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Cydney Brooke Nielsen
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for the Degree of Doctor of Philosophy in Biology

Abstract

The untranslated region (UTR) at the 3′ end of a mammalian mRNA is typically rich
with regulatory motifs that influence the stability, localization, translation and other
properties of the message. We explored two classes of motifs, microRNA (miRNA)
complementary sites and cleavage and polyadenylation (poly(A)) signals, and provide
evidence that specific sequence contextual features are important for their recognition.

MiRNAs are ∼22 nt, non-coding RNAs that function as post-transcriptional gene
regulators in animals and plants. They typically interact with target mRNAs through
base-pairing predominantly between bases 2-8 (the ‘seed’ region) at the 5′ end of the
miRNA and complementary sites in the target 3′ UTR (‘seed matches’). These in-
teractions result in target mRNA translational repression or deadenylation, or both.
Through analysis of mRNA expression data following miRNA or siRNA overexpres-
sion or inhibition, we uncovered novel targeting determinants that influence mRNA
levels. These include the presence of distinct seed match types and sequence context,
in particular that increased AU content and conservation were independently associ-
ated with greater target down-regulation. Our results demonstrate that mRNA fold
change increases multiplicatively (i.e., log-additively) with seed match count. We in-
tegrated these features into a target scoring scheme, TargetRank, and demonstrated
the effectiveness of our rankings in predicting in vivo target responses.

Mammalian genes frequently have multiple, competing poly(A) sites, and the fea-
tures influencing site selection remain poorly understood. Poly(A) site recognition
occurs co-transcriptionally and given that transcription is highly influenced by the
tight packaging of genomic DNA into chromatin, we investigated the potential im-
pact of nucleosome positioning on poly(A) site usage. Using recent, public, Illumina
sequencing data from human nucleosome boundaries, we found evidence that greater
nucleosome density in regions flanking but not overlapping poly(A) sites is associated
with more frequent usage.

Thesis Supervisor: Christopher B. Burge
Title: Associate Professor of Biology and Biological Engineering
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Chapter 1

Introduction

Overview

This thesis focuses on the formation and regulation of mammalian 3′ UTRs. The pro-

cesses studied here are diverse, specifically mammalian post-transcriptional regulation

by microRNAs (miRNAs) and regulation of alternative cleavage and polyadenylation

(poly(A)) at the 3′ ends of genes. However, in both cases, the approaches begin

by examining known regulatory signals and expand on that knowledge by present-

ing evidence that specific sequence context features influence regulation. Chapter 2

describes an in-depth analysis of several novel mammalian miRNA and siRNA tar-

geting determinants and demonstrates their effectiveness in predicting target mRNA

responses. Chapter 3 presents our progress on a very recent project exploring con-

nections between chromatin structure and poly(A) site usage, a direction inspired by

my long-term interest in the regulation of alternative polyadenylation and the recent

availability of Illumina sequencing data from human nucleosome boundaries. The

current chapter introduces the broad topics of (i) chromatin structure and its role in

transcriptional regulation, and (ii) roles of miRNAs in post-transcriptional gene reg-

ulation, providing context for the research described in Chapters 2 and 3. An earlier

publication investigating the dynamics of intron gain and loss across fungal species

is provided in Appendix 1. Appendices 2 and 3 contain supplemental material for
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Chapters 2 and 3, respectively. A short concluding chapter discusses the significance

of the results described in previous chapters and possible directions for future work.

Transcription in a chromatin context

Chromatin structure

Eukaryotic genomic DNA is packaged into chromatin and its core repeating unit,

the nucleosome, is composed of 146 bp of DNA wrapped around a histone protein

octamer (Kornberg and Lorch, 1999). The nucleosome core contains a central H3/H4

tetramer, flanked on both sides by H2A/H2B dimers, which are among the most

conserved proteins known. Histones are mostly globular except for their N-terminal

tails, which are less structured and subject to extensive modifications. While the

structure of the nucleosome core is now well resolved (Richmond and Davey, 2003),

the nature of higher order chromatin structure, such as the 30 nm fiber, remains

under study (reviewed by Tremethick (2007)).

Nucleosome affinity for DNA

In order to wrap around the histone core, DNA must bend sharply, yet DNA se-

quences differ in their intrinsic abilities to accommodate such strain. Shortly after

the discovery of the nucleosome, the tendency for some dinucleotides to occur with

a periodicity of ∼10 bp was observed (close to the helical periodicity of DNA) and

proposed to facilitate smooth DNA folding within chromatin (Trifonov and Sussman,

1980). With the availability of early nucleosome crystal structures (Richmond et al.,

1984; Bentley et al., 1984), it was suggested that rotational positioning facilitates

DNA bending, such that AT-rich dinucleotides are favorable at minor grooves facing
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towards the histone core and GC-rich dinucleotides at minor grooves facing away from

the core (Satchwell et al., 1986; Travers and Klug, 1987). In addition, long runs of

dA:dT were found to occur preferentially in linker sequences presumably due to their

relative rigidity (Drew and Travers, 1985). These same sequence properties have been

observed in diverse eukaryotes from mammals to yeast (Widlund et al., 1997; Segal

et al., 2006).

Several groups have devised prediction methods to locate nucleosomes based on

these sequence properties. Early approaches made predictions using rotational pref-

erence matrices for dinucleotides (reviewed by Turnell and Travers (1992)) derived

from a set of 177 aligned chicken core sequences (Satchwell et al., 1986). More recent

genome-wide studies have employed techniques resembling position-specific scoring

matrices to capture dinucleotide preferences from ∼200 nucleosome-associated se-

quences in yeast, Saccharomyces cerevisiae (Segal et al., 2006; Ioshikhes et al., 2006).

Modest improvements were obtained by using discriminative models that attempt to

differentiate between high and low affinity sequences (Peckham et al., 2007; Lee et al.,

2007; Yuan and Liu, 2008). Through comparisons with independent data sets, such as

those from tiling arrays (Yuan et al., 2005), Segal and coworkers (2006) demonstrated

that 54% of in vivo nucleosome positions could be predicted by dinucleotide sequence

features alone compared to 39% expected by chance. It is likely that further improve-

ments will be made with higher coverage data sets for feature training. Nucleosome

occupancy in vivo is influenced by a host of chromatin remodeling complexes, as

discussed below, and these protein machines likely function to mobilize nucleosomes,

allowing intrinsic nucleotide affinities and competition with other DNA-binding fac-

tors to guide positioning.
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Chromatin as a transcriptional regulator

Early in vitro experiments revealed that nucleosomes can impede transcription (Knezetic

and Luse, 1986), and it is now appreciated that regulation of chromatin structure has

important consequences for transcriptional activity. Eukaryotic cells employ three dis-

tinct, but complementary, mechanisms to overcome the nucleosome barrier: histone

modification, chromatin remodeling, and incorporation of histone variants (reviewed

by Li et al. (2007); Saunders et al. (2006)). Chromatin plays a role in essentially

all DNA-related metabolic processes, such as replication, recombination, and repair.

Here, we will focus on its regulatory roles in the three phases of transcription: initi-

ation, elongation, and termination.

Regulation of transcription initiation

The transcriptional cycle of a protein coding gene begins with the recruitment of the

pre-initiation complex (PIC) to the core promoter region containing the transcrip-

tional start site. This complex, composed of RNA polymerase II (Pol II) and general

transcription factors (GTFs) TFIID, TFIIA, and TFIIB, is recruited in part by ac-

tivator proteins bound upstream of the core promoter. TFIIH helicase activity is

then required to open 12-15 bp of promoter DNA which serves as the single-stranded

template for Pol II (reviewed by Lee and Young (2000)). There are several outstand-

ing questions regarding how initial activator binding is impacted by the presence of

nucleosomes. In vitro evidence suggests that some transcription factors can recognize

their sequence targets on a nucleosome template (Taylor et al., 1991), however this

ability is not universal and it has been proposed that spontaneous unwrapping of

nucleosomes may provide initial access (Bucceri et al., 2006). Early high-throughput

studies using chromatin immunoprecipitation followed by microarray analysis (ChIP-
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chip) revealed reduced nucleosome occupancy in promoter regions (Bernstein et al.,

2004; Lee et al., 2004a), and the prevalence of nucleosome-free regions (NFR) was cor-

roborated by higher resolution methods (Sekinger et al., 2005; Pokholok et al., 2005;

Yuan et al., 2005; Lee et al., 2007). Nucleosome affinity prediction points to inherent

sequence properties of promoters that may explain their reduced occupancy (Segal

et al., 2006; Ioshikhes et al., 2006). However, activators recruit extensive machinery

which appears to help stabilize their binding, while further exposing the promoter

DNA to create a state conducive to active transcription.

Histone modifying enzymes represent one such class of machinery recruited to

promoters. For example, lysine residues are acetylated by a host of histone acetyl-

transferase complexes (HATs), including Gcn5 (component of the Spt, Ada, Gcn5

Acetyltransferase complex, SAGA) and Esa1 (component of NuA4 complex). These

HATs are recruited to promoters through bound activators (Robert et al., 2004).

Consistent with this, Pokholok et al. (2005) demonstrated peaks in H3 and H4 acety-

lation at active promoters and went on to show that the magnitude of these peaks

correlated with transcription rate. One view is that by neutralizing positive charge on

lysine residues, acetylation could result in the loosening of inter- and intra-nucleosome

DNA-histone interactions. A second method used by cells to handle the nucleosome

barrier is the recruitment of ATP-dependent nucleosome-remodeling complexes. Like

HATs, chromatin-remodeling complexes are recruited to the promoter via their in-

teractions with bound activators. Histone marks also play a role in recruitment. For

example, acteylated nucleosomes at the promoter are recognized by the SWI/SNF

chromatin-remodeling complex through its bromodomains (Hassan et al., 2002). Con-

sistent with this idea, nucleosomes are observed to be hyperacetylated prior to being

lost at active promoters (Reinke and Hörz, 2003). A third strategy is the use of
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histone variants. Histone variants are distinct from the canonical core histones in

that they are expressed outside of S phase and thus their incorporation into chro-

matin is replication independent. While the diverse roles of the H2A variant, H2A.Z,

are still being uncovered, this variant appears well positioned on either side of the

nucleosome-free region in promoters (Raisner et al., 2005; Barski et al., 2007). H2A.Z

has been observed to flank the 5′ ends of both transcriptionally active and inactive

genes (Raisner et al., 2005). Zhang et al. (2005) proposed that H2A.Z variants may

serve to repress promoters while facilitating activation through their susceptibility to

loss, which subsequently increases promoter DNA accessibility.

Negotiating the nucleosome during transcription elongation

Transcriptional elongation refers to the stages from promoter clearance through to

assembly of a fully processive Pol II, resulting in the synthesis of a complete RNA

transcript. Pol II frequently pauses at the promoter suggesting that the transition into

productive elongation is a rate-limiting step (reviewed by Core and Lis (2008)). This

promoter-proximal pausing was first observed at Drosophila melanogaster heat-shock

genes and has since been demonstrated to be a widespread phenomenon (Gilmour and

Lis, 1986; Rougvie and Lis, 1988; Rasmussen and Lis, 1993; Kim et al., 2005; Schones

et al., 2008). Phosphorylation of the C-terminal domain (CTD) of the largest subunit

of Pol II is critical for mediating the transition to elongation. Composed of tandem

hepta-peptide repeats with the consensus YSPTSPS (52 copies in human, 26 in S.

cerevisiae), the CTD is initially hypophosphorylated. Early in the transcriptional

cycle, serine 5 (Ser5) is phosphorylated by the Cdk7 (Cyclin-dependent kinase-7) of

THIIH. TFIIH-mediated Ser5 phosphorylation occurs on the PIC and recruits capping

enzymes that stabilize the transcript 5′ end, through addition of a 7-methylguanosine.
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It has been suggested that pausing may allow correct capping to occur, and that sub-

sequent capping may facilitate escape from the pause (reviewed by Saunders et al.

(2006)). Serine 2 (Ser2) phosphorylation appears later during elongation and is cat-

alyzed by Cdk9 of P-TEFb (Positive Transcription Elongation Factor b). P-TEFb

also phosphorylates DSIF (DRB Sensitivity-Inducing Factor) and NELF (Negative

ELongation Factor) relieving their negative effects on elongation. The CTD serves

therefore as a critical signaling platform during transcription.

As in transcription initiation, Pol II faces chromatin barriers throughout elonga-

tion, and while the themes for managing the DNA-histone interactions remain the

same, the machinery employed is different. Transcriptionally active genes display

characteristic patterns of histone modifications, including: (i) H3K4 methylation

throughout the gene, with tri-, di-, and mono-methyl modifications dominating at

the beginning, middle, and end of genes, respectively; (ii) 3′ bias in H3K36 methyla-

tion; and (iii) H2B monoubiquitination throughout promoters and ORFs (reviewed

by Li et al. (2007)). Unlike at promoters, recruitment of the modification machinery

often occurs through the Pol II CTD. For example, the H3K4 methyltransferase, Set1

(COMPASS complex), is recruited to the Ser5-phosphorylated CTD with the help of

elongation factor PAF (Krogan et al., 2003; Ng et al., 2003). It has been proposed

that through its association with the CTD, Set1 gradually adds methyl groups to the

5′ ends of genes, creating the gradient of tri- and di- methylations. In vitro studies

suggest that H3K4 trimethylation has no direct effect on transcription (Pavri et al.,

2006). However, it may play a signaling role as evidenced by its interactions with

chromatin-remodeling factors, such as Chd1 (Pray-Grant et al., 2005; Flanagan et al.,

2005). In addition to remodelers, histone chaperone proteins are important for nucle-

osome displacement and deposition enabling Pol II passage. For example, the FACT

15



heterodimer (FAcilitates Chromatin Transcription) mediates removal and reassembly

of H2A-H2B histone dimers during elongation (Belotserkovskaya et al., 2003). Histone

acetylation in front of the elongation machinery, later reversed by deacetylases upon

reassembly, may play a role in histone removal (Workman, 2006). Pol II transcription

is also associated with replacement of H3 histones with the variant H3.3 (Schwartz

and Ahmad, 2005) and the chromatin remodeler Chd1 has been implicated in their

incorporation (Konev et al., 2007). H3.3 histones, which have a shorter protein half-

life in the cell, may help to destabilize active chromatin, promoting passage of Pol

II.

Transcriptional termination and RNA 3′ end formation

The final stage of the transcriptional cycle involves release of Pol II from the DNA

template. Experiments conducted in the late ’80s demonstrated that transcriptional

termination is tightly coupled to transcript 3′ end processing (Whitelaw and Proud-

foot, 1986; Logan et al., 1987; Connelly and Manley, 1988). Specifically, the signals

involved in cleavage and subsequent polyadenylation (addition of ∼200 adenosines) at

the 3′ end of nascent RNA transcripts were found to be essential for proper termina-

tion. While Pol II pause sites have been shown to promote termination (Yonaha and

Proudfoot, 1999; Gromak et al., 2006), there appears to be no termination consensus

sequence and Pol II release occurs stochastically downstream of the poly(A) site up

to distances greater than 1 kb (Tran et al., 2001; Orozco et al., 2002).

Mammalian cleavage and polyadenylation involves the recognition of two core

RNA motifs, the poly(A) signal (PAS) characterized by an AAUAAA hexamer or

close variant, and a degenerate U-rich downstream element (DSE) (reviewed by
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Zhao et al. (1999)). The PAS, located 10-30 nucleotides upstream of the poly(A)

site, is recognized by the largest (160 kDa) of four subunits of CPSF (Cleavage

and Polyadenylation Specificity Factor). The 64 kDa subunit of the trimeric CstF

(Cleavage Stimulation Factor) binds to the U-rich DSE approximately 30 or fewer

nucleotides downstream of the poly(A) site. Direct protein-protein interactions be-

tween CstF-77 and CPSF-160 result in mutual stabilization of the CPSF-CstF-RNA

complex, and recent structural and biochemical evidence suggests that CstF may

function as a dimer (Bai et al., 2007). The nuclease activity catalyzing the cleavage

reaction has been attributed to CPSF-73 (Ryan et al., 2004; Mandel et al., 2006).

Cleavage factors (CF) Im and IIm, and poly(A) polymerase (PAP), are also required

to form a cleavage-competent complex on the transcript. Following cleavage, CstF,

CFIm and CFIIm dissociate, leaving CPSF and PAP to complete the polyadenyla-

tion step, together with newly recruited poly(A)-binding protein II (PAB II), which

is required for PAP to achieve its full processive activity.

The notion that 3′ end processing is coupled to transcription in vivo was initially

supported by CTD deletion experiments using α-amanitin resistant forms of murine

Pol II which lead to inhibition of polyadenylation and other RNA processing steps,

such as capping and splicing (McCracken et al., 1997). Subsequent in vitro experi-

ments provided evidence that Pol II, or a recombinant CTD, is required for cleavage

at the poly(A) site in a transcription independent manor (Hirose and Manley, 1998).

Interactions between the poly(A) machinery and Pol II happen early in the transcrip-

tional process, as revealed by the unexpected purification of CPSF components in a

transcription factor TFIID immunopurification and the demonstration that CPSF is

transferred to Pol II upon transcription initiation at the promoter (Dantonel et al.,

1997). These observations have been corroborated by ChIP experiments mapping
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poly(A) machinery to locations across the length of genes (Calvo and Manley, 2005).

Direct interactions have been detected between the CTD and in vitro translated CstF-

50 (McCracken et al., 1997). In contrast, CPSF shows poor affinity for the CTD and

its 30 kDa subunit appears to bind to the body of polymerase in a fashion that is

mutually exclusive with CstF binding (Nag et al., 2007). While the mechanisms

of poly(A) signal recognition are still being investigated, Nag et al. (2007) propose

a model whereby CstF transiently associates with the CTD during elongation, but

only becomes stably associated upon simultaneous binding of the U-rich DSE on the

nascent transcript, a step they suggest is facilitated by Pol II pausing induced by the

poly(A) signal itself.

Two predominant models of how cleavage and polyadenylation are coupled to ter-

mination have been proposed (Buratowski, 2005). One, coined the anti-terminator

model, proposes that the switch from elongation to termination involves a change in

Pol II associated factors that is induced upon encountering the poly(A) signals in

the nascent RNA. A second, called the torpedo model, suggests that exonucleases

target the unprotected RNA 5′ end resulting from cleavage, and process along the

RNA until they eventually displace the polymerase. In support of the first model,

Tran et al. (2001) used cis-antisense inhibition to demonstrate that recognition of

the poly(A) signal at the RNA level is required for termination, and that transcrip-

tional termination can occur in the absence of cleavage. Other studies used ChIP to

reveal localization of certain elongation factors throughout transcribed regions, but

not beyond the poly(A) site, consistent with factor rearrangement on the CTD (Ahn

et al., 2004). The torpedo model is supported by observations of termination defects

in yeast lacking the nuclease Rat1 (Kim et al., 2004) or in HeLa cells following RNAi

knock-down of the Rat1 ortholog Xrn2 (West et al., 2004). As with many transcrip-
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tional processes, both methods may be employed in vivo and their relative influences

likely vary for different genes (Kim et al., 2006).

In contrast to the wealth of studies documenting a role for chromatin in transcrip-

tional initiation and elongation, only a handful of papers address the potential impact

of chromatin on termination. Alén et al. (2002) used transcription run-on analysis in

S. cerevisiae to demonstrate that deletion of the conserved ATP-dependent chromatin

remodeler, Chd1, leads to termination defects in a number of yeast genes. At other

loci, Chd1 appeared to act redundantly with other chromatin-remodelers, Isw1 and

Isw2, such that faulty termination was only observed in the triple mutant. Micrococ-

cal nuclease (MNase) cleavage patterns across termination regions differed between

wild type and chd1 mutants, and ChIP experiments localized Chd1 to gene 3′ ends.

Intriguingly, both these results were reproducible independent of whether the gene

was transcriptionally induced or not, suggesting that Chd1 remodeling is not a con-

sequence of transcriptional termination, but rather configures the nucleosomes into

a state conducive to termination. Alén et al. (2002) point to earlier studies showing

that deletion of Chd1 reduces the cytotoxic effect of 6-azauracil, a drug that pro-

motes Pol II pausing through depleting the nucleotide pool (Woodage et al., 1997).

The authors point out that this is consistent with a role for Chd1 in enhancing Pol II

transcriptional pausing, a process known to facilitate the switch from elongation to

termination. In a subsequent study, Morillon et al. (2003) demonstrated that dele-

tion of Isw1 partially overcomes sensitivity to 6-azauracil resulting from loss of certain

positive elongation factors, suggesting that Isw1 functions to block elongation. As

with Chd1, deletion of Isw1 alone leads to defects in termination at certain loci. The

authors rule out a reduction in poly(A) site recognition as Northern analysis indi-

cated similar transcript levels in both wild type and mutant yeast. While there is
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extensive evidence that chromatin plays a role in all phases of transcription, whether

nucleosomes also play important roles in RNA processing events such as cleavage and

polyadenylation remains unclear.

Post-transcriptional regulation by microRNAs

The small RNA revolution

The first microRNA (miRNA) was discovered when the isolated locus of lin-4, a

known regulator of cell linage in Caenorhabditis elegans larval development, was

demonstrated to encode not a protein-coding mRNA but rather produce a 22 nt

non-coding RNA (Lee et al., 1993; Wightman et al., 1993). Suggestions that this was

a curiosity of C. elegans biology were countered with evidence of another regulatory

21 nt RNA, let-7 (Reinhart et al., 2000), which proved to be conserved in diverse eu-

karyotes including human and the fruit fly D. melanogaster (Pasquinelli et al., 2000).

At about the same time, injection of exogenous double-stranded RNA (dsRNA) into

C. elegans was reported to induce specific gene silencing of the corresponding en-

dogenous locus, a process termed RNA-interference (RNAi) (Fire et al., 1998). Short

25 nt RNAs were implicated in a similar phenomenon in plants called posttranscrip-

tional gene silencing (PTGS) (Hamilton and Baulcombe, 1999), and demonstrated

to function as intermediates in the RNAi pathway in a Drosophila in vitro system

(Zamore et al., 2000). These discoveries sparked multiple small RNA cloning efforts

in both invertebrate and vertebrate model systems, revealing the diversity and cross-

species conservation of small RNAs (Lagos-Quintana et al., 2001; Lau et al., 2001;

Lee and Ambros, 2001). Characterization of small RNAs remains ongoing. They

were recently found in a unicellular green alga Chlamydomonas reinhardtii (Molnár
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et al., 2007; Zhao et al., 2007a) and in several eukaryote-infecting viruses (reviewed by

Scaria et al. (2007)), further emphasizing their key roles in eukaryotic gene regulation.

Biogenesis

MiRNAs are processed from several kilobase-long transcripts (pri-miRNAs) (Lee

et al., 2002), which are capped and polyadenylated pol II products (Lee et al., 2004b;

Cai et al., 2004). An exception to this is a cluster of human miRNAs interspersed

among repetitive Alu elements which are Pol III transcribed (Borchert et al., 2006).

While mammalian pri-miRNAs can be transcribed from distinct loci using their own

promoters, over half are found to overlap spliced transcriptional units, often occurring

within introns of protein coding genes (Rodriguez et al., 2004). Clusters of miRNA

genes resulting in poly-cistronic transcripts are common (Lagos-Quintana et al., 2001;

Lau et al., 2001; Lee et al., 2002). The nuclear RNase III Drosha (Lee et al., 2003),

together with its interacting partner DGCR8 (Gregory et al., 2004; Han et al., 2004;

Landthaler et al., 2004), processes pri-miRNAs into ∼60-70 nt pre-miRNAs. The pre-

miRNA sequences form stem-loop structures within the pri-miRNA, and recognition

of their ∼33 bp stem and flanking single RNA strands by DGCR8 facilitates Drosha

positioning and cleavage ∼11 bp into the stem (Han et al., 2006). The resulting hair-

pin pre-miRNAs are subsequently exported into the cytoplasm by nuclear transport

factor, Exportin-5/Ran-GTP (Yi et al., 2003). Recently, Ruby et al. (2007b) un-

covered an alternative processing pathway in which certain debranched introns in C.

elegans and D. melanogaster mimic the structures of pre-miRNAs, and these mirtrons

can enter the silencing pathway without Drosha-mediated cleavage.

Unlike miRNAs, small interfering RNAs (siRNAs) involved in RNAi are processed
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from long dsRNA molecules from either exogenous or endogenous sources. The RNase

III protein Dicer was found to cut these long dsRNA substrates into ∼22 siRNAs

(Bernstein et al., 2001), and shortly thereafter, was demonstrated to also function in

cleavage of pre-miRNA hairpins, producing mature ∼22 nt miRNAs (Grishok et al.,

2001; Hutvágner et al., 2001; Ketting et al., 2001). While the single mammalian

Dicer possesses both these activities, recent evidence suggests that two different Dicer

genes in Drosophila, Dicer-1 and Dicer-2, are responsible for pre-miRNA cleavage and

siRNA generation, respectively, with only rare exceptions (Lee et al., 2004c). Cleavage

by Dicer (and Drosha in the case of miRNAs) results in duplexes with 5′ phosphates

and 3′ 2 nt overhangs characteristic of RNase III endonucleases.

Both miRNAs and siRNAs are loaded into a cytoplasmic multi-component com-

plex, RISC (RNA-Induced Silencing Complex) which contains a member of the Arg-

onaute (Ago) protein family as a core component (Hammond et al., 2001; Hutvágner

and Zamore, 2002; Martinez et al., 2002). The well conserved Ago/Piwi proteins,

which can be clustered into the Ago subfamily and the Piwi subfamily, contain PAZ

and PIWI domains and as a result, are sometimes called PPD proteins (reviewed by

Farazi et al. (2008)). The PAZ domain recognizes the 3′ end of small RNAs and is

also found in most Dicer RNase III family members, where recognition of one end of

the duplex occurs at a fixed distance from the endonuclease domain (Zhang et al.,

2004; MacRae et al., 2006, 2007). Structural studies of PIWI domains revealed its

role in recognition of the RNA 5′ phosphate, which appeared unpaired from the rest

of the RNA duplex (Ma et al., 2005; Parker et al., 2005). The PIWI domain forms an

RNase H fold which can function as an endonuclease. PIWI domains show sequence

variation in the active site, and of the four mammalian Argonaute proteins, only Ago2

possesses this RNA cleavage, or ‘slicer’, activity (Liu et al., 2004). While purified hu-
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man Ago2, combined with an siRNA, can form a minimal RISC (Rivas et al., 2005),

Dicer and the dsRNA binding protein TRBP associate with Ago2 and are likely im-

portant for proper miRNA loading (Chendrimada et al., 2005). Martinez et al. (2002)

observed RISC to contain single-strand RNA, and the choice of strand appears to be

guided in part by the relative stability of the terminal base pairs, with the surviving

guide strand having weaker pairing to its complement at its 5′ end (Schwarz et al.,

2003; Khvorova et al., 2003). Ago2 ‘slicer’ activity was reported to play a role in

siRNA biogenesis, as Ago2 was shown to cleave the passenger (non-guide) strand of

the bound siRNA duplex, leading to its degradation (Matranga et al., 2005; Rand

et al., 2005; Miyoshi et al., 2005). Recently, Ago2 has been implicated in miRNA

processing as Diederichs and Haber (2007) uncovered an Ago2-cleaved precursor (ac-

pre-miRNA) in human cells consisting of a pre-miRNA hairpin with a cut ∼11 nt

from the terminal end of the 3′-arm. They demonstrated that this nick is dependent

on Ago2 RNase activity and that the cleaved pre-miRNA is a substrate for Dicer,

suggesting that Ago2 plays a role in passenger strand removal.

miRNA genes

Initial miRNA cloning experiments in C. elegans exploited characteristic miRNA fea-

tures, such as the 5′ phosphate and 3′ hydroxyl groups, and uncovered ∼50 miRNAs

genes (Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and Ambros, 2001). Compu-

tational methods were devised for miRNA gene prediction that searched for conserved

stem loop precursor RNAs mimicking real pre-miRNAs (Lim et al., 2003; Grad et al.,

2003). These predictions suggested a miRNA gene count in the hundreds, with ∼1%

of genes encoding miRNAs (Bartel, 2004). Today, miRBase contains thousands of

miRNA sequences from over 50 organisms (Griffiths-Jones et al., 2008), and current
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deep-sequencing approaches continue to reveal additional examples, many of which

are expressed at low levels and appear to be species specific (Berezikov et al., 2006;

Ruby et al., 2006; Rajagopalan et al., 2006; Morin et al., 2008). These techniques have

also been instrumental in uncovering siRNAs, and piRNAs (Piwi-Interacting RNAs)

thought to be important for transposon silencing, which are reviewed elsewhere (Chu

and Rana, 2007).

Modes of action

Partial complementarity between the lin-4 miRNA and the 3′ UTR of a negatively

regulated downstream mRNA, lin-14 (Lee et al., 1993; Wightman et al., 1993) pointed

to an antisense targeting mechanism at the 3′ end of the transcript. The importance

of the miRNA 5′ end, in particular bases 2-8 termed the ‘seed’ region and the corre-

sponding W-C complementary target sequence called the ‘seed match’, was initially

revealed through comparative genomics. Lewis and coworkers (2003) used a sliding

heptamer window along human miRNA sequences and examined the conservation

of the corresponding complementary sequences in 3′ UTRs. Compared to control

heptamers matching shuffled miRNA sequences, seed matches to miRNA bases 2-8

showed the greatest above-background conservation. This work was complemented

by reports implicating the 5′ miRNA end in mediating target regulation (Lai, 2002)

and later careful reporter studies (Doench and Sharp, 2004; Brennecke et al., 2005).

Decreases in lin-14 protein levels but stable mRNA levels indicated that lin-4 regu-

lates target translation. In contrast, siRNAs can direct Ago2-dependent cleavage of

their targets through perfect base-pairing along their ∼22 nt length, with cleavage

localized to the center of the siRNA spanning region (Elbashir et al., 2001; Liu et al.,

2004). This targeting mechanism is reminiscent of that used by plant miRNAs (Jones-
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Rhoades et al., 2006). It is now clear that these different modes of action depend on

the degree of complementarity between the small RNA and its target, and that the

miRNAs and siRNAs are themselves indistinguishable, defined purely by their source

and biogenesis, endogenously transcribed hairpin structures or long dsRNA molecules

respectively (Hutvágner and Zamore, 2002; Doench et al., 2003; Zeng et al., 2003).

The initial paradigm of imperfect base-pairing leading to translational repression

without alteration of target mRNA abundance has since been challenged by reports

of target mRNA reductions in response to miRNAs, including in the original lin-

4/lin-14 pairing (Lim et al., 2005; Bagga et al., 2005; Wu and Belasco, 2005). While

the mechanisms of translational repression and mRNA destabilization are still being

uncovered, it is clear that both play important roles in regulation by small RNAs.

How miRNAs repress translation is not completely understood. Evidence that

miRNAs inhibit translation initiation came from studies in mammalian cells trans-

fected with in vitro transcribed reporter mRNAs. These studies demonstrated that

m7G-capped mRNAs, but not mRNAs containing an internal ribosome entry site

(IRES), were repressed by miRNAs (Pillai et al., 2005; Humphreys et al., 2005).

Kiriakidou and coworkers (2007) reported protein sequence similarity between hu-

man Ago proteins and the cap-binding region of the eukaryotic translation initiation

factor, eIF4E, and provided data from Ago2 mutations to support a model whereby

Ago proteins compete with eIF4E for cap binding. However, the recent work of Eulalio

and coworkers (2008) demonstrated that the equivalent mutations in D. melanogaster

Ago1 abolished silencing activity without effecting m7GTP-Sepharose binding, sug-

gesting that the role of these residues is unrelated to cap binding. They further

showed that these mutations disrupt interactions between Ago1 and both GW182

and miRNAs, presenting evidence that Ago1-GW182 binding is important for miRNA
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silencing. Chendrimada and coworkers (2007) have recently provided evidence that

eIF6, a protein known to prevent productive assembly of the 80S ribosome, immuno-

precipitates with the Ago2-Dicer-TRBP complex and may play a role.

There is also evidence that inhibition occurs post-initiation. Using sedimentation

profiles, several groups have observed target mRNAs to be associated with polysomes

(Olsen and Ambros, 1999; Seggerson et al., 2002) which appear to be engaged in

translation elongation due to their sensitivity to puromycin (Petersen et al., 2006;

Maroney et al., 2006). There are also data demonstrating that miRNAs can indeed

repress translation directed by IRES elements, challenging the importance of cap

recognition in miRNA regulation (Petersen et al., 2006). There is growing agreement

that these two mechanisms are not mutually exclusive, but rather the observed dis-

crepancies may result from differences in experimental systems and procedures that

favor detection of one mechanism over another (reviewed by Wu and Belasco (2008);

Filipowicz et al. (2008)).

In contrast to translation initiation, there is greater consensus regarding how

miRNA-dependent mRNA degradation occurs. miRNAs can direct cleavage of tar-

gets with full-length complementarity, however with the exception of miR-196 regula-

tion of HOXB8 (Yekta et al., 2004), this does not appear to be the norm in animals.

The vastly more common imperfect base-pairing between a miRNA and its target

was observed by Wu et al. (2006) and Giraldez et al. (2006) to result in removal of

the 3′ poly(A) tail and acceleration of target mRNA decay. In these studies, reporter

deadenylation was detected in the absence of translation, blocked either through intro-

duction of a 5′ UTR stem loop structure preventing 80S ribosome assembly or by use

of an antisense morpholino to mask the translational start site. Transcripts destined
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for decay are known to localize to cytoplasmic processing bodies (P or GW bod-

ies) which contain an abundance of decapping enzymes and exonucleases (Sheth and

Parker, 2003). Deadenylation in response to miRNAs is dependent on the deadenylase

CCR4:NOT, and decapping complexes DCP1:DCP2 in Drosophila (Behm-Ansmant

et al., 2006). Ago proteins localize to P-bodies, as do reporter miRNA targets in a

miRNA dependent manner (Sen and Blau, 2005; Liu et al., 2005b). A P-body marker

protein, GW128, co-purifies with Ago proteins in mammalian cells and was found to

interact with the PIWI domain of Ago1 in Drosophila (Behm-Ansmant et al., 2006).

Depletion of GW182 leads to P-body disruption and also impairs silencing by miR-

NAs, and to a lesser extent by siRNAs (Liu et al., 2005a; Jakymiw et al., 2005).

However, observations that miRNA silencing can occur when P-bodies are disrupted

by other means points to a more direct role for GW128 in the miRNA pathway (Chu

and Rana, 2006; Eulalio et al., 2008). In addition to being sites of mRNA decay,

P-bodies are devoid of ribosomes (Teixeira et al., 2005). Given that mRNA entry

into P-bodies seems to require inhibition of translation, a plausible model is that

non-translating miRNA targets are directed to P-bodies, where their sequestration

and/or decay reinforces the initial silencing (reviewed by Eulalio et al. (2007)).

Functions in vivo

In recent years, miRNAs have been implicated in diverse biological processes includ-

ing apoptosis, cell division, and metabolism (reviewed by Bushati and Cohen (2007)).

Deletion of miRNA processing enzymes in model organisms has demonstrated their

importance in development. In particular, loss of Dicer (of both maternal and zygotic

origin), leads to embryonic lethality in C. elegans, zebrafish, and mouse although the

stage of impairment varies (Grishok et al., 2001; Bernstein et al., 2003; Giraldez et al.,
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2005). Deletion of individual miRNA genes led to severe phenotypes in mice, such as

immunodeficiency in the case of miR-155 (Rodriguez et al., 2007) or defects in car-

diogenesis resulting from loss of a single genomic copy of miR-1 (Zhao et al., 2007b).

Systematic deletion of miRNA genes in C. elegans revealed that in most cases dis-

ruption of a miRNA gene does not result in grossly abnormal phenotypes, suggesting

functional redundancy among miRNAs in nematodes (Miska et al., 2007). Studies

that have examined the consequences of both miRNA overexpression and depletion

in specific cell types have offered insights into the functions of individual miRNAs.

An example of this approach comes from Chen et al. (2006) where mis-expression of

miR-1 leads to accelerated C2C12 myoblast differentiation, and depletion of miR-1

by 2′-O-methyl antisense oligonucleotides impedes differentiation, demonstrating its

regulatory role in muscle development. These findings are corroborated by loss-of-

function studies in mice lacking a copy of miR-1 that displayed defects in cardiogenesis

(Zhao et al., 2007b).

The first discovered miRNA, lin-4, appears to function as a developmental switch

in C. elegans, regulating the decision to transition from the first larval stage to the

second (Lee et al., 1993; Wightman et al., 1993). This miRNA exerts its effect through

a key mRNA target, lin-14, which contains multiple lin-4 seed matches in its 3′ UTR.

Given that this pair was identified through forward genetics, it is not surprising that

this first example has a dramatic regulatory effect. More recent genome-wide anal-

yses, such as those conducted by Lim et al. (2005) involving transfection of miR-1

or miR-124 RNA duplexes into HeLa cells and subsequent microarray analysis, re-

vealed that miRNAs can regulate hundreds of genes frequently containing only single

seed matches to the corresponding miRNA. These results suggest that miRNAs may

serve more general functions in altering global expression patterns. Strikingly, they
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observed that transcripts down-regulated by miRNA overexpression were biased for

mRNAs normally expressed at relatively low levels in the tissue where the endogenous

miRNA is expressed. For example, mRNAs responsive to the brain-specific miR-124

also tended to be poorly expressed in brain. Such inverse relations between tissue-

specific miRNAs and their targets have been observed in other systems and lead to

the idea that miRNAs may reinforce regulation at the transcriptional level, provid-

ing robustness to a cell’s expression profile (Stark et al., 2005; Farh et al., 2005).

Experiments by Giraldez and coworkers (2006) offered a related example whereby

miR-430 functions to clear maternal mRNAs during zebrafish embryogenesis, essen-

tially accelerating the shift in expression profile to create a more precise developmental

transition.

While miRNAs are clearly regulated at the expression level, displaying restricted

expression patterns across cell types or developmental stages, a number of recent

studies demonstrated that RNA-binding proteins can modulate miRNA effects on

individual target mRNAs. In the zebrafish system mentioned above, Mishima et al.

(2006) observed that some miR-430 targets, including nanos1 which is essential for

proper germ cell formation, are expressed in primordial germ cells despite the accumu-

lation of miR-430. They also identified a region of the nanos1 3′ UTR that conferred

this apparent protection from miRNA regulation. Kedde et al. (2007) recently pro-

vided evidence that Dnd1 (dead end 1), an RNA-binding protein required for germ

cell survival in zebrafish, binds to U-rich regions near the miR-430 seed matches in

the nanos1 3′ UTR prohibiting miR-430 binding. They also observed this type of

Dnd1 regulation in other miRNA-mRNA pairs in human cells, and traced disruption

of the miRNA-mRNA interaction using a 3′-biotin labeled miRNA and streptavidin

bead pull-down experiments in the presence and absence of Dnd1. This is reminiscent
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of work by Bhattacharyya et al. (2006) showing that HuR, an AU-rich-element bind-

ing protein, can relieve miR-122 directed repression of the CAT-1 mRNA in human

cells under stress conditions. Ago proteins and miRNAs have been shown to localize

to stress granules (SGs) upon exposure to stress stimuli where their activity may be

modulated by other SG-associated RNA-binding proteins such as TIA-1 (Leung et al.,

2006). Understanding how miRNAs are modulated by other regulators will assist in

deciphering their functions in vivo.

Target prediction

A critical step in interpreting cellular responses to miRNAs is identifying target

genes. The early examples of miRNA-mRNA pairs identified through forward ge-

netics demonstrated preferential base-pairing between the 5′ end of the miRNA and

conserved complementary sequences in the target mRNA 3′ UTR (Lee et al., 1993;

Wightman et al., 1993; Reinhart et al., 2000). Initial target prediction algorithms

built on these observations by searching sets of 3′ UTRs for conserved ‘seed matches’

(W-C complement of miRNA ‘seed’ consisting of bases 2-8) (Lewis et al., 2003) or a

‘binding nucleus’ (6 to 8 bp W-C complement of the miRNA not necessarily at its 5′

end) (Rajewsky and Socci, 2004), with some methods tolerating G:U pairs in the seed

region (Stark et al., 2003; Enright et al., 2003). These early methods incorporated

estimates of the thermodynamic stability of the miRNA-mRNA interaction in their

predictions. False positive rates based on shuffled miRNA controls were estimated as

31% for human targets conserved to mouse and rat (Lewis et al., 2003) and 35% for

D. melanogaster targets conserved to D. pseudoobscura (Enright et al., 2003), leading

to the prediction of hundreds of conserved miRNA targets in total (i.e. a few targets

per miRNA gene).
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More detailed characterizations of the miRNA-mRNA interaction led to improved

prediction methods. Lewis and coworkers (2005) demonstrated preferential conserva-

tion of adenosine at the target position opposite the first miRNA base for miRNAs

beginning with non-U as well as U bases. This led to the hypothesis of direct recogni-

tion of this base by a protein component of the silencing complex rather than through

base-pairing. Careful reporter analyses in fly revealed the regulatory effects of seed

matches in the absence of 3′ pairing, suggesting that target rankings based on overall

base-pair maximization across the miRNA may not be biologically meaningful (Bren-

necke et al., 2005). In addition, the presence of G:U base-pairs within the seed region

were found to be more detrimental to effective repression than expected based on

standard thermodynamic models (Doench and Sharp, 2004; Brennecke et al., 2005).

These considerations, together with the availability of additional whole genome se-

quences, led to significant increases in predictions with hundreds of conserved target

mRNAs reported per miRNA, representing ∼30% of human genes. In addition, it

became clear that many 3′ UTRs may be targeted by multiple miRNAs, and some

target prediction algorithms scored targets in terms of a set of miRNAs (Krek et al.,

2005). However, the requirement for perfect conservation of seed matches in aligned

genomic regions can lead to reduced sensitivity due to variable assembly quality or

coverage. Ruby et al. (2007a) have recently assessed seed match conservation by a

branch length score, a measure of evolutionary distance across which a motif is con-

served. In addition, the importance of additional targeting determinants beyond the

seed match have been reported (Grimson et al., 2007; Nielsen et al., 2007), and will

be discussed in detail in Chapter 2.

Current target predictions are based on mRNA 3′ UTRs. There are examples

of miRNAs targeting the coding region, as is the case for DNMT3b1 regulation by
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miR-148 in human cells (Duursma et al., 2008), and evidence that seed matches

placed in the 5′ UTR of reporter constructs carrying internal ribosome entry sites can

drive repression (Lytle et al., 2007). Computational methods have found evidence for

conserved coding-region seed matches above background expectation (Lewis et al.,

2005; Grimson et al., 2007; Stark et al., 2007). While exonic sites may play a role in

individual genes, these studies illustrated that the vast majority of targeting inter-

actions occur through the 3′ UTR. Unfortunately, the quality of 3′ UTR annotation

remains a limitation for target prediction, particularly in organisms such as C. ele-

gans where fixed length windows downstream of stop codons are typically used (Lall

et al., 2006). Legendre and coworkers (2006) provided initial evidence that miRNA

targeted isoforms are present at reduced levels in tissues expressing the corresponding

miRNA. It is likely that the switch to a non-target, alternative isoform and expres-

sion of the corresponding miRNA are coordinated events, as appears to be the case

with Tropomyosin 1 in flies where the non-muscle isoform contains target sites to the

muscle-specific miRNA, miR-1 (Stark et al., 2007). However, the impact of alternative

3′ UTRs on miRNA targeting genome-wide remains to be characterized.
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Chapter 2

Determinants of Targeting by Endogenous

and Exogenous microRNAs and siRNAs

Abstract

Vertebrate mRNAs are frequently targeted for post-transcriptional repression by mi-

croRNAs (miRNAs) through mechanisms involving pairing of 3′ UTR seed matches

to bases at the 5′ end of miRNAs. Through analysis of expression array data fol-

lowing miRNA or siRNA overexpression or inhibition, we found that mRNA fold

change increases multiplicatively (i.e., log-additively) with seed match count and that

a single 8 mer seed match mediates down-regulation comparable to two 7 mer seed

matches. We identified several targeting determinants that enhance seed match-

associated mRNA repression, including the presence of adenosine opposite miRNA

base 1 and of adenosine or uridine opposite miRNA base 9, independent of comple-

mentarity to the siRNA/miRNA. Increased sequence conservation in the 50 bases

5′ and 3′ of the seed match and increased AU content 3′ of the seed match were

each independently associated with increased mRNA down-regulation. All of these

determinants are enriched in the vicinity of conserved miRNA seed matches, sup-
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porting their activity in endogenous miRNA targeting. Together, our results enable

improved siRNA off-target prediction, allow integrated ranking of conserved and non-

conserved miRNA targets, and show that targeting by endogenous and exogenous

miRNAs/siRNAs involves similar or identical determinants.

Introduction

Precise control of mRNA and protein levels in different cell types requires regulation

at multiple levels. In metazoans, a large proportion of mRNAs is targeted for post-

transcriptional repression by ∼22 nucleotide (nt) microRNAs (miRNAs). Identified

as developmental regulators, miRNAs are now known to play roles in diverse bio-

logical processes including control of proliferation, apoptosis, stress resistance, and

metabolism (Ambros 2004; Bartel 2004; Filipowicz et al. 2005; Zamore and Haley

2005).

miRNAs were initially described as exerting their effects primarily by inhibiting

productive translation of mRNAs (Lee et al. 1993; Wightman et al. 1993). More

recently, several studies have demonstrated that animal miRNAs can direct accel-

erated decay of targeted mRNAs (Hutvagner and Zamore 2002; Bagga et al. 2005;

Lim et al. 2005; Rehwinkel et al. 2005; Giraldez et al. 2006) and that siRNAs com-

monly direct decay of off-target mRNAs (Jackson et al. 2003). When they possess

near-perfect complementarity to a targeted mRNA, miRNAs can direct endoribonu-

cleolytic cleavage of mRNAs (slicer activity) by Argonaute2 (AGO2) (Hutvagner and

Zamore 2002; Llave et al. 2002; Meister et al. 2004). This type of targeting is pre-

dominant in plants, but appears to occur only rarely for animal miRNAs (Yekta et al.

2004; Jones-Rhoades et al. 2006). For typical metazoan targets that possess comple-
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mentarity only to a segment at the miRNA 5′ end, miRNAs appear to direct mRNA

degradation by mechanisms that may involve AGO2 but do not appear to involve its

slicer activity (Bagga et al. 2005; Schmitter et al. 2006). Instead, decay may be pro-

moted by relocalization of targeted mRNAs to specific cytoplasmic locations, which

can be sites of mRNA decapping and degradation (for review, see Valencia-Sanchez

et al. 2006) and/or by acceleration of mRNA deadenylation (Giraldez et al. 2006;

Wu et al. 2006).

In many studies, miRNA regulation has been assessed only at the protein level,

without distinguishing the relative contributions of effects on mRNA decay and on

inhibition of translation. However, for some individual targets, both mRNA-level

and protein-level effects have been measured. For the classical let-7 and lin-4 target

genes lin-41, lin-14, and lin-28 (Lee et al. 1993; Wightman et al. 1993), a recent

study found a predominant effect on mRNA stability (Bagga et al. 2005). Studies

of transfected miRNAs or siRNAs using transfected reporters with moderate degrees

of complementarity have typically reported significant effects on protein levels, with

modest or negligible effects on mRNA levels (Zeng et al. 2002, 2003; Doench et al.

2003; Doench and Sharp 2004). However, studies that have examined changes in the

expression of endogenous mRNAs in response to manipulation of miRNAs have gen-

erally observed widespread miRNA-associated changes in mRNA levels. Following

miRNA overexpression, Lim and colleagues (2005) observed down-regulation of sets

of mRNAs that were enriched for predicted miRNA targets and for genes with low

expression levels in the tissues where the miRNAs were naturally expressed, support-

ing the physiological relevance of this effect. Inhibiting the expression of the critical

miRNA processing enzymes Dicer and Drosha also yields specific derepression of pre-

dicted miRNA targets at the mRNA level (Rehwinkel et al. 2005; Giraldez et al.
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2006; Schmitter et al. 2006). Thus, perturbations of miRNA expression commonly

affect the levels of endogenous mRNAs, and effects on mRNA stability appear to be

an important component of the endogenous function of miRNAs.

The special importance of the miRNA 5′ end was suggested by early studies (Lee

et al. 1993; Wightman et al. 1993; Lai 2002). Since then, the critical importance of

pairing to the miRNA seed, comprising bases 2-7 from the miRNA 5′ end, has been

established through extensive comparative genomic and experimental studies (Lewis

et al. 2003, 2005; Doench and Sharp 2004; Brennecke et al. 2005; Stark et al. 2005).

The degree of conservation above background in orthologous 3′ UTRs of seed match

segments having WatsonCrick (WC) complementarity (matching) to the seed regions

of conserved miRNAs can be used to estimate the number of conserved targets. This

approach indicated that at least one-third of mammalian mRNAs are conserved tar-

gets of one or more conserved miRNAs (Lewis et al. 2005), and related methods

have indicated that a comparably large fraction of Drosophila mRNAs represent con-

served miRNA targets (Brennecke et al. 2005; Grun et al. 2005). Recent analyses of

mRNA sequence and expression patterns have detected pervasive effects of miRNAs

on mRNA expression and evolution, suggesting that most mRNAs are subject either

to direct miRNA regulation or to evolutionary pressure to avoid miRNA targeting

(Farh et al. 2005; Stark et al. 2005).

Some targets identified genetically possess complementarity to bases at the 3′ as

well as 5′ ends of miRNAs, which may confer specificity to individual members of

a miRNA family. However, comparative genomic approaches have determined that

“seed only” type targets comprise the vast majority of all conserved miRNA targets

(Brennecke et al. 2005; Lewis et al. 2005). This conclusion is also supported by
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miRNA overexpression experiments; e.g., in the study by Lim and colleagues (2005),

88% of mRNAs whose expression was significantly repressed following transfection

of miR-1 contained seed matches in their 3′ UTRs, and replacing the 3′ end of the

transfected miRNA by unrelated sequences yielded a largely overlapping set of down-

regulated mRNAs. However, the presence of a minimal seed match is not generally

sufficient to generate detectable mRNA down-regulation; e.g., only about one-tenth

to one-twentieth of expressed genes containing a 6 nt seed match in the Lim study

were significantly down-regulated (not shown), suggesting that miRNA regulation is

strongly influenced by additional targeting determinants.

To assess a variety of potential targeting determinants, we analyzed the effects on

global mRNA expression in miRNA and siRNA overexpression studies. In parallel, the

effects on mRNA expression of endogenous mouse miRNAs were analyzed following

knockout of the Dicer1 gene, which is essential for miRNA maturation in vertebrates.

Our results uncover additional rules and determinants for targeting that hold for both

endogenously expressed miRNAs and exogenous miRNAs and siRNAs.
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Results and Discussion

A hierarchy of extended seed match types associated with different degrees

of target down-regulation

To explore miRNA targeting determinants, we analyzed global mRNA expression

data following transfection of the tissue-specific miRNAs miR-1 and miR-124 into

HeLa cells reported by Lim and colleagues (2005). To assess the impact of a putative

targeting determinant on down-regulation, we compared the distributions of log fold

change (LFC), defined as the log base 2 of expression in miRNA-transfected cells

over that in mock-transfected cells, for mRNAs containing and lacking the putative

determinant. The cumulative distribution functions (CDFs) of LFCs for these two

mRNA sets could then be compared and the significance of differences assessed using

a Wilcoxon rank sum test (Materials and Methods). Using this approach, mRNA sets

with and without specific hexanucleotides (6 mer) in their 3′ UTRs were compared

for all 4096 possible 6 mer in both miRNA transfection datasets. Following miR-1

transfection, the most significant down-regulation was observed for mRNAs contain-

ing the 6 mer CAUUCC, which has perfect WC complementarity to miR-1 bases 2-7

(P < 10−34, Bonferroni corrected for the 4096 comparisons performed). For miR-124,

the most significant down-regulation was associated with GUGCCU (P < 10−58) and

UGCCUU (P < 10−26), which are complementary to miR-124 bases 3-8 and 2-7,

respectively. These observations, obtained without the need to define significantly

up- and down-regulated mRNA sets, are entirely consistent with the motif-finding

analyses of significantly down-regulated mRNAs by Lim and colleagues (2005), and

suggest that pairing to miRNA seed matches was a primary effector of mRNA down-

regulation in this experiment.
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Stronger down-regulation was observed for mRNAs containing additional match-

ing to the transfected miRNAs in their 3′ UTRs beyond the 6-base seed match (Fig.

1B,D). As shown in Figure 1A, we use the notation m1, m2, ... to refer to miRNA

bases, starting at the 5′-most base, and t1, t2, ... to refer to positions in target mR-

NAs opposite miRNA bases m1, m2, ..., respectively, in presumptive seed:seed match

duplexes (Lewis et al. 2005). Those mRNAs that contained a seed match 6 mer

flanked by a WC match to miRNA base 8 (Fig. 1, M8 7 mer; red curves) exhibited

enhanced down-regulation relative to those that contained a 6 mer alone (P < 10−5

for both miR-124 and miR-1). The presence of an adenosine at position t1 (Fig.

1, A1 7 mer; blue curves) was also associated with greater mRNA down-regulation

than a seed match alone for both miRNAs (P < 0.03, P < 10−5 for miR-124 and

miR-1, respectively). Those mRNAs that contained seed matches flanked by both

of these features (Fig. 1, M8-A1 8 mer; purple curves) exhibited greater mRNA

down-regulation (P < 0.002 relative to A1 7 mer for both miRNAs). Modest but sig-

nificant down-regulation was observed for mRNAs that contained only a seed match

6 mer not flanked by an M8 or A1 base (Fig. 1, 6 mer; green curves) for miR-1

(P < 10−4), but not miR-124 (NS). Therefore, the highly significant down-regulation

observed for the seed match 6 mer in the independent 6 mer analysis is attributable

primarily to the effects of M8 and A1 7 mer and M8-A1 8 mer. We consider these 7

mer and 8 mer and the seed match 6 mer to represent distinct “seed match types”

and refer to these 7 mer and 8 mer collectively as “extended seed matches”. These

observations suggest that the presence of these types of extended seed matches, not

just of a seed match 6 mer, may be generally required for effective miRNA-directed

down-regulation of mRNAs. A similar hierarchy of seed match types was observed

when mRNAs containing conserved and nonconserved extended seed matches were

analyzed separately (Supplemental Fig. S1). All mRNA sets in the above analyses
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were mutually exclusive, and no significant differences between the distributions of

expression levels of mRNAs containing different seed match types were detected by

rank sum test.

There are multiple ways to think about the magnitude of the mRNA down-

regulation effect attributable to a given seed match type. One perspective is to

consider the set of mRNAs containing the given seed match type that were signifi-

cantly down-regulated (e.g., those with LFC < 97.5% of control mRNAs lacking seed

matches). By this criterion, 45% of expressed mRNAs containing 8 mer seed matches

were down-regulated following miR-124 transfection. Among these genes, the average

LFC was −0.97, corresponding to a 100× (1− 2−0.97) = 49% decrease in expression.

For M8 7 mer seed matches, 25% of mRNAs were significantly down-regulated, and

these had a mean LFC of −0.87, a 45% decrease in expression. The fraction of mR-

NAs significantly down-regulated, two measures of the magnitude of down-regulation,

and rank sum P -values for all of the analyses shown in Figure 1 and Supplemental

Figure S1 are provided in Supplemental Tables S1 and S2, respectively.

Another perspective is to consider all of the data and to calculate the mean normal-

ized log fold change (nLFC), defined as the mean LFC for expressed mRNAs lacking

seed matches to the transfected miRNA minus the mean LFC for expressed mRNAs

containing the given seed match type in their 3′ UTRs. (As defined, the nLFC will be

positive if a seed match type is associated with mRNA down-regulation.) For miR-

124, the mean nLFC value of the M8-A1 8 mer seed match type was 0.56, roughly

twice that for the M8 7 mer (0.25). Thus, if fold change is multiplicative (i.e., log-

additive) in the number of seed matches (as will be shown below), then the fold

change associated with one 8 mer seed match is roughly equivalent to that associated
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with two 7 mer seed matches. Because it uses the largest possible set of mRNAs, and

is less sensitive to the shape of the tail of the no-seed-match distribution, the mean

nLFC is a more robust statistic for analyzing seed-match-associated effects than the

fraction of significantly down-regulated mRNAs. For this reason, mean nLFC is used

extensively in this study. However, by considering all seed-match-containing mR-

NAs, not just those with significant changes, the mean nLFC likely underestimates

the true magnitude of miRNA effects on target mRNA levels, and mRNA fold change

values underestimate protein-level changes (see below) because miRNAs often inhibit

translation as well as mRNA stability.

Seed match hierarchy supported by siRNA, comparative genomic, and

luciferase data

Exogenously added siRNAs complementary to seed match segments in mRNA 3′

UTRs have been observed to direct similar effects at both mRNA and protein lev-

els as transfected miRNAs (Doench et al. 2003; Jackson et al. 2003, 2006). Using

global mRNA expression data following transfection of siRNAs generated by Jackson

and colleagues (Jackson et al. 2003, 2006) and Schwarz and colleagues (Schwarz et

al. 2006), similar shifts in mRNA expression for seed-match-containing mRNAs were

seen for siRNAs as were observed for transfected miRNAs. Those mRNAs that con-

tained M8-A1 8 mer matches to the siRNAs were most strongly down-regulated, with

the nLFC value for 8 mer roughly twice that seen for M8 or A1 7 mer, as was seen

for transfected miRNAs. The effects of M8 7 mer were comparable to that for A1 7

mer, and both had nLFC values more than twice that of 6 mer, the same ordering of

seed match types as was observed for transfected miRNAs (Fig. 1F). Thus, the tar-

geting rules observed for transfected miRNAs generally apply to transfected siRNAs,

suggesting that transfected siRNAs and miRNAs enter similar or identical silencing
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complexes and mediate similar effects on their targets (Hutvagner and Zamore 2002).

Analyses of sequence conservation in mammalian 3′ UTRs have previously found

that a 6 mer seed match is the minimal unit of sequence that suffices to elicit a sig-

nificant conservation signal above noise for conserved vertebrate miRNAs (Lewis et

al. 2005), but that requiring conservation of M8 and/or A1 bases greatly increased

the signal:noise ratio. In alignments of five vertebrate genomes, the signal:noise ratio

increased from 2.4:1 for 6 mer to 3.8:1 each for M8 and A1 7 mer, to 5.6:1 for M8-

A1 8 mer (Lewis et al. 2005). Thus, M8 and A1 bases adjacent to conserved seed

matches in mammalian 3′ UTRs are very often conserved, and the relative ordering

of comparative genomic signal:noise ratios for different seed match types generally

agreed with the relative magnitude of mRNA down-regulation effects observed above

for transfected miRNAs (i.e., M8-A1 8 mer > M8 7 mer ≥ A1 7 mer > 6 mer). The

agreement between these two orderings suggests that the miRNA effects on mRNA

levels captured by microarrays are tightly correlated with the fold protein down-

regulation - resulting from the product of mRNA decay and translational effects -

which is presumably the effect that is under selection.

Comparing data from a panel of luciferase reporters following miRNA transfection

(Farh et al. 2005) to fold change values measured by microarray (Lim et al. 2005)

for the corresponding endogenous mRNAs (Supplemental Table S3), we observed a

significant Spearman rank correlation of 0.63, despite the obvious differences in UTR

context and whatever experimental noise was present in these assays. (As expected,

average protein-level repression was somewhat larger than repression at the mRNA

level.) This observation, though based on a small sample of genes, suggests that for

typical targets, effects of miRNAs at the mRNA and protein levels may be reasonably
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well correlated.

Data from the panel of luciferase reporters (Farh et al. 2005) could also be used

to address the effects of different seed match types. We observed that those reporters

that contained at least one 8 mer seed match were more strongly repressed than those

that contained exclusively 7 mer seed matches (P < 0.05 by rank sum test). Further,

among those reporters containing exclusively 7 mer seed matches, those with at least

one M8 7 mer were more strongly repressed than those containing exclusively A1 7

mer (P < 0.01 by rank sum test). Thus, the hierarchy of seed match types observed

in the mRNA array data appears to hold also when miRNA effects were assessed at

the protein level.

Effects of seed matches located in regions other than the 3′ UTR were either very

modest (coding regions) or not detected (5′ UTRs), and so were not further explored

here (not shown).

Evidence for direct recognition of t1 adenosines by the silencing complex

Preferential conservation of adenosine residues at the t1 position adjacent to miRNA

seed matches was reported previously, even for the minority of miRNAs that do not

begin with U (and have no known paralogs that begin with U). This observation

led to the hypothesis that t1A residues in target mRNAs can be recognized directly

by the silencing complex, in a manner that does not require pairing to the m1 base

of the miRNA (Lewis et al. 2005). To directly test this hypothesis, we turned to

data from three siRNA transfection studies by Jackson and colleagues (Jackson et

al. 2003, 2006) and Schwarz and colleagues (Schwarz et al. 2006). To distinguish

between direct recognition of t1A and possible base-pairing to miRNA base m1, Figure
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1F includes data only for siRNAs whose first base was not U, representing 33 of

the 44 “effective” siRNAs in these studies (see Supplemental Material). Strikingly,

we observed stronger mRNA down-regulation associated with A1 7 mer (which lack

complementarity to base m1) than for M1 7 mer (which have a WC match to base m1)

for these siRNAs (Fig. 1F, cf. solid blue curve, blue triangles and inset nLFC plot,

P < 10−15), supporting direct recognition of t1 adenosines by the silencing complex.

In fact, no stronger down-regulation was observed for M1 7 mer than for 6 mer

flanked by nonmatching bases other than A (Fig. 1F, solid green curve), suggesting

that base-pairing between the m1 and t1 bases, if it occurs, does not contribute to

targeting. Similarly, stronger down-regulation was observed for M8-A1 8 mer than

for M8-M1 8 mer (Fig. 1F, cf. solid purple curve and purple triangles, P < 10−13).

Again, no stronger down-regulation was observed for M8-M1 8 mer than for M8 7

mer with nonmatching, non-A bases at position t1. Together, these observations

strongly support the hypothesis that t1A residues adjacent to 6 mer or to M8 7 mer

are recognized directly by a protein component of the silencing machinery in human

cells, and that pairing to the m1 base, if it occurs, is of little or no consequence for

targeting. This conclusion is consistent with recent structural studies of an Argonaute

protein homolog in complex with dsRNA or an siRNA-like duplex, showing that the

5′ nucleotide of the guide RNA (corresponding to the m1 base in an miRNA:mRNA

or siRNA:mRNA duplex) is not base paired (Ma et al. 2005; Parker et al. 2005).

The predictions of widely used miRNA target prediction algorithms that reward WC

matching at position 1 (e.g., John et al. [2004]) should therefore be improved by

instead rewarding t1A independent of miRNA complementarity.
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Stronger down-regulation of mRNAs with conserved seed matches

The widespread conservation of 3′ UTR seed matches since the divergence of rodents,

carnivores, and primates (>50 million years ago [mya]) raises the issue of whether

miRNA targets conserved over this time span commonly possess other determinants

of miRNA targeting. To address this question, the distributions of LFCs for mRNAs

containing exclusively nonconserved 3′ UTR extended seed matches to miR-1 or miR-

124 were compared with those of mRNAs containing conserved 3′ UTR extended seed

matches to these miRNAs (which will be greatly enriched for authentic conserved tar-

gets of these miRNAs). Notably, the mean nLFC for conserved extended seed matches

was twice that seen for nonconserved extended seed matches for both miRNAs (Fig.

1C,E). This difference was significant (P < 0.001 for miR-124, P < 0.01 for miR-1,

by rank sum test), when controlling for overall UTR conservation, seed match type

and count, and initial mRNA expression level (Fig. 1C,E; Supplemental Table S1,

with controls performed as illustrated in Supplemental Fig. S2). This observation

suggests that authentic conserved miRNA targets contain additional targeting de-

terminants that make them substantially more repressible by miRNA-programmed

silencing complexes. An additional control for generic effects of 7 mer conservation

was performed using data from siRNA studies (Jackson et al. 2003, 2006; Schwarz

et al. 2006). Because the siRNAs used in the Jackson/Schwarz studies are unre-

lated in sequence to known endogenous mammalian miRNAs, any conservation of

seed matches to these siRNAs is purely coincidental and unrelated to regulation by

endogenous miRNAs. No significant difference in the distribution of LFC values was

observed between mRNAs containing conserved rather than nonconserved extended

seed matches to the transfected siRNAs, when expression, seed match type and count,

and overall UTR conservation were controlled for as above (Fig. 1G; Supplemental

63



Table S1). These observations imply that the increased repression observed for mR-

NAs containing conserved miRNA seed matches results from selection to enhance

miRNA-directed repression in conserved targets relative to other genes.

Inducible inhibition of endogenous miRNA expression in mouse embryonic

fibroblasts

The analyses described above rely on systems in which miRNAs or siRNAs are trans-

fected into cells in which these RNAs are not naturally expressed. Although supported

by independent analyses of UTR sequence conservation, the results are therefore sub-

ject to any potential differences between the activities of exogenous and endogenously

expressed miRNAs, e.g., resulting from differences in incorporation into silencing com-

plexes, if such differences exist. Therefore, it was of interest to ascertain whether the

targeting rules observed above, e.g., the differences between seed match types and

between conserved and nonconserved seed matches, apply also to regulation by en-

dogenous miRNAs.

To study the activities of endogenously expressed mammalian miRNAs, we de-

veloped a conditional Dicer knockout system. Following Drosha processing in the

nucleus, ∼70 nt hairpin pre-miRNAs are exported to the cytoplasm for secondary

processing to the mature ∼22 nt miRNA by the RNase III enzyme Dicer (Kim 2005).

Vertebrates express only a single Dicer gene, Dicer1, which is essential for develop-

ment in both the mouse and the zebrafish (Bernstein et al. 2003; Wienholds et al.

2003). All vertebrate miRNAs appear to require processing by the protein product

of this gene. Mice homozygous for a conditional null allele of Dicer1 were generated

using a tamoxifen-inducible promoter driving Cre recombinase (Danielian et al. 1998;

Hayashi and McMahon 2002) and a conditional LacZ reporter (Soriano 1999; Sup-
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plemental Fig. S3). Cells were harvested from embryos at gestational day 16 and

propagated in culture according to standard protocols to generate mouse embryonic

fibroblasts (MEFs), which we refer to as conditional Dicer knockout (CDKO) MEFs.

Exposure of these cells to tamoxifen (ortho hydroxy tamoxifen; OHT) induces

expression of Cre recombinase, resulting in a deletion that heritably inactivates the

Dicer1 locus. By staining the cells for LacZ, we established the minimum concentra-

tion and time required to induce Cre expression and inactivate the Dicer1 locus in

essentially all MEFs (Fig. 2A; Supplemental Fig. S4). Within 24-48 h post-induction

of Cre, proliferation slowed (Fig. 2B). Visual inspection of the cells suggested minimal

levels of apoptosis, and a modest level of apoptosis not substantially greater than for

control cells was confirmed by Annexin V staining (Supplemental Fig. S5). In these

respects, the Dicer -deficient MEFs bore some similarities to Dicer -deficient T cells,

which were reported to have reduced proliferation but only modestly increased levels

of apoptosis (Muljoet al. 2005).

By day 4 post-induction, Western analysis with Dicer antibodies detected an ap-

proximately threefold decrease in protein levels (Fig. 2C). Day 4 post-induction

represents an average of ∼2 d post-inactivation of the Dicer locus (Supplemental Fig.

S4). At this stage, total RNA was collected from the MEFs for microarray analysis.

Untreated CDKO MEFs and MEFs derived from wild-type mice (untreated or sub-

jected to OHT treatment) were used as controls, and each experiment was repeated

twice.

Mature miRNAs were profiled in the MEFs using a spotted oligonucleotide miRNA

microarray with standard miRNA probes present in quadruplicate. Using this array,
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expression of 99 miRNAs was detected at more than two standard deviations (SD)

above background in seven of the eight miRNA arrays (Supplemental Table S4).

Among the most highly expressed miRNAs were members of the let-7 family, miR-

1, miR-124, miR-15a, miR-175p, and several other miRNAs previously detected in

mouse embryos (Thomson et al. 2004). Expression of several of the array-detected

miRNAs was also confirmed by Northern analysis miRNA and siRNA targeting de-

terminants (Supplemental Fig. S6). Spiked control RNA and second-channel refer-

ence RNAs were used to enable comparison of miRNA array data between control

and knockout cells. Levels of most miRNAs decreased following Cre induction/Dicer

knockout (Supplemental Fig. S6). The fold change in microarray hybridization inten-

sity and in expression measured by Northern analysis were correlated, with the array

intensity change consistently lower than the fold change measured by Northern (Fig.

2D). The expression of most miRNAs tested was reduced by approximately twofold

by Northern, consistent with the about threefold reduction in Dicer protein levels

and the notion that miRNAs have fairly long, but not infinite, half-lives. Variability

in the fold changes of different miRNAs was observed, which could reflect differences

in miRNA stability, in pre-miRNA processing efficiency in the presence of limiting

amounts of Dicer protein, or perhaps changes in miRNA transcription or processing

in response to reduced Dicer protein or miRNA levels.

Targeting rules inferred from derepression of mRNAs following Dicer knock-

out

The expression of mRNAs was profiled in control and CDKO MEFs using Affymetrix

Mouse Genome 430 2 arrays. This CDKO system has certain advantages over transfection-

based systems for studies of miRNA function, including the potential to study the

activities of endogenous miRNAs expressed at natural levels. The CDKO system gen-
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erates a modest and gradual ebbing of miRNA levels, as opposed to miRNA/siRNA

transfection, which effectively floods the cell with a specific miRNA/siRNA species.

Although it requires administration of tamoxifen, use of targeted gene knockout to

reduce Dicer levels, rather than RNAi, has the advantages of permanently inactivat-

ing the Dicer1 gene and avoiding addition of exogenous siRNAs, which could exert

“off-target” effects like those seen in Figure 1F, complicating analysis of mRNA ex-

pression changes.

Analysis of miRNA effects on mRNAs following Dicer knockout is necessarily more

complex than for miRNA/siRNA transfection experiments because loss of Dicer re-

sults in decreases in the levels of dozens of miRNAs at once. One straightforward

approach uses the median LFC (where LFC is defined for Dicer knockout exper-

iments as the base 2 log of hybridization intensity in treated CDKO cells over the

intensity in control cells) over all mRNAs containing conserved extended seed matches

to a particular miRNA, analyzing each miRNA independently. (In this analysis, un-

treated CDKO cells, and treated and untreated wild-type MEFs, served as controls;

hybridization intensity averaged over these three types provided a control value for

calculating LFC.) Applying this approach to the set of 99 miRNAs (representing 80

unique seed sequences) detected by miRNA array analysis yielded a distribution of

median LFCs that was significantly shifted toward higher values than for control (ran-

dom) sets of mRNAs or for mRNAs containing conserved extended seed matches to

the miRNAs (representing 50 unique seeds) whose expression was not detected above

background (Fig. 3A). (Median LFC was used in this analysis rather than mean

because of its greater stability in the face of noise for the sometimes very small sets

of conserved targets being analyzed.) This observation suggested that many of the

changes in mRNA expression observed in this experiment resulted from derepression
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of genes whose mRNA levels were specifically repressed by miRNA-programmed si-

lencing complexes prior to knockout of Dicer. The derepression of mRNAs containing

conserved seed matches to many expressed miRNAs following about twofold reduc-

tion in miRNA expression suggested that, at least in this system, many miRNAs are

not expressed at saturating levels relative to their targets. mRNAs with seed matches

to miRNAs not detected by microarray were shifted to an insignificant degree toward

higher values relative to random mRNA sets of the same size (Fig. 3A). A list of the

mRNAs whose expression changed significantly following Dicer knockout is provided

in Supplemental Table S5.

Three previous studies have analyzed the effects of inhibition of miRNA pro-

cessing enzymes on global mRNA expression, two using RNAi knockdown and one

using targeted gene knockout. Rehwinkel and colleagues (2005) found that the set of

mRNAs derepressed following RNAi knockdown of Drosha in Drosophila cells were

enriched for miRNA targets predicted using the algorithm of Stark and colleagues

(Brennecke et al. 2005; Stark et al. 2005), which is based on rules for targeting

that (like TargetScanS) emphasize WC pairing to miRNA bases 2-8. Thus, the Re-

hwinkel study supported the idea that endogenous miRNAs commonly regulate their

targets at the mRNA level through mechanisms involving seed match pairing. Re-

cently, Schmitter and colleagues (2006) studied global changes in mRNA expression

following RNAi knockdown of Dicer and Argonaute in cultured human cells. They

observed up-regulation/derepression of overlapping sets of transcripts 2 and 6 d after

knockdown of Dicer and 2 d after knockdown of Ago2, and again found enrichment

for miRNA seed matches in the UTRs of derepressed mRNAs. Very modest effects

were observed following knockdown of other Argonaute family genes. In the third

study, Giraldez and colleagues (2006) used sophisticated gene knockout techniques to
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generate “MZdicer” zebrafish embryos deficient in both maternal and zygotic Dicer

activity. The set of mRNAs whose expression was significantly increased in MZdicer

embryos relative to wild type were enriched for seed matches to miRNAs of the

miR-430 family, the most abundantly expressed miRNA family during early zebrafish

development, representing ∼50% of miRNAs cloned. These and related studies of

MZdicer embryos convincingly demonstrated that miRNAs promote accelerated de-

cay of targeted mRNAs in vivo.

The predominance of a single miRNA family in zebrafish embryos made this sys-

tem suitable for assessing the effects of seed match type on mRNA regulation by

endogenous miRNAs. Analyzing mRNAs containing different miR-430 seed match

types, M8-A1 8 mer were associated with the strongest derepression, with a mean

nLFC value almost twice that seen for M8 or A1 7 mer. The mean nLFC values for

the two 7 mer types were similar to each other and higher than for 6 mer (Fig. 3B;

Supplemental Table S6). Thus, the ordering of seed match types and the relative

magnitudes of 8 mer versus 7 mer seed match effects paralleled those seen for trans-

fected miRNAs/siRNAs (Fig. 1), indicating that the seed match hierarchy inferred

from transfection data also holds for regulation by endogenous vertebrate miRNAs.

For zebrafish miR-430, 6 mer had a higher nLFC value relative to 7 mer and 8 mer

than in the mammalian miRNA/siRNA transfection experiments (Supplemental Ta-

bles S1, S2). The 6 mer nLFC value may be magnified by effects of other miR-430

superfamily miRNAs. Analogous seed match type comparisons were not attempted

using the CDKO MEF data because most mRNAs contained a mixture of different

seed match types, often to several different expressed miRNAs, so too few mRNAs

containing only a single seed match type were available for effective analysis; the effect

of the t1 position was not addressed in the CDKO MEF data for the same reason.
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The repression of mRNAs containing conserved rather than nonconserved seed

matches could be most effectively analyzed in the CDKO MEF data. In the zebrafish

MZdicer data, the set of mRNAs containing conserved miR-430 seed matches was

relatively small, and significant derepression relative to nonconserved seed matches

was not observed (Supplemental Fig. S7). Seed match conservation is more difficult

to assess in fish, as large differences in intergenic region sizes among the fishes yield

less reliable genomic alignments, and classification based on seed match presence is

limited by the relatively sparse 3′ UTR annotations available for orthologous fish

genes. In the MEF CDKO data, far larger mRNA sets were available for this anal-

ysis. In these data, the mean nLFC for mRNAs containing extended seed matches

conserved between human, mouse, rat, and dog (HMRD) to a set of 31 “responsive”

miRNAs (see Supplemental Material) was ∼50% higher than that for mRNAs con-

taining exclusively nonconserved seed matches (P < 0.05), controlling for overall UTR

conservation, mRNA expression, and seed match count (Fig. 3C). This analysis, in-

dicating that mRNAs containing conserved extended seed matches are preferentially

repressed by endogenous miRNAs, further supports the idea that conserved miRNA

targets possess additional targeting determinants that contribute to their repression

by the miRNAs that naturally target them.

Fold change increases multiplicatively with seed match count for both

endogenous miRNAs and exogenous miRNAs/siRNAs

Using luciferase or other reporter assays, increases in the magnitude of miRNA-

directed repression have typically been observed when the number of 3′ UTR seed

matches is increased (Doench and Sharp 2004; Vella et al. 2004; Pillai et al. 2005),

but the quantitative relationship between seed match count and repression has not

been established using large sets of targets. Grouping mRNAs based on the number
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of extended seed matches to transfected miRNAs in the Lim datasets analyzed in

Figure 1, mean nLFC increased approximately linearly as extended seed match count

increased from one to three for both miRNAs (Fig. 4A). The dose-response rela-

tionship between extended seed match count and mRNA nLFC further supports the

idea that seed matches are the primary determinant of mRNA down-regulation by

miRNAs. Although the Lim (Lim et al. 2005), Jackson (Jackson et al. 2003, 2006),

and Schwarz (Schwarz et al. 2006) experiments used identical protocols and concen-

trations of transfected RNAs, the magnitude of the mean nLFC per seed match for

the two miRNAs was roughly twice that seen on average for the siRNAs (not shown),

suggesting some degree of optimization of target and perhaps miRNA sequences for

efficient repression.

For endogenous zebrafish miR-430, a roughly linear relationship was also seen

between the mean nLFC values of mRNAs containing one to three extended seed

matches in the MZdicer experiment (Fig. 4B). Here, as for the miRNA transfection

data, too few mRNAs were available to extend the analysis beyond three seed matches.

Because of the greater diversity of miRNAs affected, the CDKO MEF experiment

allowed analysis of the effects of a larger range of seed match counts on mRNA

repression. For the set of 31 “responsive” miRNAs used above, an approximately

linear relationship was again observed between mean nLFC and the count of conserved

extended seed matches (Fig. 4C). This relationship held for conserved extended seed

match counts from one up to at least five, suggesting that miRNA regulation is

tunable over a very broad range. The essentially linear relationship between seed

match count and the logarithm of the fold change observed in Figure 4 indicates

that each seed match contributes multiplicatively to fold change in mRNA level.

Multiplicative effects could be explained if RISCs act independently and each has a
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chance of interaction with a single effector site on the mRNA - such as the 5′ cap

(Kiriakidou et al. 2007) - is required for RISC-mediated repression.

Evidence for A or U at position t9 as a targeting determinant

To search for additional targeting determinants, we analyzed the effects on mRNA

down-regulation of nucleotides present at different target positions in the vicinity of

seed matches. The Jackson/Schwarz siRNA transfection data were most suitable for

this analysis because of the large number of independent siRNAs and array mea-

surements. Although modest increases in down-regulation were associated with the

presence of adenosine and/or uridine at a few other positions (not shown), the most

pronounced effect was observed for the presence of A or U at position t9. Those mR-

NAs that had a t9W base (using the abbreviation W = A or U) were down-regulated

to a greater degree following siRNA transfection than those with a t9S (S = C or G)

residue (Fig. 5A). This effect was pronounced for M8 7 mer (P < 10−6) and 8 mer

(P < 10−2) seed matches, with a marginal effect observed for A1 7 mer (not shown).

The effect remained highly significant whether controlling for UTR CG content (as

in Fig. 5) or not. The increased repression of extended seed matches containing t9W

was observed independent of whether the base m9 of the siRNA was a match to t9

or not (Fig. 5B). No significant effect of t9 matching was observed, though the t9W

match set for 8 mer in particular was quite small (n = 141), limiting statistical power

to detect any effect that might exist. Taken together, these observations suggest that

the presence of a t9W base adjacent to an extended seed match contributes to typical

seed match targeting interactions, independent of pairing to m9.

The targeting role of t9 inferred from siRNA transfection data was corroborated

by analyses of seed matches to miRNAs. Examining the composition of the t9 posi-
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tion for seed matches to a large set of conserved miRNAs in mammalian UTRs, we

observed an increased frequency of t9W residues adjacent to conserved seed matches

relative to control sets of nonconserved seed matches in UTRs matched for UTR CG

content (Fig. 5C). Signal:noise values for this miRNA set, calculated with control

oligonucleotides matched for both count and CG content, were significantly higher

for t9W compared with t9S seed matches (Fig. 5D). Consistent with the siRNA

analyses, the difference appeared independent of the base at position m9. These

observations extend previous observations of increased conservation of t9A residues,

independent of complementarity to miRNA base m9 (Lewis et al. 2005), and support

a role for t9W in miRNA targeting in vivo.

Increased conservation and AU content flanking siRNA seed matches as-

sociated with increased mRNA repression

Increased sequence conservation across mammals is observed in the vicinity of con-

served miRNA seed matches relative to those that are not conserved, even when

overall UTR conservation is controlled for (Fig. 6A). The increase in conservation

extends to 50 bases 3′ and 5′ of the seed match and beyond; similar patterns of

increased local conservation are associated with other conserved UTR motifs (not

shown; Lewis et al. 2005). One possible explanation is that the sequence context

flanking authentic conserved target sites is enriched for feature - e.g., protein binding

sites or RNA structural properties - that, directly or indirectly, enhance the effective-

ness of miRNA targeting. To explore these issues, we returned to the siRNA data and

compared siRNA-directed mRNA repression between mRNAs having different levels

of sequence conservation in the 50 bases 5′ and 3′ of the seed match, in sets matched

for overall UTR conservation, expression level, seed match type, and local and global

AU composition (Supplemental Fig. S9). Strikingly, substantially stronger mRNA
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repression was observed for siRNA seed matches with high conservation in the 50

bases upstream of the seed match relative to seed matches with low conservation in

this region (mean nLFC = 0.16 and 0.11, respectively, P < 10−4 by rank sum test;

Fig. 6C). A similar effect of conservation in the downstream 50 bases was observed

(mean nLFC = 0.16 versus 0.12, P < 0.05; Fig. 6C). These results were not affected

by whether or not the siRNA seed match itself was conserved (not shown).

In vertebrate genomes, AU-rich sequences have higher levels of average sequence

conservation than CG-rich sequences, at least in part because of the high mutation

rate of CpG dinucleotides (Hwang and Green 2004), so it was important to determine

whether the increased repression associated with conserved flanking regions resulted

from an effect of base composition. The 30-50 bases just upstream of and down-

stream from conserved miRNA seed matches are indeed biased toward higher AU

composition (Fig. 6B), suggesting that local AU composition itself might contribute

to targeting. However, the effect of sequence conservation on mRNA repression was

significant whether AU content was controlled for (as in Fig. 6C) or not. Conversely,

significantly increased repression was observed for siRNA seed matches flanked by

high AU content in the 50 bases either 3′ or 5′ of the seed match relative to those

with low AU content in these regions (not shown). When this analysis was controlled

for the effects of sequence conservation, overall UTR AU content, expression level,

and seed match type, seed matches with high AU content in the 3′ 50 bases had

significantly increased down-regulation relative to those with low AU content in this

region (mean nLFC = 0.17 and 0.10, respectively, P < 10−4 by rank sum test), but

the effects of 5′ AU content were no longer significant (Fig. 6D). Thus, conservation

immediately 5′ and 3′ and AU content 3′ of seed matches are independently associ-

ated with increased mRNA down-regulation by siRNAs, and 5′ AU content may also
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enhance down-regulation. Choice of 50 base pairs (bp) as the size of the region to

analyze was based on the distributions shown in Figure 6, A and B; however, the

magnitude of the effects shown in Figure 6, C and D, were little changed when the

size of the analyzed region was expanded or reduced by 20 bp.

In terms of the magnitude of nLFC change, each of these variables contributed

to targeting to at least the same extent as the identity of the t9 base (e.g., Fig.

5B, compare mean nLFC value differences). The conservation of more distal 50-bp

windows (e.g., bases 151-200 downstream from the seed match) was associated with

increased repression when the controls on conservation in other regions were relaxed,

but disappeared when either overall UTR conservation or conservation in the 50 bases

immediately 3′ of the seed match were controlled for (not shown). This observation

suggests that effects for such distal windows observed in the uncontrolled analysis

derive from the (fairly strong) positive correlation between conservation in nearby

UTR regions and that the proximal 50 bp is of central importance. Similar results

were obtained for AU content (not shown), again supporting the importance of the

regions immediately adjacent to the seed match.

There are at least two plausible ways in which high AU content might increase ef-

fectiveness of adjacent seed matches. AU-rich sequences could be recognized directly

by a component of the RISC or an auxiliary activating factor; a number of protein

families are known that have affinity for A-rich, U-rich, or AU-rich RNA sequences

(Barreau et al. 2005), and functional connections between AU-rich binding factors

and miRNA regulation have been reported (Bhattacharyya et al. 2006; Vasudevan

and Steitz 2007). Alternatively, AU-richness might enhance targeting by reducing

the tendency for formation of stable RNA secondary structures that could interfere
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with RISC binding. Previously, it has been reported that predicted local folding of

the mRNA in the vicinity of seed matches is a negative predictor of miRNA targeting

(e.g., Robins et al. 2005). Consistently, we have observed that seed matches in regions

of lower predicted thermodynamic stability using standard algorithms are associated

with increased mRNA-level repression, but we have found that this effect disappears

when the AU content of the region is controlled for (not shown). Thus, the effect

of AU content we observe may contribute to targeting by reducing the potential for

inhibitory mRNA structures, but other effects of AU-richness are also consistent with

the data.

Since siRNAs are not naturally expressed, siRNA seed matches tend to be dis-

tributed essentially randomly in UTRs and do not experience selection related to

targeting. The magnitude of the effect of local conservation on siRNA seed match

efficacy (Fig. 6C) was similar in magnitude when siRNA seed matches falling within

100 bp of conserved miRNA seed matches were included (as in Fig. 6C) or excluded

(not shown). Therefore, the enhanced repression observed for siRNA seed matches

that occur in regions of high local conservation (Fig. 6C) is likely to represent a

side effect of mRNA features that are conserved for reasons unrelated to targeting by

the RISC, such as RNA binding sites for factors involved in other aspects of mRNA

biology (mRNA processing, stability, localization, translation, etc.). For example,

presence of proteins bound to sites nearby the seed match might increase accessibility

to RISC by interfering with formation of local RNA secondary structures. Alterna-

tively, the long coevolution of RISC and non-RISC factors binding nearby in mRNAs

may have engendered more direct interactions, with common mRNA binding factors

functioning to facilitate or stabilize RISC binding to nearby seed matches. Two very

recent studies observed that, with the exception of the first ∼20 bases of the mRNA,
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the density of conserved seed matches increases as proximity to the stop codon or

poly-A tail increases, (Gaidatzis et al. 2007; Majoros and Ohler 2007); however,

signal:noise in these regions was not assessed. Another recent study reported syn-

ergy between nearby seed matches located 13-35 bases apart, providing support for

the idea that RISC activity is modulated by the presence of proteins or complexes

in nearby flanking regions (Saetrom et al. 2007). Given the complexities of con-

servation effects on miRNA target analysis, including the phenomenon that mRNAs

with lower overall UTR conservation have substantially higher signal:noise values for

conserved miRNAs (Lewis et al. 2005), analyses of the effects of local conservation

and AU content on miRNA targeting were deferred pending availability of additional

relevant data. Further investigation is clearly needed to understand the mechanisms

underlying these phenomena.

Perspectives and applications to target/off-target prediction

Here, we have described specific rules for miRNA/siRNA targeting, including a hi-

erarchy of seed match types, the multiplicative effects of multiple seed matches, and

targeting determinants outside of the seed match, including t9W and local conser-

vation and AU content effects. All of these rules and determinants were supported

for exogenous siRNAs and/or miRNAs by direct effects on mRNA levels, and for en-

dogenous miRNAs through direct effects and/or comparative genomic data. Thus, in

the available data these rules and determinants appear to be applicable to targeting

by exogenous siRNA/miRNAs and endogenous miRNAs.

Current miRNA target predictions have relied very heavily on seed match con-

servation, ignoring potential species-specific miRNA targeting. However, we observe

that nonconserved 8 mer seed matches on average exhibit stronger repression than
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conserved 7 mer (Supplemental Fig. S8). For studies of miRNA function, it would

be extremely useful to be able to predict which mRNAs will experience the strongest

repression to facilitate choice of targets for in-depth characterization, and similar con-

siderations apply to the design and interpretation of experiments involving siRNAs.

The new rules and determinants identified here can be combined to produce an ex-

pected nLFC score for a seed match by summing the mean nLFC of the seed match

type (Fig. 1F) plus the residual contribution to mean nLFC of the t9 base (Fig.

5A), and of flanking AU content and conservation (Fig. 6). Following the results of

Figure 4, if multiple seed matches are present, their scores are added (scoring details

are given in Supplemental Material). Because this score can be used to rank poten-

tial siRNA off-target effects, and to generate an integrated ranking of conserved and

nonconserved miRNA targets, we call it the TargetRank score. Application of Targe-

tRank scoring to sets of mRNAs, each with a single 7 mer seed match to transfected

siRNAs (with parameters derived from a held-out set of siRNA transfections) yielded

a dramatic separation between the LFC distributions of the bottom 20% and top 20%

of TargetRanked mRNAs in the test set (Fig. 7A), with mean nLFC increasing from

0.07 to 0.26, and the fraction of significantly down-regulated mRNAs increasing from

5% to 20% (Supplemental Table S7). Because all of the mRNAs in this analysis con-

tained single 7 mer seed matches, the separation of the two distributions results from

the additional determinants identified in this study (t9W, flanking conservation, and

AU content), demonstrating their combined utility for siRNA off-target prediction.

Applying the same scoring system to expression data for Th1 thymocytes from

mir-155 knockout mouse versus wild-type cells (Rodriguez et al. 2007) also yielded

a strong degree of separation. When scoring mRNAs containing exclusively noncon-

served single 7 mer seed matches, mean nLFC increased from 0.01 for the bottom
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20% of TargetRanked mRNAs (NS relative to no-seed-match mRNAs) to 0.09 for

the top 20% of mRNAs (P < 0.01 relative to no-seed-match or bottom 20% mRNAs)

(Fig. 7B; Supplemental Table S7), demonstrating the applicability of these additional

determinants to regulation by endogenous miRNAs, and suggesting an approach for

identification of important species-specific miRNA targets. In practice, scoring of 6

mer, 7 mer, and 8 mer seed matches and messages containing multiple seed matches

yields a broader range of TargetRank scores and a correspondingly greater separa-

tion between the distributions of higher and lower ranked genes. Grouping siRNA

and nonconserved miR-155 targets into five bins of TargetRank scores demonstrated

a strong and approximately log-linear relationship between mRNA down-regulation

and TargetRank score (Fig. 7C,D). The relative ranking given by TargetRank is

probably more useful than the score itself, since the overall magnitude of miRNA- or

siRNA-associated repression will vary in different systems, as seen above.

Unlike purely conservation-based methods, TargetRank scoring of the expressed

mRNAs in a cell type yields an integrated ranking of conserved and nonconserved

targets, and should therefore be particularly helpful in identifying important species-

or clade-specific miRNA targeting relationships. These results should also aid in

interpretation of RNAi phenotypes and in prediction of the miRNA targeting effects

of mutations and polymorphisms in human genes.
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Materials and Methods

Conditional Dicer knockout mice and MEFs

Male mice carrying one copy of the pCAGGCre-ER allele (Hayashi and McMahon

2002) and one Dicer floxed allele (Harfe et al. 2005) were crossed to Dicer floxed/floxed

females harboring also a LacZ reporter (R26R) for detection of Cre activity (Soriano

1999). Timed-pregnant females were sacrificed at embryonic day 16 and embryos

were dissected and dissociated to generate mouse embryonic fibroblast (MEF) pri-

mary culture (following Abbondanzo et al. [1993]). After 72 h of incubation, cells

were frozen in aliquots. Mice were housed and handled in accordance with protocols

approved by the Institutional Animal Care and Use Committee of Harvard Medical

School.

Cell culture and treatments

MEFs were thawed prior to experiments, grown in DMEM supplemented with 10%

FCS, penicillin/streptomycin and glutamine, split once, and induced for loss of func-

tional Dicer by addition of 4-orthohydroxy Tamoxifen (0.5 mM; OHT; Sigma). Fol-

lowing 4 d (and daily change of media and drug), total RNA and total protein were

extracted. Control MEFs derived from wild-type mice were subjected to the same

treatments.

RNA extraction

Total RNA was extracted using TRIzol reagent (Sigma), and RNA quality was mea-

sured using an Agilent Bioanalyzer.
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MEF miRNA microarray analysis

MiRNA microarrays were printed using a Cartesian PixSys 5500 Arrayer on epoxy

slides (Corning) using Ambions miRvana amine-modified DNA oligonucleotide probe

set (version 1564V1) and scanned using an Axon Scanner GenPix 4000 (see Supple-

mental Material for further details).

Northern analysis

Thirty micrograms of total RNA was separated in 15% TBE-UREA gels (Bio-Rad),

transferred to a GeneScreen Plus membrane (Perkin Elmer) using semidry electroblot

apparatus (Owl) in 13 TBE (90 mM Tris-base, 2 mM EDTA, 90 mM Boric acid) at 350

mA for 35 min. The membrane was then UV cross-linked at 1000 mJ (Stratagene)

and heated for 2 h at 80◦C. Prehybridization and hybridization were carried out

in PerfectHyb Plus Hybridization Buffer (Sigma) supplemented with Salmon Sperm

DNA (20 mg/mL) for 2 and 16 h, respectively, at 42◦C, with a radiolabeled probe

added to the latter. Washes were done in 23 SSC + 0.2% SDS (twice), then 13 SSC +

0.2% SDS (once) for 5 min at 50◦C. Membranes were exposed to a PhosphorImager

cassette for 3 d, then scanned (PhosphorImager, Molecular Dynamics, 445 SI) and

quantitated (ImageQuant, Molecular Dynamics).

MEF mRNA microarrays

Affymetrix GeneChip Mouse Genome 430 2 Array labeling, hybridization, and scan-

ning were performed according to the manufacturers instructions. The data discussed

in this publication have been deposited in NCBIs Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series acces-

sion number GSE6046. To map probes on the Affymetrix Mouse 430 2 array to Ref-
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seq transcripts, we used custom CDF file MM430 MM REFSEQ 6, downloaded from

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF, the

custom CDF project site. Refseq transcript expression levels were then calculated

using GCRMA (GCRMA package, Bioconductor in R environment) using default

settings. Genes with normalized log2 intensity below 3 were excluded from analysis.

3′ UTR datasets

Genome coordinates for 3′ UTRs were obtained using Refseq annotations and align-

ments of hg17 with 16 other vertebrate genomes, available from UCSC (http://

hgdownload.cse.ucsc.edu) for human (hg17, May 2004), mouse (mm5, May 2004),

and zebrafish (danRer3, May 2005). Only Refseq transcripts mapping uniquely to

the genome were considered. Annotated 3′ UTRs shorter than 50 nt were excluded.

miRNA seed match counts and conservation

The 3′ UTR sequences were searched for nonoverlapping seed matches to relevant

miRNAs or siRNAs of the types shown in Figure 1A. For human and mouse anal-

yses, multiple alignments were obtained for each 3′ UTR by extracting the rele-

vant region from genomic alignments available in multiple alignment format (MAF)

from UCSC (http://hgdownload.cse.ucsc.edu, hg17 alignments of 17 vertebrate

genomes). Seed matches with perfect conservation in aligned human, mouse, rat, and

dog (HMRD) UTRs were labeled conserved.

miRNA and siRNA transfection datasets

Microarray expression data for miR-1 and miR-124 HeLa transfection experiments

(Lim et al. 2005) were obtained from GEO accession GSE2075. Array platform in-

formation for these experiments was obtained from GEO accession GPL1749. Probes
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were mapped to the human genome using BLAST, and subsequently mapped to

Refseq annotated 3′ UTRs using Refseq genomic mapping files available from UCSC

(http://hgdownload.cse.ucsc.edu/goldenPath/hg17/database/). Microarray ex-

pression data for siRNA HeLa transfection experiments (Jackson et al. 2003) were ob-

tained from http://www.rii.com/publications/2003/nbt831.html and from GEO

accession GSE5814 (Jackson et al. 2003, 2006; Schwarz et al. 2006) and GSE5291

(Jackson et al. 2003, 2006; Schwarz et al. 2006). Only values with Refseq IDs were

used for this analysis. To remove poorly expressed genes, we excluded genes with log2

intensity < −4.0 for both datasets. The analyses reported here are based on 24-h

data where repression was typically stronger.

Zebrafish embryo Dicer knockout datasets

Microarray expression data for zebrafish wild-type and MZdicer mutant embryos (Gi-

raldez et al. 2006) were obtained from GEO (accession GSE4201). Probe information

for the Affymetrix GeneChip Zebrafish Genome Array was also obtained from GEO

(accession GPL1319). Probes were mapped to Refseqs using genomic mapping in-

formation for zebrafish Affymetrix Exemplar sequences from the UCSC annotation

database. Only probes with a present (P) call were used for analysis.

bic/mir-155 knockout datasets

Microarray expression data for mouse wild-type and miR-155 deficient Th1 cells (Ro-

driguez et al. 2007) were obtained from ArrayExpress (accession E-TABM-232). Only

probes mapping to mouse Refseqs were used for analysis.
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Log fold change (LFC)

The mean normalized log fold change value for miRNA/siRNA transfection experi-

ments was defined as the difference between the mean LFC for mRNAs lacking seed

matches to the transfected miRNA/siRNA and the mean LFC for mRNAs containing

seed matches of the given type (median nLFC was defined analogously). For Dicer

miRNA knockout experiments, the nLFC was defined as the difference between the

mean LFC for mRNAs containing seed matches to the relevant miRNAs (e.g., miR-

430) and the mean LFC for mRNAs lacking seed matches to any relevant miRNA.

The variability of the nLFC value due to experimental noise was estimated for 12

effective siRNAs where duplicate array data were available (MAPK14-M1, -M2as,

-M4as, -M5as, -M6as, -M15, -M18, MPHOSPH12692, PRKCE-1295, SOS11582as,

VHL-2651as, VHL-2652, where as indicates the strand antisense to the targeted

mRNA). The nLFCs for expressed mRNAs containing one or more extended seed

matches to the relevant siRNA were calculated for each array. The average Pearson

correlation between nLFC values from duplicate array pairs was 0.83. The Pearson

correlation among mean nLFC values across the duplicate array pairs was 0.91. These

data indicate that while there is some variation among nLFCs for individual mRNAs,

the mean nLFC is highly reproducible.

Statistical analyses

All test statistics were calculated using R (http://www.r-project.org). The Wilcoxon

rank sum test was chosen over the t-test because it does not assume normality of the

underlying distributions, and because it is more intuitive and familiar than non-

parametric alternatives such as the KolmogorovSmirnov (KS) test. t-tests and KS

tests using these data gave generally similar results. A P-value cutoff of 0.05 was
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used for all analyses.

Software Availability

A TargetRank Web server is available at http://genes.mit.edu/targetrank/.
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Figure 1: Effects of seed match type and conservation on mRNA repression for miRNAs and siRNAs. (A) Seed match types
and numbering system, illustrated for miR-1. Positions in the miRNA are numbered 5′-3′. (Seed match 6 mer) WC inverse
complement of miRNA bases 2-7; (A1) presence of adenosine opposite miRNA base 1; (M8) WC match to miRNA base8. (B)
CDFs (cumulative distribution functions) of LFCs (log2 fold changes) for mRNAs containing indicated miR-124 seed match
types (colored lines and labels) or no miR-124 seed matches (gray line) following transfection of miR-124. (Solid vertical gray
line) The LFC above which 97.5% of the no-seed-match mRNA set falls. (Inset bar plot) nLFC (normalized log2 fold change)
values for each seed match type with error bars indicating standard error. Data for panels B-E are from Lim et al. (2005). Plots
include only mRNAs containing exactly one miR-124 seed match, and thus the seed match type sets are mutually exclusive.
The distribution of mRNA expression values did not differ significantly between seed match type sets (P > 0.05 by rank sum
test). All seed match types except the 6 mer have distributions significantly different from the no-seed-match class (P < 0.005
by rank sum test). (C) CDFs of LFCs for mutually exclusive mRNA sets containing conserved (red) or nonconserved (blue)
extended seed matches to miR-124, or no seed matches (gray); the conserved and nonconserved sets are significantly different
(P < 0.001 by rank sum test). The “nonconserved” mRNA set contains exclusively nonconserved seed matches; the “conserved”
mRNAs may also contain nonconserved seed matches. The nonconserved set was sampled to match the conserved set in seed
match type and count, overall UTR conservation, and initial mRNA expression level (Supplemental Fig. S2). (D) Same as B for
miR-1. All seed match type classes are significantly different from the no-seed-match class (P < 10−4 by rank sum test). (E)
Same as C for miR-1. The CDFs of conserved and nonconserved mRNA sets are significantly different (P < 0.01 by rank sum
test). (F) Same as B for pooled set of 33 “effective” siRNAs that begin with non-U bases (Supplemental Material). Additional
seed match classes containing M1 are shown (triangles). All seed match types have distributions significantly different from the
no-seed-match class (P < 10−14 by rank sum test). (G) Same analysis and controls as C for pooled set of siRNAs. The CDFs
of conserved and nonconserved mRNA sets are not significantly different (P > 0.05 by rank sum test). See Supplemental Table
S1 for additional statistics.
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Figure 2: Characterization of conditional Dicer knockout (CDKO) mouse embryonic fibroblasts (MEFs). (A) Wild-type
(wt) and CDKO MEFs are shown, untreated (left panels) or 4 d after ortho hydroxy tamoxifen (OHT) treatment (right panels).
Cells were stained for LacZ, and the percentage of LacZ-positive cells is shown (upper right). (B) Proliferation of wt and CDKO
MEFs, untreated or following addition of OHT. Error bars represent standard deviation of three independent counts. (C) Western
analysis of CDKO MEFs, untreated (lane 4) or after OHT addition (lane 5), showing a three- to fourfold reduction in Dicer
protein levels following OHT addition. GAPDH is a loading control. Westerns using different concentrations of recombinant
Dicer protein are shown as a positive control (lanes 1,2). (D) Microarray hybridization intensity change and expression level
change measured by Northern analysis (log scale, both axes) for eight miRNAs (miR-21, miR-22, miR-23b, miR-34a, miR-92,
miR-191, miR-199a*, and miR-200b).
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Figure 3: mRNA derepression following Dicer knockout varies with seed match type and conservation status. (A) CDFs of
median LFC for three classes of mRNA sets. The expression classes were: (1) mRNA sets containing extended seed matches to
the 80 miRNA families whose expression was detected above background by microarray (black curve, selected miRNA family
names shown); (2) mRNA sets containing extended seed matches to the 50 miRNA families that were not detectably expressed
(gray curve); (3) randomly selected mRNA sets (dotted line). Distributions of detected and nondetected sets are significantly
different (P < 0.01 by rank sum test), but distributions of nondetected and random mRNA sets are not. (B) CDFs of LFCs for
mRNAs containing the indicated miR-430 seed match types - or no miR-430 seed matches (gray curve) - for MZdicer zebrafish
embryo data (Giraldez et al. 2006); only mRNAs with exactly one miR-430 seed match were included (seed match type mRNA
sets are mutually exclusive). All seed match type LFC distributions differed significantly from the no-seed-match class (P < 10−7

by rank sum test), and the pooled extended seed match types differed from the 6 mer class (P < 0.01 by rank sum test). (Solid
vertical gray line) The LFC below which 97.5% of the no-seed-match mRNA set falls. (Inset bar plot) LFC values for each seed
match type, with error bars indicating standard error. (C) CDFs of LFCs for mRNAs containing conserved (red) or exclusively
nonconserved (blue) extended seed matches, or no seed matches (gray) to the set of 31 “responsive” miRNAs in the CDKO MEF
experiment (Supplemental Material). Seed match count, overall UTR conservation, and mRNA expression level were controlled
between the sets. The distributions of mRNA with conserved and nonconserved seed matches are significantly different (P < 0.05
by rank sum test). See Supplemental Table S6 for additional statistics.
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Figure 4: mRNA fold change increases multiplicatively with extended seed match count. (A) For miR-1 (open circles) and
miR-124 (solid black circles), the total number of extended seed matches was enumerated for each mRNA, and the mean nLFCs
in the Lim transfection experiments were determined for sets of mRNAs grouped by seed match count (set sizes indicated above
or below points). (Solid lines) Least squares fit for the whole data set. Error bars correspond to standard error. For each of
these plots, the proportions of different seed match types for different seed match counts remained fairly constant. (B) Same as
A for miR-430 extended seed match counts following Dicer knockout in zebrafish embryos (Giraldez et al. 2006). (C) Same as
A for conserved extended seed match counts to 31 “responsive” mouse miRNAs (see Supplemental Material) in CDKO MEFs.
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Figure 5: Increased down-regulation of mRNAs with adenosine or uridine at position t9. (A) Mean nLFC for mRNAs
containing the indicated nucleotide at position t9 flanking siRNA M8 7 mer and M8-A1 8 mer (rank sum test P -values; NS =
not significant at P -value cutoff 0.05). Error bars indicate standard error, and the numbers of mRNAs are indicated above the
bars. Each mRNA contained exactly one seed match to any given siRNA (i.e., t9 sets are mutually exclusive), and mRNAs in
each of the four t9 sets were controlled for 3′ UTR GC content. Other variables, such as mRNA expression, 3′ UTR conservation,
or m9 composition, did not differ significantly between t9 sets. (B) Same as A, but reclassifying the controlled mRNA sets by
whether the t9 base pairs with the siRNA m9 (match) or not (mismatch). (C) Enrichment of t9W nucleotides flanking conserved
versus nonconserved miRNA M8 7 mer and M8-A1 8 mer in human 3′ UTRs (χ2 test P -values). The miRNA set consisted
of conserved human miRNAs used for target prediction by Lewis et al. (2005) after removal of miRNAs with common m2-m8
seed regions but different m9 nucleotides, and pairs of miRNAs in the same superfamily. The nonconserved seed matches were
sampled to match the seed match type, miRNA, and overall UTR CG content of the conserved set. (D) Mean signal:noise
ratios for M8 7 mer and M8-A1 8 mer with t9W or t9S in match and mismatch configurations based on cohorts of control
oligonucleotides (Lewis et al. 2005) matched for both count and exact CG content (error bars indicate standard deviation based
on 14 control cohorts). (Dashed line) Baseline S:N value of 1. P -values based on Wilcoxon rank sum tests between indicated
sets (NS = not significant at P -value cutoff 0.05).
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Figure 6: siRNA-directed mRNA repression is enhanced by local conservation and AU content. (A) Mean percent conser-
vation at UTR positions within 100 bp 5′ (left) and 3′ (right) of conserved (red) or nonconserved (blue) extended seed matches
to the set of conserved vertebrate miRNAs used in Lewis et al. (2005); overall UTR conservation was controlled for in the
comparison of conserved and nonconserved seed matches. The average conservation differs significantly for the 100 bases 5′ and
3′ of the seed match (P < 10−200 by rank sum test for both). (B) Mean AU content (sets controlled for UTR AU content);
average AU content is significantly different both 5′ and 3′ of the seed match (P < 10−18, P < 10−30), respectively. (C) Mean
nLFC for three equal-sized mRNA sets binned by percent conserved positions (in HMRD) in the 50-nt region immediately 5′

(orange) or 3′ (purple) of siRNA seed matches (5′ region ends at position t10; 3′ region begins one base 3′ of position t1)
for mRNAs containing single extended seed match to the relevant siRNA. Bars indicate standard error of the mean. Set size
and mean percent conservation for each set are reported above and below each bar, respectively. P -values are for two-sided
rank sum tests between the first and third bins. For both 5′ and 3′ conservation, the three bins have been sampled such that
their distributions of overall UTR conservation, 5′ (or 3′) AU content, overall UTR AU content, seed match type, and initial
expression level are not significantly different (P ≥ 0.05) (Supplemental Fig. S9). (D) Same as C, but with UTRs binned by
AU content in the same 50-nt regions. Bins are sampled to control for UTR AU content, 5′ (or 3′) conservation, overall UTR
conservation, seed match type, and initial expression level (NS=not significant at P -value cutoff 0.05).
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Figure 7: TargetRank scoring separates strongly and weakly down-regulated mRNAs. (A) CDFs of LFCs (as in Fig. 1) for
the top 20% (red) and bottom 20% (green) of mRNAs to the relevant siRNA in the test set of eight randomly chosen siRNA
transfection experiments ranked by TargetRank score. Only expressed mRNAs containing exactly one 7 mer seed match and
no other seed matches of any type were used. For reference, the CDF for mRNAs lacking seed matches to the relevant siRNAs
is shown (gray). (Solid vertical gray line) The LFC above which 97.5% of the no-seed-match mRNA set falls. (Inset bar plot)
See Fig. 1. See Supplemental Table S7 for additional statistics. (B) Same as A, but for miR-155 knockout T cell data from
Rodriguez et al. (2007). (C) All mRNAs containing seed matches (of any type or count) to the relevant siRNA in the eight test
siRNA transfection experiments (same sets as in A) were scored using TargetRank. The mean TargetRank score and mean nLFC
are plotted with standard error bars for mRNAs sets binned by TargetRank score (mRNA set sizes indicated above points).
Line corresponds to least squares fit for entire data set (ANOVA P < 10−100); r = 0.23 (Pearson correlation). (D) Same as C,
but for miR-155 knockout T cell data from (Rodriguez et al. 2007). Line corresponds to least squares fit for entire data set
(ANOVA P < 10−18); r = 0.24 (Pearson correlation).
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Chapter 3
—

Nucleosome Positioning at Gene 3′ Ends

Data processing and analysis software for this work was developed
in collaboration with Noah Spies.

Corresponding Supplementary Material can be found in Appendix 3.
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Chapter 3

Nucleosome Positioning at Gene 3′ Ends

Abstract

Nucleosomes are the basic repeating unit of packaged DNA (chromatin) and their

positioning around transcriptional start sites (TSSs) can be dynamic and play impor-

tant roles in transcriptional regulation. However, nucleosome distributions across

other gene structures remain mostly unexplored. Using recently published high-

throughput Illumina sequencing data of human nucleosome boundaries (Barski et al.,

2007; Schones et al., 2008), we explored patterns of nucleosome positioning at the 3′

ends of genes. We observed a strong depletion of nucleosome density at the terminal

ends of genes and demonstrate that the canonical poly(A) signal (PAS), AATAAA,

which forms part of a bipartite motif important for co-transcriptional cleavage and

polyadenylation of the emerging RNA transcript, has strong nucleosome positioning

effects. To investigate whether such nucleosome positioning may influence recognition

of the poly(A) site, we considered poly(A) sites with high or low usage, as defined by

relative supporting-EST counts, and found evidence for greater nucleosome depletion

across high usage sites. A nucleosome affinity model was developed that recapitulates

known patterns of nucleosome occupancy in the vicinity of TSSs and PASs based on
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primary sequence features. Application of this model genome-wide demonstrated that

poly(A) sites with higher nucleosome affinity downstream, consistent with nucleosome

occupancy data, appear to have higher relative usage. Our results suggest a connec-

tion between DNA accessibility and recognition of transcript sequences associated

with RNA processing.

Introduction

In recent years, evidence has emerged for a close coupling of mRNA precursor tran-

scription to subsequent mature mRNA processing. In particular, the dependencies

between polyadenylation (poly(A)) site recognition and downstream events such as

transcriptional termination and nuclear export have clarified the impact of these RNA

processing events on cytoplasmic transcript levels (reviewed by Buratowski (2005);

Vinciguerra and Stutz (2004)). The first in vitro cleavage and polyadenylation sys-

tems provided early mechanistic insights, and the core RNA level signals that guide

cleavage and subsequent polyadenylation (addition of ∼200 terminal adenosines) at

the 3′ end of transcripts are now well characterized (?). However, much remains to

be discovered regarding how recognition of such sites is regulated and greater consid-

eration for the co-transcriptional context of this process is warranted.

Cleavage and polyadenylation requires recognition of two core RNA sequence ele-

ments: (i) the poly(A) signal (PAS), characterized by an AAUAAA hexamer or close

variant, and (ii) the downstream element (DSE), a less well defined U-rich region

(Figure 1A). The PAS, located 10-30 nucleotides upstream of the site of cleavage

and polyadenylation, is recognized by the cleavage and polyadenylation specificity

factor (CPSF), a multimeric protein complex consisting of 160, 100, 73, and 30 kDa
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subunits (Zhao et al., 1999). The cleavage stimulation factor (CstF), composed of

77, 64, and 50 kDa protein components, binds to the U-rich DSE approximately 30

or fewer nucleotides downstream of the poly(A) site. Direct protein-protein inter-

actions result in mutual stabilization of the CPSF-CstF-RNA complex, and recent

evidence indicates that CPSF-73 acts as the nuclease that catalyzes the cleavage re-

action (Ryan et al., 2004; Mandel et al., 2006). Cleavage factors (CF) Im and IIm and

poly(A) polymerase (PAP) are also required to form a cleavage-competent complex

on the transcript. Following cleavage, CstF, CFIm and CFIIm dissociate and the 3′

cleavage product is degraded by a 5′ → 3′ exonuclease, Xrn2, leaving CPSF and PAP

to complete the polyadenylation step, together with newly recruited poly(A)-binding

protein II (PAB II), required for PAP to achieve its full processive activity.

While cleavage and polyadenylation can occur independently of transcription in

vitro, there is strong evidence that the two processes are coupled in vivo (reviewed

by Proudfoot (2004); Zorio and Bentley (2004)). An important molecular link is the

C-terminal domain (CTD) of the RNA polymerase II (Pol II) large subunit. With

its 52 tandem heptad repeats in mammals (consensus YSPTSPS), the CTD becomes

phosphorylated at Ser5 and then preferentially at Ser2, recruiting components of the

poly(A) machinery as it proceeds along the gene length (Zhang and Corden, 1991;

Komarnitsky et al., 2000). In addition to being a platform for assembly of the poly(A)

machinery, the CTD is an essential component of the cleavage reaction and is required

in vitro in the absence of transcription (McCracken et al., 1997; Hirose and Manley,

1998). The kinetics of transcriptional elongation also appear to have a role in poly(A)

site recognition as downstream pause sites or defects in elongation factors can lead to

enhanced usage of upstream poly(A) sites (Aranda and Proudfoot, 1999; Birse et al.,

1997; Yonaha and Proudfoot, 1999, 2000; Cui and Denis, 2003). Recent reports sug-
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gest that recognition of the AAUAAA PAS in emerging nascent transcripts by CPSF,

which binds to the Pol II body, triggers transcriptional pausing and enables assembly

of an active cleavage complex (Nag et al., 2006, 2007). While the details of assembly

mechanics are still emerging, initial ChIP experiments support a role for downstream

pausing in many genes (Glover-Cutter et al., 2008). Taken together, these data reveal

that through Pol II, DNA level events during transcription can impact processing at

the RNA level.

Eukaryotic DNA is packaged into chromatin and its core repeating unit, the nu-

cleosome, is composed of 146 bp of DNA wrapped around an octamer of histone

proteins, two copies of each H3, H4, H2A, and H2B. While promoters contain nu-

cleosome free regions, nucleosomes are found across the length of genes (Lee et al.,

2004), and provide a continual barrier to Pol II elongation (reviewed by Armstrong

(2007)). The cell employs several methods to overcome this barrier, such as H2A/H2B

removal and reassembly during transcription facilitated by nucleosome assembly fac-

tors, such as FACT (facilitates chromatin transcription) (Belotserkovskaya et al.,

2003). In addition, ATP-dependent chromatin remodeling factors are thought to me-

diate nucleosome sliding and are implicated in a number of steps of transcriptional

elongation (reviewed by Armstrong (2007)). Modifications to histone proteins influ-

ence their interactions with DNA and in particular, acetylation, commonly associated

with actively transcribing genes, may facilitate Pol II passage (Wittschieben et al.,

1999). A few studies have suggested intriguing connections between chromatin and

co-transcriptional RNA processing events. In particular, Nogues et al. (2002) showed

that treatment with trichostatin A, a potent inhibitor of histone deacetylation, cor-

relates with skipping of alternative exons, possibly as a result of hyper-acetylation

of core histones allowing passage of transcribing polymerase. More recently, Batsché
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et al. (2006) demonstrated a role for SWI/SNF nucleosome remodeling complex in al-

ternative splicing, proposing that it functions by recruiting splicing factors to nascent

RNA. In the work described here, we have extended this theme and explored the

relationship between nucleosome positioning and 3′ end processing.

105



Results

Poly(A) signals can influence nucleosome positioning

Recent high-throughput sequencing experiments provide genome-wide nucleosome po-

sitioning information at an unprecedented resolution. Much attention as been given

to nucleosome positioning around transcriptional start sites (TSSs), however details

of positioning patterns across other gene regions remain mostly unexplored.

We used recently published human CD4+ T cell Illumina sequencing data (Barski

et al., 2007; Schones et al., 2008) to examine nucleosome distributions flanking poly(A)

sites. In both studies, chromatin was digested with micrococcal nuclease (MNase) to

produce predominantly mononucleosome-sized DNA. While Schones and coworkers

(2008) gel purified ∼150 bp digested fragments for sequencing, Barski and coworkers

(2007) sequenced the output of chromatin IP (ChIP) experiments separately using

antibodies targeting 20 different histone modifications. Illumina reads with unique

genome matches were considered, and the densities of nucleosomes centered at each

genomic position were estimated as the average of the read densities derived from

each nucleosome end (+/- 75 bp; see Methods). Using read density as a measure of

nucleosome occupancy, we observed a striking depletion of nucleosomes +/- 75 bp

spanning the canonical PAS, AATAAA, upstream of human EST-supported poly(A)

sites (Figure 1B; red curve). Similar patterns were observed using nucleosome data

from Schones et al. (2008) (Figure 1B) or pooled data from the 20 histone ChIP exper-

iments in Barski et al. (2007) (not shown). Differences in nucleosome binding affinity

have been reported for distinct genomic sequences and, in particular, poly(dA:dT)

stretches are known to have poor nucleosome affinity resulting from their resistance

to curvature (Drew and Travers, 1985; Satchwell et al., 1986; Peckham et al., 2007).
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Nucleosome density plots across control AATAAA hexamer occurrences in intergenic

regions (Figure 1B; black curve) confirm that the hexamer alone has a nucleosome

positioning effect. Similar distributions were observed around the most common PAS

variant, ATTAAA, and other A/T-rich motifs (not shown). The controls showed an

enrichment of nucleosomes centered approximately at -150 to -100 and at +100 to

+150, suggesting that the AATAAA hexamer leads to nucleosome phasing in the

neighboring regions. In Figure 1B, read density per genomic position has been nor-

malized to the mean read density across all plotted positions of both sets (displayed

on a log2 scale). Normalization by this global mean allows above average (>1.0) and

below average (<1.0) density regions to be clearly distinguished, while preserving

the magnitude of read density differences between the sets. Both control AATAAA

hexamers and true PASs showed near average normalized nucleosome density (∼1.0)

at +/- 300 bp from the central hexamer. True PASs however did not display a clear

phasing of neighboring nucleosomes and showed an even lower nucleosome occupancy

across the PAS region. These difference may be in part due to additional avoidance

effects from the heterogeneous U-rich DSE, located at a variable downstream distance

from the PAS, together with possible U-rich upstream enhancer elements (Hu et al.,

2005). These observations led us to ask whether nucleosome positioning near the PAS

is associated with differences in PAS activity.

Highly used poly(A) sites are flanked by more precisely posi-

tioned nucleosomes

To investigate the relationship between apparent poly(A) site recognition and nu-

cleosome localization, we defined sets of poly(A) sites with either low or high usage.

Briefly, we built a database of human poly(A) sites identified using expressed sequence
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tags (ESTs) from diverse tissues. ESTs were filtered for evidence of a non-genomically

derived poly(A) tail and a canonical or variant PAS in the -1 to -40 region upstream

of the aligned poly(A) site (Figure S1; similar to Tian et al. (2005); Yan and Marr

(2005)). This approach identified ∼10,000 alternative poly(A) events from ∼5,000

genes. Using an equivalent method to those of Legendre and Gautheret (2003) and

Hu et al. (2005), sites with high usage were defined as those supported by greater

than 70% of the gene’s mapped poly(A) ESTs, whereas low usage sites were defined

as those having less than 30% of the supporting ESTs (unless stated otherwise, all

considered poly(A) sites had at least 2 supporting poly(A) ESTs). For our analy-

ses, we used tandem sets of poly(A) sites with the most common upstream PASs

(AAUAAA, AUUAAA), such that the high and low usage sites were derived from the

same gene set.

High and low usage tandem poly(A) sites showed distinct patterns of nucleosome

occupancy (Figure 2; blue and red curves respectively). In particular, the high usage

sites displayed a more dramatic depletion of nucleosomes in the nucleosome-sized win-

dow (+/- 75 bp) flanking poly(A) sites (P < 10−10). Greater nucleosome enrichment

was observed downstream of high usage sites, between +75 and +375, as compared

to low usage sites (P < 10−7 in 150 bp windows). Consistent with previous stud-

ies (Legendre and Gautheret, 2003; Hu et al., 2005), we observed stronger (closer to

consensus) core poly(A) motifs around high usage sites compared to low usage sites,

scored using weight matrix models (see Methods). To address whether differences in

these core elements, which function at the RNA level, were influencing the differences

in nucleosome distributions between high and low usage poly(A) sites, we sampled the

poly(A) sets to match their poly(A) motif scores. Figure 2 shows nucleosome densi-

ties for the sampled sets, and controlling for the motif scores of core poly(A) elements

108



had little effect on the initial distribution (not shown). These analyses suggest that

high usage sites have more precisely positioned nucleosomes in their flanking regions

as compared to less frequently used sites.

A model of nucleosome affinity

High-resolution measurements of nucleosome positions across entire chromosomes, ob-

tained by tiling-microarray hybridization or cloning and sequencing of MNase digested

chromatin, offered initial characterizations of genome-wide nucleosome distributions

and sequence preferences (Satchwell et al., 1986; Yuan et al., 2005; Segal et al., 2006).

Early models, based on dinucleotide content of nucleosome associated sequences, es-

timated that 54% of in vivo nucleosome positions could be correctly predicted from

sequence alone compared to 39% expected by chance, i.e. within +/- 35 bp of reported

positions (Segal et al., 2006), and use of larger training sets improves performance (J.

Widom, personal communication). These studies suggest that while eukaryotic cells

contain abundant ATP-dependent nucleosome remodeling complexes, whose activity

may over-ride nucleosome sequence preferences in some situations or lead to nucle-

osome removal from specific regions, it is clear that intrinsic sequence affinities are

probably the major contributor to global nucleosome localization.

Nucleosome read densities from recent Illumina sequencing experiments (Barski

et al., 2007; Schones et al., 2008) are orders of magnitude higher than those achieved

using earlier methods. These studies offer ∼10-fold coverage of all nucleosomes, as-

suming one nucleosome every 200 bp, however the number of reads per genomic po-

sition remains low (0.05) and cannot be used to infer nucleosome positioning within

a unique region. Observed nucleosome occupancy, inferred from read densities, is
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influenced by both intrinsic nucleosome sequence affinities and by localization of

DNA-binding proteins or chromatin remodeling enzymes. To clearly separate these

effects and enable assessment of individual 3′ UTRs not well represented in the Illu-

mina data, we sought an objective scoring function for nucleosome sequence affinity.

Several groups have constructed such models. However, most were trained using se-

quences from the yeast Sacchromyces cerevisiae, and due to the small training set

size, they only considered dinucleotide content (Segal et al., 2006; Ioshikhes et al.,

2006; Peckham et al., 2007; Yuan and Liu, 2008). Given the remarkably large num-

ber of nucleosome boundary sequences captured by the more recent human T cell

experiments (Barski et al., 2007; Schones et al., 2008), we set out to devise a model

trained using human sequence and leveraging the large training set size to capture

higher order nucleotide composition.

Using ∼84 million randomly chosen reads, representing 75% of the perfectly and

uniquely mapping reads in the Barski et al. (2007) data set, we trained a fifth-order

Markov model for each position in the 146 bp downstream of mapped read starts.

The choice of a fifth-order model was motivated by both the magnitude of available

training data, and by observations that hexamers with similar dinucleotide content

showed different nucleosome occupancy distributions in flanking regions (not shown).

A background model was trained in the same fashion using an equal-sized set of ran-

domly selected positions from neighboring regions (see Methods). The first 15 nt of

the models were excluded due to the strong sequence bias in the nucleosome start

data, which appears related to technical issues, such as the preference for MNase to

cleave NpA and NpT diester bonds (Figure S2). MNase cleavage occurs preferentially

at nucleosome boundaries, however, in addition to its predominant endonucleolytic

activity, it can also subsequently function as an exonuclease, leading to heterogeneity
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in the cleavage position (Hörz and Altenburger, 1981). While the effects will vary

with digestion conditions, earlier studies used electrophoresis and cloning and esti-

mated such terminal variations to be typically only a few base pairs (Johnson et al.,

2006). High affinity nucleosome sequences are known to contain AT-dinucleotides

with ∼10-bp periodicity, ∼5 bp out of phase with periodic GC-dinucleotides. These

AT and GC periodicities are thought to facilitate bending at positions where the

major groove of DNA faces toward or away from the histone octamer, respectively.

To capture these periodicities, Segal et al. (2006) trained their nucleosome affinity

model using center-aligned nucleosome bound sequences from yeast. Having only ter-

minal reads, we cannot apply this alignment approach. However, Segal and coworkers

(2006) recorded dinucleotide frequencies using a 3 bp moving average, which gener-

ated smoother distributions from their small training set and which they justified by

citing experimental evidence that small changes in spacing of key nucleosome DNA

sequence motifs can occur with relatively small cost to the free energy of histone-DNA

interactions. Given that the anticipated variability in MNase cleavage is on this same

order of magnitude (+/- a few base pairs), we anticipate that global patterns will be

accurately captured by our model.

To test our model, we compared our predicted nucleosome affinity scores to well-

characterized nucleosome occupancy patterns, inferred from Illumina read densities,

for regions surrounding TSSs and found that our model qualitatively reproduces ob-

served distributions (Figure S3). We then used our model to score regions surrounding

poly(A) sites of low and high usage. Comparisons of nucleosome affinity scores (Fig-

ure 3A) with observed nucleosome occupancy (Figure 2) indicated that our model

yields a distribution of affinity scores that resembles the measured nucleosome dis-

tribution in overall shape. Reduced nucleosome affinity is predicted near high usage
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poly(A) sites (0 to +75 bp) and greater nucleosome affinity is predicted downstream

(+75 to +450) as compared to low usage sites (red and blue curves, Figure 3A).

One limitation of our model is that it scores nucleosome affinity per position along

a sequence, but does not consider spatial constraints, such as the inability of two

nucleosomes to occupy overlapping positions. Such positional constraints certainly

influence observed nucleosome occupancy, and while we plan to make appropriate

modifications to next generation models, these effects may in part explain current

discrepancies between our model and the data.

Higher downstream nucleosome affinity is associated with in-

creased usage independent of core poly(A) motifs

Using our scoring method, we explored whether intrinsic nucleosome affinity is pre-

dictive of poly(A) site usage. In particular, we hypothesized that for genes with

multiple alternative poly(A) sites, the relative nucleosome affinity of a site compared

to its competing sites may influence its usage. To test whether larger differences in

nucleosome affinity are associated with larger differences in usage, we collected a set

of alternative sites (see Methods) and calculated pairwise differences in nucleosome

affinity score and usage values. This was done by taking the value for the upstream

poly(A) site in a pair and subtracting off the value for the downstream site. Negative

differences were thus obtained when the downstream site had higher affinity or usage.

To control for the effects of the core poly(A) motifs, we chose to examine nucleosome

affinity downstream of the motifs (from +100 to +246 relative to the poly(A) site).

This analysis controlled for pairwise differences in poly(A) motif scores by subtracting

the upstream score from the downstream score, as done for the other measures.
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Figure 3B illustrates that pairs of alternative poly(A) sites binned by relative

nucleosome affinity (leftmost panel), and sampled to control for relative poly(A) motif

scores, had different relative usage values (rightmost panel). In particular, site pairs

with the most negative change in relative affinity (i.e. the downstream site had higher

affinity than the upstream partner), showed the greatest change in relative usage.

For all relative affinity bins however, the mean relative usage values were negative,

suggesting a strong underlying preference for the downstream site. The modest yet

significant effect observed here (P < 10−4) may underestimate the magnitude of the

true effect, as we have applied a very stringent test that considers only nucleosome

affinity at a downstream location (+100) in order to exclude the potential impact of

known RNA level signals.

Impact of 3′ UTR context

In tandem sets, internal poly(A) sites are typically used less frequently than the ter-

minal site (Tian et al., 2005). As a result, low and high usage sites typically differ

in their flanking nucleotide compositions, with high usage sites often next to down-

stream intergenic sequence and low usage sites adjacent to 3′ UTR internal sequence.

To address whether such sequence context could influence nucleosome density, we ex-

amined tandem poly(A) sites from internal or terminal positions separately (Figure

4A).

Considering only terminal poly(A) sites, nucleosome distributions for high usage

(red curve) and low usage (blue curve) poly(A) sites displayed similar global patterns

to those seen previously (compare Figure 4B with Figure 2). However, comparison

of regions of nucleosome depletion (-75 to +75 bp) or enrichment (+75 to +375 bp)
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for high versus low usage sites, revealed that the differences in nucleosome occupancy

were now more modest, indicating that sequence context is a factor. The nucleosome

distributions observed flanking internal tandem poly(A) sites had more pronounced

differences (Figure 4C). Again, high usage sites showed more extensive depletion of

nucleosomes across the poly(A) site (-75 to +75 bp), however, instead of downstream

enrichment, we observed nucleosome peaks upstream of high usage poly(A) sites, but

not low usage sites (P < 0.01; 150 nt windows). Both these analyses (Figure 4B,C)

were controlled for poly(A) core motif scores. Poly(A) sites with annotated stop

codons within 150 nt were excluded to eliminate effects of protein coding sequence,

and these peaks persisted despite more stringent filters using a +/- 300 nt window

(not shown). One pattern that emerges from these studies is that high usage sites

display more dramatic nucleosome depletion in the region spanning the poly(A) site,

independent of RNA level PASs or 3′ UTR context.
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Discussion

In this study, we sought to explore patterns of nucleosome positioning at the 3′ ends

of genes, using recently published high-throughput sequencing data from nucleosome

boundaries (Barski et al., 2007; Schones et al., 2008). We observed that the PAS

has strong nucleosome positioning effects, and consistent with early studies of nucle-

osome localization across runs of poly(dA:dT) (Drew and Travers, 1985), the PAS

appears to be avoided in the nucleosome core. By considering poly(A) sites with

high or low usage, as defined by relative supporting-EST counts, we found evidence

for lower nucleosome occupancy across high usage sites and higher nucleosome oc-

cupancy downstream of the PAS, independent of poly(A) motif scores or 3′ UTR

context. We trained a nucleosome affinity model using data sampled from across the

genome, and demonstrated that reduced relative nucleosome affinity adjacent to the

poly(A) site and higher relative downstream affinity are characteristic of higher rela-

tive usage. This observation suggests that differences in intrinsic nucleosome affinity

underly some of the differences in nucleosome occupancy.

A handful of experiments point to connections between chromatin structure and

RNA processing. In two studies from the Proudfoot lab, mutations in the chromatin-

remodeling enzymes, Chd1 and Isw1, were both shown to lead to defects in transcrip-

tional termination in yeast (Alén et al., 2002; Morillon et al., 2003). These factors

were implicated in enhancing Pol II pausing during the switch from elongation to ter-

mination. Pol II pausing also has a documented role in regulating alternative RNA

splicing. Slowing the elongation rate of Pol II, as a result of point mutation, led to

increased inclusion of the human alternative fibronectin EDI exon with weak splice

sites (de la Mata et al., 2003). Together with observations that downstream Pol II
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pause sites induced greater poly(A) site usage (Aranda and Proudfoot, 1999; Birse

et al., 1997; Yonaha and Proudfoot, 1999, 2000), these experiments support a kinetic

model where Pol II pausing leads to greater recognition time between the RNA signals

in the nascent transcript and CTD associated RNA processing enzymes. Recently,

qRT-PCR and ChIP experiments demonstrated that overexpression of the human

SWI/SNF subunit Brm led to increased inclusion of and Pol II accumulation on a

variable exon in the CD44 gene, implicating this chromatin-remodeling protein in Pol

II pausing (Batsché et al., 2006). Nucleosomes themselves can impede transcription

in vitro (Knezetic and Luse, 1986). In considering our observations of nucleosome

density flanking poly(A) sites, one model is that downstream regions with greater nu-

cleosome affinity pose a barrier to the elongating Pol II, and induce slowing/pausing,

leading to more frequent recognition of the emerging PASs. However, it is difficult to

reconcile this model with the observed peaks in nucleosome density upstream of high

usage internal sites (Figure 4C; red curve). Allemand and coworkers (2008) proposed

that histones, with their N-terminal tails rich in basic residues, may sequester nascent

RNA directly and facilitate recruitment of RNA processing enzymes. In this case,

perhaps an abundance of nucleosomes on either side of the poly(A) site is sufficient

to promote recognition. However, the most consistent pattern we observed was a

greater depletion of nucleosomes across the poly(A) region in high usage versus low

usage sites (Figure 2, Figure 4 B,C). This drop in nucleosome occupancy is reminis-

cent of evicted nucleosomes immediately upstream of TSSs at promoters, which is

thought to provide greater access to transcription factors. It is possible that associ-

ation of DNA-binding proteins with sequences flanking or overlapping the genomic

poly(A) site could compete with nucleosomes for occupancy of this region, and either

through interactions with Pol II or the Pol II associated poly(A) machinery, facilitate

recognition of the PAS on the nascent transcript.
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There are several areas where our analyses could be extended. First, emerging

high-throughput cDNA sequencing data (mRNA-SEQ) from a spectrum of normal

tissues has the potential to provide more accurate relative expression values for alter-

native regions such as tandem 3′ UTRs, and should be explored in the future. Using

those data to identify alternative poly(A) sites may also lead to a larger 3′ UTR set,

as compared to our current method which generates ∼10,000 poly(A)-EST supported

alternative sites. Second, our model of nucleosome affinity only considers primary se-

quence and does not consider spatial constraints. It is possible that we may predict

a region with a high score to be occupied by a nucleosome, however, this site may be

unoccupied in the presence of an overlapping region with even higher affinity. Captur-

ing aspects of these spatial constraints, either by iteratively searching for the highest

affinity site in the remaining unoccupied sequence space, or by more sophisticated

methods (Segal et al., 2006), should be explored. Considering our careful controls,

we anticipate that these improvements will add statistical power and accuracy to our

analyses, but are unlikely to fundamentally change the results presented here.

Recent studies have demonstrated specific examples of significant nucleosome

repositioning in different cell states. In particular, Schones and coworkers (2008)

provided evidence for stronger phasing of nucleosomes relative to the TSS in transcrip-

tionally active genes compared to inactive genes, correlated with Pol II binding. It is

interesting to consider whether such nucleosome repositioning occurs around poly(A)

sites. For example, during B cell differentiation into plasma cells, cells change their

relative usage of two IgM heavy chain alternative poly(A) sites, switching from pref-

erentially processing a downstream poly(A) site in the B cell stage to favoring an up-

stream, intronic site in plasma cells (reviewed by Edwalds-Gilbert et al. (1997)). The

truncated transcript produced in plasma cells lacks two downstream transmembrane
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domains and thus is responsible for the developmental switch from membrane-bound

to secreted IgM. It would be interesting to explore whether differences in nucleo-

some positioning occur across alternative poly(A) sites in different cell states. While

not addressing this question directly, preliminary analyses using constitutive poly(A)

sites in transcriptionally active and inactive genes do not show dramatic nucleosome

repositioning as observed at TSSs (Figure S4). It seems reasonable that the binding

of Pol II to the TSS of transcriptionally active genes may be responsible for this

repositioning. As poly(A) factors recognize their target motifs at the RNA level, it

is possible that there is no equivalent competition between a DNA-binding protein

and nucleosomes to induce such changes near poly(A) sites, however the nature of

nucleosome dynamics at distinct gene locations remains to be explored.
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Methods

Illumina read data

Genome mappings (to human genome release hg18) of Illumina sequencing reads

(mostly 25 bp in length) were downloaded from http://dir.nhlbi.nih.gov/papers/

lmi/epigenomes/hgTcell.html and from http://dir.nhlbi.nih.gov/papers/lmi/

epigenomes/hgtcellnucleosomes.html. Only uniquely mapping reads were consid-

ered, producing 118 million nucleosome derived reads from Barski et al. (2007), and

254 million reads from Schones et al. (2008) where one and two mismatches were

tolerated. Reads with greater than 10 occurrences were removed to avoid rare outlier

cases likely a result of technical biases. Given an arbitrarily defined sense strand (the

direction of transcription for gene regions), reads matching the sense strand were

labeled 5′ and reads matching the antisense strand were labeled 3′ to reflect their

positions on either side of the nucleosome. For all analyses, total read counts at a

given genomic position for a region set were normalized to the number of regions,

to generate mean read counts per position (density). At each genomic position, the

mean nucleosome density was estimated by taking the average of the 5′ read density

at -75 bp and the 3′ read density at +75 bp, positions roughly corresponding to the

centered nucleosome ends. These normalize values were divided by a global aver-

age in the query region to facilitate distinguishing enriched and depleted nucleosome

densities.

Poly(A) sites: database construction and subsets for analysis

Genome-wide sequence alignments of available cDNAs and ESTs were obtained from

the University of Santa Cruz Genome Browser Database. Uniquely mapping cDNAs
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and ESTs were filtered for evidence of a non-genomically derived poly(A) tail and a

canonical or variant PAS (Beaudoing and Gautheret, 2001) in the -1 to -40 region

upstream of the aligned poly(A) site (Figure S1). The resulting set was then mapped

to a comprehensive and non-redundant set of reference sequence (Refseq) transcripts

(Pruitt et al., 2005) and clustered to create a database of poly(A) sites.

Tandem 3′ UTRs used in Figure 2 and Figure 3A were selected to contain either

an AATAAA or ATTAAA PAS in the -40 to -1 region upstream of the poly(A) site.

Larger poly(A) site sets used for analysis in Figure 3B followed poly(A) definitions

outlined in Tian et al. (2005), as used for the generation of PolyA DB (sites with

only single poly(A)-EST support were included). Intergenic control hexamers were

selected from regions without any cDNA/EST coverage and at least 500 nt from the

nearest gene annotation. The 200 nt around each AATAAA hexamer was filtered to

not contain any repeat elements as detected by RepeatMasker.

Poly(A) motif scoring

Weight matrix models of core poly(A) motifs described in Hu et al. (2005) were

obtained as a part of their Polya svm distribution, http://exon.umdnj.edu/polya

svm/. The output of polya svm.pl run in matching-element-mode was parsed to

obtain scores for each poly(A) cis-element. The sum of the score for the CUE2

element, corresponding the PAS, and the average score for the CDE1-CDE4 elements,

corresponding to the U-rich downstream signals, was reported as the core poly(A)

motif score.
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Sampling procedures and statistics

Sampling between poly(A) site sets was done by selecting a set as a reference (typ-

ically the smaller set), and then for each poly(A) site in the reference set, selecting

at random and without replacement a poly(A) site with a similar value for the query

variable (within some predefined window) from each of the other sets. If such a

poly(A) site could not be found, the initial reference poly(A) site was skipped. Sam-

pled sets were tested by Wilcoxon rank sum test to ensure they did not differ in the

query variable (P > 0.1).

Nucleosome affinity model

∼84 million Illumina read starts, representing 75% of the perfectly and uniquely

mapping reads in the Barski et al. (2007) data set, were chosen at random for the

nucleosome training set. An equally sized background set was obtained by randomly

sampling a position within +/- 500 bp of each of the read starts in the nucleo-

some training set (excluding sites mapped by other read starts in the nucleosome

training set). Using these data, a fifth-order Markov model was trained for every

position n in the nucleosome occupied region (or control region), such that we ob-

tained P (Xn = x|Xn−1 = xn−1, ..., Xn−5 = xn−5) for every n = 1...146. Due to bias

in the first 15 nt downstream of the read starts (Figure S2), positions 1 to 15 were

subsequently excluded from the model. This effect is likely a result of MNase bias

to cleave NpA and NpT diester bonds (Hörz and Altenburger, 1981) and has been

observed previously (Johnson et al., 2006).

Nucleosome affinity scores were calculated as the log2 ratio of P (seq|nucleosome model)

to P (seq|background model). As only positions 16 to 146 of the nucleosome bound
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sequence were considered due to sequence bias mentioned above, the coordinate for

an affinity score was corrected by -15 nt. Scores were plotted at a 73 bp offset to

reflect the center of the corresponding nucleosome.
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Figure 1: A. Schematic representation of mammalian PASs based on Zhao et al., 1999. B. Nucleosome
density around human PASs (red) or control intergenic AATAAA hexamers (black). Position 0 corresponds
to the first base of the AATAAA hexamer. Only poly(A) sites containing at least one occurrence of this
hexamer in the 40 nt upstream of the poly(A) site were included, and sites were filtered to be at least 500
nt from the upstream stop codon and any other alternative poly(A) site. Nucleosome density was calculated
as the average of the 5′ and 3′ read densities (Schones et al., 2008 data), normalized to the mean density for
both sets in the entire window of +/- 500 bp, and plotted on a log2 scale (see Methods). Normalized density
values were smoothed by plotting the average value from 50 nt sliding windows positioned every 10 nt.
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Figure 2: Nucleosome density around human poly(A) sites of low or high usage. Tandem poly(A) sites
with either AATAAA or ATTAAA upstream PASs were used. Sites supported by less than 30% of the gene’s
polyadenylated ESTs were considered to have low usage (blue), and those with greater than 70% of the
supporting ESTs were considered to have high usage (red). Density values (Barski et al., 2007 and Schones
et al., 2008 data combine) were normalized and smoothed as in Figure 1. Low and high usage poly(A) site
sets have been sampled to control for core poly(A) motif scores. Wilcoxon rank sum P -values shown for 150
bp windows centered on indicated positions.

128



Figure 3: A. Mean nucleosome affinity scores (NAS) for positions around human poly(A) sites of low (blue)
or high (red) usage as in Figure 2. B. Pairs of alternative poly(A) sites, where a pair belongs to the same gene,
were binned by their differences in nucleosome affinity scores for the sequence starting at +100 downstream
of the poly(A) site (outside the range of known poly(A) signals). These sets of pairs were sampled to control
for differences in core poly(A) motif scores (same sampling method as performed in Figure 2; see Methods).
Mean differences in nucleosome affinity scores (leftmost panel) and site usage (rightmost panel) are shown
for the sampled sets together with standard error bars and Wilcoxon rank sum P -values for extreme bins.
To maximize power in this stringent test, poly(A) sites supported by single poly(A)-ESTs were included.
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Figure 4: A. Schematic representation of tandem poly(A) sites with poly(A) supporting ESTs mapped
below (blue boxes: exons; gray box: 3′ UTR). B. Nucleosome density around terminal human poly(A) sites.
Sites supported by less than 30% of the gene’s polyadenylated ESTs were considered to have low usage (blue),
and those with greater than 70% of the supporting ESTs were considered to have high usage (red). Density
values (data from Schones et al., 2008) were normalized and smoothed as in Figure 1. Low and high usage
poly(A) site sets have been sampled to control for core poly(A) motif scores. Wilcoxon rank sum P -values
shown for 150 bp windows centered on indicated positions. All sites are supported by at least two ESTs, and
filtered to be at least 150 nt from the upstream stop codon and any other alternative poly(A) sites. C. Same
as (B) only using internal poly(A) sites.

130



Chapter 4
—

Concluding Comments

131



132



Chapter 4

Concluding Comments

Computational miRNA target prediction is a valuable step in uncovering miRNA

functions. An early example of the power of genome-wide computational predictions

came from the bantam miRNA in Drosophila where initial methods predicted the

pro-apoptotic gene Wrinkled, often referred to as head involution defective (hid), as

a target and helped to define a role for bantam in stimulating cell proliferation and

preventing apoptosis (Brennecke et al., 2003). In addition to identifying critical indi-

vidual targets, target prediction can reveal enrichment of functional classes of genes

which together help to define an in vivo role, such as the over-representation of cell

cycle genes among miR-16 targets pointing to its function in negative regulation of

cell cycle progression (Linsley et al., 2007).

We have made several significant contributions to improved target prediction,

presented in detail in Chapter 2. Unlike most commonly used target prediction algo-

rithms which rely heavily on conservation of 3′ UTR seed matches complementary to

miRNA seeds (John et al., 2004; Lewis et al., 2005; Krek et al., 2005), our method con-

siders the regulatory contributions of both conserved and non-conserved target sites.

To do so, we used several novel targeting determinants uncovered through analyses
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of mRNA expression profiles following miRNA overexpression or disruption. These

features included the importance of an A or U at the position opposite miRNA base

9, independent of complementarity to the miRNA, potentially revealing a position-

specific sequence preference of the silencing complex. We also found evidence that

both increased AU content and conservation in the regions flanking seed matches in-

dependently are associated with greater down-regulation of the target mRNA. These

features suggest a model whereby the sequence context, either through its intrinsic

secondary structure or affinity for RNA-binding proteins, influences recognition by

the silencing complex. Our work provides a better characterization of the relative

contributions of different seed match types, which together with the features men-

tioned above, was incorporated into a miRNA target ranking scheme, TargetRank.

Our method successfully separates responsive and non-responsive miR-155 targets

detected in a miR-155 knockout T cell system (Rodriguez et al., 2007), validating the

relevance of our rankings in vivo. At about the same time as publication of this work,

Grimson and coworkers (2007) published an independent study corroborating many

of the targeting determinants presented here, and provided luciferase assay data fur-

ther demonstrating the importance of seed match context. We have provided a web

interface (http://genes.mit.edu/targetrank/) which we anticipate will serve as a

valuable resource of prioritized, predicted miRNA-mRNA interactions. Our studies

have also revealed the applicability of miRNA targeting rules to prediction of siRNA

off-target effects. Accordingly, we have enabled target prediction of arbitrary input

siRNA sequences through our web interface, which we hope will assist a large com-

munity of researchers in the design and interpretation of RNAi experiments.

Our work provides evidence that the sequence context of a miRNA seed match is

important for its proper recognition. An important area for future work will be in
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better understanding how miRNA-mRNA interactions are regulated. A recent study

of the miR-430 target nanos1 in zebrafish embryos demonstrated that expression of

Dnd1, which recognizes U-rich sequences, disrupts association of miR-430 with U-

rich flanked miR-430 seed matches in the 3′ UTR of the nanos1 transcript (Kedde

et al., 2007). This mechanism enables nanos1 expression despite high miR-430 levels.

In an independent study, an AU-rich-element binding protein, HuR, was shown to

relieve the CAT-1 mRNA from miR-122 repression under stress conditions (Bhat-

tacharyya et al., 2006). Characterization of target levels under diverse conditions,

together with studies of common 3′ UTR motifs and their co-occurrence with miRNA

target sites, will likely shed light on these regulatory relationships. It seems likely

that such insights will enable future computational target prediction to consider not

only sequence features of the 3′ UTR, but also information regarding expression of

regulatory proteins, thus predicting target activity in a given cellular state.

Biochemical approaches to miRNA target identification have been reported re-

cently and offer promise as complementary methods for computational prediction.

These methods involved stable expression of tagged Argonaute proteins in Drosophila

or human cells, overexpression of a particular query miRNA, and subsequent microar-

ray profiling of RNA from am immunoprecipitation (IP) targeting tagged silencing

complexes (Easow et al., 2007; Karginov et al., 2007). One challenge of this approach

is that the silencing complex may induce deadenylation of its bound mRNA, such

that the transcripts targeted for IP enrichment are also subject to degradation. To

compensate for these effects, Easow and coworkers (2007) also profiled total RNA

levels and calculated a Net IP enrichment value per target, that combines both the

RNA level change and the IP enrichment in response to the miRNA. The degree to

which a miRNA directs translational repression or mRNA deadenylation appears to
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vary across mRNA targets, and these IP methods may be particularly useful in the

identification of the target subset that is primarily regulated at the translational level.

Refined methods that are able to achieve greater fold enrichment, may provide high-

throughput approaches to not only identify targets, but to also better understand

how RISC association is differentially regulated across cell types or conditions. These

approaches present valuable complementary methods to computational analyses.

We have also provided preliminary evidence for a relationship between chromatin

structure and RNA processing at poly(A) sites, discussed in Chapter 3. Using re-

cently published high-throughput Illumina sequencing of nucleosome boundaries de-

tected by MNase digestion of human T cells (Barski et al., 2007; Schones et al.,

2008), we observed a striking depletion of nucleosomes across the canonical poly(A)

signal, AATAAA, or common variant, ATTAAA. While nucleosome occupancy flank-

ing control hexamers in intergenic regions suggested that the hexamer itself has strong

nucleosome positioning characteristics, likely due to its reduced flexibility in wrapping

around the nucleosome core, we found evidence that increased nucleosome occupancy

in flanking regions, and nucleosome depletion across the poly(A) site itself, are cor-

related with increased usage of the poly(A) site. Sequence composition clearly influ-

ences nucleosome association, and we have constructed a fifth-order Markov model

that successfully reproduces features of the nucleosome distribution surrounding tran-

scriptional start sites and poly(A) sites. Application of this affinity scoring method

provided additional support for a relationship between local nucleosome positioning

and poly(A) site usage.

A large body of work documents the influence of chromatin on transcription (re-

viewed by Li et al. (2007)), but its potential role in co-transcriptional RNA processing
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is mostly unexplored. Our preliminary results regarding the association between nu-

cleosome positioning and poly(A) site usage could benefit from direct experimental

tests of this relationship. Relative poly(A) site usage could be tested in a tandem

poly(A) site reporter, with poly(A) sites having identical known RNA-level motifs

but different chromatin contexts, as a result of sequences with different nucleosome

affinities at more distant positions (e.g. +/- 100 bp of the poly(A) signal) to avoid

disruption of the poly(A) site itself. For such studies, accurate detection of poly(A)

site usage, nucleosome positioning, and Pol II accumulation (pausing) are needed.

Such a system would be extremely valuable in helping to sort out possible mecha-

nisms suggested by computational analyses.

In the work presented here, we have explored two types of RNA signals, miRNA

seed matches and poly(A) signals, and characterized how their sequence contexts

can influence their regulation. While considered separately, exploration of the con-

nections between miRNA targeting capacity and alternative 3′ UTRs resulting from

differential poly(A) site usage poses an interesting area for future work. Computa-

tional studies using ESTs demonstrated that miRNA-targeted isoforms are present

at reduced levels in tissues expressing the corresponding miRNA (Legendre et al.,

2006). Stark and coworkers presented evidence that expression of a muscle-specific

isoform of Tropomyosin 1 in Drosophila corresponded to a switch from a different 3′

UTR containing miR-1 seed matches, a muscle-specific miRNA (Stark et al., 2005).

They proposed a model whereby the negative effects of possible aberrant splicing to

the alternative, non-muscle isoform are suppressed by the interaction of miR-1 with

target sites in the non-muscle transcript. One challenge with these analyses is in

distinguishing between the choice in poly(A) site and miRNA-driven isoform down-

regulation. As with the Tropomyosin 1 example, these events are likely coordinated
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and reinforce a common signal. Global analyses of alternative 3′ UTR usage in the

context of miRNA targeting will likely reveal its wide-spread importance.

We have applied a unified statistical approach that involves controlling for poten-

tially confounding variables through sampling, which has proven useful in resolving

contextual features from high-throughput data sets. These approaches can be readily

applied to other regulatory signals, such as splicing motifs in RNA or transcription

factor binding sites in DNA, and it would be interesting to investigate the effects

of sequence context on these diverse recognition processes using similar approaches.

Improved understanding of the influence of sequence context on regulatory motifs

will not only assist in better prediction of functional sites, but will also be valuable in

identifying mutations that may lead to misregulation and underlie disease phenotypes.
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Little is known about the patterns of intron gain and loss or the relative contributions of these two processes to gene
evolution. To investigate the dynamics of intron evolution, we analyzed orthologous genes from four filamentous
fungal genomes and determined the pattern of intron conservation. We developed a probabilistic model to estimate
the most likely rates of intron gain and loss giving rise to these observed conservation patterns. Our data reveal the
surprising importance of intron gain. Between about 150 and 250 gains and between 150 and 350 losses were inferred
in each lineage. We discuss one gene in particular (encoding 1-phosphoribosyl-5-pyrophosphate synthetase) that
displays an unusually high rate of intron gain in multiple lineages. It has been recognized that introns are biased
towards the 59 ends of genes in intron-poor genomes but are evenly distributed in intron-rich genomes. Current
models attribute this bias to 39 intron loss through a poly-adenosine-primed reverse transcription mechanism.
Contrary to standard models, we find no increased frequency of intron loss toward the 39 ends of genes. Thus, recent
intron dynamics do not support a model whereby 59 intron positional bias is generated solely by 39-biased intron loss.
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Introduction

Over a quarter of a century after the discovery of introns,
fundamental questions about their function and evolutionary
origins remain unanswered. Although intron density differs
radically between organisms, the mechanisms by which
introns are inserted and deleted from gene loci are not well
understood. A correlation has been observed between intron
density and positional bias (Mourier and Jeffares 2003).
Introns are evenly distributed within the coding sequence of
genes in intron-rich organisms, but are biased toward the 59

ends of genes in intron-poor organisms. This bias is
particularly pronounced in the yeast Saccharomyces cerevisiae.
It has been suggested that both the paucity and positional
bias of introns in yeast may be due to intron loss through a
mechanism of homologous recombination of spliced mes-
sages reverse-transcribed from the 39 poly-adenylated tail
(Fink 1987). This reverse transcription mechanism was first
demonstrated in experiments with intron-containing Ty
elements in yeast (Boeke et al. 1985). More recently, Mourier
and Jeffares (2003) concluded that homologous recombina-
tion of cDNAs is the simplest explanation for the positional
bias observed in all intron-poor eukaryotes. However, few
data exist concerning the actual mechanisms and dynamics of
intron evolution.

Fungal genomes are in many ways ideal for exploring
questions of intron evolution. The fundamental aspects of
intron biology are shared between fungi and other eukar-
yotes, making fungi appropriate model organisms for intron
study. They are gene dense with relatively simple gene
structures compared with plants and animals, making gene
prediction more accurate. Fungi also display a wide diversity
of gene structures, ranging from far less than one intron per
gene for S. cerevisiae, to approximately 1–2 introns per gene
on average for many recently sequenced ascomycetes
(including the organisms in this study), to roughly seven
introns per gene on average for some basidiomycetes (e.g.,
Cryptococcus). Finally, fungi display a strong 59 bias in intron

positions, enabling us to investigate the processes underlying
this phenomenon.
In principle, a 59 intron bias could arise through various

combinations of intron gain and loss, and a complete
understanding of intron positional bias requires an assess-
ment of the contributions of both of these processes. A
number of studies demonstrate the occurrence of intron gain
and loss in individual genes or gene families. Logsdon et al.
(1995) offered early examples of well-supported intron gain
by comparing triose-phosphate isomerase genes from diverse
eukaryotes and demonstrated that numerous introns could
be most parsimoniously explained by a single gain with no
subsequent losses. O’Neill et al. (1998) later provided evidence
for de novo intron insertion into the otherwise intron-less
mammalian sex-determining gene SRY. Evidence for the
occurrence of multiple independent intron losses has also
been reported in studies such as those by Robertson (2000),
who inferred gain and loss events in a family of chemo-
receptors in Caenorhabditis elegans.
More recently, a number of genome-wide studies of intron

dynamics have been conducted. Roy et al. (2003) described
genome-wide comparisons between human and mouse (with
Fugu as an outgroup) and between mouse and rat (with
human as an outgroup), and observed a sparseness of intron
loss and complete absence of intron gain in these closely
related organisms. On the other hand, Rogozin et al. (2003)
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observed an abundance of lineage-specific intron loss and
gain when analyzing clusters of orthologous genes in deeply
branching eukaryotes. Similarly, Qiu et al. (2004) analyzed ten
protein families in distantly related eukaryotes, with a single
prokaryotic outgroup, and obtained evidence that extant
introns are predominantly the result of intron gains. In
search of clues to understand the mechanism of intron gain,
Fedorov et al. (2003) aligned introns from various eukaryotes,
and Coghlan and Wolfe (2004) applied a similar approach in a
comparative study of nematodes. None of these studies
addressed the positional bias of intron gain and loss events.
Here we report the results of a genome-wide comparative
analysis of intron evolution in organisms that have a strong 59

bias in intron location and are at an appropriate evolutionary
distance to reveal positional trends in intron gain and loss.

Results

To investigate the roles of both gain and loss in intron
evolution, we compared the genomes of four recently
sequenced fungi spanning at least 330 million years of
evolution (Taylor et al. 1999; Berbee and Taylor 2000;
Heckman et al. 2001) (Figure 1): Aspergillus nidulans, Fusarium
graminearum, Magnaporthe grisea, and Neurospora crassa. Ortho-
log sets composed of one gene from each of the four genomes
were identified as pairwise best bidirectional BLAST hits
satisfying stringent overlap criteria. Orthologs in each set
were subsequently aligned, and the locations of introns were
marked. These intron positions (regions of the multiple
sequence alignment containing an intron in at least one of
the four sequences) were subjected to rigorous alignment
quality filtering to eliminate alignment and annotation errors
(Figure 2A). To set the filtering thresholds, we manually
classified ten residue alignment windows on either side of 181
randomly selected intron positions as ‘‘clearly homologous,’’
‘‘possibly homologous,’’ or ‘‘non-homologous.’’ Requiring
30% identity and 50% similarity in these windows captured
92% of the clearly homologous positions, 29% of the possibly
homologous positions, and only 2% of the non-homologous
positions (Figure 2B). Passing intron positions were split into
five quintiles according to their relative position within the
annotated coding sequence.

Genome-Wide Characterization of Intron Conservation
We applied our analysis protocol to 2,073 putative ortholog

sets that included 9,352 intron positions. Of these initial
intron positions, 5,811 were removed because of low
conservation surrounding the intron, or because of an
adjacent gap, or both. It is possible that some of the positions

neighboring gaps may in fact reflect intron gain or loss events
that occurred simultaneously with coding sequence insertion
or deletion (Llopart et al. 2002). However, removing these
positions did not significantly impact our results, as the
number of positions adjacent to gaps was only about one-
tenth of the number of positions that passed the quality filter,
and the removal of these introns did not alter the apparent
positional bias of the overall distribution (Figure 3). An
additional 92 introns had nearby introns with insufficient
conservation between the two introns and were thus also
rejected.
In the end, a total of 3,450 intron positions (roughly 37% of

intron positions considered) passed the quality filter. The
complete set of aligned orthologs with passing and failing
intron positions is provided in Table S1. These data
constitute a genome-wide survey of high-confidence aligned
intron positions and their patterns of conservation over at
least 330 million years of evolution.
An example of an alignment of putative orthologs with

three passing intron positions is shown in Figure 4A. In each
passing intron position (black-edged rectangles), individual
introns are labeled according to the classes previously
outlined in Figure 1B. One intron position is conserved
across all four species (green rectangle), one is a raw gain in N.
crassa (blue box), and the third is present only in A. nidulans,
and, because of the ambiguity in inferring gain or loss in this
case, is classified as ‘‘Other’’ (black-edged gray rectangle).
Examining the region around the one raw gained intron in N.
crassa at the nucleotide level (Figure 4B) reveals a clean
insertion of the intron sequence within a highly conserved
region. The gained intron has consensus terminal dinucleo-
tides (GT. . .AG) and a putative branch point sequence that
matches the yeast consensus (TACTAAC) at six of seven
positions. In addition, this set of orthologs contained one
poorly aligned intron position (Figure 4A, unedged gray
rectangle) that was excluded by our filters. All three passing
positions (black-edged rectangles) display high amino acid
sequence conservation on both sides flanking the intron,
supporting the correctness of the alignment. In contrast, the
failing intron position (unedged gray rectangle) is adjacent to
a region of the alignment that lacks significant conservation.
The 39 flank of this intron position displays considerable
variation, especially with respect to the M. grisea gene, which
was predicted to have a much longer 39 coding region. In such
an alignment region, it is difficult to distinguish true
differences in intron conservation from potential annotation
or alignment errors. Our filtering process thus eliminated this
position from further analysis.

Figure 1. Phylogenetic Tree and Intron

Conservation Patterns

(A) Phylogenetic tree of the four fungal
organisms studied (M. grisea, N. crassa, F.
graminearum, and A. nidulans) with esti-
mated time scale in millions of years ago.
The rooted organismal tree was con-
structed using an unweighted pair group
method using arithmetic averages based on
a concatenated alignment of 2,073 orthol-
ogous gene sets. Estimated dates of diver-

gence from Taylor et al. (1999), Berbee and Taylor (2000), and Heckman et al. (2001).(B) Classification of intron presence (þ) and absence (�)
patterns across the four fungal species. A blue ‘‘þ’’ indicates a raw intron gain in the corresponding organism, a red ‘‘�’’ indicates a raw intron
loss in the corresponding organism, a green ‘‘þ’’ indicates a conserved intron, and all other introns are indicated in black.
DOI: 10.1371/journal.pbio.0020422.g001
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Calculation of Raw Gains and Losses
We calculated ‘‘raw gains’’ and ‘‘raw losses’’ by positional

quintile for each organism other than the outgroup, A.
nidulans. We defined raw gains as those introns present in
only a single organism (see Figure 1B). We defined raw losses
as those introns that are absent in the organism in question,
present in some other descendant of the organism’s parent (a
‘‘sibling’’), and present in some non-descendant of the parent
(a ‘‘cousin’’) (Figure 1B). Intron positions are considered
conserved if present across all four organisms. Patterns of
intron presence and absence that are not captured by the
above definitions were excluded from the raw counts because
of the ambiguity in inferring intron gain or loss events in
such cases (marked as ‘‘Other’’ in Figure 1B).

Probabilistic Model of Intron Gain and Loss
Raw gain and loss counts are based on parsimony and may

differ somewhat from the true number of gain and loss
events. The set of raw gains may include introns that were lost
in multiple lineages, thus overcounting the true number of
gains in a given lineage. Similarly, the set of raw losses
excludes introns lost in the given organism and also lost in all
cousins or siblings (marked as ‘‘Other’’ in Figure 1B).

We used a probabilistic model to correct for these
inaccuracies. Our model assumes that all loss and gain events
occur independently and uniformly within each quintile. In
particular, we assume Dollo’s postulate (Dollo 1893): any
introns that align to the same position must have a common
ancestor (no ‘‘double gains’’), as in Nei and Kumar (2000) and

Rogozin et al. (2003). Our method differs from the Dollo
parsimony method described in Farris (1977) and applied in
Rogozin et al. (2003) in that we do not artificially minimize
loss events by assuming that gains occurred at the latest
possible point in evolution. It also differs in that we allow
different branches of the phylogenetic tree to have different
rates of loss and gain. We applied our method separately to
each of the five positional quintiles for each organism other
than the outgroup, A. nidulans.
First we estimate two types of intron loss rates. The

organismal loss rate, q, is calculated by dividing the number of
raw losses in an organism by the total number of introns
present in at least one sibling and at least one cousin. This
represents the fraction of introns in the parent that did not
survive to the present day in that organism. For instance, the
organismal loss rate in F. graminearum is given by

q ¼ ðAM þ AN þ AMNÞ=ððAM þ AN þ AMNÞþ
ðAFM þ AFN þ AFMNÞÞ ð1Þ

where AM, for example, represents the number of intron
positions with an intron present in A. nidulans (A) and M.
grisea (M) but absent from F. graminearum (F) and N. crassa
(N).
The sibling loss rate, r, is defined for a given organism as

the fraction of introns in the parent that did not survive in
any sibling. We define ‘‘sibling raw losses’’ for an organism as
the number of introns that are present in the organism and at
least one cousin but in no sibling. This quantity is then

Figure 2. Alignment Filtering Protocol

(A) Schematic of filtering protocol ap-
plied to a ten-residue window on each
side of every intron position. If either
side failed the filter, the position was
discarded.
(B) Distributions of minimum percent
identity and similarity in ten-residue
windows around 181 randomly selected
intron positions, for three manual clas-
sifications. The minima were taken be-
tween the left and right windows. The
yellow lines indicate the chosen thresh-
olds of at least 50% similarity and 30%
identity, and bars are colored yellow if
they fall above the thresholds (pass) or
orange if they fall below the thresholds
(fail). Parentheses indicate the number
of introns in each class that pass the
cutoff and the total number of introns in
that class. The five lowest-percent iden-
tity and similarity bars, containing 77
positions, in the ‘‘non-homologous’’ plot
are omitted so as to not obscure the rest
of the histogram.
DOI: 10.1371/journal.pbio.0020422.g002
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divided by the number of introns present in that organism
and at least one cousin to give the sibling loss rate. For
example, the sibling loss rate for F. graminearum is given by

r ¼ ðAFÞ=ðAF þ AFM þ AFN þ AFMNÞ: ð2Þ

We next correct the raw gains for each organism. Raw gains
include some introns that were in fact lost in all but one
lineage. We use the loss rates to calculate the expected
number of these multiple losses, m, and subtract this quantity
from the raw gains to obtain ‘‘inferred gains.’’ To calculate m
we first count B0, the number of introns conserved in the

organism and at least one sibling, but in no cousin. The
quantities m and B0 are related through the variable n0, the
number of introns present in an organism’s parent but not in
any cousin, by the equations

m ¼ n0rð1� qÞ ð3Þ

and

B0 ¼ n0ð1� rÞð1� qÞ: ð4Þ

This follows from our assumption of independent gains and
losses. Thus, we can calculate the expected number of
multiple losses as

m ¼ B0r=ð1� rÞ: ð5Þ

We use the loss rates to estimate the number of introns in
each organism’s parent. To do so, we estimate separately the
number of parental introns present in at least one cousin n1,
and the number not present in any cousin n0 (introduced
above). To estimate the size of the set of parental introns
present in at least one cousin, we first count the subset of
these introns that are presently observable. An intron is in
this set if it is present in at least one cousin and at least one
sibling, or is present in at least one cousin and in the
organism in question. We call this number of introns B1. By
the assumption that gains and losses are independent, we
have

B1 ¼ n1ð1� qrÞ: ð6Þ

Using this relation and the one in equation 4 above, we
calculate the number of introns in the phylogenetic parent as

ntotal ¼ n1þn0 ¼
B1

ð1� qrÞ þ
B0

ð1� qÞð1� rÞ : ð7Þ

Finally, we correct raw losses. Our definition of raw losses
undercounts the true number by omitting those introns not
conserved in at least one cousin and at least one sibling.
Taking F. graminearum as an example, the true number of
losses would also include some introns conserved in the
patterns A, M, N, and MN. We calculate the number of
inferred losses as ntotalq.
This method can be extended to any phylogenetic tree and

to any organism with at least one cousin.

Abundance of Intron Gains
One immediate conclusion stemming from our analysis is

the importance of intron gain. A summary of all raw and
inferred gains and losses is shown in Figure 3. Substantial
numbers of gained introns were observed in all three
organisms—more than 100 independent inferred gains in
each lineage, with over 200 in M. grisea (Figure 3B). The total
numbers of gains that have occurred in each genome are
likely to be substantially higher, since only predicted
orthologs in all four species were considered, and roughly a
third of the introns in these genes passed our quality filters.
Differences in intron dynamics between lineages are also
apparent, with the numbers of gained and lost introns
approximately balanced in M. grisea and F. graminearum, but
with roughly twice as many losses as gains in N. crassa (Figure
3D). It is thus apparent from these data that the process of
intron gain plays a significant role in intron evolution.

Figure 3. Positional Biases in Intron Gain and Loss

Relative intron positions were defined as the number of bases in the
coding sequence upstream of the intron divided by the total length of
the coding sequence. These relative positions were binned into five
categories (quintiles), each representing one-fifth of the coding
sequence length (quintiles numbered 1–5 on the x-axis).
(A) Introns passing quality filter (light blue, back) and introns
adjacent to gaps in the protein alignment that were removed by our
quality filter (orange, front).
(B) Raw and inferred gains. Raw gains (green, back) are those introns
present in exactly one organism (excluding the outgroup, A. nidulans).
Inferred gains (blue, front) are corrected for the estimated number of
cases that arose by other combinations of gain and loss events.
Inferred gains are thus slightly lower than raw gains.
(C) Raw and inferred losses. Raw losses (green, front) are those
introns absent in the organism in question but present in at least one
of its siblings (descendants of its parent in the phylogenetic tree) and
one of its cousins (non-descendants of its parent). Inferred losses (red,
back) are corrected for the estimated number of introns lost along
multiple lineages, or gained and then lost. Inferred losses are thus
slightly higher than raw losses.
(D) Number of introns gained (blue) and lost (red) since last common
ancestor (losses shown as negative numbers).
(E) Intron loss rate at each position since last common ancestor
(introns lost per ancestral intron). Error bars represent binomial
standard deviation.
DOI: 10.1371/journal.pbio.0020422.g003
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1-Phosphoribosyl-5-Pyrophosphate Synthetase Genes
Display Lineage-Specific Increases in Intron Gain Rate

A striking example of intron gain occurs in a set of putative
orthologous 1-phosphoribosyl-5-pyrophosphate (PRPP) syn-
thetase genes. These genes encode a widely conserved protein
that catalyzes the production of PRPP, a precursor in the
nucleotide biosynthesis pathway. In contrast to the majority
of orthologs that displayed fewer than two gained introns, the
set of PRPP synthetase genes displayed a total of 22 raw gains
(Figure 5A, blue boxes) that passed our alignment quality
filters: six in N. crassa, 14 in M. grisea, and two in F.
graminearum. The number of raw gains in the PRPP synthetase
genes in M. grisea and N. crassa was significantly higher (p , 3
3 10�22 and p , 4 3 10�9, respectively) than the average for
other genes analyzed, resulting in unusually large numbers of
introns in these genes (Figure 5B). In comparison, the
numbers of introns in PRPP synthetase genes in available
animal genomes were within the typical range for the
respective organisms, e.g., five in C. elegans, and six in fruitfly,
human, mouse, rat, and Fugu. Thus the rate of intron gain for
the PRPP synthetase gene in some fungi is unusually high.
This gene represents an extreme example of the impact of
intron gain and illustrates the variability of gain rates in
different lineages.

Fungal Introns Display Phase Bias, but Lack Observable
Sequence Preference

For each in-group lineage (M. grisea, N. crassa, F. graminea-
rum), we determined the frequency of phase 0, 1, and 2
introns in the set of all intron positions (Table 1). In contrast
to recent reports based on a much smaller sample size
indicating that phase frequencies for extant fungal introns do
not differ significantly from a uniform distribution (Qiu et al.

2004), our genome-wide dataset demonstrates a clear bias for
phase 0 introns in each of the three fungal in-group lineages
examined (p , 43 10�9 for N. crassa and p , 13 10�12 for M.
grisea and F. graminearum; in Table 1, ‘‘all passing,’’ and similar
biases were seen in the unfiltered set). The phase distributions
of raw gains and raw losses for each of the three organisms
are not significantly different from a uniform distribution at
p , 0.01; however, the datasets for these subclasses were much
smaller (Table 1). Finally, we examined the exon sequences
flanking gained introns, and observed no clear sequence bias
(Table 2).

Absence of 39 Bias in Intron Losses
To determine whether the pattern of intron loss in these

fungi might account for the observed bias in intron position,
we examined the pattern of loss as a function of position
within the gene (see Figure 3E). Contrary to what would be
expected if intron loss primarily involved homologous
recombination of poly-adenosine-primed reverse transcripts,
the rate of intron loss tends to be lower, rather than higher, at
the 39 ends of genes. Moreover, the highest rates of intron loss
occur in the middles of genes in all three organisms. We
found no evidence that this pattern was affected by our
filtering methods. These findings suggest either other muta-
tional mechanisms (e.g., reverse transcription primed inter-
nally) or the presence of selective pressure to preferentially
conserve introns near the 59 and 39 ends of genes.

Discussion

We developed a system that automatically identifies evolu-
tionary and positional patterns of intron conservation on a
genome-wide scale. The core of the system is a process for
stringently filtering alignments of orthologous genes to

Figure 4. Example Ortholog Alignment

(A) Alignment of protein sequences for
orthologs MG04228, NCU05623,
FG06415, and AN1892 with intron
characters inserted. ‘‘0,’’ ‘‘1,’’ and ‘‘2’’
indicate the phase of an intron. A black-
edged rectangle indicates an intron
position passing our quality filters; an
unedged gray rectangle indicates an
intron position that was removed by
our filter. The green rectangle indicates
conserved introns, the blue box marks a
raw intron gain, and the gray boxes
within black-edged rectangles highlight
all other introns. The consensus (bot-
tom) line characters are as follows:
asterisk, identical residue in all four
sequences; colon, similar residue; and
period, neutral residue.
(B) Nucleotide alignment of the region
flanking the gained intron in (A). Puta-
tive 59 and 39 splice sites and a branch
point sequence are highlighted in blue.
DOI: 10.1371/journal.pbio.0020422.g004
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exclude potential annotation or alignment errors. The result
of the filtering process is a high-confidence set of aligned
intron positions. Differences in intron conservation at each
individual position can be characterized as gains or losses (or
ambiguous) based on parsimony. However, this does not
accurately account for the possibility of multiple gain or loss
events. We have developed a probabilistic model that allows
for multiple events, providing a corrected estimate of the
total number of gains and losses within the dataset. Our
probabilistic method allows for a more accurate assessment
of rates of gain and loss. In our dataset, allowing for multiple
events results in only modest corrections to the rates
estimated using parsimony.

Our analysis demonstrates a significant role for intron gain
over the past few hundred million years in the fungi analyzed.
Previous analyses of specific gene families have provided

evidence of specific instances of gained introns (Logsdon et
al. 1998; Robertson 2000; Hartung et al. 2002; Qiu et al. 2004).
However, the relative importance of intron gain versus loss is
not well understood. Recent large-scale analyses have
suggested that intron gain may play a predominant role in
shaping gene structures (Qiu et al. 2004), although lineage-
specific differences are apparent (Rogozin et al. 2003). In
particular, intron gain appears to occur rarely if at all in
mammalian genes (Roy et al. 2003). Our data suggest that
intron gain is a significant driving force in the evolution of
genes in fungi. In F. graminearum and M. grisea the number of
introns gained was on par with the number lost and similar in
magnitude to the number of introns gained in N. crassa.
The mechanisms underlying intron gain are not known. We

analyzed the set of predicted intron gains for possible
signatures that might shed light on this process. No statisti-

Figure 5. Intron Conservation in the PRPP

Synthetase Gene

(A) Alignment of PRPP synthetase puta-
tive orthologs MG07148, NCU06970,
FG09299, and AN1965. A black-edged
rectangle indicates an intron position
passing our quality filters, whereas an
unedged gray rectangle indicates an
intron position that was removed by
our filter. Blue boxes mark raw intron
gains, red boxes indicate raw intron
losses, and gray boxes within black-edged
rectangles highlight all other introns. We
manually corrected an annotation error
in the first intron of the last row of the
alignment.
(B) Phylogenetic conservation pattern of
introns in the PRPP sythetase gene. Each
passing intron position was categorized
as being present in A. nidulans (A), F.
graminearum (F), M. grisea (M), N. crassa
(N), A. nidulans and N. crassa (AN), F.
graminearum and M. grisea (FM), or all
four organisms (AFMN). There are no
passing cases of conservation in three or
four species. The number of introns in
each category is shown with a purple
line. The black error bar plot shows the
mean and standard deviation for each
category for all 2,008 ortholog sets after
fitting to a Poisson distribution (see
Materials and Methods). The number of
introns in M. grisea and N. crassa is
significantly higher, at the p , 1 3 10�9

level.
DOI: 10.1371/journal.pbio.0020422.g005
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cally significant bias was detected in the positions of gained
introns along the coding sequence (see Figure 3 data not
shown). Similarly, no preferred insertion site sequence was
detectable (Table 2), and no significant phase bias for gained
introns was observed (see Table 1). The lack of an insertion
site preference and absence of significant phase bias for
gained introns in fungi is consistent with previous inves-
tigations and may set fungi apart from other organisms (Qiu
et al. 2004).

Our data further indicate that intron gain can vary
substantially between different gene families in a lineage-
specific fashion. The PRPP synthetase gene is a particularly
striking example, exhibiting significant increases in gained
introns in two of the four lineages investigated. Moreover, the
paucity of intron positions shared between N. crassa and M.
grisea suggests the possibility of independent increases in gain
rate in the two species. Alternatively, the apparent high
intron gain rate exhibited by this gene may have arisen just
prior to the last common ancestor of N. crassa and M. grisea.
Although it is premature to speculate about possible
mechanisms, one possibility is that a factor or factors
responsible for intron insertion evolved to associate with
the PRPP synthetase gene locus, transcript, or message at this
point, leading to a higher rate of intron insertion in this gene.

Finally, our results do not support the mechanism
commonly proposed to account for the 59 positional bias of
introns in intron-poor organisms (Mourier and Jeffares 2003).
Contrary to what would be expected if intron loss primarily
involved recombination of poly-adenosine-primed reverse
transcripts, the rate of intron loss tends to be lower at the 39

ends of genes. Instead, the highest rates of intron loss occur in
the middles of genes in all three organisms. (This result is
consistent with the results of Roy et al. (2003) in their analysis
of intron evolution in mammals. Although their report
describes only six instances of loss, in each case it was an

internal intron.) The preference for internal introns may
reflect a process of reverse transcription primed internally.
Alternatively, there may be pressure to preferentially
conserve introns near the 59 and 39 ends of genes. In
particular, there is strong evidence for a functional role for
the 59-most intron in many genes. What remains clear is that
the pattern of loss in these fungi over the last 330 million
years cannot be explained solely by a mechanism involving 39-
end-primed reverse transcription of spliced messages. In-
stead, fungal intron dynamics appear to reflect a more
complex interplay between intron gain and loss, an interplay
that is likely to shape intron evolution in other eukaryotes.

Materials and Methods

Sequences and annotations. All sequences and annotations were
taken from the Broad Institute Fungal Genome Initiative website (
http://www.broad.mit.edu/annotation/fungi/fgi). The following data-
sets were used: A. nidulans (Assembly 1, 18 February 2003), N. crassa
(Assembly 3, 1 February 2001), F. graminearum (Assembly 1, 11 March
2003), and M. grisea (Assembly 2, 18 July 2002).

Ortholog identification. A group of four proteins, one from each
organism, was considered an ortholog set if each pair was a pairwise
best bidirectional BLAST hit in the respective genomes, and all the
BLAST hits overlapped by at least 60% of the length of the longest
protein. This yielded 2,073 sets of orthologs (out of an average of
10,500 genes in the four organisms). We repeated our analysis,
requiring that each best bidirectional hit also be the only BLAST hit
in each genome (spanning 60% the length of the longest protein).
This protocol yielded only 1,178 ortholog sets, but gave qualitatively
similar results for intron gains and losses (Figure S1).

Ortholog alignment. The proteins in each ortholog set were
aligned using ClustalW 1.82 (Chenna et al. 2003), and intron position
characters were inserted into the alignments, using ‘‘0,’’ ‘‘1,’’ or ‘‘2’’ to
indicate the intron phase. Phase 0 intron characters were inserted
between the amino acids coded for by the codons adjacent to that
intron, and phase 1 and 2 intron characters were inserted
immediately following the amino acid coded for by the codon
interrupted by the intron. If an intron was not present in all the
sequences at a given position, special intron gap characters, were
inserted in the other sequences in order to maintain the downstream

Table 1. Intron Phase Distribution for Filtering and Conservation Classes

Intron Class Organism Phase 0 Phase 1 Phase 2 Total

All unfiltered Nca 1,465 (38.9%) 1,293 (34.3%) 1,007 (26.7%) 3,765
Mga 1,707 (40.6%) 1,380 (32.8%) 1,118 (26.6%) 4,205
Fga 1,755 (39.9%) 1,483 (33.7%) 1,165 (26.5%) 4,403

All passing Nca 672 (39.9%) 547 (32.5%) 465 (27.6%) 1,684
Mga 765 (40.8%) 602 (32.2%) 505 (27.0%) 1,872
Fga 765 (40.6%) 614 (32.6%) 507 (26.9%) 1,886

Passing conserved Nca,b 420 (42.9%) 302 (30.9%) 255 (26.1%) 977
Mga,b 420 (42.9%) 302 (30.9%) 255 (26.1%) 977
Fga,b 420 (42.9%) 302 (30.9%) 255 (26.1%) 977

Passing raw gains Nc 60 (33.7%) 71 (40.0%) 47 (26.4%) 178
Mg 106 (41.2%) 80 (31.1%) 71 (27.6%) 257
Fg 69 (37.7%) 64 (35.0%) 50 (27.3%) 183

Passing raw losses Nc 151 (37.1%) 130 (31.9%) 126 (31.0%) 407
Mg 177 (38.7%) 154 (33.7%) 126 (27.6%) 457
Fg 192 (38.3%) 168 (33.5%) 141 (28.1%) 501

a Significantly different from uniform distribution, at p , 0.01
b One intron removed because of phase discrepancy across N. crassa, M. grisea, and F. graminearum.
Fg, F. graminearum; Nc, N. crassa; Mg, M. grisea.
DOI: 10.1371/journal.pbio.0020422.t001
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amino acid alignment. A total of 9,352 intron positions were aligned.
At only 28 (0.3%) of these positions were introns of different phases
aligned, making it reasonable to ignore ‘‘phase shifting’’ in our
analysis.

Alignment filtering. Regions of low alignment quality were
eliminated with a filter that required at least 30% identity and 50%
similarity in a window of ten residues on each side of the intron
position. These parameters were determined following manual
classification of a set of 181 randomly selected intron positions as
‘‘clearly homologous,’’ ‘‘ambiguous/possibly homologous,’’ or ‘‘non-
homologous’’ (see Figure 2B). Using the parameters above, 92% of the
homologous positions, 29% of the ambiguous positions and only 2%
of the non-homologous positions passed the filter.

To further exclude likely annotation and alignment errors, intron
positions were also filtered by eliminating positions adjacent to gaps
in the amino acid alignment and by eliminating positions with nearby
introns but low evidence of homology in the intervening sequence. It
is possible that some of these positions may in fact reflect intron gain
or loss events that occurred simultaneously with coding sequence
insertion or deletion. However, removing these positions did not
significantly impact our results, as the number of positions adjacent
to gaps was only about one-tenth of the number of positions that
passed the quality filter, and the introns removed did not have an
apparent positional bias (see Figure 3A)

Statistical significance of high gain rate in PRPP synthetase. We
modeled the number of gains in a particular organism as a Poisson
distribution under two different null hypotheses. One null hypothesis
was that the gains were spread uniformly across all genes. The other
was that the number of gains in each gene was proportional to the
length of the gene. In the first case the Poisson parameter k is given
by the total number of raw gains observed in that organism divided
by the total number of ortholog sets (p , 33 10�22 for M. grisea, p , 4
3 10�9 for N. crassa, and p , 0.007 for F. graminearum). In the second
case k is given by the total number of raw gains observed in that
organism multiplied by the length of that gene in amino acids and
divided by the total number of amino acids in all genes in that
organism (p , 7 3 10�25 for M. grisea, p , 3 3 10�10 for N. crassa, and
p , 0.003 for F. graminearum). We reported the less significant of the
two p-values in the results.

Analysis of intron gain phase and sequence preference. For each of
the three in-group lineages, the frequency of phase 0, 1, and 2 introns
was determined for five different datasets: for each class of
conservation (conserved, raw gains, and raw losses), for all introns
passing our filter, and for all introns in the ortholog set. The p-value
for the significance of phase 0 bias was determined by the v2 test with
two degrees of freedom using equal expected phase frequencies. To
detect sequence bias at intron insertion sites, we examined gained
introns separately in F. graminearum, M. grisea, and N. crassa. For each

Table 2. Exonic Nucleotide Composition near Introns

Position Class Organism Nucleotide
Composition

Upstream Position Downstream Position

�4 �3 �2 �1 þ1 þ2 þ3 þ4

All intron positionsa Nc % A 27.2 31.5 37.4 16.2 26.4 22.9 26.1 23.7
% C 27.0 25.5 20.7 13.0 22.8 29.5 30.9 30.1
% G 23.5 22.8 19.6 52.5 32.0 18.1 18.9 22.0
% T 22.4 20.2 22.3 18.4 18.9 29.5 24.1 24.3
Bits 0.01 0.02 0.06 0.26 0.03 0.03 0.02 0.01

Mg % A 27.7 33.8 38.0 16.6 26.0 22.0 25.1 24.2
% C 27.6 25.8 20.8 12.8 24.4 29.7 29.1 29.3
% G 23.5 21.6 18.8 51.2 30.7 18.6 19.6 21.2
% T 21.3 18.8 22.3 19.3 19.0 29.8 26.2 25.3
Bits 0.01 0.04 0.06 0.24 0.02 0.03 0.01 0.01

Fg % A 28.8 34.0 37.5 18.0 27.9 22.6 25.6 24.5
% C 27.1 25.2 20.0 12.0 20.2 26.6 27.1 27.7
% G 20.7 20.7 17.8 48.7 30.6 17.4 18.3 21.6
% T 23.4 20.2 24.7 21.4 21.3 33.4 29.0 26.3
Bits 0.01 0.03 0.06 0.21 0.02 0.04 0.02 0.01

Gain positionsb Nc % A 21.4 33.7 28.4 18.0 26.1 17.4 22.5 22.8
% C 30.1 25.3 28.7 23.3 20.5 29.5 27.8 33.2
% G 23.6 20.2 21.1 43.8 31.2 22.8 26.1 23.0
% T 25.0 20.8 21.9 14.9 22.2 30.3 23.6 21.1
Bits 0.01 0.03 0.01 0.13 0.02 0.03 0.01 0.02

Mg % A 20.4 31.1 28.6 17.7 20.2 17.5 17.1 22.2
% C 35.2 28.8 24.9 22.0 26.3 29.4 37.2 32.9
% G 16.5 22.4 18.7 44.2 33.3 24.9 21.6 25.7
% T 27.8 17.7 27.8 16.2 20.2 28.2 24.1 19.3
Bits 0.06 0.03 0.02 0.13 0.03 0.03 0.06 0.03

Fg % A 25.4 23.5 31.4 13.9 19.4 16.1 20.5 24.3
% C 29.2 35.8 28.7 19.7 23.2 35.0 33.3 30.9
% G 23.5 23.8 18.6 48.1 41.8 16.4 20.5 25.1
% T 21.9 16.9 21.3 18.3 15.6 32.5 25.7 19.7
Bits 0.01 0.05 0.03 0.19 0.11 0.09 0.03 0.02

a Four nucleotides were extracted upstream and downstream of each intron in the specified organism.
b Four nucleotides were extracted upstream and downstream of the orthologous site in the other two organisms, consistent with method of Qiu et al. 2004.
Fg, F. graminearum; Nc, N. crassa; Mg, M. grisea.
DOI: 10.1371/journal.pbio.0020422.t002
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gained intron, we extracted four bases upstream and downstream of
orthologous sites in the other two sequences, consistent with Qiu et
al. (2004). The results are shown in Table 2.

Supporting Information

Figure S1. Intron Gains and Losses Inferred from Best-Only BLAST
Hit Orthologs

Positional biases in intron gain, loss, and current distribution in three
fungal genomes determined using orthologs predicted by a ‘‘bidirec-
tional only hit’’method. (A), (B), and (C) are roughly analogous to (D),
(E), and (A), respectively, in Figure 3.

Found at DOI: 10.1371/journal.pbio.0020422.sg001 (78 KB DOC).

Table S1. Database of Alignments of All 1,447 Ortholog Sets with at
Least One Passing Intron Position

Also available at http://genes.mit.edu/NielsenEtAl/.

Found at DOI: 10.1371/journal.pbio.0020422.st001 (4.3 MB ZIP).
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Supporting Information 

 

MEF Viability and LacZ Analysis 

To assess cell viability, untreated and treated MEFs were viewed and images were 

acquired using a Zeiss microscope (Axiovert 200). For lacZ stained cells MEFs were 

viewed and images were acquired under a Nikon microscope (Eclipse TE300). Over 

100 cells and at least three screen shots were counted at each time point. 

 

Western Analysis 

Total proteins were extracted using Lysis Buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 

1 mM EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM beta-

glycerophosphate) following cell rinsing in cold PBS. For Western analysis, 20 ug of 

total proteins were separated in 7.5% Tris-HCl gels (Bio-Rad), transferred to a Protran 

membrane (Schleicher and Schuell) using an electroblot in 1xTBST (10 mM Tris-Cl, pH 

8.0; 150 mM NaCl, 0.05% Tween 20) at 250 mA for 3 hr. Blocking was carried out using 

2% Blocking agent (GE/Amersham) for 1 hr at RT, followed by 3 short washes in 

1xTBST, then antibody incubations, anti-Dicer (Abcam, 1:500 dilution) and GAPDH 

(Santa Cruz Biotech; 1:2,000 dilution), were carried out at 4o C for 16 hours in 2% Block 

solution. Secondary anti-rabbit IgG-HRP conjugate (Sigma; 1:10,000 dilution) was 

incubated for 1 hr at RT in 2% Blocking solution. Washes were carried out in 1xTBST 

for 15 min (3 times). SuperSignal West Femto Maximum Sensitivity Substrate (Pierce) 

was used for chemiluminescence. As a positive control recombinant Dicer (Stratagene) 

was also analyzed. 
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LacZ Staining 

Cells were washed in cold PBS+2mM MgCl2, fixed in 0.2% Glutaraldehyde (Sigma; 

diluted in PBS+2mM MgCl2) for 10 minutes on ice, then washed 3 times in PBS and 

rinsed with Rinse Buffer (0.1M Na phosphate, 0.1% NaDeoxycholate, 2mM MgCl2, 0.2% 

NP-40). X-gal staining (5mM K3Fe(CN)6, 5mM K4Fe(CN)6, 1 mg/ml Xgal, in Rinse 

Buffer) was added for 3 hr at 37oC before microscopy. 

 

Apoptosis Assay 

Cells were harvested, washed twice in cold PBS and resuspended at a concentration of 

1 x 106 cells/ml in Binding Buffer (10mM HEPES, 140 mM NaCl, 2.5 mM CaCl2, pH7.4). 

Annexin V-FITC (Sigma), which detects annexin V bound to apoptotic cells, and 

propidium iodide (2 ug/ml), which labels cellular DNA in necrotic cells, were added and 

incubated for 10 min at room temperature in the dark. Samples were then immediately 

analyzed by flow cytometer (Becton Dickinson, FACScan). Staining with both Dyes 

allowed differentiation among early apoptotic cells (annexin V positive, PI negative), 

necrotic cells (annexin V positive, PI positive), and viable cells (annexin V negative, PI 

negative).  

 

Northern Analysis and Probes 

Probes were generated by incubating a total of 20 ul of 20 uM oligo, 2 ul Polynucleotide 

Kinase (PNK; New England Biolabs), 2 ul 10x PNK Buffer (New England Biolabs) and 

32P gamma-ATP (6000Ci/mmol) for 1 hr at 37o C. Non incorporated nucleotides were 
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removed using MicroSpin G-25 Columns (GE/Amersham). Sequences of 

oligonucleotide probes used were as follows: miR21-5'-tcaacatcagtctgataagcta; miR22-

5'-acagttcttcaactggcagctt; miR23b-5'-  ggtaatccctggcaatgtgat; miR34a-5'-

aacaaccagctaagacactgcca; miR92-5'-acaggccgggacaagtgcaata; miR191-5'-

agctgcttttgggattccgttg; miR199a2-5'-gaacaggtagtctgaacactggg; miR200b-5'-

catcattaccaggcagtatta; U6-5'-ttgcgtgtcatccttgcgcagg. 

 

MEF miRNA Microarray Preparation, Hybridization and Scanning 

MicroRNA microarrays were printed using a Cartesian PixSys 5500 Arrayer on Epoxy 

slides (Corning) using Ambion’s miRvana amine-modified DNA oligonucleotide probe 

set (version 1564V1). Probes were printed at 50 uM in Printing Buffer (0.25M Sodium 

Phosphate buffer pH8.5, 250 uM Sorkosyl) in quadruplicate. 30 ug of total RNA was 

separated in 15% TBE-UREA gels. The 15 to 25 nt gel region, identified using siRNA 

Marker (New England Biolabs) and Ethidium Bromide staining, was excised and RNA 

was extracted by overnight incubation at 4oC in 1M NaCl followed by ethanol 

precipitation. Labeling of small RNA was carried out using the miRvana miRNA labeling 

kit (Ambion) and Cy3/5 (GE/Amersham). 10 pmol of each labeled Dye was added onto 

an array in 1x Hybridization Buffer (Ambion), covered by a LifterSlip (Erie Scientific), 

and hybridization was carried out in Corning Hybridization chambers II for 16 hr in a 

water bath set to 42o C. Washes were performed at room temperature according to 

manufacturer’s protocol and solutions (Ambion; salt and detergent reagents). Arrays 

were spun down at 500 g for 5 min and scanned immediately using an Axon Scanner 

GenePix 4000. 
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MEF miRNA Microarray Analysis 

The raw GenePix (.gpr) data were imported into R (www.r-project.org) for subsequent 

analysis. The median background of each array was estimated by analyzing the 

distribution of intensities obtained for negative controls (spotted RNA for which no 

complementary RNA was spiked-in). The median intensity (of 4 duplicated spots) for 

each miRNA and array was compared to the array-background to identify miRNAs with 

intensities more than 2 standard deviations above the median background. To estimate 

changes in miRNA expression levels we compared the experiment/reference RNA 

(cy3/cy5; reference RNA for all arrays was size selected HeLa cell line RNA) from the 

control arrays with the two MEF CDKO+OHT samples across all miRNAs. Spiked-in 

control RNA was to verify that no systematic bias was introduced during sample 

processing and hybridization. This array platform probably cannot distinguish between 

closely related  miRNA species (e.g., closely related miRNA family members) due to 

cross-hybridization. However, this does not affect our conclusions because all analyses 

using the array data were done at the level of miRNA families (defined by unique seeds) 

rather than individual miRNAs. 

 

Identification of the ‘Effective’ siRNA Subset 

For each of the 4096 possible 6mers, Refseq genes in the siRNA dataset were divided 

into two classes based on presence/absence of the 6mer in their annotated 3'UTR. For 

each 6mer, the significance of the difference in LFC distributions between these classes 

was tested by two-sided rank sum test. siRNAs were considered to be ‘effective’ if a 
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6mer complementary to the extended seed region (positions 1 through 8) on either the 

sense or antisense strand gave a P-value <10-6 or was among the top ten 6mers having 

the lowest P-values. If 6mers corresponding to the sense and the antisense strands 

both passed these criteria, then the one with the lowest P-value was kept and UTRs 

having seed matches to the other strand were removed from the analysis. Of the 74 

siRNAs available for analysis, 52 met these criteria and reduced to 44 unique seed 

regions (MAPK14-1as, -2, -3as, -4as, -5as, -6, -7, -8as, -193, -M1, -M2as, -M4as, -

M5as, -M6as, -M15, -M18, IGF1R-1as, -2, -3, -4as, -5as, -6, -10as, -11as, -12, -13, 

MPHOSPHQ-202as, -2692, PIK3CA-2629, PIK3CB-6338as, -6340as, PLK1-1319as, -

772as, PRKCE-1295, SOD1-SNPp13as, -SNPp15as, -SNPp18as, -SNPp19as, -

SNPp2as, -SNPp8as, -SNPp9as, -1582as, VHL-2651as, and -2652 where ‘as’ indicates 

the strand antisense to the targeted mRNA). Data from these 44 siRNAs was pooled for 

analysis. For the analyses shown in Fig. 1, the subset of 33 of these sequences that 

began with non-U bases was used. 

 

Identification of ‘Strongly Detected’ and ‘Responsive’ MEF miRNAs 

For the analysis shown in Fig. 3A, miRNAs with hybridization intensities above a 

threshold of 2 standard deviations above the median background level in seven or more 

of the eight miRNA microarrays were considered to be ‘strongly detected’. Those below 

this threshold on all eight microarrays were considered ‘not detected’. For the analysis 

shown in Fig. 3C, ‘responsive’ miRNAs were defined as follows. From the set of 

conserved miRNAs (seed region m1-m8 common to a miRNA in both mouse and 

human miRBase 8.2 (microrna.sanger.ac.uk)), we compared the LFC CDFs for a set of 
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mRNAs containing an extended seed match to the miRNA with the set of all mRNAs 

that lacked a seed match to the miRNA. This generated a list of 31 miRNAs (listed 

below) where seed match containing mRNAs were significantly upregulated relative to 

the non-seed match containing mRNAs (P < 0.001 by two-sided rank sum test).  For this 

analysis, the sets of mRNAs containing an extended seed match were selected so as to 

include equal numbers of conserved and non-conserved seed matches, so as to avoid 

introducing any biases related to conservation. This was accomplished by sampling 

from the (invariably larger) set of mRNAs containing non-conserved seed matches a 

subset of the same size as the conserved mRNA set. Such sampling was performed at 

least 10 times and median P-values used. Responsive miRNAs: let-7d, let-7g, miR-9*, 

miR-15b, miR-19b, miR-26a, miR-30a-5p, miR-101a, miR-106a, miR-106b, miR-130a, 

miR-135a, miR-142-5p, miR-154, miR-155, miR-181a, miR-182, miR-186, miR-200b, 

miR-214, miR-291a-3p, miR-291b-3p, miR-302b*, miR-302c*, miR-320, miR-367, miR-

381, miR-410, miR-424, miR-448, miR-495. 

 

Controlling for Seed Match Type, Expression, Conservation and CG Content   

Analyses of miRNA effects on mRNA levels were corrected for the effects of potentially 

confounding variables not under investigation. In the conservation analyses (Figs. 

1C,E,G and Fig. 3C), for each mRNA in the conserved set we sampled at random and 

without replacement an mRNA from the non-conserved set that had the same number 

and type of seed matches, and roughly the same (within 10%) hybridization intensity 

value and fraction of conserved 7mers in its 3'UTR. Details of these controls are shown 

in Fig. S2. Variables that did not differ significantly between the sets (UTR length and 
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CG content shown in Fig. S2C) were not explicitly controlled. This same policy was 

applied to all analyses (e.g. mRNA expression levels across different seed match type 

mRNA sets). A similar approach was used to control for overall 3'UTR CG content in the 

nucleotide composition analyses (Fig. 5). Analyses of the effects of UTR length on 

targeting found either no difference (miR-1) or moderately increased downregulation for 

mRNAs with shorter UTRs (miR-124) (not shown). No significant effect of 3' UTR CG 

content was observed in the miRNA transfection data. For the analyses of seed match 

count shown in Fig. 4, there was not sufficient data to permit analysis of target 

downregulation as a function of seed match count for each seed match type separately. 

For each of the plots shown in Fig. 4, the proportion of seed match types for different 

seed match counts remained fairly constant. 

 No increased mRNA repression was associated with conserved versus non-

conserved siRNA seed matches, when controlling for seed match type, expression and 

overall UTR conservation (Fig. 1G). However, slightly increased downregulation was 

associated with conserved siRNA seed matches when the control for overall UTR 

conservation was relaxed; this affect appears to be a consequence the increased local 

conservation that is associated with seed match conservation (not shown). 

 

Calculation of signal:noise 

Signal: noise ratios were calculated as in Lewis et al. (2005), but considering 

conservation only across human, mouse, rat, and dog genomes (HMRD) using cohorts 

of control oligonucleotides matched for both count and exact CG content. Ratios were 

pooled for the set of conserved human miRNAs used for target prediction by (Lewis et 
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al., 2005) after removal of miRNAs with common m2-m8 seed regions but different m9 

nucleotides and pairs of miRNAs in the same super-family. 

 

Orthologous 3' UTRs for zebrafish and Tetraodon were collected as described in 

Methods. Using an approach similar to Lewis et al. (2005), the number of occurrences 

of each 7mer was enumerated in each zebrafish 3' UTR and 7mers which also occurred 

in the corresponding Tetraodon UTR were recorded as conserved. In cases of multiple 

occurrences of the same 7mer in a zebrafish UTR and fewer occurrences in the 

Tetraodon UTR, only the common counts were recorded as conserved. For both the 

miR-430 A1 7mer and M8 7mer, sets of control 7mers with roughly equal total 

occurrences (within 10 counts) were collected and the mean fraction conserved for 

control and miR-430 7mers calculated. The ratio of miR-430 7mer to control 7mer 

fraction conserved is reported as the signal:noise. 

 

Repression for non-conserved 8mers versus conserved 7mers  

In the Lim miRNA transfection data, we observed stronger downregulation associated 

with non-conserved 8mer seed matches, especially those with a t9W, than for 

conserved 7mer seed matches (Fig. S8A), using conservation criteria identical to those 

used by the TargetScanS algorithm. This observation suggests that presence of a non-

conserved 8mer seed match is at least as reliable a predictor of miRNA targeting – 

given co-expression with the corresponding miRNA – as is a TargetScanS prediction 

based on 7mer conservation (Lewis et al., 2005). Consistently, in the MZdicer knockout 
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system, presence of a non-conserved 8mer seed match was associated with stronger 

repression than for 7mer seed matches conserved to other fish (Fig. S8B). 

 

TargetRank Scoring 

TargetRank scores the seed matches in a UTR relative to a given siRNA or miRNA, and 

then calculates an overall score for the mRNA as a whole by summing the scores for all 

seed matches present in the 3' UTR. The score for each seed match, m , is calculated 

according to S(m) = SeedMatchTypeS (m) + 5 ' conservationR (m) + 3'AUR (m) , where SeedMatchTypeS (m)  is the 

mean nLFC for the seed match type represented by m , and 5 ' conservationR (m)  and 3'AUR (m)  

represent the residual contribution to nLFC associated with the level of sequence 

conservation immediately 5' of the seed match and the AU content immediately 3' of the 

seed match, respectively. For A1 7mer and 6mer seed matches, the SeedMatchTypeS (m)  

value is determined as in Fig. 1F (parameters used: 6mer: 0.04; A1 7mer: 0.11). For M8 

7mer and 8mer seed matches, the t9W effect is also incorporated by assigning 

SeedMatchTypeS (m)dependent on the seed match type and t9 base, as in Fig. 5A (parameters 

used: M8 7mer with t9W: 0.15; M8 7mer with t9S: 0.08; 8mer with t9W: 0.25; 8mer with 

t9S: 0.17). 3'AUR (m)  is determined by first assigning the seed match to one of three bins 

based on the %AU content in the 50 bases immediately 3' of the seed match (as in Fig. 

6D). 3'AUR (m)  is then set equal to the mean nLFC for this bin in the training set of siRNA 

data, less the average mean nLFC across the 3 bins. For example, if the mean nLFC 

values of the 3 bins are 0.10, 0.12, and 0.17 (average: 0.13), then the residual values 

for the three bins would be -0.03, -0.01 and 0.04, respectively. Unlike in Fig. 6D, binned 

mRNA sets were only controlled for seed match type and t9 composition, which are 
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variables already accounted for in the first term of the model (parameters used: bin 1: 3’ 

AU < 53%, mean nLFC = 0.083, bin 2: 3’ AU between 53% and 66%, mean nLFC = 

0.126; bin 3: 3’ AU > 66%, mean nLFC = 0.182). 5 ' conservationR (m)  is determined by 

assigning the seed match to one of three bins based on the %conservation in the 50 

bases 5' of the seed match (as in Fig. 6C), and then calculating a residual score for this 

bin as described for 3'AUR (m) . Unlike in Fig. 6C, binned mRNA sets are controlled only 

for seed match type, t9 composition, and %AU in the 50 bp 5’ of the seed match 

(parameters used: bin 1: 5’ conservation < 33%, mean nLFC = 0.085, bin 2: 5’ 

conservation between 33% and 56%, mean nLFC = 0.135; bin 3: 5’ conservation > 

56%, mean nLFC = 0.163). For a 3' UTR containing n  seed matches 1m , 2m ,... , the 

TargetRank score is calculated simply as the sum S(UTR) = S( km
k=1

n

! ) , using the log-

additivity of seed matches derived from Fig. 4. For Figs. 7A and 7C, a random subset of 

8 siRNAs were held out from the Jackson/Schwarz datasets and parameters were 

estimated based the remaining 36 siRNA transfections. The same parameters were 

used for Figs. 7B and 7D. 
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Legends to Supplemental Figures 

Fig. S1.  Seed match type effects on mRNA repression for conserved and non-

conserved seed matches.  (A) Cumulative distribution functions (CDFs) of LFCs for 

mRNAs containing the indicated non-conserved miR-124 seed match types. Plots are 

based on mRNAs containing exactly one non-conserved miR-124 seed match of each 

seed type (and no conserved seed matches).  Set sizes are shown in parentheses.  (B) 

LFC CDFs for mRNAs containing a single conserved miR-124 seed match (and no non-

conserved seed matches). (C) LFC CDFs for mRNAs containing a single non-

conserved miR-1 seed match. (D) LFC CDFs for mRNAs containing a single conserved 

miR-1 seed match. 

 

Fig. S2.  Effects of seed match conservation on mRNA repression following 

miRNA transfection for controlled and uncontrolled datasets. (A) CDF of LFCs for 

mRNAs containing conserved (red) or non-conserved (blue) extended seed matches to 

miR-124, or no seed matches (gray).  mRNAs with conserved seed matches may also 

contain non-conserved seed matches, though the non-conserved class is strict. Set 

sizes are shown in parentheses. (B) mRNAs from the non-conserved set were sampled 

without replacement to generate a set having the same extended seed match count and 

distribution across 3’UTR conservation and expression as the conserved set. 3’UTR 

conservation is measured as the fraction of all 7mers (not just miRNA seed matches) in 

the 3’UTR that are perfectly conserved in human, mouse, rat and dog aligned genomes. 

Expression is measured as log2 of the hybridization intensity in mock transfected cells. 

3’UTR conservation and expression CDFs are shown for the sampled set having the 
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median rank sum statistic (P ≥ 0.05). (C) log2 3’ UTR length and fraction CG content are 

shown for these same sets. Although these variables were not explicitly controlled, 

there is no significant difference between the sets (P ≥ 0.05). (D) CDFs of LFCs for the 

controlled sets (same as in Figure 1C). 

 

Fig. S3. Genomic organization of MEF CDKO mouse 

Schematic representation of the genomic organization of the MEFcdko mouse and of 

Dicer inactivation. (A) MEFcdko mice were generated from mice bearing three unique 

genomic regions: (i) CAG-ERT promoter with the Prx1-Cre allele, inducible by 

Orthohydroxy Tamoxifen addition (4-OHT); (ii) R26 Promoter with a LacZ gene 

downstream of a floxed stop codon; (iii) Dicer1 gene with a floxed exon 24. (B) The 

CAG-ERT promoter is activated upon addition of 4-OHT to the medium, driving 

expression of Cre protein. (C) The floxed stop codon upstream of the LacZ gene and 

(D) Dicer1 exon 24 is excised, producing beta-galactosidase and a non-functional Dicer 

allele. 

 

Fig. S4. Kinetics of Dicer knockout monitored by LacZ staining 

(A) MEFwt and MEFcdko cells in the absence and presence of 0.5 uM OHT were 

stained daily to monitor LacZ expression. At 24 hour intervals the numbers of stained 

(blue) and unstained cells were counted. Images are presented for MEFwt and 

MEFcdko in the presence of OHT.  (B) The percent of stained/blue cells counted on 

each day is plotted (1D to 4D).  The mean and standard deviation of the mean of three 

replicates are shown. 
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Fig. S5.  Knockout of Dicer does not induce apoptosis in MEFs. 

FACS analysis of Annexin V was performed in MEFwt and MEFcdko in the absence 

and presence of 0.5 uM OHT for 1 to 4 days.  Shown here are data for MEFwt and 

MEFcdko with and without OHT after 4 days (4D). PI Staining (dead cells) is shown on 

the x-axis; Annexin V-FITC staining (apoptotic cells) is shown on the y-axis. Each 

quadruple, clockwise from bottom left, shows: (i) unstained live cells; (ii) PI stained dead 

cells; (iii) PI and FITC stained dead/apoptotic cells; and (iv) FITC stained apoptotic cells, 

respectively. The number at the bottom right hand side in each section denotes the 

percentage of cells in the particular state as a fraction of the total. Percent apoptotic 

cells measured along a four day time course (1D to 4D) is plotted below. The day 4 

experiment was repeated twice.  

 

Fig. S6. Northern Analysis of miRNA Expression 

Northern analysis is shown for four of the miRNAs represented in Fig. 2D. Background-

corrected hybridization intensities were calculated for each experimental sample 

(MEFcdko+OHT; right lane of each gel) and for the three control samples 

(MEFcdko/MEFwt+OHT/MEFwt; first three lanes from the left). All bands were then 

normalized to U6 snRNA and the fold-change was calculated by dividing the normalized 

average of the control samples by the normalized experimental sample. In (A) 

membrane was stripped by incubating in 1% SDS solution for 10 min at 60oC and then 

re-hybridyzed several times. 
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Fig. S7. mRNA derepression following Dicer knockout in zebrafish varies with  

conservation status. CDFs of LCFs for mRNAs containing conserved (red) or non-

conserved (blue) miR-430 extended seed matches, or no seed matches (gray). mRNAs 

containing conserved seed matches (see Methods) may also contain non-conserved 

seed matches, though the non-conserved set is strict. Set sizes are shown in 

parentheses. 

 

Fig. S8. Prediction of Non-conserved miRNA Targets Containing 8mer Seed 

Matches. (A) Mean LFC for mRNAs containing non-conserved 7mers (blue), conserved 

7mers (red), and non-conserved M8-A1 8mers (purple) to miR-1 and miR-124 following 

transfection of the corresponding miRNA. Dashed box indicates mean LFC for miR-1 

and miR-124 W9-M8-A1 9mers. (B) Same as (A) for miR-430 following Dicer knockout 

in zebrafish embryos. 

 

Fig S9. Effects of local conservation and AU content following miRNA 

transfection for controlled and uncontrolled datasets. (A) CDF of LFCs for equal 

sized sets of mRNAs containing a single siRNA extended seed match and grouped by 

conservation level in the 50 nt region immediately upstream of the siRNA seed match. 

Mean percent conservation values for the sets are as follows (most conserved (red) = 

72%, moderately conserved (gray) = 44%, least conserved (green) = 11%). (B) mRNAs 

from the three sets were sampled without replacement such that the distributions of 

UTR conservation, expression level, upstream AU content and UTR AU content were 

not significantly different (rank sum test, P >= 0.05). Seed match types were also 
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matched across each bin (not shown). UTR conservation is measured as the number of 

positions in the human 3' UTR that are perfectly conserved in alignments to mouse, rat, 

and dog. Expression is measured as the log2 of the hybridization intensity in mock 

transfected cells. (C) CDFs of LFCs for the controlled sets (same data as shown in 

Figure 6A (upstream). 
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Fig. S1. 
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Fig. S2. 
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Fig. S3. 
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Fig. S4. 
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Fig. S5. 
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Fig. S6. 
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Fig. S7. 
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Fig. S8. 
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Fig. S9. 
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Table S1.  Statistics related to Fig. 1. 

Figure 1B data – miR-124 seed match types 

Wilcoxon Rank Sum Test (2 sided) P-values 
seed type 

no. of 
mRNAs 

mean 
LFC 

mean 
nLFC 

frac.
DR no seed 

match 
M2-7 6mer A1 7mer M8 7mer 

no seed match 5121 0.05 0.00 0.025 -    
M2-7 6mer 1373 0.04 0.01 0.036 0.354 -   
A1 7mer 317 0 0.05 0.054 0.003 0.023 -  
M8 7mer 396 -0.25 0.25 0.250 <10-43 <10-33 <10-13 - 
M8-A1 8mer 77 -0.51 0.56 0.454 <10-23 <10-21 <10-15 <10-4 

Figure 1C data – miR-124 extended seed match conservation 

Wilcoxon Rank Sum Test (2 sided) P-values 
con. type 

no. of 
mRNAs 

mean 
LFC 

mean 
nLFC no seed match non-conserved  

no seed match 5121 0.05 0.00 -  
non-conserved 246 -0.15 0.20 <10-12 - 
conserved 246 -0.34 0.39 <10-34 <10-3 

Figure 1D data – miR-1 seed match types 

Wilcoxon Rank Sum Test (2 sided) P-values 
seed type 

no. of 
mRNAs 

mean 
LFC 

mean 
nLFC 

frac. 
DR no seed 

match 
M2-7 6mer A1 7mer M8 7mer 

no seed match 6356 -0.01 0.00 0.025 -    
M2-7  813 -0.05 0.04 0.052 <10-4 -   
A1 7mer 400 -0.13 0.12 0.123 <10-13 <10-5 -  
M8 7mer 286 -0.15 0.14 0.196 <10-13 <10-5 0.202 - 
M8-A1 8mer 170 -0.25 0.24 0.276 <10-15 <10-8 0.002 0.055 
Figure 1E data – miR-1 extended seed match conservation 

Wilcoxon Rank Sum Test (2 sided) P-values 
con. type 

no. of 
mRNAs 

mean 
LFC 

mean 
nLFC no seed match non-conserved  

no seed match 6356 -0.01 0.00 -  
non-conserved 178 -0.17 0.16 <10-8 - 
conserved 178 -0.29 0.28 <10-20 0.007 
Figure 1F data – non-m1U siRNA seed match types 

Wilcoxon Rank Sum Test (2 sided) P-values 

seed type 
no. of 
mRNAs 

mean 
LFC 

mean 
nLFC 

frac. 
DR no 

seed 
M2-7 
6mer 

M1 
7mer 

A1 
7mer 

M8 
7mer 

M8-
M1 

8mer 
no seed match 155998 0.02 0.00 0.025 -      
M2-7 8102 -0.02 0.04 0.055 <10-24 -     
M1 7mer 4296 -0.01 0.03 0.054 <10-14 0.915 -    
A1 7mer 4673 -0.08 0.10 0.098 <10-87 <10-20 <10-15 -   
M8 7mer 3350 -0.10 0.12 0.108 <10-90 <10-28 <10-22 0.021 -  
M8-M1 8mer 1780 -0.10 0.12 0.117 <10-54 <10-20 <10-19 0.014 0.561 - 
M8-A1 8mer 1875 -0.21 0.23 0.186 <10-149 <10-79 <10-67 <10-29 <10-19 <10-13 

Figure 1G data – siRNA extended seed match conservation 

Wilcoxon Rank Sum Test (2 sided) P-values 
con. type 

no. of 
mRNAs 

mean 
LFC 

mean 
nLFC no seed match non-conserved  

no seed match 187980 0.02 0.00 -  
non-conserved 1643 -0.11 0.13 <10-52 - 
conserved 1643 -0.13 0.15 <10-65 0.198 

 
DR = down-regulated 
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Table S2.  Statistics related to Fig. S1. 
 
Figure S1A data – non-conserved miR-124 seed match types 

seed type no. of mRNAs mean LFC mean nLFC 

no seed match 5121 0.05 0.00 
M2-7 1152 0.03 0.02 
A1 7mer 205 0.03 0.02 
M8 7mer 230 -0.21 0.26 
M8-A1 8mer 33 -0.55 0.60 

Figure S1B data – conserved miR-124 seed match types 

seed type no. of mRNAs mean LFC mean nLFC 

no seed match 5121 0.05 0.00 
M2-7 213 0.1 -0.05 
A1 7mer 102 -0.05 0.10 
M8 7mer 157 -0.3 0.35 
M8-A1 8mer 38 -0.44 0.49 

Figure S1C data – non-conserved miR-1 seed match types 

seed type no. of mRNAs mean LFC mean nLFC 

no seed match 6356 -0.01 0.00 
M2-7 737 -0.05 0.04 
A1 7mer 310 -0.12 0.11 
M8 7mer 213 -0.13 0.12 
M8-A1 8mer 99 -0.23 0.22 

Figure S1D data – conserved miR-1 seed match types 

seed type no. of mRNAs mean LFC mean nLFC 

no seed match 6356 -0.01 0.00 
M2-7 73 -0.06 0.05 
A1 7mer 70 -0.19 0.18 
M8 7mer 70 -0.19 0.18 
M8-A1 8mer 54 -0.3 0.29 
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Table S3. Downregulation of mRNA and Protein Levels in miR-1 and miR-124 
Transfection Data 
 

refseq ID miRNA 
transfected 

nLFC 
(Lim et al, 2005) 

luciferase reporter LFC 
(Farh et al, 2005) 

NM_170735 miR-1 0.39 0.99 
NM_024652 miR-1 0.30 0.74 
NM_031453 miR-1 0.34 0.37 
NM_182692 miR-1 0.77 0.26 
NM_181358 miR-1 0.28 0.13 
NM_014325 miR-1 0.84 0.58 
NM_000402 miR-1 1.14 1.77 
NM_012395 miR-1 0.98 1.23 
NM_015318 miR-1 0.99 0.87 
NM_181358 miR-124 0.40 1.27 
NM_139168 miR-124 0.24 0.21 
NM_020639 miR-124 0.28 0.99 
NM_014397 miR-124 1.07 1.31 
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Table S4. miRNAs with detectable expression in MEFs1 
 

let-7a miR-137 miR-195 miR-300 
let-7b miR-138 miR-196a miR-301 
let-7c miR-140 miR-198 miR-302c 
let-7d miR-141 miR-199a* miR-30a 
let-7e miR-142 miR-19a miR-31 
let-7f miR-143 miR-200a miR-320 
let-7f miR-144 miR-200b miR-330 
let-7g miR-145 miR-202 miR-335 
let-7i miR-146 miR-203 miR-338 
miR-101 miR-147 miR-206 miR-34c 
miR-103 miR-153 miR-208 miR-361 
miR-106a miR-155 miR-214 miR-367 
miR-106b miR-15a miR-215 miR-372 
miR-107 miR-16 miR-217 miR-374 
miR-10a miR-17 miR-21 miR-376b 
miR-122a miR-181a miR-221 miR-381 
miR-124a miR-182 miR-223 miR-382 
miR-125a miR-183 miR-22 miR-384 
miR-125b miR-184 miR-23b miR-410 
miR-126 miR-185 miR-24 miR-422a 
miR-1 miR-18 miR-26a miR-7 
miR-130a miR-190 miR-27a miR-9 
miR-130b miR-191 miR-292 miR-93 
miR-134 miR-192 miR-297 miR-98 
miR-136 miR-194 miR-32  
 
1A set of 99 miRNAs were detected by microarray, defined as having median microarray 
intensity (of the four duplicate probes) greater than two standard deviations above 
background in at least 7 out of 8 samples, for those miRvana probes targeting miRNAs 

found in mouse (according to miRBase) that had at least five mRNA targets expressed 

in MEFs. The 99 different miRNAs represent 80 unique seeds. 
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Table S5. mRNAs with Significant Expression Change Following Dicer Knockout2 
 
Refseq ID 

score(d) Fold Change Gene Symbol 

NM_028523 10.77 12.63 Dcbld2 
NM_130861 4.64 8.28 Slco1a5 
NM_011348 9.84 7.60 Sema3e 
NM_011213 4.21 6.05 Ptprf 
NM_007399 9.02 5.97 Adam10 
XM_484932 3.99 5.97 NA 
NM_009252 4.67 5.79 Serpina3n 
NM_015762 4.30 5.02 Txnrd1 
NM_029575 4.42 4.76 Tgfbr2 
NM_009364 5.19 4.69 Tfpi2 
NM_145390 4.45 4.69 Tnpo2 
NM_013737 5.99 4.61 Pla2g7 
XM_130125 6.53 4.59 NA 
NM_020275 4.57 4.36 Tnfrsf10b 
NM_008402 8.56 4.23 Itgav 
NM_009684 8.71 4.03 Apaf1 
NM_026735 4.44 3.97 Mobkl1a 
NM_011052 4.46 3.82 Pdcd6ip 
NM_010442 4.30 3.82 Hmox1 
XM_194424 4.71 3.78 NA 
NM_011198 4.65 3.70 Ptgs2 
NM_011452 7.73 3.64 Serpinb9b 
NM_028527 7.04 3.63 1700047I17Rik 
NM_011563 4.21 3.59 Prdx2 
NM_172891 4.54 3.58 Styk1 
NM_030155 4.22 3.57 Sdccag3 
NM_028744 6.48 3.50 Pi4k2b 
NM_019819 7.84 3.48 Dusp14 
NM_029438 4.63 3.43 Smurf1 
NM_001004143 4.13 3.43 Usp22 
NM_029000 4.15 3.37 Gvin1 
NM_145413 4.17 3.35 C530043G21Rik 
NM_019547 4.49 3.28 Rnpc1 
XM_484088 4.34 3.25 NA 
NM_011502 5.19 3.18 Stx3 
NM_023785 3.73 3.16 Cxcl7 
NM_153584 5.87 3.11 BC031353 
NM_015806 4.84 3.11 Mapk6 
NM_015760 4.91 3.09 Nox4 
NM_175201 9.12 3.08 Rnf38 
NM_172967 4.07 3.06 4930503L19Rik 
NM_011179 4.86 3.06 Psap 
NM_172507 3.72 3.03 Sh3bgrl2 
NM_172787 8.84 2.96 L3mbtl3 
NM_013601 6.61 2.94 Msx2 
NM_026177 3.90 2.93 1200011I18Rik 
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NM_011267 4.71 2.93 Rgs16 
NM_010913 4.47 2.91 Nfya 
NM_010786 8.54 2.89 Mdm2 
NM_008924 6.28 2.87 Prkar2a 
XM_140740 3.93 2.83 NA 
NM_017368,NM_198683 5.35 2.81 Cugbp1 
NM_013609 4.40 2.80 Ngfb 
NM_011951 4.59 2.79 Mapk14 
NM_009648 5.80 2.78 Akap1 
NM_021451 4.13 2.73 Pmaip1 
NM_172513 4.68 2.70 BC049806 
NM_007406 4.62 2.69 Adcy7 
XM_358611,XM_359418 4.82 2.66 NA 
NM_153103 3.81 2.65 Kif1c 
NM_020012 3.84 2.64 Rnf14 
NM_024269 5.97 2.64 Arl2bp 
NM_029352 4.06 2.60 Dusp9 
NM_010345 3.79 2.60 Grb10 
NM_011026 5.17 2.59 P2rx4 
NM_011595 7.10 2.59 Timp3 
NM_025673 3.72 2.58 Golph3 
NM_010923,NM_180960 3.94 2.58 Nnat 
NM_009443 3.86 2.54 Tgoln1 
NM_013862 4.04 2.54 Rabgap1l 
NM_008338 3.76 2.54 Ifngr2 
NM_053153 4.58 2.53 Klra18 
NM_028932 4.46 2.52 Eaf1 
NM_007690 5.80 2.51 Chd1 
NM_172734 4.39 2.50 Stk38l 
NM_176845 5.51 2.48 Ddhd1 
NM_009831 5.12 2.47 Ccng1 
NM_008442 4.90 2.46 Kif2a 
NM_007453 5.35 2.45 Prdx6 
XM_135842 3.92 2.41 NA 
NM_178615 4.87 2.39 Rgmb 
NM_007952 4.86 2.37 Pdia3 
NM_030721 5.04 2.36 Acox3 
NM_207239 7.63 2.34 Gtf3c1 
NM_019661 7.22 2.33 0610042I15Rik 
NM_019927 4.11 2.32 Arih1 
XM_489703 6.15 2.30 NA 
NM_026195 7.31 2.29 Atic 
NM_026662 5.50 2.29 Prps2 
XM_622555 6.39 2.28 NA 
NM_029777 6.54 2.28 4930418P06Rik 
NM_028243 3.87 2.28 Prcp 
NM_028651 5.49 2.27 4930403J22Rik 
NM_178907 5.63 2.26 Mapkapk3 
NM_010324 4.56 2.25 Got1 
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NM_144543 3.94 2.25 Thy28 
NM_011018 4.27 2.24 Sqstm1 
NM_013882 4.34 2.24 Gtse1 
NM_009516 5.10 2.22 Wee1 
NM_011699 4.17 2.21 Lin7c 
NM_026424 3.70 2.21 1500041J02Rik 
NM_011299 6.41 2.21 Rps6ka2 
NM_031256 3.95 2.20 Plekha3 
NM_139154 4.35 2.19 Rab40c 
NM_138681 13.21 2.19 Bcas3 
NM_133349 4.69 2.18 Zfand2a 
NM_019930 3.97 2.17 Ranbp9 
NM_134013 4.87 2.17 Psme4 
NM_007836 4.18 2.17 Gadd45a 
NM_024226,NM_194052
,NM_194053 

4.98 2.17 Rtn4 

NM_007614 3.68 2.16 Ctnnb1 
NM_030690 3.77 2.16 Rai14 
NM_172699 5.65 2.16 Foxj3 
NM_026563 4.48 2.15 Sdccag3 
NM_134133 5.07 2.14 2010002N04Rik 
NM_023066 4.72 2.14 Asph 
NM_010718 4.47 2.13 Limk2 
NM_009798 4.28 2.12 Capzb 
NM_008928 4.34 2.12 Map2k3 
NM_030015 6.72 2.11 Peli1 
NM_172863 5.29 2.11 Zfp697 
NM_007922 8.75 2.10 Elk1 
XM_128959 4.28 2.10 NA 
NM_030246 4.42 2.10 Wdr21 
NM_025762 3.69 2.08 4933434E20Rik 
NM_008465 5.69 2.08 Kpna1 
NM_008576 5.24 2.05 Abcc1 
NM_019432 5.00 2.04 Tmem37 
XM_127105 4.21 2.03 NA 
NM_025951 4.70 2.03 Pi4k2b 
NM_175245 3.79 2.02 2410129H14Rik 
NM_177613 3.81 2.01 Cdc34 
NM_019403 4.11 2.01 Rnf5 
NM_010249 4.25 2.00 Gabpb1 
NM_025716 5.60 2.00 4633402N23Rik 
NM_026418 -2.86 -2.00 Rgs10 
NM_008538 -2.79 -2.00 Marcks 
NM_020276 -3.34 -2.00 Nelf 
NM_175098 -3.29 -2.01 6330407D12Rik 
NM_016778 -4.49 -2.01 Bok 
NM_020026 -10.07 -2.01 B3galt3 
NM_009685 -2.92 -2.02 Apbb1 
NM_019869 -2.96 -2.03 Rbm14 
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NM_021605 -2.80 -2.03 Nek7 
XM_622635 -3.62 -2.05 NA 
NM_009878 -6.10 -2.05 Cdkn2d 
NM_175130 -3.29 -2.06 Trpm4 
NM_026530 -8.58 -2.06 E130307M08Rik 
XM_143175 -2.92 -2.08 NA 
NM_016765 -6.30 -2.08 Ddah2 
NM_027309 -4.16 -2.08 Lysmd2 
NM_172546 -2.97 -2.09 Cnksr3 
NM_026447,NM_198931 -8.46 -2.09 Ppm1m 
NM_027878 -3.94 -2.11 1200002N14Rik 
NM_172711 -4.94 -2.11 AA407526 
NM_011838 -3.29 -2.12 Lynx1 
NM_009746 -2.84 -2.12 Bcl7c 
NM_009166 -2.82 -2.12 Sorbs1 
NM_025656 -2.94 -2.12 Sip1 
NM_145524 -3.70 -2.14 BC004636 
NM_152813 -3.00 -2.14 Plcd3 
NM_030004 -4.13 -2.16 Cryl1 
NM_001003946 -3.02 -2.18 Als2cr13 
NM_207269 -2.93 -2.18 D330050I23Rik 
NM_144862 -4.02 -2.19 Lims2 
NM_011146 -3.49 -2.20 Pparg 
NM_026298 -3.23 -2.23 4930553F24Rik 
NM_009968 -3.31 -2.23 Cryz 
NM_026122 -4.88 -2.24 Hmgn3 
NM_013496 -2.91 -2.25 Crabp1 
NM_017373 -3.71 -2.25 Nfil3 
NM_175074 -4.84 -2.26 Hmgn3 
NM_026024 -2.88 -2.27 Ube2t 
NM_001024225 -4.46 -2.28 Defcr24 
NM_007852 -4.46 -2.28 Defcr6 
NM_029624 -2.99 -2.29 2400010G15Rik 
NM_007760 -2.92 -2.29 Crat 
NM_009004 -2.83 -2.34 Kif20a 
NM_009672 -5.35 -2.34 Anp32a 
NM_013543 -4.16 -2.35 H2-Ke6 
NM_173752 -4.26 -2.35 1110067D22Rik 
NM_025658 -4.15 -2.37 Ms4a4d 
NM_009822 -2.85 -2.38 Cbfa2t1h 
NM_133990 -3.53 -2.40 Il13ra1 
XM_133813 -5.01 -2.40 NA 
NM_016762 -4.39 -2.44 Matn2 
NM_016764 -4.88 -2.44 Prdx4 
NM_025522 -2.94 -2.45 Dhrs7 
NM_010216 -3.22 -2.47 Figf 
NM_178660 -2.81 -2.48 Rbms3 
NM_010744 -4.28 -2.48 Tmed1 
NM_133859 -3.40 -2.48 Olfml3 
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NM_175205 -2.80 -2.49 4632419I22Rik 
NM_183254 -3.09 -2.49 1700025K23Rik 
NM_029413 -3.07 -2.50 Morc4 
NM_199195 -3.54 -2.50 Bckdhb 
NM_134163 -2.99 -2.51 Mbnl3 
NM_146162 -3.02 -2.53 BC025600 
NM_010194 -3.24 -2.54 Fes 
XM_134902 -3.02 -2.54 NA 
NM_173011 -3.65 -2.56 Idh2 
NM_148928 -2.91 -2.57 Gtf3c5 
XM_619217 -2.96 -2.58 NA 
NM_146040 -2.78 -2.60 Cdca7l 
NM_178884 -2.95 -2.61 AW822216 
NM_173426 -2.77 -2.66 1700012H17Rik 
NM_009155 -3.73 -2.67 Sepp1 
NM_021342 -3.11 -2.68 Kcne4 
NM_010726 -3.99 -2.71 Phyh 
NM_009472 -3.16 -2.76 Unc5c 
XM_194370 -2.91 -2.76 NA 
NM_028915 -2.86 -2.79 Lrrcc1 
NM_026303 -2.80 -2.81 4930562C03Rik 
XM_620727 -2.80 -2.81 NA 
NM_010826,NM_194464 -2.85 -2.90 Mrvi1 
NM_146249 -3.59 -2.91 BC031441 
NM_026772 -5.04 -2.92 Cdc42ep2 
XM_355247 -3.06 -2.99 NA 
XM_283635 -3.22 -3.00 NA 
NM_013665 -3.03 -3.04 Shox2 
NM_016873 -4.56 -3.05 Wisp2 
NM_144794 -4.38 -3.05 Tmem63a 
NM_008046 -3.58 -3.07 Fst 
NM_134147 -3.45 -3.10 D930010J01Rik 
NM_011129 -3.15 -3.10 4-Sep 
NM_177135 -3.20 -3.21 D830030K20Rik 
XM_489067 -7.18 -3.28 NA 
NM_028724 -2.91 -3.31 Rin2 
NM_138315 -3.80 -3.34 Mical1 
NM_007630 -3.14 -3.41 Ccnb2 
NM_012006 -3.23 -3.43 Cte1 
NM_001012335,NM_001
012336,NM_010784 

-3.14 -3.52 Mdk 

NM_009776 -4.62 -3.57 Serping1 
NM_026125 -2.91 -3.61 1110035L05Rik 
NM_010931 -2.92 -3.74 Uhrf1 
NM_027954 -4.92 -3.88 Syce2 
NM_026514 -3.61 -3.93 Cdc42ep3 
NM_010226 -4.13 -3.98 Fkhl18 
NR_001592 -3.48 -4.01 NA 
NM_009141 -3.06 -4.04 Cxcl5 
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XM_358515 -4.71 -4.05 NA 
NM_001004359,NM_001
005385,NM_026081 

-2.91 -4.07 Gprasp1 

XM_354836 -3.09 -4.10 NA 
XM_130991 -3.21 -4.14 NA 
NM_026928 -5.71 -4.31 1810014F10Rik 
NM_007825 -4.31 -4.42 Cyp7b1 
NM_172604 -2.99 -4.48 Scara3 
NM_008452 -3.10 -4.51 Klf2 
NM_008987 -3.20 -4.74 Ptx3 
NM_016847 -2.76 -5.17 Avpr1a 
NM_198161 -3.74 -5.23 Bhlhb9 
XM_181304 -3.02 -6.86 NA 
NM_148948 -2.76 -8.23 Dicer1 
NM_138304 -3.38 -12.70 Calml4 
 
2Statistically significant differences in mRNA expression levels following Dicer knockout 

in MEFs were identified using Significance Analysis of Microarrays (SAM) with a False 

Discovery Rate cutoff of 2%, and then requiring a fold change of at least two (up or 

down). Refseq transcript identifiers, d-statistics (from SAM), fold change and gene 

symbols are listed for each significant mRNA and ordered according to fold change.  In 

cases where multiple Refseq transcripts from the same gene were not distinguishable 

by the probes on the Mouse 430 2.0 array, all Refseq ids are listed.  This list includes 

135 mRNAs whose expression increased following Dicer knockout and 119 mRNAs 

whose expression decreased (including Dicer1).  
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Table S6.  Statistics related to Fig. 3. 
 
Figure 3B data – zebrafish miR-430 seed match types 

Wilcoxon Rank Sum Test (2 sided) P-
values seed type 

no. of 
mRNAs 

mean 
LFC 

mean 
nLFC 

fraction 
up-
regulated no seed 

match 
6mer A1 7mer 

M8-A1 
8mer 

no seed match 2931 0.07 0.00 0.025 -    
6mer 269 0.45 0.38 0.082 <10-25 -   
A1 7mer 71 0.65 0.58 0.155 <10-14 0.017 -  
M8 7mer 170 0.59 0.52 0.159 <10-20 0.070 0.364 - 
M8-A1 8mer 23 1.04 0.97 0.348 <10-7 0.001 0.066 0.020 
Figure 3C data – MEF extended seed match conservation 

Wilcoxon Rank Sum Test (2 sided) P-values conservation 
type 

no. of 
mRNAs 

mean 
LFC 

mean 
nLFC no seed match non-conserved  

no seed match 556 -0.24 0.00 -  
non-conserved 761 -0.08 0.16 <10-6 - 
conserved 761 -0.01 0.23 <10-10 0.030 
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Appendix 3
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Supplementary Material for Chapter 3
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Figure S1: Outline of the approach used to build a database of poly(A) sites. A. First EST/cDNA-to-
genome alignments from UCSC were filtered to keep only uniquely mapping ESTs/cDNAs with non-genomic
poly(A) tails (minimum of 8 terminal A or T characters). B. Second, ESTs/cDNAs overlapping Refseq
annotations were kept (blue boxes: exon; grey boxes: 3′ UTRs). ESTs/cDNAs completely contained within
introns or intergenic regions were removed. C. Third, genomic coordinates of poly(A) sites were mapped
from alignments and poly(A) sites within 24 nts of each other were clustered (based on Tian et al., 2005).
The -1 to -40 region upstream of each poly(A) site was searched for a PAS or variant (Beaudoing et al.,
2001). If a signal was found, the cluster was recorded as a poly(A) site (black arrow).
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Figure S2: Nucleotide sequence composition around Illumina read starts from MNase digested chromatin
(Barski et al., 2007). Gray vertical lines mark the 0 to +14 positions that were excluded from the nucleosome
affinity model due to technical bias.
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Figure S3: A. Nucleosome distribution around human transcriptional start sites for Refseq genes. Read
density values (Barski et al., 2007 data) were normalized and smoothed as in Figure 1. B. Mean nucleosome
affinity scores (NAS) around transcriptional start sites (same gene set as in A). Scores were smoothed for
plotting using the average score from a 50 nt sliding window positioned every 10 nt (as in A).
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Figure S4: Nucleosome distribution around constitutive poly(A) sites from transcriptionally inactive (blue)
and active (red) genes. Read density values (Schones et al., 2008) data) were normalized and smoothed as
in Figure 1. Wilcoxon rank sum P -values shown for 150 bp windows centered on the indicated positions.
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