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Abstract. Steady, laminar, natural convection flow in porous square enclosure with inclination angle is 
considered. The enclosure is filled with air and subjected to horizontal temperature gradient. Darcy-
Brinkman-Forchheimer model is considered.  Finite volume method is used to solve the dimensionless 
governing equations. The physical problem depends on five parameters: Rayleigh number (Ra =103-106), 
Prandtl number (Pr=0.71), Darcy number (Da=0.01), inclination angle φ=(0°-227°), porosity of the 
medium (ɛ=0.7) and the aspect ratio of the enclosure (A=1). The main focus of the study is on examining 
the effect of Rayleigh number on fluid flow and heat transfer rates. The effect of inclination angle is also 
considered. The results including streamlines, isotherm patterns, flow velocity and the average Nusselt 
number for different values of Ra and φ. The obtained results show that the increase of Ra leads to enhance 
heat transfer rate. The fluid particles move with greater velocity for higher thermal Rayleigh number. Also 
φ affects the fluid motion and heat transfer in the enclosure. Velocity and heat transfer are more important 
when φ takes the value (30°).  
 
 
 

1 Introduction  
Natural convection in a fluid saturated porous medium 
occurs in a wide variety of applications such as heat 
exchangers, solar power collectors, grain storage, energy 
efficient drying process, etc. Various modes of 
convection are possible depending on how temperature 
and concentration gradients are oriented relative to each 
other as well as to gravity.  
Mohamad et al.[1] investigated numerically double-
diffusive natural convection in a horizontal enclosure 
filled with saturated porous medium. Brinkman 
extension of Darcy model is adopted. The objective of 
the work is to understand the physics of the flow and to 
identify the flow regimes for thermal and solutal 
dominated flows. 
Younsi et al.[2] studied numerically the two-dimensional 
double diffusive opposing flow in a porous cavity. The 
Darcy equation including Brinkman-Forchheimer terms 
to account for viscous and inertia effects, is used for 
momentum equation. It is shown that the main effect of 
the porous medium is to reduce the heat and mass 
transfer as well as the flow field when the permeability is 
reduced. 
Wang et al.[3] analyzed numerically natural convection 
of fluid in an inclined enclosure filled with porous 
medium in a strong magnetic field. The Brinkman-
Forchheimer extended Darcy model is used. The results 
show that both the magnetic force and the inclination 
angle have significant effect on the flow field and heat 
transfer in porous medium. 
Sathiyamoorthy et al. [4] reported numerically natural 
convection flow in a square cavity filled with a porous 

matrix. Darcy-Forchheimer model without the inertia 
term is used to simulate the momentum transfer in the 
enclosure. 
In this work we present a numerical study of laminar 
natural convection in a porous inclined square enclosure. 
This last is filled with air and submitted to horizontal 
temperature gradient. Darcy equation including 
Brinkman-Forchheimer terms is considered to account 
viscous and inertia effects. The main focus is on 
examining the effect of Rayleigh number on fluid flow 
and heat transfer in the enclosure. The effect of 
inclination angle is also considered.  The rate of heat 
transfer in the enclosure is measured in terms of the 
average Nusselt number. 

2  Problem Geometry 
The geometry of the problem is shown in Fig.1. The 
heated vertical left side wall  and cooled vertical right 
side wall of the enclosure are maintained at two different 
but uniform temperatures: (Tmax>Tmin). The remaining 
boundaries of the enclosure are impermeable and 
thermally insulated.  

3 Basic Equation 
The flow in the enclosure is assumed to be two-
dimensional. All fluid properties are constant. The fluid 
is considered to be incompressible and Newtonien. The 
Boussinesq approximation is applied 

 )()( 00 1 TTT t   . Viscous dissipation, heat 
generation, and radiation are neglected. The governing 
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non-dimensional mass, momentum and energy equations 
are as follows, respectively; 
 
 
 

 

 
 
 
 
 
 
 
 

Fig 1. Physical configuration 
 

 
 at   t = 0 : U = V = 0; 0 ; 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1 

 for  t > 0 ; 
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The boundary conditions in the dimensionless form 
are: 

                  X=0: U=V=0, for 0 ≤ Y ≤ 1              (5a)                                                                                                                                                                                                       

                  X=0: θ=1,  for    0 ≤ Y ≤ 1                (5b)                                                                                                                                                   

               X=1: U=V=0, θ=0, 0 ≤ Y ≤ 1              (5c)                                                                             

          Y=0: U=V=0, 
X


=0, for 0 ≤ X ≤ 1         (5d)                                                                              

           Y=1:  U=V=
Y


=0, for 0 ≤ X ≤ 1            (5e)                                                                                                

The average Nusselt number is: 

Left wall:        Nu =  



1

0

dy
X


  ;                              (6a)                                                                                                 

Right wall:        



1

0

dy
X

Nu 
                                (6b)                                                                                       

4 Numerical Method 

The governing equations (1) to (4) associated with the 
boundary conditions (5) are solved numerically using the 
finite volume method described by Patankar [6]. A 
uniform mesh is used in X and Y directions Fig2. A 
hybrid scheme and first order implicit temporally 
discretisation are used. Because of the nonlinearity of the 
momentum equations, the velocity pressure coupling, 
and the coupling between the flow and the energy 
equation, an iterative solution is necessary. The 
SIMPLER algorithm and Tri-Diagonal Matrix algorithm 
iteration procedure [6] are used to solve the algebraic 
equations. The iteration process is terminated under the 
following conditions (eqs 7 and 8): 

 

                  
   

ji ji

n
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n
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n
ji

, ,
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Where   represent: U, V and  ; n denotes the iteration 
step. 

                     10   XX NuNu                           (8)                                                                                                             

 

 
 

Fig 2. Uniform mesh in X and Y directions 
 
In order to obtain a precise results a (60x60) grid was 
selected and used in all the computations Fig 3. A good 
agreement between the obtained results and thows 
reported in literature [5] are observed (Tab.1). 
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Fig 3.  Average Nusselt number for different grid sizes. 

  
Table 1 Average Nusselt number for different Raileigh 

number. Pr=0.71 
 

Ra present study [5] 

103 1.118 1.116 

104 2.251 2.238 

105 4.567 4.509 

 

5 Results and Discussions 

5.1 Effet of  Rayleigh number  

In the absence of inclination angle (φ=0°), Fig.4 shows 
the effect of Rayleigh number on fluid motion inside the 
enclosure. A single cell rotating in clockwise direction 
appears inside the enclosure. A weak convection is 
observed for low Rayleigh number (Ra=103). While for 
the remaining cases streamlines cover the entire 
enclosure and the centre of each cell is elongated and 
two secondary vertices appear inside it (Ra=106). In 
addition by moving from Ra=103 to 106 the maximum 
values of velocity (Tab2) is more important which means 
natural convection is strength in this case.  
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Fig 4. Steady state of streamlines: for different values of  
Rayleigh number. φ=0°. 

 
Table 2 Maximum velocity for different values of Rayleigh 

number. φ=0°, Da=0.01. 
 

Ra 103 104 105 106 

Vmax 1.175 8.882 41.143 144.61 

 

Also it is observed that the fluid particles move with 
greater velocity for higher Rayleigh number, as 
mentioned in Fig.5 showing the effect of Ra  on mid-
height horizontal velocity profiles. The velocity peaks 
especially near the horizontal walls are more important 
for high Ra. 
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Fig 5.  Axial velocity U at X=0.5 for different values of 

Rayleigh number. φ=0°, Da=0.01. 

 
The effect of Rayleigh number on thermal field is 
illustrated in Fig.6. The fluid rises along the hot wall and 
falls along the right cold wall. Thermal gradients are 
very important and isotherms are crowded around the 
vertical walls for high Rayleigh number. For low Ra the 
isotherms shown in Fig.6 are almost parallel to the 
vertical walls, indicating that most of the energy transfer 
is by heat conduction.  For high (Ra= 106) there is a 
temperature stratification in the vertical direction and the 
thermal boundary layer is well established along the side 
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walls indicating the dominance of convection heat 
transfer mechanism.  
The rate of heat transfer across the cavity is obtained by 
evaluating the average Nusselt number at the cavity 
walls. Fig.7 presents the effect of Rayleigh number on 

Nu   : It is clear from this figure that the average Nusselt 
number is increasing with Rayleigh number. For low Ra 
(Ra=103), heat transfer is dominated by diffusion 

mode Nu =1.  
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Fig 6. Steady state of isotherms for different values of thermal 
Rayleigh number. 

 
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

14

Nu

t

 Ra=103

 Ra=104

 Ra=105

 Ra=106

 
 

Fig 7. Average Nusselt number versus time for different 
Rayleigh number. 

 

5.2 Effect of inclinition angle φ 

In order to show the effect of the inclination angle of the 
porous enclosure on natural convection, we have 
selected the following control parameter: φ=0° to 270°, 
D=0.01 and Ra=105. Figs 8, 9 and 10 show the effect of 
φ on fluid motion, isotherm lines and heat transfer rates. 
The maximum velocity in the flow and the average 
Nusselt number are the greatest in the case φ=30°. They 
are less important in the case φ=270°. For φ=90° and 
φ=270° the enclosure is heated respectively in the lower 
horizontal wall and the top horizontal wall. In the first 
case the flow structure is bicellular, where as in the 
second case we note that no flow in the enclosure and 
the fluid is stratified in the vertical direction. 
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Fig 8.  Steady state of streamlines: for different values of   φ. 
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Fig 9.  Régime stationnaire des isothermes pour différentes 

valeurs de φ. 
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Fig 10.  Average Nusselt number versus time for different 

inclination angle. 
 

6 Conclusions 
A numerical study of natural convection was employed 
to analyze the flow and heat transfer in a square porous 
enclosure. Rayleigh number and inclination angle have a 
noticeable effect on fluid motion and heat transfer rate in 
the enclosure. The following conclusions are 
summarized: 
- In case (φ=0) the increase of Rayleigh number, leads to 
increase flow convection and heat transfer rates. For low 
Rayleigh number heat transfer is dominated by diffusion 
mode 
- In case (φ≠0) and for high Rayleigh number (Ra= 105), 
the angle φ=30° gives the highest velocity flow and the 
highest heat transfer rate. In contrast, for the angle 
φ=270°, isotherms are parallel to the active walls. This 
indicates the stratification of the thermal field and heat 
conduction is dominated in the enclosure.  
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Nomenclature 

A aspect ratio, H/L  
Da            Darcy number, K/H2  
K              medium permeability. 

Nu  average Nusselt number. 
P dimensionless pressure, p/(α/H)2 
Pr Prandtl number of the fluid, υ/α 
Ra  thermal Rayleigh number, gβt H3∆T/υα 
t  dimensionless time, t*/(H2/ α) 
U,V  dimensionless velocity components, u/(α/H), 

v/ (α/H)  
X, Y non-dimensional cartesian coordinates, x/H, 

y/H 

Greek symbols 

ɛ               medium porosity 
φ               inclnation angle 
θ non-dimensional temperature, (T-Tmin)/∆T 
ψ non-dimensional stream function, U= ψ/ Y 
∆T temperature difference, (Tmax - Tmin)  
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