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Abstract

Aluminum is a versatile material that is used frequently in transportation and packaging,
two industries with substantial recent growth. The increase in demand for aluminum,
however, has outpaced the growth of primary aluminum production. One way to meet
this shortfall is the use of secondary, or recycled, materials which provides both
economic and environmental benefits. The increased use of secondary materials is
limited by numerous factors; one such factor of concern is uncertainty. One form of
uncertainty that all producers face is consumer demand; this will be the focus of this
study. The two stage recourse optimization model presented in this thesis aims to
provide batch planners with a tool to effectively manage raw materials in an uncertain
demand environment. This model enhances existing research by increasing the number
of demand scenarios considered by an increase in the model's resolution. The two
metrics evaluated are scrap purchased and production cost. The batch planning process is
affected by a number of assumptions about factor inputs including the model resolution,
salvage value, coefficient of variation, scrap cost and compositional constraints. Results
show that understanding the influence of these factors provides producers with the insight
and ability to effectively manage and mitigate the effects of demand uncertainty in a cost
minimization framework.
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1 Introduction

1.1 Aluminum and Society Background

Aluminum is one of the most commonly used materials in our daily lives; in the

United States alone, approximately 6,100 MT were consumed in 2006. It began to be

industrially produced after 1886 when Hall and Heroult discovered the ability to isolate

aluminum via electrolysis [2]. Aluminum and its alloys exhibit numerous versatile

properties that enable their use for a broad spectrum of applications. In addition to being

a good conductor of heat and electricity, aluminum is lightweight, malleable, ductile and

corrosion resistant[3]. Figure 1 provides a graphical representation of the US domestic

aluminum consumption by sector in 2006.

Others, 7%i

Electrical, 5%-

Consumer
Durables, 7%

Building, 13%

Transportation,
40%

Packaging, 28%
Figure 1 Domestic Aluminum Consumption by Sector (2006) [4]. The transportation and packaging
industries were the lead consumers of aluminum in 2006.

The transportation industry was the largest consumer of aluminum and its alloys

in 2006. The production and manufacture of ships, buses, automobiles, trailers, railroad

and subway cars in addition to aerospace applications and mobile homes fall under this

category, with automobiles comprising the majority. Forty years ago, the average

American and European vehicle contained about 25 kg of Aluminum; today, that value

has reached over 150kg of Aluminum per vehicle[5]. Figure 2 provides a schematic of

8



the various components of a modern automobile that are aluminum based, resulting from

Aluminum's versatility and desirable mechanical properties.

Figure 2 Aluminum Components in Modern Automobile [5]. Today, aluminum comprises over
150kg of a typical vehicle's weight.

Moreover, the lightweight nature of aluminum has played a fundamental role in

the enhancement and growth of the global aviation industry. The International

Aluminum Institute estimates 80% of an aircraft's weight to be aluminum-based, with a

typical Boeing 747 jumbo jet containing 75,000 kg of aluminum[6].

The packaging industry follows transportation as the largest domestic consumer

of aluminum. This category comprises such products as beverage cans, food containers

and household and institutional foil[7]. The Can Manufacturers Institute reports than in

2004, aluminum can shipments exceeded 134 billion, led by beverage cans which

amounted to almost 100 billion of those shipments[8]. Aluminum foil, meanwhile is a

light, strong, flexible and durable material that is commonly used for both household and

industrial applications.

The third largest domestic consumer of aluminum: building and construction, is

the largest consumer of aluminum in most other countries[7]. Aluminum's high strength

9



to weight ratio allows it to be used in the form of architectural sheet and extrusions.

Aluminum is also used in such applications as curtain walling, window frames, siding

and roofing, greenhouses, staircases, heating and air-conditioning systems, scaffolding

and ladders amongst other uses[7].

The breakdown of domestic aluminum consumption by industry has been

somewhat steady over the past 15 years, as shown in Figure 3. The use of aluminum in

packaging, construction and electrical appliances has been relatively consistent since

1975. Much of the increase in overall aluminum production is brought about by an

increase of aluminum use in the transportation sector. It is evident that despite year-over-

year fluctuations, domestic aluminum consumption has exhibited an upward trend over

the past 30 years. As the world population increases past 6.5 billion people, an increase

in aggregate demand for aluminum products is to be expected, acting as a major obstacle

for the sustainability of this highly versatile material.

9,000
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S7,000

. 6,000
5,000

4,000
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2,000
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' Construction 0 Consumer durables El Containers and packaging El Electrical
UI Machinery and equipment IR Transportation El Other

Figure 3 Domestic Aluminum Consumption by Sector (Historical) [4]. The general trend is that of
increasing aluminum consumption, highlighted by growth in the transportation industry.



At the beginning of the 20th century, global aluminum consumption was

approximately one thousand tons; a century later that number had jumped to 32 million

tons[2]. This rate of increase in domestic aluminum demand has greatly outpaced the

rate of increase in primary aluminum supply as is seen in Figure 4, thereby further

complicating the materials selection process. A natural choice to satisfy the excess

demand of aluminum would be to augment and expand the usage of secondary materials.

2006

2007

20M6

2005

2M0

U-
F-

0 1000 2000 3000 4000 5000 6000 7000

in MIlion Ton
0 Demand U Primary Production

Figure 4 US Aluminum Demand and Primary Production from 2004-2008E [9]. Primary production
of aluminum is equivalent to just over one third of domestic aluminum demanded.

1.2 Materials Selection

Current estimates[10] conclude that there are over 40,000 useful metallic alloys

including 1,200 wrought and cast aluminum alloys in existence, not accounting for

composite materials, plastics, semiconductors and other nonmetallic materials. This

wide array of available building blocks at an engineer's disposal makes the selection of

appropriate materials a vital decision in the production processes faced by firms globally.

Fundamentally, the inherent motivation behind the materials selection process lies in

i
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optimizing the properties of the product while simultaneously minimizing cost - a task of

balancing numerous countervailing forces that engineers have to face on a daily basis.

The materials selection process takes into account the desired mechanical and

structural capabilities of the material, its availability, and potential secondary uses. Other

factors that play a role in the decision making process include ease of shaping and

processing, reliability, and the environment the materials will be used in[10]. Ashby's

materials selection charts[11] provide a quantitative tool to group the desired mechanical

properties of various materials and facilitate selection based on the structure-property

relationships.

The nuances of the materials selection process are clearly exhibited in the varying

constituents for typically aluminum based products. In the transportation domain, for

example, Boeing's new 787 airplane is said to be a pioneer in the aviation industry -

transforming the bulk of an airplane's weight from being aluminum to composite

materials which are lighter weight and thus provide better fuel economy. Similarly, in

the packaging industry, Aluminum beverage cans face stiff competition by both plastic

and glass bottles. These competing products further augment the interplay between

desired properties and keeping production costs controlled.

The cost minimization constraint acts as a major roadblock for profit-maximizing

firms that aim to increase profit margins by controlling costs. Therein lies the principle

stimulus behind using secondary materials. These recycled, or scrap, materials provide

both economic and environmental advantages over their primary counterparts. From an

economic perspective, scrap is typically less expensive to obtain than primary material

and alloying elements, yet can provide similar properties [7].



The increase in recovery and recycling of secondary materials will have a major

impact on the long term sustainable use of light metals in general, and aluminum in

particular. For many metals, the energy required in the fabrication of primary raw

materials far exceeds the burden that is necessary to process them out of scrap materials.

This environmental incentive for recycling is especially compelling in the case of

aluminum whose primary production requires up to ten times more energy than its

secondary production[12]. In fact, recycling 1 kg of aluminum can save up to 8 kg of

bauxite, 4 kg of chemical products and 14 kW of electricity [2].

1.3 Secondary Production & Recycling

In the year 2000, the recycling rate of aluminum was estimated to be only 36%

[7], where the recycling rate is defined as:

(Consumption of Old Scrap + Consumption of New Scrap) x 100% (1)
Apparent Supply of Scrap

Even though the aluminum can industry recycling rates are higher than the aluminum

industry's overall average, the last decade has shown a troubling decrease in recycling

rates, as exhibited in Figure 5.
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Figure 5 Aluminum Can Recycling Rates [13]. The trend over the last decade has been one of
decreasing recycling rates.

Recycling efficiency can be defined as the aggregate sum of scrap that is recycled

over the aggregate sum of aluminum that could be collected and reused. USGS

estimates[7] indicate that the recycling efficiency of aluminum in the year 2000 is close

to 60%. It may be somewhat puzzling that despite scrap being less expensive than

primary aluminum, in addition to being a feasible necessity for its long term sustainable

use, less than 2/3 of the aluminum that is eligible to be recycled is being used in

secondary production. One possible explanation behind this lack of optimal use of

recycled aluminum is related to the various multidimensional uncertainties faced by

aluminum producers, which will be discussed hereafter.

1.4 Barriers to Aluminum Recycling: Uncertainty

The aluminum market is rich with a wide array of uncertainties that hinder

optimal decision making ability with regards to production and use of secondary

~rnl



materials. Key uncertainties include the availability and composition of scrap in addition

to the volatility of both prices and demand for aluminum products.

1.4.1 Price

Figure 6 Fluctuations in Aluminum Prices since 1920 [4]. The year to year

change in aluminum prices has been volatile and exhibits sharp peaks and valleys. Figure

6 exhibits the year-to-year change in price of aluminum since 1920 in 1998 dollars. This

dramatic variation in price may be attributed to unstable supply and demand of aluminum

that acts as a major obstacle for aluminum producers in planning and preparing for future

production cycles.

1.:

1.0
0.5

S _ .-

Year

Figure 6 Fluctuations in Aluminum Prices since 1920 [4]. The year to year change in aluminum
prices has been volatile and exhibits sharp peaks and valleys.

1.4.2 Availability

Uncertainty in the availability of aluminum scrap is significantly affected by the

variation in the end-of-life of different products. This has a profound effect on the

quantity of aluminum that can be recycled on a year to year basis, and thus the amount of

scrap that is available for use is not a steady value. The volatility in geographic

availability of scrap is exhibited by variations in local prices of scrap, plotted in Figure 7.



Higher prices tend to be associated with the cost of transporting the scrap from its

collection site or location. These geographic variations bring to light the price and

availability uncertainties that hamper increased scrap purchasing and usage.

1.30

1.20

1.10
S1.00

0.90

0.80

E 0.70
0

0.60
S 0" 'a L 0 >- 21~L

8 .c U, > 0 a .oo..1 . 0

Figure 7 Normalized Scrap Prices across various locations [141. Scrap access and availability in key
North American cities plays a major role in determining scrap prices.

1.4.3 Composition

The volatility associated with end-of-life products shapes the variation in

aggregate compositions of scrap materials on an annual basis. Certain processing at end

of life, for example shredding, can contribute to the build up of undesirable

compositional additions. The metal yield of aluminum from the melting process is

unquestionably a function of the aluminum based products undergoing recycling. These

compositional uncertainties are the basis behind why aluminum scraps are not identical,

and thus hinder the viability of replacing one scrap type with another.

1.4.4 Demand

Demand uncertainties associated with a dynamic market play a central role in

causing inefficiencies in the metal alloy production process as well. This is particularly

true in the aluminum market where consumer demand has traditionally been volatile[ 15].

16



Apparent consumption is defined as primary aluminum production plus net

exports, and is plotted in Figure 8. In a 15 year time span, aluminum apparent

consumption ranges from 5000kT to close to 8000kT, thus making the task of predicting

future consumption an extremely daunting task.

8000

- 7500

*• 7000

6500
o 6000

S5500 -

c 5000

Year

Figure 8 US Apparent Consumption of Aluminum over time[4]. No direct trend is observed,
highlighting the difficulty of predicting future aluminum consumption.

A longer term variation is shown in Figure 9, which plots year to year changes in

domestic aluminum produced since 1920.

2,500

2,000

a 1,500

-- 1,000o
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Figure 9 Fluctuations in domestic Aluminum Produced since 1920 [4]. The year to year changes in
aluminum production are extremely volatile, relating to inconsistent demand.



These remarkable variations in aluminum produced are further affected by

fluctuations in demand for industries that commonly use aluminum. Demand for

aluminum is mired by competition from lower cost substitutes that offer similar

properties. This further highlights the need to manufacture aluminum products at lower

costs and clearly enhances the potential added value of using secondary materials.

Although some peaks and valleys in Figure 9 appear to parallel those of the US

economy as a whole, the fluctuations in price and production of aluminum do not appear

to be cyclical in nature. Rather, a common theory relating to these inefficiencies in

supply chain management is given by the Bullwhip effect[ 16]. This theory states that the

most dramatic variations in demand are noticed by the operators furthest away from the

customer, who in this case would be the aluminum producers. The bullwhip effect is

believed to be caused by inaccurate and inefficient demand forecasting, order batching,

price fluctuations and rationing.

The magnitude and scope of the bullwhip effect is clearly observed in both Figure

6 and Figure 9, adding a further obstacle in the use of secondary materials. The

fundamental constraint for scrap usage, from a demand perspective, is that scrap used in

the production of aluminum alloys must be purchased before the demand for these alloys

is known. Thus, the bullwhip effect complicates the purchasing decisions of materials

producers who need to preorder scrap whilst overcoming significant projected demand

volatilities.

Given these uncertainties, the ability of a firm to position itself in such a manner

to hedge against these variations becomes of tremendous potential added value. In the

automotive industry, for example, where much of aluminum scrap is obtained,



studies[17] have shown that through strategic alloy choice, material reuse rates,

production costs and variability can be dealt with effectively. More generally, by being

well-hedged, a firm can actively engage in profit-maximizing operational activities

involving scrap pre-purchasing, while ensuring a consistent cash flow and minimizing

vulnerability to fluctuations in market demand.



2 Problem Statement and Overview

The goal of this study is to establish a methodology that examines the effective

implementation of efficient raw materials management by specifically considering

uncertainty in consumer demand for alloys. The financial benefits and specific economic

incentives associated with incorporating secondary materials in the materials selection

process and utilizing scrap in production will be examined by a two-stage recourse

model, with a case study focusing on aluminum.

The results of the study aim to assess the relationship between demand

uncertainty and batch mixing decisions, focusing on such factors as purchasing decisions

and production costs. This will be conducted by modifying an existing model[15, 18] to

enhance the resolution of the outcomes and applications, through expanding the number

of demand scenarios considered. The objective of this case study is to characterize

scenarios that optimize the use of aluminum scrap in various production settings, in

addition to clearly identifying the effectiveness of this optimization to minimize costs in

specific production processes and conditions.

Sensitivity analyses will be run to accurately identify any assumptions that may

affect the scrap pre-purchase decisions and/or production cost. These assumptions

include 1) the resale or salvage value of scrap, 2) demand variability (reported as the

coefficient of variation), and 3) the cost of scrap relative to the cost of primary materials.

Also, the impact of differing demand resolutions and scenarios on versatility of different

scraps and their pre-purchase amount will be evaluated. Finally, the compositional

constraints of different elemental components of aluminum alloys will be analyzed via



shadow pricing to assess potential compositional modifications aimed at further

optimizing the scrap hedging behavior.

The hypothesis that is to be investigated is that recourse modeling can act as an

effective tool in providing insight to batch planners. These planners operate under a cost

minimization framework which includes combining primary and secondary materials in

the production of alloys. This framework is complicated by the presence of demand

uncertainty, which the model aims to assess and manage efficiently. This research

intends to demonstrate that increasing the resolution of a two stage recourse model leads

to an enhancement in the batch planning decisions that can be utilized by producers.



3 Methodologies

3.1 Recourse Modeling

Optimization is a tool used to attain a solution to a complex problem involving

numerous interrelated variables. The optimization process aims to maximize (or

minimize) an objective function that is subject to various constraints[ 19]. One

mechanism that is commonly employed to simplify the optimization considerations is

that of linear programming. Broadly defined, a linear program is a mathematical tool in

which the objective function is linear in the unknowns and where linear equalities and

inequalities are employed to represent the constraints[ 19. Linear programming is a

technique that has commonly been used in the optimization of various production

processes[20-23].

Optimization via linear programming becomes increasingly complex when the

constraints are probabilistically altered, thereby introducing ambiguity to the core

problem[24]. A multi-step recourse model is broadly defined as an optimization tool

that assists in the decision making processes given uncertain, or stochastic final

outcomes[25, 26]. Intuitively, it can be thought of as an "action-reaction" coupled

decision making process[27]. An action is taken prior to stochastic knowledge, with the

respective reaction being the recourse undertaken to satisfy all the constraints, given the

stage one decisions, once knowledge of the stochastic outcomes is available.

In the model examined within this thesis, the fundamental trade-off between

primary and secondary materials is two fold. The primary material is available to be

purchased at all times, yet is sold at a higher cost than scrap. Scrap, meanwhile, needs to

be purchased prior to demand being known, and thus the outcome of scrap pre-purchase



decisions are subject to the uncertainties in demand discussed earlier. A schematic

representation of the recourse model is presented in Figure 10. The blue squares in the

figure represent decision nodes, while the yellow circles represent uncertain outcomes.

Stage Two
Decisions

Uncertain
Outcomes

Stage One
Decisions

Figure 10 Schematic Representation of Recourse Model Strategy[l]. The two-stage recourse model
relies on decisions taken prior to demand being certain, and results in stage two decisions taken after
demand is known.

Given the uncertain nature of demand, the stage one decision is comprised of

scrap pre-purchases. At a time t later, demand becomes known, and the producer meets

the demand by combining the scrap pre-purchased with primary material as needed.

Excess scrap pre-purchased is sold at a discounted rate given by the salvage value, which

acts as a proxy for carrying cost.

Mathematically, the recourse model optimization problem[15] can be described

using the objective function given in Eq. 2.

f (c,D) +g (C,p,D') (2)

The contribution from stage 1 is given by the function (.) while that from stage 2 is given

by the function g(.). C represents the cost vector whose constituents from both stage 1



and stage 2 decisions combined must be minimized in this linear optimization. LD maps

the stage one decision parameters, ID does the same for stage two decisions, and p

reflects the probabilities of the decision outcomes.

Thus, the overarching objective function of the recourse model is to minimize:

Scrap Cost + Primary Cost - Salvage Value (3)

given the uncertain nature of demand and the built-in compositional constraints. This

minimization can be more precisely be decomposed into two components associated with

each decision making stage.

The stage one effect takes into account the cost of the scrap pre-purchased, given

by Eq. 4:

Stage One Effect: f (C,D') = CDD. (4)

The stage two effect (Eq. 5), however, takes into account both the amount of primary

material needed to be purchased to meet the demand and compositional constraints built

into the model, in addition to the value of excess scrap that was pre-purchased but

unused. If the amount of scrap pre-purchased in stage 1 does not meet the demand, the

producer needs to purchase primary material to alleviate the shortage. This represents an

added cost to the producer given that the price of primary aluminum is higher than scrap.

Similarly, if more scrap is purchased than required, the producer will have to sell the

excess scrap at a discount rate, given by the salvage value. More generally, the salvage

value can be considered to be the carrying cost of inventory from one production cycle to

another. In this model, however, the salvage value represents the resale value of excess

scrap, making this simulation a closed loop after only two stages.



These two nuances of the cost minimization formula shed light on the "penalties"

faced by the producer resulting from pre-purchasing either too little or excessive scrap.

Stage Two Effect: g (C, p, D') =pPZD -E SCsPRs (5)
p, f,z s.z

More clearly stated, the objective function is to minimize:

SC,D,+ C CP.D• -Y SCP.R. (6)
s p.f.z s.z

such that. D' A, (7)

The amount of scrap pre-purchased for each scenario is given by:

R = D - D (8)
f

Given the various built in constraints as well as the probabilistic nature of the model, D's,

Dsf, Dpfz are the variables solved for in such a manner to minimize costs. These

variables represent the amount of scrap pre-purchased, amount of scrap used and amount

of primary material purchased, respectively.

The condition that scrap must be pre-purchased is enforced by Eq. 9, which states

that at the time of production, no more scrap can be used than was initially purchased:

c D'z Ds: (9)
f

The production constraint for each scenario z is given by Eq. 10 which includes mass

balance and emphasizes that the amount produced must meet or exceed the total demand:

S +D'. +  Dý = B. > M. (10)
S p

In addition to demand specifications, compositional constraints associated with

each alloying element c, must be met. These constraints are used in the determination of



the production portfolio, specifically the amount of aluminum scrap, primary, and

alloying elements required to meet the compositional specifications:

E D, +Cu D+  -U, B,,U, (11)

SD'SL.+ D'L L B.L. (12)
s p

From these equations, it becomes increasingly clear that both the price spread between

primary and secondary materials as well as the salvage value of scrap will greatly

influence the optimal solutions. Thus, sensitivities for both these variables will be

conducted and evaluated.

The variables used in the linear programming model are defined[15] below:

Rs = Residual amount of scrap s unused in scenario z

S = 1 - discount on the value of unused scrap materials

Cs = unit cost ($/T) of scrap material s

Cp = unit cost of primary material p

Ds = amount (kt) of pre-purchased scrap material s

Pz = probability of occurrence for demand scenario z

Dp•z = amount of primary material p to be acquired on demand for the production of

finished good funder demand scenario z

As = amount of scrap material s available for pre-purchasing

D'sfz = amount of scrap material s used in making finished good funder demand

scenario z

Bf = amount of finished good fproduced under demand scenario z



Mrz = amount of finished good fdemanded under demand scenario z

Use = max. amount (wt. %) of element c in scrap material s

Lsc = min. amount of element c in scrap material s

Upc = max. amount of element c in primary material p

LPC = min. amount of element c in primary material p

Urc = max. amount of element c in finished good f

Lfc = min. amount of element c in finished good f

3.2 Previous Work

There currently exists[15, 27] a deterministic two-stage recourse model that maps

the behavior of scrap purchase and usage based on a limited set of demand scenarios and

volatilities that was developed within the MIT Materials Systems Laboratory. The

existing model represents demand via a discrete probability distribution consisting of five

distinct probability scenarios; though demand scenarios would be more accurately

represented by a continuous probability curve, discrete probability scenarios provide

increased computational efficiency. One of the main objectives of this study is to

enhance the existing model by increasing the number of quantized demand scenarios.

This enhancement of the model's resolution is aimed at obtaining a more realistic and

broad uncertainty environment.

3.3 Aluminum Case Study

Once the recourse model methodology has been established, it is difficult to

visualize the results it may have on batch mixing decisions. Therefore, a case study on



aluminum recycling will be presented. The profound role aluminum plays in today's

society as well as the various sources of demand uncertainty outlined earlier make

aluminum an ideal candidate to be evaluated in this recourse methodology. Given the

design parameters, the compositional constraints, and the demand uncertainties, the two-

stage model provides an optimal solution of specific scrap purchases to meet the

probability-weighted expected demand.

Aluminum is typically used in the alloy form, which is comprised of pure

aluminum combined with dozens of possible alloying elements. Alloying is a tool used

by engineers to enhance aluminum's properties based on their desired use[3]. In order to

keep the case study small computationally, only six of the major alloying elements will

be tracked: silicon, manganese, iron, copper, zinc and magnesium. The 2006 year average

prices[28] for these primary materials is listed in Table 1. Since much of aluminum

scrap is obtained from end-of-life vehicles and their compositions are publicly available,

seven sources of automotive aluminum scrap are used and presented in Table 1. These

scrap sources include: brake, transmission, co-mingled media scrap, heat exchanger,

bumper, body sheet, and all aluminum engines.

Table 1 Prices of Raw Materials [28]

$/ $1Primary Ton Scrap Ton
Ton Ton

Elements Materials
P1020 2,646 Brake 1,984
Silicon 1,690 Transmission 1,984
Manganese 3,610 Media Scrap 1,984
Iron 520 Heat Exchanger 1,984
Copper 6.830 Bumper 1,984
Zinc 3,200 Body Sheet 1,984

Magnesium 2,000 All Al Eng. & 1,984Trans.



Variations in prices of different aluminum scrap from end-of-life vehicles is not

publicly available, and thus, the prices of the various scrap types are set to be equal to

one another. In the base case, the scrap price is chosen to be 75% of the price of the

primary aluminum. This price spread between primary and secondary aluminum may

affect the scrap pre-purchasing decisions and as such, sensitivity analyses of the scrap

price will be evaluated.

In addition to being an abundant source of aluminum scrap, compositional data of

recycled aluminum from end-of-life vehicles is widely available[ 15]. Table 2 presents the

average weight percent of the tracked alloying elements in each scrap type. Metal yield

for these scraps was assumed to be 100% for simplification.

Table 2 Average Composition of Automotive Scrap Materials[15]

Raw
Materials

Brake

Transmission

Media

Heat
Exchange

Bumper

Body Sheet

All Al. Eng
& Trans.

Si

1.54

10.30

4.88

2.88

0.39

0.47

8.61

Average

Mg
1.23

0.21

0.64

0.21

0.78

1.34

0.30

Composition (wt %)
Fe Cu Mn Zn

0.40

0.90

0.53

0.44

0.38

0.21

0.68

These various elements act as the foundation

of using secondary aluminum in various alloys.

aluminum alloys will be considered: 380 and 390.

0.62

3.79

1.00

0.68

0.32

0.57

2.69

0.14

0.28

0.11

0.59

0.09

0.19

0.27

0.12

2.17

1.00

0.20

0.75

0.07

1.26

behind the compositional constraints

In the aluminum case study, two

The chemical specifications of the

III



alloying elements in each alloy is presented in Table 3. Included are upper and lower

bounds for the weight percent of the alloying elements- thereby establishing a range of

accepted compositions in each alloy. The particular scraps and alloys used represent

commonly used materials in the automotive industry as per studies conducted by

Gorban[29].

Table 3 Finished Goods Chemical Specifications[15]

Si Mg Fe Cu Mn Zn
Max Min Max Min Max Min Max Min Max Min Max Min

380 9.50 7.50 0.10 0.00 2.00 0.00 4.00 3.00 0.50 0.00 3.00 0.00
390 18.00 16.00 0.65 0.45 1.30 0.00 5.00 4.00 0.10 0.00 0.10 0.00

By comparing the compositions of the various scrap types with the alloys to be

evaluated, it is clear that there are discrepancies in the average compositions of alloying

elements. These discrepancies will constrain and limit the use of certain types of scrap

given the two cast alloys under consideration. The magnitude of the compositional

constraints for each type of alloying element will be evaluated to assess which are the

most highly constraining.

3.4 Discrete Probability Distributions

One of the unique additions to this work that is lacking in other production

decision-making models is the consideration of alloy demand uncertainty and/or

volatility. Although demand would more effectively be represented via a continuous

probability distribution, a discrete distribution is assumed so as to take advantage of

computational efficiency of linear optimization methods[27]. This simplification in the

demand profile is aimed at minimizing computational memory and time needed to run the



model. In this case study, it is assumed that both alloys have identical demand profiles,

which are shown graphically in Figure 11.
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Figure 11 Modeled Discrete Probability Distribution representing possible finished alloy demands:
(a) Limited Case, (b) Expanded Case

For both the 380 and 390 alloys, the mean demand is set to 20kT with a 30%

probability of occurrence. The other six demand scenarios provide for a symmetric

demand profile which has a base coefficient of variation of 14%. The coefficient of

variation (COV) is the standard deviation divided by the mean (given by Eq. 13); this is a

way to normalize the variation of alloys with different average demands. The coefficient

_ __
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of variation in demand will inevitably affect the production costs and hedging ability of

producers, and as such, sensitivity analyses of this variable will be conducted.

COV = - (13)

It is imperative to note that in this study, the demand profile consists of seven

unique demand scenarios. As was mentioned earlier, previous research[27] has been

conducted using a limited set of five demand scenarios. The increase in resolution

presented in this study, represents a closer approximation to continuous demand

probability profiles. This enhancement will influence the scrap pre-purchasing decisions

as well as the production costs and will be presented hereafter.



4 Results and Discussion

The fundamental objective of this modeling effort described in this thesis is to

specify a breakdown of the optimal scrap pre-purchasing decision under a cost

minimization framework that takes into consideration a wide array of variables. The

principle addition of this study to existing theory is the encapsulation of demand

uncertainty in the cost minimization framework. Using a base case salvage value of 95%,

coefficient of variation of 14% and scrap prices fixed at 75% of the cost of primary

materials, values for production cost and total scrap purchased are obtained for both the

limited and expanded cases. For the limited case, described earlier, the amount of scrap

purchased in stage one is 37.61 kT, resulting in a total production cost of $83.39M.

Meanwhile, the higher resolution expanded case results in a production cost of $83.31M

and scrap purchases of 38.49 kT. This initial output shows that increasing the resolution

of the model led to an increase in scrap purchased and a resultant decrease in production

cost.

The outputs of the model are sensitive to a broad set of factors including

variations in salvage value, coefficient of variation of demand, scrap cost and versatility.

Sensitivity analyses of these factors are presented hereafter, and provide the model's user

with the ability to enhance the cost minimization process by manipulating these

considerations. Additional sensitivity information relating scrap purchasing with the

compositional constraints is obtained by analyzing shadow prices.



4.1 Salvage Value

One assumption that has an impact on both the scrap purchasing decision as well

as the resultant production cost is the salvage value. As explained earlier, the salvage

value is used as a proxy for the carrying cost; it is a way to simulate a closed loop process

in a two stage model. In effect, the salvage value acts as the penalty for purchasing

excess scrap, as in a two stage model this excess scrap will be sold after demand is

realized. The greater the salvage value, the higher the resale value of excess scrap and

thus the lower the effective carrying cost. Similarly, the lower the salvage value, the

greater the discount the excess scrap must be sold for, the larger the penalty paid.

Analogous with this theoretical framework, Figure 12 exhibits the effect of

changing salvage value on the amount of scrap purchased. Using a base case of 95% and

varying from 88-98%, the amount of scrap purchased exhibits a clearly increasing trend

with increasing salvage value. This finding can be attributed to the fact that increasing

the salvage value reduces the risk of having too high a hedge, given by the amount of

scrap purchased.
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Figure 12 Scrap Purchased as a function of Salvage Value. Scrap purchased is held constant over a
range of salvage values, but increases when salvage value is greater than 93%.



It is interesting to note, however, that over some ranges of salvage values, the

amount of scrap purchased is held constant. Had the base case been a salvage value of

91%, varying this to any value between 88% and 93% would not have had an impact on

the amount of scrap purchased. Whereas with a base case of 95%, varying this to either

94% or 96% will in fact result in significant changes in scrap purchasing. The 8.5% jump

in scrap purchased between a salvage value of 93% and 96% underlines the importance

of obtaining a relatively accurate estimation of the salvage value in order to identify the

optimal amounts of scrap to pre-purchase with a cost minimization framework.

As the salvage value increases, the greater the amount of scrap purchased, and in

turn the lower the production cost, as seen in Figure 13. As explained in earlier sections,

the production cost is equivalent to the cost of scrap purchased plus the cost of primary

material purchased once demand is realized, minus the revenue from selling excess scrap.

OA f$fl
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Salvage Value (%)
Figure 13 Decreasing production cost as a function of increasing salvage value. The higher the
salvage value, the higher the resale value of excess scrap and thus the lower the production cost.

The trend observed in Figure 13 is a direct result of increased scrap purchased,

due to higher resale value of excess scrap. The higher the resale value of excess scrap,

the lower the penalty of purchasing scrap, and thus the greater the motivation to increase

35



scrap pre-purchasing. Ignoring the compositional constraints in the alloying process, the

greater the scrap purchased, the less primary material needs to be purchased once demand

is realized. The price difference between scrap and primary implies that as more scrap is

purchased relative to primary material, the larger the potential savings due to the lower

effective cost.

It is imperative to note that the data presented in the last two figures used the

expanded probability distribution of demand as described by Figure 11(b). When

comparing the total scrap purchased and production costs of the expanded case with the

limited case, we notice the same overall trend. As salvage value increases, the amount of

scrap purchased increases and in turn so does the production cost.

Figure 14 presents the effect of a larger range of salvage values on the amount of

scrap purchased in both the expanded and limited case. Although both the limited and

expanded cases exhibit the same overall trend, the rate of increase in scrap purchased as a

function of increasing salvage value is greater in the expanded case than in the limited

case. Additionally, almost throughout the whole range of salvage values depicted in this

figure, the amount of scrap purchased in the expanded case is equal to or greater than that

in the limited case. This observation may imply a convex behavior relating scrap

purchased and uncertainty.
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Figure 14 Increased scrap purchased as a function of salvage value for both the expanded and
limited models. Increasing the resolution of the model keeps scrap purchased either equal to or
greater than scrap purchased in the limited case.

Based on the hedging behavior outlined above, the increased scrap purchased in

the expanded case leads to a lowering of the production cost. As the salvage increases,

however, the gap in production cost between the expanded and limited cases decreases,

as shown in Figure 15.
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Figure 15 Decreased production costs as a function of increasing salvage value. Increasing the
resolution of the model has a clear effect of decreasing the cost of production relative to the limited
case.



Recall that due to the price differential, having scrap in inventory is viewed as a

hedge against uncertainty in demand. The higher resolution case implies greater

uncertain demand scenarios being realized than the limited model, and thus there is a

greater need to hedge against this added resolution. Moreover, as the salvage value

increases, the effective cost of hedging decreases, thereby strengthening the motivation to

hedge and thus increasing the scrap purchased. The rationale of increasing hedging with

increased uncertainty is in line with the fundamental objective of minimizing total

production cost, and may help rationalize the differences observed in purchasing

decisions using both the limited and expanded models.

Once the salvage value reaches the unrealistic value of 100%, the production cost

using both the limited and expanded cases is identical. A salvage value of 100%

represents an effective zero carrying cost of excess scrap, and thus the production costs

using cases of varying resolution will converge at this point. Thus, the increase in

resolution of the model will lead to an increase in the hedging, leading to greater scrap

purchases and lower costs of production.

4.2 Coefficient of Variation

The data above is conducted using a coefficient of variation equal to 14% in both

the limited and expanded cases. Increasing the demand uncertainty, given by the

coefficient of variation, is another factor that will impact the scrap purchasing behavior.

Figure 16 Increased scrap purchased as a function of increasing coefficient of variation.

Scrap purchased acts as a hedge against increased uncertainty. Figure 16 Increased scrap

purchased as a function of increasing coefficient of variation. Scrap purchased acts as a



hedge against increased uncertainty. Figure 16 below is a representation of the change in

scrap purchased as a function of coefficient of variation.
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Figure 16 Increased scrap purchased as a function of increasing coefficient of variation. Scrap
purchased acts as a hedge against increased uncertainty.

The amount of scrap purchased increases with increasing demand uncertainty.

Although at first glance, this may appear to be counterintuitive, this behavior can again

be characterized by examining the fundamental reasons why hedging occurs. Due to the

arbitrage arising from the price differential between primary and secondary materials,

purchasing scrap is used as a production tool against increased demand uncertainty. It is

essential to mention that this type of hedging behavior is aimed at managing the risk

associated with demand uncertainty and does not necessarily manage other forms of

uncertainty mentioned earlier.

Although scrap pre-purchasing can help to somewhat marginalize the effect of

demand uncertainty, it does not completely eliminate it. Figure 17 shows the increase in

production costs associated with increasing demand uncertainty. This increase in costs

can be attributed to non-optimal scrap purchasing. At greater demand uncertainty levels,

the amount of scrap purchased may be either too low or too high relative to the actual



demand. If too little scrap is purchased, the producer pays a penalty associated with the

difference in price between primary and secondary materials. Similarly, if the amount of

scrap purchased is too large, the penalty paid by the producer is associated with the

difference between the resale value of excess scrap and the original price, determined by

the salvage value.
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Figure 17 Increased production cost as a function of increased coefficient of variation. Uncertainty
complicates the scrap purchasing process and thus leads to increases in production costs.

Thus, as demand uncertainty increases in magnitude, predicting the actual demand

becomes increasingly difficult which leads to higher production costs that the producer

bears.

4.3 Scrap Cost

The main driver for scrap purchasing relies on the price differential between scrap

and primary materials. As mentioned earlier, obtaining specific scrap prices is a non-

trivial task, and thus, for this study, scrap is assumed to be some percentage of the

primary aluminum price. The base case of scrap cost equaling 75% of the primary cost is

in line with aggregate scrap prices[ll4].
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Figure 18 presents the change in scrap purchased as a function of changing scrap

prices relative to primary, using the expanded resolution model. The higher the scrap

cost, the lower the scrap purchased. Decreasing the size of the price differential between

primary and secondary materials lessens the benefit of using scrap as a substitute for

primary aluminum. Because the scrap cost is measured relative to the primary material,

an increase in the scrap cost is analogous to a decrease in the cost of the primary. Thus,

the higher the cost of scrap, the less scrap purchased.
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Figure 18 Decreasing amount of total scrap purchased with increasing cost of secondary materials
(as compared to primary aluminum). Interestingly, scrap materials are still used even when costs are
equivalent.

Figure 18 exhibits a decreasing trend, with the largest drop-off in scrap purchased

arising between 95% and 100%. The amount of scrap purchased when scrap and primary

material are equivalent in cost is non-zero. This behavior is highly dependent on the

chemical compositions of both the scrap materials as well as of the alloys. It seems

intuitive that when scrap and primary material are of equal cost, only primary material

would be purchased, however, some of the scrap aluminum in this case study contains

alloying elements that are needed in the alloying process of cast alloys 380 and 390



evaluated here. Though the scrap is equal in price to the primary aluminum, it is still less

expensive than many of the alloying elements.
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Figure 19 Increased production cost as a function of increasing scrap cost. As the cost of raw
materials increases, the total cost of production increases as well.

Total production costs increase linearly with increasing scrap costs as shown in

Figure 19 above. Given the mix of primary and secondary aluminum that is needed in

the production of the alloys, an increase in the price of the raw materials will inevitably

lead to an increase in the total production cost.

4.4 Scrap Usage by Alloy

Based on the chemical compositions of both the alloys as well as the scraps

employed in the model, a study on the versatility of scraps can be conducted. Figure 20

presents the amount of scrap purchased for each alloy. From this figure, it is clear that

brake and bumper scrap are the predominant components of the 390 alloy, where

transmission and heat exchanger scraps are used in the 380 alloy. These results are in line

with the chemical compositions outlined in Table 2 and Table 3.
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Figure 20 Scrap usage by alloy. Alloy 380 primarily uses transmission and heat exchanger scraps,
while alloy 390 predominantly uses brake and bumper scraps.

Brake scrap contains 1.23 wt% magnesium, which is above the maximum

magnesium threshold for the 380 alloy. Thus, this scrap type is predominantly used in

the production of the 390 alloy. Similarly, the transmission and heat exchanger scraps

contain higher zinc and manganese content, respectively, than the maximum threshold for

the 390 alloy and thus are predominantly used in the 380 alloy.

When comparing the limited and expanded cases, the scrap break downs exhibit

similar results, as seen in Figure 21. The 4 main scrap types used in both the limited and

expanded cases were brake, transmission, heat exchanger and bumper. In the expanded

case, more transmission scrap was purchased than in the limited case. Meanwhile, less

brake and heat exchange was purchased, with the amount of bumper scrap being

purchased being almost equal. However, the increase in transmission purchased

outweighs the decrease in brake and heat exchange purchased, implying that the total

amount of scrap purchased in the expanded case was greater than in the limited case.
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This result is consistent with the trend observed in Figure 12, using a salvage value of

95% as the base case.

Brake Trans Media Heat X Bumper Body All Al
Sheet Eng/Trans

Figure 21 Comparison of overall scrap purchased for both the expanded and limited demand
resolution cases shown by scrap type.

4.5 Shadow Prices

A powerful set of results that emerge from linear optimization solutions can

provide a way to quantify the sensitivity of the optimal result to changes in assumptions.

Among these sensitivity parameters are what is known as "shadow prices".

In this context, the shadow price is defined as the increase in savings (or further reduction

in cost) associated with relaxing one of the constraints by one unit as expressed by

equation 14. Each shadow price has a range of validity associated with it.

SPconstraint - (Production Cost) (14)
3(Constraint)

Table 4 lists the binding compositional constraints as well as the resultant savings

associated with relaxing them. For the maximum compositional constraint for



magnesium in alloy 380, relaxing the constraint by unit would result in cost savings of

$1777 per ton. Similarly, for the minimum compositional constraint for copper in alloy

390, decreasing the constraint by one unit would lead to a cost saving of $13 per ton. It is

clear from the table that relaxing the same constraints results in greater savings in the 390

alloy than the 380 alloy. This is consistent with the compositional specifications of the

alloys presented in Table 3.

Table 4 Binding shadow prices for compositional constraints

Shadow Price
Element ($/T) Alloy Max/Min

Mg 1776.96 390 Max

Mg 888.48 380 Max

Cu 13.21 390 Min

Fe 10.65 390 Max

Cu 6.61 380 Min

Fe 5.33 380 Max

Si 4.88 390 Max

Si 2.44 380 Max

Although six alloying elements are considered and listed in Table 2, only four of

those elements are binding and act as constraints in the model. These elements are

magnesium, copper, iron and silicon. From Table 4, it is clear that magnesium

composition acts as the most binding constraint meaning it is the element that limits the

potential scrap consumption the greatest, from a compositional perspective.

Aside from copper, all of the binding constraints are associated with the

maximum specifications of these elements. The consequences for being out of

specification are non-symmetric, as having lower content that the minimum is better than



having higher content than the maximum. If the elemental composition of the scrap is

lower than the minimum required in the alloy, the pure alloying element can be added to

compensate for the missing weight percent. However, if the elemental composition of

the scrap is greater than the maximum allowed in the alloy, this will limit the amount of

that specific scrap that be used for that specific alloy.

Because of the relatively high magnesium content in the scraps, and the relatively

low maximum specification for magnesium in the alloys, this element acts as a major

limitation to increasing scrap purchasing. On the other end of the spectrum, the

maximum specification for silicon in both alloys is rather high compared to the content in

the scrap materials and thus it is not a major obstacle to scrap usage.

The minimum composition of copper in both alloys, however, is rather high, and

of the 4 binding elements, it is the only one where the minimum composition is a binding

constraint. The weight percent of copper in the various scrap types is relatively low

compared to the range of copper required for the alloys and thus acts as a limit to scrap

use and purchasing. Additionally, it can be noted that the price of the copper alloying

element is much greater than the other alloying elements [28] and as such tends to be the

only alloying element where the minimum composition acts as the binding constraint.

Manganese and zinc are not binding mainly because the weight percent of these

two elements in the alloys is well within the acceptable range for both alloys. Thus,

relaxing either the minimum or maximum constraints by one unit will not affect the scrap

purchased and thus will have no impact on the production cost. As evidenced above,

compositional specifications play a paramount role in the materials selection process as a

whole, and in scrap purchasing and usage in particular.



Thus, although the use of secondary materials reduces overall production costs,

the stochastic nature of demand complicates the batch planning process faced by

producers. The purchasing decision of optimal amounts of scrap is affected by numerous

factors including model resolution, salvage or resale value of excess scrap, the coefficient

of variation of demand, scrap cost and compositional constraints. These factors may vary

depending on producer-specific scenarios. Nonetheless, understanding the relationship

between these considerations and the resultant optimal scrap purchased provides

producers with the ability to proactively mitigate the effects of demand uncertainty. The

sensitivity analysis presented also allows producers to translate the optimal decisions

presented to their specific production inputs.



5 Conclusions

Recently, the growth of aluminum demand has greatly outpaced its primary

production, leading to perceived shortages in the aluminum market and sky-rocketing

prices. One tool that can be employed to help marginalize this problem and increase

sustainability is the use of secondary or recycled aluminum, which can offer both

environmental and economic benefits. Increased use of recycled aluminum is limited by

a number of factors; one of which is the many forms of uncertainty encountered by

producers. One form of uncertainty that is evaluated in this study is the demand for

finished alloys which is typically extremely volatile and difficult to predict.

The recourse model presented in this research is aimed at managing the demand

uncertainty faced by batch planners in the production process. Previous research

conducted on this subject has shown the benefits of using this type of model; this study's

specific unique addition is an increase in the demand scenario resolution of the model.

The two primary metrics evaluated using this model are the amount of scrap purchased as

well as the overall production cost. These two metrics are sensitive to numerous

assumptions on the input factors that impact the scrap purchasing decisions.

Increasing the model resolution resulted in an increase in the scrap purchased and

a subsequent reduction in production cost. The increased resolution expanded case more

closely models the realistic continuous probability distribution function than the limited

case and allows the producer to understand the optimal solutions more effectively as well

as better manage the uncertainty, as hypothesized. Meanwhile, increasing the salvage

value led to an increase in scrap purchasing and a reduction in production cost. In the

model the salvage value represents the resale value of excess scrap and acts as a proxy for



carrying cost. Increasing the salvage value reduces the risk of being too heavily hedged,

characterized by purchasing too much scrap. By decreasing the penalty of having excess

scrap, the production cost exhibits a decreasing trend as salvage value increases.

A similar trend is observed when assessing the sensitivity of the model with

respect to increased demand uncertainty given by the coefficient of variation. Increasing

the coefficient of variation results in the need for increased hedging to mitigate the added

uncertainty, which in turn leads to an increase in scrap purchased. Nonetheless,

uncertainty is inherently costly and as such, as uncertainty increases, predicting the

realized demand becomes increasingly difficult and will thereby lead to increases in

production costs.

Increasing the cost of scrap relative to primary will lead to a decrease in the scrap

purchased and a resultant increase in production cost. As the price differential between

primary and scrap materials, the incentive to purchase scrap decreases. Similarly, as the

price of raw materials increases, the overall production cost will increase as well.

From a compositional perspective, it was found that given the mix of scraps and

alloys under consideration, manganese and zinc were non-binding constraints. This

would indicate that an increase in these elements in the scrap materials would not

adversely affect the optimal amount of scrap purchased or production cost. On the other

end of the spectrum, magnesium was the largest binding compositional constraint in

magnitude for both the 380 and 390 alloys. Through the utilization of the compositional

shadow prices to understand the cost savings associated with relaxing various

specification constraints, producers have the ability to target elemental considerations

that will have the largest possibility to further decrease costs.



Overall, this model provides producers with a tool to effectively implement an

efficient raw materials management strategy while considering demand uncertainty.

Although increasing the model resolution results in a small decrease in the computational

efficiency, this negative is far outweighed by the positive benefits of having increased

number of demand scenarios. Specifically, this benefit provides producers with more

comprehensive and realistic insights on how to manage demand uncertainty in a cost-

minimizing materials selection framework.



6 Future Work

Future studies in this field may focus on further modifying the model's resolution.

Although this research compares the cases of five and seven discrete demand scenarios,

further insight may be obtained by increasing the resolution to include nine or eleven

scenarios. This may help in assessing how the trend of decreasing production costs due

to increased demand scenarios behaves at larger resolutions. At some point, the positive

trade-off between decreased computational efficiency and increased insight to model

behavior will shift; quantifying at what resolution this takes place would be beneficial to

the modeler.

Moreover, it may be useful to further examine the effect of increased uncertainty

on the batch planning process. Although it was believed that added uncertainty would

lead to increased hedging, this trend may be asymptotic where an additional unit of

hedging may not lead to increased risk mitigation.

Further, the sole form of uncertainty considered in this study was demand based.

As mentioned earlier, price and compositional uncertainty are two supply-side factors

that will have a direct impact on the batch planning process. Engineering new models

that consider these sources of uncertainty may assist in obtaining a more comprehensive

decision making mechanism. A dual model that considers multiple forms of uncertainty

may provide deeper insight on the dynamic interplay between supply and demand that a

batch planner is faced with.

This study was simplified to focus on two cast alloys, which have unique

compositional constraints. As mentioned earlier, however, there exist over 1,400

different wrought and cast aluminum alloys that are categorized by their chemical



compositions. Wrought alloys can be broken up into 2XXX, 3XXX, 4XXX, 5XXX and

6XXX categorizations, with each group defined by distinguishable compositional

constraints. Running this model with wrought alloys from the different series will affect

the role of compositional constraints on the scrap purchasing process.

Although this model used aluminum as a case study, it can be expanded and

applied to other industries that have established recycling mechanisms such as the steel,

glass and plastics markets. These industries will undoubtedly have differing recycling

rates and price differentials between primary and secondary materials, which as shown

earlier will impact the production costs. Because demand uncertainty is a facet of

production that affects all industries, enhanced recycling arising from mitigating risk may

prove to be an effective tool to minimize production costs across a wide array of

production processes.

The results of this study showed that only 4 of the scraps were used by the two

alloys considered. By expanding the scope of the model and evaluating differing alloys,

it may be possible to assess the versatilities of the different scraps. Moreover, running

the model with scraps from different sources, for example secondary materials obtained

from aerospace or packaging industries, may yield differing results and versatilities when

compared to the automobile data set.
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