds, with the yaw maneuver in its
final phases as data collection ended. The quaternion plots are difficult to analyze, but the
rapidly changing q0 plot indicates complex attitude motion, while the ql, q2, and q3 plots
show curves corresponding with commanded roll, pitch, then yaw maneuvers.

99

Figure 50. Flight with Roll -- Positions

Flight with Roll -- x (m)
6-

2
1 -

-1

-2-
0 10 20 30 40 50 60

time (sec)
time (sec)

2

1.5

1

0.5

-0.5

-0.5
0 10 20 30 40 50 60

time (sec)

3.5

3

2.5

2

1.5

0 10 20 30 40 50 60
time (sec)

100

I

I

Figure 51. Flight with Roll -- Linear Velocities

0.05

0

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

0 10 20 30 40 50 60
time (sec)

101

0 10 20 30 40 50 60
time (sec)

0 10 20 30 40 50 60
time (sec)

Figure 52. Flight with Roll -- Attitudes (qO & ql)

with Roll --

0 10 20 30
time (sec)

0 10 20 30
time (sec)

40 50 60

40 50 60

102

1

0.8

0.6

0.4

0.2

0

-0.2

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

oll --

Flight with Roll -- Attitudes (q2 & q3)

with Roll --

0 10 20 30
time (sec)

40 50 60

oll --

0 10 20 30
time (sec)

40 50 60

103

0.2

0

-0.2

-0.4

-0.6

-0.8

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

Figure 53.

Figure 54. Flight with Roll -- Angular Velocities

Flight with Roll -- Roll Velocity (rad/sec)
0.8
0.6

0.4

0.2

0

wx (rad/sec)
-0.2
-0.4

-0.6
.-0 8 m

20 30
time (sec)

40 50 60

0 10 20 30 40 50 60
time (sec)

0.6

0.4

0.2

wz (rad/sec) 0

-0.2

-0.4

-0.6
0 10 20 30

time (sec)

104

40 50 60

10
V.v A I I I I I

I-

Figure 55. Attitude Maneuvers -- Positions

0 10 20 30 40 50 60
time (sec)

0 10 20 30 40 50 60
time (sec)

Attitude Maneuvers -- z (m)

0 10 20 30
time (sec)

40 50 60

105

1.5

1

0.5

0

-0.5

-1

-1.5

-2

0.5

0

-0.5

-1

-1.5

-2

3

2.5

2

1.5

...... !-

- -

- S
. I------ · ·- · ~-• m--~---~- · ·- ·-------

Figure 56. Attitude Maneuvers -. Linear Velocities

0.01

0

-0.01

-0.02

-0.03

-0.04

-0.05

0.12

0.1

0.08

0.06

0.04

0.02

0

-0.02

0.2

0.15

0.1

0.05

0

-0.05

0 10 20 30 40 50 60
time (sec)

106

0 10 20 30 40 50 60
time (sec)

0 10 20 30 40 50 60
time (sec)

Figure 57. Attitude Maneuvers -- Attitudes (qO & ql)

Attitude Maneuvers --
0.8

0.6

0.4

0.2

0

-0.2

1

0.5

0

-0.5

-1

Attitude Maneuvers

0 10 20 30 40 50 60
time (sec)

107

0 10 20 30 40 50 60
time (sec)

Figure 58. Attitude Maneuvers -- Attitudes (q2 & q3)

Attitude Maneuvers --

0 10 20 30
time (sec)

40 50 60

vers --

0 10 20 30
time (sec)

40 50 60

108

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

1

0.5

0

-0.5

-1

Figure 59. Attitude Maneuvers -- Angular Velocities

Attitude Maneuvers-- Roll Velocit (rad/sec)
0.8
0 .6 j ".0.6

0.2

-0.2

-0 .4

-0.6

-0.8
0 10 20 30 40 50 60

time (sec)

Attitude Maneuvers -- Pitch Velocit (rad/sec)
0.7 -.

0.6

0.5

0.4.........

0.32 --.

- -------------

-0.1 -

0 10 20 30 40 50 60time (sec)

0

0

0

0

-0

-0
0 10 20 30 40 50 60

time (sec)

109

6.0 Conclusions and Recommendations

6.1.0 System Accuracy and Robustness

6.1.1 Hardware

The MPOD hardware systems were much more reliable than during past

generations of MPOD testing. After the initial debugging tests, the computers and

computer interface circuitry systems performed flawlessly. The main key to hardware

debugging became knowing each subsystem's weakness. For example, an MPOD motor

failure indicated either failure of the motor or of an 11028 power transistor. Pneumatic

leakage from the solenoid box was always traced to a faulty jettison cylinder on the docking

probe.

3DAPS problems plagued MPOD for a period of months. However, a permanent

solution was devised and implemented for each failure mode. Sequencer communication

problems were solved by mounting the fiber optic receiver chip directly on MPOD's control

box. Electrical noise on the amplifier circuitry was minimized by removing the circuit from

MPOD's control box and isolating its power supply from the MPOD control power.

Working electronic systems required no maintenance. However, the software was
often changed due to modifications in state calculation parameters and additions to the
control system. So long as MPOD's control box was open, reprogramming the AMPRO

computers was relatively simple. However, compiling on MPOD computers was

inefficient due to the absence of hard disk drives. Fortunately, all of the single-board

computers could be attached to a floppy drive for executable file transfer. The software

was compiled and stored on Luke, the control station computer.

6.1.2 State Calculation

During static simulation tests, the state estimator has been shown to always
converge to the correct value when the actual static value is approximately the same as the
filter's initial guess. However, when the state estimator's guess is far from the actual state,
the state estimator sometimes converges to a wrong answer. Varying the initial covariance
values has been shown to have an impact on state convergence, but more tests are required
to determined a concrete relationship between filter parameters and state convergence.

The dynamic simulation tests showed that the x and y positions and velocities were
tracked well; however, z position and velocity were not nearly so accurate. The quaternion

110

and angular velocity state estimates showed good agreement with simulated values, with
the exception of offsets produced by the non-zero simulated yaw rate null offset.

Pool tests also revealed a problem with z position and velocity calculations.
Although the error source has not yet been found, it is suspected that a software bug is the
culprit. The pool test x and y positions usually agreed with the expected results.
Quaternion elements and angular velocities also agreed reasonably well with expected
results. It is important to remember that all pool test results are qualitative only, due to the
inability to know exact underwater position during dynamic flight.

The MPOD underwater testing could have been made more ideal in many ways.
First, the sensor and state data was saved too often, resulting in limited test runs of
approximately a minute in duration. After that point, the NOVRAM would ignore data
writing commands. Because MPOD motion was begun relatively quickly after data saving,
there was a minimal motionless transient during dynamic tests. In this manner, most runs
were completed to satisfaction. MPOD could fly across the pool in this time, or perform a
series of three attitude maneuvers, as described in the previous section. However, data
saving at such a frequent rate (approximately 20 points / sec) was not necessary. A data
acquisition rate of -2 Hz should be sufficient to examine MPOD dynamics accurately.

Another non-ideal factor in the April 21-22 pool test experiments was the running
of 3DAPS at the relatively slow rate of approximately 3 seconds / iteration. The system has
the capability of running faster and should be used to capacity. The static tests were not
affected, due to the similarity of ranges at each point. However, fast dynamic range
updates are imperative for position and attitude. It is a tribute to the state estimation
software that it performed as well as it did, considering the slow 3DAPS update rate.

One of the most major problems with the underwater dynamic testing of the MPOD
state calculation was the inability to know precise MPOD attitude or position at any time.
For future testing of the state calculation software, it would be advantageous to devise a
method for constrained attitude and position flight, with an accurate method of determining
the vehicle path for comparison. For straight line translation, MPOD might be attached by
a rope to a pulley system, as described in the vehicle parameter determination tests in
Reference 27. With some sort of rails guiding MPOD in a straight line, pulley encoder
positions could be used to determine exact MPOD position as a function of time. The only
suggestion for constrained attitude maneuvers is somehow attaching MPOD along its axis
of rotation to a fixed line which is free to rotate, but rigid in translation. The vehicle central
position may be measured without the vehicle in place, then by knowing the locations of
line attachment to MPOD, the exact axis of rotation may be determined. Although this

111

attitude test sounds good on paper, this thesis presents no practical way of implementing

the described constraint procedure.

Modifications may be needed in the state calculation process. One suggestion for

improving measurement quality is the identification of blocked 3DAPS ranges before the

filter is called. For any MPOD position and attitude, approximately 38% of the thumper-

hydrophone combinations may produce erroneous ranges due to MPOD blockage. With an

accurate real-time state estimate, possible blocked ranges might be identified. A suspect

range would then either not be used by the filter or would be passed with a high

measurement variance, indicating a possible bad numerical value.

Other modifications will center around intelligent filter parameter determination.

The current values were determined by trial and error. Not nearly enough simulations and

actual test runs were completed to decide which covariance, state variance, and

measurement variance values to use. Only through more extensive simulations will a

concrete evaluation of parameter effects be determined.

6.2.0 Future Control and Human Factors Experiments

6.2.1 Implementing the Control System with the State Estimator

One of the first priorities for MPOD should be development of a control system

which uses the current hardware and state calculation system to enable automated flight and

docking. Due to unmodelled dynamics, it is unlikely that the gains like those determined
by MATLAB in Chapter 4 will be optimal. Working gains may be determined by the

operator during MPOD underwater test runs. The current software allows the pilot to enter

a 16-bit gain, which is then translated into hardware commands. Also, each element of a

PID control system may be tested separately, allowing the determination of an unstable
control system's faulty component.

It may prove impossible for an operator to determine workable control system
gains. If such a case, an adaptive control system might be the most intelligent method of
determining MPOD gains. Such a system would allow MPOD to calculate its own gains
during assessment of its performance compared with the ideal case.

6.2.2 Pilot Onboard Flight

Although a robust position and attitude control system may seem to make the pilot
expendable, it is important to make the vehicle as user-friendly as possible. Historically,

112

only well-trained SSL pilots could fly and dock MPOD consistently and accurately.

However, with the full position and attitude control system, different elements of
automated control may be used with the pilot to enhance overall performance. Human

factors tests have only been performed with open loop and PID attitude hold tests. MPOD

should soon have the ability to provide more helpful functions, such as station-keeping.
Although one wouldn't use the full automatic docking capability with an onboard pilot, it
would decrease the required pilot skill level to have, for example, an accurate 3-axis attitude

hold system during docking runs. Also, the onboard pilot could perform more intricate

flight maneuvers than docking and strive for optimal paths during flight.

Another interesting experiment would be to study kinesthetic feedback by blocking

MPOD's windshield, having MPOD fly known attitude and position maneuvers, then
asking the pilot to describe the MPOD maneuver. Also, MPOD could be used for

simulated astronaut rescue, with MPOD flying to the known position of an injured diver,
holding its position while the diver climbs onboard and takes the regulator, then either
flying itself to the water surface or turning over flight control to the diver. These and many
other flight scenarios could be enhanced by an "intelligent" MPOD.

6.2.3 Mounting an Astronaut on the Vehicle

In past Marshall Space Flight Center test sessions, a test subject in a space suit has
been mounted on the front of the MPOD vehicle, replacing the docking probe. Flying the
vehicle was difficult, due to the loss of video feedback and changes in MPOD dynamic
behavior (i.e. altered moments of inertia and different drag coefficients) due to the
astronaut's presence. During such flight, a completely new set of parameters govern the
equations of motion. The MPOD center of mass would no longer be at the vehicle's center,
so attitude-translation cross-coupling would be introduced. Also, the mass addition would
decrease the power and response time of the vehicle. However, with knowledge of the
dynamic changes and the sensor measurements which are available in the current system, a
working controller might be designed.

In addition to performing station-keeping, the control system could be designed
such that the pilot could enter new position and attitude coordinates, and MPOD would fly
itself between these locations. Upon reaching the new location, MPOD would
automatically initiate position and attitude hold control routines. For a project with known
coordinates, such as structural assembly by an astronaut, the sequence of maneuvers could
be calculated and stored on MPOD's computers. MPOD would follow the preprogrammed
pattern, moving between stations upon the pilot's commands. Note that with such a

113

system, the astronaut performing the task could also be the vehicle pilot, given access to
MPOD's underwater switches.

6.3.0 Conclusion

The MIT Space Systems Laboratory has performed a variety of neutral buoyancy

simulation experiments to study human factors and control system applications for use in

space operations. The development of a neutral buoyancy knowledge base will facilitate

the development and construction of an orbital robotic vehicle that could perform analogous

functions to the thoroughly tested underwater vehicle described in this thesis.

A major drawback to the MPOD system is the sensor modifications which would be

required for space. Acoustic systems such as 3DAPS have proven to be reliable sensors in

water; however, sound waves do not travel in a vacuum. Also, there is little gravity in

space, so the pendula would be useless. Of course, the depth sensor would be

meaningless, as well. Conversely, an equivalent set of space sensors is impossible to use

in an underwater environment. Currently, video sensing studies are being undertaken with
the hope that they will provide underwater position and attitude feedback that could also be

applied in space applications (Reference 28). Fortunately, the MPOD rate sensors would
work in space as well as in the water.

Because of the sensor discrepancies, the applicability of MPOD systems to space is
concentrated in its multiprocessor system and control algorithm implementation. Through

the implementation of the multiprocessor system and state estimation procedure described

in this thesis, design of a similar system for a space robotic vehicle might be simplified.
After all, the nonlinear drag terms present in underwater dynamics are not felt in space.

At its new home in College Park, Maryland, MPOD will continue to provide
valuable human factors and control system results which will be applicable to space robotic
control problems. May both the University of Maryland and MIT Space Systems
Laboratories live long and prosper.

114

7.0 References

[1] Viggh, Herbert, "Artificial Intelligence Applications in Teleoperated Robotic

Assembly of the EASE Space Structure", S.M. Thesis, Dept. of Aeronautics and

Astronautics and Dept. of Electrical Engineering, MIT, February 1988.

[2] Kowalski, K. G., "Applications of a Three-Dimensional Position and Attitude

Sensing System for Neutral Buoyancy Space Simulation", S.M. Thesis, Dept. of

Aeronautics and Astronautics, MIT, October 1989.

[3] Vyhnalek, G. G., "A Digital Control System for an Underwater Space Simulation

Vehicle Using Rate Gyro Feedback", S.M. Thesis, Dept. of Aeronautics and

Astronautics, MIT, June 1985.

[4] Tarrant, J. M., "Attitude Control and Human Factors Issues in the Maneuvering of an

Underwater Space Simulation Vehicle", S.M. Thesis, Dept. of Aeronautics and

Astronautics, MIT, August 1987.

[5] Rowley, V. M., "Effects of Stereovision and Graphics Overlay on a Teleoperator

Docking Task", S.M. Thesis, Dept. of Aeronautics and Astronautics, MIT,

August, 1989.

[6] Atkins, E. M., "A User's Guide to MPOD -- the Multimode Proximity Operations

Device", Space Systems Laboratory Report in Progress, MIT.

[7] Spofford, J. R., "3-D Position and Attitude Measurement for Underwater Vehicles",
Space Systems Lab Report #21-86, MIT, December 1986.

[8] Brdel and Kjaer, "Instruction Manual -- Hydrophone Types 8101, 8103, 8104,
8105", October 1986.

[9] Hewlett Packard, Inc., "HP Optoelectronics Designer's Catalog", 1987.

[10] Analog Devices, Inc., "Analog Devices Databook", Vol. 1, 1984.

[11] Omega Engineering, Inc., "Series PX240 Pressure Transducer", 1986.

[12] Humphrey, Inc., "Operating Manual for Rate Transducers, RT02 Series", 1988.

[13] Motorola, Inc., "HCMOS Single-Chip Microcontroller", 1988.

[14] Advanced Micro Devices, Inc., "Memory Products: 1989/1990 Data Book", 1989.

[15] Ampro Computers, Inc., "Technical Manual -- Little Board / PC", 1988.

115

[16] Ampro Computers, Inc., "Technical Manual -- Little Board / 286", 1989.

[17] Ampro Computers, Inc., "Solid State Disk Utilities", 1988.

[18] Ampro Computers, Inc., "Technical Manual -- MONO/CGA Video Card", 1988.

[19] Sanner, R. M., "A User's Guide to PiVeCS", Space Systems Laboratory

Report in Progress, MIT.

[20] Doupnik, J. R., "MS-DOS Kermit Reference Guide", Utah State University,

July, 1988.

[21] Battin, R. H., "An Introduction to the Mathematics and Methods of

Astrodynamics", American Institute of Aeronautics and Astronautics, New York,

1987.

[22] Paines, J.D.B., "A Review of Hydrodynamic Forces in Neutral Buoyancy

Simulation of Microgravity EVA of IVA", SSL Report # 17-86, July 1986.

[23] Sanner, R. M., "Optimal State Vector Determination of a Submersible Telerobot",

Space Systems Laboratory Report in Progress, MIT.

[24] Athans, M., "Lecture Notes for Multivariable Control Systems II", MIT,

Cambridge, MA, January, 1988.

[25] Slotine, J. J., "Lecture Notes for 2.152", MIT, Cambridge, MA, 1990.

[26] Press, W. H. et al., "Numerical Recipes in C: The Art of Scientific Computing",
Cambridge University Press, New York, 1988.

[27] Parrish, J. C., "Trajectory Control of Free-Flying Space and Underwater Vehicles",

S.M. Thesis, Dept. of Aeronautics and Astronautics, MIT, August 1987.

[28] St. John-Olcayto, E.,"Machine Vision for Space Robotic Applications", S.M. Thesis,
Dept. of Aeronautics and Astronautics, MIT, May 1990.

116

Appendices

Appendix A.O

The MPOD circuit diagrams are shown in this appendix. Each describes one of the
6ircuit cards. The first five circuits are contained within MPOD's control box. The

following table of contents describes the diagrams:

Appendix Description

Appendix A. 1

Appendix A.2

Appendix A.3

Appendix A.4

Appendix A.5

Appendix A.6

Appendix A.7

MPOD Hardware

Interface Circuit

Multiprocessor

Interface Circuit

3DAPS Serial

Decoding Circuit

Pulse Width

Modulation Circuit

Fiber Optics Circuit

3DAPS Hydrophone

Amplifier Circuit

Luke Hardware

Interface Circuit

117

118

119

120

121

122

123

124

4
0

i
c

i
*

Iuh
IiiI

I

H
I
M
1
1
*

I
F7

I'll''

I

Itt
-
I
I
t
l
l
lg
sg

I
I

19~~;=
1111 ..att.n

e
u
)

-
0

0
0
o
0
o
 !

.A

:.,
O

."
-a

0

C

0
1

>to>

sin
+

sew
ý--J out,

I
C

S
E

5Lb~U
~(L~E

IL
~

i.1
III~Ih.H.3~2

!l
11i

IK
..

F
.-T

m
1

.l,
I*",01

L.-9F

a
k

>
>

1

>>
)O

0
W

in
In coin C

ý-N
co

$

1

1
1
1
1
1

9
9
9

'1
-1

-

r .
.
.
.
.
.
.
.
.
.
.

I1IIIiii
I I Hi-

II.."O
I
I
"

hL-j0"M

o
0
0

m
>

>

)l

~
T

]
rh-~-~

e-uu
m

uB
u

.

11s
1-a

+

68
8.I

p

*

s.
1

0

1
.O

O

L
Z

-*lC

'..I)1

I
-

axpegl~
~

l

tr g%
4

B
B

'"I~

U
a
m

I
IE

, .

sn M
R

II

~dijdzl ~
III~

T

III

Q
IbiE

E
~

'F
~

T
B

~
fl~

..
-

A

I

N

ft

iT I
1

-I
III I

1

IIII
S

a

+

as4
oc

-C
.

L

qC
M

".

L

--

jlrcl
" "

-·I

II
·

1·······
U !

~F~H
;H

~r

tl9
1

~I

s
e
n

a
sse

a

ss
a
n

tr
a
n

e
 an9555555tt

laB

D

d

I
I
I
I

"~~~u~
"~··r

~
l~~I·

~
~

~
~

l·Y
~

~
n

~

I
"'"''

c+
k

9
'- -'tl··l

.
.
.
.
.

IL

722>

I
I

I

I

I

rs;I,

L
1
L

J
1
1

44

M
--

Simi
1

1
iE

R
M

M
M

iM
A

M
M

M
M

F
d

d

[1̧C
IL

&
C

..C
Q

Q
Q

Q
.Q

.0
.9

L

.
G
.
G
.
C
L
L
C
L
Q

.
L
.
Q
G

I
ti

.LrURV

eSie£
3

2~
'

41

~jll~im
)1i~ir~in

Ella M. Atkins
Sequencer Serial Decoding Circuitry
2/1/90

LONTACT

CG

A3 8 5

Al
ln • A>B p

A=B

B3
A=

B2 A
81

Z

r7L~

A3 5
A2 85

ABAl
A=B

83 A<B82
81
80

LLL

15

14

1'
11

z z +5V

A3 85
A2 85
Al
A A>B

A=B
B3 AR

7

B2
81
BO

Bz z5V

A3 85
AlA 0 A>BAO A>8

A=B

83 A4 L

81
BOz

o +5v

GA 240
A3 VA3
A2 YA2
Al YA1
AO YA0

83 Y83
B2 YB2
81 YB1
80 YBO

G8

A3
A2
Al 5

AO

A<B

80

A3
A2 85
Al A>B
AO

A=B
B3 A<B
82
81

O M Cv

7406-4

I
3F7

7406-3 I

A
A
AAiIA
IC

GA 240
,3 YA3
,2 YA2
l1 YA1
O0 YAO

33 YB3
32 YB2
1• YB1

3O YBO
YB

T 1 63
)CLK FO

D CD
C cO
B C3s
A QA
LOAD

CLR

15

I]13114

I

BII2 118 8BBB
+5V

-

1

77 555 10C
6 - 5L fL

f4
3

+5V

.2

EDGE EDGE
5

+18V
12.

1TP31B. D1 TIP31B, D5
10K

+18V

EDGE

+18V

14
TIP31B, D9

+18V

13 TIP31B, D10

7

+18V

2
TIP31B, D11

- 8

+18V

TIP31B, 012

+
1K

6 13
+

K+18V +18V
1K

TI P31B, D2 11 TIP31B,D6

10K

f0
+ 0 13 +

+18V -+18V
1K

16
TIP31B, 03 TIP31B, D7

1K

11+~+ +

TP31B D813I4 4TIP31B, D4 TIP31B, D8

1K

67

11

1213 1 1

21
22
23

27
28
29

3
3

_ · ·

I

7406-1 7406-2

4 3 4
6 5 6

10 11

I IP"I• • | II

I_/1

6 5~ H

.....,...

t ;II

-----------

,,

- I

I~ffl Wi~D"i! 99 9=

-- -- ------ ------- - -.illllJ· ·I

..

G

C

10K 10K 10K
1 EDGE

- TI P31B T BB TI P31B P31B, S91

3
DIP

10K
10K TIP31B, S10 EDGEI

TIP31B TIP31B TIP1B, S1DIP 10K 10K 10K

1 - -TIP31B .-- -.- TIP31B B- TIP31B, S1 EDGE

" _ _ _ _ _,,__ _Ella M. Atkins

9S3 /2/8 89/20/88

AE

1
1

1

1

1 15

1

65

Ella M. Atkins
Fiber Optics Circuitry
9/1/89

I
I I ~~ · 71

Ella M. Atkins
B3 DAPS Amplifier Circuitry
2/1/90

-Wapm

m IKi

8255
" D7 PA72 D6 PA6

D5 PA5
D4 PA4
D3 PA3

33 D2 PA2
33 D1 PA13 DO , PAO

CS PB7
FD PB6
V36V PB5
Al PB4
A0 PB3

3 RESET PB2
1 PB11 PB0

PC6
1 PC5 PC3

PC4 PC2
PC1
PCO

Vcc GD
HCOO

+5V

HC32

HC32 HC32

11/22/89

Ella M. Atkins
IBM PC/AT Interface

Appendix B.O MPOD Software

All MPOD software, excluding simulation programs in Appendix D, are presented

in this appendix. An index of programs is shown below. (NOTE: Currently 58 pages)

Resident Computer Program Name Paeg

Yoda pvyoda 126
pvyoda.msg 126
pvyoda.h 127
pvyoda.c 129
yodamsgs.c 131
yodafuns.c 136

Obi-Wan obi 139
yodaobi.h 139
obilando.h 140
yodaobi.c 140
obilando.c 141
obiwan.h 141
obiwan.c 143
obifuns.c 147
ctrlcalc.c 149

Lando lando 151
lando.h 151
filter.h 152
lando.c 153
landfuns.c 155
filter.c 157
pstate.c 162

Luke pvluke 166
pvluke.msg 166
pvluke.h 167
pvluke.c 169
lukemsgs.c 171
lukefuns.c 176

Crumb and Cake USMV6811.TXT 180
INT6811.TXT 180

125

Appendix B.1 Yoda Software

/ * pvyoda
/* Microsoft C Make file * /

pvyoda.obj: pvyoda.h ..\pvluke.msg pvyoda.c
cl /c pvyoda.c

yodafuns.obj: pvyoda.h yodafuns.c
cl /c yodafuns.c

yodamsgs.obj: ..\pivecs\pvdata.h pvyoda.h ..\pvluke.msg yodamsgs.c
cl /c yodamsgs.c

pvyoda.exe: pvyoda.obj yodamsgs.obj yodafuns.obj ..\yodaobi.obj
link /NOD $**, pvyoda.exe,,SLIBCE+GFCS+GFS+..\pivecs\PIVECS

/ * pvyoda.msg * /
/ * Written by: Robert M. Sanner * /
* Last modified by: Ella M. Atkins, 4/11/90 * /

#ifndef YODAMSGS
#define YODAMSGS

/.....******...******.t Recognized Message List ********** **/
#define COMTEST 0x00 /* Msg 0, No Data * /
#define COMAOK 0x08 /* Msg 1, " " * /
#define SHUTDN 0x10 /* Msg 2, " " * /
#define YODAESC 0x20 /* Msg 4, " " * /

#define TXMOTORS 0x30 /* Msg 6, " " * /
#define TXPENDULA 0x38 /* Msg 7, " " * /
#define TXGYROS 0x40 /* Msg 8, " " * /
#define TXHYDRO01 0x48 /* Msg 9, " " * /
#define TXHYDRO23 0x50 /* Msg 10, " " * /

#define TXPOSITION 0x60 /* Msg 12, " " * /
#define TXATTITUDE 0x68 /* Msg 13, " "* /
#define TXVELOCITY 0x70 /* Msg 14, " " * /
#define TXOMEGA 0x78 /* Msg 15, " * /
#define TXBIAS 0x80 /* Msg 16, " "* /

#define RXTHC OxA1 /* Msg 20, 1 Data Byte */
#define RXRHC OxA9 /* Msg 21, 1 Data Byte */
#define RXSWITCH 0xB3 /* Msg 22, 3 Data Bytes */
#define RXCTRL OxBA /* Msg 23, 2 Data Bytes */
#define RXSTATE OxC5 /* Msg 24, 5 Data Bytes */
#define RXGAINS OxCB /* Msg 25, 3 Data Bytes */

#define BADMSG OxFF /* Msg 31, 7 data. Placeholder for Bad msgs */

#endif

126

/ * pvyoda.h
/ * Written by: Robert M. Sanner
/* Last modified by: Ella M. Atkins, 4/11/90

#ifndef PIVECS
#include "..\pivecs\pivecs.h"
#endif
#ifndef YODAMSGS
#include "..\pvyoda.msg"
#endif
#ifndef YODAOBI
#include "..\yodaobi.h"
#endif

#ifndef YODA
#define YODA

extern HandlerFunc
extern HandlerFunc
extern HandlerFunc
extern HandlerFunc
extern HandlerFunc
extern HandlerFunc

static Handlers

BadMsg, ShutDown, ComCheck, ComAOK;
RX_THC, RX_RHC, RX_Switch, Yod_ESC;
RX_Ctrl, RX_State, RX_Gains;
TX_Motors, TX_Pendula, TX_Gyros;
TX_Hydrol0, TX_Hydro23, TX_Bias;
TX_Position, TX_Attitude, TX_Velocity, TX_Omega;

YodaHandlers =
{ComCheck,
Yod_ESC,
TX_Gyros,
TX_Position,
TX_Bias,
RX THC,
RX_State,
BadMsg,

static Headers YodaMsgs =
{COMTEST,
YODAESC,
TXGYROS,
TXPOSITION,
TXBIAS,
RXTHC,
RXSTATE,
BADMSG,

ComAOK,
BadMsg,
TX_Hydro0l,
TX_Attitude,
BadMsg,
RX_RHC,
RX_Gains,
BadMsg,

COMAOK,
BADMSG,
TXHYDRO01,
TXATTITUDE,
BADMSG,
RXRHC,
RXGAINS,
BADMSG,

ShutDown,
TX_Motors,
TX_Hydro23,
TX Velocity,
BadMsg,
RX_Switch,
BadMsg,
BadMsg,

SHUTDN,
TXMOTORS,
TXHYDRO23,

TXVELOCITY,
BADMSG,
RXSWITCH,
BADMSG,
BADMSG,

BadMsg,
TX_Pendula,
BadMsg,
TX_Omega,
BadMsg,
RX_Ctrl,
BadMsg,
BadMsg};

BADMSG,
TXPENDULA,
BADMSG,
TXOMEGA,
BADMSG,
RXCTRL,
BADMSG,
BADMSG};

static
Byte

Byte YodaHiPri = 5;
STOP;

Global MPOD State information * /

#define WLEN Ox05

/* Components of *Switches used by Yoda */

127

*/
*/
*1

#define
#define
#define
#define
#define

SAVEDATA
STATECALC
OBI_ESCAPE
LANDO ESCAPE
ESCAPE

Ox01
0x02
Oxl 0
0x20
0x40

/* Components of *Pneu_View used by Yoda */

#define POWER
#define RAM
#define LATCH
#define SENSOR SEE
#define HYDROSEE
#define STATESEE

0xl 0
0x04
0x02
0x20
0x40
0x80

/ * Ports for the I/O Protoboard

#define POX
#define P1X
#define P2X

#define
#define
#define

Ox303
Ox307
Ox30B

0x80
0x82
0x92

INITO
INIT1
INIT2

Ports for the pneumatics and motors * /

#define PNEUPORT
#define SGNPORT
#define XMOTPORT
#define YMOTPORT
#define ZMOTPORT
#define PNEUMASK

Ox306
Ox304
Ox302
Ox301
0x300
Ox1 6 /* output if all pneumatics activated */

/ * Ports and equates for the gyros, depth sensor, and pendula

#define
#define
#define
#define
#define
#define
#define
#define

AD PORT
AD STATUS
AD BUSY
AD READLO
AD READ HI
ADLO
ADHI
DELAY

#define ROLL_ANGLE
#define PITCH_ANGLE
#define YAW_ANGLE

#define ROLL_ADDR
#define ROLLLATCH
#define ROLL_START
#define ROLL_END

* /

Ox30A
0x305
0x00
0x308
Ox309
0x80

Ox100

0x31 C
0x31 D
Ox31 E

OxO80x08
0x00
Oxl 0
0x00

128

#define PITCH ADDR 0x09
#define PITCH_LATCH 0x01
#define PITCH START Oxl 1
#define PITCH END 0x01

#define YAWADDR OxOA
#define YAW LATCH 0x02
#define YAW START Ox1 2
#define YAWEND 0x02

#define DEPTH_ADDR OxOB
#define DEPTHLATCH 0x03
#define DEPTHSTART Ox1 3
#define DEPTHEND 0x03

/* Yoda specific control subroutines */

void Mpodlnit(), FireMotors(), FirePneu();
void ReadGyroso, ReadPendula();

void interrupt far Busy();

char FOO C;
#define charswap(x,y) FOO_C = (x); (x) = (y); (y) = FOO_C;
Byte FOO_B;
#define byteswap(x,y) FOO_B = (x); (x) = (y); (y) = FOO_B;

#endif

/ * pvyoda.c */
/ * Written by: Robert M. Sanner * /
/* Last modified by: Ella M. Atkins, 3/23/90

#include "pvyoda.h"
#include "..\pvluke.msg"
#include <stdio.h>
#include <gf.h>
#include <dos.h>
#include <ibmkeys.h>
#include <asiports.h>

main() { /* Begin PiVecs driver program */

unsigned getkey();
unsigned long CurrMsg = 0;
register i;

Byte messtat;

pvlnitCom(COM1, 9600, P_ODD, 1);
pvlnitMsg(YodaHandlers, YodaMsgs, YodaHiPri);
messtat = pvWorry(RXSWITCH, (Byte) 100, TXSWITCH);

129

/* Enable and initialize interrupt IRQ2 */

outp(0x21, OxA8);
_dos_setvect(OxOA, Busy);
outp(0x20, 0x20);

Dual_lnit_ 1();
Mpodlnit();

pvRequest(TXSWITCH);

while (!(STOP II (*status & ESCAPE))) { / Begin main driver loop */

if (kbhitO) if (getkey() == ESC) break;

CurrMsg = pvRecvO();

/ * Activate changes in pneumatics

if ((*Pstatus) & PNEUMASK) {
FirePneu();
if (((*Pstatus) & POWER) && ((*Pneu_View) & POWER))

pvRequest(TXTHC);
pvRequest(TXRHC);
messtat = pvWorry(RXTHC, (Byte) 10, TXTHC);
messtat = pvWorry(RXRHC, (Byte) 10, TXRHC);

} else if ((*Pstatus) & POWER) {
messtat = pvWorry(RXTHC, (Byte) 255, TXTHC);
messtat = pvWorry(RXRHC, (Byte) 255, TXRHC);

*Pstatus &= (-PNEUMASK);

/* Read sensors for state calculation, data view, or data storage */

(((*Switches) & (STATE_CALC I SAVE_DATA))
((*Pneu_View) & SENSOR_SEE)) {

ReadGyros();
ReadPendula0; }

if ((*Pneu_View)&POWER) {
for (i = 0; i < 6; i++)
FireMotors();
}

) /* End main driver WHILE loop */

pvRequest(YODAESC);
if (*status & ESCAPE) {
*status 1= ((-ESCAPE) & (OBI_ESCAPE I LANDO_ESCAPE));
} /* Escape from Obi-Wan and Lando */
*Switches = Ox00;
*Pneu_View = Ox00;
*State_Stuff = OxOF;
for (i = 0; i < 6; i++)

130

* /

*(Motors+i) = Ox00;
FirePneu();
FireMotors();

printf("No problems on loop exit\n");
pvExit();

} /* End program */

void Mpodlnito {

register i, j;

/ * Initialize the 8255's on the I/O protoboard */

outp(POX, INITO);
outp(P1X, INIT1);
outp(P2X, INIT2);

/ * Zero out all the state variables and toggle flags * /
STOP = Ox00;
for (i = 0; i < 6; i++) {

if (i < 3) {
*(Gyros+i) = 0x800;
*(Pendula+i) = Ox000;

}
*(Motors+i) = 0x00;

/ * yodamsgs.c * /
/ * Written by: Robert M. Sanner and Ella M. Atkins * /
/* Last modified by: 4/11/90 * /

#include "pvyoda.h"
#include "..\pvluke.msg"
#include "..\pivecs\pvdata.h"

MsgHandler ShutDown(msg)
MsgPtr msg;

{
register i;
*Switches = 0x00;
*Pneu_View = Ox00;
*State_Stuff = OxOF;

for (i = 0; i < 6; i++) {
*(Motors+i) = 0x00;

}
*thc = *rhc = Ox00;
*status = Ox00;
*Pstatus = Ox00;

FirePneu();

131

FireMotors();
return(OK);

MsgHandler YodESC(msg)
MsgPtr msg;

{
STOP = Ox01;
return(OK);

}

MsgHandler RX_Ctrl(msg)
MsgPtr msg;

BytePtr datptr = msg->data;
*path = *datptr++;

*PID = *datptr;
return(OK);

MsgHandler RXState(msg)
MsgPtr msg;

{
register i;
BytePtr datptr = msg->data;
unsigned char far *point;
point = stateval;
*statelD = *datptr++;

for (i = 0; i < 4; i++)
*point++ = *datptr++;

return(OK);

MsgHandler RX_Gains(msg)
MsgPtr msg;

register i;
BytePtr datptr = msg->data;
unsigned char far *point;
point = gainval;
*gainlD = *datptr++;

for (i = 0; i < 2; i++)
*point++ = *datptr++;

return(OK);

MsgHandler RX_THC(msg)
MsgPtr msg;

BytePtr datptr = msg->data;
*thc = *datptr;

if ((*Pneu_View)&POWER) pvRequest(TXTHC);
return(OK);

I

132

MsgHandler RXRHC(msg)
MsgPtr msg;

BytePtr datptr = msg->data;
*rhc = *datptr;

if ((*Pneu_View)&POWER) pvRequest(TXRHC);
return(OK);

MsgHandler RX_Switch(msg)
MsgPtr msg;

{
BytePtr datptr = msg->data;
if ((*Switches) != *datptr) {

*status 1= ((*Switches)^(*datptr));
*Switches = *datptr;

*datptr++;
if ((*Pneu View) != *datptr) {

*Pstatus 1= ((*Pneu_View)A(*datptr));
*Pneu_View = *datptr;}

*datptr++;
if ((*State_Stuff) != *datptr)

*State_Stuff = *datptr;
pvRequest(TXSWITCH);
return(OK);

MsgHandler TX_Motors(msg)
MsgPtr msg;

Byte array[5];
array[0] = RXMOTORS;

array[l] = ((*Motors) << 4) I (*(Motors+l));
array[2] = ((*(Motors+3)) << 4) I (*(Motors+2));
array[3] = ((*(Motors+4)) << 4) I (*(Motors+5));
array[4] = *MotorSigns;

pvSend(array, 5);
return(OK);

MsgHandler TX_Pendula(msg)
MsgPtr msg;

{
register i;
Byte array[8];

array[0] = RXPENDULA;
for (i = 0; i < 3; i++) {

array[(2*i)+l] = (Byte) (*(Pendula+i));
array[2*(i+l)] = (((Byte) (*(Pendula+i) >> 8)) & OxOF);

array[7] = (Byte) ((*Depth) & Ox00F);
pvSend(array, 8);

133

return(OK);
}

MsgHandler TX_Gyros(msg)
MsgPtr msg;

register i;
Byte array[8];

array[0] = RXGYROS;
for (i = 0; i < 3; i++) {

array[(2*i)+l] = (Byte) (*(Gyros+i));
array[2*(i+l)] = (((Byte) (*(Gyros+i) >> 8)) & OxOF);

array[7] = (Byte) ((*Depth) >> 4);
pvSend(array, 8);
return(OK);

MsgHandler TX_Hydro01(msg)
MsgPtr msg;

register i;
static unsigned char q=0;
unsigned short j;
Byte array[6];

array[0] = RXHYDRO01;
array[l] = q;

j = q << 2;
for (i = 1; i < 3; i++) {

array[2*i] = (Byte) (*(arange+i+j-1));
array[(2*i)+l] = (Byte) ((*(arange+i+j-1)) >> 8);

if (q < 7) q++;
else q = 0;
pvSend(array, 6);

return(OK);

MsgHandler TX_Hydro23(msg)
MsgPtr msg;

register i;
static unsigned char u=0;
unsigned short j;

Byte array[6];
array[0] = RXHYDRO23;
array[l] = u;

j = u << 2;
for (i = 1; i < 3; i++) {

array[2*i] = (Byte) (*(arange+i+l+j));
array[(2*i)+l] = (Byte) ((*(arange+i+l+j)) >> 8);

if (u < 7) u++;
else u = 0;
pvSend(array, 6);

return(OK);
}

134

MsgHandler TX_Position(msg)
MsgPtr msg;

register i;
Byte array[8];

array[0] = RXPOSITION;
for (i = 0; i < 3; i++) {

array[(2*i)+l] = (Byte) (*(astate+i));
array[2*(i+l)] = (Byte) (*(astate+i) >> 8);

array[7] = (Byte) (*(astate+6));
pvSend(array, 8);
return(OK);

/* First half of last quaternion */

MsgHandler TX_Attitude(msg)
MsgPtr msg;

register i;
Byte array[8];

array[0] = RXATTITUDE;
for (i = 0; i < 3; i++) {

array[(2*i)+l] = (Byte) (*(astate+i+3));
array[2*(i+l)] = (Byte) (*(astate+i+3) >> 8);

array[8] = (Byte) (*(astate+6) >> 8);
pvSend(array, 8);

return(OK);

/* High Byte of last quaternion */

MsgHandler TX_Velocity(msg)
MsgPtr msg;

register i;
Byte array[7);

array(0] = RXVELOCITY;
for (i = 0; i < 3; i++) {

array[(2*i)+I1] =
array[2'(i+1)] =

(Byte) (*(astate+i+7));
(Byte) (*(astate+i+7) >> 8);

pvSend(array, 7);
return(OK);

MsgHandler TX_Omega(msg)
MsgPtr msg;

register i;
Byte array[7];

array[0] = RXOMEGA;
for (i = 0; i < 3; i++) {

array[(2*i)+l] = (Byte) (*(astate+i+10));
array[2*(i+l)] = (Byte) (*(astate+i+10) >> 8);

135

pvSend(array, 7);
return(OK);

MsgHandler TX_Bias(msg)
MsgPtr msg;

register i;
Byte array[7];

array[0] = RXBIAS;
for (i = 0; i < 3; i++) {

array[(2*i)+l] = (Byte) (*(astate+i+13));
array[2*(i+l)] = (Byte) (*(astate+i+13) >> 8);

pvSend(array, 7);
return(OK);

/ * yodafuns.c * /
/ * Written by: Robert M. Sanner * /
/* Last modified by: Ella M. Atkins, 1/8/90 * /

#include "pvyoda.h"
#include <dos.h>

void ReadGyros() {

Byte hi_byte, lobyte;
short i = 0;

outp(AD_PORT, ROLL_ADDR); /* send address for x *!
outp(ADPORT, ROLL_LATCH); /* latch address for x */
outp(AD_PORT, ROLL_START); /* send START for x */
outp(AD_PORT, ROLL_END); /* end START pulse for x */
while ((inp(AD_STATUS) != AD_BUSY) && (i++<DELAY));
hi_byte = inp(AD_READ_HI);
lo_byte = inp(AD_READ_LO) & OxOF;
*Gyros = (((unsigned short) hibyte) << 4) I lobyte;
i = 0;

outp(AD_PORT, PITCH_ADDR); /* send address for y */
outp(AD_PORT, PITCH_LATCH); /* latch address for y */
outp(AD_PORT, PITCH_START); /* send START for y */
outp(AD_PORT, PITCH_END); /* end START pulse for y */
while ((inp(AD_STATUS) != AD_BUSY) && (i++<DELAY));
hi_byte = inp(AD_READ_HI);
lo_byte = inp(AD_READ_LO) & OxOF;
*(Gyros+1) = (((unsigned short) hi byte) << 4) I lo_byte;
i = 0;

outp(AD_PORT, YAW_ADDR);
outp(AD_PORT, YAW_LATCH);

/* send address for z */
/* latch address */

136

outp(AD_PORT, YAW_START); /* send START for z */
outp(AD_PORT, YAW_END); /* end START pulse for z */
while ((inp(AD_STATUS) != AD_BUSY) && (i++<DELAY));
hi_byte = inp(AD_READ_HI);
lo_byte = inp(AD_READ_LO) & OxOF;
*(Gyros+2) = (((unsigned short) hi_byte) << 4) I lobyte;
i = 0;

outp(AD_PORT, DEPTH_ADDR);
outp(AD_PORT, DEPTH_LATCH);
outp(AD_PORT, DEPTH_START);
outp(AD_PORT, DEPTH_END);
while ((inp(AD_STATUS) != AD_BUSY)
hi_byte = inp(AD_READ_HI);
lo_byte = inp(AD_READ_LO)&OxOF;
*Depth = (((unsigned short) hi_byte) <<

/* send address for depth */
/* latch address for depth */
/* send START for depth */
/* end START for depth */

&& (i++<DELAY));

4) I lo_byte;

void ReadPendulaO {

Byte
register i;

hi_byte, lo_byte;

outp(AD_PORT, AD_HI);
hi_byte = inp(ROLL_ANGLE)&OxOF;
outp(AD_PORT, AD_LO);
lo_byte = inp(ROLL_ANGLE);
*Pendula = (((unsigned short) hi_byte) << 8) I lo_byte;

outp(AD_PORT, AD_HI);
hi_byte = inp(PITCH_ANGLE)&0x0F;
outp(AD_PORT, AD_LO);
lo_byte = inp(PITCH ANGLE);
*(Pendula+1) = (((unsigned short) hi_byte) << 8) 1 lo_byte;

outp(AD_PORT, AD_HI);
hi_byte = inp(YAW_ANGLE)&OxOF;

outp(AD PORT, AD_LO);
lo_byte = inp(YAW_ANGLE);
*(Pendula+2) = (((unsigned short) hi byte) << 8) I lo_byte;

void FirePneu() o
register i;

outp(PNEUPORT, ((*PneuView)&PNEUMASK));
for (i = 0; i < PAUSE; i++);

v

void FireMotors() {

137

Byte Xout = Ox00, Y_out = Ox00, Z_out = Ox00;
char xl, x2, yl, y2, zl, z2;

/ * Check motor signs and adjust sign byte accordingly
output only absolute motor mags to the I/O ports

*MotorSigns = Ox00;
xl = *(Motors+l);
x2 = *Motors;
yl = *(Motors+2);
y2 = *(Motors+3);
zi = *(Motors+5);
z2 = *(Motors+4);

/* X Motors */

if (xl > 0) *MotorSigns j= Ox01;
else xl = -xl;

if (x2 > 0) *MotorSigns J= 0x02;
else x2 = -x2;

/* Y Motors */
if (yl > 0) *MotorSigns J= 0x20;

else yl = -yl;
if (y2 > 0) *MotorSigns J= 0x04;

else y2 = -y2;

/* Z Motors */
if (zl > 0) *MotorSigns J= 0x08;

else zl = -zl;
if (z2 > 0) *MotorSigns J= 0x10;

else z2 = -z2;

•X_out = (x2 << 4) I xl;
Y_out = (y2 << 4) 1 yl;
Z_out = (z2 << 4) I zl;

outp(SGNPORT, *MotorSigns);
outp(XMOTPORT, X_out);
outp(YMOTPORT, Y_out);
outp(ZMOTPORT, Z_out);

void interrupt far
/* Interrupt
outp(0x20,
return;

}

/* Output motor directions */
/* Output motor magnitudes */

Busy() {
causes delay for Dual Port Ram */
0x20); /* Reset 8259A */

138

* /

Appendix B.2 Obiwan Software

/ * obi
/ * Microsoft C Make file

* /
* /

obiwan.obj: obiwan.h obiwan.c
cl /c /FPi87 obiwan.c

pathcalc.obj: obiwan.h pathcalc.c
cl /c /FPi87 pathcalc.c

ctrlcalc.obj: obiwan.h ctrlcalc.c
cl /c /FPi87 ctrlcalc.c

obifuns.obj: obiwan.h obifuns.c
cl /c /FPi87 obifuns.c

obiwan.exe: obiwan.obj pathcalc.obj ctrlcalc.obj obifuns.obj
..\yodaobi.obj ..\obilando.obj

link /NOD $**, obiwan.exe,,SLIBC7+GFCS+GFS

yodaobi.h
Written by: Ella M. Atkins
Last modified: 4/11/90

* /
* /
* /

#ifndef YODAOBI
#define YODAOBI

/* Pointer addresses set for Dual Port Ram between Yoda and Obi-Wan */

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
float
char

char
char
char
char
char
char
char
char
short
short
short
char
char
char
short
char

int
unsigned short
unsigned char

far *Switches;
far *Pneu_View;

far *State_Stuff;
far *MotorSigns;
far *thc;
far *rhc;
far *status;
far *Pstatus;
far *Depth;
far *Pendula;
far *Gyros;
far *path;
far *PID;
far *gainlD;
far *gainval;
far *statelD;
far *stateval;
far *Motors;
far *astate;
far *arange;
far *athumplD;

/ *

/*

139

void Dual_lnit_l1();
#endif

/ * obilando.h * /
/ * Written by: Ella M. Atkins * /
/ * Last modified: 3/23/90

#ifndef OBILANDO
#define OBILANDO

f/ Pointer addresses set for Dual Port Ram between Obi-Wan and Lando * /

unsigned char far *bSwitches;
unsigned char far *bState_Stuff;
unsigned char far *bthc;
unsigned char far *brhc;
unsigned char far *bstatus;
unsigned short far *bDepth;
unsigned short far *bPendula;
unsigned short far *bGyros;
double far *state;
unsigned short far *range;
unsigned char far *thumplD;
unsigned char far *actuator;
unsigned short far *gate;
unsigned short far *INT_DUAL;
unsigned short far *DPR_num;

void Dual_lnit_2();
#endif

/ * yodaobi.c * /
/ * Written by: Ella M. Atkins * /
/ * Last modified: 4/11/90 * /

#include "yodaobi.h"

void Dual_lnit_l() {

/* Pointer addresses set for Dual Port Ram between Yoda and Obi-Wan */

*(Switches = (OxC000L << 16)) = 0x00;
*(Pneu_View = ((OxCOOOL << 16) + Ox01L)) = Ox00;
*(State_Stuff = ((OxC000L << 16) + Ox201L)) = OxOF;
*(MotorSigns = ((OxC000L << 16) + Ox02L)) = Ox00;
*(thc = ((OxCOOOL << 16) + Ox09L)) = Ox00;
*(rhc = ((OxC000L << 16) + Ox0CL)) = Ox00;
*(status = ((OxC000L << 16) + OxiEL)) = Ox00;
*(Pstatus = ((OxC000L << 16) + Ox1FL)) = Ox00;
*(Depth = ((OxC000L << 16) + Ox10L)) = 0x800;
*(Pendula = ((OxC000L << 16) + Oxl2L)) = Ox000;
*(Gyros = ((OxC000L << 16) + Ox18L)) = 0x800;

140

*(path
*(PID
*(gainlD
*(gainval
*(statelD
*(stateval
*(Motors
*(astate
*(arange
*(athumplD

((OxC000L
((OxC000L
((OxCOOOL
((OxC000L
((OxC000L
((OxC000L
((OxCO00OL
((OxC000L
((OxC000L
((OxC000L

<< 16)
<< 16)
<< 16)
<< 16)
<< 16)
<< 16)
<< 16)
<< 16)
<< 16)
<< 16)

+ Ox300L))
+ Ox301L))
+ Ox302L))
+ 0x303L))
+ 0x305L))
+ 0x306L))
+ Ox03L))
+ Ox100L))
+ Ox1AOL))
+ Ox200L))

0x00;
OxFE;
0x00;
Ox0000;
0x00;
0x00;
0x00;
S0x0000;
0x0000;
0x00;

obilando.c
Written by: Ella M. Atkins

/ * Last modified: 3/23/90

#include "obilando.h"

void Dual_lnit_2() {

/* Pointer addresses set for Dual Port Ram between Obi-Wan and Lando

*(bSwitches
*(bState_Stuff
*(bthc
*(brhc
*(bstatus
*(bDepth
*(bPendula
*(bGyros
*(state
*(range
*(thumplD
*(actuator
*(gate
INT DUAL
*(DPR_num

((OxCOOOL
((OxCOOOL
((OxC000L
((OxC000L
((OxC000L
((OxC000L
((OxC000L
((OxC000L
((OxC000L
((0xCOOOL
((OxCOOOL
((OxCOOOL
((OxC000L
((OxC000L
((OxC000L

16)
16)
16)
16)
16)
16)
16)
16)
16)
16)
16)
16)
16)
16)
16)

obiwan.h
Written by: Ella M. Atkins
Last modified: 4/2/90

0x8000)) = 0x00;
0x8201)) = OxOF
0x8009)) = Ox00;
0x800C)) = Ox00;
Ox801E)) = 0xO0;
0x8010)) = 0x80'
0x8012)) = Ox00;
0x8018)) = 0x80!
0x8100)) = Ox00
Ox81AO)) = Ox00
0x8200)) = 0x00;
0x8210)) = Ox00;
0x8280)) = Ox8FF
Ox83FE);
0x83F0)) = 0x00:

0;

0;
00;
00;

F;

* /
* /
* /

#ifndef YODAOBI
#include "..\yodaobi.h"
#endif
#ifndef OBILANDO
#include "..\obilando.h"
#endif

#include <stdio.h>

141

/ *

.

Ox3O) xO

#ifndef OBIWAN
#define OBIWAN

typedef unsigned char Byte, *BytePtr, Logical;

/ * Obi-Wan Definitions

Byte
unsigned short
FILE

Torque[3], Trans[3], DapsFlag, gainflag;
gyroup[3], gyrolow[3];
*rangefile;

/ * 8255 initializations for MIC

#define
#define
#define
#define

#define
#define
#define
#define

POA
POB
POC
POX

P1A
P1B
P1C
P1X

0x318
0x31A
Ox31C
Ox31E

0x320
0x322
0x324
0x326

/* Definitions in *Switches used by Obi-Wan * /

#define SAVE_DATA Ox01
#define STATECALC 0 x02
#define OBI_ESCAPE 0 x1 0
#define LANDO_ESCAPE 0x20
#define ESCAPE 0 x40

/* Definitions in *Pneu_View used by Obi-Wan

#define POWER
#define RAM
#define HYDRO_SEE
#define STATE_SEE

Oxl0
0x04
0x40
0x80

main power * /
flag to STOP CLCNTL routine */
Uplink sensor data * /
Uplink calculated state vector */

/ Control definitions in *path */

#define ATT_HOLD
#define POS_HOLD
#define AP_HOLD
#define ENTERATT
#define ENTER POS
#define DOCK

0x02
0x04
0x08
Ox 0
0x20
0x80

/* Control definitions in *PID */

#define CL_CTRL
#define PPOS_CTRL
#define IPOSCTRL
#define DPOS_CTRL
#define PATT_CTRL

0x01
0x02
0x04
0x08
0x20

142

#define IATT_CTRL 0x40
#define DATTCTRL 0x80

#define TRUE 1
#define FALSE 0
#define NULL 0

/ * Obi-Wan specific routines * /

void Dapso, Obilnito, JetSelect(), Ctrllnit();
void pathcalcO, ctrlcalcO, cosinecalc();
void interrupt far Dapsint();
void interrupt far Busy();

#endif

/ * obiwan.c * /
/ * Written by: Ella M. Atkins * /
/ * Last modified: 4/2/90 * /

#include "obiwan.h"
#include <dos.h>
#include <gf.h>
#include <asiports.h>
#include <math.h>

main() { /* Begin Obi-Wan main driver program */

register i, j;
static unsigned char count = 0;
unsigned getkey();
double far *ydex;
int far *aydex;
FILE *sensorfile, *statefile;

if ((rangefile = fopen("range.dat","a")) == NULL)
exit(0);

if ((sensorfile = fopen("sensor.dat","a")) == NULL)
exit(0);

if ((statefile = fopen("state.dat","a")) == NULL)
exit(0);

/* Enable and initialize IRQ9 and IRQ10 */

outp(0x21, OxB8);
outp(0xAl, OxD8);
_dos_setvect(0x71, Dapslnt); /* Hardware IRQ9 */
_dos_setvect(0x72, Busy); /* Hardware IRQ10 */
outp(OxAO,0x20);
outp(0x20,0x20);

/* Initialize variables and Dual Port Ram */

143

Dual_lnit_l ();
Dual_lnit_2();
Obilnit();
Ctrllnit();

/* Begin program loop */

while (!((*status) & OBIESCAPE)) {
if (kbhit0) if (getkey() == ESC) break;

/* Save data if requested */

if ((*Switches) & SAVE_DATA) {
if ((*status) & SAVE_DATA) {
fprintf(rangefile, "Range Data... \n");
fprintf(sensorfile, "Sensor Data... \n");
fprintf(statefile, "State Data... \n");
*status &= (-SAVE_DATA);
}
if (count >= 75) {
fprintf(sensorfile, "%05u \t %05u \t %05u \t %05u \t %05u \t %05u \t %05u \t

%03d \t %03d \t %03d \t %03d \t %03d \t %03d \n", *Gyros,
*(Gyros+l), *(Gyros+2), *Depth, *Pendula, *(Pendula+l), *(Pendula+2),
*Motors, *(Motors+1), *(Motors+2), *(Motors+3), *(Motors+4),
*(Motors+5));

ydex = state;
for (i = 0; i < 16; i++)
fprintf(statefile, "%7.4f \t", *ydex++);
fprintf(statefile, "\n");
count = 0;
} else count++;

/* Thruster Control calculations */

if (*Pneu_View & POWER) {
if (*PID & CL_CTRL) { /* Closed loop control */

path_calc();
ctrl calc();

} else { /* open loop control from hand controllers */
for (i = 0; i <= 2; i++) {
if (*rhc & (0x01 << (i+i))) Torque[i] = OxFF;

else if (*rhc & (0x01 << (1+i+i))) Torque[i] = 0x00;
else Torque[i] = 0x80;

if (*thc & (0x01 << (i+i))) Trans[i] = OxFF;
else if (*thc & (0x01 << (1+i+i))) Trans[i] = Ox00;
else Trans[i] = 0x80;

JetSelect(Trans[0], Torque[2], Motors); * x-motors '
JetSelect(Trans[1], Torque[0], Motors+2); /* y-motors */
JetSelect(Trans[2], Torque[l], Motors+4); /* z-motors *'
JeIlc(rn[] oqel] oos4; / -oos*

}

144

/* 3DAPS reading. Flag set from 3DAPS interrupt */

if (DapsFlag) { / Flag set from 3DAPS interrupt */
Daps();
DapsFlag = Ox00;

/* Dual Port Ram transfers between Yoda and Lando */

if (*status & LANDO_ESCAPE) {
*bstatus I= LANDO_ESCAPE;
*status &= (~LANDOESCAPE);

} else if (*status & STATE_CALC) {
*bstatus 1= STATE_CALC;
*status &= (-STATE_CALC);

}
*bSwitches = *Switches;
if (*Switches & STATE_CALC) {

*bStateStuff = *State_Stuff;
for (i = 0; i < 3; i++) {

*(bPendula+i)
*(bGyros+i)
*(actuator+i)
*(actuator+3+i)

*(Pendula+i);
*(Gyros+i);
Trans[i];
Torque[i];

*bDepth = *Depth;

if (*Pneu_View & STATE_SEE)
ydex = state;
aydex = astate;
for (i = 0; i < 3; i++)

(*aydex++) =
for (i = 0; i < 4; i++)

(*aydex++) =
for (i = 0; i < 3; i++)

(*aydex++) =
for (i = 0; i < 6; i++)

(*aydex++) =
} _

End main driver loop

{ /* Convert to 2 Byte messages */

(int) (100.0*(*ydex++));

(int) (1000.0*(*ydex++));

(int) (100.0*(*ydex++));

(int) (57.296*(*ydex++));

if (*status & OBI_ESCAPE) {
*status ^= OBI_ESCAPE;

*Switches &= (-OBI_ESCAPE); }
outp(0x21, OxBC); /* Disable Hardware IRQ9 & IRQ10 */
outp(0xAl, OxDE);
fclose(rangefile);
fclose(sensorfile);
fclose(statefile);
if (*status & ESCAPE) {
*bSwitches = *Switches;
*bstatus = *status; }
exit(0);

145

} /*

void Obilnit() {

register i, j, temp;

/ * Initialize the 8255's on MIC

0x9292); / *
0x9292); / *

Initialized with Port A, B input, */
Port C outDut

/* Handshake with 68HC11's in case thumper has already activated HC11 */

outpw(POC,
outpw(P1C,
for (i = 0;i
outpw(POC,
outpw(P1 C,
for (i = 0;i
outpw(POX,
outpw(P1 X,
outpw(POA,
outpw(P1 A,
outpw(POC,
outpw(P1 C,
for (i = 0;i
outpw(POX,
outpw(P1 X,
outpw(POC,
outpw(P1 C,

0x0100);
Ox0100);

< 0x8888; i++); { }
0x0000);
Ox0000);

< 8888; i++) { } /*
0x8282);
0x8282);
Ox0000);
0x0000);
0x0100);

Delay to give HC11 proc. time */

0x01 00);
< 8888; i++) {
0x9292);
0x9292);
Ox0000);
Ox0000);

/* Initialize variables to inert values

DapsFlag = Ox00;
for (i = 0; i < 3; i++) {

Trans[i] = 0x80;
Torque[i] = 0x80;

for (j = 0; j < 8; j++) { /* Initialize DPR
temp = j<<2;
for (i = 0; i < 4; i++) {

ranges and gates */

*(gate+i+temp) = Ox00;
*(range+i+temp) = OxEEEE;
*(arange+i+temp) = OxEEEE;

for (j = 0; j < 16; j++) { /* Initialize DPR states */
*(astate+j) = Ox0000;
*(state+j) = 0.00;

146

outpw(POX,
outpw(P1 X,

I

/ * obifuns.c *
/* Written by: Ella M. Atkins and Robert M. Sanner * /
/* Last modified: 4/2/90 *

#include "obiwan.h"
#include <dos.h>
#include <gf.h>

#define STRIP(X) (((X)&127) >> 3)
#define TMAX OxOF

void JetSelect(xlat, rotat, mot)
Byte xlat, rotat;
char far *mot;

char StripXlat, StripRotat, tmp;

if ((StripXlat = (xlat >> 3) - 16) < 0) StripXlat++;
if ((StripRotat = (rotat >> 3) - 16) < 0) StripRotat++;

if ((tmp = StripXlat - StripRotat) < -TMAX) tmp = -TMAX;
else if (tmp > TMAX) tmp = TMAX;

*mot++ = tmp;
if ((tmp = StripXlat + StripRotat) > TMAX) tmp = TMAX;

else if (tmp < -TMAX) tmp = -TMAX;
*mot = tmp;

void Daps() { / Routine for reading 3DAPS data from 68HC11's */
short i;
short j;
unsigned short gatel, gate2;

/* Read thumper ID * /

*thumplD = (Byte) ((inpw(P1B)) & Ox0007);
j = (*thumplD) << 2;
if ((*Switches) & SAVE_DATA) {

fprintf(rangefile, "%02u \t", *thumplD);

/ Read HO and H2 of current thumper * /
*(range+j) = ((inpw(POA) & Ox00FF) I (inpw(POB) & OxFFOO00));
*(range+j+2) = ((inpw(P1A) & OxOOFF) I (inpw(P1B) & OxFF00O));

/* Signal 68HC11's to prepare for 286 read of H1 and H3 */
outpw(POC, Ox0100);
outpw(P1C, Ox0100);
if ((*Switches) & SAVE_DATA) {
fprintf(rangefile, "%05u \t %05u \t", *(range+j), *(range+j+2));

while ((!(inpw(POB) & Ox0010)) II (!(inpw(P1B) & Ox0010))) {}

147

/ Read H1 and H3 * /
*(range+j+1) = ((inpw(POA) & Ox00FF) I (inpw(POB) & OxFF00));
*(range+j+3) = ((inpw(P1A) & Ox00FF) I (inpw(P1B) & OxFF00));

/* Signal 68HC11's to prepare for range gate receipt */

outpw(POC, Ox0000);
outpw(P1C, Ox0000);
if ((*Switches) & SAVE_DATA) {
fprintf(rangefile, "%05u \t %05u \n",*(range+j+l), *(range+j+3));
}

INT_DUAL = 0x00; / Signal Lando about new hydrophone data */
if ((*Pneu_View) & HYDRO_SEE) {
for (i = 0; i < 4; i++) {
*(arange+j+i) = *(range+j+i); }
)
while ((inpw(POB) & x0010) 11) (inpw(P1B) & Ox0010)) (

/ Output Range gates to 68HC11's * /
outpw(POX, 0x8282); /* Initialize 8255's with Port A output */
outpw(P1 X, 0x8282);

gatel = (unsigned short) ((*(gate+j)<<8) I (*(gate+j+2)));
gate2 = (unsigned short) ((*(gate+j+1)<<8) I (*(gate+j+3)));

outpw(POA, gatel);
outpw(P1A, gate2);

outpw(POC, 0x0100); /* Signal HC11's to read range gates */
outpw(P1C, 0x0100); /* You're so forward, Matt... */

/* Wait until HC11 has read gates */

while ((!(inpw(POB) & 0x0010)) II (!(inpw(P1B) & Ox0010))) {

outpw(POX, 0x9292); /* Re-Initialize 8255's with Port A input */
outpw(P1 X, 0x9292);
outpw(POC, 0x0000);
outpw(P1C, 0x0000);

void interrupt far Dapslnt() {
DapsFlag = Ox01; P Set flag for 3DAPS routine */
outp(0xAO, 0x20); /* Reset 8259A's */
outp(0x20, Ox20);
return;

}

void interrupt far Busy() (
/* Interrupt produces delay for Dual-Port Ram writing */
printf("Busy");

148

outp(0xAO,
outp(0x20,
return;

0x20);
0x20);

/* Reset 8259A's */

ctrlcalc.c
Written by: Ella M. Atkins
Last modified: 4/13/90

#include "obiwan.h"
#include <math.h>
#include <stdio.h>

static
static
static
static

unsigned
double
double
double

char pathflag;
Gain[2][9], C[3][3];
*Cib, yaw, pitch, roll;

xwanted[13], xerror[13], steadyx[3], deltax[12];

void path_calc() /* MPOD trajectory planning routine * /
/* Note: This program is incomplete. * /

register i;
unsigned char newpath, dock_stage;

if (pathflag != *path) {
newpath = Ox01;
if (pathflag <= Ox08) gainflag = Ox00; /* Att/Pos Hold gains */
else gainflag = Ox01; /* Att/Pos Maneuver gains */
pathflag = *path;

Attitude Hold */
if (newpath) { /* Compute Euler angles, direction cosines */
cosine_calc();
newpath = Ox00;

}
if (*thc != Ox00) { /* Incorporate

) else if (pathflag & POS_HOLD) { 1*
if (newpath) {
for (i = 0; i < 3; i++)
steadyx[i] = *(state+i);
newpath = Ox00;

THC commands with Attitude hold */

Position Hold */

if (*rhc != Ox00) { /* Incorporate RHC commands with Position hold */
}

) else if (pathflag & AP_HOLD) {
if (newpath) {
for (i = 0; i < 3; i++)
steadyx[i] = *(state+i);
cosine_calc();

/* Attitude & Position Hold */

149

/*

/*

if (pathflag & ATT_HOLD) { /*

newpath = Ox00;
}

} else if (pathflag & ENTER_ATT) { /* User-defined final Attitude */
if (newpath) { /* Hold position during attitude change */
for (i = 0; i < 3; i++)
steadyx[i] = *(state+i);
newpath = Ox00;

} else if (pathflag & ENTER_POS) { /* User-defined final Position */
if (newpath) { /* Hold attitude during position change */
cosine_calc();

newpath = Ox00;

) else if (pathflag & DOCK) { /*
if (newpath) {
dock_stage = Ox01;
newpath = 0x00;

if (dock_stage == Ox01) {

} else if (dockstage == 0x02) {

) else if (dock_stage == 0x03) {
if (*Switches & RAM) { /* Flag
pathflag = Ox00;
*path = Ox00;

MPOD Automatic Docking */

Obtain upright attitude */

/* Move to 2m in front of target */

/* Translate in x until docked */
signifying docking completion */

void Ctrllnit() / MPOD control parameter initialization */

register i, j;
for (i = 0; i < 2; i++) {

for (j = 0; j < 9; j++)
Gain[i][j] = 10.0;

pathflag = Ox00;
for (i = 0; i < 13; i++) {

xwanted[i] = 0.00;
xerror[i] = 0.00;
if (i < 12) deltax[i] = 0.00;
if (i < 3) steadyx[i] = 0.00;

150

Appendix B.3 Lando Software

/I* lando * I
I * Microsoft C Make file * /

lando.obj: lando.h filter.h lando.c
cl /c /FPi87 lando.c

filter2.obj: filter.h lando.h filter2.c
cl /c /FPi87 /Od filter2.c

pstate.obj: filter.h lando.h pstate.c
cl /c /FPi87 /Od pstate.c

landfuns.obj: lando.h filter.h landfuns.c
cl /c /FPi87 landfuns.c

lando.exe: lando.obj filter2.obj pstate.obj landfuns.obj ..\obilando.obj
link /NOD $**, lando.exe,,SLIBC7+GFCS+GFS

/ * lando.h
/* Written by: Ella M. Atkins
/* Last modified: 5/2/90

#ifndef OBILANDO
#include "..\obilando.h"
#endif

#include <stdio.h>

#ifndef LANDO
#define LANDO

unsigned char newdata;

/* Definitions in 'bSwitches us

#define STATE_CALC
#define LANDO_ESCAPE

/* Definitions in *bState_Stuff

#define USE_RANGES
#define USEPENDULA
#define USE_DEPTH
#define USE_RATE

/* Useful definitions */

#define READ_DATA
#define USE_DATA
#define ROLLBIAS

* /* /
*I/

ed by Lando */

0x02
0x20

used by Lando */

0x01
0x02
0x04
0x08

0x01
0x02
-0.26

151

#define MAX_ERROR
#define RANGE_OFFSET
#define RANGE_FACTOR
#define PEND_FACTOR
#define RATEFACTOR
#define DEPTH_FACTOR
#define DEPTHZERO
#define THRUSTFACTOR
#define TORQUEFACTOR

5.0
1.011
0.000748
0.001534
0.001534
0.01662
0x97E
0.9449
0.8031

Maximum allowable range error */
distance before counter begins */
Ranges -- counts to meters */

Pendula -- counts to radians */
Gyros -- 12-bit count to rad/sec */
Depth Sensor -- 12-bit count to m */
Depth Sensor -- Surface reading */
Converting #'s to Newtons */
Converting #'s to N-m's * /

/* Subroutines used in main driver loop */

void Landolnit();
void Filterlnit();

void interrupt far Busy();
void interrupt far New_3DAPS();

#endif

/ * filter.h
/* Written by: Robert M. Sanner
/* Last modified by: Ella M. Atkins 4/11/90

#ifndef FILTERH
#define FILTERH

double yhat[16], P[16][16], yVar[16];

Filter subroutine Drototvoes */

void theFiltero;/* double dt, int measNum, double meas, double measVar,
double *stateVar); */

void propState();/* double dt, double *stateVar); */

3DAPS configuration information (from KGK thesis) */

{-6.300, 4.935, 0.15)
(-6.300, 4.935, 3.09)
(-6.300, -4.935, 0.15)
{-6.300, -4.935, 3.09)
(6.300, 4.935, 0.15)
(6.300, 4.935, 3.09)
(6.300, -4.935, 0.15)
(6.300, -4.935, 3.09)

#define EPS 1.0e-02

(0.0, 0.0, -1.43)
(0.0, -1.43, 0.0)
(-1.44, 0.0, 0.0)
(0.0, 1.434, 0.01

#define
#define
#define
#define
#define
#define
#define
#define
#define

TO
T1
T2
T3
T4
T5
T6
T7

#define
#define
#define
#define

152

/ * MPOD physical parameter data (From Joe P. and Ella tests) */

CDTX
CDTY
CDTZ

CORX
CDRY
CDRZ

480.0
480.0
480.0

186.3
265.3
265.3

Estimated from Cd(trans)
N/((m/sec)**2) */

Estimated from Cd(rot) =
N*m / ((rad/sec)**2) */

= (Fmax/((Vt)**2))

(Tmax/((wmax)**2)) *I

MT 1000.0

#define
#define
#define

#define
#define
#define

#define

#define
#define
#define

Written by:
Last modified:

Estimated from lumped box and */
thin spherical shell model */

its

1./MT
(IYY - IZZ)
(IXX - IYY)
(IZZ - IXX)
1./IXX
1./IYY
1./IZZ

lando.c
Ella M. Atkins
3/1 6/90

*/
* /

*/

#include "lando.h"
#include "filter.h"

#include <dos.h>
#include <ibmkeys.h>
#include <gf.h>
#include <math.h>

double ut[3] = {0.0}, ur[3] = {0.0);

main(){
register i, j, k;

static unsigned char choice = Ox00, measflag = OxOF;
unsigned short temp;
static int measlD;
static double dt = 0.02, pitchsign = 1.0;
static double newmeas[32]; /* Variable for range data */
double meas, *ydex, temp2;
double far *DPRydex;

153

IXX 80.5
IYY 85.9
IZZ 94.1

Derived consta

INVMT
12MI3
11M12
13MI1
INVIX
INVIY
INVIZ

#define
#define
#define
#define
#define
#define
#define

#endif

/ *
/ *

/,*

/ * Enable and initialize IRQ5 and IRQ9

outp(0x21, 0x98);
outp(0xAl, OxDC);
_dos_setvect(OxOD, Busy);
_dos_setvect(0x71, New_3DAPS);
outp(0xA0, 0x20);
outp(0x20, 0x20);

Hardware IRQ5
Hardware IRQ9

Dual_lnit_2();
Landolnit();
for (i = 0; i < 32; i++) newmeas[i] = 8.0;

while (!((*bstatus) & LANDO_ESCAPE)) {
if (kbhit()) if (getkey() == ESC) break;
if ((*bState_Stuff) != measflag) measflag = (*bState_Stuff);
if (newdata & READ_DATA) {

temp = (*thumplD)<<2;
for (i = 0; i < 4; i++) {
measlD = (*thumplD) + (i << 3);
newmeas[measlD] = (((double) (*(range+i+temp)))

*RANGE_FACTOR)+RANGE_OFFSET;

newdata = USE_DATA;
}
if (*(bSwitches) & STATE_CALC) {

if (*bstatus & STATE_CALC) {
Filterlnit(); / * Initialize state and variances */
*bstatus &= (-STATE CALC); }
if ((newdata & USE_DATA) && (measflag & USE_RANGES))
newdata ^= USE_DATA;
for (i = 0; i < 4; i++)

measlD = (*thumplD) + (i << 3);
if ((newmeas[measlD] >= 0.3) &&
(newmeas[measlD] <= 16.0)) (
ut[0] = (THRUST_FACTOR)*(((double) (*actuator))-128.0);

ur[O] = (TORQUE_FACTOR)*(((double) (*(actuator+3)))-128.0);
for (j = 1; j < 3; j++) { /* Read Forces from DPR */

ut[j] = (-THRUST_FACTOR)*(((double) (*(actuator+j)))-128.0);
ur[jl = (-TORQUE_FACTOR)*(((double) (*(actuator+3+j)))-128.0);

meas = newmeas[measlD]*newmeas[measlD];
theFilter(dt, measlD, meas, 0.5, yVar);
ydex = yhat;
DPRydex = state;
for (j = 0; j < 16; j++) / * Store state in DPR */

*DPRydex++ = *ydex++;

ut[0] = (THRUST_FACTOR)*(((double) (*actuator))-128.0);
ur[0] = (TORQUE_FACTOR)*(((double) (*(actuator+3)))-128.0);
for (i = 1; i < 3; i++) { /* Read Control Signals from DPR */
ut[i] = (-THRUST_FACTOR)*(((double) (*(actuator+i)))-128.0);

154

ur[i] = (-TORQUE FACTOR)*(((double) (*(actuator+3+i)))-128.0);
)
if ((choice < 0x03) && (measflag & USE_PENDULA)) {

if (choice == Ox00) {
temp2 = 3.14159-(((double) (*(bPendula+choice)))*PEND_FACTOR);
meas = cos(temp2);
) else if (choice == Ox01) {
temp2 = 3.14159+(((double) (*(bPendula+choice)))*PEND_FACTOR);
pitchsign = -fabs(temp2-6.28)/(temp2-6.28);
meas = cos(temp2);
} else {
temp2 = pitchsign*(3.141 59+(((double) (*(bPendula+choice)))*PENDFACTOR));

meas = pitchsign*cos(temp2);)
theFilter(dt, (int) (32+choice), meas, 0.05, yVar);
) else if ((choice == 0x03) && (measflag & USE_DEPTH)) {
meas = ((double) ((*bDepth)-DEPTH_ZERO))*DEPTHFACTOR;
theFilter(dt, 35, meas, 0.1, yVar);
) else if (measflag & USE_RATE) {
meas = (((double) (*(bGyros+choice-4)))-2048.0)*RATE_FACTOR;

if (choice > 4) meas = -1.0*meas;
theFilter(dt, (int) (32+choice), meas, 0.1, yVar);
}

if (choice >= 0x06) choice = Ox00;
else choice++;
ydex = yhat;
DPRydex = state;
for (i = 0; i < 16; i++)
*DPRydex++ = *ydex++;

*bstatus &=
outp(0x21,
outp(OxA1,
exit(0);

landfuns.c
Written by: Ella
Last modified:

Store state in DPR */

(-LANDO_ESCAPE);
)xBC); / * Disable hardware interrupt lines */
OxDE);

M. Atkins
4/11/90

*/
* /

* /

#include "lando.h"
#include "filter.h"

#include <dos.h>
#include <gf.h>

void Landolnit() {
register i, j;
double *Vdex, *ydex, *pdex;
newdata = *INT_DUAL; /* In case an interrupt has activated DPR */
newdata = OxO0;

155

/ Initialize variables */

Vdex = yVar;
ydex = yhat;
pdex = P[0];

for (i = 0; i < 16; i++) {
(state+i) = 2.00; / DPR state variable initialization */
Vdex++ = 0.00001; / State variance initialization */
ydex++ = 0.00; / State variable initialization */
for (j = 0; j < 16; j++) /* Variance initialization */
*pdex++ = 0.0;

}

void Filterlnit() {
register i;
double *ydex, *Pdex;
ydex = yhat;
Pdex = yVar;

/* Assumes MPOD is at rest near defined inertial coordinate origin and axes */

for (i = 0; i < 16; i++) {
*ydex++ = 0.00;
*Pdex++ = 0.00001; }

for (i = 0; i < 3; i++) P[ij[i] = 0.2;
for (i = 3; i < 7; i++) P[i][i] = 0.02;
for (i = 7; i < 10; i++) P[i][i] = 0.5;
for (i = 10; i < 13; i++) P[i][i] = 0.05;
for (i = 13; i < 16; i++) P[i][i] = 0.05;

*(yhat+13) = ROLLBIAS;
*(yhat+3) = 1.0;

*(yhat+2) = 2.0;
* /

void interrupt far New_3DAPS() {
newdata = *INT_DUAL;
newdata = READ_DATA;
outp(0xAO, 0x20);
outp(0x20, 0x20);
return;

}

void interrupt far Busy() {
outp(0x20, 0x20);
return;

}

roll rate sensor bias */
Initial quaternion value */

expected z value at pool center, not surface

Alerts Lando to new 3DAPS data */
Clear Interrupt flag */

Flag indicating new data to read */
Reset 8259A's -- IRQ9 */

/* Interrupt causes delay for DPR */
/* Reset 8259A -- IRQ5 */

156

/ * filter.c
r Written by: Robert M. Sanner
* Last modified: 2/9/90

#include <math.h>
#include <stdio.h>
#include "lando.h"
#include "filter.h"

double t[8][3]
double 11[4][3]
static double

static double
static double

static double
static double
static double

static int

= (TO, T1, T2, T3, T4, T5, T6, T7);
= (LO, L1, L2, L3);

Ph[16], Cib[3][3], h[16], d[3];

xl, x2, x3, qO, ql, q2, q3;
q11,q 2,q 3,q22,q23,q33,q01 ,q02,q03;

Cbi13, Cbi23, Cbi33, Cbil3_2, Cbi23_2, Cbi33_2, alpha;
Cbil3_23, Cbi23_33, Cbil3_33, alpha_2;
g, a, temp, scaledDiff;

thumpNum, hydroNum;

void theFilter(double dt, int measNum, double meas, double measVar,
double *stateVar)

register ii, jj, index, index2;
double *cdex, *ddex, *hdex, *idex, *lIdex, *pdex,
double *xdex, *ydex, *thet, *thel;

/ * Set up local registers with the current estimates

ydex = yhat;
xl = *ydex++;
x2 = *ydex++;
x3 = *ydex++;
qO = *ydex++;
qi = *ydex++;
q2 = *ydex++;
q3 = *ydex;

/* Compute direction cosines only if necessary */

if (measNum < 35) {

*phidex, *ph2dex;

* /

/ * Set up some useful combinations of state vector elements. */

qll
q01
q12
q22
q02
q13
q33

ql*ql;
qO*qi;
ql *q2;
q2*q2;
qO*q2;
ql*q3;
q3*q3;

157

*/
*/
* /

q03 = qO*q3;
q23 = q2*q3;

/ * Compute Cib * /

idex = Cib[O];

idex++ = 1.0 - 2.0(q22 + q33);
idex++ = 2.0(q12 - q03);
idex++ = 2.0(q13 + q02);

idex++ = 2.0(q12 + q03);
idex++ = 1.0 - 2.0(qll11 + q33);
idex++ = 2.0(q23 - q01);

idex++ = 2.0(q13 - q02);
idex++ = 2.0(q23 + q01);
idex = 1.0 - 2.0(qll + q22);

/ * Determine which measurement was taken, and compute the
necessary measurement geometry quantities */

if (measNum < 32) { /* Range Mesurements */

thumpNum = (measNum%8);
hydroNum = measNum/8;

Select the correct thumper-hydrophone pair for this meas. */

thet = t[thumpNum];
thel = I[hydroNum];

/* Compute the expected measurement using our current estimate
of the state vector. */

cdex = *Cib; ddex = d;

*ddex++ = xl - (*thet++);
*ddex++ = x2 -(*thet++);
*ddex = x3 - (*thet);

for (ii = 0, ddex = d; ii < 3; ii++, ddex++)
for (jj = 0, Idex = thel; jj < 3; jj++)

*ddex += (*cdex++) * (*Idex++);
g = 0.0;
for (ii = 0, ddex = d; ii < 3; ii++, ddex++)

g += (*ddex)*(*ddex);

/ * Compute the meas. geom. sensitivity vector * /

hdex = &h[3];
ddex = d;
temp = *ddex++;

158

*hdex++
*hdex++
*hdex++
*hdex

(q2*thel[2]
(q2*thel[1]
(ql*thel[1]
(q *thel[2]

hdex = &h[3];
temp = *ddex++;
*hdex++ += (q3*thel[O]
*hdex++ += (q2*thel[0]
*hdex++ += (ql*thel[O]
*hdex += (q2*thel[2]

hdex = &h[3];
temp = *ddex;
*hdex++ += (ql*thel[1]
*hdex++ += (q3*thel[O]
*hdex++ += (q3*thel[1]
*hdex += (ql*thel[O]

hdex = h; ddex = d;
for (ii = 0; ii < 3; ii++)

*hdex++
for (ii = 0; ii
for (ii = 0; ii

else if (measNum < 3

q thel1 j)- temp;
q3*thel[2])*temp;
qO*thel[2] - 2.0*q2*thel[0])*temp;

qO*thel[1] - 2.0*q3*thel[0])*temp;

q I LIUDILCJJ IaIIti,

q0*thel[2] - 2.0*ql*thel[1])*temp;
q3*thel[2])*temp;
qO*thel[O] - 2.0*q3*thel[1])*temp;

- q2*thel[0])*temp;
+ qO*thel[1] - 2.0*ql*thel[2])*temp;
- qO*thel[0] - 2.0*q2*thel[2])*temp;

+ q2*thel[1])*temp;

= 2.0 * (*ddex++);
< 4; ii++) *hdex++ *= 4.0;
< 9; ii++) *hdex++ = 0.0;

5) { /* Angle measurements */

/ * Set up some useful combinations of direction cosines.

cdex = *Cib;

Cbil3 =
Cbi23 =
Cbi33 =

Cbi23 2
Cbi13_2
Cbi33 2

* /

*cdex++;
*cdex++;
*cdex;

= Cbi23*Cbi23;
= Cbil3*Cbil3;
= Cbi33*Cbi33;

hdex = &h[3];

/ * Compute the expected measurement and local gradient,
given our current state estimate. */

if (measNum == 32) { /* "Roll" pendulum */

alpha 2 = Cbi23_2 + Cbi33_2;
alpha = sqrt(alpha_2);
if (alpha < EPS) return;
g = Cbi33/alpha;
Cbi23_33 = Cbi23*Cbi33;

159

*•qI *L=Id$t A. .

4* 6, 1r ,,.•

Cbi23_33*q 1;
2.0*ql*Cbi23_2 +
2.0*q2*Cbi23_2 +

Cbi23_33*q2;

Cbi23_33*q0;
Cbi23_33*q3;

temp = -2.0/(alpha_2 * alpha);

else if (measNum == 33) { /* "Pitch" pendulum */

alpha_2 = Cbi13_2 + Cbi33_2;
alpha = sqrt(alpha_2);
if (alpha < EPS) return;
g = Cbi33/alpha;
Cbil3_33 = Cbil3*Cbi33;

Cbil 3_33*q2;
2.0*q1*Cbil3_2 +
2.0*q2*Cbil3_2 +

Cbil 3_33*q2;

Cbil 3_33*q3;
Cbi23_33*q3;

temp = -2.0/(alpha_2 * alpha);

else if (measNum == 34) { /* "Yaw" pendulum */

alpha_2 = Cbi13_2 + Cbi23_2;
alpha = sqrt(alpha_2);
if (alpha < EPS) return;
g = Cbil3/alpha;
Cbi13_33 = Cbi13*Cbi33;
Cbi23_33 = Cbi23*Cbi33;

*hdex++ = -(q2*Cbi23_2 + Cbi13_23*ql);
*hdex++ = q3*Cbi23_2 - Cbi13_23*q0;
*hdex++ = -(q0*Cbi23_2 + Cbi13_23*q3);
*hdex = q1*Cbi23_2 - Cbi13_23*q2;

temp = 2.0/(alpha_2 * alpha);

/ * xcg does not effect these measurements at all */

0, hdex = h; ii
0; ii < 4; ii++)
0; ii < 9; ii++)

else if (measNum == 35) {

< 3; ii++) *hdex++ = 0.0;
*hdex++ *= temp;
*hdex++ = 0.0;

/ * Depth Sensor * /

g = x3;

160

*hdex++
*hdex++
*hdex++
*hdex

*hdex++
*hdex++
*hdex++
*hdex

for (ii = 0, hdex = h; ii < 16; ii++)
h[2] = 1.0;

else if (measNum < 39) { / *

*hdex++ = 0.0;

Gyro Readings * /

index = measNum - 26;
index2 = index + 3;

g = yhat[index] + yhat[index2];
for (ii = 0, hdex = h; ii < 16; ii++) *hdex++ = 0.0;
h[index] = h[index2] = 1.0;

else {

printf("Invalid measurement selector in theFilter.\n");
return;

I

1*

*1
first, propagate the state and covariance:

if (dt > 0.0) propState(dt, stateVar);

...now compute Ph:*

...now compute Ph:
• /

phidex = Ph; pdex = P[0];
for (ii = 0; ii < 16; ii++, phldex++) {

*phldex = 0.0;
for (jj = 0, hdex = h; j < 16; jj++)

*phidex += (*pdex++) * (*hdex++);

/ *next compute a:

a = measVar;
hdex = h; phidex = Ph;
for (ii = 0; ii < 16; ii++) a += (*hdex++) * (*phldex++);

...and update the state estimate, yhat:

scaledDiff = (meas - g)/a;
phidex = Ph; ydex = yhat;
for (ii = 0; ii < 16; ii++)

(*ydex++) += scaledDiff * (*phldex++);

/* ...last, but hardly least, update the covariance matrix:

161

NOTE: since we assume P symmetric we can reuse the vector Ph in
the update equation for P!

pdex = P[0]; phidex = Ph;
for (ii = 0; ii < 16; ii++, phldex++) {

temp = (*phldex)/a;
for (jj = 0, ph2dex = Ph; jj < 16; jj++)

*pdex++ -= temp * (*ph2dex++);
}

/ * With luck, that's it...give the caller the vector and exit */

idex = ydex = &yhat[4];
ql = *ydex++;
q2 = *ydex++;
q3 = *ydex;
temp = ql*ql + q2*q2 + q3*q3;
if (temp > 1.0) {

temp = sqrt(temp);
yhat[3] = 0.0;
for (ii = 0; ii < 3; ii++) *idex++ /= temp;

} else
yhat[3] = sqrt(1.0 - temp);

*DPR_num = measNum;

/ * pstate.c
/* Written by: Robert M. Sanner
/* Last Modified: 2/9/90

#include <stdio.h>
#include <math.h>
#include "filter.h"

#define ABS(X) ((X) < 0 ? -(X) : (X))
#define QBIGTOL 1.01
#define QSMTOL 0.99

extern double ut[3], ur[3];

void propState(double dt, double *stateVar)

static double
static double
static double
static double
static double
static double
static double
static double

halfdt, kl[13] = {0.), k2[13] = {0.};
xl, x2, x3, v1, v2, v3;
qO, ql, q2, q3, wl, w2, w3;
absvl, absv2, absv3, abswl, absw2, absw3;
uix, uiy, uiz;
cib11, cib12, cib13, cib21, cib22, cib23;
cib31, cib32, cib33;
q 1 ,q22,q33,q01 ,q02,q03,ql 2,ql 3,q23;

162

check, correct;

static double *idx, *jdx, *kdx;
register ii;

halfdt = dt/2.0;

/ * Set up local storage for estimated variables * /

idx = yhat;

xl = *idx++; x2 = *idx++; x3 = *idx++;
qO = *idx++; q1 = *idx++; q2 = *idx++; q3 = *idx++;
vl = *idx++; v2 = *idx++; v3 = *idx++;
wl = *idx++; w2 = *idx++; w3 = *idx;

absvl = ABS(v1); absv2 = ABS(v2); absv3 = ABS(v3);
abswl = ABS(wl); absw2 = ABS(w2); absw3 = ABS(w3);

q11 = ql*ql; q22 = q2*q2; q33 = q3*q3;
q03 = q0*q3; q13 = ql*q3; q23 = q2*q3;
q02 = qO*q2; q12 = ql*q2; q01 = qo*ql;

cib11 = 1 - 2.*(q22 + q33);
cibl2 = 2.*(q12 + q03);
cibl3 = 2.*(q13 - q02);

cib21 = 2.*(q12 - q03);
cib22 = 1. - 2.*(ql1 + q33);
cib23 = 2.*(q23 + q01);

cib31 = 2.*(q13 + q02);
cib32 = 2.*(q23 - q01);
cib33 = 1. - 2.*(qil + q22);

uix = cibil*ut[0] + cibl2*ut[1] + cibl3*ut[2];
uiy = cib2l1*ut[0] + cib22*ut[1] + cib23*ut[2];
uiz = cib3l1*ut[0] + cib32*ut[1] + cib33*ut[2];

/ * Compute the derivatives and store in k1 * /

idx = kl;

/* fx */

*idx++ = v1; *idx++ = v2; *idx++ = v3;

/ * fq

idx++ = -0.5(q1*wl + q2*w2 + q3*w3);
idx++ = 0.5(qO*wl + q2*w3 - q3*w2);
idx++ = 0.5(q0*w2 - ql*w3 + q3*wl);
idx++ = 0.5(q0*w3 + ql*w2 - q2*wl);

163

static double

/* fv */

idx++ = INVMT(uix - CDTX*vl*absvl);
idx++ = INVMT(uiy - CDTY*v2*absv2);
idx++ = INVMT(uiz - CDTZ*v3*absv3);

/* fw */

idx++ = INVIX(ur[0] + 12MI3*w2*w3 - CDRX*wl*abswl);
idx++ = INVIY(ur[1l] + 13MI1*wl*w3 - CDRY*w2*absw2);
idx++ = INVIZ(ur[2] + 11M12*w2*wl - CDRZ*w3*absw3);

/ * Reset registers to yhat + (dt/2)*kl * /

idx = yhat; jdx = kl;

xl = *idx++ + halfdt*(*jdx++);
x2 = *idx++ + halfdt*(*jdx++);
x3 = *idx++ + halfdt*(*jdx++);
qO = *idx++ + halfdt*(*jdx++);
ql = *idx++ + halfdt*(*jdx++);
q2 = *idx++ + halfdt*(*jdx++);
q3 = *idx++ + halfdt*(*jdx++);
vl = *idx++ + halfdt*(*jdx++);
v2 = *idx++ + halfdt*(*jdx++);
v3 = *idx++ + halfdt*(*jdx++);
wl = *idx++ + halfdt*(*jdx++);
w2 = *idx++ + halfdt*(*jdx++);
w3 = *idx + halfdt*(*jdx);

absvl = ABS(vl1); absv2 = ABS(v2); absv3 = ABS(v3);
abswl = ABS(wl); absw2 = ABS(w2); absw3 = ABS(w3);

qll = ql*ql; q22 = q2*q2; q33 = q3*q3;
q03 = q0*q3; q13 = ql*q3; q23 = q2*q3;
q02 = q0*q2; q12 = ql*q2; q01 = qO*ql;

cibl1 = 1 - 2.*(q22 + q33);
cibl2 = 2.*(q12 + q03);
cibl3 = 2.*(q13 - q02);

cib21 = 2.*(q12 - q03);
cib22 = 1. - 2.*(qll + q33);
cib23 = 2.*(q23 + q01);

cib31 = 2.*(q13 + q02);
cib32 = 2.*(q23 - q01);
cib33 = 1. - 2.*(qll11 + q22);

uix = cibil*ut[0] + cibl2*ut[1] + cibl3*ut[2];
uiy = cib2l1*ut[0] + cib22*ut[1] + cib23*ut[2];
uiz = cib3l1*ut[0] + cib32*ut[1] + cib33*ut[2];

164

Repeat the derivatives to compute k2 * /

idx = k2;

/* fx */

*idx++ = v1; *idx++ = v2; *idx++ = v3;

/ * fq */

idx++ = -0.5(ql*wl + q2*w2 + q3*w3);
idx++ = 0.5(qO*wl + q2*w3 - q3*w2);
idx++ = 0.5(q0*w2 - q1*w3 + q3*wl);
idx++ = 0.5(qO*w3 + ql*w2 - q2*wl);

/* fv */

idx++ = INVMT(uix - CDTX*vl*absvl);
idx++ = INVMT(uiy - CDTY*v2*absv2);
idx++ = INVMT(uiz - CDTZ*v3*absv3);

/* fw */

idx++ = INVIX(ur[0] + 12MI3*w2*w3 - CDRX*wl*abswl);
idx++ = INVIY(ur[1] + 13MI1*wl*w3 - CDRY*w2*absw2);
idx++ = INVIZ(ur[2] + 11M12*w2*wl - CDRZ*w3*absw3);

/ * Now increment the state... * /

idx = yhat; jdx = k2;
for (ii = 0; ii < 13; ii++) *idx++ += dt*(*jdx++);

/ * ...and increment (minimally) the covariance: * /

idx = P[O];
for (ii = 0; ii < 16; ii++, idx+=17)

idx += dt(*stateVar++);

/ * Make sure the quaternion does not drift excessively * /

idx = jdx = &yhat[4];
check = 0.;
for (ii = 0; ii < 3; ii++, idx++) check += (*idx)*(*idx);

if (check >1.0) {
correct = sqrt(check);
yhat[3] = 0.0;
for (ii = 0; ii < 3; ii++) *jdx++ /= correct;

} else
yhat[3] = sqrt(l.0 - check);

165

Appendix B.4 Luke Software

/ * pvluke
/ * Microsoft C Make file

pvluke.obj: ..\pivecs\pivecs.h pvluke.h ..\pvyoda.msg pvluke.c
cl /c pvluke.c

lukefuns.obj: ..\pivecs\pivecs.h pvluke.h lukefuns.c
cl /c lukefuns.c

lukemsgs.obj: ..\pivecs\pivecs.h ..\pivecs\pvdata.h pvluke.h ..\pvyoda.msg lukemsgs.c
cl /c lukemsgs.c

pvluke.exe: pvluke.obj lukemsgs.obj lukefuns.obj
link /NOD $**, pvluke.exe,,SLIBCE+GFCS+GFS+..\pivecs\PIVECS

/ *

r

pvluke.msg
Written by: Robert M. Sanner

Last modified by: Ella M. Atkins, 4/11/90

* /

* /
*/

#ifndef LUKEMSGS
#define LUKEMSGS

I tettt~tt++t

#define COMTEST
#define COMAOK
#define SHUTDN
#define YODAESC

#define RXMOTORS
#define RXPENDULA
#define RXGYROS
#define RXHYDRO01
#define RXHYDRO23

#define RXPOSITION
#define RXATTITUDE
#define RXVELOCITY
#define RXOMEGA
#define RXBIAS

#define TXTHC
#define TXRHC
#define TXSWITCH
#define TXCTRL
#define TXSTATE
#define TXGAINS

#define BADMSG

0x00
0x08Ox10

0x20

0x34
0x3F
0x47
0x4D
0x55

0x67
Ox6F
0x76
Ox7E
0x86

OxAO
0xA8
OxBO
OxB8
OxCO
OxC8

Recognized Message
/* Msg 0, No Data
/* Msg 1, " "
/* Msg 2, " "
/* Msg 4, " "

/* Msg 6, 4 Data Bytes */
Msg
Msg
Msg
Msg

Msg
Msg
Msg
Msg
Msg

Msg
Msg
Msg
Msg

List .**********..*.*** */

* /
* /

*/
*/

7, 7 "
8, 7 "
9, 5 "
10, 5"

12,
13,
14,
15,
16.

20,
21,
22,
23

/* Msg 24, " "
/* Msg 25, " "

Data
"!

I"

"

* /
* /

OxFF /* Msg 31, 7 data. Placeholder for Bad msgs */

#endif

166

v 239

/ * pvluke.h
/ * Written by: Robert M. Sanner
/* Last modified by: Ella M. Atkins, 4/11/90

#ifndef PIVECS
#include "..\pivecs\pivecs.h"
#endif
#ifndef LUKEMSGS
#include "..\pvluke.msg"
#endif

#ifndef LUKE
#define LUKE

extern HandlerFunc
extern HandlerFunc
extern HandlerFunc
extern HandlerFunc
extern HandlerFunc

static Handlers

static Headers

BadMsg, ShutDown, ComCheck, ComAOK, Yod_ESC;
TX_THC, TX_RHC, TX_Switch, TX_Ctrl, TX_State, TX_Gains;
RX_Motors, RX_Pendula, RX_Gyros;
RX_HydroOl, RX_Hydro23, RX_Bias;
RX_Position, RX_Attitude, RX_Velocity, RXOmega;

LukeHandlers =
{ComCheck,
Yod_ESC,
RX_Gyros,
RX_Position,
RX_Bias,
TX_THC,
TX_State,
BadMsg,

LukeMsgs =
{COMTEST,
YODAESC,
RXGYROS,
RXPOSITION,
RXBIAS,
TXTHC,
TXSTATE,
BADMSG,

ComAOK,
BadMsg,

RX_HydroOl,
RX_Attitude,
BadMsg,
TX_RHC,
TX_Gains,
BadMsg,

COMAOK,
BADMSG,
RXHYDRO01,
RXATTITUDE,
BADMSG,
TXRHC,
TXGAINS,
BADMSG,

ShutDown,
RX_Motors,
RX_Hydro23,
RX_Velocity,
Bad Msg,
TX_Switch,
BadMsg,
BadMsg,

SHUTDN,
RXMOTORS,
RXHYDRO23,

RXVELOCITY,
BADMSG,
TXSWITCH,
BADMSG,
BADMSG,

BadMsg,
RX_Pendula,
BadMsg,
RX_Omega,
BadMsg,
TX_Ctrl,
BadMsg,
BadMsg};

BADMSG,
RXPENDULA,
BADMSG,
RXOMEGA,
BADMSG,
TXCTRL,
BADMSG,
BADMSG};

static Byte LukeHiPri = 5;

Byte thc, rhc, path, PID, Motors[6], MotorSigns;
Byte statelD, gainlD;
Byte Switches, status, progesc, STOP, thumplD;
Byte Pneu_View, Pstatus;
Byte State_Stuff, Sstatus;
float stateval;
unsigned short Pendula[3], Gyros[3], Depti
unsigned short range[41[8], gainval;

void

1;

pos[3], quat[4], veloc[3], omega[3], bias[3];

Lukelnit(, ReadTHCO, ReadRHC(), ReadSW();

167

* /
* /
* /

;

/* Sent to Yoda via Pneu View */

#define POWER 0 x1 0
#define RAM 0x04
#define LATCH 0x02
#define MOTORSEE 0x08
#define SENSORSEE 0 x20
#define HYDROSEE 0x40
#define STATE_SEE 0 x80

/* Sent to Yoda via Switches */

#define SAVEDATA 0x01
#define STATECALC 0x02
#define YODA_ESCAPE 0x08 f* Sent to Yoda via YODAESC message */
#define OBIESCAPE 0 x 10
#define LANDOESCAPE 0x20
#define ESCAPE 0x40 /* Escape from all MPOD computers */

/* State Calculation parameters; Sent to Yoda via State_Stuff */

#define USE RANGES 0 x01
#define USEPENDULA 0x02
#define USEDEPTH 0x04
#define USERATE 0x08

/* Control Parameters; Sent to Yoda via path variable */

#define ATT HOLD 0x02
#define POSHOLD 0 x04
#define APHOLD 0x08
#define ENTERATT 0 x1 0
#define ENTERPOS 0 x 20
#define DOCK 0 x80

/* Control Parameters; Sent to Yoda via PID variable */

#define CLCTRL 0 x01
#define PPOSCTRL 0 x02
#define IPOS CTRL 0x04
#define DPOSCTRL 0x08
#define PATT CTRL 0x20
#define IATTCTRL 0x40
#define DATTCTRL 0x80

/* Define 8255 port addresses and control word */

#define POA 0x300 / * Input from THC */
#define POB 0x301 / * Input from RHC */
#define POC Ox302 / * CO-C3 = THC/RHC controls; */
#define POX 0x303 / * Control Port */
#define INITO 0x92 /* Ports A & B input, Port C output * /
#endif

168

/ * pvluke.c * /
/* Written by: Ella M. Atkins * /
/* Last modified: 4/11/90 /

#include "pvluke.h"
#include "..\pvyoda.msg"
#include <gf.h>
#include <stdio.h>

main() {
register i;

unsigned long CurrMsg = 0;
Byte messtat;
static unsigned char count;
pvlnitCom(COM1, 9600, P_ODD, 1);
pvlnitMsg(LukeHandlers, LukeMsgs, LukeHiPri);
Lukelnit();

while (!STOP) {

CurrMsg = pvRecv();

if (Pstatus & MOTOR_SEE) { /* View data from topside */
if (Pneu_View & MOTOR_SEE) {

pvRequest(TXMOTORS);
messtat = pvWorry(RXMOTORS, (Byte) 10, TXMOTORS);

) else {
messtat = pvWorry(RXMOTORS, (Byte) 255, TXMOTORS);

}
if (Pstatus & SENSOR_SEE) {

if (Pneu_View & SENSOR_SEE) {
pvRequest(TXPENDULA);
pvRequest(TXGYROS);
messtat = pvWorry(RXPENDULA, (Byte) 10, TXPENDULA);
messtat = pvWorry(RXGYROS, (Byte) 10, TXGYROS);

} else {
messtat = pvWorry(RXPENDULA, (Byte) 255, TXPENDULA);
messtat = pvWorry(RXGYROS, (Byte) 255, TXGYROS); }

}
if (Pstatus & HYDRO_SEE) {

if (Pneu_View & HYDRO_SEE) {
pvRequest(TXHYDRO01);
pvRequest(TXHYDRO23);
messtat = pvWorry(RXHYDRO01, (Byte) 10, TXHYDRO01);
messtat = pvWorry(RXHYDRO23, (Byte) 10, TXHYDRO23);

} else {
messtat = pvWorry(RXHYDRO01, (Byte) 255, TXHYDRO01);
messtat = pvWorry(RXHYDRO23, (Byte) 255, TXHYDRO23); }

}
if (Pstatus & STATE_SEE) { /* View state vector from topside */
if (Pneu_View & STATE_SEE) {

pvRequest(TXPOSITION);
pvRequest(TXATTITUDE);

169

pvRequest(TXVELOCITY);
pvRequest(TXOMEGA);
pvRequest(TXBIAS);
messtat = pvWorry(RXPOSITION, (Byte) 10, TXPOSITION);
messtat = pvWorry(RXATTITUDE, (Byte) 10, TXATTITUDE);
messtat = pvWorry(RXVELOCITY, (Byte) 10, TXVELOCITY);
messtat = pvWorry(RXOMEGA, (Byte) 10, TXOMEGA);
messtat = pvWorry(RXBIAS, (Byte) 10, TXBIAS);

) else {
messtat = pvWorry(RXPOSITION, (Byte) 255, TXPOSITION);
messtat = pvWorry(RXATTITUDE, (Byte) 255, TXATTITUDE);
messtat = pvWorry(RXVELOCITY, (Byte) 255, TXVELOCITY);
messtat = pvWorry(RXOMEGA, (Byte) 255, TXOMEGA);
messtat = pvWorry(RXBIAS, (Byte) 255, TXBIAS); }

}
ReadSW(); / * Reads keyboard, transmits control changes */
ReadTHC(); / * Reads translational hand controller
ReadRHC0; / * Reads rotational hand controller

/* Data saving, state calculation user flags */

if ((status & SAVE_DATA) && (Switches & SAVE_DATA))
onscreen(7, 40, 0, "Saving Data.... ");

else if (status & SAVE_DATA)
onscreen(7, 40, 0, "NOT Saving Data");

if ((status & STATE_CALC) && (Switches & STATE CALC))
onscreen(7, 5, 0, "Calculating State Vector...");

else if (status & STATE_CALC)
onscreen(7, 5, 0, "NO CALCULATION of State....");

/* Program escape flags */

if (status & YODA_ESCAPE)
onscreen(6, 5, 0, "YODA ESCAPE.........");
pvRequest(YODAESC);)

if (status & OBI_ESCAPE)
onscreen(6, 5, 0, "OBI-WAN ESCAPE......");

else if (status & LANDO_ESCAPE)
onscreen(6, 5, 0, "LANDO ESCAPE........");

else if (status & ESCAPE)
onscreen(6, 5, 0, "ESCAPING ALL SYSTEMS");

S/ End main driver loop */
printf("Exiting program");

pvExit();

} /* End program */

void LukelnitO {

register i;

/* initialize 8255 on I/O protoboard */

170

/* ports A & B input, port C output

the = x00;
rhc = Ox00;
status = 0x00;
Pstatus = 0x00;
Sstatus = 0x00;
Switches = 0x00;
Pneu_View = Ox00;
State_Stuff = OxOF; /* Using all sensors to calculate state */
PID = OxFE; /* All PID on, CL_CTRL off */
gainlD = gainval = 0x00;
STOP = Ox00;

onscreen(8, 5, 0, "THC:");
onscreen(9, 5, 0, "RHC:");
onscreen(1 0,
onscreen(12,
onscreen(1 3,
onscreen(14,
onscreen(15,
onscreen(1 7,
onscreen(18,
onscreen(19,
onscreen(20,

lukemsgs.c
Written by: Robert M.

Last modified by:

"Switches:");
"Gyros/Depth:");

"Pendula:");
"Gains:");
"Motors:");
"Pos/Quatern:");
"Veloc/Omega:");
"Gyro Bias:");
"Ranges:");

Sanner and Ella M. Atkins
4/1 1/90

* /
* /
* /

"pvluke.h"
"..\pvyoda.msg"
"..\pivecs\pvdata.h"

MsgHandler ShutDown(msg)
MsgPtr msg;

return(OK);
}

MsgHandler Yod_ESC(msg)
MsgPtr msg;

Lukelnit();
return(OK);

MsgHandler TX_Ctrl(msg)
MsgPtr msg;

Byte array[3];

171

}/ *
/*

#include
#include
#include

outp(POX,INITO); • /

array[0] = RXCTRL;
array[l] = path;
array[2] = PID;
onscreen(10, 55, 0, "%
pvSend(array, 3);

return(OK);

02X \t %02X", path, PID);

MsgHandler TX_State(msg)
MsgPtr msg;

Byte array[6], *point;
register i;
array[0] = RXSTATE;
array[l] = statelD;
point = &stateval;
for (i = 2; i < 6; i++)

array[i] = *point++;
pvSend(array, 6);
return(OK);

MsgHandler TX_Gains(msg)
MsgPtr msg;

Byte array[4], *point;
array[0] = RXGAINS;
array[l] = gainlD;
point = &gainval;
array[2] = *point++;
array[3] = *point;
pvSend(array, 4);

return(OK);

MsgHandler TX_THC(msg)
MsgPtr msg;

register i;
Byte array[2];

array[0] = RXTHC;
array[l] = thc;
onscreen(8, 20, 0,
pvSend(array, 2);

return(OK);

"%02X", thc);

MsgHandler TX_RHC(msg)
MsgPtr msg;

register
Byte array[2];

172

array[0] = RXRHC;
array[l] = rhc;
onscreen(9, 20, 0, "%02X", rhc);
pvSend(array, 2);

return(OK);

MsgHandler TX_Switch(msg)
MsgPtr msg;

Byte array[4];

array[0] = RXSWITCH;
array[l] = Switches;
array[2] = Pneu_View;
array[3] = State_Stuff;
onscreen(10, 20, 0, "%02X \t %02X \t %02X",

Switches, Pneu_View, State_Stuff);
if (status & (ESCAPE I OBI_ESCAPE I LANDO_ESCAPE))

Lukelnit();
pvSend(array, 4);

return(OK);

MsgHandler RXMotors(msg)
MsgPtr msg;

register i;
BytePtr datptr = msg->data;
for (i= 0; i< 3; i++) {

Motors[i] = *datptr++;
onscreen(15, 20+10*i, 0, "%02X", Motors[i]);

MotorSigns = *datptr;
onscreen(15, 55, 0, "%02X", MotorSigns);

if (Pneu View & MOTOR SEE) pvRequest(TXMOTORS);
return(OK);

MsgHandler RX_Pendula(msg)
MsgPtr msg;

register i;
BytePtr datptr = msg->data;
for (i = 0; i < 3; i++) {

Pendula[i] = (unsigned short)(*datptr++);
Pendula[i] I= (((unsigned short)(*datptr++))<<8);
onscreen(13, 20+51i, 0, "%04X", Pendula[i]);

Depth &= OxFFO;
Depth J= (unsigned short) ((*datptr) & OxOF);

if (Pneu_View & SENSOR_SEE) pvRequest(TXPENDULA);
return(OK);

173

MsgHandler RX_Gyros(msg)
MsgPtr msg;

{
register i;
BytePtr datptr = msg->data;
for (i = 0; i < 3; i++) {

Gyros[i] = (unsigned short)(*datptr++);
Gyros[i] I= (((unsigned short)(*datptr++))<<8);
onscreen(12, 20+51i, 0, "%04X", Gyros[i]); }

Depth &= Ox00F;
Depth J= (unsigned short) ((*datptr) << 4);
onscreen(12, 40, 0, "%02X", Depth);

if (Pneu_View & SENSORSEE) pvRequest(TXGYROS);
return(OK);

MsgHandler RX_Hydro01 (msg)
MsgPtr msg;

{
register i;
BytePtr datptr = msg->data;
thumplD = ((0x07) & (*datptr++));

for (i = 0; i < 2; i++) {
range[i][thumplD] = (unsigned short)(*datptr++);
range[i][thumplD] I= (((unsigned short)(*datptr++))<< 8);
onscreen(20+i, 20+5*(thumplD), 0, "%04X", range[i][thumplD]);

if (Pneu_View & HYDRO_SEE) pvRequest(TXHYDRO01);
return(OK);

MsgHandler RX_Hydro23(msg)
MsgPtr msg;

{
register i;
BytePtr datptr = msg->data;
thumplD = ((0x07) & (*datptr++));

for (i = 2; i < 4; i++) {
range[i][thumplD] = (unsigned short)(*datptr++);
range[i][thumplD] 1= (((unsigned short)(*datptr++))<< 8);
onscreen(20+i, 20+5*(thumplD), 0, "%04X", range[i][thumplD]);

if (PneuView & HYDROSEE) pvRequest(TXHYDRO23);
return(OK);

MsgHandler RX_Position(msg)
MsgPtr msg;

{
register i;
BytePtr datptr = msg->data;

for (i = 0; i < 3; i++) {
pos[i] = (int) (*datptr++);
pos[i] I= (((int) (*datptr++)) << 8);
onscreen(17, 20+7*i, 0, "%05d", pos[i]);

quat[3] &= OxFF00; /* Clear low bits */

174

quat[3] 1= (int) (*datptr++);
if (Pneu_View & STATE_SEE) pvRequest(TXPOSITION);
return(OK);

MsgHandler RX_Attitude(msg)
MsgPtr msg;

register i;
BytePtr datptr = msg->data;
for (i = 0; i < 3; i++) {

quat[i] = (int) (*datptr++);
quat[i] 1= (((int) (*datptr++)) << 8);
onscreen(17, 45+7*i, 0, "%05d", quat[i]);

quat[3] &= Ox00FF; /* Clear high bits */
quat[3] I= (((int) (*datptr++)) << 8);
onscreen(17, 66, 0, "%05d", quat[3]);

if (Pneu_View & STATESEE) pvRequest(TXATTITUDE);
return(OK);

MsgHandler RX_Velocity(msg)
MsgPtr msg;

{
register i;
BytePtr datptr = msg->data;
for (i = 0; i < 3; i++) {

veloc[i] = (int) (*datptr++);
veloc[i] 1= (((int) (*datptr++)) << 8);
onscreen(18, 20+7*i, 0, "%05d", veloc[i]); }

if (Pneu_View & STATESEE) pvRequest(TXVELOCITY);
return(OK);

MsgHandler RXOmega(msg)
MsgPtr msg;

register i;
BytePtr datptr = msg->data;
for (i = 0; i < 3; i++) {

omega[i] = (int) (*datptr++);
omega[i] I= (((int) (*datptr++)) << 8);
onscreen(18, 45+7*i, 0, "%05d", omega[i]);

if (Pneu_View & STATE_SEE) pvRequest(TXOMEGA);
return(OK);

MsgHandler RX_Bias(msg)
MsgPtr msg;

register i;
BytePtr datptr = msg->data;
for (i = 0; i < 3; i++) {

bias[i] = (int) (*datptr++);

175

bias[i] 1= (((int) (*datptr++)) << 8);
onscreen(19, 45+7*i, 0, "%05d", bias[i]);

if (PneuView & STATE-SEE) pvRequest(TXBIAS);
return (OK);

lukefuns.c
Written by: Ella M. Atkins
Last modified: 4/11/90

#include
#include
#include
#include
#include

* /
* I
*I

"pvluke.h"
<gf.h>
<asiports.h>
<stdio.h>
<ibmkeys.h>

void ReadTHC() / * Bang-bang hand controller

Byte thcpos, thcneg;
the = 0x00;
outp(POC,0x01);
thcpos = inp(POA);
outp(POC,0x02);
thcneg = inp(POA);

/ * C+ for THC * /

S* C- for THC * /

For the magnitude: bit0=xmotors on; bitl=ymotors on; bit2=zmotors on */
Both hand controller sensors must be activated for ON command * /
For the signs (0=+;1=-): bit4=x-direction; bit5=y-dir; bit6=z-dir */

if (!(thcpos & 0x02))
else if (!(thcneg & Ox01)

if (!(thcpos & 0x04) &&
else if (!(thcneg & 0x04)

if (!(thcpos & 0x10) &&
else if (!(thcneg & Oxl0)

void ReadRHC0

the 1= Ox01;
&& !(thcneg & 0x02)) the I= 0x02;
!(thcpos & 0x08)) the 1= 0x04;
&& !(thcneg & 0x08)) the I= 0x08;
!(thcpos & 0x20)) the 1= 0x10;
&& !(thcneg & 0x20)) the 1= 0x20;

/ * Bang-bang hand controller

Byte rhcpos, rhcneg;
rhc = Ox00;
outp(POC,0x04);
rhcpos = inp(POB);
outp(POC,0x08);
rhcneg = inp(POB);
outp(POC,0x00);

/ * C+ for RHC

/ C- for RHC

* /

* /

* /

For rhc magnitude: bit0=roll on; bitl=pitch on; bit2=yaw on * /
Both hand controller sensors must be activated for ON command * /
rhc signs (0=+;1=-): bit4=roll direction;bit5=pitch-dir;bit6=yaw-dir */

if (!(rhcpos & Ox01)) rhc 1= 0x01;
else if (!(rhcneg & Ox01) && !(rhcneg & 0x02)) rhc 1= 0x02;

176

* /

/ *

/* For

if (!(rhcpos & 0x04) &&
else if (!(rhcneg & 0x04)

if (!(rhcpos & Oxl0) &&
else if (!(rhcneg & 0x10)

!(rhcpos & Ox08)) rhc 1=
&& !(rhcneg & 0x08))
!(rhcpos & 0x20)) rhc I=
&& !(rhcneg & 0x20))

0x04;
rhc 1= Ox08;

0x10;
rhc I= 0x20;

void ReadSWO
{

register i;
unsigned inkey;
status = Ox00;
Pstatus = 0x00;
Sstatus = 0x00;
if (gfkbhito) {

if ((inkey = getkey()) == ESC) STOP = 0x01;

/* Keys for Switch variables */

else
else
else
else
else
else

(inkey
(inkey
(inkey
(inkey
(inkey
(inkey

'1') status 1= ESCAPE;
'2') status 1= YODA_ESCAPE;
'3') status 1= OBI_ESCAPE;
'4') status I= LANDO_ESCAPE;
'9') status I= STATE_CALC;
'0') status I= SAVE_DATA;

/* Keys for Pneu_View variables */

else
else
else
else
else
else
else

(inkey == '') Pstatus 1= POWER;
(inkey == '-') Pstatus 1= LATCH;
(inkey == '=') Pstatus 1= RAM;
(inkey == '5') Pstatus 1= SENSOR_SEE;
(inkey == '6') Pstatus I= HYDRO_SEE;
(inkey == '7') Pstatus 1= STATE_SEE;
(inkey == '8') Pstatus I= MOTOR_SEE;

/* Keys for State_Stuff variables */

else
else
else
else

(inkey
(inkey
(inkey
(inkey

Fl) Sstatus 1= USE_RANGES;
F2) Sstatus 1= USE_PENDULA;
F3) Sstatus 1= USE_DEPTH;
F4) Sstatus 1= USE_RATE;

Path control calculation elements */

else if (inkey == F6) {
path = ATT_HOLD;
TX_Ctrl(NULL);)

else if (inkey == F7) {
path = POS_HOLD;
TX_Ctrl(NULL); }

else if (inkey == F8) {
path = AP_HOLD;
TX_Ctrl(NULL);)

else if (inkey == F9) {

177

onscreen(5, 5, 0, "Enter Final Attitude: ");
for (i = 0; i < 4; i++) {

statelD = i;
onscreen(5, 40, 0, "Q%Old", i);
scanf("%f", &stateval);
TX_State(NULL); }

path = ENTER_ATT;
TX_Ctrl(NULL); }

else if (inkey == F10) {
onscreen(5, 5, 0, "Enter Final Position: ");
onscreen(5, 69, 0, " ");
for (i = 0; i < 3; i++) {

statelD = i;
onscreen(5, 40, 0, "X%Old", i);
scanf("%f", &stateval);
TX_State(NULL); }

path = ENTER_POS;
TX_Ctrl(NULL); }

else if (inkey == F11) {
path = DOCK;
TX_Ctrl(NULL); }

/* PID Control On/Off and gain settings */

else if (inkey == F5) {
path = 0; /* Reset path */
PID ^= CL_CTRL;
TXCtrI(NULL); }

else if (inkey == 'q') {
PID ^= PPOS_CTRL;
TX_Ctrl(NULL); }

else if (inkey == 'w') {
PID ^= IPOS_CTRL;
TX_Ctrl(NULL); }

else if (inkey == 'e') {
PID ^= DPOS_CTRL;
TX_Ctrl(NULL);

else if (inkey == 'r') {
PID ^= PATT_CTRL;
TX_Ctrl(NULL);

else if (inkey == 't') {
PID A= IATT_CTRL;
TX_Ctrl(NULL); }

else if (inkey == 'y') {
PID A= DATT_CTRL;
TXCtrl(NULL); }

/* Enter new Gains * /

else if (inkey == 'a') {
gainlD = 0x00;
onscreen(5,5,0,"Enter Proportional Position Gain:");
scanf("%d", &gainval);
TX_Gains(NULL);

178

onscreen(14,12,0,"%04X", gainval); }
else if (inkey == 's') {

gainlD = Ox01;
onscreen(5,5,0,"Enter Integral Position Gain:
scanf("%d", &gainval);

TXGains(NULL);
onscreen(14,17,0,"%04X", gainval); }

else if (inkey == 'd') {
gainlD = 0x02;
onscreen(5,5,0,"Enter Derivative Position G;
scanf("%d",&gainval);

TX_Gains(NULL);
onscreen(14,22,0,"%04X", gainval); }

else if (inkey == 'f') {
gainlD = 0x04;
onscreen(5,5,0,"Enter Proportional Attitude
scanf("%d",&gainval);

TX_Gains(NULL);
onscreen(14,37,0,"%04X", gainval); }

else if (inkey == 'g') {
gainlD = 0x05;
onscreen(5,5,0,"Enter Integral Attitude Gain:
scanf("%d",&gainval);

TX_Gains(NULL);
onscreen(14,42,0,"%04X", gainval); }

else if (inkey == 'h') {
gainlD = 0x06;
onscreen(5,5,0,"Enter Derivative Attitude Ga
scanf("%d",&gainval);
TX_Gains(NULL);
onscreen(14,47,0,"%04X", gainval); }

else if (inkey == 'z') {
gainlD = 0x03;
onscreen(5,5,0,"Enter Feed-Forward Position
scanf("%d",&gainval);
TX_Gains(NULL);
onscreen(14,27,0,"%04X", gainval); }

else if (inkey == 'v') {
gainlD = 0x07;
onscreen(5,5,0,"Enter Feed-Forward Attitude
scanf("%d",&gainval);
TX_Gains(NULL);
onscreen(14,52, 0,"%04X", gainval); }

else if (inkey == 'b') {
gainlD = 0x08;
onscreen(5,5,0,"Enter Feed-Forward C-Coupli
scanf("%d",&gainval);
TX_Gains(NULL);
onscreen(14,57,0,"%04X", gainval); }

");

ain: ");

Gain:");

");

in: ");

Gain:");

Gain:");

ng Gain");

Switches ^= status;
Pneu_View ^= Pstatus;
State_Stuff ^= Sstatus;

179

Appendix B.5 Crumb and Cake Software

/* USMV6811.TXT * /
/* Written by: Matt Machlis * /
/ * Last Modified: 4/11/90 * /

HEX
0000 2F00 100
CMDVE
2F00 2FOE +!
2F00 2F10 +!
2F00 2F1C +!
2F00 2F22 +!
2F00 2F2C +!
2F00 2F34 +!
2F00 2F38 +!
2F00 2F40 +!
2F00 2F46 +!
2F00 2F4A +!
2F00 2F6A +!
2F00 2F6C +!
2F06 04 !
ABORT
C030 TIB !
50 TIB 2+ !
2000 DP !

/ * INT6811.TXT * /
/ * Written by: Matt "I have a llama" Machlis * /
/ * Last Modified: 4/11/90 * /

HEX

B000 CONSTANT PRTA
B003 CONSTANT PRTC
B004 CONSTANT PRTB
B007 CONSTANT DDRC
B008 CONSTANT PRTD
B009 CONSTANT DDRD
BOOA CONSTANT PRTE
BOOE CONSTANT TCNT
B010 CONSTANT TIC1
B012 CONSTANT TIC2
B016 CONSTANT TOC1
B021 CONSTANT TCTL2
B022 CONSTANT TMSK1
B023 CONSTANT TFLG1
B024 CONSTANT TMSK2
B025 CONSTANT TFLG2
B026 CONSTANT PACTL

C000 CONSTANT CNT1

180

C002 CONSTANT CNT2
C004 CONSTANT NOTDN1
C006 CONSTANT NOTDN2
C008 CONSTANT GT+ID*2
COOA CONSTANT BCNT
COOC CONSTANT IRQFL
COOE CONSTANT TIC1FL
C010 CONSTANT TIC2FL
C012 CONSTANT TOC1 FL
C014 CONSTANT G<S1
C016 CONSTANT G<S2
C0018 CONSTANT C>G
C01A CONSTANT C<S
C01C CONSTANT GTCNT1
C01E CONSTANT GTCNT2
C020 CONSTANT GATES

: IRQHI TCNT @ BCNT ! -1 IRQFL !;
CODE IRQLO CC C,' IRQHI CFA, BD C, ATO4, 3B C, END-CODE
: TIC1 HI IRQFL @ IF TMSK1 C@ 82 AND TMSK1 C! TCTL2 C@ 04 AND
TCTL2 C! -1 TIC1FL ! THEN;
CODE TIC1 LO CC C, ' TIC1 HI CFA, BD C, ATO4, 3B C, END-CODE
: TIC2HI IRQFL @ IF TMSK1 C@ 84 AND TMSK1 C! TCTL2 C@ 10 AND
TCTL2 C! -1 TIC2FL ! THEN;

CODE TIC2LO CC C, 'TIC2HI CFA, BD C, ATO4, 3B C, END-CODE
: TOC1HI 0 TMSK1 C! 0 TCTL2 C! -1 TOC1FL ! ;
CODE TOC1LO CC C,' TOC1HI CFA, BD C, ATO4, 3B C, END-CODE

: SETIRQVC 7E B7E9 EEC! [' IRQLO @ >< FF AND] LITERAL
B7EA EEC! [' IRQLO @ FF AND] LITERAL B7EB EEC! ;
: SETXIRQVC 7E B7EC EEC! [' IRQLO @ >< FF AND] LITERAL
B7ED EEC! [' IRQLO @ FF AND] LITERAL B7EE EEC!;
: SETTOC1VC 7E B7DA EEC! ['TOC1LO @ >< FF AND] LITERAL
B7DB EEC! [' TOC1 LO @ FF AND] LITERAL B7DC EEC! ;
: SETTIC1VC 7E B7E3 EEC! ['TIC1LO @ >< FF AND] LITERAL
B7E4 EEC! [' TIC1LO @ FF AND] LITERAL B7E5 EEC!;
: SETTIC2VC 7E B7EO EEC! ['TIC2LO @ >< FF AND] LITERAL
B7E1 EEC! [' TIC2LO @ FF AND] LITERAL B7E2 EEC!;

: SETINTVCS SETIRQVC SETTOC1VC SETTIC1VC
SETTIC2VC SETXIRQVC;

: INITL 20 PRTD C! 22 DDRD C! 0 DDRC C! O PACTL C!
0 TMSK1 C! 0 TMSK2 C! SETINTVCS 1F 0 DO 0 I GATES
+ C! LOOP 0 IRQFL !;

CODE-SUB CLEAR-CC-MASKS 86 C, EF C, 06 C, 39 C, END-CODE
: PSE FFFF 0 DO LOOP CLEAR-CC-MASKS;

: RSET 0 TMSK1 C! 0 CNT1 ! 0 CNT2 ! 0 TCTL2 ! FF TFLG1 C!
-1 NOTDN1 ! -1 NOTDN2 ! 0 IRQFL ! 0 TIC1FL ! 0 TIC2FL !
0 TOC1FL !;

: IROWAIT FF TFLG1 C! 14 TCTL2 C! BEGIN IRQFL
@ ?TERMINAL OR UNTIL ?TERMINAL IF ABORT THEN;

181

: IRQCALC1 BCNT @ 1- TOC1 ! 80 TFLG1 C! 80 TMSK1 C!
PRTD C@ 1C AND 2/ GATES + DUP GT+ID*2 ! C@
100 * BCNT @ + DUP GTCNT1 !;

: IRQCALC2 BCNT @ < G<Sl ! GT+ID*2 @ 1+ C@ 100 * BCNT @ + DUP
GTCNT2 ! BCNT @ < G<S2 !;
: IRQCALC IRQCALC1 IRQCALC2;

: VALID1 TIC1 @ GTCNT1 @ > C>G i TIC1 @ BCNT @ < C<S !
C>G @ C<S @ OR G<S1 @ 0= AND G<S1 @ C>G @ AND C<S @ AND OR;
: VALID2 TIC2 @ GTCNT2 @ > C>G ! TIC2 @ BCNT @ < C<S !
C>G @ C<S @ OR G<S2 @ 0= AND G<S2 @ C>G @ AND C<S @ AND OR;
: IS1DN TFLG1 C@ 04 AND IF VALID1 IF TIC1 @ BCNT @ - CNT1 !
0 NOTDN1 ! TCTL2 C@ 04 AND TCTL2 C! ELSE 04 TFLG1 C! THEN THEN;
: IS2DN TFLG1 C@ 02 AND IF VALID2 IF TIC2 @ BCNT @ - CNT2 !
0 NOTDN2 i TCTL2 C@ 10 AND TCTL2 C! ELSE 02 TFLG1 C! THEN THEN;
:OVORDUN NOTDN1 @ 0= NOTDN2 @ 0= AND TOC1 FL @ OR;
: CNTWAIT BEGIN NOTDN1 IF IS1DN THEN NOTDN2 IF IS2DN THEN
OVORDUN UNTIL;

: A7HI PRTA C@ 80 AND 0>;
: A7LO PRTA C@ 80 AND 0= ;
: D5A6LO 0 PRTD C! 0 PRTA C ;

D5A6HI 20 PRTD C! 40 PRTA C!;
: NOIRQ 0 TCTL2 C! 0 TMSK1 C! 0 TMSK2 C!;
:OUT FF DDRC C! CNT1 C@ PRTB C! CNT1 1+ C@ PRTC C! D5A6LO
BEGIN A7HI UNTIL CNT2 C@ PRTB C! CNT2 1+ C@ PRTC C! D5A6HI
BEGIN A7LO UNTIL;
: IN 0 DDRC C! 0 PRTA C! BEGIN A7HI UNTIL PRTE C@ GT+ID*2 @
C! PRTC C@ GT+ID*2 @ 1+ C! FF PRTA C!;
: DOIO NOIRQ OUT IN;

: DOIT INITL PSE BEGIN RSET IRQWAIT IRQCALC CNTWAIT DOIO
0 UNTIL ;

: STRT HEX
C030 TIB !
50 TIB 2+ !
2F00 CFOO 100 CMOVE
A000 CFOE +!
A000 CF10 +!
A000 CF1C +!
A000 CF22 +!
A000 CF2C +!
A000 CF34 +!
A000 CF38 +!
A000 CF40 +!
A000 CF46 +!
A000 CF4A +!
A000 CF6A +!
A000 CF6C +!
CF06 04 !
DOIT
ABORT;
3000 AUTOSTART STRT

182

Appendix C.O Parameter and Calibration Calculations

This Appendix contains the MPOD physical parameter and sensor calibration

calculations. The charts were developed in Macintosh Microsoft Excel v2.2, while the

range calibration plots were produced in Macintosh Cricket Graph v1.3. The following

analyses are included:

Appendix Description

Appendix C.1

Appendix C.2

Appendix C.3

Appendix C.4

MPOD Moments of Inertia

MPOD Sensor Averages and

Standard Deviations

3DAPS Range Calibration

Plots

Measured vs. Estimated

Range Calculations

183

184

185

186

187

Appendlx C.1 MPOO Moments of inertia

Dimensions imr) Distance from origin (m) Central Moment of Inertia Parallel Axis Moment of Inertia Total Moment of Inertia (kg-m-m)

mass (kg)_ x y z x y z Ilxx lyy Izz Ixx lyy Izz lxx lyy ___ Izz

motor pars (2_ 8.18 0.254 0.0636 0.0635 0.85 0 0.85 0.0165 0.0261 0.0261 5.9101 0 5.9101 5.9266 0.0261 5.9362

y motor pars (2) 8.18 0,0635 0.254 0.0635 0.85 0. 85 0 0.0261 0.0165 0.0261 5.9101 5.9101 0 5.9362 5 9266 0.0261

,-motor pairs (2) 8.18 0.0635 0.0635 0.254 0 0.85 0.85 0.0261 0.0261 0.0165 0 5.9101 5.9101 0.0261 5.9362 5.9266

x-motor panels (2) 6.66 0.608 0.0048 0.508 0.762 0 0.762 0. 1432 0.2864 0.1432 3.8671 0 3 8671 4.0103 0.2864 4.0103

ymoto panels (2) .66 0.508 0.508 0.0048 0.762 0.762 0 0.1432 0,1432 0.2864 3.8671 3.8671 0 4.0103 4.0103 0.2864

z-motor panels (2) 6.66 0.0048 0.508 0.508 0 0.762 0.762 0.2864 0.1432 0.1432 0 3.8671 3.8671 0.2864 4,0103 4.0103

nner docking probe 4.4 0.356 0.07 (diam) 0 0.94 0.94 0.0108 0.0518 0.0518 0 3.8878 3.8878 0.0108 3.9396 3.9396

outer docking probe 4 0.356 0.0508 (diam) 0 1.295 1.295 0.0052 0.0448 0.0448 0 6.7081 6.7081 0.0052 6.7529 6.7529

arm weights (2) 9.1 0.15 0.08 0.025 0.305 0 0.305 0.0053 0.0175 0.0219 0.8465 0 0.8465 0.8518 0.0175 0.8684

main battery box (2) 94.54 0.33 0.203 0.59 0.3556 0 0.3556 2.7864 3.3196 1.1826 11.9547 0 11.9547 14.7411 3.3196 13.1373

control battery box 68 0.216 0.584 0.203 0 0.356 0.356 2.1661 0.4979 2.19691 0 8.618 8.618 2.1661 9.1159 10.8149

control box 80 0.41 0.56 0.32 0.356 0.356 0 2.7732 1.8033 3.2112 10.1389 10.1389 0 12.9121 11.9422 3.2112

large side air tanks (2) 35.4 0.1778 (diam) 0.6858 0.356 0 0.356 1.6667 0.8333 1.5735 4.4865 0 4.4865 6.1532 0.8333 6.06

small rear air tank 22.8 0.18 0.467 0.18 0 0.51 0.51 0.5813 1.026 0.2907 0 5.9303 5.9303 0.5813 6.9563 6.221

leftover frame 137.24 .04m thick .5m radius 0 0 0 22.8733333 22.8733333 22.8733333 0 0 0 22.8733333 22.8733333 22.8733333

Totals: 5001 1 80 4908333 85.9465333 94.0745333

Appendix C.2 Sensor Averages and Standard Deviations

Static Data Average: (raw readings) Std. Deviation(raw readings)

Roll Rate Pitch Rate Yaw Rate Depth Ranges Roll Rate Pitch Rate Yaw Rate Depth

Location 1 1959.8 2047.2 2199.2 2704.1 24.76 2.08 1.95 1.29 1.96

Location 2 1939.9 2047.6 2197.5 2705.1 55.6 1.86 1.79 1.07 1.87

Location 3 1899.7 2048.9 2193.6 2693.3 47.76 2.082 1.56 2.02 1.03

Overall Avg. 1933.13333 2047.9 2196.76667 42.7066667 2.00733333 1.76666667 1.46 1.62

Rate Drift 30.6160633 0.88881944 2.87112057

185

Appendix C.3 3

16000

14000

12000

10000

8000

6000

4000

20000

10000

DAPS Range Calibration Plots

Location 1 Range Calibration

4 6 8 10
Range (m)

Location 2 Range Calibration

2 4 6 8
Range(m)

10 12 14

Location 3 Range Calibration
20000

10000

2 4 6 8
Range (m)

10 12 14

186

- 1390.6 + 1344.1 x

Appendix C.4 Measured vs. Estimated Range Calculations

Location 1: Location 2: Location 3:
Estimate Ran; Measured Ran Rest - Rmeas Estimate Ran Measured Ranj Rest - Rmeas Estimate Ran Measured Ra Rest - Rmeas

6.083107 5.9 0.183107 10.811865 11.08 0.268135 4.479916 4.3 0.179916
5.84455 5.385 0.45955 10.573755 10.805 0.231245 3.655891 4.83 1.174109

7.580872 7.19 0.390872 12.293838 12.58 0.286162 3.73435 3.925 0.19065
7.669305 7.475 0.194305 11.720015 12.015 0.294985 5.644891 5.43 0.214891
5.797298 5.96 0.162702 10.619742 11.11 0.490258 4.380056 4.35 0.030056

4.8757 4.625 0.2507 10.025686 10.445 0.419314 3.222664 3.935 0.712336
6.842858 6.645 0.197858 11.768183 12.31 0.541817 2.594725 2.705 0.110275
6.775283 6.95 0.174717 11.124805 11.69 0.565195 4.39411 4.65 0.25589
6.485527 6.065 0.420527 12.889354 12.79 0.099354 9.312071 9.355 0.042929
8.37589 7.75 0.62589 13.814163 13.66 0.154163 8.084939 8.34 0.255061

7.807464 7.305 0.502464 14.471122 14.33 0.141122 10.092496 10.175 0.082504
6.327496 5.525 0.802496 12.808796 12.585 0.223796 10.185314 10.97 0.784686
6.218241 6.15 0.068241 12.728626 12.83 0.101374 9.264444 9.395 0.130556
7.731055 7.28 0.451055 13.399298 13.37 0.029298 7.898497 7.86 0.038497
7.093066 6.765 0.328066 14.027296 14.05 0.022704 9.728603 9.69 0.038603
5.208016 4.77 0.438016 12.266531 12.285 0.018469 9.549032 10.65 1.100968

10.605918 10.485 0.120918 3.990676 3.565 0.425676 9.010324 8.71 0.300324
9.930628 10.15 0.219372 4.389296 3.695 0.694296 10.986339 10.125 0.861339
9.623069 9.59 0.033069 4.252595 3.82 0.432595 10.428185 10.055 0.373185

11.620777 11.49 0.130777 5.617347 5.255 0.362347 9.281152 8.145 1.136152
10.444614 10.525 0.080386 3.436275 3.645 0.208725 8.961093 8.76 0.201093
9.393139 9.765 0.371861 2.824183 2.4 0.424183 10.84987 9.74 1.10987
9.053096 9.17 0.116904 2.331574 2.58 0.248426 10.076421 7.655 2.421421

11.051185 11.135 0.083815 4.237584 4.43 0.192416 8.578064 9.665 1.086936
10.841742 10.605 0.236742 8.072454 7.365 0.707454 12.158576 12.04 0.118576
11.602333 11.61 0.007667 9.91427 9.14 0.77427 13.141551 12.265 0.876551
9.802568 9.715 0.087568 8.73839 7.87 0.86839 14.023557 13.75 0.273557

10.782459 10.35 0.432459 7.632896 6.505 1.127896 12.570425 12.57 0.000425
10.683999 10.655 0.028999 7.813258 7.4 0.413258 12.122138 12.09 0.032138
11.145754 11.28 0.134246 9.327531 8.82 0.507531 13.027677 11.925 1.102677
9.243669 9.305 0.061331 7.981926 7.355 0.626926 13.763988 13.45 0.313988

10.166005 9.965 0.201005 6.683085 5.85 0.833085 12.060638 12.27 0.209362

Loc. 1 Error: 0.24992766 Loc. 2 Error: 0.39796453 Loc. 3 Error: 0.492485

Overall Average Error: 0.38012573

187

Appendix D.0 Simulation Software

Appendix D.1. Obiwan Dynamic Simulation Software

/* simula.h
/* Written by: Ella M. Atkins
/* Last modified: 3/13/90

#ifndef SIMULATE
#define SIMULATE

double
double
double
double

x[3], q[4], v[3], w[3];
xnew[3], qnew[4], vnew[3], wnew[3];
xprime[4][3], qprime[4][4], vprime[4][3], wprime[4][3];
Lthrust[3], Rthrust[3];

#define dt 0.06 /* Integration time step */
#define hh dt*0.5
#define h6 dt/6.0

/* 3DAPS configuration information

#define TO
#define TI
#define T2
#define T3
#define T4
#define T5
#define T6
#define T7

#define LO
#define L1
#define L2
#define L3

(from KGK thesis) */

(-6.300, 4.935, 0.15) /* Thumper coordinates */
(-6.300, 4.935, 3.09)
{-6.300, -4.935, 0.15)
(-6.300, -4.935, 3.09)
(6.300, 4.935, 0.15)
(6.300, 4.935, 3.09)
(6.300, -4.935, 0.15)
(6.300, -4.935, 3.09)

(0.0, 0.0, -1.43)
(0.0, -1.43, 0.0)
(-1.44, 0.0, 0.0)
(0.0, 1.434, 0.0)

/* Hydrophone coordinates */

/* MPOD physical parameter data (From underwater dynamic tests)

CUDX 480.0 /* Estimated from Cd(trans) = (Fmax/((Vt)**2)) */
CUTY 480.0 /* N/((m/sec)**2) */
CUIZ 480.0

CDRX
CDRY
CDRZ

#define MT

#define IXX
#define IYY

186.3 /* Estimated from Cd(rot) = (Tmax/((wmax)**2)) */
265.3 /* N*m / ((rad/sec)**2) */
265.3

1000.0

80.5 /* Estimated from lumped box and */
85.9 /* thin spherical shell model */

188

#define
#define
#define

#define
#define
#define

#define 12

/* Derived constants */

#define INVMT 1./MT
#define 12MI3 (IYY - IZZ)
#define 11MI2 (IXX - IYY)
#define I3MI1 (IZZ -IXX)
#define INVIX 1./IXX
#define INVIY 1./IYY
#define INVIZ 1./IZZ

/* Sensor Data */

#define PEND_NOISE 3 0 /* Noise in counts (30) */
#define RATE_NOISE 1 0 /* Noise in A/D counts (10) */
#define DEPTH_NOISE 6 /* Noise in A/D counts (6) */
#define RANGE_NOISE 8 0 /* Noise in counts (80) */

#define ROLLBIAS -0.26

#define RANGE_OFFSET 1.011 /* distance before counter begins */
#define RANGE_FACTOR 0.000748 /* Ranges -- counts to meters */
#define PEND_FACTOR 0.001534 /* Pendula -- counts to radians */
#define RATE_FACTOR 0.001534 /* Gyros -- 12-bit count to rad/sec*/
#define DEPTH_FACTOR 0.01662 /* Depth Sensor -- 12-bit count to m*/
#define DEPTH_ZERO 0x97E /* Depth Sensor -- Surface reading */
#define THRUST_FACTOR 0.9449 /* Converting #'s to Newtons */
#define TORQUE_FACTOR 0.8031 /* Converting #'s to N-m's */

/* Simulator-specific routines */

void RungeKutta(), derivs();

#endif

/* simula.c */
/* Written by: Ella M. Atkins */
/* Last Modified: 3/22/90 */

#include "obisim.h"
#include "simula.h"
#include <math.h>
#include <stdlib.h>

static double time = 0.00;
static double t[8][3] = (TO, T1, T2, T3, T4, T5, T6, T7);
static double 1[4][3] = (LO, L1, L2, L3);

static double c[3][3]; /* Direction cosine matrix */

void simulate()

189

94.1

register i, j;
double denom, r[3], Linear[3];
static unsigned char countl = Ox00, count2 = OxO0;
unsigned char temp;
unsigned short;
double *Cib;

/* Calculate direction cosine matrix */

Cib = c[0];

Cib++ = 1.0 - 2.0(q[2]*q[2] + q[3]*q[3]);
Cib++ = 2.0(q[1]*q[2] - q[3]*q[0]);
Cib++ = 2.0(q[1]*q[3] + q[2]*q[0]);

Cib++ = 2.0(q[1]*q[2] + q[3]*q[0]);
Cib++ = 1.0 - 2.0(q[1]*q[1] + q[3]*q[3]);
Cib++ = 2.0(q[2]*q[3] - q[1]*q[0]);

Cib++ = 2.0(q[1]*q[3] - q[2]*q[0]);
Cib++ = 2.0(q[2]*q[3] + q[1]*q[0]);
Cib = 1.0 - 2.0(q[1]*q[1] + q[2]*q[2]);

/* Convert State Vector to Sensor Measurements */

if (c[2][2] != 0.00) (/* Conditional to prevent divide by zero */

denom = sqrt(c[2][1]*c[2][1] + c[2][2]*c[2][2]);
*Pendula = 2048 + (unsigned short) (((acos(c[2][2] / denom))/PENDFACTOR)
+ PEND_NOISE*((((double) rand()) - 16383.0) / 32767.0));

denom = sqrt(c[2][0]*c[2][0] + c[2][2]*c[2][2]);
*(Pendula+l) = 2047 - (unsigned short) (((acos(c[2][2] / denom))
/PEND_FACTOR) + PENDNOISE*((((double) rand()) - 16383.0) / 32767.0));

) else (
*Pendula = 2048;
*(Pendula+l) = 2048;

if ((c[2][0] != 0) II (c[2][1] != 0)) (
denom = sqrt(c[2][0]*c[2][0] + c[2][1]*c[2][1]);
*(Pendula+2) = 2047 - (unsigned short) (((acos(c[2][0] / denom))
/PEND_FACTOR) + PEND_NOISE*((((double) rand()) - 16383.0) / 32767.0));
] else *(Pendula+2) = 2048;

*Gyros = (unsigned short) (((w[0] + ROLLBIAS)/RATE_FACTOR)+2048.0
+ RATE_NOISE*((((double) rand()) - 16383.0) / 32767.0));
*(Gyros+1) = (unsigned short) ((-1.0 * (w[l]/RATE_FACTOR))+2048.0
+ RATE_NOISE*((((double) rand()) - 16383.0) / 32767.0));
*(Gyros+2) = (unsigned short) ((-1.0 * (w[2]/RATEFACTOR))+2048.0
+ RATE_NOISE*((((double) rand()) - 16383.0) / 32767.0));

*Depth = (unsigned short) ((x[2]/DEPTHFACTOR)+DEPTH_ZERO
+ DEPTH_NOISE*((((double) rand()) - 16383.0) / 32767.0));

190

/* Calculate and send a set of range measurements to Lando every 8 loops */

if (countl >= 0x08) (
countl = 0x00;
*thumpID = count2;
temp = count2 << 2;

if (*Switches & SAVEDATA) fprintf(rangefile, "%02u \t", count2);
for (i = 0; i < 4; i++) (
for (j = 0; j < 3; j++) (
r[j] = x[j] + clj][0]*l[i][0] + clj][1]*l[i][1] + c[j][2]*l[i][2]
- t[count2][j];
)
*(range+temp+i) = (unsigned short) (((sqrt(r[0]*r[0]
+ r[1l]*r[l] + r[2]*r[2])-RANGE_OFFSET)/RANGE_FACTOR)
+ RANGE_NOISE*((((double) rand()) - 16383.0) / 32767.0));
if (*Switches & SAVE_DATA)
fprintf(rangefile, "\t %05d", *(range+temp+i));
if (*Pneu_View & HYDRO_SEE) *(arange+temp+i) = *(range+temp+i);
I
if (*Switches & SAVE_DATA) fprintf(rangefile, '"\n");
INT_DUAL = 0x00; / Interrupt Lando with new ranges */
if (count2 <= 0x06) count2++;
else count2 = Ox00;
} else countl++;

/* Calculate new state vector */

/* Linear[i] = Thrusts in N along the defined positive axes */

Linear[0] = (((double) Trans[0]) - 128.0)*THRUST_FACTOR;
Linear[l] = (128.0 - ((double) Trans[1]))*THRUST_FACTOR;
Linear[2] = (128.0 - ((double) Trans[2]))*THRUSTFACTOR;
for (i = 0; i <= 2; i++) (
Lthrust[i] = c[i][0]*Linear[0] + c[i][1]*Linear[1l] + c[i][2]*Linear[2];
}
Rthrust[O] = (((double) Torque[0]) - 128.0)*TORQUE_FACTOR;
Rthrust[1] = (128.0 - ((double) Torque[1]))*TORQUE_FACTOR;
Rthrust[2] = (128.0 - ((double) Torque[2]))*TORQUE_FACTOR;

RungeKutta();
time += dt; /* Increment simulated time value */

/* Print state vectors */

for (i = 0; i < 3; i++) (
onscreen((3+i), 20, 0, "%8.5f", x[i]);
onscreen((8+i), 20, 0, "%8.5f", q[i]);
onscreen((14+i), 20, 0, "%8.5f", v[i]);
onscreen((19+i), 20, 0, "%8.5f", w[i]);
onscreen((3+i), 30, 0, "%8.5f", *(state+i));
onscreen((8+i), 30, 0, "%8.5f", *(state+3+i));
onscreen((14+i), 30, 0, "%8.5f", *(state+7+i));

191

onscreen((19+i), 30, 0, "%8.5f", *(state+10+i));
onscreen((22+i), 30, 0, "%8.5f", *(state+13+i));

onscreen(1, 20, 0, "%9.4f", time);
onscreen(11, 20, 0, "%8.5f", q[3]);
onscreen(11, 30, 0, "%8.5f", *(state+6));

void RungeKutta()
register i;
short j;
double temp;

for (i = 0; i <=3; i++) { /* Initialize 'new' values */
if (i < 3) (
xnew[i] = x[i];
vnew[i] = v[i];
wnew[i] = w[i];)
qnew[i] = q[i];

for (j = 0; j < 2; j++) (
derivs(j);
for (i = 0; i <= 3; i++) (
if (i < 3) (
xnew[i] = x[i] + hh*xprime[j][i];
vnew[i] = v[i] + hh*vprimeUj][i];
wnew[i] = w[i] + hh*wprime[j][i];

qnew[i] = q[i] + hh*qprime[j][i];

derivs(2);
for (i = 0; i <= 3; i++) (
if (i < 3) {
xnew[i] = x[i] + dt*xprime[2][i];
vnew[i] = v[i] + dt*vprime[2][i];
wnew[i] = w[i] + dt*wprime[2][i];

qnew[i] = q[i] + dt*qprime[2][i];

derivs(3);
for (i = 0; i <=3; i++) (
if (i < 3) (
x[i] += h6*(xprime[O][i]+2*(xprime[l1][i]+xprime[2] [i])+xprime[3][i]);
v[i] += h6*(vprime[0] [i]+2*(vprime[1][i]+vprime[2][i])+vprime[3][i]);
w[i] += h6*(wprime[0][i]+2*(wprime[1][i]+wprime[2][i])+wprime[3][i]);

q[i] += h6*(qprime[0] [i]+ 2 *(qprime[l] [i]+qprime[2][i])+qprime[3] [i]);

temp = q[l]*q[1] + q[2]*q[2] + q[3]*q[3];
if (temp > 1.0) (
temp = sqrt(temp);
q[3] = 0.0;
for (i = 0; i < 3; i++)

192

q[i+l] /= temp;
) else
q[0] = sqrt(1.0-temp);

void derivs(k)
short k;

register i;

for (i = 0; i < 3; i++) xprime[k][i] = v[i];

qprime[k] [0]
qprime[k][1]
qprime[k] [2]
qprime[k] [3]

vprime[k][0]
vprime[k][1]
vprime[k][2]

wprime[k][0]
wprime [k][1]
wprime [k] [2]

= (-0.5)*(q[1]*w[0] + q[2]*w[1] + q[3]*w[2]);
= 0.5*(q[0]*w[0] + q[2]*w[2] - q[3]*w[1]);
= 0.5*(q[0]*w[1] + q[3]*w[0] - q[1]*w[2]);
= 0.5*(q[0]*w[2] + q[1]*w[1] - q[2]*w[0]);

INVMT*(Lthrust[0] - CDTX*v [0]*fabs(v[O]));
INVMT*(Lthrust[1] - CDTY*v[1]*fabs(v[1]));
INVMT*(Lthrust[2] - CDTZ*v[2]*fabs(v[2]));

INVIX*(Rthrust[0] + w[1]*w[2]*I2MI3 - CDRX*w[0]*fabs(w[0]));
INVIY*(Rthrust[1l] + w[0]*w[2]*I3MI1 - CDRY*w[1]*fabs(w[1]));
INVIZ*(Rthrust[2] + w[0]*w[1]*I1MI2 - CDRZ*w[2]*fabs(w [2]));

void SimInit()
register i;
float array[4];
for (i = 0; i < 3; i++) (
x[i] = xnew[i] = 0.00;
v[i] = vnew[i] = 0.00;
w[i] = wnew[i] = 0.00;
q[i+l] = qnew[i+l] = 0.00;

q[0] = 1.0; /* For aligned attitude */
x[2] = 2.0; /* Center of Pool */
printf("Enter X:"); /* For static tests */
for (i = 0; i < 3; i++) {
scanf("%f", &array[i]);
x[i] = (double) array[i];

printf("Enter q:");
for (i = 0; i < 4; i++) (
scanf("%f", &array[i]);
q[i] = (double) array[i];

193

Appendix D.2 Obiwan Simulation with Pool Test Data

/* obisim2.c */
/* Written by: Ella M. Atkins */
/* Last modified: 4/11/90 */

#include "obisim2.h"
#include <dos.h>
#include <gf.h>
#include <asiports.h>
#include <math.h>
#include <ibmkeys.h>

main() (/* Begin Obi-Wan main driver program */

register i, j;
static unsigned char countl = 0, count2 = 0, count4 = 0, oldthump;
static short count3 = 0;
FILE *readsensors, *readranges, *statefile;
unsigned short temp;

double far *ydex;
int far *aydex;
unsigned short far *fdatptr;

unsigned short *datptr, data[4];
char *motptr, motodata[6], mototemp;
static unsigned char *databyte;

if ((readranges = fopen("range.dat","r")) == NULL)
exit(0);

if ((readsensors = fopen("sensor.dat","r")) == NULL)
exit(0);

if ((statefile = fopen("state.dat","a")) == NULL)
exit(0);

/* Enable and initialize IRQ9 and IRQ10 */

outp(0x21, OxB8);
outp(0xAl, OxD8);
_dos_setvect(0x71, DapsInt); /* Hardware IRQ9 */
_dos_setvect(0x72, Busy); /* Hardware IRQ10 */
outp(OxAO,0x20);
outp(0x20,0x20);

/* Initialize variables and Dual Port Ram */

Dual_Init_ 1();
Dual_Init_2();
Obilnit();

194

/* Begin program loop */

while (!((*status) & OBI_ESCAPE)) {
if (kbhito) if (getkey() == ESC) break;

/* Save state data if requested */

if ((*Switches) & SAVE_DATA) {
if ((*status) & SAVE_DATA) [

fprintf(statefile, "State Data Saving...");
*status &= (-SAVE_DATA);)

if (countl >= 75) (
ydex = state;

for (i = 0; i < 16; i++)
fprintf(statefile, " %7.4f ", (*ydex++));
fprintf(statefile, "\n");
countl = 0;
) else countl++;

/* Read Pool Test MPOD Data */

if (*Switches & STATE_CALC) (
if (count2 >= 75) (
if (fscanf(readsensors, "%05u \t %05u \t %05u \t %05u \t",
&data[0], &data[l], &data[2], &data[3]) == EOF) (
printf("Sensor exit");
exit(0);)
datptr = data;
fdatptr = Gyros;
for (i = 0; i < 3; i++)
*fdatptr++ = *datptr++;
*Depth = *datptr;

if (fscanf(readsensors, "%05u \t %05u \t %05u \t", &data[0],
&data[l], &data[2]) == EOF) exit(0);
datptr = data;
fdatptr = Pendula;
for (i = 0; i < 3; i++)
*fdatptr++ = *datptr++;

if (fscanf(readsensors,
"%03d \t %03d \t %03d \t %03d \t %03d \t %03d \n",
&motodata[O], &motodata[1], &motodata[2],
&motodata[3], &motodata[4], &motodata[5]) == EOF)
(printf("Sensor exit");
exit(0);)
for (i = 0; i < 3; i++) {
mototemp = motodata[i+i]+motodata[i+i+l];
if (mototemp != 0x00)
Trans[i] = -(((mototemp/2)<<4) + (mototemp/2));
else Trans[i] = 0x80;
mototemp = motodata[i+i] - motodata[i+i+1];
if (i == 0) j = 2;
else j = i-1;

195

if (mototemp != Ox00) (
Torque[j] = (((mototemp/2)<<4) + (mototemp/2));

) else Torque[j] = 0x80;

count2 = 0;
) else count2++;

if (count3 >= 450) (
if (fscanf(readranges, "%02u \t", databyte) == EOF) {
printf("Range exit");
exit(0); I
*thumplD = *databyte;
temp = (*databyte) << 2;
if (fscanf(readranges, "%05u \t %05u \t %05u \t %05u \n",
&data[0], &data[2], &data[l], &data[3]) == EOF) {
printf("Range exit");
exit(0); }
datptr = data;
fdatptr = (range+temp);
for (i = 0; i < 4; i++)
*fdatptr++ = *datptr++;
INT_DUAL = Ox00; / Tell Lando about new range data */
if (*Pneu_View & HYDRO_SEE) (

for (i = 0; i < 4; i++)
*(arange+temp+i) = *(range+temp+i);

if (oldthump > (*databyte)) count3 = -900; /* New set */
else count3 = count3-(450*((*databyte) - oldthump));
oldthump = *databyte;
printf("%02u \n", *thumplD); /* For test of thumper 'speed' */
) else count3++;

/* Dual Port Ram transfers between Yoda and Lando */

if (*status & LANDO_ESCAPE) (
*bstatus I= LANDO_ESCAPE;
*status &= (-LANDO_ESCAPE);

) else if (*status & STATE_CALC) {
*bstatus I= STATE_CALC;
*status &= (-STATE_CALC);

*bSwitches = *Switches;
if (*Switches & STATE_CALC) (

*bState_Stuff = *State_Stuff;
for (i = 0; i < 3; i++) (
*(bPendula+i) = *(Pendula+i);
*(bGyros+i) = *(Gyros+i);
*(actuator+i) = Trans[i];
*(actuator+3+i) = Torque[i];

*bDepth = *Depth;

if (*Pneu_View & STATE_SEE) (/* Convert to 2 Byte messages */
ydex = state;

196

aydex = astate;
for (i = 0; i < 3; i++)

aydex++ = (int) (100.0(*ydex++));
for (i = 0; i < 4; i++)

aydex++ = (int) (1000.0(*ydex++));
for (i = 0; i < 3; i++)

aydex++ = (int) (100.0(*ydex++));
for (i = 0; i < 6; i++)

aydex++ = (int) (57.296(*ydex++));

/* End main driver loop */

if (*status & OBI_ESCAPE) {
*status A= OBI_ESCAPE;
*Switches &= (-OBI_ESCAPE); }

outp(0x21, OxBC); /* Disable Hardware IRQ9 & IRQ10 */

outp(0xAl, OxDE);
fclose(readranges);
fclose(readsensors);
fclose(statefile);
if (*status & ESCAPE) {
*bSwitches = *Switches;
*bstatus = *status; }
exit(0);

void Obilnit()o

register i, j;
unsigned char temp;

/* Initialize the 8255's on MIC

outpw(POX, 0x9292); /* Initialized with Port A, B input, */
outpw(P1X, 0x9292); /* Port C output */

/* Handshake with 68HCll's in case thumper has already activated HC11 */

Ox0100);
Ox0100);
< 0x8888; i++);
Ox0000);
Ox0000);

< 8888; i++) (
0x8282);
0x8282);
Ox0000);
Ox0000);
Ox0100);
Ox0100);

< 8888; i++) ()
0x9292);
0x9292);
Ox0000);

/* Delay to give HC

/* Delay to give HC11 proc. time */

197

outpw(POC,
outpw(P1C,
for (i = 0; i
outpw(POC,
outpw(P 1C,
for (i = 0; i
outpw(POX,
outpw(P1X,
outpw(POA,
outpw(P1A,
outpw(POC,
outpw(P1C,
for (i = 0; i
outpw(POX,
outpw(P1X,
outpw(POC,

outpw(P1C, Ox0000);

/* Initialize variables to inert values

for (i = 0; i < 3; i++) [
Trans[i] = 0x80;
Torque[i] = 0x80;

for (j = 0; j < 8; j++) { /*
temp = j<<2;
for (i = 0; i < 4; i++) (
*(gate+i+temp) = OxO0;
*(range+i+temp) = OxO0;
*(arange+i+temp) = OxO0;

for (j = 0; j < 16; j++) { /*
*(astate+j) = OxO000;
*(state+j) = 0.00;

I

Initialize DPR ranges and gates */

Initialize DPR states */

198

Appendix E.O Control System Parameter Calculations

This Appendix contains the control system analyses and simulations. All the

calculations and plots were done with Macintosh MATLAB. The following analyses were

performed:

Appendix Description

Appendix E. 1

Appendix E.2

Position Hold Gain

Analysis

Attitude Hold Gain

Analysis

199

200

203

Appendix E -- Control System Gain Calculations

% Position Hold Analysis
%Lqr with q = I, r = 0.0001

minv = 0.001;
a = [0 1 0; 0 0 1; 0 0 0];
b = [0; 0; minv];
q = eye(3);
r = 0.0001;
[g,s] = lqr(a,b,q,r);

% Note that for the given q and r,
% gi = 100, gp = 447.5, gd = 951.33

%Time responses to offset, constant disturbance

t = [0.0: 0.1: 20.0];
xO = [0.0;0.3;0];
u = ones(201,1);
xl = a-(b'g);
x2 = [0;0;0];
x3 = [0 1 0; 0 0 1; -g];
x4 = zeros(3,1);

% Initial offset responses (offset of 0.3 m)

clg;
y = lsim(xl, x2, x3, x4, u, t, xO);
subplot(221), plot(t, y(:,l));
grid;
title('Position(m) vs. time: offset = 0.3 m');
subplot(223), plot(t, y(:,2));
grid;
title('Velocity(m/sec) vs. time: offset = 0.3 m');
subplot(222), plot(t, y(:,3));
grid;
title('Control(N) vs. time: offset = 0.3 m');
pause;

% Constant disturbance response (Idl = 20 N)

clg;
xO = [0;0;0];
x2 = minv*[0;0;20];
y = lsim(xl, x2, x3, x4, u, t, xO);
subplot(221), plot(t, y(:,l));
grid;
title('Position(m) vs. time: Idl = 20 N');
subplot(223), plot(t, y(:,2));
grid;
title('Velocity(m/sec) vs. time:
subplot(222), plot(t, y(:,3));

Idl = 20 N');

grid;
title('Control(N) vs. time: Idl = 20 N');
pause;

200

Appendix E -- Control System Gain Calculations

0

0

0 5 10 15 20 0 5 10 15 20

m

-u* .

0 5 10 15 20

Position Response with 0.3m Initial Offset

201

Appendix E -- Control System Gain Calculations

0.04

0.02

5 10 15 5 10 15 20

0 5 10 15 20

Position Response with 10 N Disturbance

202

-10

-20

-30-0.02

-n
V .J-

Appendix E -- Control System Gain Calculations

%Attitude Response Analysis
%Lqr with q = I, r = 0.0001

doverl = 0.85/86.0;
a = [0 1 0; 00 1; 0 0 0];
b = [0; 0; doverl];
q = eye(3);
r = 0.0001;

[G,s] = lqr(a,b,q,r);

% Note that for the given q and r,
% gi = 100.0, gp = 242.0, gd = 242.8

%Time responses to offset, constant disturbance

t = [0.0: 0.1: 20.0];
xO = [0.0;0.4;0];
u = ones(201,1);

grid;
title('Control(N-m) vs. time: offset = 0.4 rad');
pause;

% Constant disturbance response (Idl = 10 N-m)

clg;
xO = [0;0;0];
x2 = doverl*[0;0;10];
y = Isim(xl, x2, x3, x4, u, t, xO);
subplot(221), plot(t, y(:,l));
grid;
title(' Att(rad) vs. t:ldl=10 N-m');
subplot(223), plot(t, y(:,2));
grid;
title(' w(rad/sec) vs. t:ldl=10 N-m');
subplot(222), plot(t, y(:,3));
grid;
title('Control(N-m) vs. time: Idl=10 N-m');
pause;

xl = a-(b'g);
x2 = [0;0;0];
x3 = [0 1 0; 0 0 1; -g];
x4 = zeros(3,1);

% Initial offset responses (offset of .4 rad)

clg;
y = Isim(xl, x2, x3, x4, u, t, x0O);
subplot(221), plot(t, y(:,l));
grid;
title('Atttitude (rad) vs. time: offset = 0.4 rad');
subplot(223), plot(t, y(:,2));
grid;
title('Angular Velocity (rad/sec) vs. time: offset = 0.4 rad');
subplot(222), plot(t, y(:,3));

203

Appendix E -- Control System Gain Calculations

0 5 10 15 20

riQntrol (N-m) vs.
IUU

0

-100

-200

time: offset = 0.4 rad

= 0.4 rad

0 5 10 15 20

Attitude Response to 0.4 rad Initial Offset

204

(i

·I

-

-

V.-

V.,--

Appendix E -- Control System Gain Calculations

0

-5

-10

-15
5 10 15

Control (N-m) vs. time: Idl=10 N-m

20

5 10 15

Attitude Response to 10 N-m Disturbance

205

15

10

5

0

-5

. i

10

5

0

-5

