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Abstract

The work presented in this thesis consists of two major parts. In Chapter 2, the theory for
sensitivity analysis of oscillatory systems is developed and discussed. Several contributions
are made, in particular in the precise definition of phase sensitivities and in the generaliza-
tion of the theory to all types of autonomous oscillators. All methods rely on the solution
of a boundary value problem, which identifies the periodic orbit. The choice of initial con-
dition on the limit cycle has important consequences for phase sensitivity analysis, and its
influence is quantified and discussed in detail. The results are exact and efficient to compute
compared to existing partial methods.

The theory is then applied to different models of the mammalian circadian clock system
in the following chapters. First, different types of sensitivities in a pair of smaller models
are analyzed. The models have slightly different architectures, with one having an addi-
tonal negative feedback loop compared to the other. The differences in their behavior with
respect to phases, the period and amplitude are discussed in the context of their network
architecture. It is found that, contrary to previous assumptions in the literature, the addi-
tional negative feedback loop makes the model less “flexible” in at least one sense that was
studied here.

The theory was also applied to larger, more detailed models of the mammalian circadian
clock, based on the original model of Forger and Peskin. Between the original model’s
publication in 2003 and the present time, several key advances were made in understanding
the mechanistic detail of the mammalian circadian clock, and at least one additional clock
gene was identified. These advances are incorporated in an extended model, which is then
studied using sensitivity analysis. Period sensitivity analysis is performed first and it was
found that only one negative feedback loop dominates the setting of the period. This was
an interesting one-to-one correlation between one topological feature of the network and
a single metric of network performance. This led to the question of whether the network
architecture is modular, in the sense that each of the several feedback loops might be
responsible for a separate network function. A function of particular interest is the ability
to separately track “dawn” and “dusk”, which is reported to be present in the circadian
clock. The ability of the mammalian circadian clock to modify different relative phases —
defined by different molecular events — independently of the period was analyzed. If the
model can maintain a perceived day — defined by the time difference between two phases
— of different lengths, it can be argued that the model can track dawn and dusk separately.
This capability is found in all mammalian clock models that were studied in this work, and
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furthermore, that a network-wide effort is needed to do so. Unlike in the case of the period
sensitivities, relative phase sensitivities are distributed throughout several feedback loops.
Interestingly, a small number of “key parameters” could be identified in the detailed models
that consistently play important roles in the setting of period, amplitude and phases. It
appears that most circadian clock features are under shared control by local parameters
and by the more global “key parameters”.

Lastly, it is shown that sensitivity analysis, in particular period sensitivity analysis, can
be very useful in parameter estimation for oscillatory systems biology models. In an ap-
proach termed “feature-based parameter fitting”, the model’s parameter values are selected
based on their impact on the “features” of an oscillation (period, phases, amplitudes) rather
than concentration data points. It is discussed how this approach changes the cost function
during the parameter estimation optimization, and when it can be beneficial. A minimal
model system from circadian biology, the Goodwin oscillator, is taken as an example.

Overall, in this thesis it is shown that the contributions made to the theoretical under-
standing of sensitivities in oscillatory systems are relevant and useful in trying to answer
questions that are currently open in circadian biology. In some cases, the theory could
indicate exactly which experiments or detailed mechanistic studies are needed in order to
perform meaningful mathematical analysis of the system as a whole. It is shown that,
provided the biologically relevant quantities are analyzed, a network-wide understanding
of the interplay between network function and topology can be gained and differences in
performance between models of different size or topology can be quantified.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering

Thesis Supervisor: Bruce Tidor
Title: Professor of Biological Engineering and Computer Science
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Chapter 1

Introduction

1.1 Sensitivity Analysis of Oscillatory Systems

Sensitivity analysis of dynamic systems is a well established area of numerical analysis.

This mathematical technique evaluates how infinitesimal parameter perturbations change

the output of a given mathematical model. Much has been written on its numerical imple-

mentation for different types of dynamic systems (e.g., [28, 72]) as well as its application to

many areas, including optimization, parameter estimation, observability analysis, controla-

bility analysis, model reduction, parameter identifiability and systems biology.

The study of the sensitivity analysis of oscillatory systems of ordinary differential equa-

tions (ODEs) has been an area of active research for a considerable time [18, 89, 56, 64].

However, several challenges had not been overcome prior to the work presented in this

thesis. In particular, the analysis of limit-cycle oscillators (LCOs) brings with it a specific

set of challenges. An LCO is a system where, from any initial condition within a region

of attraction, a periodic orbit is approached asymptotically. The presence of transients for

initial conditions that are not exactly on the periodic orbit represents an obstacle. Because

the periodic orbit itself is independent of the initial conditions, but is determined by the

system parameters, any inital condition specifically on the periodic orbit must be an implicit

function of the system parameters. For the sensitivity analysis of oscillatory systems, one

has few choices. A first approach involves identifying a starting point on the limit cycle,

where the initial condition sensitivities were assumed to be zero. This approach can be used

to identify the period and amplitude sensitivities of LCOs [48, 64, 56]. Rosenwasser and

Bure showed in 1974 [18, 89], however, that an error is introduced that does not decay to
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zero but rather undergoes a transient to finally yield a periodic contribution to the overall

sensitivities. It is impossible to quantify the magnitude of this error, and thus only the

sensitivity values at certain points, namely the stationary points of each variable, can be

evaluated correctly and only after the transients have passed. While this approach does

allow the identification of period and amplitude sensitivities, it is not exact in the sense

that the numerical procedure involves truncating a limit. It is also important to realize that

certain points on the limit cycle need to be avoided when evaluating period sensitivities be-

cause the formulation requires division by a term that can evaluate to zero [63]. The need

to integrate a potentially large system over many periods to wait for the error to approach

a periodic contribution makes this method numerically inefficient. It is still widely used and

referenced in the literature [37, 56, 48, 10, 111] and also forms the basis for an alternative

method for the computation of period sensitivities based on singular value decomposition

of the dominant (unbounded) term of the state sensitivities [111].

A better approach was proposed by Rosenwasser and Yusupov [89] and involves the

formulation of a boundary value problem (BVP) which allows the simultaneous solution

for the period sensitivities and for initial condition sensitivities. The starting point from

which the initial condition sensitivities are computed is defined by fixing one of the state

variables to its starting value, which is necessary because the BVP would otherwise be

underdetermined. This approach leads to exact sensitivity trajectories that can, from the

start, be decomposed into an unbounded part containing the period sensitivities and a

periodic part containing the sensitivities of amplitudes (shape) and phase. The influence

of the definition of the starting point is not further discussed in reference [89], however,

it forms the basis for the contributions made in the theoretical part of this thesis. In the

dynamical systems literature, the definition of a point on the limit cycle is called a phase

locking condition (PLC) [92]. We examine closely the impact that the choice of PLC has

on the overall structure of the solution of the sensitivity system. It is shown that the PLC

lends a definition of time zero to the system, which is itself dependent on the parameters.

The only previous mention of the need to define a time reference for the sensitivity analysis

of oscillatory systems was found in reference [99], which reports a need to “have the zero

of the perturbed and unperturbed motion coincide.” However, it was not considered in

this formulation that the influence of the PLC might not be constant throughout the cycle.

None of the later works on the decomposition of the sensitivities [56, 48, 89, 63] or on phase
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sensitivities [37, 38, 56, 10] have picked up this remark and included it in their own analyses.

In the theoretical part of this work, given in Chapter 2, it is shown that the contribution

of the PLC to the sensitivity solution is not constant, but rather periodic. It is possible to

decompose the state sensitivity trajectories further and separate the periodic part into the

periodic effects of shape (amplitude) change and those of phase change (which contains the

influence of the PLC). The latter then forms the basis of performing relative phase sensitivity

analysis. Previous attempts to compute relative phase sensitivities were hampered by this

missing piece, and in fact, a numerical comparison shows that it is exactly the contribution

from the PLC that is missing in order to match the numerical results of reference [37] to a

finite-difference approximation.

Besides LCOs, there exist other mathematical types of oscillators, which are defined

in Chapter 2 and to which the methods developed for LCOs are extended. Previously,

the period sensitivity analysis for non-limit-cycle oscillators (NLCOs) was presented using

the example of the Oregonator, modeling an oscillating chemical reaction mechanism [27].

The separation of what was called “secular” and “cleaned out” terms for NLCOs (i.e., the

unbounded and periodic parts of the sensitivity solution, respectively stemming from the

period sensitivities and the combined matrix of amplitude and phase sensitivities), was

presented by Larter in 1983 [63], based on ideas by Tomovic and Vukobratovic [99]. The

initial values of the state sensitivities are zero in the case of an NLCO, and the resulting

sensitivity trajectories as well as period sensitivities are exact.

This thesis develops a general formulation for the sensitivity analysis for any type of

autonomously oscillating ODE system and provides insight for how the choice of initial con-

dition(s) or PLC(s) affects the solution of the sensitivity equations. Exact period, amplitude

and relative phase sensitivities can be computed for all parameters and initial conditions.

1.2 The Mammalian Circadian Clock

Measuring time is a skill that all eukaryotes possess almost without exception, as well as

simpler species. In fact, the ability to do so gives organisms yet another dimension in which

to compete — time can be considered a subtle biological niche. In the idiom “The early

bird catches the worm,” the need for timekeeping is expressed in intuitive terms. If a bird’s

diet consists mainly of worms, it is necessary that its waking hours coincide with the times
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at which its prey is active and easy to catch.

The mechanism that enables timekeeping is called the “biological clock”, “internal clock”

or “circadian clock”. In particular the latter two terms reveal two central concepts associ-

ated with its study. The word “internal” indicates that the rhythm that is generated is not

merely a reaction to external stimuli (exogenous rhythms) but rather an intrinsic mecha-

nism that keeps time endogenously. In fact, experiments have shown that the clock keeps

ticking even if all outside stimuli are removed. The term “circadian” comes from the latin

words circa, meaning “approximately”, and diem, meaning “day”. This term was chosen

because the rhythm in the absence of outside stimuli maintains a period of close to, but not

exactly 24 hours.

In human beings the influence of the internal clock can be traced throughout many

physiological processes. Renal and metabolic activity, the secretion of different hormones,

the heart rate and blood pressure, the times of high mental performance and alertness as well

as the body temperature underlie control by the internal clock [26, 42]. As a consequence,

some acute medical conditions, such as strokes and heart attacks, asthma attacks, and even

death show statistically significant circadian rhythms in their onsets [26, 79]. More recently,

it has come to scientists’ and physicians’ attention that the timing at which medication is

administered can have a pronounced effect on the therapeutic outcome [110]. To mention

but one example, in reference [79] a study on the effects of circadian timing of chemotherapy

in children diagnosed with acute leukemia is discussed. A threefold increase in survival was

observed in patients who received the same dose of medication in the evening rather than

in the morning. Similar effects had been observed in mouse studies, and the reason is likely

a different peak time in cell division between tumor cells and normal cells, as has been

observed in ovarian cancer in humans.

Beyond the chronopharmaceutical effects caused by the internal clock, there are certain

conditions that are caused directly by its malfunctioning. Individuals afflicted with Familial

Advanced Sleep Phase Syndrome (FASPS) are unable to stay awake late in the day, and

rise from their night sleep very early [26, 74]. The mirror of FASPS is the Delayed Sleep

Phase Syndrome (DSPS), which causes individuals to stay up very late and to be unable to

awake at a morning hour that is considered normal by much of society [26, 74]. The mood

disorder SAD (Seasonal Affective Disorder) has been found to have a circadian component

as well, a revelation that may help design better treatments [70, 74].
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A third aspect of the circadian clock and its influence on the lives of humans is its

functioning in the face of modern day realities. Shift work is a reality for many professions,

from highly skilled surgeons to truck drivers, and is possibly most pronounced in the Armed

Forces, where multi-day missions present a challenge to alertness and decision-making in

the face of sleep-deprivation and fatigue. It is telling that decision-making at hours that

are not ideally suited for this task can have drastic consequences. The malfunctioning of

the Chernobyl reactor was inadvertantly initiated at 1:23 a.m. by fatigued operators [26].

The Titanic ran into an iceberg at 11:40 p.m. The Exxon Valdez ran aground shortly af-

ter midnight. Less dramatic but much more common is the incidence of traffic accidents.

Fatigue-related accidents are reported to peak at 2 a.m., at which time accidents are re-

ported at a 5.5 times higher rate than at 6 p.m. [26]. Furthermore, it was reported that

rotating shift workers incur an elevated risk of developing cancer as well as hypertension

and gastrointestinal problems [42].

The effects of proper and improper functioning of the internal clock indicate the need

to understand how it affects other systems in the human body, with the goal of being able

to intervene and create beneficial effects.

The advent of molecular biology and genetics has contributed a great deal towards this

goal. Many of the molecular components of the mammalian circadian clock are now well

understood, and the molecular basis for some circadian disorders is known [97]. A detailed

account of the current knowlege in mammalian circadian molecular biology is given in

Chapter 4. Treatments using light or substances such as melatonin have recently become

available for some of the circadian diseases, sleep and mood disorders, but are still in their

infancy [26]. It is hoped that with increased system-wide understanding of the circadian

clock, these treatment and intervention options will continue to improve. The analysis of

the circadian clock mechanism is discussed in the next section.

1.2.1 Analyzing the Circadian Clock

Efforts to understand the circadian clock in a system-wide fashion can be separated into

two areas. First, the study of exogenous effects and components is a field rich in history

and relevance. The pioneering works by Colin Pittendrigh as well as by Jürgen Aschoff

set the stage and provided much of the understanding of the clock that forms the basis

for today’s active research. A central aspect of both researchers’ work focussed on the
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effects that outside stimuli had on the clock. One of the key features of the circadian clock

is its ability to entrain to a periodic stimulus. The most obvious stimulus is light, but

entrainment to temperature and other signals has also been reported. The entrainment

properties of the clock were studied in detail and with different underlying hyotheses [26].

Experimental studies, often on rodents, revealed minimal light-dark schedules that allow for

stable entrainment and showed that the circadian clock has different phase-change responses

if exposed to a light pulse, depending on the timing of the pulse.

A second, complementary area, is the study of the endogenous component of the clock,

in other words, the study of the clock in the absence of any outside influence. The amazing

stability of the free running period (FRP) of the circadian clock is one of the properties

that was postulated by Pittendrigh and Daan in 1976 [82]. This property is the ability of

the clock to continue to run with near-24-hour period for an extended time after all out-

side stimuli were removed. A second, related property of the clock is called “temperature

compensation”. This property was discovered when the circadian rhythm of Drosophila

hatching was studied — while changes in the ambient temperature could induce temporary

transients, the period of oscillation was nearly unchanged after the rhythm had stabilized

again [26]. While this effect appears more relevant for plants and poikilotherms, such as

insects, even homeothermic animals have temperature-compensated clocks. The compensa-

tion mechanism might thus be an integral part of the circadian clock mechanism that was

conserved throughout evolution [26].

From a mathematical standpoint, it was argued that an LCO can represent some of

the clock properties rather well [26]. In particular, LCOs have a built-in robustness against

perturbations. Any change in concentrations will not permanently change the periodic orbit

or any of its properties (it might however induce a phase shift). This behavior matches both

the stability of the 24-hour period as well as the ability of the clock to entrain. Depending on

the magnitude and kind of stimulus, different phase resetting mechanisms can be explained

as well as transitions to non-oscillatory regions (if a bifurcation point is crossed). It is

known that simple LCOs can be constructed using negative feedback loops, such as the one

represented in the Goodwin oscillator [90]. In fact, all circadian clocks known in nature have

negative feedback loops in the structure of their molecular network. Progress in molecular

circadian biology coupled with developments in mathematical aspects of the problem have

led to an active field of research, one particular aspect of which is discussed next.
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1.2.2 Sensitivity Analysis of the Circadian Clock

Sensitivity analysis was successfully used by many computational systems biologists with an

interest in the circadian clock. Examples range from applications to very simple models [90]

to more detailed ones [35, 66, 29]. In the following, the study of the endogenous behavior

of the circadian clock at constant darkness using sensitivity analysis is summarized briefly.

Studies on entrained (forced) models are new, scarce, and beyond the scope of this work

[38, 76].

The property of temperature compensation was analyzed using period sensitivities, and

a relationship between the period sensitivities of individual rate constants, and the temper-

ature compensation of the entire system could be established [90, 66, 44, 59]. The basic idea

was that overall, positive and negative effects of temperature changes need to balance each

other out in a sense that the associated parameter sensitivities need to add up to zero [90].

Later studies have added specific details on the biophysical properties of some pathways [59]

or hypotheses on how a system with temperature compensation can be robust to mutation

at the same time [44].

Furthermore, period sensitivity analysis was used to study the overall stability of the

oscillations under perturbations [111], and of the robustness of circadian rhythms in com-

parison to other cellular rhythms (glycolysis, calcium oscillations) [108]. In their 2004 study,

Stelling et al. find that phosphorylation reactions carry high sensitivities towards pertur-

bations, in two medium-scale models of the Drosophila circadian clock [35, 67]. Leloup and

Goldbeter studied the bifurcation behavior and potential existence of multiple oscillatory

mechanisms within their model using sensitivity analysis [69], where the sensitivities were

computed with respect to finite parameter variations.

Phase sensitivity analysis was performed less frequently, likely due to the lack of an

appropriate mathematical foundation for their computation. Rand et al. [85] computed

a phase sensitivity (similar to the shortcut formulation in Chapter 2) in order to evaluate

the flexibility of the network as a function of the number of feedback loops. Gunawan

and Doyle reported on an isochron-based phase sensitivity [37] which was performed on two

Drosophila models [67, 100] using finite parameter perturbations, finding overlapping control

mechanisms for period and phase control. Similarly, Bagheri et al. [10] find that similarity

between certain performance metrics, such as relative phase and period sensitivities found
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by finite parameter variation, can be found in Drosophila [67] and mouse [68] models, while

others might be less correlated with each other.

In this thesis, the theory developed in Chapter 2 is first applied to a pair of small models

of the mammalian circadian clock [12, 13], where the period, amplitude, and phase sensitivi-

ties are computed and compared between the two slightly different network architectures. In

Chapter 4, the current state of molecular circadian biology is presented and several aspects

of it are incorporated into a model that extends the current, most detailed model of the

mammalian circadian clock [29]. Chapter 5 presents a detailed period sensitivity analysis

of this mechanistic, predictive model [29] and shows results that span from the molecular

to the systems level. The analyis identifies the relative importance of individual reactions

in setting the period; interestingly, these reactions are localized to a particular part of the

molecular network. The results agree with recent experimental reports that have identi-

fied the molecular cause for the FRP-abnormality found in individuals with FASPS [97]. In

Chapter 6, both the original model and its extended version developed in Chapter 4 are sub-

jected to detailed phase sensitivity analysis using the exact methods developed in Chapter

2. Here the endogenous phase control mechanisms were studied for multiple phases, both

with respect to infinitesimal as well as finite parameter changes. Commonalities between

period, amplitude and phase control are found and analyzed.

In the final Chapter 7, the use of “feature sensitivities”, or sensitivities of oscillation-

specific outputs of dynamic systems, is discussed in the context of parameter estimation. It

is shown that the parameter estimation for oscillatory systems has different challenges and

benefits from different methods than that of other dynamic systems.
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Chapter 2

Sensitivity Analysis for Oscillating

Dynamical Systems

Abstract

Boundary value formulations are presented for exact and efficient sensitivity analysis, with
respect to model parameters and initial conditions, of different classes of oscillating systems.
Methods for the computation of sensitivities of derived quantities of oscillations such as
period, amplitude and different types of phases are first developed for limit-cycle oscillators.
In particular, a novel decomposition of the state sensitivities into three parts is proposed
which provides an intuitive classification of the influence of parameter changes on period,
amplitude and relative phase. The importance of the choice of time reference, i.e., the
phase locking condition, is demonstrated and discussed, and its influence on the sensitivity
solution is quantified. The methods are then extended to other classes of oscillatory systems
in a general formulation. Numerical techniques are presented to facilitate the solution
of the boundary value problem, and the computation of different types of sensitivities.
Numerical results compare favorably to finite difference approximations and are superior
both in computational efficiency and in numerical precision to existing partial methods.

2.1 Introduction

Sensitivity analysis is a useful tool for the analysis of dynamic systems. It can be used to

give local information on the impact of an infinitesimal parameter change on the behavior

of the system, including derived functions of its output. As such, sensitivity analysis can be

applied in model reduction, stability analysis, or in the analysis of biochemical pathways,

to name a few [104]. While there are higher-order sensitivities, and different methods to

compute “global” sensitivities, the sensitivities discussed in this article are local, first-order

sensitivities, defined as
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sij(t,φ) ≡
∂yi

∂φj

∣

∣

∣

∣

t,φ

= lim
ǫ→0

yi(t,φ+ ǫej) − yi(t,φ)

ǫ

where ej is the jth unit vector and yi is the ith component of y(t,φ), a scalar or vector of

state variables which change in time according to a dynamic system

d

dt
y(t, φ) = f(y(t, φ), t, φ).

The vector or scalar valued quantity φ can be either a model parameter, or an initial

condition of the dynamic system, or a combination of both.

The efficient and accurate calculation of sensitivity information in dynamic systems

is well understood, and can be performed easily in such numerical software packages as

Jacobian [1].

This paper reports on methods that were specifically developed to enable the calculation

of sensitivity information for oscillating dynamic systems. Different classes of such systems

are distinguished and their respective treatment is detailed. Where applicable, previous

work is built upon in order to present a comprehensive guide to sensitivity analysis of

oscillating systems. Due to the exact and intuitive nature of the equations and methods in

this work, the quantities that are computed relate to well defined derived functions of the

dynamic systems, in particular period, amplitude and different kinds of phases.

2.1.1 Limit-Cycle Oscillators and Non-Limit-Cycle Oscillators

This ma-nuscript covers the sensitivity analysis of different classes of oscillating dynamical

systems, all of which are described by systems of ordinary differential equations (ODEs).

Before beginning the discussion, a general distinction needs to be made between the different

classes: non-limit-cycle oscillators, limit-cycle oscillators and intermediate-type oscillators.

In this work, the term non-limit-cycle oscillator (NLCO) is used to describe any au-

tonomous oscillating system in which any initial condition repeats periodically. In other

words, their periodic orbits are not isolated and they do not exhibit transient behavior. The

initial conditions and parameters both determine the trajectory of oscillation. Prominent

examples of such systems are most predator-prey models such as the Lotka-Volterra system

[63].

In limit-cycle oscillators (LCOs), on the other hand, the periodic orbit is isolated and
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closed [96], meaning it is determined solely by the parameters of the system, and the shape

and position of the limit cycle in phase space is independent of the initial conditions as long

as the initial conditions lie within the region of attraction of the periodic orbit. Stable limit

cycles, which are the focus of the present work, are approached in an asymptotic fashion

from any initial condition within this region of attraction, unless the initial conditions lie

exactly on the limit-cycle trajectory. LCOs are always governed by nonlinear ODE systems

[96]. Many oscillatory biological systems have been modeled as LCOs, such as the circadian

clock [29, 90] which will be examined in detail later. An intrinsic property of LCOs is the

capability to return to the original oscillation (albeit phase shifted) after a perturbation

in one or several state variables. This property makes LCOs an intuitive choice for the

modeling of the biological oscillators in the circadian clock mechanism that show robustness

to such perturbations with respect to amplitude and period, yet are entrainable to a specific

phase of oscillation by outside signals [26].

Since these two classes of oscillators show different parameter and initial condition de-

pendencies, their sensitivity analysis was formulated separately and is discussed in the

following sections. Due to their more interesting and challenging nature, the majority of

the present work focuses on LCOs and the theory necessary for their treatment is developed

first. The extension to NLCOs is then easily shown.

Intermediate-type oscillators are systems that can show behaviors previously attributed

to both other types, in that their periodic orbits are not isolated, but transients can still be

found at least in some manifold. It is shown how these intermediate-type oscillators relate

mathematically to both other classes, and a general formulation is presented in this paper

which covers all classes of oscillators.

2.2 Sensitivity Analysis of Limit-Cycle Oscillators

In the context of this manuscript, a LCO is defined as a dynamic system with periodic orbit

of period T whose monodromy matrix M (Section 2.2.2) has exactly one eigenvalue equal

to one, and as a consequence the matrix [(M − I) ẏ(T )] has rank ny (see Corollary 2).
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2.2.1 The Boundary Value Problem

Sensitivity analysis of stable LCO systems is challenging due to several of their charac-

teristics. First, the system asymptotically approaches the limit-cycle trajectory, but never

exactly reaches it, unless the initial conditions lie on the limit cycle. Consequently, if the

aim is to analyze the limit-cycle trajectory, initial conditions on the periodic orbit must

be identified. Clearly, those initial conditions are not independent of the parameter values,

which determine the shape and location of the limit-cycle trajectory. Therefore, the ini-

tial conditions for the parametric sensitivities cannot be set to zero, as is usually done for

dynamic systems when the initial conditions are independent of the parameters.

A boundary value problem (BVP) is formulated for y0(p) and T (p) subject to

y(T (p),p;y0(p)) − y0(p) = 0 (2.1)

ẏi(0,p;y0(p)) = 0 (2.2)

for some arbitrary i ∈ {1, ...., ny}, with y(t,p;y0(p)) given by the solution of

d

dt
y(t,p;y0(p)) = f(y(t,p;y0(p)),p), (2.3)

y(0,p;y0(p)) = y0(p) (2.4)

where y(t,p;y0(p)) ∈ R
ny are the state variables and p ∈ R

np are the parameters. By

solving this BVP for given values for p, initial conditions for the state variables that lie on

the limit cycle are obtained as well as the period of oscillation, T (p).

If only Eq. (2.1) were used, this BVP would have infinitely many solutions. The

(ny +1)st condition in Eq. (2.2) is one possible example of a phase locking condition (PLC),

which fixes the solution to a isolated point on the limit cycle. In this example, this is

the point where the state variable yi is stationary. From the fact that (2.3) describes an

oscillating system, at least one such point exists. Any arbitrary state variable can be chosen

for this constraint, as long as a valid PLC is formulated. A PLC is valid if it defines an

isolated point on the periodic orbit (this restriction excludes, e.g., stationary points in flat

regions of the trajectory of yi from being used in Eq. (2.2)) and it yields a solution that is

unique and smooth in a neighborhood of p (this restriction excludes, for example, points

where both ẏi(0,p;y0(p)) = 0 and ÿi(0,p;y0(p)) = 0, as will be discussed in Sections 2.2.7

36



and 2.2.7). The choice of PLC presented here is useful for computing derived quantities,

such as the peak-to-peak sensitivities presented in Section 2.2.7, and will be used for all

examples unless otherwise mentioned.

Notice that y0(p) and T (p) calculated in this manner are functions of p.

2.2.2 Floquet Theory

The Monodromy Matrix

Given a y(t) which satisfies Eqs. (2.1) and (2.3), then A ≡ ∂f
∂y

will be a matrix with periodic

coefficients. Let H(t) be the solution to the linear system with periodically time-varying

coefficients

Ḣ(t) = A(t)H(t) (2.5)

with H(0) = I. The matrix H can be interpreted as the partial derivatives of the state

variables y of the LCO with respect to the initial conditions, hij ≡ ∂yi

∂y0j
.

The monodromy matrix M of this system is defined as M ≡ H(T ) and has the property

H(t+ T ) = H(t)M. (2.6)

The eigenvalues ρ of M are called multipliers [89] (or characteristic roots [41]) of Equation

(2.5). The characteristic exponents of Eq. (2.5) are then λi = 1
T ln ρi. The multipliers or

exponents can be used to determine whether a solution of Eqs. (2.1) and (2.3) is stable. A

solution to Eqs. (2.1) and (2.3) is orbitally stable if one multiplier is equal to 1, and all others

lie inside the unit circle [5]. The eigenvalues and eigenvectors of M provide information on

bifurcation behavior [24] and phase noise [53, 21, 22]. Throughout this section of the paper,

it is assumed that the solution of Equation (2.3) is Lyapunov stable, that one multiplier is

equal to 1, and all others lie inside the unit circle.

General Properties of the Matrix H

Given a general periodically time-varying linear system,

Ẋ(t) = A(t)X(t), (2.7)
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the state transition matrix relates X(s) to X(t) as in

X(t) = H(t, s)X(s). (2.8)

It is assumed that the state transition matrix H(t, s) of the linear system in Eq. (2.5) can

be factored so that it takes the form [23]

H(t, s) = U(t)D(t− s)V(s).

If H(t, s) is diagonalizable, then D(t) is of the form

D(t) =

















1 0 0 ...

0 etλ2 0 ...

0 0 ... ...

0 ... etλny

















where λi are the characteristic exponents of system (2.3) and where U(t) ∈ R
ny×ny and

V(t) ∈ R
ny×ny are both T -periodic and nonsingular for all t, and satisfy

U(t) = V−1(t).

If H(t, s) is not diagonalizable, then D(t) takes a block-diagonal form [95], with as many

blocks Di as there are linearly independent eigenvectors, with each block of size ni × ni

taking the form

Di(t) =

















eλi(t) tetλi ... 1
(ni−1)! t

(ni−1)etλi

0 etλi .. 1
(ni−2)! t

(ni−2)etλi

0 0
. . .

...

0 0 ... etλi

















. (2.9)

The first row and column of D(t) is the same in both cases, as by definition the system has

exactly one multiplier equal to one. For s = 0, H(t, s) becomes H(t) in Eq. (2.5) and it

follows that H(t) can be written as H(t) = H1(t) +H2(t), where H1(t) and H2(t) are both
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solutions to Eq. (2.5) and given by

H1(t) = [ẏ(t) Ony,ny−1]V(0) (2.10)

H2(t) = [Ony,1 G(t)]V(0)

with Oi,k being the zero matrix with i rows and k columns [89, 18]. Furthermore, since all

characteristic exponents λi have negative real parts for i > 1, the matrix H2(t) decays for

large times t, so that H(t) → H1(t), and H1(t) is T -periodic.

2.2.3 Parametric Sensitivity Analysis

Suppose a dynamic system is described by Eq. (2.3). Then, the matrix of parametric

sensitivities sij ≡
∂yi

∂pj
satisfy the following differential equation:

d

dt
S(t,p) = A(t,p)S(t,p) + B(t,p), (2.11)

where A(t,p) = ∂f
∂y

∣

∣

∣

y(t,p),p
, B(t,p) = ∂f

∂p

∣

∣

∣

y(t,p),p
and S(t,p) ∈ R

ny×np .

In the analysis of oscillatory systems, the family of periodic solutions y(t,p) of Eq.

(2.3) is of interest. These solutions describe an oscillation with period T (p), and therefore

satisfy Eq. (2.1). As a consequence, f(y(t,p),p;y0(p)), A(t,p) and B(t,p) are periodic in

time as well (for the remainder of this section, only the periodic solution is analyzed, unless

otherwise mentioned). It was previously shown [89] that the general solution of Eq. (2.11)

is

S(t,p) = H(t,p)(S0 − Z(0,p)) + tR(t,p) + Z(t,p) (2.12)

where R(t,p) and Z(t,p) are also periodic in time with period T (p), and where S0 ≡ S(0,p).

The first term of this equation takes into account the influence of the initial conditions for

the sensitivities, S0 ≡ ∂y0

∂p
, which for many dynamical systems would be the zero matrix

(i.e., the initial condition is not influenced by the parameters). The situation for limit-cycle

oscillators is different, however. As shown in the previous section, H(t,p) does not decay,

and therefore if the initial conditions S0 are not equal to Z(0,p), this term does not decay.

The underlying cause is that, in fact, the y0 that satisfies Eqs. (2.1-2.3) does depend on the

parameters p.

If this influence of the initial conditions is to be captured in the total sensitivity, one
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effectively wants to compute the quantity

S

(

·, ·;
∂y0

∂p

)

≡
∂y

∂y0

∂y0

∂p
+

(

∂y

∂p

)

y0=const.

where
(

∂y
∂p

)

y0=const.
= S(·, ·;0) are the sensitivities at constant initial conditions. In other

words, the nonzero sensitivity initial conditions S0 need to be determined. It was previously

shown [89] that the solution of Eq. (2.11) then takes the form

S(t,p;S0(p)) = tR(t,p) + Z(t,p;S0(p)), (2.13)

where Z(0,p;S0(p)) = S0(p).

Several characteristics of the sensitivity trajectories become apparent. As Eq. (2.13)

shows, the parametric sensitivities of a periodic system are composed of two parts. The

periodic part

Z =

(

∂y

∂p

)

T (p)=const.

corresponds to the partial derivative of the state variables with respect to the parameters,

with the period kept constant. This quantity can be further decomposed to distinguish

amplitude from phase contributions, which will be discussed in more detail in Section 2.2.5.

It was sometimes referred to as the “cleaned out” sensitivity coefficients in previous publi-

cations [99].

The unbounded part tR(t,p) contains information on the influence of the parameters

on the period of the oscillation. In fact, [89] shows that

R(t,p) = −
ẏ(t,p;y0(p))

T (p)

∂T

∂p

∣

∣

∣

∣

p

, (2.14)

where ẏ(t,p;y0(p)) is a column vector of length ny and ∂T
∂p

is a row vector of length np.

The unboundedness of this part caused concern in some previous work, and it was proposed

to scale the time t to obtain a “cyclic time” to avoid the problem [99]. However, it is crucial

to notice that even if the unboundedness of this part is eliminated, another source of error

and transients in the general solution remains. This is the error caused by inappropriate

initial conditions for S, which leads both to a transient of unknown magnitude as well as

a persistent, periodic contribution as time goes to infinity, as can be seen in Eq. (2.12)
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and Section 2.2.2. In order to calculate meaningful sensitivities S(t,p;S0(p)) as well as

Z(t,p) and R(t,p) for any given time t, correct initial conditions S0 need to be determined.

Methods to compute the exact initial conditions and the various parts of the sensitivity for

both LCOs and NLCOs are detailed next.

2.2.4 Boundary Value Formulation for the Period Sensitivities

Eqs. (2.1–2.2) can be differentiated with respect to the parameters p, yielding the following

expressions:

dy
dt

∣

∣

∣

T,p,y0

∂T
∂p

∣

∣

∣

p
+

(

∂y
∂p

∣

∣

∣

T,p,y0

)

y(0)=const.

+ ∂y
∂y0

∣

∣

∣

T,p,y0

∂y0

∂p

∣

∣

∣

p

− ∂y
∂y0

∣

∣

∣

0,p,y0

∂y0

∂p

∣

∣

∣

p
= 0 (2.15)

∂fi

∂y

∣

∣

∣

∣

y0,p

∂y0

∂p

∣

∣

∣

∣

p

+
∂fi

∂p

∣

∣

∣

∣

y0,p

= 0. (2.16)

This set of equations can then be rewritten in matrix form as







(M(p) − I) ẏ(T,p;y0(p))

∂fi

∂y

∣

∣

∣

y0,p
0













S0(p)

∂T
∂p

∣

∣

∣

p






=







−S(T,p;0)

− ∂fi

∂p

∣

∣

∣

y0,p






(2.17)

where I is the ny × ny identity matrix, M(p) is the monodromy matrix of the sensitivity

system ∂y
∂y0

∣

∣

∣

T,p,y0

, and S(T,p;0) is the solution of sensitivity equation (2.11) for zero initial

conditions at time T ,

(

∂y
∂p

∣

∣

∣

T,p,y0

)

y(0)=const.

. This equation can be solved for the matrix of

unknowns,






S0(p)

∂T
∂p

∣

∣

∣

p






,

obtaining a set of initial conditions for the sensitivities S0(p) and the period sensitivities.

Using these quantities, it will be shown that all the various parts of the sensitivites can

be computed exactly, without using iterative processes or approximations.

There have been several previous approaches to calculate the period sensitivities in

LCOs. Typically, the fact that the unbounded term will dominate at large times is used to
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estimate the period sensitivity in an iterative procedure [18, 56, 64, 48]. Another approach

uses a method based on singular value decomposition [111]. A third method involves the

computation of relative phase sensitivities [56, 37]. All these methods have in common that

at some point during the numerical procedure, estimations are made, typically where the

exact mathematical quantity involves a limit that is estimated by truncating the sequence

finitely.

Rosenwasser and Yusupov [89] describe a very similar BVP-based method for LCOs that

allows the calculation of the period sensitivities in the same way as presented here, and that

is exact (i.e., the only source of error is the numerical tolerance to which the BVP is solved).

Because a different type of PLC is used, the solution for the sensitivity initial conditions is

different. The possible multiplicity of such solutions is not discussed. The work presented

here shows how the choice of PLC influences the solution of the sensitivity trajectories

(Section 2.2.5) and the fact that the choice of PLC matters in performing relative phase

sensitivity (Section 2.2.7). While reference [89] shows a decomposition of the sensitivity

solution that separates out the influence of the period (Section 2.2.3), this work introduces

a meaningful decomposition into three parts, where the influence of relative phase and is

separated from that of the amplitudes (Section 2.2.5). Furthermore, this work extends all

theory to oscillator types other than LCOs in Section 2.4.

2.2.5 Many Sensitivity Systems for Limit-Cycle Oscillators

Instead of Eq. (2.2), other PLCs can be used, as long as the resulting system is well-posed

[62]. An example [89] is to choose a suitable value a for one of the state variables yj, such

that yj(0,p) = a forms the (ny + 1)st equation of the BVP. This change will only affect the

last row of the matrix equation (2.17) and yields the same period sensitivities ∂T
∂p

, as will

become evident after the following analysis.

The matrix (M(p) − I) is singular with a rank of (ny − 1), since it has been assumed

that M has exactly one eigenvalue equal to one, and therefore (M(p) − I) has exactly one

eigenvalue equal to zero. The partial system

[

(M(p) − I) ẏ(T,p;y0(p))
]







S0(p)

∂T
∂p

∣

∣

∣

p






=
[

−S(T,p;0)
]

(2.18)
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of Eq. (2.17) does not have a unique solution, but ∂T
∂p

is still uniquely determined by this

system.

What follows is that if S∗
0 is a solution of Eq. (2.18) then Ŝ0 = S∗

0 + ẏ(0)δ(0) is also a

solution. δ(0) is any row vector of size np. The vector ẏ(0,p;y0(p)) = ẏ(T,p;y0(p)) is a

right eigenvector of (M−I) associated with the zero eigenvalue since it is a right eigenvector

of the monodromy matrix M, associated with the multiplier equal to one [21].

Theorem 1. Suppose that at a solution of equations (2.1–2.2) the Jacobian matrix on the

left-hand side of Eq. (2.17) with respect to y0(p) and T (p) is nonsingular. Then:

1. ∂T
∂p

∣

∣

∣

p
is determined uniquely by Eq. (2.18), i.e., independent of the choice of PLC.

2. Any solution of Eq. (2.11) for T–periodic A and B has the form

S(t) = −
t

T
ẏ(t)

∂T

∂p
+ Q(t). (2.19)

3. If S is a solution of Eq. (2.11) then

Ŝ(t) = −
t

T
ẏ(t)

∂T

∂p
+ Q̂(t)

is also a solution of Eq. (2.11) (e.g., for another PLC) where

Q̂(t) ≡ Q(t) + ẏ(t)γ

and γ ≡ [γ1, γ2, . . . , γnp
] is any time invariant row vector.

4. Any initial condition S0 for Eq. (2.11) that satisfies Eq. (2.18) yields a solution S

with a T -periodic Q in (2.19).

Proof. 1. By hypothesis Eq. (2.17) has a unique solution. In other words, the square

matrix is of rank (ny +1) and therefore the partial system in Eq. (2.18) must be of full

rank (ny) (since one extra row can only increase the rank by one). Since [M(p)− I] is

of rank ny − 1, the partial system Eq. (2.18) can be put in the following row echelon
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form:






















∗ ∗ ... ∗ ∗ ∗

0 ∗ ... ∗ ∗ ∗
...

...
. . .

...
...

...

0 0 ... ∗ ∗ ∗

0 0 .... 0 0 ∗





























S0(p)

∂T
∂p

∣

∣

∣

p






=
[

−ΨS(T,p;0)
]

where Ψ is a matrix representing the elementary row operations performed to obtain

row-echelon form. Since the (ny +1)st column must contribute a pivot to the system,

∂T
∂p

is uniquely determined.

2. The general solution of Eq. (2.11) is given by Eq. (2.12) and shows it can always be

decomposed as Eq. (2.19), such that Q(t) is not necessarily periodic but contains the

influence of the initial conditions and the periodic part Z(t).

3. Take a solution S to Eq. (2.11) of the form (2.19). Then, if ẏγ is added to S,

Ṡ + ÿγ = A(S + ẏγ) + B (2.20)

which solves Eq. (2.11) because

ÿ = Aẏ.

Furthermore, all solutions Ŝ(t) can be decomposed as in Eq. (2.19) because

S + ẏγ = tR + Q + ẏγ

where R = − ẏ
T

∂T
∂p

, and ∂T
∂p

is uniquely determined by Eq. (2.18), so that R̂ = R.

Then

Ŝ = tR + Q̂

where Q̂ ≡ Q + ẏγ.

4. Substitute Eq. (2.12) into Eq. (2.18) to obtain

(M − I)(S0 − Z(0)) = 0.

Q(t + T ) − Q(t) = S(t + T ) − S(t) + ẏ(t)∂T
∂p

, so by using Eq. (2.12) together with
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Eq. (2.6) to obtain

Q(t+ T ) − Q(t) = H(t)(M − I)(S0 − Z(0)) = 0

and therefore Q is T periodic.

It is important to notice that once a solution for the BVP in Eq. (2.1) is found (using

any PLC), it is irrelevant which PLC is used to compute the sensitivity matrices (as long

as it is consistent with the initial conditions found from the solution of the BVP). This is

due to the fact that the influence of the initial conditions is only implicit in the matrices A

and B and it was shown that all solutions are consistent with those.

Decomposition of the Periodic Z(t) Matrix

It was suggested in reference [64] that the periodic matrix Z(t) contains information on how

the shape of the limit cycle depends on the parameters of the system, where the influence of

the period change is eliminated. Furthermore, this matrix is thought to contain information

on phase behavior of the limit cycle [56]. Presumably, if any information on the shape of

the limit cycle is to be found, one would like to eliminate all components that encode phase

information, or in other words, that are in the ẏ(t) direction. The matrix Z(t) can then be

written as a sum of two contributions:

Z(t) = W(t) + ẏ(t)δ(t)

The initial condition from a solution of Eq. (2.18) that is orthogonal to the null space of

(M − I) will be termed W(0).

Since ẏ(T ) spans the null space of (M(p) − I), W(0) can be computed by augmenting

Eq. (2.18) with this eigenvector (corresponding to the zero eigenvalue) as the (ny + 1)st

row. The resulting system of equations is





(M(p) − I) ẏ(T,p;y0(p))

ẏT(T,p;y0(p)) 0











W(0,p)

∂T
∂p

∣

∣

∣

p






=





−S(T,p;0)

0



 . (2.21)
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The (ny + 1)st row in this situation does not represent a PLC, and can thus be added for

any solution of the BVP in Eq. (2.1).

However, this method only provides an initial condition. The matrix W(t) is constructed

from any matrix Z(t) (or from S(t), in the exact same manner) using the projection

W(t) =

(

I −
ẏ(t) ẏ(t)T

||ẏ(t)||2

)

Z(t). (2.22)

It is known that Z(t+T ) = Z(t) as well as ẏ(t+T ) = ẏ(t), so it is clear that W(t+T ) = W(t)

is periodic also. Using the same argument, the contribution in the ẏ(t) direction

δ(t) =
1

||ẏ(t)||2
[ẏ(t)TZ(t)]

is also T periodic.

In summary, this decomposition of the matrix Z(t) leads to a three part decomposition

of the overall sensitivities, yielding

S(t) = −
t

T
ẏ(t)

∂T

∂p
+ W(t) + ẏ(t)δ(t).

The interpretation of the latter two parts as containing shape and phase information, re-

spectively, is justified in the following text.

2.2.6 Amplitude Sensitivities

Define the amplitude of yi as

Ωi(p) ≡ yi(ti,max(p),p;y0(p)) − yi(ti,min(p),p;y0(p))

where ti,max and ti,min are times at which yi attains its maximum and minimum value,

respectively, and differentiate with respect to p to obtain

∂Ωi

∂p

∣

∣

∣

∣

p

= si(ti,max(p),p;S0(p)) + ẏi(ti,max(p),p;y0(p))
∂ti,max

∂p

∣

∣

∣

∣

p

−si(ti,min(p),p;S0(p)) − ẏi(ti,min(p),p;y0(p))
∂ti,min

∂p

∣

∣

∣

∣

p

where si represents the ith row of the full sensitivity matrix. The amplitude of oscillation is
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thus a derived quantity specific to each state variable and because y(t) is a smooth function,

the terms multiplied by ẏi(ti,max(p),p;y0(p)) and by ẏi(ti,min(p),p;y0(p)) vanish, the

amplitude sensitivity is the difference between the sensitivities at the maximum and the

minimum of this state variable, as shown in references [18, 56]. Furthermore, the sensitivity

of the amplitude of yi can be calculated directly from any of the sensitivities S, Z or W.

From the fact that ẏi(ti,max) = 0 it follows that si(ti,max) = zi(ti,max) = wi(ti,max). This

illustrates the fact that W contains information on the shape of the limit cycle.

Theorem 2. For a LCO, the matrix W(t) is uniquely defined by y(t) for each point on the

limit cycle.

Proof. Take two sensitivity solutions S1(t,p;S0,1(p)) and S2(s,p;S0,2(p)), constructed us-

ing PLC1 and PLC2, respectively. The two PLCs define time references such that at some

point on the limit cycle, y(t = α) = y(s = β). Differentiate with respect to the parameters

to obtain

S1(t = α) + ẏ(t = α)
∂α

∂p
= S2(s = β) + ẏ(s = β)

∂β

∂p

showing that solutions satisfying Eq. (2.18) differ only in their contributions in the direction

ẏ(t), and this difference is eliminated by using the projection described in Eq. (2.22) to

construct W(t).

Corollary 1. The only difference between any two sensitivity solutions for the same y0(p)

is δ(t).

2.2.7 Phase Sensitivities

The Relative Phase Sensitivities δ(t)

This section will show that there is an intuitive interpretation of δ(t) as a quantification

of how the timing of an event defined by a PLC depends on the parameters of the system.

In other words, the quantity δ(t) is a relative phase sensitivity, where “relative phase” is

defined as a time difference (β − α) between two events, described by two different PLCs.

Take y∗(t,p;y∗
0(p)) to be the solution of the BVP using PLC1, leading to a sensitivity

solution

S∗(t) = tR∗(t) + W∗(t) + ẏ∗(t)δ∗(t), (2.23)
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and y∗∗(s,p;y∗∗
0 (p)) to be the solution of the BVP using PLC2, leading to a sensitivity

solution

S∗∗(s) = sR∗∗(s) + W∗∗(s) + ẏ∗∗(s)δ∗∗(s). (2.24)

Define a pair (α, β) by

y∗(t = β,p;y∗
0(p)) = y∗∗(s = α,p;y∗∗

0 (p)) (2.25)

and thus also ẏ∗(β,p;y∗
0(p)) = ẏ∗∗(α,p;y∗∗

0 (p)). Differentiate Eq. (2.25) with respect to

p to obtain

S∗(β) + ẏ∗(β)
∂β

∂p
= S∗∗(α) + ẏ∗∗(α)

∂α

∂p
.

Eqns. (2.23–2.24) can be used to cancel identical terms:

W∗(β) + ẏ∗(β)

(

−
β

T

∂T

∂p
+
α

T

∂T

∂p
+ δ∗(β) +

∂β

∂p
−
∂α

∂p
− δ∗∗(α)

)

= W∗∗(α).

By Theorem 2 W∗(β) = W∗∗(α) and ẏ∗(β) 6= 0 so that

∂(α− β)

∂p
=

(α− β)

T

∂T

∂p
+ δ∗(β) − δ∗∗(α) (2.26)

This result is interesting because it enables two effects to be distinguished. The first

term is the overall contribution of the period sensitivity to the sensitivity of the phase,

whereas the following two terms describe the flexibility of the limit cycle in the sense that

phase variation can occur independently of period variation.

Notice that if PLC1 and PLC2 had been chosen in such a way that they locked the phase

at the same point, but using different PLCs, then β = α and the influence of different PLCs

on the sensitivity solution is entirely quantified by the different δs. This effect is illustrated

in Figure 2-1 and it makes clear the need for a precise definition of “phase” when analyzing

oscillatory dynamical systems. Care must be taken to use only PLCs that are valid. An

example of an invalid PLC would be to use yi(0) = ξ at an extremum of yi, because in this

scenario the point yi(0) = ξ might no longer exist after an infinitesimal parameter change,

i.e. the phase sensitivity is not defined.

Notice furthermore that if α = 0, the measure −∂(α−β)
∂p

describes the sensitivity of the

timing of the event y∗(t = β) with reference to the time scale defined by PLC1.
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y2

y1

t(p)=0

t**(p+∆p)=0t*(p+∆p)=0

y2=ξ

Figure 2-1: Illustration of the effect of the PLC on the sensitivity solution. A finite pertur-
bation of the parameters from p to (p+ ∆p) causes a shift of the limit cycle from the solid
line to the dashed line. The PLC ẏ1(0) = 0 results in a new time reference shown as t∗∗,
the PLC y2(0) = ξ results in the time t∗.

Peak-to-Peak Phase Sensitivities

The peak-to-peak sensitivities defined here are one particular kind of relative phase sensitiv-

ities, where the relative phase of interest is the time difference between extrema in different

state variables. While the formulation presented above can be used, the structure of the

problem lends itself to a short-cut which will be described briefly.

Suppose the time scale is defined using the PLC

ẏ1(0,p;y0(p)) = 0. (2.27)

Then define β(p) from the equation

ẏj(β(p),p;y0(p)) = 0 (2.28)

i.e., β is the time of the extremum in yj relative to the extremum in y1. This can also be

written as

fj(y(β(p),p;y0(p)),p) = 0 (2.29)

and differentiated with respect to p to yield
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∂fj

∂y

∣

∣

∣

∣

y(β(p),p;y0(p)),p

(

ẏ(β(p),p;y0(p))
∂β

∂p

∣

∣

∣

∣

p

+

S

(

β(p),p;
∂y0

∂p

∣

∣

∣

∣

p

))

+
∂fj

∂p

∣

∣

∣

∣

y(β(p),p;y0(p)),p

= 0, (2.30)

which can be solved directly for ∂β
∂p

∣

∣

∣

p
, providing the peak-to-peak sensitivity without the

calculation of δs. Again, close attention should be paid to the validity of the PLC for the

point chosen. If in this case,
∂fj

∂y

∣

∣

∣

y(β(p),p;y0(p)),p
ẏ(β(p),p;y0(p)) = 0 in Eq. (2.30), or in

other words ÿ(β(p),p;y0(p)) = 0, the PLC is not valid and this equation cannot be used to

determine a unique ∂β
∂p

(an intuitive example here is the case of a saddle point in yj, where

an infinitesimal parameter change might remove the stationary point and turn the saddle

point into an inflexion point instead). In this case, it may be possible to use higher-order

derivatives of the PLC with respect to the parameters to determine a unique ∂β
∂p

. However,

this analysis is not detailed here.

This simplified method yields the same result as the more general method from the

previous section, as evident after the following exercise. Take Eq. (2.27) as PLC1, yielding

the time reference y(t). Use Eq. (2.28) as the second PLC, with the time reference y∗∗(s)

and α = 0, so that y(β) = y∗∗(0). Then Eq. (2.30) can be written as

∂fj

∂y

∣

∣

∣

∣

y(β,p),p

(

ẏ(β,p)

(

∂β

∂p

∣

∣

∣

∣

p

−
β

T

∂T

∂p
+ δ(β)

)

+ W(β,p)

)

+
∂fj

∂p

∣

∣

∣

∣

y(β,p),p

= 0. (2.31)

From the second PLC it is known that

∂fj

∂y

∣

∣

∣

∣

y∗∗(0,p),p

(W∗∗(0) + ẏ∗∗(0,p)δ∗∗(0)) +
∂fj

∂p

∣

∣

∣

∣

y∗∗(0,p),p

= 0, (2.32)

where as shown in Theorem 2, W∗∗(0) = W(β), and thus Eq. (2.32) can be substituted

into Eq. (2.31) to obtain
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∂fj

∂y

∣

∣

∣

∣

y(β,p),p

ẏ(β,p)

(

∂β

∂p

∣

∣

∣

∣

p

−
β

T

∂T

∂p
+ δ(β) − δ∗∗(0)

)

= 0. (2.33)

which is consistent with Eq. (2.26). In fact, this simpler method can be used for any type of

PLC for the zero time reference, as long as the time β is defined by an extremum in yj(t).

Notice that this type of sensitivity again reduces to Eq. (2.18) if one considers the special

case of

f1(y(T (p);p,y0(p)),p) = 0.

After differentiation, this leads to

∂f1

∂y

∣

∣

∣

∣

y(T (p),p;y0(p)),p

(

ẏ(T (p),p;y0(p))
∂T

∂p

∣

∣

∣

∣

p

+

S

(

T (p),p;
∂y0

∂p

∣

∣

∣

∣

p

))

+
∂f1

∂p

∣

∣

∣

∣

y(T (p),p;y0(p)),p

= 0.

Using Eq. (2.15) it is known that

∂y0

∂p

∣

∣

∣

∣

p

= ẏ(T (p);p,y0(p))
∂T

∂p

∣

∣

∣

∣

p

+ S

(

T (p),p;
∂y0

∂p

∣

∣

∣

∣

p

)

.

Since the partial derivatives of f1 are T periodic, it is shown that this Equation reduces

to the PLC used in Eq. (2.16), making this peak-to-peak sensitivity consistent with the

computation of the period sensitivities earlier. The period sensitivities can therefore be

considered a special case of the peak-to-peak sensitivities, namely the time difference of a

peak of one state variable to the next peak in the same state variable.

Phase Sensitivities with Respect to Initial Conditions

This section first defines a new phase sensitivity and then provides a partial proof that links

together two previous results in the literature ([23] and [56]). The phase γ is defined as the

permanent phase shift induced by a perturbation in the state variables away from the limit

cycle compared to an unperturbed trajectory. It is assumed this perturbation happens at

time zero.
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The phase sensitivities computed here are a measure of how this phase shift depends on

the perturbation of the initial conditions. The main difference between this analysis and

the previous sections is that trajectories off the limit cycle are considered.

Take two different sets of initial conditions: y0 on, and y1 off the limit cycle, which are

thus independent from each other. By the definition of an orbitally stable limit cycle ([41],

Theorem 11.1), γ(p,y0,y1) can be defined by the relation

lim
t→+∞

y(t+ γ(p,y0,y1),p;y1) − y(t,p;y0(p)) = 0. (2.34)

Note that γ does not depend on t. Also note that neither the limits

lim
t→+∞

y(t+ γ(p,y0,y1),p;y1) or lim
t→+∞

y(t,p;y0(p))

exist (except for initial conditions that are equilibrium points) because the system is a LCO.

However, the limit of the difference does exist.

Then differentiation with respect to the initial conditions yields

∂

∂y0

(

lim
t→+∞

y(t+ γ(p,y0,y1),p;y1) − y(t,p;y0(p))

)

= 0.

If under appropriate assumption, the order of differentiation and limit-taking can be re-

versed, then

lim
t→+∞

∂

∂y0
(y(t+ γ(p,y0,y1),p;y1) − y(t,p;y0(p))) =

∂

∂y0

(

lim
t→+∞

y(t+ γ(p,y0,y1),p;y1) − y(t,p;y0(p))

)

. (2.35)

The derivative of y with respect to the initial condition y0 is given by the solution H(t)

of the Eq. (2.5).

Formal differentiation with respect to y0 then yields

lim
t→+∞

ẏ(t+ γ(p,y0,y1),p;y1)
∂γ

∂y0

∣

∣

∣

∣

p,y0(p),y1

− H(t) = 0.

As discussed in Section 2.2.2, H(t) = H1(t)+H2(t) where H1(t) is a rank one matrix equal

to ẏ(t,p;y0(p))vT
1 (y0(p)) where vT

1 (y0(p)) is a constant vector corresponding to the first
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row of V(0,p; (y0(p))) in Eq. (2.10) and limt→+∞ H2(t) = 0. This implies

lim
t→+∞

ẏ(t+ γ(p,y0,y1),p;y1)
∂γ

∂y0

∣

∣

∣

∣

p,y0(p),y1

− ẏ(t,p;y0(p))vT
1 (y0(p)) = 0. (2.36)

In addition we know that

lim
t→+∞

ẏ(t+ γ(p,y0,y1),p;y1) − ẏ(t,p;y0(p)) = 0. (2.37)

by a simple extension of Eq. (2.34). If Eq. (2.37) is multiplied by ∂γ
∂y0

∣

∣

∣

p,y0(p),y1

and sub-

tracted off Eq. (2.36), we obtain

lim
t→+∞

ẏ(t+ γ(p,y0,y1),p;y1)
∂γ

∂y0

∣

∣

∣

∣

p,y0(p),y1

− ẏ(t,p;y0(p))vT
1 (y0(p))

−ẏ(t+ γ(p,y0,y1),p;y1)
∂γ

∂y0

∣

∣

∣

∣

p,y0(p),y1

+ ẏ(t,p;y0(p))
∂γ

∂y0

∣

∣

∣

∣

p,y0(p),y1

= 0

and eventually

lim
t→+∞

−ẏ(t,p;y0(p))vT
1 (y0(p)) + ẏ(t,p;y0(p))

∂γ

∂y0

∣

∣

∣

∣

p,y0(p),y1

= 0.

Since it is known that limt→+∞ ẏ(t,p;y0(p)) does not exist, we can conlude that

∂γ

∂y0

∣

∣

∣

∣

p,y0(p),y1

= vT
1 (y0(p)) (2.38)

Let y1 tend to y0(p) to obtain the phase sensitivity with respect to a perturbation in the

states at y0(p). Physical meaning was previously attributed to the first right eigenvector

of the Monodromy matrix vT
1 (y0(p)) in the context of phase noise in electrical oscillators

[53, 23]. It corresponds to the quantity -Q(0) described in Reference [56] as

Qj(0) = −
∂γ

∂y0j
= − lim

t→∞

hij(t)

ẏi(t)

where y0j is the jth initial condition,hij(t) is the element in the ith row and jth column of

H(t), and thus limt→∞
hij

ẏi
= vT

j (0) from Eq. (2.10).

Interestingly the result in Eq. (2.38) does not depend on y1 at all. This is astonishing at
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first glance, however an intuitive explanation serves well to illustrate this fact. If the time

span γ is defined by a ‘start time’ and an ‘end time’, then y0(p) and y1, respectively, define

those times. It is now easily seen that the change of γ as a result of a change in ‘start time’

is independent of the end time. A similar argument explains the sign difference between

the result by Kramer et. al.[56] and in this work - it is a matter of which time reference is

used to define the phase which sign the final result carries.

2.3 Sensitivity Analysis for Non-Limit-Cycle Oscillators

We define a NLCO as a dynamic system with periodic orbits in which the rank of the

matrix (2.40) is equal to one. This implies that the monodromy matrices M have exactly

ny eigenvalues equal to one (see Corollary 3).

2.3.1 Sensitivity Analysis

For NLCOs, the initialization of the parametric sensitivities is straightforward. The para-

metric sensitivities at time t = 0 are zero, since the initial conditions do not depend on

the parameter values. As a consequence, the sensitivities S can easily be determined by

integration of Eq. (2.11) with S0 = 0. The full sensitivities can be decomposed as in the

case of a LCO [63]:

S(t) = −
t

T
ẏ(t)

∂T

∂p
+ Z(t).

2.3.2 The Boundary Value Problem

Since for NLCOs the initial conditions determine the periodic behavior together with the

parameters, and there is no asymptotic behavior, the BVP solution is reduced to a single

unknown. The period T (p,y0) of the system is not known a priori, but is easily determined,

for example by the solution of a BVP for T (p,y0) subject to

y(T (p,y0),p,y0) − y0 = 0. (2.39)

When the BVP is differentiated with respect to the parameters, a matrix equation similar

to Eq. (2.18) is obtained, where the matrix

[

(M − I) ẏ(T,p,y0)
]

(2.40)
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has rank one, due to two possible scenarios. The rank of (M− I) can either be zero or one,

depending on the nature of the dynamic system. In either case, (2.40) has rank one and

ny PLCs are needed to pose a BVP of full rank. A natural choice is to set all ny initial

conditions.

Period and Amplitude Sensitivities

The derivatives of the boundary condition in Eq. (2.39) with respect to parameters p and

initial conditions y0 yield:

ẏ(0,p,y0)
∂T

∂p

∣

∣

∣

∣

p,y0

= −S(T,p;0) (2.41)

and

ẏ(0,p,y0)
∂T

∂y0

∣

∣

∣

∣

p,y0

= (I − M). (2.42)

Eq. (2.41) can be solved for ∂T
∂p

∣

∣

∣

p,y0

. The rank of (M − I) determines the solution of

Eq. (2.42). It is clear that in the case of (I − M) having rank zero, the initial conditions

have no influence on the period of the oscillation. This is the case, for example, in the

linear harmonic oscillator. The example presented in Section 2.6.3 is nonlinear and has a

non-diagonalizable matrix (I−M) of rank one, still with all zero eigenvalues. In this case,

because Eq. (2.40) has rank one, (M − I) = ẏ(T )ψ, where ψ is a row vector of length ny.

It follows that period sensitivities with respect to the initial conditions can be calculated

and ∂T
∂y0

∣

∣

∣

p,y0

≡ −ψ.

The amplitude sensitivities can be calculated in the same manner as described for LCOs.

Relative Phase Sensitivities

It is known that

S(0,p,y0) = Z(0,p,y0) = W(0,p,y0) + ẏ(0,p)δ(0,p,y0) = 0

and because, by construction the columns of W(0,p,y0) are orthogonal to ẏ(0,p),

W(0,p,y0) = 0
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and

δ(0,p,y0) = 0.

However, neither W(t) nor δ(t) are identically zero, as the example in Figure 2-4 shows. It

follows that for any given point on the periodic orbit, the matrix W is not uniquely defined

by the state variables, because the choice of PLC in the form of all initial conditions is

arbitrary and any point on the cycle could have been chosen.

A relative phase sensitivity analysis can still be performed, and two examples will be

shown here. To avoid repetition, the general case is discussed later in Section 2.4.3. Let the

“relative phase” be defined here as a time difference β between the time zero, as defined by

the set of initial conditions y0, and one differentiable PLC that locks one degree of freedom,

e.g.,

yi(t = β,p,y0) = ψ. (2.43)

This PLC can be differentiated with respect to the parameters, resulting, for this example,

in

−
β

T
ẏi(β)

∂T

∂p
+ wi(β) + ẏi(β)δ(β) + ẏi(β)

∂β

∂p
= 0,

where wi(β) is the i-th row of the matrix W(t). If ẏi(β) 6= 0, this equation can be solved

to yield
∂β

∂p
=
β

T

∂T

∂p
−

wi(β)

ẏi(β)
− δ(β).

Again, it is important to notice that Eq. (2.43) is not a valid PLC at a point where ẏi(β) = 0,

as discussed for the case of LCOs in Section 2.2.7.

Similarly, the method for peak-to-peak sensitivity calculation in Section 2.2.7 only needs

to be modified slightly to be applicable to NLCOs. Instead of a first PLC, the time reference

is defined by the inital condition, but the relative phase β is still defined by a PLC that

locks the phase at a stationary point of a state variable yj (and as discussed in Section

2.2.7, a point where ÿj(β(p),p,y0) = 0 cannot be analyzed in this manner),

ẏj(β(p),p,y0) = 0. (2.44)

Again, this PLC is differentiated with respect to p to yield
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∂fj

∂y

∣

∣

∣

∣

y(β(p),p;y0),p

(

ẏ(β(p),p;y0)
∂β

∂p

∣

∣

∣

∣

p

+ S (β(p),p;0)

)

+
∂fj

∂p

∣

∣

∣

∣

y(β(p),p;y0),p

= 0. (2.45)

which can be solved directly for ∂β
∂p

∣

∣

∣

p
. Relative phases between two events defining a time β

and a time α, respectively, on the periodic orbit can now be calculated simply by performing

separate analyses with reference to the common time zero defined by the initial conditions,

and then taking the difference, i.e., ∂(β−α)
∂p

= ∂β
∂p

− ∂α
∂p

.

2.4 General Formulation for the Sensitivity Analysis of All

Types of Oscillators

2.4.1 Intermediate-Type Oscillators

An intermediate-type oscillator in the context of this manuscript is a dynamic system with

periodic orbits that is not described by the definitions for either the LCO or the NLCO.

The monodromy matrix M can have k eigenvalues equal to one where 1 < k ≤ ny. Then,

the matrix (2.40) has rank m, where 1 < m ≤ ny, and (ny + 1 −m) PLCs are needed.

Theorem 3. Let nu equal the number of linearly independent eigenvectors of M corre-

sponding to eigenvalues equal to unity and let d be the degeneracy of the Jordan block

corresponding to the eigenvector ẏ(T ). Then the rank m of the matrix

[

(M− I) ẏ(T )
]

is given by

m =







1 + ny − nu if d = 0

ny − nu otherwise.

Proof. Let T be a matrix with ẏ(T ) as its first column that takes M to its Jordan form.

Applying the row and column operations

T−1
[

(M − I) ẏ(T )
]





T

1
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yields






















N1 e1

N2 0

. . .
...

Nnu 0

J 0























where N1, . . . ,Nnu are nilpotent Jordan blocks, J is a Jordan matrix corresponding to all

the eigenvalues not equal to unity and e1 is the first unit vector of appropriate dimension.

If d = 0 this matrix becomes























0 1

N2 0

. . .
...

Nnu 0

J 0























and it is clear that each nilpotent Jordan block reduces the rank by one, but the final

column also contributes one pivot. If d > 0 then each nilpotent Jordan block reduces the

rank by one and the final column does not contribute a pivot.

Corollary 2. For an oscillator m = ny iff nu = 1 and d = 0 (LCO).

Proof. If nu = 1 and d = 0 (LCO) then m = ny. If m = ny then

1. if d = 0 then nu = 1,

2. if d > 0 then nu = 0, contradicting d > 0.

Corollary 3. If m = 1 then M has ny eigenvalues equal to unity (NLCO).

Proof. If m = 1 then d ≤ 1 because otherwise the first nilpotent block contributes a second

pivot. If d = 0 then nu = ny. If d = 1 then nu = ny − 1 and the additional eigenvalue

equals unity.
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2.4.2 General Formulation of the BVP

The general BVP formulation is to solve the following equations for T (p,q) and y0(p,q)

y(T (p,q),p;y0(p,q)) = y0(p,q) (2.46)

g(y0(p,q),p,q) = 0 (2.47)

where y(T (p,q),p;y0(p,q)) is given by the solution of Eq. (2.3) from the initial condition

y(0,p;y0(p,q)) = y0(p,q).

A distinction is made between the parameters p that appear in the right hand sides of

the ODEs and the additional parameters q introduced by the PLC equations (2.47). In

general the choice of the number and interpretation of the parameters q is arbitrary when

formulating the PLC equations.

The number of PLC equations (2.47) introduced is dictated by the rank defficiency of

the condition for a closed orbit (2.46). In addition, the Jacobian of the full system of

Eqs. (2.46–2.47) must be full rank.

Period Sensitivities

Eqs. (2.46–2.47) can be formally differentiated with respect to p and q, yielding period and

initial condition sensitivities with respect to both.

ẏ(T,p;y0(p,q)) ∂T
∂p

∣

∣

∣

p,q
+ ∂y

∂y0

∣

∣

∣

T,y0,p,q

∂y0

∂p

∣

∣

∣

p,q

+

(

∂y
∂p

∣

∣

∣

T,y0,p,q

)

y(0)=const.

= ∂y0

∂p

∣

∣

∣

p,q

∂g
∂y0

∣

∣

∣

y0,p,q

∂y0

∂p

∣

∣

∣

p,q
+ ∂g

∂p

∣

∣

∣

y0,p,q
= 0
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ẏ(T,p;y0(p,q))
∂T

∂q

∣

∣

∣

∣

p,q

+
∂y

∂y0

∣

∣

∣

∣

T,y0,p,q

∂y0

∂q

∣

∣

∣

∣

p,q

=
∂y0

∂q

∣

∣

∣

∣

p,q

∂g

∂y0

∣

∣

∣

∣

y0,p,q

∂y0

∂q

∣

∣

∣

∣

p,q

+
∂g

∂q

∣

∣

∣

∣

y0,p,q

= 0

Both systems can then be solved for the unknowns ( ∂y0

∂p

∣

∣

∣

p,q
, ∂T

∂p

∣

∣

∣

p,q
) and

( ∂y0

∂q

∣

∣

∣

p,q
, ∂T

∂q

∣

∣

∣

p,q
), respectively.

Amplitude Sensitivities

When the sensitivity equations are integrated from the initial conditions ∂y0

∂p

∣

∣

∣

p,q
and ∂y0

∂q

∣

∣

∣

p,q
,

amplitude sensitivities with respect to both p and q can be computed as described in Section

2.2.6.

2.4.3 Relative Phase Sensitivities

Any type of phase β in reference to the time zero, which is implicitly defined by Eq. (2.47),

can be analyzed if a valid, differentiable PLC is formulated. In general, a valid PLC is one

that defines an isolated point which is guaranteed to exist for any parameter value in a

neighborhood of the current value p. Let this PLC be

h(y(β(p,q),p;y0(p,q)),p,y0(p,q)) = 0 (2.48)

which can be differentiated with respect to the parameters to yield

∂h
∂y

∣

∣

∣

y(β(p,q),p;y0(p,q)),p,y0(p,q)

(

ẏ(β,p;y0(p,q)) ∂β
∂p

∣

∣

∣

p,q
+ ∂y

∂y0

∣

∣

∣

β,p,q,y0

∂y0

∂p

∣

∣

∣

p,q

+

(

∂y
∂p

∣

∣

∣

β,p,q,y0

)

y0=const.

)

+ ∂h
∂p

∣

∣

∣

y(β(p,q),p;y0(p,q)),p,y0(p,q)

+ ∂h
∂y0

∣

∣

∣

y(β(p,q),p;y0(p,q)),p,y0(p,q)

∂y0

∂p

∣

∣

∣

p,q
= 0.

All parts of this equation are known except the relative phase sensitivities, ∂β
∂p

∣

∣

∣

p,q
, which

can now be computed easily and exactly. Similarly, the differentation of Eq. (2.48) can be
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performed with respect to the PLC parameters q to yield

∂h

∂y

∣

∣

∣

∣

y(β(p,q),p;y0(p,q)),p,y0(p,q)

(

ẏ(β,p;y0(p,q))
∂β

∂q

∣

∣

∣

∣

p,q

+
∂y

∂y0

∣

∣

∣

∣

β,p,q,y0

∂y0

∂q

∣

∣

∣

∣

p,q

)

+
∂h

∂q

∣

∣

∣

∣

y(β(p,q),p;y0(p,q)),p,y0(p,q)

+
∂h

∂y0

∣

∣

∣

∣

y(β(p,q),p;y0(p,q)),p,y0(p,q)

∂y0

∂q

∣

∣

∣

∣

p,q

= 0.

2.5 Numerical Methods

The computationally most demanding part of performing the sensitivity analysis as de-

scribed in this article is the solution of the BVP. Therefore, an efficient technique was

developed to reduce the computational effort involved in this step.

2.5.1 Transformation of the BVP

In order to simplify the BVP shown in Eqs. (2.1) and (2.2), the problem was transformed

to yield:

ŷ(1,p; ŷ0) − ŷ0 = 0 (2.49)

fi(ŷ(0,p; ŷ0),p) = 0 (2.50)

where
d

dt̂
ŷ(t̂,p; ŷ0) = T · f(ŷ(t̂,p; ŷ0),p),

thus allowing for integration to time 1 for all iterations of the BVP solution. For simplicity,

the transformed state variables ŷ are taken to be y, and the transformed time t̂ will be

called t for the remainder of this discussion.

2.5.2 Solution of the BVP

For the efficient solution of large-scale BVPs, an inexact Newton solver [81] was coupled with

the stiff ODE solver CVODES [43]. In order to provide derivative information to the inexact

Newton solver, directional sensitivities with respect to the variables of the BVP, x ≡ (y0, T ),

were integrated along with the original ODE system using the staggered-corrector method

[28]. This technique avoids the calculation of the full matrix of sensitivities, thus reducing

the total number of differential equations during integration by ny × (ny − 1) [78]. The
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directional sensitivities r ≡ Pd were integrated from time zero to time one, according to

ẏ = T f(y,p)

ṙ = T
∂f

∂y
r + fdny+1

where P are the sensitivities of the state variables y with respect to the variables of the

BVP, x, and d1+ny is the T -coordinate of the current step of the Newton iterative solver.

The initial conditions for this system are r0 = P0d with

P0 =
[

Iny 01,ny

]

.

The Jacobian matrix of the BVP is the matrix obtained by partial differentiation of Eqns.

(2.49-2.50) with respect to x. However, it is not necessary to compute the entire matrix,

because only the Jacobian-vector product of the BVP is required by the inexact Newton

solver, which can be calculated directly from the chain rule and the directional sensitivities

obtained after integration. The Jacobian-vector product is then

Jd =





r− d(1−ny)

∂fi

∂y
d(1−ny)



 ,

where d(1−ny) is the column vector containing the current step in the y0-coordinates.

Integration was performed in CVODES [43] with absolute and relative tolerances of

10−10 and 10−8, respectively. The BVP was solved to a relative tolerance of 10−6 and

absolute tolerance of 10−8. No preconditioning was used.

Table 2.6 shows the effective system size for integration in comparison to the full sensi-

tivity system. The method affords especially large savings of CPU time when the system

has a large number of state variables.

It should be mentioned that for small systems, or for such LCOs that have a known short

transient time (i.e., that approach the periodic orbit rapidly from any initial condition), it

can be effective to solve the BVP simply by integrating over a sufficiently large time span,

and using an event detection algorithm to assert sufficient convergence and to detect the

period of oscillation. For the case of the NLCO, the solution of the BVP has only one

independent variable, T , making this method preferable. It was used for the very small
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example systems discussed in Sections 2.6.1 and 2.6.3. However, it is usually not known if

a limit-cycle system has short transient times, and as system size increases, this method

becomes inefficient.

2.5.3 Solution of the Sensitivity Equations

Once the BVP was solved, M and S(T,p;0) were calculated from a sensitivity analysis over

one period using the staggered-corrector sensitivity analysis functionality of CVODES [43]

with full error control. The absolute and relative tolerances were set to 10−10 and 10−8,

respectively. The matrix operations to solve Eq. (2.17) were performed in MATLAB.

2.6 Applications and Comparison to Existing Methods

2.6.1 The Goodwin Oscillator - a LCO

The Goodwin oscillator is a small system comprising 3 states and 6 parameters. It has

been used in the biological literature to model a very basic circadian clock [90]. It is

governed by the set of nonlinear ODEs in Eq. (2.51), which can be interpreted as a mRNA

concentration X, a Clock protein concentration Y and a transcription inhibition factor Z.

Since the processes of transcription and translation are not chemical reactions, the system

does not obey mass conservation, a fact that is closely related to the limit-cycle properties

of the oscillator.

dX

dt
= p1

1

1 + Z9
− p4X

dY

dt
= p2X − p5Y (2.51)

dZ

dt
= p3Y − p6Z

The parameters used throughout this example are p = (2.6574, 1.5749, 1.2985, 0.1357,

0.1362, 0.1360). The BVP formulation described in Section 2.2.1 using the PLC Ż(t = 0) =

0 was solved yielding the results given in Table 2.1.

Sensitivity Trajectories The trajectories for some of the state sensitivities as well as

for Z(t), W(t) and δ(t) are shown in Figure 2-2. As discussed earlier in this manuscript,
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Table 2.1: Results of the sensitivity analysis for the Goodwin Oscillator. The resulting
initial conditions were X(0) = 0.0315, Y (0) = 0.1946 and Z(0) = 1.8582, with a period of
T=27.9613.

parameter p1 p2 p3 p4 p5 p6

∂T
∂p

0.0063 0.0106 0.0129 -68.6251 -68.7215 -68.6746
∂X0

∂p
0.0012 -0.0179 -0.0218 0.0489 0.1708 0.1718

∂Y0

∂p
0.0073 0.0123 -0.1349 -0.1438 -0.1412 1.2885

∂Z0

∂p
0.0696 0.1175 0.1425 -1.3735 -1.3488 -1.3608

it is difficult to compare sensitivity trajectories obtained by different methods. First, if

the initial conditions S0 in Eq. (2.12) are set to zero, a non-decaying error is introduced.

Second, since the computation of exact sensitivity trajectories relies on the use of a PLC,

and since multiple PLCs are possible for any given point on the cycle, one cannot compare

a solution obtained using a given PLC to any other solution using zero initial conditions

due to the lack of a common reference point. If one attemped to calculate the bounded

(purely periodic) part of the solution only, as has been done previously [56, 64], both of

these sources of discrepancy remain. While one reference [99] mentions the need to define

a time reference in order to obtain a unique sensitivity function, the influence of the initial

condition – in particular as a function of the PLC – was neglected, and the influence of the

PLC was assumed to be time invariant.

The results presented here emphasize the importance of a time reference for the calcu-

lation of sensitivity information, and introduce the notion of a PLC used for that purpose,

thus allowing to isolate the shape and location sensitivities contained in W, that are inde-

pendent of the PLC.

Amplitude Sensitivities Previous sensitivity methods often relied on extracting partial

sensitivity information for oscillating systems. What facilitated the computation of sensi-

tivities at the extrema of a state variable yi (as needed for the computation of the amplitude

sensitivities) is the fact that at those times, all contributions but those of wi(textremum) drop

because ẏi(textremum) is zero. Therefore these quantities could previously be estimated by

waiting for the transient of the first term of Eq. (2.12) to decay, even in the absence of cor-

rect initial conditions for the sensitivities S [89, 56]. A graphical comparison to the method
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Figure 2-2: Sensitivity trajectories for the Goodwin Oscillator, all with respect to parameter
p4: a) full sensitivity of Z, as a function of initialization; S(t,p;S0) (solid) vs. S(t,p;0)
(dashed) (both are unbounded, as verified over a longer integration period), b) period
independent, periodic part Z(t,p;S0), c) period and phase independent part W(t,p), d)
relative phase sensitivity with respect to p4, δk4(t,p), for two different PLCs (PLC1: Ż(0) =
0, PLC2: Y (0) = 0.19457).

proposed in this work is shown in Figure 2-3. The iterative method can take many periods

of oscillation to converge to a close approximation of the exact value, which is obtained

immediately using the boundary value method.

2.6.2 Relative Phase Sensitivities in the Drosophila Circadian Clock

A method for the calculation of peak-to-peak sensitivities was suggested by Gunawan et

al. [37] based largely on previous work by Kramer et al. [56]. A very simple model of the

Drosophila circadian clock [100] was analyzed. The method described in Section 2.2.7 of

this work was applied to the same model using the same parameter values to allow for direct

comparison. Numerical results are presented in Table 2.2. The peak-to-peak sensitivities

as computed in this work agree very well with the finite difference approximation, with the

maximum deviation being 0.06%. In comparison, previous results appear to compute the

“period stretch” sensitivity of the peak-to-peak distance as result of the period sensitivity,
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Figure 2-3: Results for the sensitivity of the extrema of Z with respect to parameter p4

computed as described here (x) and as described in Reference [56] (o).

β
T

∂T
∂p

, judged by the close match of the respective numerical results (maximum deviation

1.7%).

2.6.3 Application to the Lotka-Volterra Model - a Small NLCO

An example of a non-limit-cycle oscillator is the Lotka-Volterra Oscillator [63], which can

be associated with a chemical reaction scheme such as

A+X
p′
1−→ 2X

X + Y
p2

−→ 2Y

B + Y
p′
3−→ E,

where the concentrations A and B are constant and can be lumped with the rate parameters

so that p1 = Ap′1 and p3 = Bp′3. Then the system can be written as:

dX

dt
= p1X − p2XY

dY

dt
= p2XY − p3Y. (2.52)

As the oscillator is based on a set of chemical reactions, it obeys mass conservation and it is

clear that the initial conditions of X and Y will have an influence on the amplitude of the
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Table 2.2: Results of the peak-to-peak sensitivity analysis for the Drosophila circadian
oscillator [100]. The initial conditions of the state variables M and P at the maximum of
M were M(0) = 2.6444 and P (0) = 0.36244, with a period of T=24.204. ∂β

∂p
= peak-to-

peak sensitivities, FD = finite difference approximation of ∂β
∂p

(with a finite difference of ǫ

= 0.01), β
T

∂T
∂p

= overall phase shift induced by period sensitivity, ∂Φ̂
∂p

= peak-to-peak phase

sensitivities from [37], FD = finite difference approximation of ∂Φ̂
∂p

from [37]

parameter ∂β
∂p

FD β
T

∂T
∂p

∂Φ̂
∂p

[37] FD [37]

νm 0.4938 0.4938 0.8653 0.8543 0.4923

km -56.525 -56.490 -64.308 -63.457 -56.512

νp 0.9876 0.9876 1.7306 1.7014 0.9846

kp1 0.0221 0.0221 -0.0138 -0.0135 0.0223

kp2 -7.591 -7.5908 -10.878 -10.724 -7.6604

kp3 -36.011 -35.991 -31.080 -30.635 -35.982

Keq -0.0001 -0.0001 0.0010 0.0010 -0.0001

Pcrit 3.6138 3.6119 16.455 16.241 3.6333

Jp -17.481 -17.473 -37.042 -36.517 -17.517

Table 2.3: Results of the period sensitivity analysis with respect to the parameters of the
Lotka Volterra Oscillator described in Section 2.6.3. The parameterization of the system
was p1 = p2 = p3 = 1.0 with initial conditions Y0 = X0 = 0.5, resulting in a period of T =
6.6939. FD stands for finite difference approximation using ǫ = 0.001.

parameter p1 p2 p3 X0 Y0

∂T
∂p

-2.8077 -1.0786 -2.8077 -1.0786 -1.0786
∂T
∂p

[63] -2.793 -1.120 -2.780 -1.1 -1.1

FD -2.8092 -1.0804 -2.8092 -1.0766 -1.0766

oscillation. Sensitivity analysis with respect to initial values and parameters was performed

for the parameterization given in reference [63]. Table 2.3 summarizes the results of the

sensitivity analysis and compares them to a finite difference approximation. The methods

presented in this work result in better agreement.

Some of the sensitivity trajectories for the Lotka-Volterra oscillators are shown in Fig.

2-4.
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Figure 2-4: Sensitivity trajectories for the Lotka Volterra Oscillator, of state variable Y
with respect to parameter p3 over 10 periods of integration: a) unbounded, full sensitivity,
S(t,p;0), b) period independent, periodic part Z(t,p;0), c) period and phase independent
part W(t,p), d) relative phase sensitivity δ(t,p) where the initial conditions chosen provide
the PLC.

Relative Phase and Peak-to-Peak Sensitivities

Two different kinds of relative phase sensitivities were computed and both results compared

favorably to a finite difference approximation, as shown in Table 2.4.

2.6.4 Application to a Small Intermediate-Type Oscillator

An example on an intermediate-type oscillator is the following linear system

ẏ =











0 p1 0

p2 0 0

p2 0 p3











y,

where p = (1,−1,−3). This system is a harmonic, 2-D oscillator coupled with a third

variable which exponentially decays onto the the periodic orbit. Consequently, the mon-
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Table 2.4: Results of the relative phase sensitivity analysis with respect to the parameters
of the Lotka Volterra Oscillator described in Section 2.3.2. β1 describes the peak-to-peak
time distance between the time zero and the maximum of X, β2 is the time to X(β2) = 0.7.
FD indicates the result of a finite difference approximation using ǫ = 0.001.

parameter p1 p2 p3
∂β1

∂p
-3.9746 -0.4547 -1.0997

∂β2

∂p
-0.9711 0.4948 -0.1234

FD (β1) -3.9706 -0.4540 -1.0993

FD (β2) -0.9696 0.4951 -0.1234

odromy matrix M has two eigenvalues equal to one, and (2.40) has rank one, indicating

the need for two phase locking conditions. A natural choice is to select y1,0(p,q) = q1 and

y2,0(p,q) = q2, where q = (2, 0). Differentiation with respect to p and q, respectively, then

yields










(M − I) ẏ(T )

1 0 0 0

0 1 0 0















∂y0

∂p

∂T
∂p



 =











−S(T,p;0)

0 0 0

0 0 0











and











(M − I) ẏ(T )

1 0 0 0

0 1 0 0















∂y0

∂q

∂T
∂q



 =























0 0

0 0

0 0

1 0

0 1























.

The resulting sensitivities are ∂T
∂p

=
[

−3.1416 3.1416 0
]

,∂T
∂q

=
[

0 0
]

,

∂y0

∂p
=











0 0 0

0 0 0

0.06 0.54 −0.16











and

∂y0

∂q
=











1 0

0 1

−0.3 0.1











.
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Table 2.5: Results of the relative phase sensitivity analysis with respect to the parameters
p and q of the Intermediate-Type Oscillator as described in Section 2.4.3. FD indicates the
result of a finite difference approximation using ǫ = 0.001.The relative phase was β = 0.5247.

parameter p1 p2 p3 q1 q2
∂β
∂φi

0.0271 0.5525 0 -0.2898 0.5

FD 0.0274 0.5527 0.0005 -0.2885 0.4996

All results are in excellent agreement with the respective finite difference approximations

(not shown), and are intuitive if one considers that the first two state variables form in fact

a harmonic oscillator that behaves in pure NLCO fashion.

Relative Phase Sensitivities

The relative phase sensitivity of the phase β defined by the PLC y2(β) = −1 was computed

with respect to both the parameters p and q. The results are shown in Table 2.5 in

comparison to a finite difference approximation. Good agreement is found between both

numerical results.

2.6.5 Application to a Large LCO

The currently most detailed model of the mammalian circadian clock mechanism was pub-

lished recently [29] and consists of 73 state variables and 231 parameters (after separating

some of the repeatedly used 38 original model parameters). It describes five feedback loops,

four of which are negative, and the remaining one is a positive feedback loop. Using mass

action kinetics, the interactions between protein, mRNA and DNA species is modeled. In

addition, transport processes are also included to distinguishs species with different intra-

cellular localization. A detailed discussion of the results of the period sensitivity analysis

of this model is given in a forthcoming publication [106]. In short, the period sensitivity

analysis revealed that most high sensitivity parameters are located in the Per2 loop, and

conversely, that most parameters in the Per2 loop have high period sensitivity. Therefore,

the Per2 loop can be identified as the negative feedback loop which sets the period of oscil-

lation. Sensitivity analysis allowed the discovery of a link between network structure and

functionality encoded within it.

The computationally most expensive part of the method was the solution of the BVP,
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Table 2.6: CPU times for the integration of the 73 state mammalian circadian clock oscil-
lator, with or without different sensitivity systems, on a Pentium IV processor (2.2GHz,
1.0 GB of RAM). Full sensitivity system refers to the computation of the full sensitiv-
ity matrix with full error control for the entire integration. Direction sensitivity system
refers to the computation of only a sensitivity matrix-vector product. ‘Analytical Jacobian’
indicates that an analytical expression for the Jacobian matrix was provided, ‘Jacobian-
vector-product by automatic differentiation’ indicates that a subroutine was created using
DAEPACK [98] which allows the efficient evaluation of the Jacobian-vector product directly.
The integration of the system without sensitivity evaluation was included as a control for
the comparison.

Sensitivity method Sensitivities CPU time Factor rel. to Number of

evaluated? [sec] ODE system ODEs

Full sensitivity system, No 0.201 1 73

analytical Jacobian Yes 6.820 34 73+(74*73)

Directional sensitivities, Yes 0.589 2.9 2*73

analytical Jacobian

Directional sensitivities, No 0.194 0.97 73

Jacobian-vector-product, Yes 0.439 2.2 2*73

automatic differentiation

whose CPU time depended mainly on the quality of the initial guess, i.e., on the number of

iterations needed in NITSOL. A reasonable initial guess was generated by integrating the

state variables only for a short period of time (1-2 estimated periods) to the point specified

in the PLC. A typical run resulted then in approximately 10 iterations. Consequently, the

use of directional sensitivities in the iterative Newton algorithm became a significant time

saver. The CPU time necessary for integration of one period for the system is shown in

Table 2.6. It should be mentioned that for the previous sensitivity analysis methods, the

full sensitivity system must be integrated over at least tens of periods in order to obtain

appropriate estimates for period and amplitude sensitivities, thereby making the solution

of the BVP more than worthwhile in comparison.

The computation of the monodromy matrix and S(T,p;0) required 5.71 and 19.7 sec-

onds, respectively, and the matrix manipulations took approximately 0.15 seconds.
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2.7 Conclusion

This work provides a unified treatment of the sensitivity analysis of oscillating systems, and

their implicit derived properties such as period, phase and amplitude. A BVP is solved once,

yielding the period sensitivities and the initial conditions for the sensitivity trajectories.

The full sensitivity trajectories can then be computed, and decomposed into three parts,

containing the influence of the period sensitiviy, phase sensitivity and amplitude sensitivity.

All parts can be computed without approximations beyond the numerical error implicit in

solving the BVP, and in numerically efficient ways. The focus of this work is to provide a

well defined time reference by introducing the concept of PLCs, to identify the influence of

the PLC on the sensitivity solution and also to isolate the shape and location sensitivities

that are independent of the PLC. This provides a useful and intuitive framework for the

computation of relevant quantities such as peak-to-peak sensitivities.

The methods are computationally competitive, because the computational cost of solving

the BVP is outweighed by the advantages of a comprehensive method for sensitivity analysis

of oscillators. Each of the quantities previously computed using iterative methods required

an a priori unknown amount of integration time to achieve close approximation of the exact

solution. Conversely, once the BVP is solved, any subsequent calculation only requires a

minimum of computational effort, usually associated with integration times of under one

period, which is a large improvement over previously suggested methods for those cases

where appropriate methods existed.
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Chapter 3

Sensitivity Analysis of a Small

Mammalian Circadian Clock

Model

Abstract

The mammalian circadian clock maintains gene expression and protein activation in a peri-
odic manner that can entrain to daylight and influences a wide variety of biological processes.
Here, two small models of the mammalian circadian clock, variants of each other represent-
ing different levels of molecular knowledge and abstraction, is analyzed comprehensively.
The influence of individual reactions in the models on the characteristics of the circadian
oscillation – namely, period, phase and amplitude – is studied using an exact and efficient
sensitivity analysis method. The anlyses revealed a similar distribution of functional re-
sponsibilities between the two models. The period control is found to follow a different
mechanism than the control of phase and amplitude. The control of phase and amplitude
appears to be accomplished by a very similar set of reactions, involving all feedback loops
in a model. The period is set by one negative feedback loop. The amplitudes for all molec-
ular concentrations are controlled by a highly conserved set of reactions, and a consensus
ranking for those is computed. Sensitivity similarities are used to analyze the degrees of
freedom in the phase direction for each model. Most calculations are repeated for 10 alter-
native parameter sets for each model, in order to understand how much influence the exact
parameterization has compared to the network architecture. The ability of the models to
modify the length of the perceived day (“dawn-to-dusk”) independently of the period was
studied. Both models show a degree of flexibility with respect to this variation, although
interestingly the simpler model with fewer feedback loops can more easily execute this task.
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3.1 Introduction

The mammalian circadian clock is the molecular mechanism that drives the daily rhythms

of many biological functions. For example, the secretion of hormones and the level of

metabolic activity is partially under circadian control. Circadian rhythms are known to

exist in several organs (including kidney, liver and thymus), in addition to the master clock,

which resides in the suprachiasmatic nuclei (SCN) of the brain [26]. Circadian biology is

becoming increasingly important in the context of chronopharmacology, where recent studies

show that the timing of drug administration might have a strong influence on therapeutic

success and on side effects [110, 79]. Circadian rhythms also play a role in shift work, jet-lag

and military applications, where the ability of a human to perform and make decisions can

be severely compromised by a lack of sleep, sunlight, and by being “misaligned” with the

entraining signal (i.e., sunrise) for extended periods of time [74].

To take advantage of recent discoveries in circadian molecular biology and to devise

treatment or management for the above mentioned situations, it is important to gain a full

understanding of the functionality of the molecular pacemaker that causes these important

effects. Moreover, to understand how biochemical networks carry out decision and control

functions in biological systems, the development and application of modeling approaches is

essential. The basic molecular biology of the circadian clock is well understood. Interlocked

negative and positive feedback loops generate oscillations in the main clock gene products.

At the center of the clock is a complex of two proteins, BMAL1 and CLOCK. This complex

is the transcriptional activator of many other clock genes, including the three period genes

per1, per2 and per3, the cryptochrome genes cry1 and cry2 and nuclear orphan receptor

gene family rev-erb. The protein products of the latter then regulate bmal1 transcription

together with PER2, thus closing several interlocked feedback loops. A number of post-

translational steps, e.g., the phosphorylation of the period proteins PER1 and PER2, play

a role in the regulation of the clock dynamics [106]. Furthermore, recent discoveries have

added more detail to this mechanism such as the addition of the dec genes [45] and another

nuclear orphan receptor ROR which acts on bmal1 transcription [36, 91], both of which

participate in feedback loops that are interlocked with the remaining clock mechanism.

As additional feedback loops are discovered, and the network as we know it becomes more

intricate, several questions emerge. What is the advantage of such a complicated “wiring
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scheme” in terms of oscillator performance? Do the extra feedback loops add flexibility to

the network, or rather robustness? It was suggested in reference [85] that a larger number

of feedback loops might increase the ability of a molecular network to track different phases.

In fact, the notion has been advanced that the clock should be able to track both sunset

and sunrise, given that the length of perceived day varies across the seasons in most locales

[85, 26]. It is well known that the clock can entrain to different signals, most notably light

input, which can be limited to short pulses during a window of sensitivity, but other signals,

such as temperature and food supply have also been shown to impact entrainment [26]. The

network must process this array of inputs yet maintain stable, robust 24-hour oscillations

[26].

The present work extends previous research studying the distribution of responsibility

for network functional characteristics across biochemical reactions forming network archi-

tecture. In previous work the reactions with the greatest effect on the period were identified

using a well studied and detailed model of the mammalian circadian clock due to Forger &

Peskin [29]. The result of that study highlights the importance of a contiguous portion of a

negative feedback loop involving gene expression and phosphorylation of the gene product

for Per2 in setting the period (Chapter 5). The results provide an intermediate view be-

tween properties set by a single reaction and emergent properties distributed throughout a

network; A single process, involving multiple chemical reactions, was found to be dominant

in setting the period. Here the theory for sensitivity analysis for oscillators presented in

Chapter 2 is applied to more abstract models of the mammalian circadian clock, in which

multiple sequential biochemical reactions are represented as a single reactions, and the de-

terminants of not only the period but also the amplitude for individual species and different

types of relative phases are analyzed.

3.1.1 The Becker-Weimann Model of the Mammalian Circadian Clock

There are several published mathematical models for the mammalian circadian clock. Some

are detailed and large [29], others are of medium scale [68] and some are very small [12, 13].

All models have some omissions of known biology and vary in the level of inclusion of recently

discovered interactions. Most are in the form of ordinary differential equations (ODEs) and

are limit-cycle oscillators. The existence of different models of very different size suggests

that studying the largest, most detailed model may lead to the most mechanistic, molecular
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understanding, but the smaller, more abstracted models may produce a more conceptual

understanding. It is especially interesting to study the degree to which results from smaller,

more abstracted models map to results from larger, more detailed models, and vice versa.

In this work, a number of novel, sensitivity analysis-based methods were applied to

a small mammalian circadian clock model [12] and its slightly larger variation [13]. The

models are different in the level of molecular detail that is encapsulated and also in their

network structures. The smaller model (7 concentrations, 24 rate constants and parameters)

consists of one positive and one negative feedback loop. Protein and mRNA concentrations

of Bmal1 and a lumped species termed the “Per2/Cry complex” are represented. Phos-

phorylation is not included in the model, nor is the differential action of Per1, Per2, Per3,

Cry1 and Cry2. The only form of posttranslational regulation present is an activation step

for BMAL1 that could represent the binding of CLOCK to BMAL1. PER2/CRY inhibits

its own BMAL1-mediated expression, and BMAL1 increases its own expression; thus, two

interlocking feedback loops are formed. The larger model (8 concentrations, 32 rate con-

stants and parameters) has one additional negative feedback loop that is interlocked with

the two other loops. The molecular species that performs the negative feedback is the

REV-ERBα protein which downregulates the transcription of bmal1, while its own expres-

sion is promoted by BMAL1 and inhibited by PER2/CRY. All kinetics in the models are

of mass-action type, except the terms for transcriptional control, which are modeled using

Hill-type kinetic equations. The mutant behaviors of the two models are discussed with

much attention to detail in the original publications.

Molecular data from circadian clock elements is usually presented on a time scale called

“Circadian Time (CT)”. CT =0 is defined as the onset of the subjective day, or dawn [26],

and subjective dusk is CT=12. “Zeitgeber Time (ZT)” is the time schedule dictated by an

external stimulus, called ‘zeitgeber’ (German: ‘giver of time’). The molecular event that

coincides with CT=0 is the beginning of the rise in mCRY, mPer and mRev-Erbα in the

SCN clock [26, 91, 8, 77, 65, 87], although the timing can be shifted in the organ clocks

according to data from liver, thymus, kidney and skeletal muscle [91, 36]. For all time

references in this work, the minimum of nuclear Per2/Cry mRNA was chosen as the time

reference CT=0 to be consistent with current literature.
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3.2 Theory and Methods

Sensitivity Analysis of Oscillations

Sensitivity coefficients describe the effects of an infinitesimal perturbation of an input u on

an output o,

s ≡
∂o

∂u
.

In the context of deterministic dynamic models of biochemical networks, the sensitivities

of molecular concentrations y with respect to the rate parameters p are often calculated,

then sij = ∂yi

∂pj
is the sensitivity of the ith concentration with respect to the jth parameter.

In Chapter 2, it was shown that the parameter sensitivities in a limit-cycle oscillator have

special properties and can be decomposed into three parts, according to

S(t) = −
t

T
ẏ(t)

∂T

∂p
+ W(t) + ẏ(t)δ(t). (3.1)

Here, S ≡ ∂y
∂p

are the overall sensitivities of the states y with respect to the parameters p,

and ∂T
∂p

are the sensitivies of the period T of the oscillation with respect to the parame-

ters. W ≡
(

∂y
∂p

)

T (p)=const.,φ(p)=const.
are the sensitivities of the states with respect to the

parameters with period and phase kept constant, and it was shown in Chapter 2 that this

quantity contains all amplitude information. In the final term, δ ≡ ∂φ
∂p

is a phase sensitivity

and contains information about the local acceleration or deceleration of the oscillation in-

dependently of the period and tangentially to the limit cycle, i.e., in the ẏ-direction. It was

shown in Chapter 2 that this information is needed and can be used to compute relative

phase sensitivities, as mentioned briefly in Section 3.2. Both W(t) and δ(t) are T -periodic,

and in a limit-cycle oscillator (i.e., the type of oscillator used to model the circadian clock),

W(t) is uniquely determined by the states (concentrations) at any given point on the cy-

cle. On the other hand, δ(t) is a function of the way the time t = 0 was defined for the

system. A phase locking condition (PLC) is used to define mathematically a point on the

limit-cycle trajectory that provides a reference point for the time t = 0, and the sensitivities

δ(t) depend on the choice of PLC. An important difference between limit-cycle oscillators

and most other dynamical systems is the fact that the initial conditions of the parameter

sensitivities are not zero. The parameters limit the choice of initial conditions to points

on the limit cycle, and the PLC then defines one of those points. This leads to the fact
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that S(0) 6= 0, W(0) 6= 0 and δ(0) 6= 0. A number of experimental [91, 36, 77, 8, 83, 65]

and review publications [26, 87] were surveyed to identify the appropriate phase locking

condition that could be used to represent CT=0 in the model. For the current work, the

PLC was used that defined the time at which the Per2/Cry mRNA concentration attained

a local minimum as time zero, implemented through setting its time derivative to zero.

Absolute and Relative Amplitude Sensitivities

In the context of this work, the absolute amplitude of a concentration is simply its level.

This quantity is periodic in time, as are the associated absolute amplitude sensitivities

wi(t) =
(

∂yi(t)
∂p

)

T,φ
. The relative amplitude of a concentration is the difference between

its maximum and minimum concentration. In Figure 3-1, the relative and mean absolute

amplitudes for all species in both models are shown.
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Figure 3-1: Relative and mean absolute amplitudes of all concentrations in both models

The relative amplitude of a species yi(t) is defined here as Ai = maxt yi(t) − mint yi(t).

Its sensitivity with respect to the parameter pj can be computed as

∂Ai

∂pj
= wi,j(tyi,max) − wi,j(tyi,min). (3.2)

The times tyi,max and tyi,min are times at which the supremum and infimum of yi are

attained, respectively.
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Relative Phase Sensitivities and Angular Relative Phase Sensitivities

The computation of relative phase sensitivities is somewhat more involved, and for a detailed

treatment, the reader is referred to Chapter 2. In short, a relative phase is the time difference

between two events on the limit cycle. Both events are defined with PLCs, and for the sake

of simplicity, we will assume that one PLC defines the time reference t = 0. Then the

relative phase β can be defined by the second PLC,

g(y(β(p),p;y0(p)),p,y0) = 0.

Differentiation with respect to the parameters yields

∂g
∂y

∣

∣

∣

y(β(p),p;y0(p)),p,y0(p)

(

ẏ(β,p;y0(p)) ∂β
∂p

∣

∣

∣

p
+ ∂y

∂y0

∣

∣

∣

β,p,y0

∂y0

∂p

∣

∣

∣

p

+

(

∂y
∂p

∣

∣

∣

β,p,y0

)

y0=const.

)

+ ∂g
∂p

∣

∣

∣

y(β(p),p;y0(p)),p,y0(p)

+ ∂g
∂y0

∣

∣

∣

y(β(p),p;y0(p)),p,y0(p)

∂y0

∂p

∣

∣

∣

p
= 0.

This equation can be rewritten as

∂g
∂y

∣

∣

∣

y(β(p),p;y0(p)),p,y0(p)

(

ẏ(β,p;y0(p)) ∂β
∂p

∣

∣

∣

p
+ S(β(p))

)

+ ∂g
∂p

∣

∣

∣

y(β(p),p;y0(p)),p,y0(p)

+ ∂g
∂y0

∣

∣

∣

y(β(p),p;y0(p)),p,y0(p)
S(0) = 0.

which can be solved for the phase sensitivity ∂β
∂p

. As shown in Chapter 2, another way to

represent this sensitivity is

∂β

∂p
=
β

T

∂T

∂p
+ δ∗(0) − δ(β), (3.3)

where δ(β) is the value of δ at the time t = β as shown in Eq. (3.1). δ∗(0) is the value of δ

that would result at time zero, if instead of the original PLC that was used to define t = 0,

the PLC that defines the event time t = β was used.

Eq. (3.3) will be used to derive a relative phase sensitivity of particular interest: the

angular relative phase sensitivity ∂γ
∂p

. Eq. (3.3) shows the relative timing of two events is

determined by two contributions. One is the overall period. Naturally, if the same exact

limit cycle would oscillate faster, the relative timing between two events would shrink. The
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other contribution is more interesting. The two events that define the beginning and end of

the relative phase can move in time, as a function of the parameterization, in addition to

the change imposed by the alteration of the period. This effect is represented by the pair

of δ sensitivities in the equation. In order to express the period-independent nature of this

phase change, the phase angle γ of the phase β is computed as

γ = 360◦
β

T
, (3.4)

or as the fraction of time (expressed in degrees) per period spend in the phase β. The

angular relative phase sensitivity is then obtained by applying the chain rule,

∂
(

360◦ β
T

)

∂p
=

360◦

T

∂β

∂p
−

360◦β

T 2

∂T

∂p
. (3.5)

By comparison with Eq. (3.3), it is clear that

∂γ

∂p
=

360◦

T
(δ∗(0) − δ(β)) , (3.6)

or, in other words, the second contribution to the overall (time) relative phase sensitivity

can be interpreted as an angular relative phase sensitivity.

Period-Neutral Relative Phase Sensitivity Directions

In order to understand if a relative phase is hard or easy to change independently of the

period, an orthogonal projection of the unscaled relative phase sensitivities to the unscaled

period sensitivities was performed, where

(

∂β

∂p

)

T=const.

=
∂β

∂p



I −

∂T
∂p

T ∂T
∂p

‖∂T
∂p

‖2



 . (3.7)

The notation
(

∂β
∂p

)

T
for
(

∂β
∂p

)

T=const.
is going to be used for the remainer of this work. If

instead of the relative phase sensitivity the angular relative phase sensitivity is used, the re-

sult is scaled by the factor 360◦

T , i.e.
(

∂β
∂p

)

T
= T

360◦

(

∂γ
∂p

)

T
The length of the resulting vector

(

∂β
∂p

)

T
relative to the period sensitivity vector ∂T

∂p
was computed as L =

∥

∥

∥

(

∂β
∂p

)

T

∥

∥

∥ /
∥

∥

∥

∂T
∂p

∥

∥

∥.

The angle between both vectors α was computed to provide complementary information,

80



where sinα =
∥

∥

∥

(

∂β
∂p

)

T

∥

∥

∥ /
∥

∥

∥

∂β
∂p

∥

∥

∥. Figure 3-2 shows the relationships between the different

vectors in 2D-view. Because βij is the (forward-counting) time difference between two events

i and j, the relationship T = βij +βji holds. The reason for the normalization of the length

with respect to the period vector was to create a common basis for comparison for all phases

in a model, and to make the measurements of two phases βij and βji symmetrical. Both

should have the same absolute amount of period-invariant relative phase flexibility, but in

the opposite direction. The angle between
∂βij

∂p
and ∂T

∂p
is equally telling to evaluate the

possibility of a local, period-neutral phase variation. It is possible that in a given system,

the phase sensitivity vector might be very orthogonal to the period sensitivity vector, but

of small magnitude, thus making a phase modification difficult. Conversely, it is possible

that a vector of large magnitude is almost parallel to the period sensitivity vector, and thus

also hindering a period-neutral phase variation.
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Figure 3-2: Illustration of the two metrics to measure the orthogonality and relative length

of the vector
∥

∥

∥

(

∂βij

∂p

)

T

∥

∥

∥. The measure of orthogonality is sinαij =

‚

‚

‚

“

∂βij
∂p

”

T

‚

‚

‚

‚

‚

‚

∂βij
∂p

‚

‚

‚

. The measure

of relative length is Lij =

‚

‚

‚

“

∂βij
∂p

”

T

‚

‚

‚

‚

‚

‚

∂T
∂p

‚

‚

‚

. It should be noted that αij 6= αji whereas Lij = Lji.

Phase Sensitivity Similarities

The concept of sensitivity similarities was recently extended and their meaning for the

performance of chemical kinetic networks was discussed in [114]. In the present work, only
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the following definition is used:

Global similarity: If for some k,m ∈ {1, 2, ..., np} and i ∈ {1, 2, ..., ny} there exists a

real number µikm ∈ R such that for all y0 ∈ R
ny

sik(t,p) = µikmsim(t,p) (0 ≤ t ≤ Tend), (3.8)

then the parameters pk and pm are globally similar with respect to the state variable yi

with the similarity number µikm on the time horizon of interest. (Because no other kind of

similarity will be discussed, “similar” in the context of this work should be taken to mean

“globally similar” as defined here.)

In other words, if the sensitivity of one variable with respect to one parameter at any

time t is a constant multiple of the sensitivity of the same variable with respect to another

parameter, the two parameters are termed globally similar. In reference [114] it is shown that

the presence of different types of sensitivity similarities can be used to analyze functional

properties of a network. In particular, a single parameter can reverse any perturbation

over the entire range of t that is caused by modifications to any group of parameters that is

similar to it. Conversely, a change in a parameter that has no similar counterpart is difficult

to compensate for over the entire range of t under consideration. This idea is intriguing

and inspired a similar type of analysis for oscillatory models in the present work.

Approximate Similarity Using Principal Component Analysis

In order to establish which groups of parameters are globally approximately similar in the

sense of Eq. (3.8), all normalized δi are computed for the parameters pi, i ∈ {1, 2, ..., np} at

time points tj , j ∈ {0, 1, 2, ...100} which are equally spaced over one period T . The result is a

matrix ∆N ∈ R
np×101. If two parameters were exactly globally similar with respect to their

phase sensitivity, then their normalized trajectories δk,norm(t) = δm,norm(t), 0 ≤ t ≤ T .

In order to study and understand which groups of parameters are the most similar, the

δ-trajectories had to be clustered according to a similarity measure and in as many clusters

as there are similar modes (or manifolds) present in ∆. To determine the dimensionality

of ∆ and the most populated modes, principal component analysis (PCA) was employed.

PCA is a technique that allows one to represent a data set with multiple variables (here:

np, the number of parameters and therefore δ-trajectories) in a lower-dimensional represen-
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tation (here: number of modes). The eigenvalues associated with the principal components

(or PCA axes) are called latent roots. It is typical to express the importance of a prin-

cipal component as a percentage of the magnitude of that eigenvalue over the sum of all

eigenvalues. That number is important to explain what percentage of data is explained by

which principal component, and which principal components contribute so little that the

system can be largely understood without them. Any mode contributing less than 1.0% was

ignored here. The normalized principal components for each significant mode were used di-

rectly as mode centroids for the clustering of the δ-trajectories. For each mode, the negative

of the component was termed “anti-mode”. It was observed in the phase sensitivity data

that the normalized trajectories often had symmetrical shapes, one being the negative (i.e.

mirror image) of the other. The δ-trajectories were grouped by finding the closest principal

component (“mode” or “anti-mode”) for each one through using a least-squares measure of

distance, and attributing the trajectory to that mode.

Alternative Parameter Sets

In order to understand the impact of a specific parameterization on the network perfor-

mance, and to distinguish it from the effect of network architecture, alternative parameter

sets were generated. The only criteria used here were to generate parameter sets that result

in an oscillation of 23–25-hour period. The parameter values were randomly varied between

–50% and +100% of their nominal values and the resulting dynamic behavior of the model

was tested for oscillation in the desired period range. After 10 successful alternate param-

eter sets for each model were generated, the algorithm terminated. These parameter sets

were then used without further curation to compute subsets of the data that was originally

computed for the nominal parameter sets, to test for robustness. The alternative parameter

sets are shown in Appendix A, Tables A.4 and A.5.

3.3 Results and Discussion

3.3.1 Period Sensitivities

Period sensitivities for both models in their nominal parameterization as well as for all

alternative parameter sets were computed as described in Chapters 2 and 5. The sensitivities

were scaled according to ∂ lnT
∂ ln pi

= pi

T
∂T
∂pi

so that the relative importance of each parameter pi
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in setting the period could be evaluated independently of the magnitude of the parameter.

Figure 3-3 shows the rank-ordered, scaled period sensitivities ∂ lnT
∂ lnp

for both models under
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Figure 3-3: Scaled period sensitivities ∂ ln T
∂ ln pi

, rank-ordered by absolute magnitude. Left: Top
ten parameters and sensitivities in the basic model; Right: Model with REV-ERBα loop.
Blue: Negative feedback loop - BMAL1* controls Per2/Cry expression. Green: Positive
feedback loop of Bmal1 on itself (through Per2/Cry and Rev-Erbα if applicable). Red:
Negative feedback loop where BMAL1 controls REV-ERBα expression

study. In each model, the period is strongly influenced by the primary negative feedback

loop in which BMAL1* controls Per2/Cry expression (blue bars). Interestingly this pair of

results agrees with a similar analysis carried out for a much more detailed, mechanistic model

(Chapter 5). There, the period was strongly influenced by a small number of parameters all

located within the Per2 negative feedback loop. The most noticable distinction between the

two models, however, is that the sensitivities drop sharply for the basic model, that is, the

influential parameters are highly localized within the network. The positive feedback loop

does not participate significantly in setting the period (green bars). On the other hand,

the extended model shows less localization of the high period sensitivities, and a marked

participation of all 3 feedback loops in setting the period. It has been reported that Rev-

Erbα deletions have an effect on the period through the “positive limb of the mammalian

circadian oscillator [83]” — the period is shortened in Rev-Erbα−/− mice. This experimental

result might correspond to the influence of the positive feedback loop seen here in that the

inhibition of Rev-Erbα synthesis has a large and negative period sensitivity. It is harder

to analyze the rates of other Rev-Erbα-related reactions because those participate both in

negative and positive feedback, leading to more complex effects.
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3.3.2 Period Sensitivities for Alternative Parameter Sets

The same calculations were repeated for all alternative parameter sets. All ranked period

sensitivites are shown in Figure 3-4. It is apparent that in the majority of cases, the

negative feedback loop between Per2/Cry and BMAL1* dominates the period setting. The

positive feedback loop has little influence on the period in the basic model. The distinction

is less clear for the extended model, given that in this scenario both negative feedback loops

participate in the positive feedback. However, the only parameter unique to the positive

feedback does not appear at all in the ten parameters with the greatest period sensitivity.
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Figure 3-4: Scaled period sensitivities ∂ ln T
∂ lnp

, rank-ordered by absolute magnitude, for the
basic model (left) and the model with Rev-Erbα (right). The top ten sensitivities are shown.
Blue: Negative feedback loop — BMAL1* controls Per2/Cry expression. Green: Positive
feedback loop of Bmal1 on itself (through Per2/Cry and Rev-Erbα if applicable). Red:
Negative feedback loop where BMAL1 controls REV-ERBα expression

In the basic model, a common set of parameters dominate the list of the ten with the

greatest period sensitivity, and these correspond to indices 10, 5, 6, 8, 12, 9, as defined in

Table A.1. Parameters 6 (Per2/Cry mRNA degradation), 10 and 12 (nuclear import and

degradation rates of PER2/CRY) are closely related to parameters found to be prominent

in the period setting in the mammalian clock in Chapter 5 using the large, detailed model by

Forger and Peskin [29]. In that case they correspond to Per2 mRNA degradation and PER2

phosphorylation rates, which control nuclear trafficking and degradation of PER2/CRY.
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In the extended model, the top parameters are similar to the ones in the basic model

and different from the nominal parameterization of the extended model. Fewer parameters

outside the Per2/Cry - BMAL1* feedback loop appear in the top ten of the alternative

parameter rankings. It might suggest that Rev-Erbα is not necessary to generate an 24-h

oscillation, which is experimentally known [83].

There is one especially intriguing parameter set (# 5) in which the two negative feed-

back loops have switched roles — the negative feedback of BMAL1 through Rev-Erbα now

sets the period. The fact that this model parameterization behaves differently propagates

through many of the other analyses in this work. To the extent that parameterizations

leading to both behviors are consistent with available data, the different in behaviors and

analyses are indicative of uncertainty.

3.3.3 Amplitude Sensitivities

The scaled amplitude sensitivities
pj

yi
wij(t) = ∂ ln yi(t)

∂ ln pj

∣

∣

∣

T,φ
were computed for each species yi

with respect to all parameters over one period of time. Then the parameter sensitivities for

each species were rank ordered according to the absolute area under the curve AUC, where

AUC(pj, yi) =

∫ T

0

∥

∥

∥

∥

pj

yi
wij(t)

∥

∥

∥

∥

dt.

In a second approach, the scaled amplitude sensitivities were ranked by their maximum

magnitude. Both rankings were very similar in both models, so only the data based on the

AUC-rankings is presented here. Tables 3.1 and 3.2 show the top ten parameter indices for

the ranked amplitudes of each species.

First, it appears that a small group of reactions dominates the amplitude manipulation

of all species in the basic model. (This set strongly overlaps that manipulating the phase,

as shown later in this chapter in Figure 3-7.) This is a surprising result, because one

might expect that the amplitude of each species might be strongly influenced by its own

synthesis and degradation rates (transcription, translation, mRNA or protein degradation).

Upon further inspection, it appears that only the degradation of Bmal1 mRNA (16) and of

PER2/CRY in the nucleus (12) are involved in amplitude manipulation.

The manipulation of the amplitudes appears to be shared between reactions in the two

feedback loops. The top 3 parameters are the same for the amplitudes of all species, and the
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Table 3.1: Rankings of parameters by magnitude of AUC of scaled amplitude sensitivities for
the basic model. The parameter indices of the top ten sensitivities are shown. A consensus
sequence for the amplitude sensitivities was computed and is shown.

species 1 2 3 4 5 6 7 8 9 10

Per2/Cry mRNA 3 14 8 16 13 5 12 15 6 17

PER2/CRY cytosol 8 3 14 10 12 16 5 13 15 17

PER2/CRY nucleus 3 8 14 5 16 12 13 15 10 17

Bmal1 mRNA 14 3 8 15 16 13 5 10 12 17

BMAL1 cytosol 14 3 8 17 16 13 15 19 12 10

BMAL1 nucleus 14 3 8 16 17 13 15 12 21 10

BMAL1* nucleus 14 3 8 16 13 24 17 15 21 12

consensus 14 3 8 16 13 5 15 10 12 17

ranking for ∂φ
∂ lnp

3 14 8 16 13 15 12 17 10 5

ranking for ∂ ln T
∂ lnp

10 5 6 8 12 9 14 11 24 15

Table 3.2: Rankings of parameters by magnitude of AUC of scaled amplitude sensitivities in
the model including the Rev-Erbα loop. The parameter indices of the top ten sensitivities
are shown. A consensus sequence for the amplitude sensitivities was computed and is shown.

species 1 2 3 4 5 6 7 8 9 10

Per2/Cry mRNA 3 8 2 25 29 27 26 5 31 10

PER2/CRY cytosol 8 3 2 27 25 29 31 26 10 5

PER2/CRY nucleus 3 2 8 31 27 29 25 26 17 16

Bmal1 mRNA 8 3 2 27 31 29 25 26 5 28

BMAL1 cytosol 27 31 29 25 3 8 2 26 17 16

BMAL1 nucleus 27 29 25 3 31 8 2 26 16 13

BMAL1* nucleus 27 29 25 31 3 8 2 26 16 13

REV-ERBα nucleus 8 3 2 27 31 29 25 26 28 5

consensus 8 3 2 27 31 29 25 26 16 5

ranking for ∂φ
∂ lnp

3 2 27 8 25 29 26 31 10 12

ranking for ∂ ln T
∂ lnp

10 8 5 6 2 27 25 31 29 3
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parameters in ranks 4 through 10 are very similar. This observation was used to compute

a “consensus ranking” which forms a representative ranking of what might be considered

“global” amplitude sensitivities. Each position in the ranking was given to the parameter

that occupies this rank in the most individual amplitude rankings, unless it had already

been used for a higher rank. In this case, the parameter index that appeared second most

often in this position was chosen. The consensus ranking is shown in Table 3.1.

In the model with Rev-Erbα the amplitudes in the Bmal1 part of the system are ma-

nipulated by two sets of reactions. The first set involves transcriptional and translational

control of Per2/Cry (2, 3, 5, 8); the second set includes Rev-Erbα synthesis and degradation

(25, 26, 27, 29). The latter is found to determine the amplitude in the Bmal1 oscillations

strongly, even more so than in the Per2/Cry oscillations, but surprisingly, not its own am-

plitude. The Bmal1-transcription parameters (14, 31, 17–24) do not play a significant role

in the amplitude control, even in the Bmal1 species, except the mRNA degradation rate

(16), which is the only degradation rate to play a role in amplitude control at all. Note

that parameter number 27 (the inhibition constant of REV-ERBα synthesis) is the only

parameter that is unique to the positive feedback loop in the larger model. This parameter

has a large influence on amplitudes and phase, in particular on the amplitudes in the Bmal1

part of the network.

3.3.4 Amplitude Sensitivities for Alternative Parameter Sets

It remains true across the alternative parameter sets that for each parameterization, the

rankings of amplitude sensitivities across the different molecular species is conserved and a

consensus ranking can be computed. The consensus rankings for all alternative parameter

sets are shown in Tables A.2 and A.3. In the basic model, parameters involved in Bmal1

transcription and translation (14, 15, 16) appear to play a relatively dominant role across

the different parameterizations, and again, parameter 3 (inhibition constant of Per2/Cry

transcription) is always in the top 4. This consensus is again correlated with the high ranked

parameters in the phase sensitivity rankings (3, 14, 15, 16).

In the extended model, the dominant parameters are similar to those in the phase sen-

sitivities. It is harder to see an overall consensus between the different parameter sets, and

the phase and amplitude sensitivities are much less correlated in the ensemble of alterna-

tively parameterized extended models. It could be hypothesized that the model with more
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feedback loops has more ability to control amplitudes and phases separately.

3.3.5 Relative Amplitude Sensitivities

Shown in Figure 3-5 are the scaled relative amplitude sensitivities, ranked by magnitude.

The relative amplitude is defined in Eq. (3.2) as the difference between the highest and

lowest concentration for the molecule under study. The results found are similar to those in

Section 3.3.3, but it is found that the amplitudes in the two different feedback loops have a

slightly different set of reactions with high influence. We find that in the basic model, the

relative amplitudes of the first 3 species (all Per2/Cry species) are controlled by parameters

exclusively from the negative feedback loop, or in other words, parameters local to the loop.

The top five parameters for these three cases also contain four of the top five parameters

from the period sensitivity ranking, as shown in Table 3.3. Parameter #5 (Hill coeff. of

Per2/Cry transcriptional inhibition) plays a larger role in the control of Per2/Cry relative

amplitudes than for absolute ones, whereas the influence of parameter 14 is diminished.

This parameter, the Michaelis constant of Bmal1 transcription, plays a role in regulating

all Bmal1-related amplitudes, as one might expect. Overall, the relative amplitudes of the

Bmal1 species, which participate in both feedback loops, are regulated by a combination of

parameters from both feedback loops that is consistent throughout the four species.

It appears that the absolute amplitudes in the basic model are set by a consistent

group of parameters for the entire network, and the relative amplitudes are determined by

a similar set of parameters overall. However, the relative amplitudes have slightly more

distinct mechanisms for local control.

For the extended model, the ranking of the scaled relative amplitudes shown in Figure

3-5 (right) and Table 3.4 is very consistent with the rankings of the absolute amplitudes

shown in Table 3.2. The relative amplitudes of the first three species have slightly more

influence from the parameters in the first negative feedback loop, but the effect is not as

marked as in the basic model. Like the period sensitivity ranking, the relative amplitude

sensitivity ranking drops off less steeply in the extended model if compared to the basic

model.

One parameter that is highly influential in the amplitude sense in both models, but

notably absent in the rankings for high period sensitivity, is parameter #3 (inhibition of

Per2/Cry transcription), which regulates the feedback strength of the negative loop.
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Table 3.3: Rankings of parameters by magnitude of scaled relative amplitude sensitivities
∂ lnAj

∂ lnp
=

∂ ln yj,max

∂ lnp
−

∂ ln yj,min

∂ lnp
in the basic model. The parameter indices of the top ten

sensitivities are shown.

species 1 2 3 4 5 6 7 8 9 10

Per2/Cry mRNA 8 5 12 3 10 6 7 14 24 16

PER2/CRY cytosol 8 10 3 12 5 14 6 24 16 1

PER2/CRY nucleus 8 3 5 12 10 14 24 16 1 15

Bmal1 mRNA 8 14 3 13 16 5 12 10 24 1

BMAL1 cytosol 8 14 3 17 13 16 5 10 12 19

BMAL1 nucleus 8 14 3 17 13 5 16 10 12 21

BMAL1* nucleus 8 14 3 10 5 13 17 16 22 12

ranking for ∂ ln T
∂ lnp

10 5 6 8 12 9 14 11 24 15

Table 3.4: Rankings of parameters by magnitude of scaled relative amplitude sensitivities
∂ lnAj

∂ lnp
=

∂ ln yj,max

∂ lnp
−

∂ ln yj,min

∂ lnp
in the extended model. The parameter indices of the top ten

sensitivities are shown.

species 1 2 3 4 5 6 7 8 9 10

Per2/Cry mRNA 8 2 3 5 27 29 31 25 12 26

PER2/CRY cytosol 8 3 2 27 29 31 25 5 26 10

PER2/CRY nucleus 8 3 2 27 29 31 25 26 5 12

Bmal1 mRNA 8 27 3 2 29 31 25 26 28 5

BMAL1 cytosol 8 27 3 2 29 31 25 26 5 28

BMAL1 nucleus 8 27 3 2 29 31 25 26 5 28

BMAL1* nucleus 8 27 2 3 29 25 31 26 5 10

REV-ERBα 8 27 2 3 31 5 28 29 25 26

ranking for ∂ ln T
∂ lnp

10 8 5 6 2 27 25 31 29 3
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Figure 3-5: Left: Scaled relative amplitude sensitivities (Aj =
∂ ln Aj

∂ lnp
) for all species in both

nominal models, rank-ordered by absolute magnitude. All sensitivities are shown. Left:
Basic model; Right: Model with REV-ERBα loop;

3.3.6 Phase Sensitivities

It is difficult to attribute an intuitive meaning to the vector δ(t). It represents the local

acceleration or deceleration at any point on the limit cycle, with reference to the time

defined as t = 0. Or in other words, if one parameter pi was changed by an infinitesimal

amount ∂pi, the point y(t∗) would be reached a tiny amount sooner (or later), so that

the resulting ∂t∗ ≈ δi(t
∗)∂pi. In principle, a tiny change in pi may cause the point y(t∗)

to not exist anymore, but this information is separated out according to Eq. (3.1) and is

represented in wi(t
∗), the ith column of W(t∗).

The phase sensitivities δ(t) were computed for all parameters for one period of time. The

resulting time trajectories are shown in Figure 3-6 both in scaled form (pjδj(t) = ∂φ
∂ ln pj

∣

∣

∣

t
)

and in normalized form (δj,norm(t) =
δj(t)

maxt(δj(t))
). The fact that the normalized δ-trajectories

appear to occur in groups of similar shape will be investigated in detail in Section 3.3.8.

The phase sensitivites δ were rank ordered. In order to capture their importance over

the entire range 0 ≤ t ≤ T , their AUC was computed and used for the ranking. Plotted

in Figure 3-7 is however the maximum magnitude of any given δ-trajectory in order to

allow for more meaningful comparison. (This sometimes leads to the rankings not being

monotonically decreasing as one would usually expect.) It is interesting to see that in the

basic model, the positive feedback loop participates significantly in the phase setting, but

not in the period setting. It is more difficult to assess this for the extended model, due

to the sharing of reactions in the positive and negative feedback loops in series, with only
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Figure 3-6: Left: Scaled phase sensitivities (pjδj(t) = ∂φ
∂lnpj

∣

∣

∣

t
) over one period of time;

Right: Normalized phase sensitivities (δj,norm(t) =
δj(t)

maxt(δj(t))
) over one period of time; Top:

Basic model; Bottom: Model with REV-ERBα loop.

one parameter being unique to the positive feedback loop. That said, this single parameter

plays a more prominent role in phase setting than in period setting. While the secondary

negative feedback loop participates in the period setting as well, its influence is markedly

larger in the phase sensitivites also.

3.3.7 Phase Sensitivities for Alternative Parameter Sets

In comparison to the period sensitivity rankings shown in Figure 3-8, the phase rankings

show a stronger influence of positive feedback overall. This is easy to distinguish in the

basic model. In the extended model, influences outside the first negative feedback loop are

also much more prominent in the phase sensitivity rankings than in the period sensitivity

rankings. The role of the positive feedback loop, however, cannot be distinguished as easily.
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Figure 3-7: Top 10 peak, scaled phase sensitivities max‖ ∂φ
∂ ln pi

‖, ranked by absolute area
under the curve. Left: Basic model; Right: Model with REV-ERBα loop. Blue: Negative
feedback loop - BMAL1* controls Per2/Cry expression. Green: Positive feedback loop of
Bmal1 on itself (through Per2/Cry and Rev-Erbα if applicable). Red: Negative feedback
loop where BMAL1 controls REV-ERBα expression

The parameter indices for the top ten ranked parameters for all alternative parame-

ter sets are included in Tables A.2 and A.3. In the basic model, the phase sensitivity

rankings are most often dominated by parameters 3 (inhibition constant of Per2/Cry tran-

scription) and 14 (MM constant of Bmal1 transcription), followed by 12 (degradation of

nuclear PER2/CRY) and 15 (Hill coefficient of Bmal1 transcription).

In the extended model, the dominant parameters are 12 (degradation of PER2/CRY

in the nucleus), 8 (number of PER2/CRY complex forming subunits), 25 (maximal rate of

REV-ERBα synthesis), 29 (degradation of REV-ERBα), but the trend is modest and, again,

the rankings are not in particularly close agreement with the nominal parameterization.

3.3.8 Phase Sensitivity Clusters

Here we apply the idea of sensitivity similarities described in Section 3.2 to the phase

sensitivities δ. Upon inspection of the normalized phase sensitivities δi,norm(t) = δi(t)
maxt δi

,

where δi = ∂φ
∂pi

, the sensitivities appear in groups of approximately similar trajectories over

0 ≤ t ≤ T (see Figure 3-6). The δ-trajectories were formally clustered into these groups

as described in Section 3.2, with the aim of understanding which parameters have similar

function in the network with respect to local acceleration and deceleration, and how many

different groups exist (Figure 3-9). A first observation is the fact that most trajectories

fall into the first mode. This is a general property of PCA-based clustering of data. PCA
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Figure 3-8: Top 10 peak, scaled phase sensitivities max‖ ∂φ
∂ ln pi

‖, rank ordered by abso-
lute AUC for all alternative parameter sets in the basic model (left) and the model with
Rev-Erbα (right). Blue: Negative feedback loop — BMAL1* controls Per2/Cry expres-
sion. Green: Positive feedback loop of Bmal1 on itself (through Per2/Cry and Rev-Erbα if
applicable). Red: Negative feedback loop where BMAL1 controls REV-ERBα expression.

aims to explain as much as possible of the data using the first component. Nonetheless,

the significance of the populations in the less populated modes, called “rare” modes, is

discussed throughout the remainder of the chapter. The choice of PLC used to define the

time t = 0 and to compute the δ-trajectories has an impact on the trajectories themselves,

as shown in Theorem 2 (Chapter 2). Therefore, all phase-based clustering was repeated for

a second PLC, using the nominal parameterizations for both models. The number of modes

in a given parameterization, parameters in “rare” modes or large magnitude parameters

appeared invariant to the choice of PLC (data not shown). It appears that even though

the exact shape of the δ-trajectories depends on the PLC, their similarity properties do not

depend on the PLC and are a function of the network model and parameterization only.

The basic model appears to have more modes than the extended model (Figure 3-

9). Its latent roots (eigenvalues associated with the principal components) are also less

strongly localized (i.e., the first component is less dominant) on the first mode than as in

the extended model. The fact that the first mode dominates the phase sensitivities in the

extended model also makes for lower intra-cluster variation. The question comes to mind if

this property is specific to the given parameterization or inherent in the network structure.
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Figure 3-9: PCA based clustering of the normalized δ-trajectories over one period T . The
time scale is normalized to 0 ≤ t̂ ≤ 100. Each column represents once principal component.
Top row: trajectories within the mode. Second row: trajectories within the “anti-mode”.
Bottom row (green): Principal component or cluster centroid. The latent roots in percent
for each cluster are: Basic model (left): (87.5%, 10.3%, 1.0%); Extended model (right):
(92.5%, 6.5%).

This is addressed in Section 3.3.9.

3.3.9 Phase Sensitivity Clusters for Alternative Parameter Sets

The same clustering based on sensitivity similarities was performed on all models with

alternative parameter sets. It was found that in both network architectures, some parame-

terizations were found that led to several modes, versus in others few modes were populated.

In general, it appears as though the number of significant modes is a function of network pa-

rameterization, and not of network architecture. This is especially surprising given that the

current literature suggests a link between the number of feedback loops and phase flexibility

[85].

In the basic model, one trend observed is that strong participation of the positive feed-

back loop in the period setting correlates with few modes in the phase sensitivities and

the absence of a steep decline in the period sensitivites. I.e., a model parameterizer in

this way can only do one thing. The situation in the extended model is harder to analyze.

There appears significant freedom to establish quasi-24-hr oscillations using different types

of strategies, as judged by the period sensitivities and the differing numbers of modes for

the alternative parameter sets.

It appears that in many cases, there is a pair of one dominant mode and its anti-
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mode, and then a few parameters that populate other, “rare” modes. It was observed that

certain parameters appeared in those “rare” modes more often than others. For the basic

model, those parameters included, in order of frequency, the transcription of Per2/Cry,

the degradation of nuclear PER2/CRY as well as BMAL1 activation. The “rare” modes

in the extended model are most often populated by the Per2/Cry transcription rate and

the nuclear export rate of PER2/CRY. Of interest in this context is the fact that light

input is thought to act through the regulation of Per trancription [26, 77]. As discussed

previously, an alteration in a rate that belongs to a “rare” mode cannot be compensated by

the network, and hence this choice of intervention point might be excellent if the network

must undergo a phase shift, such as during jet lag.

Another interesting correlation was that one of the “rare” modes in the nominal pa-

rameteriztions for the basic model was populated by the activation rate of nuclear BMAL1.

The (de)activation rates of Bmal1 was found in Section 3.3.11 to be crucial in the ability of

the model to modify several of its relative phases without changing the period. The “rare”

mode in the extended model was populated by the concentration of constitutively active

BMAL1. This parameter was also found to play a significant role in the ability to modify a

phase without altering the period, as discussed in Section 3.3.11. This could indicate that

the existence of rare modes might be relevant in the context of phase modification.

In the extended model, a group of parameters often formed a secondary more populated

mode and antimode pair involving a group of parameters that regulates the amount of REV-

ERBα produced. This second, more populated mode often (but not always) included the

reaction that is unique to the positive feedback loop (the inhibition constant of REV-ERBα

synthesis). In the basic model, a second, higher populated mode is rarely found. It could

be hypothesized that depending on the parameterization, an extra feedback loop could add

the possibility of a second, robust (i.e., populated more than once) mode.

3.3.10 Angular Relative Phase Sensitivities

Circadian biology often discusses the following question: Given that the length of subjective

day is not constant throughout the year (unless one lives on the equator), can the biological

clock track dawn and dusk separately, and can it adjust its molecular events accordingly? In

the models under study here, the impact of light is not represented. Thus, a more indirect

method of analysis is needed that allows study of the model’s ability to track different
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phases. In this work, we cast this biological question in such a way that it is amenable to

mathematical analysis. A relative phase in the mathematical context of this work is the

angular phase γ (Eq. (3.4)) between two events relative to the period. The two events are

defined by equations that describe the molecular events occurring at dawn and dusk. The

dependency of this angular phase with respect to the model parameters is then calculated

and compared to the dependency of the period on the same parameters. This analysis

reveals the existence of mechanisms for changing the relative phase relationship of dawn

and dusk wiht constant length of day. We term this relative phase flexibility.

Because it is not known how the circadian clock is read, or where its outputs are, the

molecular events defining “dawn” and “dusk” are somewhat difficult to chose. As discussed

in the Introduction, the minimum of Per2/Cry mRNA was chosen as the dawn time reference

CT=0. From a survey of the experimental and review literature, the following molecular

events happen at or near CT=12, or dusk. Bmal1 mRNA has risen half-way to its maximum

concentration [83, 8, 87], Cry1 mRNA is near its highest concentration [8, 87], and Per1

and Per2 mRNA have declined to roughly half their peak concentrations [8, 87]. In order

to evaluate the relative phase flexibility of the mammalian circadian models under study,

each of these three molecular events were chosen as the second the PLC, and the results

were compared. Note that this selection of PLCs contain some that relate to times at which

concentrations cross an absolute threshold, rather a relative definition with respect to its

peak level. This difference could result in a different phase sensitivity result, even if the

same exact phase was detected. The results are shown in Figure 3-10, where the scaled

angular relative phase sensitivities are shown in comparison to the period sensitivities and

the amplitude sensitivities of the BMAL1* protein concentration in both models. In order to

compare the network performance in the different scenarios, the angular phase sensitivities

were scaled and ranked by absolute magnitude.

Tables 3.5 and 3.6 show that the high angular relative phase sensitivities are associated

with overlapping but somewhat different sets of reactions for each choice of “dusk” PLC.

Thus, it will be important to experimentally determine how the “dusk” and “dawn” signals

are processed on the molecular level. Several of the reactions found to be important are

involved in Per2/Cry transcriptional regulation (parameters # 2, 3, 5). The current partial

understanding of light processing in the circadian clock has light input eventually resulting

in increases transcription of Per1 and Per2 [26]. In the basic model, the high sensitiviy
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Table 3.5: Rankings of parameters by magnitude of scaled angular relative phase sensitivities
∂ ln γ
∂ lnp

in the basic model. The parameter indices of the top ten sensitivities are shown.

PLC (“Dusk”) 1 2 3 4 5 6 7 8 9 10

max of Per2/Cry mRNA 5 8 12 10 6 14 11 24 1 16

Bmal1 mRNA at 50% 8 14 3 5 13 15 12 16 10 24

Per2/Cry mRNA at 50% 5 3 7 12 6 14 9 8 2 17

ranking for ∂φ
∂ lnp

3 14 8 5 16 13 15 12 17 10

ranking for ∂ ln T
∂ lnp

10 5 6 8 12 9 14 11 24 15

Table 3.6: Rankings of parameters by magnitude of scaled angular relative phase sensitivities
∂ ln γ
∂ lnp

in the extended model. The parameter indices of the top ten sensitivities are shown.

PLC (‘Dusk’) 1 2 3 4 5 6 7 8 9 10

max of Per2/Cry mRNA 8 5 2 27 29 31 25 3 26 12

Bmal1 mRNA at 50% 8 27 29 2 31 25 3 26 5 10

Per2/Cry mRNA at 50% 3 2 12 27 29 25 31 5 7 26

ranking for ∂φ
∂ lnp

3 2 27 8 25 29 26 31 10 12

ranking for ∂ ln T
∂ lnp

10 8 5 6 2 27 25 31 29 3
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Figure 3-10: Relative, scaled angular phase sensitivities, amplitude sensitivities and period
sensitivities in comparison. The period sensitivities for each parameter are plotted in blue,
the angular relative phase sensitivites alone in green, the amplitude sensitivities for the
amplitude of Bmal1* in red. Left: Basic model; Right: Extended model. Top: Definition
of “dusk” is the maximum concentration of Per2/Cry mRNA; Middle: Definition of “dusk”
is the point where Bmal1 mRNA exceeds 50% of its maximum concentration; Bottom:
Definition of “dusk” is the point where Per2/Cry mRNA is less than 50% of its maximum
concentration.
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Table 3.7: Relationships between the vector
(

∂β
∂p

)

T
and the vector ∂T

∂p
for both the extended

and the basic model.

PLC (‘Dusk’) β (Basic) L α β (Extended) L α

mCry1 max 6.91 0.296 51.5 6.85 0.380 50.2

50% of mBmal1 10.65 0.783 77.1 11.23 0.520 52.3

50% of mPer2 13.08 0.430 48.0 13.32 0.500 25.2

parameters are located primarily in the negative feedback loop (parameters # 1–12) with

some participation of the positive feedback loop. In the extended model, the parameter

unique to the positive feedback loop, # 27, is prominent, as are other parameters that

belong to the positve and secondary negative feedback loop.

In principle, an important functional constraint of circadian rhythm networks is the

ability to adjust phase and amplitude relationships without changing the period. Constant-

period phase perturbations were explored by computing the angle and relative length of a

period-neutral sensitivity vector as described in Section 3.2. The results of this calculation

are shown in Table 3.7. Both models show period-neutral phase sensitivities of considerable

magnitude and orthogonality. The most freedom appears to be in the timing between the

“dawn” defined in terms of mCry1, and “dusk” defined in terms of mBmal1. The increased

flexibility found in the Bmal1 part of the network is also found in the following section.

Model-wide Relative Phase Sensitivity Analysis

Having found in Section 3.3.10 that several relative phases appear to have significant sensi-

tivity in the period neutral direction, one wonders if relative phase flexibility is a network

wide property or if some relative phases are more flexible than others. In order to obtain

a more exhaustive picture of the constant-period phase flexibilities, the sensitivities for the

relative phase of the concentration peak for each species with that for each other species

was computed. Each sensitivity vector was evaluated for its orthogonality to the period

sensitivity vector. The relative length L of the projected vector is given in Tables 3.8 and

3.10 for each of the models. The angle α between the relative phase sensitivity vector and

the period sensitivity vector for each phase is reported in Tables 3.9 and 3.11 for both

models.
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Table 3.8: Relative length of period-neutral peak-to-peak sensitivity to the period sensitivity

vector L =
∥

∥

∥

(

∂β
∂p

)

T

∥

∥

∥ /
∥

∥

∥

∂T
∂p

∥

∥

∥ from the peak of each species to the peak of each other species

in the basic model. (n) indicates nuclear location, (c) indicates cytosolic location.

Species P/C(c) P/C(n) mB(n) B(c) B(n) B*(n)

Per2/Cry mRNA(n) 0.096 0.024 0.025 0.107 0.150 0.2451

PER2/CRY(c) 0.096 0.098 0.145 0.181 0.271

PER2/CRY(n) 0.026 0.115 0.160 0.264

Bmal1 mRNA(n) 0.107 0.155 0.256

BMAL1 (c) 0.150 0.241

BMAL1 (n) 0.211

Table 3.9: Angle αi,j between peak-to-peak sensitivity vector and the period sensitivity

vector, where sin(αi,j) =
∥

∥

∥

(

∂βi,j

∂p

)

T

∥

∥

∥ /
∥

∥

∥

∂β
∂p

∥

∥

∥, from the peak of each species i to the peak of

each other species j in the basic model. (n) indicates nuclear location, (c) indicates cytosolic
location.

Species P/C(c) P/C(n) mB(n) B(c) B(n) B*(n)

Per2/Cry mRNA(n) 45.9 4.2 4.3 15.5 18.8 21.4

PER2/CRY(c) 22.8 22.7 26.3 27.5 27.0

PER2/CRY(n) 78.4 60.5 52.9 41.0

Bmal1 mRNA(n) 60.9 53.1 40.6

BMAL1 (c) 69.4 45.3

BMAL1 (n) 49.0

It is notable that in both models, there is a wide spread of values for both orthogonality

metrics. The angle between relative phase direction and period direction ranges from 4.2◦

to 78.4◦ in the basic model, and from 3.4◦ to 64.8◦ in the extended model. The relative

length of the period-neutral phase vector in comparison to the period vector ranges from

2.6% to 27.1% in the basic model and from 1.4% to 27.1% in the extended model. In both

models, the phase with the largest angle has a very short length. However, this is not a

general trend. Some phases have small angles and small lengths. A notable example of this

in both models is the time difference between the peaks in Per2/Cry and Bmal1 mRNA. It

appears that the relative phase between both mRNAs is fixed once the period is fixed. This

insight is particularly interesting in light of experimental observations indicating that much
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Table 3.10: Relative length of period-neutral peak-to-peak sensitivity to the period sen-

sitivity vector L =
∥

∥

∥

(

∂β
∂p

)

T
∥

∥

∥ /
∥

∥

∥

∂T
∂p

∥

∥

∥ from the peak of each species to the peak of each

other species in the extended model. (n) indicates nuclear location, (c) indicates cytosolic
location.

Species P/C(c) P/C(n) mB(n) B(c) B(n) B*(n) RE(n)

Per2/Cry mRNA(n) 0.047 0.017 0.021 0.086 0.140 0.150 0.154

PER2/CRY(c) 0.050 0.052 0.100 0.149 0.156 0.160

PER2/CRY(n) 0.014 0.081 0.135 0.155 0.170

Bmal1 mRNA(n) 0.080 0.140 0.165 0.172

BMAL1 (c) 0.127 0.175 0.207

BMAL1 (n) 0.129 0.238

BMAL1*(n) 0.164

of the phase control in the mammalian clock happens on the posttranslational level [33].

One hypothesis is that the mRNA level provides the underlying rhythm, while the details

are regulated on the posttranscriptional level, which might be easier to adjust “on the fly”.

When the largest angles in both models are analyzed, it appears that they are between

the peaks of consecutive species in the molecular wiring of the positive feedback loop, from

PER2/CRY in the nucleus to the Bmal1 mRNA in the cytosol, and the BMAL1 in cytosol

and nucleus. Interestingly, the large angles “skip” the step through REV-ERBα in the

extended model (which participates in a second, negative feedback loop). This observation

might suggest that a positive feedback loop adds relative phase flexibility to a relatively

static negative feedback loop. It is shown in the experiments of Section 3.3.11 that the

angle is indeed the more significant indicator of flexibility, and that the length plays a less

important role.

3.3.11 Can the Network Modify a Phase Over a Wide Range, Without

Altering the Period?

Sensitivity information is local information; it is only valid for an infinitesimal perturba-

tion from the point at which it was calculated. Thus, it is important to also examine

whether local sensitivity information extends for larger parameter variations, such as those

potentially undertaken by an organism either undergoing evolution or temporarily altering

network performance to adapt to a change in environment. On a methodological level,

102



Table 3.11: Angle αi,j between peak-to-peak sensitivity and the period sensitivity vector,

where sin(αi,j) =
∥

∥

∥

(

∂βi,j

∂p

)

T

∥

∥

∥
/
∥

∥

∥

∂β
∂p

∥

∥

∥
, from the peak of each species i to the peak of each

other species j in the extended model. (n) indicates nuclear location, (c) indicates cytosolic
location.

Species P/C(c) P/C(n) mB(n) B(c) B(n) B*(n) RE(n)

Per2/Cry mRNA(n) 27.7 3.4 4.2 12.7 15.6 9.3 7.5

PER2/CRY(c) 14.4 14.7 18.7 19.8 10.7 8.4

PER2/CRY(n) 64.8 38.8 31.5 13.8 10.9

Bmal1 mRNA(n) 37.7 32.2 14.6 11.0

BMAL1 (c) 46.9 18.2 14.8

BMAL1 (n) 17.5 19.6

BMAL1*(n) 7.5

it is also of interest to evaluate which of the two measures, α or L, computed in Section

3.3.10 corresponds better the ability of the network to modify the phase without altering

the period.

Three relative phases in the basic model were selected for comparison. The relative phase

β1 with the largest angle α = 78.4◦ (but one of the shortest relative lengths L = 0.026)

found in the basic model was the timing between the peak in nuclear PER2/CRY and Bmal1

mRNA. The relative phase β2 with the longest relative length (L = 0.271) and a smaller

angle (α = 27◦) was the time between the peaks of PER2/CRY complex in the cytosol and

of BMAL1* activated transcriptional activator in the nucleus. Third, the relative phase β3

with the smallest angle (α = 4.2◦) and the shortest relative length (L = 0.024) was between

the peaks of Per2/Cry mRNA and nuclear PER2/CRY.

The question was, how far can the network take the process of adapting a phase with-

out altering the period? To this end, a very rudimentary optimization procedure was

implemented in which a small, constant size step in the direction of the period-neutral

relative phase sensitivity was taken in parameter space. The step size was kept constant

at ∆p = µ
(

∂β
∂p

)

T
. The step length µ was selected based on L, if L was larger, the step

size µ was chosen smaller, and vice versa, to avoid going too far from the nominal point

in one step. At the new parameterization, the new period and phase were determined

and recorded. Then all sensitivities were recomputed and a new, period-neutral direction

was found. This procedure was repeated until the period changed over 1% away from the
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original value or no oscillation was detected at the new parameterization. At this point,

the algorithm terminated. The resulting trajectories are represented in Figure 3-11, left

column. The parameters at the end points were compared to the original parameters in

Figure 3-11, right column.

The network has no trouble adapting the relative phase β1 by as much as 93% (corre-

sponding to a change by 1.3 hours) without disturbing the period by more than 1%. The

relative phase β2 could be modified by 13.3%, which corresponds to an absolute change of

2.2 hours. Interestingly, the same two parameters were largely responsible for this change

as the change in β1, even though the relative phase under study is in a different part of the

network.

The relative phase β3 could be modified by only 3.5% or 0.3 hours, neither a significant

relative nor absolute amount. Parameter #23 was the main effector of this small change.

If the first and third relative phases are compared, it appears that the angle α is important

in measuring the ability of the network to adapt the phase without changing the period.

Both relative phase sensitivities have almost the same length, yet one is signigficantly more

flexible than the other.

All numerical experiments were repeated with half the stepsize (µ = 0.005 or µ = 0.0005,

respectively. The results were only slightly different in that the first relative phase β1 (large

α, small L) was modified from 1.43 h to 2.66 h instead of 2.75 h, β2 (large L, medium α)

was modified from 17.02 h to 19.40 h instead of 19.28 h, β3 (small α, small L) was modified

by the exact same amount. This leads to the conclusion that the step sizes that were chosen

originally lead to a reasonable representation of what the network can do.

The relative phase with the wider angle and shorter length could be modified by a

larger relative amount (92% vs. 13%) but a smaller absolute time (1.3 h vs. 2.3 h) than

the second phase with a medium angle and a longer length. Both phases can be changed

to a significant degree. Interestingly, only two parameters are used to regulate all relative

phases, as is seen in Figure 3-11, right hand sides, respectively. These two parameters,

#11 and #23, are the rates of nuclear export of PER2/CRY and deactivation of BMAL1*.

The eleventh parameter ranks eighths in scaled period sensitivities, but neither parameter’s

period sensitivity is very large in comparison to the top ranked. Both parameters represent

processes in the network where posttranslational modification has been shown to play a

role. PER2 phosphorylation by casein kinase I is shown to control nuclear trafficking and
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Figure 3-11: Trajectory of change of period and phase (left) and parameter changes (right)
from a simple optimization aimed to increase three different phases β as much as possible
without disturbing T more than 1%. Top: The phase β1 = 1.43h, with the largest angle
α = 78.4◦ and short length L = 0.026. The step size chosen was constant at µ = 0.01.
Middle: The relative phase β2 = 17.02h, with the largest length L = 0.271 and intermediate
size angle α = 27.0◦. The step size chosen was constant at µ = 0.001. Bottom: The relative
phase β3 = 7.46h, with the smallest angle α = 4.2◦ and shortest length L = 0.024. The
step size chosen was constant at µ = 0.01
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degradation [103]. The (de)activation step of BMAL1 is the binding of CLOCK, which is

phosphorylated rhythmically as well [88]. The role of these two parameters is discussed

further in Section 3.3.12.

3.3.12 The Length of Subjective Day in the Face of a Constant 24-hour

Period

The significance of the length of subjective day and the calculation of its sensitivity was

discussed in Section 3.3.10. To understand to what extent this sensitivity information is

relevant in a biological context, it was studied how wide the quasi-linear region around the

nominal point is for each model, in other words, how far can one walk into the period-

neutral phase direction without losing its property of period-neutrality. This numerical

experiment is different from the previous one in that the period neutral direction is not

recalculated at each step, but rather steps are only taken in one direction. The phase

tracked in this experiment was the first definition for the “dawn-to-dusk” time span, i.e.,

the time β between the minimum and the maxium of Per2/Cry mRNA. Both the basic and

the extended models have significant angles α and lengths L of their period neutral phase

sensitivity vector corresponding to this phase. The parameters with high relative phase

sensitivity in the basic model typically also have significant period sensitivities, whereas

in the extended model, parameters can be found that have limited period sensitivity but

significant relative phase sensitivity (Figure 3-10). Can this correlation be used to evaluate

whether the model can, through finite modification to rate constants, modify the relative

phase without changing the period?

From the nominal parameterization of each model, steps in the period-neutral direction

were taken, and the resulting period and phase change were recorded. The step size (always

referring to distance from the nominal point, not from the previous point) was varied in the

following increments: 0.00001, 0.00005, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005.

Results are shown in Figure 3-12 for both models. It is clear that the same relative step

length µ results in much larger changes in the extended model, even thought the relative

lengths L of both period-neutral relative phase sensitivities is only a factor 3 apart. In fact,

for the extended model, no step size can be identified that would modify the phase β by a

significant amount without also disturbing the period by a significant amount. It appears

that the extended model is more non-linear in the sense that a slightly too large step in
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Figure 3-12: Period and “dawn-to-dusk” phase change after a finite parameter disturbance.
Left: Steps of different size µ in the period-neutral phase direction for the nominal param-
eterization. Blue: Basic model; Green: Extended model. Right: Step-wise optimization
of phase length while period is kept constant, for both nominal models and 2 alternative
parameterizations each. Step size was constant at µ = 0.0001 for all models, and at each
point, the period-neutral search direction was recalculated.

what is the locally period-neutral direction results in significant period change, whereas in

the basic model, a step with similarly sized change in phase is still causing a period change

below 1%. It is intuitive that an additional feedback loop, in particular one with highly

nonlinear terms, would add nonlinearity to the model.

0 5 10 15 20 25
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

parameter index

re
la

tiv
e 

ch
an

ge
 in

 %

 

 
phase change ∆β
period change ∆ T

0 5 10 15 20 25 30 35
−2

−1

0

1

2

3

4

5

parameter index

re
la

tiv
e 

ch
an

ge
 in

 %

 

 
phase change ∆β
period change ∆ T

Figure 3-13: Mechanism of a period-neutral step in the phase direction. Shown is the
relative change in % for each parameter. Left: Basic model; Right: Extended model

The mechanism behind a single step in the phase-neutral relative phase direction is

visualized in Figure 3-13. In both cases, a small number of parameters are modified sig-
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nificantly and produce both a change in relative phase and period. The relative change in

phase is always positive, whereas the changes in period add up to a very small total change.

It is interesting to see that in the extended model the number of changed parameters is

larger by more than a proportional amount (given that the extended model has 33% more

parameters in total). The mechanism for the maximum period-neutral phase change is more

involved and requires a larger number of network-wide changes than in the basic model. In

the basic model, a pair of reactions — the nuclear export rate and the degradation rate of

the PER2/CRY complex — can accomplish the phase-neutral step almost completely. In

the extended model, it appears as though two groups of parameters in two different parts

of the network are necessary to make the period-neutral shift.

As a second experiment, the optimization procedure presented in Section 3.3.11 was

repeated for this “dawn-to-dusk” relative phase definition. The step size was kept constant

at ∆p = µ
(

∂β
∂p

)

T
. For the basic model experiments, the magnitude of the step change was

µ = 0.001, which always sufficed to produce at least one “feasible step” in parameter space,

resulting in a period changed less than 1%. The numerical simulation shown in Figure 3-12

(right, solid blue line) indicates that the basic model is able to increase this relative phase

by up to 35% without disturbing the period by more than 1%, corresponding to a change

in phase of almost 3 hours. At the next step, the model left the oscillatory region and the

algorithm terminated. It is astonishing to see the ability of a very small model to perform

this task, even more so when one looks at the resulting parameterization in Figure 3-14.
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Figure 3-14: Relative parameter changes in % between beginning and end of the period-
neutral phase change shown in Figure 3-12, right, for both nominal models. Left: Basic
model; Right: Extended model

108



Only 3 parameters are changed significantly to effect this balanced change. These param-

eters are #23, #11 and #12, the rates of BMAL1* deactivation, and PER2/CRY nuclear

export and degradation, as ordered by magnitude. The latter two parameters are ranked

eighth and fifth for their period sensitivities, and similarly for their phase sensitivities; how-

ever, as seen in Figure 3-10 (top left), the period or relative phase sensitivities of the two

most significant paramters (11 and 23) are not large. This suggests that a period-neutral

phase modification might be a process that is somewhat uncoupled from the setting of the

period (which is intuitive) and the setting of the phase (which is counter-intuitive). It is

also interesting to note that the four different phases in the basic model that were consid-

ered in this study (Section 3.3.11 and here) are regulated in very similar ways. It could

be hypothesized that the timing of most relative phases in the face of constant period of

oscillation might be centrally controlled and uncoupled from the period control.

It is especially intriguing to see that the parameters with the largest impact are ones that

are accessible to outside modification. The stability and nuclear localization of Per2 was

shown previously to be of crucial importance and is regulated by a complicated phosphory-

lation pattern, which was shown to have an influence on both period and phase [103]. This

phosphorylation pattern is caused by the casein kinase I family, which is the target of several

signaling pathways [84]. The status of activation or inactivation of BMAL1* (which repre-

sents the BMAL1-CLOCK-complex (BCC)) depends on the availability of CLOCK. CLOCK

is an essential component of the mammalian circadian clock, though its concentration does

not exhibit a circadian rhythm [65]. It appears instead that CLOCK is rhythmically phos-

phorylated in at least 4 different forms [65, 105], which might affect its stability and nuclear

trafficking [88]. In Drosophila it was shown that several input pathways, including the Ras

and MAPK pathways, can regulate the activity of CLOCK [105].

The experiment was repeated for the extended model. The step size had to be reduced

from µ = 0.001 (at which level, no step could be taken without leaving the oscillatory

regime, indicating a greater nonlinearity in the model behavior. Even with a new step size

of only µ = 0.0001, the phase could not be modified on the first step until the period was

altered over 1%. Consequently, the threshold was raised to 3% permissible period alteration,

and the results are shown in Figure 3-12 (right, green solid line). The phase was changed

from CT=6.85 hours to CT=9.12 hours while the period changed from T=23.41 hours to

T=22.92 hours. The next step resulted in a period of T=27.58 hours at which point the
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algorithm terminated. Again, the right half of Figure 3-14 shows that only a fraction of

the parameters are modified significantly. The most significant parameter changes were

again #23, the deactivation rate of BMAL1* followed by parameter #4, the concentration

of constitutive BMAL1*. Less significantly but not negligibly, the parameters 24 (BMAL1

activation), 11 and 12 (nuclear export and degradation of PER2/CRY) were modified as

well. From the central role of the activity status of BMAL1, it could be hypothesized

that the phosphorylation of CLOCK [65, 105] represents an opportunity for the network

to modulate relative phase without greatly affecting the period, possibly together with the

phosphorylation of PER2 which regulates its nuclear trafficking and degradation.

It is interesting that the extended model has less capability to modify this phase without

the period, when one notices also that in this network the period sensitivities are less local-

ized in the Per-related negative feedback loop and some contribution from other feedback

loops is found in the high ranking period sensitivity parameters.

From the experiments presented here, it becomes clear that sensitivity information alone

is not enough to judge and understand whether or not, and how, a model can achieve

period-neutral phase shifting. One should note that parameters with very small relative

phase sensitivities (#11, #23 in the basic model, #4, #23 in the extended model) are used

chiefly to modify the phase in a period-neutral way, rather than balancing the effects of

parameters with large phase sensitivities but also significant period sensitivites. A period-

neutral relative phase sensitivity direction of significant length exists even in cases where

such modification is difficult for the network to perform.

It is interesting to correlate this greater difficulty in modulating a phase without the

period being altered with the number of modes found in the δ-trajectories, as described in

Section 3.3.8. In order to study this effect, a total of four models with alternative parameters

were picked. Alternative parameter sets 2 and 4 from the basic model were picked as having

the fewest and most modes, respectively. For the extended model, alternative parameter

sets 1 and 6 were picked according to the same standard. Table 3.12 shows the results for

the period-neutral phase-change experiments.

3.3.13 How Functionality is Distributed Within the Two Networks

Several properties of the oscillation were investigated separately in this work. It is now dis-

cussed which trends and correlations were found in both models and across the alternative
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Table 3.12: Period-neutral phase optimization for different parameterizations of both mod-
els. All step sizes were kept at 0.0001 for easy comparison of network performance.

Model Modes T β α L max % ∆β max % ∆T

Basic, nominal 3 23.84 6.92 51.5 0.296 37.5 -0.82

Basic AP Set 2 2 24.16 5.56 39.5 0.264 29.7 0.63

Basic AP Set 4 4 23.16 3.67 68.2 0.282 125 0.8

Extended, nominal 2 23.41 6.85 50.2 0.38 33.1 -2.10

Extended AP Set 1 2 24.27 6.57 84.7 0.36 52.3 1.7

Extended AP Set 6 4 23.10 4.16 74.0 0.279 12.0 2.9

parameter sets, and which relationships exist between the setting of different functions, the

network parameterization and its architecture. Interestingly, some properties were relatively

conserved across different network parameterizations. The period was always controlled by

the negative feedback loop involving Per2/Cry. The amplitudes for all species in a model

were always controled by a small number of parameters. The amplitude controls was per-

formed by this group, in a centralized fashion for the entire model, for both model types

and all alternative parameterizations. In the basic model, the high amplitude sensitivities

almost always correlated strongly with the high phase sensitivities. This effect is observed

to a lesser degree in the extended model, where it appears that phase and amplitudes might

be controlled more independently. It was found overall that all parts of the networks con-

tributed in the setting of amplitudes and phases. In both models, period control appears

distinct in mechanism from phase and amplitude control, when the most influential param-

eters for each are compared. The positive feedback loop appears to play a stronger role in

phase and amplitude sensitivities than in period sensitivities. Some of the parameters play

a very prominent role in the amplitude and phase sensitivities, but a very insignificant one

in the period setting. These parameters are #3, that indicates the strength of the negative

feedback that PER2/CRY exerts on its own expression, as well as #14–17, that regulate

the amount of Bmal1 produced.

The parameters that are very often found to be influential on period, phase, relative

phase and amplitudes are #5 and even more so, #8 (the Hill coefficient of Per2/Cry tran-

scription inhibition, and the number of Per2/Cry complex forming subunits, respectively).

The latter is in its nature not related to a reaction rate, but rather a stoichiometric factor

111



which describes network architecture.

The control of relative amplitude, angular phase and period is compared network-wide

in Figure 3-10. While there are parameters that have only one significant sensitivity (e.g.,

only a significant period sensitivity but negligible amplitude or angular phase sensitivity),

overall the impression is that the control of these network functionalities is handled in

a network-wide, concerted way. In other words, even though the most influential period

parameters are not the same as the most influential parameters in an angular phase sense,

it is nonetheless difficult to modify one without the other. Overall it can be said that

the parameters #18–22 (the BMAL1 trafficking and degradation kinetics) have very little

influence. In fact it is known that the clock can function without oscillations in Bmal1 (as

is the case in Rev-Erbα−/− mutants [26]) without much obvious detriment.

The ability to modify a particular relative phase indepedently of the period appeared also

not to depend too strongly on the network parameterization. The small set of alternative

parameterizations that were analyzed produced similar results in both models. It also

did not seem to matter whether or not the period sensitivities strictly resided in the Per-

related negative feedback loop, as seen in the basic, nominal model and its alternative

parameter set #4, and in the alternative parameter set #6 in the extended model. In

those parameterizations where other feedback loops participated in the period setting (Basic

Model, alternative parameter set #2, and extended model in the nominal parameterization),

a similar amount (compared to other parameterizations of the same model) of period-neutral

phase shift was possible. This ability however, did depend on the number of feedback loops.

The two models behaved significantly differently when finite steps in parameter directions

were taken. It appears that the model with the additional negative feedback functions more

nonlinearly, and is “stiffer” in this sense.

However, some of the more detailed network properties, such as the number of phase

sensitivity modes depends strongly on the parameterization. The maximum number of

significant modes that are computed using PCA across all alternative parameterization is

higher for the extended model. This might correspond to the possibility to have more

separate “rare” modes, i.e., more possibilities to process separate inputs, in a model with

more feedback loops. However, the parameterization with fewer modes shows that this

flexibility isn’t automatically present just because there is another feedback loop.

When all phases between peaks of the species in a model were analyzed, it was found
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that the phase sensitivities that were the most orthogonal to the period sensitivities were

found within the positive feedback loops. The relative phases between the peaks in mRNA

concentration of Per2/Cry and Bmal1 were very tightly constrained once the period is

fixed. This might indicate that relative phase flexibility exists on a post-translational level,

independently from a rather fixed schedule of transcriptional events.

3.4 Conclusions

It was shown that by calculating sensitivities of period, phases and amplitudes, a system-

wide understanding of network performance can be gained. Because sensitivity information

is, however, only valid at the nominal point, and is local, linearized information, it was

of importance to explore the validity of the claims by expanding the range of parameter

changes. It was shown that the sensitivity information of derived properties of the oscillation

can be used to meaningfully manipulate the network in a non-local way, which aids in the

understanding of network performance. It was shown that the networks possess the property

that phase relationships can be varied without altering the period, a question that was often

debated in circadian systems biology.

We find that one cannot make a general statement about the influence of the number

of feedback loops on the flexibility of a network from sensitivity analysis alone. The basic

and extended models in their nominal parameterizations have similarly orthogonal and

long period-neutral phase sensitivity vectors. However, beyond the local information, the

flexibility of the basic model at nominal parameterization is much larger when finite size

steps are taken in parameter space to realize this design goal.

Overall we find the nominal extended model to be much less flexible. The amplitudes

and relative amplitudes are all controlled by the same parameters. There are fewer modes

in the phase sensitivities. There appears more stiffness in the network when phases are

attempted to be changed without modifying the period.

There was some evidence found that relative phase flexibility might reside in the pos-

itive feedback loop, which is present in both models. It might be a preliminary working

hypothesis emanating from this work to suggest that positive feedback adds flexibility, while

negative feedback increases stiffness.

We find that many of the parameters that stood out, be that in the “rare” modes of the
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δ-trajectories, or in the few parameters that act in a concerted fashion to modulate phase

but not period, can be interpreted as potential points of permanent or transient input.

Often times, signaling cascades are known to connect to the corresponding reactions. It

is gratifying to see that even in a model at this level of abstraction and simplification,

biological insight can be gained, and new hypotheses can be formed that can be the basis

for future experimentation or intervention.
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Chapter 4

An Extended Model of the

Mammalian Circadian Clock

Abstract

The current most detailed model of the mammalian circaidan clock was extended to incorpo-
rate recent advances in experimental circadian biology. Several feedback loops and species
have been added. The resulting model is about 50% larger in the number of variables
and parameters than the original model. It accurately represents several known mutant
phenotypes, entrains stably to light input, and has a free running period of 24.15 hours,
close to that of humans. These realistic properties make the model a suitable candidate for
furthering the current understanding of network behavior and function through the analysis
of dynamical network models.

4.1 Introduction

4.1.1 The molecular biology of the mammalian circadian clock

The mammalian circadian clock is a biochemical network of molecular interactions, orga-

nized into a structure that includes a number feedback loops, that oscillates with a period of

approximately 24 hours. Genes are expressed and proteins are modified rhythmically with

all concentrations following cyclic trajectories. The circadian expression of clock-related

genes is controlled by clock-related transcription factors.

The clock machinery has been modeled mathematically on different levels of detail

[90, 68, 69, 29], and the models are often used to further the understanding of systematic

network properties [59, 44, 94, 47, 10]. In this chapter, the most detailed current model of
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the mammalian circadian clock [29] was extended in order to incorporate recent advances

and findings in experimental circadian molecular biology. The aim was to create an up-

to-date model, using mass-action kinetics exclusively, that reflects as much as possible the

current knowledge and represents correct mutant and wild-type behavior. This model was

created for further analysis using the phase sensitivity methods from Chapter 2, which is

presented in Chapter 6. A summary of current knowledge in circadian molecular biology is

presented next, followed by a review of the model by Forger & Peskin [29]. The extended

model and its behaviors is described in Sections 4.2 through 4.2.1.

A transcriptional activator at the heart of the mammalian clock is a heterodimeric

complex formed by the Clock protein CLK and the BMAL1 protein, called the Bmal1-

Clock-Complex (BCC). Both BMAL1 and CLK are helix-loop-helix, PAS domain-containing

transcription factors [93]. BMAL1 acts as a shuttle to facilitate the nuclear accumulation

of CLK [60], and heterodimerization increases their degradation.

Although clk was the first mammalian clock gene to be identified [26], it is not as well

studied as some of the others. Clk+/− mutant mice have a prolonged period, and homozy-

gote mutants display an initially prolonged period that then decays into arrhythmicity in

constant darkness [26]. It is expressed rhythmically in the mouse liver [65, 83] but not in

the suprachiasmatic nucleus (SCN) [93], and it does not appear to control its own expres-

sion level through feedback, as shown through mutant studies. Preitner et al. [83] report

that Rev-Erbα participates in regulating the Clk mRNA levels in the liver. Additionally,

it appears that CLK is rhythmically phosphorylated in at least 4 different forms [65, 105],

which might affect its stability and nuclear trafficking [88].

The BCC is a transcriptional activator of many other clock-related genes. It binds to

CACGTG E-box sequences within the promotor regions of the three per (period) homo-

logues [58], two cry (cryptochrome) homologues, the ror gene and the rev-erb genes. Bmal1

is expressed under the control of two upstream promotor regions called ROREs (retinoic

acid receptor-related orphan receptor response elements). Both REV-ERBα and ROR have

been shown to bind to both ROREs. While REV-ERBα represses bmal1 expression [83],

ROR increases it [36]. Beyond its role in its own feedback regulation through Bmal1,

REV-ERBα regulates clock and cry1 expression [83]. Because cry1 expression is lowered by

REV-ERBα, and CRY1 is an inhibitor of the BCC, which activates rev-erbα expression, a

positive feedback loop is formed. In Figure 4-1, square arrowheads represent the negative
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feedback interactions, while large, regular arrowheads indicate positive transcriptional con-

trol. A deletion of Rev-Erbα causes a shortened period, but more importantly, it causes

the rhythmicity to cease in the Bmal1 concentrations. The rhythmicity in the other clock

genes persists [83].

The BCC is inactivated by the binding of both CRY and all three PER proteins, prob-

ably through different mechanisms [2]. The CRY proteins have stronger inhibitory action

than the PER proteins [58, 45]. This action closes five negative feedback loops affecting the

expression of the cry and per genes. PER1 and PER2 in their different states of phospho-

rylation can enter and leave the nucleus at different rates and can form stable complexes

with the kinases and either CRY protein [26, 2]. The PER proteins are rate limiting for

this step and necessary for the nuclear import of the complex, making them the shuttle for

nuclear CRY proteins [65]. PER2 plays a second, positive role in the regulation of bmal1

expression [87, 83], thereby closing a positive feedback loop interlocked with the negative

feedback through the BCC.

The BCC is also inactivated by another circadian protein family, that of DEC1 and

DEC2 [45]. Both are basic helix-loop-helix transcription factors shown either to bind to

BMAL1 or to compete for DNA binding, thereby influencing the transcription of per1. The

DEC proteins are similarly strong transcriptional inhibitors than the CRY proteins, and

are also rhythmically expressed in the SCN, and Dec1 expression was shown to respond to

light pulses. The dec genes were shown to be expressed under positive control of the BCC.

Much like the per and cry genes, they posess CACGTG E-boxes where the BCC binds

[40, 54]. The negative autofeedback loops around the dec genes might interact with the

other negative feedback loops, though details are not known.

The roles of the two cry homologues appear similar and perhaps redundant, in that

neither of them is indispensable for rhythmicity. This is not so for the per homologs [112];

the deletion of per3 unlike per1 and per2 hardly affects rhythmicity, and per3 is hypothesized

to play a role only as a potential output [8]. In humans, a single mutation in per2 causes

FASPS [97], and its loss causes arrhythmicity in mice [113, 8]. The phenotype of per1 null

mutant mice shows continued oscillations with unchanged period for 10–14 days but then

loses rhythmicity in one study [8]. In another study, it was found that the absence of per1

caused short periods but otherwise undisturbed rhythmicity [113]. On the molecular level,

it was found that the loss of per1 lowers the peak levels of certain clock proteins, but does

117



not affect mRNA levels in both studies. Disruption of per2 expression results in reduced

transcription levels of other clock genes and their protein levels. It was concluded that

PER1 appears to participate predominantly in regulation at the posttranscriptional level

[8, 113].

The PER proteins are phosphorylated by several isoforms of casein kinase 1 (CK1ǫ,

CK1δ, and possibly others) in a complex manner that regulates their degradation and

nuclear trafficking [103]. In particular, the phosphorylation pattern of PER2 was studied in

detail, showing that its phosphorylation sites can be classified in 2 groups that yield opposite

period phenotypes. One class of phosphorylation sites leads to an increase in degradation

and a slight increase of nuclear import. A distinct phosphorylation site at Ser659 in mice

(Ser662 in humans) significantly increases both the rate of nuclear import of phosphorylated

PER2 as well as its stability [103]. This phosphorylation site is that of a known mutation in

humans that leads to familial advanced sleep phase syndrome (FASPS) [97]. An alternate

view of the importance of PER phosphorylation is given by Forger and coworkers [31],

who showed that the tau mutation in CK1ǫ is not as previously thought a loss-of-function

mutation, but instead a gain-of-function mutation specifically for the substrates PER1 and

PER2 in vivo. Hyperphosphorylation is shown to lead to increased degradation rates;

however different phosphorylation sites are not tracked individually, and the effects of their

phosphorylation cannot distinguished in this study. On the other hand, Vanselow et al.

[103] have identified 21 phosphorylation sites, only one of which — the FASPS site —

was shown to increase stability; all others were shown to increase PER2 degradation. An

increase in PER degradation might account for the shortened period phenotype found in

hamsters with the tau mutation as well as humans with the FASPS mutation.

With the recent discovery of clock mechanisms based solely on posttranslational chains

of events [75], namely, based on phosphorylation–dephorphorylation reactions, the question

has been posed if there could possibly exist such a ‘phoscillator’ in mammals as well [73].

It is known that phosphorylation plays an integral role in the mammalian circadian clock,

as discussed above. Furthermore, it was recently shown that the dephosphorylation of

casein kinase 1 ǫ by protein phosphatase 5 (PP5) regulates its activity, and that the CRY

proteins in turn regulate the activity of PP5 [80]. Furthermore, it was shown that protein

phosphatase 1 (PP1) regulates the stability of PER2 by removing the phosphate groups

that tag PER2 for ubiquitin-mediated degradation [32]. This new evidence might support
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the existence of additional, non-transcriptional feedback loops in the mammalian circadian

clock.

One of the most important features of the mammalian circadian clock is its ability to

process input signals in the form of light, temperature, food or other stimuli, and entrain

to a stable 24-hour oscillation that is in the correct phase with the entraining stimulus.

In other words, the molecular network, even though it has a free running period (FRP)

of slightly longer than 24 hours [20, 52], can be forced to oscillate at exactly 24 hours.

Moreover, molecular events adapt in phase to match the entraining signal, so that, e.g., the

molecular events signaling ‘morning’ will adjust to occur with the onset of light. It is not

well understood how entraining signals are transmitted into the molecular clock, though it

is known that the clock’s ability to process input signals depends on the time of subjective

day, due to a phenomenon called ‘gating’ [26]. It is known that Per1 mRNA increases very

quickly after a light stimulus is applied during both early night (i.e., shortly after sunset)

and late night [88]. On the other hand, Per2 mRNA levels rise slower [26], and only following

signals introduced during early night [88]. The mRNA levels of Per3 and either Cry are not

affected by light [26].

4.1.2 A critique of the current most detailed model of the circadian clock

Several mathematical models of circadian clock systems in different organisms have been

formulated in recent years ([12, 68, 29, 101, 90, 68], among others), providing different

levels of detail. The most detailed model of the mammalian circadian clock to date was

published by Forger and Peskin in 2003 [29]. It describes the mechanistic action of 73

species (proteins and mRNA, both in the cytosol and the nucleus) and uses 38 parameters

to model their interactions. The mathematical form of the model is a system of ordinary

differential equations (ODEs), and all reactions are modeled using mass-action kinetics.

As shown in Figure 5-1, the model includes separate feedback loops for 2 homologs

each of Cry and Per. The third Per homolog, Per3, is not included, as its role is not well

understood and it is thought to participate mainly in the clock output [8]. Both CRY

proteins inhibit the transcription of both cry and per genes by binding to the BCC. A fifth

feedback loop models the positive feedback mediated by the REV-ERBα protein, which

modulates cry1 transcription. This feedback loop is parameterized in such a way that the

resulting fluxes and concentrations are negligible, and the deletion of Rev-Erbα does not
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cause any noticeable effects on the model’s behavior. The influence of REV-ERBα on Clk

or Bmal1 expression is omitted in the model. Bmal1 expression is not modeled at all,

and the BCC concentration is modeled as having a constant value. This is a significant

simplification, in particular because Bmal1 forms the ‘anti-phase’ to the oscillations of Per,

Cry and Rev-Erbα, that are in phase with each other [26]. In some ways, this model could

be compared to a Rev-Erbα−/− mutant, because in those mutants, the Bmal1 levels are

found to be constant.

The complex pattern of phosphorylation of PER species by the CK1 family is simplified

so as to occur in 2 stages, performed by one kinase C at constant concentration, which plays

the role of active kinase. Primary phosphorylation allows for binding to CRY and nuclear

transport; a secondary phosphorylation event, which only occurs for PER1, prohibits nuclear

entry. Dephosphorylation is not represented.

Light input is modeled as an increase in transcription of both per1 and per2. While it

is known that the two Per species respond differently to light input, details for the Per2

response are not fully elucidated, making this simplification a reasonable representation of

current knowledge. The model entrains to dark–light cycles with an appropriate phase.

The model’s authors set values for the 38 parameters through a combination of experi-

mental data available from mouse SCN and liver cells and fitting to overall system behavior

[29]. The same parameters are used multiple times in the network to represent different

but similar reactions. For example, all mRNA export is governed by the same parameter,

regardless of the mRNA species. The model has a total of 231 reactions. Under constant

darkness conditions, the model is an autonomous oscillator of the limit-cycle type with a

FRP of 24.3 hours. The model agrees reasonably well with wild-type and mutant behavior,

but leaves out a certain number of findings that have recently been investigated in more

detail. Several of those have been incorporated in an extended version of the model.

4.2 An extended model of the mammalian circadian clock

Based on thorough review of the circadian molecular biology experimental literature that

has emerged since the model by Forger and Peskin was published in 2003, the model was

extended. The extended model remains governed entirely by mass-action kinetics. Tran-

scriptional activation and inhibition processes are modeled by representing the probability
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of an inhibitor or activator being bound to the DNA, similar to the original model. The

most signifiant alterations are the inclusion of Bmal1 and ROR expression. Additional work

was done on representing the details of PER phosphorylation in accordance with the recent

literature reports [31, 103].

Bmal1 is explicitly modeled, including its transcription, translation, nuclear trafficking

and activation (i.e., the formation of the BCC, by binding to CLK, which is assumed to be

present at sufficient concentration at all times, in agreement with data by Lee et al. [65]).

In agreement with the data by Kwon et al. [60], the degradation rate for the BCC is much

larger than that for BMAL1 alone. Bmal1 transcription is controlled by two RORE sites.

While both REV-ERBα and ROR have been shown to bind to both sites [36], the effects

are such that it is reasonable to simplify by including ROR binding to RORE1 only, and

REV-ERBα binding to RORE2 only. This strategy avoids the need for an excessive number

of transcription rate constants for each possible combination of bound and unbound states.

The positive effect of PER2 on bmal1 transcription is modeled to occur using a separate

binding site and was assumed to be additive to the competitive regulation by ROR and

REV-ERBα. This leads to a total of five transcription rate constants (neither ROR nor

REV-ERBα bound, both bound or both combinations of one bound and one unbound,

and the rate based on the bound PER2 site). The parameters were selected based on the

observations reported in reference [36] regarding the relative importance of each effector,

and so that the mutant behavior of a Rev-Erbα−/− mutant would be correctly reproduced.

The ability of the BCC to promote the transcription of Per, Cry, ROR and Rev-Erbα is

assumed to be completely inhibited by the binding of either CRY alone or in any complex

with either PER and/or the kinase CK1. CRY complexes can bind to the BCC while it is

free, or while it is already bound to the DNA; however it is assumed that this binding only

occurs in the nucleus.

In the original model a probability G was calculated to describe the likelihood of a Cry

complex to be bound to the BCC at the E-box sites. This probability was the same for

all E-box sites in the model ( i.e., for Per, Cry and Rev-Erbα transcriptional control). In

the extended model the DNA binding sites are modeled separately for both Pers and Crys

and for Rev-Erbα and ROR. Their probabilities of having BCC bound are labeled G1BCC

through G6BCC; likewise their probabilities of having BCC and a Cry complex bound are

G1BCCRn through G6BCCRn. This detailed representation does not add dynamical detail
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to the model, because all parameters for all DNA binding and unbinding are the same for

the six sites. However, it does allow for a more detailed, unlumped sensitivity analysis.

In other words, it can be observed which of the DNA binding sites might be the most

important for the implementation of a particular network behavior.

The species ROR is also modeled in detail, with transcription, translation, nuclear

trafficking and DNA binding to the RORE site of Bmal1 represented. ROR is assumed to

be under the same transcriptional control by the BCC as the PER proteins, at its G6BCC

binding site.

The phosphorylation pattern of PER2 was updated in light of findings by Vanselow

et al. [103], allowing for a two-level pattern of PER2 phosphorylation to regulate nuclear

transport. The basic mechanism of phosphorylation is taken from the model suggested in

reference [103], with the parameterization adapted so that the absolute parameter values

agree approximately with [31] and the original model [29]. The relative values were inspired

by [103] and fine-tuned to match the model behavior to data [31].

The light input remained unchanged from the original model, with the same positive

influence on light on the transcription of Per1 and Per2.

Omissions in the extended model include the lack of an explicit representation of clock,

per3, and the dec genes, mainly because too little information on their quantitative behavior

was found in the literature. Likewise, dephosphorylation is not represented in the model.

The extended model consists of 115 concentrations and 64 parameters, many of which

are reused for multiple reactions. The mathematical form of the model is a system of

ordinary differential equations, whose dynamical behavior in constant conditions is that of

an autonomous limit-cycle oscillator. The total number of reactions in the model is 447. A

simplified scheme of all reactions and species and their interactions is shown in Figure 4-1.

The values for the 64 model parameters were chosen based on the parameters published

by Forger and Peskin [29], with some alterations to fit as much mutant data and wild-type

behavior as possible. The relative timing of a number of molecular events was used to

refine model parameters. Experimental data are available for the timing of the peaks of

mRNA levels for the different clock genes. These data are always represented in a relative

fashion, so that the peak concentration equals 100%. The timing of the peaks for different

molecular species was collected from experimental literature and compiled in Table 4.1.

Molecular data from circadian clock experiments are usually presented on a time scale
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Figure 4-1: Overview of all species and reactions in the extended model. Small arrowheads -
reactions; Large arrowheads - transcriptional activation; Square arrowheads - transcriptional
inhibition; curved arrows -degradation; In several cases, the multiplicity of a large number
of different complexes has been represented by making parts of the complex transparent, to
show its optional nature.

called ‘Circadian Time (CT)’, where CT=0 corresponds with the onset of dawn, or the

onset of the subjective day [26]. Subjective dusk is CT=12. ‘Zeitgeber Time (ZT)’ is the

time schedule dictated by an external stimulus, called ‘zeitgeber’ (German: ‘giver of time’),

and is sometimes used interchangeably with CT.

It is noticeable that there is wide variability in the experimental data; nevertheless,

some general trends are recognizable. The first mRNA concentrations to peak are those of

ROR and Rev-Erbα, followed by peaks in Per1, then Per2 mRNA. The peak in Cry1 mRNA

follows late in the day, then Bmal1 mRNA peaks either late at night or very early in the

morning. It is also observed in the experimental literature that the relative amplitudes of

the different mRNA species are different. Both Per mRNAs have minimum concentrations

as low as 10%, whereas Cry1 mRNA is rarely seen to drop below 40% of its maximum value.

Bmal1 mRNA shows a wide variation of relative mRNA levels, sometimes the oscillation is

barely detectable [91, 8]; other times it is strong with the minimum level close to zero [91],
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Table 4.1: Peak times in CT (h) in mRNA level for different mammalian clock genes

Publication Cry1 Per1 Per2 Bmal1 ROR Rev-Erbα

Preitner et al. (liver) [83] 22 16 22 7

Reppert & Weaver (SCN) [87] 10 6 8 18

Bae et al. (SCN) [8] 8-12 4-8 8 20

Sato et al. (SCN) [91] 9-15 9 9 18 6-10 6

Sato et al. (liver) 22 12 15 21-2 18 6

Shearman et al. (SCN) [93] 10 18-23

Lee et al. (liver) [65] 15 9 9 21-3

Guillaumond et al. (thymus, muscle) [36] 22-2 6-10

Okamura et al. (SCN) [77] 12 4 8

Extended Model 7.9 7.1 7.7 22.7 7.6 7.1

even for data within the same tissue. Bmal1 expression, together with ROR and Rev-Erbα

expression is also the most tissue specific [36, 91], with significant differences between liver,

SCN or other tissue data.

4.2.1 Model Equations and Parameters

The model equations given here use the following abbreviations: M - mRNA concentration;

Po - Per1; Pt - Per2; Ro - Cry1; Rt - Cry2; Rv - Rev-Erbα; n - nuclear localization; c -

cytosolic localization; G - likelihood of BCC to be bound to DNA; p - phosphorylated; pp

- doubly phosphorylated; C - free kinase CK1;

1. dG1BCC/dt = binGBCC*BCCn*(1-G1BCC-G1BCCRn) - unbinGBCC*G1BCC

- bin2GBCC*G1BCC*Rn + unbin2GBCC*G1BCCR

2. dGRv/dt = binRv*RvnRvn *(1 - GRv) - unbinRv*GRv

3. dMnRo/dt = trRo*G1BCC*(1 - GRv)3 - tmc*MnRo

4. dMcRo/dt = tmc*MnRo - umR*McRo

5. dMnRt/dt = trRt*G2BCC- tmc*MnRt

6. dMcRt/dt = tmc*MnRt - umR*McRt

7. dMnPo/dt = trPo*G3BCC5 + L - tmc*MnPo

8. dMcPo/dt = tmc*MnPo - umPo*McPo

9. dMnPt/dt = trPt*G4BCC5 + L - tmc*MnPt
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10. dMcPt/dt = tmc*MnPt - umPt*McPt

11. dMnRv/dt = trRv*G5BCC3 - tmc*MnRv

12. dMcRv/dt = tmc*MnRv - umRv*McRv

13. dRv/dt = tlrv*McRv - 2*arv*Rv*Rv + 2*drv*RvRv - nl*Rv + ne*Rvn - uRv*Rv

14. dRvn/dt = - 2*Nf*arv*Rvn*Rvn + 2*drv*RvnRvn + nl*Rv - ne*Rvn - uRv*Rvn

15. dRvRv/dt = arv*Rv*Rv - drv*RvRv - nl*RvRv + ne*RvnRvn - 2*uRv*RvRv

16. dRvnRvn/dt = Nf*arv*Rvn*Rvn - drv*RvnRvn + nl*RvRv - ne*RvnRvn

- 2*uRv*RvnRvn

17. dPo/dt = tlp*McPo - ac*Po*C + dc*PoC - upu*Po

18. dPt/dt = tlp*McPt - ac*Pt*C + dc*PtC - upu*Pt

19. dPoC/dt = ac*Po*C - dc*PoC - hoo*PoC - upu*PoC

20. dPtC/dt = ac*Pt*C - dc*PtC - hot*PtC - upu*PtC

21. dPopC/dt = hoo*PoC + ac*Pop*C - dc*PopC - up*PopC - hto*PopC - nl*PopC +

ne*PonpCn - ar*PopC*Ro + dr*PopCRo - ar*PopC*Rt + dr*PopCRt

22. dPtpC/dt = hot*PtC + ac*Ptp*C - dc*PtpC - up*PtpC - ht*PtpC - nl*PtpC +

ne*PtnpCn - ar*PtpC*Ro + dr*PtpCRo - ar*PtpC*Rt + dr*PtpCRt

23. dPop/dt = - ac*Pop*C+ dc*PopC - up*Pop - ar*Pop*Ro + dr*PopRo - ar*Pop*Rt +

dr*PopRt - nl*Pop + ne*Ponp

24. dPtp/dt = - ac*Ptp*C + dc*PtpC - up*Ptp - ar*Ptp*Ro + dr*PtpRo - ar*Ptp*Rt +

dr*PtpRt - nl*Ptp + ne*Ptnp

25. dPoppC/dt = hto*PopC - up*PoppC + ac*Popp*C- dc*PoppC + ne*PonppCn -

ar*PoppC*Ro + dr*PoppCRo - ar*PoppC*Rt + dr*PoppCRt

26. dPtppC/dt = ht*PtpC - upp*PtppC + ac*Ptpp*C - dc*PtppC + ne*PtnppCn -

ar*PtppC*Ro + dr*PtppCRo - ar*PtppC*Rt + dr*PtppCRt - nlpp*PtppC

27. dPopRo/dt = ar*Pop*Ro - dr*PopRo - ac*PopRo*C + dc*PopCRo - nl*PopRo +

ne*PonpRon

28. dPtpRo/dt = ar*Ptp*Ro - dr*PtpRo - ac*PtpRo*C + dc*PtpCRo - nl*PtpRo +

ne*PtnpRon

29. dPopRt/dt = ar*Pop*Rt - dr*PopRt - ac*PopRt*C + dc*PopCRt - nl*PopRt +

ne*PonpRtn

30. dPtpRt/dt = ar*Ptp*Rt - dr*PtpRt - ac*PtpRt*C + dc*PtpCRt - nl*PtpRt

+ ne*PtnpRtn
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31. dPoppRo/dt = ar*Popp*Ro - dr*PoppRo - ac*PoppRo*C + dc*PoppCRo

+ ne*PonppRon

32. dPoppRt/dt = ar*Popp*Rt - dr*PoppRt - ac*PoppRt*C + dc*PoppCRt

+ ne*PonppRtn

33. dPtppRo/dt = ar*Ptpp*Ro - dr*PtppRo - ac*PtppRo*C + dc*PtppCRo

+ ne*PtnppRon - nlpp*PtppRo

34. dPtppRt/dt = ar*Ptpp*Rt - dr*PtppRt - ac*PtppRt*C + dc*PtppCRt + ne*PtnppRtn

- nlpp*PtppRt

35. dPopp/dt = - ac*Popp*C + dc*PoppC + ne*Ponpp - ar*Popp*Ro + dr*PoppRo -

ar*Popp*Rt + dr*PoppRt - up*Popp

36. dPtpp/dt = - ac*Ptpp*C+ dc*PtppC + ne*Ptnpp - ar*Ptpp*Ro + dr*PtppRo -

ar*Ptpp*Rt + dr*PtppRt - upp*Ptpp - nlpp*Ptpp

37. dPopCRo/dt = ar*PopC*Ro - dr*PopCRo + ac*PopRo*C- dc*PopCRo - nl*PopCRo

+ ne*PonpCnRon - hto*PopCRo

38. dPtpCRo/dt = ar*PtpC*Ro - dr*PtpCRo + ac*PtpRo*C - dc*PtpCRo - nl*PtpCRo

+ ne*PtnpCnRon - ht*PtpCRo

39. dPopCRt/dt = ar*PopC*Rt - dr*PopCRt + ac*PopRt*C- dc*PopCRt - nl*PopCRt

+ ne*PonpCnRtn - hto*PopCRt

40. dPtpCRt/dt = ar*PtpC*Rt - dr*PtpCRt + ac*PtpRt*C - dc*PtpCRt - nl*PtpCRt

+ ne*PtnpCnRtn - ht*PtpCRt

41. dPoppCRo/dt = ar*PoppC*Ro - dr*PoppCRo + ac*PoppRo*C - dc*PoppCRo

+ ne*PonppCnRon + hto*PopCRo

42. dPtppCRo/dt = ar*PtppC*Ro - dr*PtppCRo + ac*PtppRo*C - dc*PtppCRo

+ ne*PtnppCnRon + ht*PtpCRo - nlpp*PtppCRo

43. dPoppCRt/dt = ar*PoppC*Rt - dr*PoppCRt + ac*PoppRt*C - dc*PoppCRt

+ ne*PonppCnRtn + hto*PopCRt

44. dPtppCRt/dt = ar*PtppC*Rt - dr*PtppCRt + ac*PtppRt*C - dc*PtppCRt

+ ne*PtnppCnRtn + ht*PtpCRt - nlpp*PtppCRt

45. dRo/dt = - ar*Ro*Pop - ar*Ro*Popp - ar*Ro*PopC - ar*Ro*PoppC + dr*PopRo

+ dr*PoppRo + dr*PopCRo + dr*PoppCRo - ar*Ro*Ptp - ar*Ro*Ptpp - ar*Ro*PtpC -

ar*Ro*PtppC

+ dr*PtpRo + dr*PtppRo + dr*PtpCRo + dr*PtppCRo + tlr*McRo - uro*Ro
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46. dRt/dt = - ar*Rt*Pop - ar*Rt*Popp - ar*Rt*PopC - ar*Rt*PoppC + dr*PopRt

+ dr*PoppRt + dr*PopCRt + dr*PoppCRt - ar*Rt*Ptp - ar*Rt*Ptpp - ar*Rt*PtpC -

ar*Rt*PtppC + dr*PtpRt + dr*PtppRt + dr*PtpCRt + dr*PtppCRt + tlr*McRt - urt*Rt

47. dPonpCn/dt = ac*Nf*Ponp*Cn - dc*PonpCn - hto*PonpCn + nl*PopC - ne*PonpCn

- ar*Nf*PonpCn*Ron + dr*PonpCnRon - ar*Nf*PonpCn*Rtn + dr*PonpCnRtn

- up*PonpCn

48. dPtnpCn/dt = ac*Nf*Ptnp*Cn - dc*PtnpCn - ht*PtnpCn + nl*PtpC - ne*PtnpCn

- ar*Nf*PtnpCn*Ron + dr*PtnpCnRon - ar*Nf*PtnpCn*Rtn + dr*PtnpCnRtn

- up*PtnpCn

49. dPonp/dt = - ac*Nf*Ponp*Cn + dc*PonpCn - ar*Nf*Ponp*Ron + dr*PonpRon

- ar*Nf*Ponp*Rtn + dr*PonpRtn + nl*Pop - ne*Ponp - up*Ponp

50. dPtnp/dt = - ac*Nf*Ptnp*Cn + dc*PtnpCn - ar*Nf*Ptnp*Ron + dr*PtnpRon

- ar*Nf*Ptnp*Rtn + dr*PtnpRtn + nl*Ptp - ne*Ptnp - up*Ptnp

51. dPonppCn/dt = hto*PonpCn + ac*Nf*Ponpp*Cn - dc*PonppCn

- ar*Nf*PonppCn*Ron - ne*PonppCn + dr*PonppCnRon - ar*Nf*PonppCn*Rtn

+ dr*PonppCnRtn - up*PonppCn

52. dPtnppCn/dt = ht*PtnpCn + ac*Nf*Ptnpp*Cn - dc*PtnppCn - ne*PtnppCn +

nlpp*PtppC - ar*Nf*PtnppCn*Ron + dr*PtnppCnRon - ar*Nf*PtnppCn*Rtn

+ dr*PtnppCnRtn - uppn*PtnppCn

53. dPonpRon/dt = ar*Nf*Ponp*Ron - dr*PonpRon - ac*Nf*PonpRon*Cn

+ dc*PonpCnRon + nl*PopRo - ne*PonpRon - binBCCRn*PonpRon*BCCn

+ unbinBCCRn*BCCPonpRon

54. dPtnpRon/dt = ar*Nf*Ptnp*Ron - dr*PtnpRon - ac*Nf*PtnpRon*Cn

+ dc*PtnpCnRon + nl*PtpRo - ne*PtnpRon - binBCCRn*PtnpRon*BCCn

+ unbinBCCRn*BCCPtnpRon

55. dPonpRtn/dt = ar*Nf*Ponp*Rtn - dr*PonpRtn - ac*Nf*PonpRtn*Cn

+ dc*PonpCnRtn + nl*PopRt - ne*PonpRtn- binBCCRn*PonpRtn*BCCn

+ unbinBCCRn*BCCPonpRtn

56. dPtnpRtn/dt = ar*Nf*Ptnp*Rtn - dr*PtnpRtn - ac*Nf*PtnpRtn*Cn + dc*PtnpCnRtn

+ nl*PtpRt - ne*PtnpRtn- binBCCRn*PtnpRtn*BCCn + unbinBCCRn*BCCPtnpRtn

57. dPonppRon/dt = ar*Nf*Ponpp*Ron - dr*PonppRon - ac*Nf*PonppRon*Cn

- ne*PonppRon + dc*PonppCnRon - binBCCRn*PonppRon*BCCn
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+ unbinBCCRn*BCCPonppRon

58. dPtnppRon/dt = ar*Nf*Ptnpp*Ron - dr*PtnppRon - ac*Nf*PtnppRon*Cn

+ dc*PtnppCnRon - ne*PtnppRon + nlpp*PtppRo- binBCCRn*PtnppRon*BCCn + un-

binBCCRn*BCCPtnppRon

59. dPonppRtn/dt = ar*Nf*Ponpp*Rtn - dr*PonppRtn - ac*Nf*PonppRtn*Cn

+ dc*PonppCnRtn - ne*PonppRtn- binBCCRn*PonppRtn*BCCn

+ unbinBCCRn*BCCPonppRtn

60. dPtnppRtn/dt = ar*Nf*Ptnpp*Rtn - dr*PtnppRtn

- ac*Nf*PtnppRtn*Cn + dc*PtnppCnRtn - ne*PtnppRtn + nlpp*PtppRt

- binBCCRn*PtnppRtn*BCCn + unbinBCCRn*BCCPtnppRtn

61. dPonpp/dt = - ac*Nf*Ponpp*Cn + dc*PonppCn - ne*Ponpp

- ar*Nf*Ponpp*Ron + dr*PonppRon - ar*Nf*Ponpp*Rtn + dr*PonppRtn - up*Ponpp

62. dPtnpp/dt = - ac*Nf*Ptnpp*Cn + dc*PtnppCn - ne*Ptnpp

- ar*Nf*Ptnpp*Ron + dr*PtnppRon - ar*Nf*Ptnpp*Rtn + dr*PtnppRtn - uppn*Ptnpp

+ nlpp*Ptpp

63. dPonpCnRon/dt = ar*Nf*PonpCn*Ron - dr*PonpCnRon + ac*Nf*PonpRon*Cn

- dc*PonpCnRon + nl*PopCRo - ne*PonpCnRon - hto*PonpCnRon

- binBCCRn*PonpCnRon*BCCn + unbinBCCRn*BCCPonpCnRon

64. dPtnpCnRon/dt = ar*Nf*PtnpCn*Ron - dr*PtnpCnRon + ac*Nf*PtnpRon*Cn

- dc*PtnpCnRon + nl*PtpCRo - ne*PtnpCnRon - ht*PtnpCnRon

- binBCCRn*PtnpCnRon*BCCn + unbinBCCRn*BCCPtnpCnRon

65. dPonpCnRtn/dt = ar*Nf*PonpCn*Rtn - dr*PonpCnRtn + ac*Nf*PonpRtn*Cn

- dc*PonpCnRtn + nl*PopCRt - ne*PonpCnRtn - hto*PonpCnRtn

- binBCCRn*PonpCnRtn*BCCn + unbinBCCRn*BCCPonpCnRtn

66. dPtnpCnRtn/dt = ar*Nf*PtnpCn*Rtn - dr*PtnpCnRtn + ac*Nf*PtnpRtn*Cn

- dc*PtnpCnRtn + nl*PtpCRt - ne*PtnpCnRtn - ht*PtnpCnRtn

- binBCCRn*PtnpCnRtn*BCCn + unbinBCCRn*BCCPtnpCnRtn

67. dPonppCnRon/dt = ar*Nf*PonppCn*Ron - dr*PonppCnRon + ac*Nf*PonppRon*Cn

- dc*PonppCnRon - ne*PonppCnRon + hto*PonpCnRon- binBCCRn*PonppCnRon*BCCn

+ unbinBCCRn*BCCPonppCnRon

68. dPtnppCnRon/dt = ar*Nf*PtnppCn*Ron - dr*PtnppCnRon + ac*Nf*PtnppRon*Cn

- dc*PtnppCnRon - ne*PtnppCnRon+ nlpp*PtppCRo + ht*PtnpCnRon
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- binBCCRn*PtnppCnRon*BCCn + unbinBCCRn*BCCPtnppCnRon

69. dPonppCnRtn/dt = ar*Nf*PonppCn*Rtn - dr*PonppCnRtn + ac*Nf*PonppRtn*Cn

- dc*PonppCnRtn - ne*PonppCnRtn + hto*PonpCnRtn - binBCCRn*PonppCnRtn*BCCn

+ unbinBCCRn*BCCPonppCnRtn

70. dPtnppCnRtn/dt = ar*Nf*PtnppCn*Rtn - dr*PtnppCnRtn + ac*Nf*PtnppRtn*Cn

- dc*PtnppCnRtn - ne*PtnppCnRtn + nlpp*PoppCRt + ht*PtnpCnRtn

- binBCCRn*PtnppCnRtn*BCCn + unbinBCCRn*BCCPtnppCnRtn

71. dRon/dt = - ar*Nf*Ron*Ponp - ar*Nf*Ron*Ponpp - ar*Nf*Ron*PonpCn

- ar*Nf*Ron*PonppCn + dr*PonpRon + dr*PonppRon + dr*PonpCnRon

+ dr*PonppCnRon - ar*Nf*Ron*Ptnp - ar*Nf*Ron*Ptnpp - ar*Nf*Ron*PtnpCn

-ar*Nf*Ron*PtnppCn + dr*PtnpRon + dr*PtnppRon + dr*PtnpCnRon

+ dr*PtnppCnRon - uro*Ron - bin*Ron*BCCn + unbin*BCCRon

72. dRtn/dt = - ar*Nf*Rtn*Ponp - ar*Nf*Rtn*Ponpp - ar*Nf*Rtn*PonpCn

- ar*Nf*Rtn*PonppCn + dr*PonpRtn + dr*PonppRtn + dr*PonpCnRtn

+ dr*PonppCnRtn - ar*Nf*Rtn*Ptnp - ar*Nf*Rtn*Ptnpp - ar*Nf*Rtn*PtnpCn

- ar*Nf*Rtn*PtnppCn + dr*PtnpRtn + dr*PtnppRtn + dr*PtnpCnRtn

+ dr*PtnppCnRtn - urt*Rtn - bin*Rtn*BCCn + unbin*BCCRtn

73. dCn/dt = - ac*Nf*Cn*Ponp - ac*Nf*Cn*Ponpp - ac*Nf*Cn*PonpRon

- ac*Nf*Cn*PonppRon + dc*PonpCn + dc*PonppCn + dc*PonpCnRon

+ dc*PonppCnRon - ac*Nf*Cn*Ptnp - ac*Nf*Cn*Ptnpp - ac*Nf*Cn*PtnpRon

- ac*Nf*Cn*PtnppRon + dc*PtnpCn + dc*PtnppCn + dc*PtnpCnRon

+ dc*PtnppCnRon - ac*Nf*Cn*PonpRtn - ac*Nf*Cn*PonppRtn + dc*PonpCnRtn

+ dc*PonppCnRtn - ac*Nf*Cn*PtnpRtn - ac*Nf*Cn*PtnppRtn + dc*PtnpCnRtn

+ dc*PtnppCnRtn + up*PonpCn + up*PonppCn + up*PtnpCn + uppn*PtnppCn

74. dGRORE1/dt = binROR*RORn*(1-GRORE1) - unbinROR*GRORE1

75. dGRORE2/dt = binRE*RvnRvn*(1-GRORE2) - unbinRE*GRORE2

76. dGPER2/dt = binPer2*(PtnT )*(1-GPER2) - unbinPER2*GPER2

77. dMnBmal1/dt = trB1*(1-GRORE1)*(1-GRORE2) + trB2*(1-GRORE1)*GRORE2

+ trB3*GRORE1*(1-GRORE2) + trB4*GRORE1*GRORE2 + trB5*GPER2

- tmc*MnBmal1

78. dMcBmal1/dt = tmc*MnBmal1 - umB*McBmal1

79. dBmal1n/dt = tlB*McBmal1 - uB*Bmal1n + neB* Bmal1n
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- nlB*Bmal1c- actB*Bmal1n + deactB*BCCn

80. dBmal1c/dt = - neB* Bmal1n + nlB*Bmal1 - actB*Bmal1c

+ deactB*BCC - uBc*Bmal1c

81. dBCCc/dt = actB*Bmal1c - deactB*BCCc - uBCC*BCCc

- nlBCC*BCCc - neBCC*BCCn

82. dBCCn/dt = nlBCC*BCCc - neBCC*BCCn - uBCCn*BCCn + actB*Bmal1n - de-

actB*BCCn - bin*Rn*BCCn - unbin*BCCRnT

83. dBCCPonpRon/dt = bin*PonpRon*BCCn - unbin*BCCPonpRon

84. dBCCPtnpRon/dt = bin*PtnpRon*BCCn - unbin*BCCPtnpRon

85. dG1BCCRn/dt = binGBCCR*BCCRnT*(1-G1BCC-G1BCCRn)

- unbinGBBCR*G1BCCRn + bin*G1BCC*Rn - unbin*G1BCCRn

86. dMnROR/dt = trROR*G6BCC5 -tmc*MnROR

87. dMcROR/dt = tmc*MnROR - umROR*McROR

88. dROR/dt = tlROR*McROR - nl*ROR + ne*RORn - uROR*ROR

89. dRORn/dt = nl*ROR - ne*RORn - uRORn*RORn

90. dBCCPonpRtn/dt = bin*PonpRtn*BCCn - unbin*BCCPonpRtn

91. dBCCPtnpRtn/dt = bin*PtnpRtn*BCCn - unbin*BCCPtnpRtn

92. dBCCPonppRon/dt = bin*PonppRon*BCCn - unbin*BCCPonppRon

93. dBCCPtnppRon/dt = bin*PtnppRon*BCCn - unbin*BCCPtnppRon

94. dBCCPonppRtn/dt = bin*PonppRtn*BCCn - unbin*BCCPonppRtn

95. dBCCPtnppRtn/dt = bin*PtnppRtn*BCCn - unbin*BCCPtnppRtn

96. dBCCPonpCnRon/dt = bin*PonpCnRon*BCCn - unbin*BCCPonpCnRon

97. dBCCPtnpCnRon/dt = bin*PtnpCnRon*BCCn - unbin*BCCPtnpCnRon

98. dBCCPonpCnRtn/dt = bin*PonpCnRtn*BCCn - unbin*BCCPonpCnRtn

99. dBCCPtnpCnRtn/dt = bin*PtnpCnRtn*BCCn - unbin*BCCPtnpCnRtn

100. dBCCPonppCnRon/dt = bin*PonppCnRon*BCCn - unbin*BCCPonppCnRon

101. dBCCPtnppCnRon/dt = bin*PtnppCnRon*BCCn - unbin*BCCPtnppCnRon

102. dBCCPonppCnRtn/dt = bin*PonppCnRtn*BCCn - unbin*BCCPonppCnRtn

103. dBCCPtnppCnRtn/dt = bin*PtnppCnRtn*BCCn - unbin*BCCPtnppCnRtn

104. dBCCRon/dt = bin*Ron*BCCn - unbin*BCCRon

105. dBCCRtn/dt = bin*Rtn*BCCn - unbin*BCCRtn

106. dG2BCC/dt = binGBCC*BCCn*(1-G2BCC-G2BCCRn) - unbinGBCC*G2BCC
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- bin2GBCC*G2BCC*Rn + unbin2GBCC*G2BCCR

107. dG3BCC/dt = binGBCC*BCCn*(1-G3BCC-G3BCCRn) - unbinGBCC*G3BCC

- bin2GBCC*G3BCC*Rn + unbin2GBCC*G3BCCR

108. dG4BCC/dt = binGBCC*BCCn*(1-G4BCC-G4BCCRn) - unbinGBCC*G4BCC

- bin2GBCC*G4BCC*Rn + unbin2GBCC*G4BCCR

109. dG5BCC/dt = binGBCC*BCCn*(1-G5BCC-G5BCCRn) - unbinGBCC*G5BCC

- bin2GBCC*G5BCC*Rn + unbin2GBCC*G5BCCR

110. dG6BCC/dt = binGBCC*BCCn*(1-G6BCC-G6BCCRn) - unbinGBCC*G6BCC

- bin2GBCC*G6BCC*Rn + unbin2GBCC*G6BCCR

111. dG2BCCRn/dt = binGBCCR*BCCRnT*(1-G2BCC-G2BCCRn)

- unbinGBBCR*G2BCCRn + bin*G2BCC*Rn - unbin*G2BCCRn

112. dG3BCCRn/dt = binGBCCR*BCCRnT*(1-G3BCC-G3BCCRn)

- unbinGBBCR*G3BCCRn + bin*G3BCC*Rn - unbin*G3BCCRn

113. dG4BCCRn/dt = binGBCCR*BCCRnT*(1-G4BCC-G4BCCRn)

- unbinGBBCR*G4BCCRn + bin*G4BCC*Rn - unbin*G4BCCRn

114. dG5BCCRn/dt = binGBCCR*BCCRnT*(1-G5BCC-G5BCCRn)

- unbinGBBCR*G5BCCRn + bin*G5BCC*Rn - unbin*G5BCCRn

115. dG6BCCRn/dt = binGBCCR*BCCRnT*(1-G6BCC-G6BCCRn)

- unbinGBBCR*G6BCCRn + bin*G6BCC*Rn - unbin*G6BCCRn

Algebraic relations:

C = Ct - (PoC + PtC + PopC + PtpC + PoppC + PtppC + PopCRo + PopCRt + Pt-

pCRo + PtpCRt + PoppCRo + PoppCRt + PtppCRo + PtppCRt + PonpCn + PtnpCn

+ PonppCn + PtnppCn + PonpCnRon + PonpCnRtn + PtnpCnRon + PtnpCnRtn +

PonppCnRon + PonppCnRtn + PtnppCnRon + PtnppCnRtn + Cn)

Rn = (Ron + PonpRon + PonppRon + PonpCnRon + PonppCnRon + PtnpRon + Pt-

nppRon + PtnpCnRon + PtnppCnRon + Rtn + PonpRtn + PonppRtn + PonpCnRtn +

PonppCnRtn + PtnpRtn + PtnppRtn + PtnpCnRtn + PtnppCnRtn BCCRn = BCCRon

+ BCCPonpRon + BCCPonppRon + BCCPonpCnRon + BCCPonppCnRon + BCCPt-

npRon + PtnppRon + BCCPtnpCnRon + BCCPtnppCnRon + BCCRtn + BCCPonpRtn

+ BCCPonppRtn + BCCPonpCnRtn + BCCPonppCnRtn + BCCPtnpRtn + BCCPt-

nppRtn + BCCPtnpCnRtn + BCCPtnppCnRtn
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PtnT = PtnpCn + Ptnp + PtnppCn + PtnpRon + PtnpRtn + PtnppRon + PtnppRtn +

Ptnpp + PtnpCnRon + PtnpCnRtn + PtnppCnRon + PtnppCnRtn

BCCRnT = BCCPonpRon + BCCPtnpRon + BCCPonpRtn + BCCPtnpRtn + BC-

CPonppRon + BCCPtnppRon + BCCPonppRtn + BCCPtnppRtn + BCCPonpCnRon +

BCCPtnpCnRon + BCCPonpCnRtn + BCCPtnpCnRtn + BCCPonppCnRon + BCCPt-

nppCnRon + BCCPonppCnRtn + BCCPtnppCnRtn +BCCRon + BCCRtn

4.2.2 Wild-type and mutant dynamic behavior of the extended model

With the model equations and parameterization as shown in Section 4.2.1 and Table 4.2, the

model oscillates at constant darkness with a period of 24.15 h, which is close to the period

length of 24.19 h found in humans [20, 52]. The model entrains to an outside light stimulus.

This stimulus can be applied phase-shifted with respect to a wide range of phases of the

constant-darkness oscillation, and stably leads to entrainment. Low levels of Cry1 total

mRNA are found at the beginning of the subjective day, in agreement with experimental

data summarized in Table 4.1.

In Figure 4-2, left, the time data for all nuclear mRNA concentration is shown, where

ZT=0 corresponds to the onset of the subjective day (dawn), the time at which the light

stimulus was switched on. For comparison, the same data is plotted for the original model

on the right.
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Figure 4-2: Left: Relative mRNA levels in the extended model. Right: Relative mRNA
levels in the original model. The combined concentrations of nuclear and cytosolic mRNA
are normalized to their maximum level and plotted. The light stimulus was applied to
entrain the model for several periods, and is shown (black, dashed). ZT=0 corresponds to
the onset of light (dawn). ZT=12 corresponds to dusk.
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Table 4.2: Parameterization for the extended model of the mammalian circadian clock

Index Abbreviation Meaning Value

1 tlp Per translation 10.75

2 tlr Cry translation 1.108

3 tlrv Rev-Erbα translation 2.720

4 up degradation of free PERp 3.646

5 upu degradation of free PER 0.0882

6 hto second phosphorylation of PER1 0.194

7 uro degradation of free CRY1 0.4686

8 urt degradation of free CRY2 0.6384

9 ac binding of PER to CK1 0.4999

10 dc unbinding of PER to CK1 5.468

11 ar binding of PER to CRY 0.2860

12 dr unbinding of PER from Cry 0.3784

13 nl nuclear import (proteins) 2.48

14 ne nuclear export (proteins) 0.7665

15 nlpp nuclear import of PER2pp 7.525

16 hoo first phosphorylation of PER1 0.3075

17 hot first phosphorylation of PER2 0.4838

18 ht second phosphorylation of PER2 0.4838

19 Ct casein kinase 1 concentration 8.290

20 bin binding of CRY to BCC 1587.2

21 unbin unbinding of CRY from BCC 5.117

22 trPo Per 1 transcription 322.5

23 trPt Per 2 transcription 322.5

24 trRo Cry 1 transcription 7.525

25 trRt Cry2 transcription 7.525

26 trRv Rev-Erbα transcription 53.75

27 tmc mRNA export 0.4515

28 arv dimerization of REV-ERBα 0.2258

29 drv undimerization of REV-ERBα 3.889

30 binRv binding of REV-ERBα dimers to cry1 0.1430

31 unbinRv unbinding of REV-ERBα dimers to cry1 23.44

32 uRv degradation of REV-ERBα 1.742

33 umPo degradation of Per1 mRNA 6.676

34 umPt degradation of Per2 mRNA 0.4053

35 umR degradation of Cry mRNA 0.4838

36 umRv degradation of Rev-Erbα mRNA 0.5483

37 Lon strength of Light Stimulus 3.644×10−4

38 Nf nuclear/Cytosol volume 124.5

39 upp degradation of PER2pp 0.086

40 uppn degradation of PER2npp 0.86
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41 binGBCCR binding of BCC to DNA 10750

42 unbinGBCCR unbinding of BCC from DNA 0.1075

43 binROR binding of ROR to RORE 1290

44 unbinROR unbinding of ROR from RORE 0.215

45 binRE binding of RE to RORE 107.5

46 unbinRE unbinding of RE from RORE 2.15

47 binPer2 binding of PER2 to bmal1 10.75

48 unbinPer2 unbinding of PER2 from bmal1 10.75

49 trB1 Bmal1 basal transcripton 1.075

50 trB2 Bmal1 transcripton, RE bound, ROR unbound 0.01075

51 trB3 Bmal1 transcripton, RE unbound, ROR bound 5.375

52 trB4 Bmal1 transcripton, RE bound, ROR bound 1.075

53 trB5 Bmal1 transcripton, PER2 bound 1.613

54 umB Bmal1 mRNA degradation 75.25

55 tlB Bmal1 translation 0.43

56 uB BMAL1 degradation 5.375

57 actB BMAL1 activation (CLK binding) 21.5

58 deactB BCC unbinding 2.15

59 uBCC BCC degradation 537.5

60 trROR ROR transcription 1075.0

61 umROR ROR mRNA degradation 1720.0

62 tlROR ROR translation 2.15

63 uROR ROR degradation 5.375
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It is found that Bmal1 mRNA oscillates in anti-phase with all other mRNAs, as known

from the literature, with its peak being at ZT=22.7 h. The timing of Cry, Per, ROR and

Rev-Erbα mRNA is closely related (similar to the original model), with Rev-Erbα and Per1

showing peaks at ZT=7.1 h, ROR and Per2 at ZT=7.6 h and 7.7 h, respectively, and Cry1

peaking last at ZT=7.9 h. While the peak in Cry1 happens sooner than reported in the

literature, the overall order of events reproduces well the literature described in Section 4.2.

The relative amounts of Per, ROR, and Rev-Erbα message have larger relative ampli-

tude; their levels drop below 10 % in the very early morning. The relative level of Cry1

mRNA does not decrease as much, creating a smaller relative amplitude, as observed in

experimental data [91, 8, 65, 77]. The relative amplitude of Bmal1 message is the smallest.

Bmal1 related experimental data shows a large variation, both in relative amplitudes as

well as in peak times. In some cases [8], data from SCN shows a relative amplitude in a

range similar to the model. A larger relative amplitude in mBmal1 can be produced by

changing several parameters, however this generally caused later peak times for mBmal1,

which is more similar to data from liver tissue [91, 65].

The mutant behavior of the extended model is in good agreement with experimental

data and is shown in Figure 4.2.2. The Per1−/− phenotype (parameter p(22) set to zero)

is rhythmic, its period however is slightly prolonged. Experimentally it was found that

Per1−/− phenotypes do have a working clock, albeit with a shortened period [112].

The Per2−/− mutant (p(23)=0) does not have a working clock; none of the concentra-

tions oscillate, and if Per2 transcription is stopped suddenly, the system undergoes damped

oscillation with a significantly shortened period. The same behavior was found in the origi-

nal model as well as in experimental studies [113, 8]. The Cry1−/− mutant (p(24)=0) shows

rhythmic behavior with slightly shortened period, in agreement with the experimental liter-

ature [102]. Cry2−/− (p(25)=0) is still rhythmic, although with slightly lengthened period,

again, in agreement with known data [102]. Rev-Ebα−/− (p(26)=0) shows a reduced am-

plitude of the mBmal1 oscillation, while the other clock species continute to oscillate at a

slightly prolonged period. This is seen experimentally, although the period is shortened in

experimental findings [83]. The ROR mutant (p(60)=0) shows little effect on the model

behavior and period, and no experimental data was found for comparison. Not shown are

the Bmal1−/− mutant data, Per1/Per2 double mutant and Cry1/Cry2 double mutant data.

All of those mutants were found to be arrhythmic, in agreement with the literature [8, 87].
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Figure 4-3: Mutant behavior of six mutants of the extended model. Blue - mCry1 total
mRNA; Green - Bmal1 total mRNA. The parameter that is indicated by p(i) was set to
zero, the parameter indices can be found in Table 4.2.

4.2.3 Circadian Time and the Phase Locking Condition

For further analysis, in particular phase sensitivitiy analysis of the clock, a phase locking

condition (PLC) is needed to mark a molecular event that represents ‘dawn’ in the model.

A number of experimental [91, 36, 77, 8, 83, 65] and review publications [26, 87] were

surveyed to identify the appropriate PLC that would be used to represent CT=0. The

molecular event that coincides with CT=0 most consistently is the beginning of the rise in

mCRY, mPer and mRev-Erbα in the SCN clock [26, 91, 8, 77, 65, 87], although the timing

can be shifted in the organ clocks according to data from liver, thymus, kidney, and skeletal

muscle in [91, 36]. For implementation in the model, the minimum of total Cry1 mRNA

(i.e., the sum of nuclear and cytosolic Cry1 mRNA concentrations) was chosen as the time

reference CT=0 as a result of the literature survey. This definition shifts all molecular

events by 4.7 hours in comparison to the entrained time, or ZT. Thus the peak times of

Cry1, Per1, Per2, ROR, Rev-Erbα and Bmal1 mRNA happen at CT=12.7, 11.7, 12.4, 12.4,

11.8 and 3.2 h, respectively. This definition matches the peak of Cry1 mRNA closer to the

time at which it is usually observed, around noon. The timing of the peak in Bmal1 mRNA

is now more in agreement with data from the liver, than from the SCN.
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4.2.4 Numerical Methods

The model was developed in MATLAB and integrated using ode15s (MATLAB Version

7.4.0.287 2007a, The Mathworks, Natick, MA). The times of peaks and troughs of the

model species were determined using the ‘Events’ function in MATLAB. The model was also

written in C for integration and sensitivity analysis using CVODES, a stiff nonlinear solver

with sensitivity analysis capabilities [43]. The periodicity of the solution was confirmed by

solving the BVP as described in Chapter 2.

4.3 Conclusions

The model that was developed as part of this thesis work represents many details of current

mammalian circadian biology. It represents correctly the behavior of wild-type SCN cells

and several of their mutants. It improves upon the existing, most detailed models through

the addition of several feedback looks, among them positive feedback loops that were shown

to be important experimentally. It is now possible to evaluate how the addition of several

feedback loops has changed model behavior and performance. Because the anti-phase of

oscillation in the Bmal1 species is represented, it is possible to compare the behavior of this

very detailed model with simpler and more abstracted models of the mammalian circadian

clock that represent this feedback loop, such as the models by Becker-Weimann et al. [12].

It can be very useful to study small, abstracted models to gain understanding of general

design strategies, and to learn about the benefits of structural features such as additional

feedback loops. However, it is very important to be able to match the insights gained

in those small models to the molecular processes that implement the dynamical behavior

physically. With the creation of this very detailed model that represents all physical pro-

cesses with mass action kinetics, it is expected that not only the molecular mechanisms of

certain clock functionalities or dysfunctions could be understood, but also points of interest

for intervention and clock input or output could be identified. The hope is that beyond

simulation and analysis, the model will provide inspiration for further experimental inquiry

and elucidation of ever more detail of the workings of the mammalian circadian clock.
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Chapter 5

Period Sensitivity Analysis of the

Mammalian Circadian Clock1

Abstract

Processes that repeat in time, such as the cell cycle, the circadian rhythm and seasonal
variations, are prevalent in biology. Mathematical models can represent our knowledge of
the underlying mechanisms, and numerical methods can then facilitate analysis which forms
the foundation for a more integrated understanding as well as for design and intervention.
Here, the intracellular molecular network responsible for the mammalian circadian clock
system was studied. A new formulation of detailed sensitivity analysis is introduced and
applied to elucidate the influence of individual rate processes, represented through their
parameters, on network functional characteristics. One of 4 negative feedback loops in the
model, the Per2 loop, was uniquely identified as most responsible for setting the period
of oscillation; none of the other feedback loops were found to play as substantial a role.
The analysis further suggested that the activity of the kinases CK1δ and CK1ǫ were well
placed within the network such that they could be instrumental in implementing short-term
adjustments to the period in the circadian clock system. The numerical results reported
here are supported by previously published experimental data.

5.1 Introduction

The circadian clock is a well studied oscillatory biological system. It is nearly ubiquitous

in eukaryotes and is found in similar versions in very different organisms, from unicellu-

lar cyanobacteria through filamentous fungi and plants to mammals [25]. It provides a

mechanism for adaptation to the changing environment following a 24-hour cycle, by, for

1The work presented in this chapter was published with P. I. Barton and B. Tidor in PLoS Computational
Biology in 2007 [106].
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example, readying the organism in advance for the next event of the day. In addition to

establishing periods of wakefulness and rest, the mammalian circadian clock regulates many

bodily functions, such as renal and liver activity and the release of appropriate hormones

at different times [26]. The circadian clock is the pacemaker that in its normal function

is responsible for the impact of shift work and jet-lag on alertness, behavior, and health,

and whose misregulation plays a role in such disorders as familial advanced sleep phase

syndrome (FASPS). In patients afflicted with FASPS, a shortened intrinsic period makes it

difficult for affected individuals to have a normal work and social life. In addition to these

more well known effects, circadian rhythms also play a role in pathogenesis and can guide

optimal treatment for diseases including arthritis, asthma, cancer, cardiovascular disease,

diabetes, duodenal ulcers, hypercholesterolemia, and seasonal affective disorder [70, 110]. In

many instances, circadian rhythms can be exploited to minimize dosage and side effects by

timing appropriate therapies to the peak times of disease activity or symptoms, including

pain [110]. A better understanding of the circadian clock and its workings might contribute

to improved treatment of these disorders.

Current models of circadian clocks show behaviors consistent with known biology and an-

ticipated from engineering principles, such as a persistence of the free running period (FRP)

in the absence of a daily stimulus and the ability to entrain to periodic external signals [26].

Additionally, the circadian clock, particularly that of organisms lacking temperature regula-

tion, exhibits temperature compensation - the period of oscillation is insensitive to changes

in the external temperature [26]. Despite detailed studies on the molecular as well as the

systems level [2, 86, 90], open questions persist. Some can be addressed using mathematical

analysis of the biological models, and examples from this class form the focus of the cur-

rent work. Is there a difference in mechanism between phase advance and phase delay, as

suggested by experimental observation that phase delay happens much more rapidly than

phase advance [86]? Which input pathways could potentially play a role in managing such

phase responses? Is the fact that the FRP of the human circadian clock is slightly larger

than 24 hours related to the difference in phase advance and delay?

As a first step towards answering such questions, which typically involve the simultane-

ous analysis of several network characteristics, we focus on the period specific biochemical

properties of the mammalian circadian network. We discuss which network structures are

involved in setting the FRP, as revealed by detailed sensitivity analysis. The distribution of
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this responsibility within the network gives important clues towards a further understanding

of the principles and concepts underlying network design. Intimately related to studying

where in the network the FRP is regulated is the study of possible mechanisms present

to modify the FRP temporarily or persistently, in order to accommodate external fluctua-

tions. How flexibly can the system adjust to changing external situations, for example by

undergoing phase shifts? A potential point of intervention for the short-term management

of the FRP is suggested here. The fundamental biochemical pathways involved in the clock

systems of different eukaryotic species are well known and have the same essential compo-

nents. Negative feedback regulation of transcription is always present and often interlocked

with positive feedback, thus increasing the complexity. Nuclear transport of transcriptional

regulators is a central process in forming the feedback loops [26]. At the heart of the mam-

malian clock is the Clock protein CLK, which acts together with BMAL1 in a heterodimeric

complex (BCC). BCC is a transcriptional activator of the three per (period) homologues,

two cry (cryptochrome) homologues, and the rev-erbα gene. REV-ERBα represses bmal1

expression, and regulates clock and cry1 expression [83]. Because cry1 expression is lowered

by REV-ERBα, and CRY1 is an inhibitor of the BCC, which activates rev-erbα expres-

sion, a positive feedback loop is formed. The PER proteins are phosphorylated by several

isoforms of casein kinase 1 (CK1ǫ, CK1δ, and possibly others) in a complex manner that

regulates their degradation and nuclear trafficking [103]. PER1 and PER2 can form stable

complexes with the kinases and either CRY protein [26, 3]. The PER proteins are rate

limiting for this step and necessary for the nuclear import of the complex, making them

the shuttle for nuclear CRY proteins [65]. Nuclear CRY and PER proteins all have an

inhibitory effect on the activity of the BCC, probably following different mechanisms [3],

thereby closing four negative feedback loops affecting the expression of cry and per genes.

PER2 plays a second role in the positive regulation of bmal1 expression [87]. Of the per

homologues, per3 is the only one whose deletion hardly affects the rhythmicity of the sys-

tem. While the roles of the two cry homologues appear similar and perhaps redundant,

this is not so for the per homologues [112]. In humans, a single mutation in per2 causes

FASPS [97], and its loss causes arrhythmicity in mice [113, 8]. The behavioral phenotypes

of per1 null mutant mice were similar to those of per2 mutants; however, comparison of the

molecular consequences of the mutations revealed significant differences between the two.

Disruption of per2 expression was reported to result in reduced transcription levels of other
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clock genes, whereas PER1 appears to act predominantly at the posttranscriptional level

[8]. An overview of the molecular mechanism of the circadian clock is found in references

[26] and [87].

Several mathematical models of circadian clock systems in different organisms have been

formulated in recent years (references [90, 100, 29, 35, 68], among others), providing dif-

ferent levels of detail. The most detailed model of the mammalian circadian clock to date

was published by Forger and Peskin in 2003 [29] and was used for the current study. It

describes the mechanistic action of 73 species (proteins and mRNA, both in the cytosol and

the nucleus) and uses 38 parameters to model their interactions. The mathematical form

of the model is a system of ordinary differential equations (ODEs), and all reactions are

modeled using mass action kinetics. As shown in Figure 5-1, the model includes separate

feedback loops for 2 homologues each of Cry and Per. The third Per homologue, Per3, is

not included, as its role is not well understood and it is thought to participate mainly in

the clock output [26]. Both CRY proteins inhibit the transcription of both crys and pers

by binding to the BCC. A fifth feedback loop models the positive feedback mediated by

the REV-ERBα protein, which modulates cry1 transcription. The effect of REV-ERBα on

clk expression is omitted in the model. The complex pattern of phosphorylation of PER

species by the CK1 family is simplified so as to occur in 2 stages, performed by one kinase

C at constant concentration, which plays the role of active kinase concentration. A primary

phosphorylation allows for binding to CRY and nuclear transport. A secondary phospho-

rylation, which only occurs for Per1, prohibits nuclear entry. The BCC concentration is

modeled as having a constant value, which is a simplification, as bmal1 is rhythmically

expressed, probably under positive feedback control of PER2 [87] and ROR [36] as well as

negative feedback control of REV-ERBα [83]. The model’s authors set values for the 38 pa-

rameters through a combination of experimental data available from mouse SCN and liver

cells, and fitting to overall system behavior [29]. Under constant darkness conditions, the

model is an autonomous oscillator of the limit cycle type and has a FRP of 24.3 hours. The

model encapsulates mathematically much of what is known about the mammalian circadian

biochemistry, with a few omissions and simplifications. New discoveries will undoubtedly

lead to improved versions of the model. As is, it is an excellent basis for theoretical inves-

tigation of this interesting and important network control system. The model agrees well

with wild-type and mutant behavior.
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Circadian clock models are generally limit cycle oscillators, a characteristic of which is

robustness of period and amplitude with respect to perturbations in their state variables

(corresponding to concentrations or activities here). Mathematically, such systems will

asymptotically approach the limit cycle trajectory from any initial condition in the region

of attraction of the limit cycle. The shape and situation of the limit cycle depends only

on the parameters of the system. This property, however, can make it more difficult to

study these systems. Without knowing the exact limit cycle trajectory, iterations over

several periods of oscillation are needed to approximate it. It is not clear a priori how

many periods are needed to reach the limit cycle to a given tolerance. At the same time,

the exact limit cycle properties (period, amplitudes, relative phases) are of direct biological

interest. In this article, we present a new method for the exact computation of sensitivity

trajectories of limit cycle oscillators and sensitivities of derived quantities with respect to

model parameters. Sensitivity analysis probes how a small variation of a parameter or initial

condition away from a reference solution influences the trajectories of the state variables,

and of derived quantities. Applied to biological systems, sensitivity analysis can help to

analyze how changes in rate parameters or temporary perturbations in protein or mRNA

concentrations can influence the behavior of a system. It is becoming a standard tool for

systems biologists. The use of various sensitivity metrics has been explored in a variety of

network biology studies [49, 46] including a number of simpler models of circadian rhythms

[69, 94, 48]. However, the exact sensitivity analysis of oscillating systems is more challenging

than for other dynamic systems [48, 89]. It has been shown that the parametric sensitivities

of periodic systems can be decomposed into a bounded and an unbounded part according

to

S(t) = −
t

T
ẏ(t)

∂T

∂p
+ Z(t)

where Z(t) is the periodic matrix containing the parametric sensitivities at constant period.

This part is sometimes referred to as the ‘cleaned out’ sensitivities [99], as opposed to the

‘raw’ sensitivities , and is reported to contain information on shape and amplitude of the

oscillation [63]. In order to achieve this decomposition, two conditions have to be met.

First, the exact computation of the period sensitivities is required. Second, appropriate

initial conditions for have to be found. Since one is interested in initial conditions of the

state variables that lie on the periodic orbit, which in its shape and location depends on
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the system parameters, those initial conditions are not independent of the parameters.

Consequently, the sensitivities cannot be initialized with the zero matrix as usual in other

dynamic systems. An incorrect initialization of the sensitivities leads to an unbounded error

of unknown magnitude [89]. In the current work we have derived a rigorous procedure for

computing the sensitivity of the period of a limit cycle oscillator with respect to model

parameters and applied this to the most detailed model of circadian rhythms available [29].

This has provided a particularly high-resolution view of the role different model elements

play in setting the period of oscillation and for the first time highlighted that reactions

involving Per2 have an especially strong effect on the period. Interestingly, the results

point to a series of steps forming a reaction cycle, rather than to any particular step in that

cycle.

We describe and apply a strategy that identifies the exact limit cycle trajectory by solv-

ing a boundary value problem (BVP) and then using the solution of this BVP to calculate

the exact sensitivities of state variables, amplitudes, and period of the oscillation without

resorting to the iterative methods typically used for limit cycle systems. Here we applied

our sensitivity analysis methodology to study the limit cycle circadian clock model of Forger

& Peskin [29]. Because the same parameters are used in multiple places throughout the

model, the individual sensitivities were computed on a per-reaction basis, rather than a

per-parameter basis. Due to parameter sharing, the 38 model parameters describe 231 re-

actions in the model. Sensitivity analysis was performed using both the original 38 lumped

parameters or with an unlumped parameter set in which the effect of each of the 231 reac-

tion rate parameters was probed individually. The unlumping as described in Section 5.5

does not change the physical model but rather provides a more detailed analysis of the roles

of individual physical and chemical reactions. Meaningful results were only obtained in the

unlumped calculation, rather than the lumped sensitivities obtained when analyzing the

original model parameters directly, which simultaneously affected multiple reactions. This

analysis revealed that the period setting is strongly dominated by processes within the Per2

feedback loop, but not the subtly different Per1 loop. The mechanism of this responsibility

distribution is elucidated in several numerical experiments and supported by published ex-

perimental results. Moreover, a potential mechanism for short-term period adjustment is

identified and discussed, namely the activity of casein kinase 1 isoforms.
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5.2 Results

5.2.1 Most high-impact parameters are located in the Per2 loop

The relative sensitivities of the FRP T with respect to each parameter pj on a per-reaction

basis, , were calculated, and then rank-ordered by magnitude. Results for the top ten

ranked sensitivities are graphically represented in Figures 5-1 and 5-2. Per2 related re-

actions dominate by far in their influence on the period in the system. Eight of the ten

highest magnitude sensitivities are Per2 related (including expression, transport, reaction,

and degradation of Per2), and only one is not directly related to the Per2 feedback loop

(nuclear export rate of Cry1 mRNA). The overwhelming dominance of Per2 processes in

influencing clock period in the model is particularly interesting given that per2 mutations

are linked to FASPS [97].

Figure 5-2 shows that the top ranked sensitivities are significantly larger than the re-

mainder, indicating a strongly localized distribution of sensitivity of the period within the

network. At the same time, there is no single parameter (and therefore process or reaction)

found to be the only control for increasing or decreasing the period of oscillation; rather,

the period setting responsibilities are shared among a number of processes within the Per2

negative feedback loop. Likewise, the localization of high sensitivity within the network

cannot be attributed to a class of reaction or process (such as phosphorylation, translation,

or transcription).

In order to test the influence of the exact network parameterization on the results

shown here, additional parameter sets were created (see Section 5.5). The period sensitivity

rankings of all modified parameter sets correlate highly with the nominal parameter set

(Spearman rank correlation factors between 0.890 and 0.966), which is surprising given the

large number of parameters with negligible period sensitivity. The majority of the top ten

parameters shown in Figure 5-2 (6.3 of them on average) are found in the top ten of the

modified sets, an average of 4.3 of the original top 5 parameters are found in the top 5 of

the modified sets and the original top 6 parameters are represented in 9 of the modified

top tens. The casein kinase concentration ranks sixth or higher in all but two of them, and

tenth or higher in all but one. An average of 5.8 parameters in the top ten is Per2 related.

Thus, the results presented here do not depend very strongly on the particular parameter

values in the Forger and Peskin model, but instead appear to be a property of this class of
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Figure 5-1: Graphical representation of results of detailed sensitivity analysis. Red, positive
sensitivity; blue, negative sensitivity; black, zero sensitivity; gray, not modeled explicitly;
thick arrow, large magnitude; thin arrow, small magnitude; curved arrow, degradation; R-
Eα, REV-ERBα; RORE, target sequence for retinoic acid-related orphan receptor R-Eα
on Cry1 promotor; P, phosphorylated; C, CK1; The CRY-CLK:BMAL1 complex does not
inhibit transcription but rather diverts active CLK:BMAL1 from the transcription initiation
site. The effect of light input is modeled as an increase in per1 and per2 transcription,
identical in both. In the interest of visualization, only Per2 pertinent sensitivities are
represented where one arrow represents multiple processes. In those cases, the Per2-related
sensitivities were always significantly larger in magnitude than any other sensitivities.

models in the neighborhood of the parameterization developed by Forger and Peskin [29].

5.2.2 Differences between the Per1 and Per2 loops

Although Per1 and Per2 carry out similar reactions, only Per2 is singled out as highly

significant in affecting the period of oscillation. Model dissection was used to analyze the

source of this difference. There are four differences between Per1 and Per2 in the original

model. One is a topological difference, in that PER1 can be phosphorylated a second time,

which masks its nuclear localization sequence; doubly phosphorylated PER1 or any of its
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Figure 5-2: Top 25 ranked sensitivities ordered by relative period sensitivitiy. Black bars
indicate Cry1-related parameters, blue bars indicated Cry2-related parameters, green bars
indicate Per1-related parameters, and red bars indicate Per2-related parameters. The white
bar represents a single, special parameter representing the total kinase concentration. Where
Cry- and Per-related parameters overlap, the Per-species colors are shown. “Per2pCCry1”
describes a complex of once-phosphorylated PER2 with the kinase C and CRY1.

complexes cannot enter the nucleus. The remaining 3 differences are purely parametrical

and of different relative magnitude - differences in transcription rates (the per1 rate being

2.6-fold higher), rates of first phosphorylation (the PER2 rate being 5-fold higher), and

mRNA degradation rates (the Per1 rate being 16-fold higher). These differences cause

the PER2 concentration to be roughly 2.5 times that of PER1, with minima and maxima

occurring at almost the same times; the PER1 concentration is not negligible, however. The

loss of Per1 alone does not abolish rhythmicity, but the loss of Per2 alone leads to a slowly

decaying amplitude of the oscillation [29].

Each of the differences was studied in individual numerical experiments. In a first set

of numerical “mutations”, the rates that are different between Per1 and Per2 were made

equal at either the value of the Per1 specific rate or the value of the Per2 specific rate .

Then the sensitivity analysis was repeated and the ranking of the resulting sensitivities was

compared to the ranking shown in Figure 5-2 (results not shown). In short, the findings

pointed towards the mRNA degradation rate as well as the rate of primary phosphorylation

being influential in making Per2 the period setting feedback loop. In order to observe

this effect more clearly, the rates of the same reactions were reversed in the next set of
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numerical experiments, before repeating the sensitivity analysis and ranking comparison as

before. The results are shown in Figure 5-3. Neither the only topological difference, nor
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Figure 5-3: Top 25 ranked period sensitivities for different numerical experiments – Flipped
rate parameters. Flipped rate parameters between Per1 and Per2 for (A) secondary phos-
phorylation rate, (B) transcription rate, (C) primary phosphorylation rate, and (D) mRNA
degradation rate. Black – Cry1-related parameter; Blue – Cry2-related parameter; Green
– Per1-related parameter; Red – Per2-related parameter; Where Cry- and Per-related pa-
rameters overlap, the Per-species colors are shown.

the different transcription rates for per1 and per2 are crucial for the differential behavior

of the two homologues (Figures 5-3 A and B), as the sensitivity ranking remains largely

unchanged.

When the rates of primary phosphorylation were reversed, the maximum sensitivity in

the network increased. While the highest magnitude sensitivity remained the Per2 mRNA

degradation rate, Per1 specific rates now appeared almost alternating with the Per2 specific

rates, as if in this scenario the two share the period setting responsibility (Figure 5-3 C), yet

the overall concentrations of Per1 and Per2 concentration remain largely unchanged. When

the rates of mRNA degradation were reversed for both genes, a subset of Per1 specific rates
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moved up in the ranking and at the same time, the maximum sensitivity found decreased in

magnitude significantly (Figure 5-3 D). Per1 in this scenario dominated the period setting,

and its concentration was now a factor of 20 larger than the Per2 concentration. When

both of the rates for mRNA degradation and primary phosphorylation were reversed simul-

taneously, a clear role reversal between Per1 and Per2 occurred (Figure 5-4). We can thus

say that the combined action of mRNA degradation and primary phosphorylation of Per2,

in comparison to Per1, are what cause the Per2 loop to dominate in setting the period of

the circadian clock.

It should be noted that the rates of mRNA degradation in the original model are more

different in a relative sense than the rates of primary phosphorylation. The quantitative

results obtained here may vary upon a more exact determination of the parameter values

used in the model. However, the qualitative insights gained from the numerical experiments

performed in this work appear to be robust to changes in parameter values.
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Figure 5-4: Top 25 ranked period sensitivities when mRNA degradation rate and primary
phosphorylation rate for Per1 and Per2 were reversed. The color assignment is identical to
Figure 5-2.

5.2.3 The CK1 kinase activity alone can alter the period over a wide

range

The analysis of period sensitivities identified the total active concentration of casein kinase 1

isoforms (CK1) as well as the kinase binding kinetics as being among the main determinants
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of the period. As the sensitivity analysis measures the effects of local (infinitesimal) pa-

rameter variations, a possible mechanism for modulating the period of the system through

modulating the amount of active kinase in the system was verified by parametric studies.

The results are shown in Figure 5-5.
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Figure 5-5: Changes in the period as a result of variation in kinase CK1 concentration. All
other parameters remain constant.

The kinase concentration allows for modulation of the period over a wide range of

parameter values. By varying the parameter 50% up or down, the period was changed by

-5% or +9.7% (-1.25 to 2.4 hours), respectively. The sensitivity of the period with respect

to kinase concentration remains negative, as the period becomes shorter with increasing

kinase concentration and vice versa, over the entire range. It is assumed that a temporary

change in the period will cause a permanent phase shift, a process called ”parametric

entrainment” in the circadian literature [26]. The results shown in Figure 5-5 suggest that

by modulation of the kinase concentration, it is relatively easier to produce a phase delay (a

temporary decrease of kinase concentration, leading to a temporarily longer period) than it

is to produce a phase advance, as shown by the larger magnitude period variation achieved

for a 50% decrease in kinase concentration compared to a 50% increase. A similar difference

is noted in the maximum amplitude of the phase response curve (PRC) shown in Figure 5-6,

where the phase shift as the result of a short-term step change in active kinase concentration

is shown as a function of time. This figure shows, again, that the same absolute change in

kinase concentration at the right time results in a longer delay but shorter advance. The
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Figure 5-6: Phase Response Curve for CK1 concentration. The phase response indicated
by the ordinate is the permanent effect that was caused by a 50% up or down shift in active
kinase concentration of 30 min duration. A positive phase shift indicates a phase advance,
a negative one phase delay. The starting time of the step change corresponds to the time
indicated by the abscissa. Circadian time zero corresponds to dawn.

results also show that the magnitude of phase shift depends dramatically on when during

the day the kinase modification is applied, both for delay and advance. It should be noticed

that changes in period shown in Figure 5-5 correspond to a stationary property of the

system. In contrast, the response measured in Figure 5-6 describes a transient effect of a

short-term disturbance of the system - the short-term parameter change does not allow for

the system to approach its perturbed stationary state.

5.3 Discussion

5.3.1 The Per2 loop sets the period

The results presented for the circadian clock system in mammals suggest a strongly localized

distribution of functionality within the network. Through detailed analysis of the period

sensitivities, it was shown that the period of oscillation is set by parameters distributed

throughout the Per2 negative feedback loop. The ten parameters with the greatest period

sensitivities are dominated by Per2-related species, likewise Per2-related reactions have high

sensitivities.

Within the Per2 feedback loop there is a self-consistency as to the effects on the length of
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the period; changes that accelerate (decelerate) progress through the loop lead to a shorter

(longer) period. For example, multiple processes that reduce the half-life of Per2 mRNA

all produce a shortened period. These processes include faster mRNA degradation, faster

mRNA export, and interestingly, slower transcription. Likewise, faster kinase binding or

phosphorylation lead to faster migration of CRY1 bound species into the nucleus, which

closes the negative feedback loop faster and results in a shorter period. Interestingly, PER2

and CRY1 interoperate to control the rate of nuclear transport of the phosphorylated com-

plex. Changes that prolong the half-life for CRY1 in the nucleus (faster dissociation of

PER2 bound CRY1 species and slower CRY1 degradation) result in a longer period, a fact

that was recently confirmed in experimental studies [19]. Changes can also be understood

through their effects on altering concentrations. Increases to the cytosolic concentrations

of CRY1 (faster nuclear export of CRY1 and bound species, faster transcription, or faster

translation) lead to shorter periods. Because unbound CRY cannot migrate from nucleus

to cytosol, a delay of CRY1 in the nucleus shows the feedback from the Per2 loop and

lengthens the period. Processes that increase the amount of Per2 produced (faster Per2

transcription or translation, or slower mRNA degradation) ten to lead to a longer period.

This self-consistency makes intuitive sense of the network structure-function relationship

computed here and lends additional support to the notion that the results are not overly

dependent on the details of the particular model implementation here.

Published experimental results indicate that the roles of Per1 and Per2 in the circadian

clock mechanism are not redundant [112, 8]. Our findings confirm these results on a network

analysis level: the Per2 feedback loop carries responsibility that Per1 does not share. Due to

the detailed and comprehensive model, the mechanistic detail behind this organization could

be analyzed to show that the values of two reaction rates, the rates of mRNA degradation

and of primary phosphorylation of Per2, cause this feedback loop to dominate period setting.

In another computational study [108], mRNA degradation rates were found to be highly

influential on the period of oscillation throughout a set of four different circadian clock

models, not including the model studied here. The present study provides further insight in

that it is mainly only one mRNA degradation rate, that of Per2, that matters most. Even

the second most sensitive mRNA degradation rate, that of Cry1, is only 20% as significant

with respect to the period. It should be noted that the authors of the model also report a

sensitivity called ”sensitivity of the badness of the fit” [29]. This quantity is only indirectly
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related to the period sensitivity, and is also only computed for the 38 “lumped” original

parameters. Without dissecting the multiple roles of the original parameters, the Per2 loop

cannot be identified as the period setting feedback loop, nor does it become obvious how

the period setting responsibility is distributed throughout the loop.

5.3.2 The positive feedback loop may not participate in period setting

The sensitivities of the period with respect to all parameters associated with the Rev-

Erbα loop were zero, suggesting that the Rev-Erbα loop may not participate in setting

the period for this model. This hypothesis was confirmed by removal of the entire loop

without consequence for the period (results not shown). Interestingly, this is an area where

the model appears to disagree with experiment; experiments show that, while Rev-Erbα is

not essential for rhythmicity, period length and phase shifting behavior are altered in null

mutants [83], although less so than in Per2 null mutants [113, 8].

In this portion of the model, the action of REV-ERBα on Bmal1 expression is omitted,

and the Rev-Erbα loop is parameterized in such a way that the resulting concentrations are

essentially zero [47]. To test whether inaccuracies in the Rev-Erbα portion of the model

could compromise conclusions regarding the role of the Per2 loop, simulations and sensi-

tivities were computed for artificially manipulated versions of the model that substantially

increased the activity of the Rev-Erbα loop. Even when the flux through the Rev-Erbα

loop was increased by five orders of magnitude (by increasing the transcription and transla-

tion rates and decreasing the degradation rates), and the corresponding sensitivities became

significant and moved up the ranks (ranging from 168th to 225th in the original parame-

terization versus 68th to 168th for the increased flux model), the top 50 ranking parameter

sensitivities did not change significantly.

Furthermore, in accordance with recent findings in the experimental literature [36, 55],

we have constructed an alternate version of the model (Supplementary Dataset S3, available

online at http://www.ploscompbiol.org) with a sixth feedback loop involving ROR (retinoid

acid-related orphan receptor). This receptor was found to have an opposing role to Rev-

Erbα in the control of Bmal1 expression. While Bmal1 was still not explicitly represented,

we included the indirect effect of ROR as well as that of Rev-Erbα on the transcriptional

activity of all circadian genes in the model. This change resulted in the use of 4 new

state variables and 10 new parameters. The preliminary parameterization of this sixth
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feedback loop was done using qualitative insights from the experimental data, and chosen

so that the peak in ROR would follow the peak of REV-ERBα in the nucleus and so that

transcriptional control of ROR would be similar to that of Per2. The transcription rate of

rev-erbα was increased one hundred fold to make the corresponding concentrations more

significant. Those modifications to the original model did not alter mutant behavior, period

or the results presented in this paper. The ranking of relative period sensitivities remains

virtually unchanged. The ten new parameters ranked between 148 and 218 out of 241.

This suggests that while there are still discrepancies between the known biology and the

model that will undoubtedly be resolved through future work, the results shown here are

not sensitive to changes in this part of the model.

5.3.3 A potential mechanism for accelerating or decelerating the oscilla-

tion

It is of interest for the understanding of network design, as well as potential therapeutic in-

terventions, to identify possible points of intervention for period control. Furthermore, it is

known that parametric entrainment (which relies on period modulation to control the phase

of oscillation) plays a role in the mammalian circadian clock, although details are not un-

derstood [26]. The total casein kinase 1 concentration appeared fourth in the rank-ordered

sensitivities and is a quantity that deserves special attention. While it is modeled here as a

constant quantity, it realistically represents a concentration of active kinase, which may not

be constant throughout the cycle. Some of the other top ten parameters can be modified by

genetic mutation on a long time scale (such as the mRNA degradation rate), or a medium

time scale (such as transcriptional regulation). However, the (active) kinase concentration

could potentially be regulated both on a very short time scale by post-translational modifi-

cation through an input signaling pathway or a medium time scale through transcriptional

regulation. In fact, CK1ǫ is known to inactivate itself by autophosphorylation, a process

that is counteracted by cellular phosphatases [55]. It has been suggested that such phos-

phatases can be activated by signaling pathways such as the Wnt pathway [84] so as to

activate CK1ǫ as a result of a signaling cascade.

A comparison with experimental results for period-related abnormalities reveals that

PER2 phosphorylation by casein kinase 1 has significant involvement in setting the period.

It has been shown experimentally that in individuals with one type of FASPS, the human
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per2 gene is mutated at the site of its phosphorylation by CK1ǫ. This mutation causes

hypophosphorylation and ultimately a phase advance, which is typically associated with a

shortened FRP [97]. In individuals with another type of FASPS, the ck1δ gene is altered

[109].

In hamsters, a mutation called τ in ck1ǫ causes a short circadian period. For the Forger

and Peskin model an increased rate of primary Per2 phosphorylation predicts a shortened

period. This finding contradicted the prior observation that the tau mutation was a loss-of

-function mutation of CK1ǫ in in vitro experiments [71], thus leading to the discovery of

the differential action of CK1ǫ on clock-related versus generic substrates. Recent findings

have confirmed that the τ mutation is in fact a gain-of-function mutation with respect to

the phosphorylation of PER2 [31].

It should be noted that the exact pattern and functional consequences of Per2 phospho-

rylation are simplified in the model [29]. More recently, its details have been investigated

[103], providing additional insight. In broad terms, there are two effects of mPER2 phos-

phorylation. The phosphorylation site involved in FASPS (Ser 659) was shown to increase

nuclear retention and stabilization of mPer2. Phosphorylation at other sites of Per2 leads

to increased degradation. Only the latter effect is represented in the model used for this.

In order to substantiate the results in this study in the light of more recent experimental

data, the phosphorylation pattern suggested in [103] was incorporated into the model. No

new species were created, since the original model includes a doubly phosphorylated Per2

species already. Only three rate parameters were added to the model (nuclear import rate of

Per2pp species, modified degradation rates for nuclear and cytosolic Per2pp species). The

previously unused rate of secondary phosphorylation rate of Per2 was reassigned. Parameter

values were chosen to closely reflect the relative rates as published in reference [103], based

on the rate values in the original model. I.e., the rate of secondary phosphorylation was set

equal to that of primary phosphorylation, as suggested in [103], at the value published in

[29]. The modified model in MATLAB format can be found in the Supplemental Informa-

tion (Dataset S2, available online at http://www.ploscompbiol.org). This very preliminary

parameterization resulted in a period of 23.82 hours, the mutant behavior with respect to

knockouts as described in [29] was unchanged. Again, the parameters were unlumped and

the sensitivity analysis and ranking was repeated. The top 6 parameters are the same in

sign and very similar in magnitude than those of the original model, confirming the dom-
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inant role of Per2 again. The twice phosphorylated PER2 species appear twice in the top

ten (rank 7 and 9, unbinding from CRY1 and degradation, respectively), and the unbinding

and binding kinetics between CRY1 and CLK:BMAL1 take rank 8 and 10, respectively.

The period sensitivity with respect to the secondary phosphorylation rate is smaller than

that of the first, (rank 64 vs. rank 3) and positive, as expected.

The details might not be represented exactly in the original model, yet it correctly

reflects the notion that the phosphorylation rate of PER2 is one of the main period setting

parameters, consistent with the wealth of results presented here highlighting the pivotal

role of the management of Per2 related nuclear trafficking in setting the period. It was

previously shown in experiments that the circadian clock in humans, as well as in mice,

takes longer to phase advance than phase delay, if exposed to jet-lag conditions in the form

of a 6-hour time shift during daylight hours [86]. Jet lag is a transient phenomenon that

in this case lasted several days, during which the organism is thrown off the steady-state

periodic cycle and resets its new phase according to an entraining signal. While the PRC

provides some insight in the phase shifting behavior of the clock in response to an outside

stimulus, relating this steady-state response to a transient, jet-lag situation is generally

difficult. During jet lag, the relative timing between ’clock time’ and ’entrainment time’

changes continuously, the system is not at its steady state, and the response to a stimulus

in a (nonlinear) limit-cycle system depends on the state of the system at which the stimulus

is received. In fact, a recent computational study shows that designing an optimal input

stimulus for rapid phase resetting is nontrivial even if the PRC is well known [9].

In the following discussion, the focus is therefore not on the exact mechanism of overcom-

ing jet lag in the mammalian circadian clock model, but rather the apparent similarities in

the asymmetry between phase delay and phase advance between observations in jet-lagged

mice and the numerical experiments performed in this work. It is sometimes argued that

this difference is caused by the FRP being longer than 24 hours, however the results pre-

sented here are in reference to the innate FRP of 24.3 hours. New experimental results

have furthermore identified the FRP in humans to be closer to 24 hours than previously

reported [20, 52].

It is apparent that there could be a number of places in the network through which phase

shifts can be introduced. For example, it has been suggested that Per1 is important during

discrete entrainment, the phase response to transitions in the light stimuli, and is especially
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receptive to such signals during the night [4]. During the 6-hour advance phase shift induced

in the experiment by Reddy et al., the light onset occurred in the middle of the former night,

temporarily inducing Per1 mRNA [86]; however, the phase shift achieved in this experiment

was markedly slower than the phase delay response. To produce the phase delay, the new

light onset corresponds to the former noontime, which coincides with the time at which the

kinase concentration is most influential as seen in Figure 5-6. While the discussion here is

solely circumstantial and we have no formal proof that the kinase concentration is involved

in the asymmetric phase shifting reported in [86], our observations in Figures 5-5 and 5-6

show similarity in the sense that phase delay is accomplished relatively easier than phase

advance. In addition, the particular shape of the PRC in Figure 5-6 shows a large bias

towards phase advance (delay) for increased (decreased) kinase activity; in other words the

PRC itself is asymmetric. If the kinase concentration is modulated throughout the cycle,

the PRC suggests an effect only in the desired direction or else, if the modulation happens

at a phase-shifted time, little effect at all. This could make the adaptation to a new phase

during a transient situation such as jet lag easier to control. Thus we hypothesize that

the kinase concentration (activity) could be a particularly convenient control point. It may

be used by the natural system, for example as an additional way to process entrainment

inputs during the day, especially those of long signal duration, thus acting as the control

element for continuous entrainment discussed earlier. The kinase concentration may also be

useful as a therapeutic point of intervention. Figure 5-5 shows that a 50% change in kinase

concentration can lead to a 1 - 2 hour phase shift per day, and larger changes increase that

shift further.

While the exact molecular biology of the phase advance versus delay response is beyond

the scope of a purely computational study, it is discussed next that a molecular basis for

differences between phase advance and phase delay can be identified for this model system.

The mechanistic reason for the differences between phase advance and delay in this model is

that once PER2 is phosphorylated, two processes compete for it. Phosphorylated PER2 can

be either degraded or bound by the CRY proteins, which protects them from degradation.

Increased kinase activity results in more phosphorylated PER2 being formed, but it is also

degraded at a higher rate. Therefore, the feedback loop is accelerated. In comparison, if

the kinase activity is decreased, the PER2 concentration in the cytosol increases until the

rate of phosphorylation, which is proportional to the product of PER2 concentration and
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kinase concentration, is equal to the maximum phosphorylation rate in the wild type. No

process is competing with the slowed down phosphorylation rate and the phase delayed

nuclear import of PER-CRY complex.

Taken together, these results suggest that control of the active kinase concentration is a

possible way for the system to modify the period (therapeutically or naturally), especially

on short time scales and following entrainment signals received during daytime.

5.4 Conclusions

This study illustrates computational approaches for probing structure-function relationships

in network models - namely by showing how sensitivity analysis of a sufficiently detailed

mechanistic model can relate theoretical results to experimental findings. The technique

can be used both for refining the biological model and understanding the implications of

network design for normal operation, disease, and therapeutic intervention.

5.5 Materials and Methods

5.5.1 The Boundary Value Problem

An ODE model for a biological system is analyzed, where y(t,p) ∈ ℜny are usually concen-

trations of protein, mRNA, or other species. The parameters p ∈ ℜnp are typically reaction

rate constants in mechanistic models, or lumped rates of processes such as transport be-

tween compartments. Given a fixed value for p, initial conditions on the limit cycle and

the period of the oscillator are identified by solving a boundary value problem (BVP) for

initial condition y0(p) and period T (p) subject to a periodicity condition

y(T (p),p;y0(p)) − y0(p) = 0 (5.1)

and a phase locking condition

ẏi(0,p;y0(p)) = 0 (5.2)

for some arbitrary i ∈}1, ..., ny{ , with the limit cycle trajectory y(t,p;y0(p)) given by the

solution of
d

dt
y(t,p;y0(p)) = f(y(t,p;y0(p)),p), (5.3)
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and y(0,p;y0(p)) = y0(p). From this, we obtain initial conditions for the state variables

that lie on the limit cycle. The (ny +1)st condition in Eq. (5.2) fixes the solution to a point

on the limit cycle where the state variable yi is stationary. Any arbitrary state variable

can be chosen for this constraint. This BVP was solved using NITSOL, an inexact Newton

solver [81], and CVODES, a stiff ODE solver with sensitivity analysis capabilities, for the

integration of the dynamic system [43].

5.5.2 Sensitivity Analysis for Limit Cycle Oscillators

In most dynamic systems, the parametric sensitivities sij ≡ ∂yi

∂pj
for a system such as

Eq. (5.3) are integrated from zero initial conditions according to

d

dt
S

(

t,p;
∂y0

∂p

∣

∣

∣

∣

p

)

= A(t,p)S

(
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∣

p

)

+ B(t,p) (5.4)

where A = ∂f
∂y

and B = ∂f
∂p

. In the case of the solution of a BVP in a limit cycle system,

Eq. (5.4) still applies; however setting the initial conditions to zero would not be correct.

The initial conditions y0(p) are now dependent on the parameters. Because this dependency

is implicit through the solution of Eqs. (5.1-5.2), it is not immediately clear how to set the

initial conditions ∂y0

∂p

∣

∣

∣

p
for the system in Eq. (5.4) correctly. This problem is solved as

follows. The set of Eqs. (5.1-5.2) can be differentiated with respect to the parameters p,

and written in matrix form yielding the following expression
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(5.5)

where I is the identity matrix, and S(T,p;0) is the solution at time T (p) of sensitivity

Eq. (5.4)for zero as the initial condition. The matrix M is ∂y
∂y0

∣

∣

∣

T (p),p,y0(p)
, the matrix of

sensitivities of the state variables with respect to their initial conditions at T (p). This

matrix is also termed the Monodromy matrix of the sensitivity system. For more de-

tailed explanation, see reference [89]. The matrix Eq. (5.5) can be solved for the matrix

of unknowns. The calculation of the sensitivity trajectories S(t,p; ∂y0

∂p

∣

∣

∣

p
) can then eas-

ily and exactly be performed by integrating Eq. 95.4) starting from ∂y0

∂p

∣

∣

∣

p
, allowing the

decomposition into a periodic part and an unbounded part as described previously. This
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method, in contrast to some previous publications [48, 111], enables the exact computa-

tion of the period sensitivities rather than approximating the result by truncation of a

limit or by integration of the entire system for sufficiently long time, resulting in signifi-

cantly less computational effort and, in principle, exact results. All matrix manipulations

were performed in MATLAB 7.4.0 (R2007a). The circadian clock model was obtained as a

MATHEMATICA file from http://www.pnas.org/cgi/content/full/2036281100/DC1/6 and

was re-written as MATLAB code (available as Supplementary Material Dataset S1, online

at http://www.ploscompbiol.org).

5.5.3 Unlumping of the parameters

The original model has 38 rate parameters, many of which are used in multiple roles within

the reaction network. E.g., the mRNA export rate is the same for all mRNA species. In

a “lumped” sensitivity analysis, a parameter may be shown to have great impact on the

period of oscillation. However, on a network analysis level, one is interested to see which

of its multiple roles is the most important in the setting of the period. Therefore, the

parameter was “unlumped”, meaning new parameters were assigned to each species that

is affected by it so that each new parameter corresponds to a unique chemical reaction

or physical process. The parameter values of all those were the same than the value of

the original, single parameter. In other words, the model itself did not change during this

process, but it is now possible to distinguish the different roles a parameter might play.

Doing so does not necessarily imply that the organism has the capability to independently

control the unlumped parameters.

5.5.4 Alternative Parameter Sets

The original set of 38 parameters was modified by first randomly choosing 10 parameters,

then by randomly modifying their value either by a factor two up or down. The resulting

model was simulated over 40 nominal periods in order to approach the limit cycle. If the

apparent period (time difference between the last and second-to-last minimum in the CRY1

concentration) was between 23.5 and 25 hours, the model was subjected to the boundary

value problem solver. This selection criterion was chosen because it is known that the

mammalian clock oscillates roughly in this range of periods, and it is irrelevant to investigate

parameterizations with known, unphysical periods. 15 such models were generated, 11 out of
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those were converged easily; the others were discarded. Possible reasons for non-convergence

include the presence of damped oscillations, which would not have been detected in the

earlier test. By inspection, it was found that the modified parameters included both low

and high sensitivity parameters in the nominal model. The parameter values of the 11 final

models are found in Table B.2, along with the resulting period and ranking of the top 25

sensitivities.
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Chapter 6

Structure–Function Relationships

Between the Biochemical

Architecture of the Mammalian

Circadian Clock and the Functional

Properties of Its Oscillation

Abstract

A pair of related, large, detailed models of the mammalian circadian clock are subjected to
sensitivity analysis of the phases, amplitudes and period of their circadian oscillation. The
mechanisms for manipulation of each of these features are compared and it is found that
certain commonalities exist. Most features were found to be highly sensitive with respect to
changes in a small group of parameters, indicating that a balanced control of several features
at the same time requires concerted action throughout the network. Using the example of
period-neutral phase changes, such mechanisms are discovered and discussed, both on the
scale of infinitesimal as well as finite perturbations. Furthermore, it is demonstrated that
relative phase sensitivity analysis is a suitable tool to study the ability of the circadian clock
to track several phases simultaneously, while keeping a constant period. However, it is also
shown that in order to make biologically significant discoveries, the mechanism of detection
of relevant phases such as “dawn” and “dusk” must be known at a molecular level.
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6.1 Introduction

The mammalian circadian clock is a molecular network that consists of several negative and

positive feedback loops. Part of its functionality is to generate 24-hour oscillations which

provide mammals with a time-keeping framework. Interactions of the clock with other

biochemical signals provide a very precise schedule of events that include the production

of different hormones at different times of day, digestive activity at times when the body

anticipates food, and liver and kidney activity at times when the body anticipates a need

to process waste. The particular network structure of genetic and biochemical signaling

reactions organized into multiple, seemingly redundant feedback loops raises the possibility

of discerning structure–function relationships at a variety of levels of abstraction. For

example, in their 2004 review, Lakin-Thomas & Brody indicate that particular pieces of

the clock might be responsible for particular functions [61]. In an experimental study of

per2 expression, separate mechanisms for rhythm generation and for phase control were

found recently [2], further suggesting potentially separate control mechanisms for both. In

this work, it was shown in Chapter 5 that a portion of one feedback loop carries dominant

responsibility for setting the period in the mammalian circadian clock. This framing lays

the groundwork for understanding detailed relationships between functionalities of the clock

and their implementation at a molecular level and perhaps also for assigning functional roles

to seemingly redundant feedback loops.

In this study several types of sensitivities are computed. In some other studies the lo-

cal sensitivities of the fit between model trajectories and experimental data are computed

with respect to the model parameters, with the goal of identifying the extent to which the

parameters are locally determined by the data [17, 39]. Here our goal is quite different. We

are interested in quantifying the extent to which functional properties of the system are

determined or affected by each chemical reaction. The functional properties that we inves-

tigate for this limit-cycle oscillator include the period (which is the same for all species),

the amplitude of each species, and relative phase relationships between pairs of species. Be-

cause each chemical reaction is controlled by a single rate parameter, it is useful to compute

sensitivities with respect to parameters as a metric for the effect of individual reactions on

network properties. Our goal is to elucidate network structure–function properties as well

as to implement specific changes in network behavior through manipulation of individual
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reactions. A second, related question that is treated in this study is related to the ability

of the circadian clock mechanism to process more than one entraining signal at a time. It

is known, for example, that the clock can entrain to signals other than light; for example,

it can entrain to temperature cycles and cycles in nutritional availability. Related to this

observation is the question of whether the clock can track separate signals simultaneously

and continuously. This is often phrased as the “ability to track several phases”. An in-

tuitive example is the circannually varying length of the subjective day. Winter days are

shorter than summer days, although the 24-h period of the clock is maintained. So how

does the clock account for this varying length of day? Is there a signal for “dusk” that can

be processed separately from a signal for “dawn”? How is the “signal capacity”, expressed

as the number of independent signals the network can track, related to network structure?

In particular, it has been suggested that the number of feedback loops in a clock mecha-

nism is related to the ability of the mechanism to track several phases [85]. This suggestion

is examined in detail in the current work, in the context of the most detailed, published

mechanistic model of the mammalian circadian clock. This model was extended in Chapter

4 using recent experimental findings to include several additional feedback loops.

Numerical experimentation demonstrated that while both the original and extended

model entrain with a stable “morning” phase to the light input signal as shown in Figure 4-

2, the time at which the light is switched off does not significantly affect the time courses of

mRNA concentrations (data not shown). Therefore, it was concluded that any mechanism

that would allow for “dusk tracking’ is not explicitly included in the models studied here. It

seems that there might be two possibilities for the tracking of a second phase for “dusk”. One

is that at or before dusk, an input signal is processed that would cause a phase adjustment.

This mechanism would be similar to the discrete entrainment caused by a step change in

an entrainment signal at dawn, which adjusts the phase once daily to match the period of

the entraining signal [26]. However, a second possibility might be that an input related to

seasonal change would cause a permanent parameter change in the mechanism, which could

slowly vary the time at which dusk occurs throughout the year. This mechanism could

be similar to the continuous entrainment mechanism, which is found in some species, e.g.,

birds, and might play a role in mammals [26]. Due to the lack of explicit abilities to model

the relative length of the perceived day, computing the relative phase sensitivities of the

model parameters in constant darkness appears to be an appropriate numerical experiment
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to evaluate the models’s performance. The results are expected to pertain to the second

proposed mechanism, since they indicate how permanent parameter changes would affect

clock performance.

The scaled, relative phase sensitivity of a given relative phase of interest with respect to

each of the 324 or 447 unlumped parameters is calculated and the group of the most highly

relative-phase-sensitive parameters is analyzed for the apparent mechanism of phase setting

and its overlap with the group of highly period-sensitive parameters. By determining key

reaction or transport rates for the setting of different phases that might be representative of

the way the day length is represented molecularly, it may be possible to identify candidate

mechanisms that would allow for the change of day length over the course of a season.

On a more general level, it is then interesting to study the general ability of the model

to control different phases independently of each other. Ideally, one would like to analyze

exhaustively the network’s abilities to control phases independently. However, there is an

infinite number of possible ways to define different phases and their parameter dependencies.

Thus, this study is limited to investigating a small number of relative phases that are

possibly relevant to the biology or the network structure. After analyzing how individual

relative phases are controlled in either model, it is attempted to understand how the network

could adapt to change a phase independently of the period. This task involves changing

some of the reaction rate parameters in a finite manner, and thus goes beyond the local

sensitivity information that describes the effects of infinitesimal perturbations. For the set

of numerical experiments that is performed here, the models with lumped parameterization

are used, considering the fact that the unlumped parameters might not be independently

accessible to manipulation. The relative phase sensitivity information is used to select a

period-neutral direction in parameter space in which maximum phase change is expected.

It is studied how far the model can take the process of changing a phase independently of

the period, by using a very basic gradient-based optimization technique.

6.1.1 Angular Relative Phase Sensitivity

A relative phase is defined in the context of this work as the difference in time between

two events on the periodic orbit. In mathematical terms, both events can be described by

phase locking conditions (PLCs), as discussed in Chapter 2. If the mathematical definitions

for the beginning and end of the relative phase are differentiable, we can calculate how
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the relative timing between the two events depends on the network parameterization. This

was explained in detail in Section 2.2.7. It is important to remember that identical times

on the periodic orbit can be defined using different PLCs, but this can lead to different

relative phase sensitivities. This is shown graphically in Figure 2-1 and will be important

in understanding the results presented in this chapter. In Chapter 3 it was explained that

one of the more descriptive definitions of phase is the angular relative phase, or γ. If the

relative phase β is a time difference between two events, then the relative phase angle γ of

the phase β is defined as

γ = 360◦
β

T
. (6.1)

Its sensitivity ∂γ
∂p

with respect to the parameters is

∂
(

360◦ β
T

)

∂p
=

360◦

T

∂β

∂p
−

360◦β

T 2

∂T

∂p
, (6.2)

which follows directly from the chain rule. This sensitivity describes the change of the

phase angle as a result of an infinitesimal parameter change, where the change of period is

taken into account and normalized out. Thus the relative phase sensitivity ∂β
∂p

describes the

change in time between a pair of events, whereas the relative angular phase sensitivity ∂γ
∂p

describes the change in phase angle. Two events that remain 180◦ apart in the circadian

day after a finite perturbation of a parameter increases the period by 6 hours will have a

∆β of 6 hours but a ∆γ of 0◦.

6.1.2 Definition of the Dawn-to-Dusk Time Distance

The time at which the concentration of mCry1 reaches a minimum was used to represent

subjective dawn, or CT=0, in the model (see Section 4.2.3; CT is circadian time). In order

to study the flexibility of the model with respect to variations in the length of subjective day

(dawn-to-dusk) while maintaining a 24-hour period, a second PLC needs to be identified

for the definition of “dusk” (CT=12 in most laboratory experiments). From a survey of

the experimental and review literature, the following molecular events happen at or near

CT=12. mBmal1 has risen half-way to its maximum concentration [83, 8, 87], mCry1 is

near its highest concentration [8, 87], and mPer1 and mPer2 have declined to roughly half

their peak concentrations [8, 87]. Because Forger and Peskin [29] do not represent Bmal1
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transcription explicitly, the corresponding PLC cannot be employed in this model. Thus,

in order to evaluate the relative phase flexibility of the mammalian circadian models under

study, the maximum of total Cry1 mRNA concentration was chosen as a first definition of

dusk. This phase is called ‘mCry1 dusk’ for the remainder of this Chapter, and it occurs

at CT = 11.88 or 12.002 h in the original and extended model, respectively. A second

definition was the time at which mPer2 crosses 50% of its peak concentration. This phase

is called ‘mPer2 dusk’ for the remainder of this Chapter, and it occurs at CT = 15.38 or

15.04 h in the original and extended model, respectively. These choices allow for a direct

comparison of phase flexibility in both models.

6.2 Results

Two models form the basis for the results presented here — the original model of Forger

and Peskin and an extended version that augments the original with additional details and

recent findings. Moreover, as sensitivities with respect to rate parameters were computed,

the results depend on the degree to which the parameters have been lumped (see Chapter

5). The rate parameters are lumped if two seperate physical processes are represented

with one parameter, which means that only one sensitivity can be calculated for this rate

parameter. We unlump them by assigning individual parameters with the same value to each

reaction, and calculating separate sensitivities for each. For example, it is common to use a

common rate parameter for nuclear export for all mRNA species. When we are interested in

understanding the individual contribution of each reaction to functional network properties,

we unlump the parameters. However, when we consider re-engineering new properties into

the network, we may choose to lump together parameters representing properties that we

are unlikely to be able to manipulate independently.

For the study presented here, the models were unlumped even further than in our

previous work in Chapter 5, in order to distinguish the DNA binding events separately for

each of the BCC-controlled species. This leads to 4 additional differential equations in the

original model, and to 10 additional equations in the extended model. These equations are

redundant in that the state variables they govern (i.e., the likelihoods of BCC or BCC–

Cry complexes to be bound to the different DNA sites) are exactly the same as in the

original, lumped variables. However, this procedure allows one to probe individually the
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reactions that determine the binding kinetics for each, and the results of the unlumping

are worthwhile. Doing so increases the number of parameters to 324 in the original model,

and 447 in the extended model. As before, the parameter values are unchanged from

the lumped model, and there is no difference between a simulation of the lumped versus

unlumped models.

6.2.1 Period Sensitivities

As a first basis for comparison, the period sensitivities for both models were calculated

and rank-ordered (Figure 6-1). Here, the label “GBCCRn” indicates the probability of a

BCC–Cry complex being bound to a DNA binding site, and “GBCC” indicates that the

free BCC is bound to a DNA binding site. Both models show a very similar pattern of
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Figure 6-1: The top 25 scaled period sensitivities ranked by absolute magnitude for un-
lumped models. (a) Original model; (b) Extended Model; Black, Cry1-related parameter;
blue, Cry2-related parameter; green, Per1-related parameter; red, Per2-related parame-
ter; magenta, Bmal1-related parameter; cyan, Rev-Erbα-related parameter; yellow, ROR-
related parameter.

parameters with high, scaled period sensitivities, with the magnitudes of the sensitivities

being comparable. As discussed in detail for the original model in Chapter 5, a set of largely

contiguous reactions in the Per2 negative feedback loop dominate the period setting in both

models, with mRNA export and degradation being the most significant. The unlumping of

the DNA binding kinetics has further revealed that the unbinding of Cry complexes from

the Per2 transcriptional control element is the third most important reaction in setting the
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period. The fourth through seventh ranked parameters in both models are reactions related

to Per2 phosphorylation, which was discussed in detail in Sections 5.2.1 and 5.3.3. Not

shown on the graph is the fact that the secondary phosphorylation of Per2 has the opposite

effect on the period as the primary phosphorylation, as suggested in reference [103]. In the

extended model, parameters regulating the transcription and mRNA kinetics of Bmal1 are

ranked tenth through thirteenth. This is consistent with the experimental observation that

the Bmal1−/− phenotype is arrhythmic [8, 87].

6.2.2 Amplitude Sensitivities

The scaled relative amplitude sensitivities were computed for the seven mRNA species in

the extended model. The relative amplitude of the total mRNA (nuclear plus cytosolic) for

each species was calculated as the difference between maximum and minimum concentration.

The sensitivity of this quantity was calculated as described in Chapter 2. Shown in Figures

6-2 and 6-3 are the top 25 reactions of the extended model, ranked by absolute magnitude

of their scaled amplitude sensitivity. The results for the original model are very similar and

are not shown.

Throughout the seven amplitudes it is consistently seen that the transcription reaction of

the respective mRNA together with the unbinding reaction of Cry-complexes from the BCC

on the respective DNA-binding site are the largest impact reactions. This makes intuitive

sense, in that both reactions affect transcription. However, that they specifically affect

amplitude and that they would be somewhat more important than the binding reactions for

the Cry complexes is not immediately clear. Interestingly, there is a second set of parameters

that appears common between all seven amplitudes studied. The rate of Cry unbinding from

the BCC at the Per2 DNA binding site is ranked in the top three of all amplitudes. The

nuclear export of Per2 mRNA is in the top eight in all but one of the amplitudes. Other

parameters that repeatedly appear in the top 25 are the rate of unbinding of Per2ppC

(the complex of twice-phosphorylated Per2 with CK1 kinase) from Cry1 as well as the

degradation rates of nuclear Per2ppC and nuclear Cry1. This observation demonstrates a

combination of local and central control over the amplitudes of the mRNA oscillations in

both computational models.
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Figure 6-2: Scaled, rank-ordered relative amplitude sensitivities for the different mRNA con-
centrations, in the extended model; (a) mCry1; (b) mCry2; (c) mPer1; (d) mPer2; black,
Cry1-related parameter; blue, Cry2-related parameter; green, Per1-related parameter; red,
Per2-related parameter; magenta, Bmal1-related parameter; cyan, Rev-Erbα-related pa-
rameter; yellow, ROR-related parameter.

6.2.3 Relative Angular Phase Sensitivities

The scaled relative angular phase sensitivities ∂ lnγ
∂ lnp

for two differently defined dawn-to-

dusk relative phases were computed for the original and extended models using unlumped

parameters (Figure 6-4). Dawn was defined as the point at which mCry1 reaches a minimum

concentration and dusk was defined alternatively as “mCry1 dusk” or “mPer2 dusk” as

described in Section 6.1.2. The results are similar between the two models; the results for

the extended model will be discussed, as they provide more detail. When the peak of mCry1

is used as the marker for dusk, the two dominant sensitivities are degradation and export
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Figure 6-3: Scaled, rank-ordered relative amplitude sensitivities for the different mRNA
concentrations, in the extended model; (a) mRE; (b) mBmal1; (c) mROR; black, Cry1-
related parameter; blue, Cry2-related parameter; green, Per1-related parameter; red, Per2-
related parameter; magenta, Bmal1-related parameter; cyan, Rev-Erbα-related parameter;
yellow, ROR-related parameter.

of Cry1 mRNA. This is interesting, given that both PLCs that define the beginning and

end of apparent daytime were formulated with reference to mCry1, but it is noteworthy

that reactions involving mCry1 synthesis do not dominate. The degradation and export

reactions dominate the relative angular phase between trough and peak. The reactions that

follow in the ranking are reminiscent of the high-period sensitivities shown in Figure 6-1, and

mostly located in the Per2 negative feedback loop. That is, reactions that strongly affect

the period do not do so exclusively. They also affect phase relationships. It is important

to note that period-changing reactions are not unalterable in the context of a 24-hour day.

Rather, compensating changes in such reactions can lead to unaltered period yet changed
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Figure 6-4: Scaled relative angular phase sensitivities ∂ ln γ
∂ lnp

for the dawn-to-dusk phase,
ranked by absolute magnitude. (a) Original model, mCry1 dusk; (b) Extended Model,
mCry1 dusk; (c) Original model, mPer2 dusk; (d) Extended model, mPer2 dusk; Black,
Cry1-related parameter; blue, Cry2-related parameter; green, Per1-related parameter; red,
Per2-related parameter; magenta, Bmal1-related parameter; cyan, Rev-Erbα-related pa-
rameter; yellow, ROR-related parameter.

phase relationships.

Conversely, when daytime was defined using a definition of dusk that involves the Per2

mRNA concentration (but the same, Cry1-based definition of dawn), the Per2 related reac-

tions moved even farther to the top of the ranking and the Cry1 mRNA degradation remains

the second most influential. A group of Cry1 related parameters populates ranks 7–11; these

reactions are all important in determining the amount of Cry1 in circulation (transcription,

translation, the binding of the inhibitory Cry-complexes from the BCC at the Cry1 binding

site and degradation of nuclear and cytosolic CRY1). Interestingly, a number of reactions
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were found to be of significant influence in the relative angular phase sensitivities that were

already found previously to be important in setting the period and amplitudes of the mRNA

oscillations. This finding will be discussed in more detail in Section 6.2.4.

The second definition of the relative phase not only leads to somewhat different sensitiv-

ity rankings, but also to higher magnitudes of scaled sensitivity than found in the previous

definition. This observation leads to the conclusion that if one is to understand how the

clock could regulate the dawn-to-dusk phase, it is important to understand how both dawn

and dusk are “tracked” on a molecular basis. This knowledge could be important for under-

standing the molecular origin of seasonal affective disorder and possibly could point towards

novel therapeutic intervention.

6.2.4 Network-wide Relative Angular Phase Sensitivities

To obtain a more general, network-wide picture of the phase sensitivities in the model, an

additional six phases were defined. The phase angles between the peaks and troughs of

the total mRNA concentrations of Cry2, Per1, Per2, Rev-Erbα, Bmal1, and ROR in the

extended model were computed together with their sensitivities. The corresponding phase in

Cry1 mRNA is same as the dawn-to-dusk phase with “mCry1 dusk”. The resulting rankings

based on absolute magnitude of scaled relative angular phase sensitivity are shown in Figure

6-5.

It is found that the export and degradation rates of the mRNA that defined the phase

are in most cases the reactions with the largest influence on the peak-to-trough phase angle.

As before, these parameters will be called “local” to the network function studied. These are

followed by a surprisingly conserved set of parameters, some of which have been found to be

important in period and amplitude setting as well, including the unbinding of Per2ppC from

Cry1, the degradation of Per2ppC, and the export and degradation rates of Per2 mRNA.

One other reaction that is consistenly present is the degradation of nuclear Cry1. It should

be noted that the mBmal1 phase deviates somewhat from this pattern, as was the case in

the amplitude study. This species’ expression is regulated very differently than the rest,

which are all controlled by the same mechanism through BCC and its inhibition by Cry

and their complexes.
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Figure 6-5: Scaled relative angular phase sensitivities ∂ ln γ
∂ lnp

for the peak-to-trough phase
of different mRNA concentrations, ranked by absolute magnitude in the extended model;
(a) mCry2; (b) mPer1; (c) mPer2; (d) mRE; (e) mBmal1; (f) mROR;Black, Cry1-related
parameter; blue, Cry2-related parameter; green, Per1-related parameter; red, Per2-related
parameter; magenta, Bmal1-related parameter; cyan, Rev-Erbα-related parameter; yellow,
ROR-related parameter.
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6.2.5 The Circadian Clock is Not Modular

In modular design such as found in man-made devices, one expects a one-to-one correspon-

dence between structure and function. Our early results on the circadian clock supported a

modular design strategy: all high period sensitivities were found in just one out of several

feedback loops [106]. Throughout this loop, the period sensitivities were high, and in other

feedback loops the period sensitivities were low. Thus, this feedback loop bears primary

responsibility for setting the period. This finding is confirmed in the more detailed analysis

in Section 6.2.1. It is however only part of a bigger picture, as the subsequent results show.

It appears that a significant fraction of the parameters that are important in setting the

period are also important in setting other properties of the oscillation, such as the setting

of relative phase angles or relative amplitudes. Both phases and amplitudes can be located

entirely in other feedback loops yet still be regulated indirectly and in part through the

Per2 negative feedback loop.

This set of result leads to a new interpretation, namely that the clock design is not

modular in the same sense as man-made, engineered systems. If one of the “key parame-

ters” (i.e., parameters with high sensitivities in several functions) is changed, several clock

functions might be altered simultaneously. Conversely, altering one clock property might

necessarily entail changing another, and controlled, concerted changes of functions might

require balanced modifications to several reactions throughout the network. This hypothesis

is considered in the remainder of this section.

6.2.6 How Independent Are Period and Dawn-to-dusk Phases?

As it is recognized that some clock properties can only be tuned in concert with others, we

return to the question of whether with this network one can independently vary the length

of perceived day (or sunlit day), while maintaining a 24-hour period. The angle α between

the period sensitivity vector and the relative phase sensitivity vector for both models was

computed, as previously shown in Section 3.2. As demonstrated in Figure 3-2, this angle

should give an indication to understand how orthogonal the relative-phase sensitivity vector

is to the period sensitivity vector. The range of angles is by definition between zero and

90◦, and a large angle should provide an indication that it is possible to modify the period

and the relative phase fairly independently. The angles for both definitions of ‘dusk’ and
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Table 6.1: Relative angles and lengths of the period-neutral phase sensitivity vectors in the
original and extended models of the mammalian circadian clock.

Model Original Extended

CT (mCry1 dusk) 12.00 11.88

Rel. Length L (mCry1 dusk) 0.259 0.181

Angle α (mCry1 dusk) 26.6 18.3

CT (mPer2 dusk) 15.38 15.05

Rel. Length L (mPer2 dusk) 0.787 0.673

Angle α (mPer2 dusk) 41.6 33.2

both models are shown in Table 6.1. A period-neutral relative phase sensitivity vector was

also calculated, and its length compared to the length of the period sensitivity vector. This

relative length L is also reported in Table 6.1. The make-up of the period-neutral relative

phase sensitivity vector is discussed in Section 6.2.8

It was previously shown in Section 3.3.10 that the angle might provide a better measure

of the phase flexibility of the model than the relative length L. For both definitions of

“dusk”, it is found that the original model has a larger angle, and the angle is larger for

the second, rather than for the first definition of “dusk”. This observation is related to the

finding in the sensitivity rankings, where it was shown that the corresponding sensitivities

are larger, and more different from the period sensitivities in this case. Again the two

different angles reflect the need to know mechanistically how dawn and dusk are tracked in

the clock, if one wants to understand the underlying flexibility of the clock with respect to

this phase.

6.2.7 Peak-to-Peak Relative Phase Sensitivities

In the absence of specific knowledge regarding how individual phases might be set and

tracked, it was thought to be interesting to attempt to gain a more systematic impression

of how different phases throughout the network are regulated and how flexible they are in

the face of a constant period. Ideally, one would like to obtain a network-wide picture for

which events and their timings are interrelated, and which ones can change without affecting

others. However, as previously mentioned, this is not possible due to the infinite number of

relative phases in the network. Thus, a smaller number of events was selected for a pairwise
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study. The relative timing between peaks in total mRNA concentration was calculated and

each phase’s relative sensitivity was computed. The angle α between this vector and the

period sensitivity vector was computed as in the previous section. In other words, it was

studied how the timings between peaks of mRNA can be varied locally, depending on the

parameters, and how independent this variation is from a variation of the period. The

angles α are represented in Tables 6.2 for the original model and Table 6.3 for the extended

model.

Table 6.2: Relative angles of peak-to-peak sensitivities in the original model of the mam-
malian circadian clock. Rows: Beginning of the phase is the peak in this mRNA concen-
tration; Columns: End of the phase is the peak in this mRNA concentration.

mRNA mCry2 mPer1 mPer2 mRev-Erbα

mCry1 87.7 84.9 76.1 83.6

mCry2 87.6 72.9 86.3

mPer1 57.9 87.7

mPer2 58.6

Table 6.3: Relative angles and lengths of the period-neutral phase sensitivity vectors in the
extended model of the mammalian circadian clock. Rows: Beginning of the phase is the
peak in this mRNA concentration; Columns: End of the phase is the peak in this mRNA
concentration.

mRNA mCry2 mPer1 mPer2 mRev-Erbα mBmal1 mROR

mCry1 88.6 88.3 70.0 87.3 26.4 89.1

mCry2 86.6 68.1 88.9 26.7 87.4

mPer1 62.70 83.3 26.5 88.7

mPer2 55.41 25.04 61.33

mRev-Erbα 24.94 84.56

mBmal1 26.59

It is very noticeable that the angles throughout the original model are very large, with

the lowest being 57.9◦ and the highest being 87.7◦. In other words, several of the phases

shown here appear almost completely locally independent of the period. In the extended

model, a similar picture is found, with the exception of phases that involve Bmal1 mRNA,

which appear with markedly smaller angles of 24.9◦ to 26.7◦. In other words, the largest
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angle found involving the peak time of Bmal1 mRNA is much smaller than the smallest

angle found in any phase not involving the Bmal1 mRNA concentration.

It appears that the timing between peaks of mBmal1 and any other mRNA species is

hard to vary independently of the period. All the other peak-to-peak timings can be varied

practially independently of the period. All species except Bmal1 also oscillate “in phase”

with each other, whereas the Bmal1 species oscillates “in anti-phase”. It is this antiphasic

oscillation which closes all the feedback loops of the other species, since the BCC is necessary

for transcription of all species but Bmal1. The result found here might indicate that the

anti-phasic nature coupled with the need for BCC to close the feedback loop means that

the peak time of mBmal1 is coupled to the period of oscillation in such a way that any

phase involving mBmal1 is less flexible (i.e., has a smaller angle α).

6.2.8 Period-neutral Relative Phase Sensitivities

For the relative phase sensitivities computed in Section 6.2.3, the period-neutral direction in

parameter space was calculated using Equation 3.7. The result is a period-neutral relative

phase sensitivity direction
(

∂β
∂p

)

T
. An infinitesimally small step in parameter space in

this direction results in maximum relative phase change with zero period change. It is very

important to appreciate the fact that all the results presented here are only to be interpreted

in the context of this entire vector. Any individual parameter change will not result in a

period-neutral relative phase change.

The largest contributions of the period-neutral phase direction were sorted by absolute

magnitude (‖
(

∂β
∂pi

)

T
‖) or relative magnitude (‖pi

β

(

∂β
∂pi

)

T
‖ = ‖ ∂ lnβ

∂ ln pi
‖) and are shown in

Figure 6-6 for the original model and Figure 6-7 for the extended model, for both definitions

of “dusk”. It is found in both models that the period-neutral phase direction is made up

of parameter changes that are only slightly different from the top-ranking relative angular

phase sensitivity parameters in Figure 6-4.

The mechanism of a period-neutral relative phase change is examined more closely. A

step of length one was taken into the period-neutral phase direction. The change in %

of phase and period caused by each individual parameter change was calculated and is

shown in Figure 6-8. It becomes clear that this change requires a concerted effort. For

the mCry1 dusk definition (top row), most of the phase change (green) is accomplished

by changing just two parameters, the Cry1 mRNA export and degradation rates, in both

179



0 5 10 15 20 25
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

mRNA degradation

mRNA export

degradation of Cry1 (n)
mRNA degradation

ratio of nuclear/cytoplasmic volume

unbinding of Per2pC from Cry1 (n)

unbinding of Cry from Per2 GBBCRn

mRNA degradation
degradation of Per2pC (n)

unbinding of Cry from Per1 GBBCRn

rank

se
ns

iti
vi

ty

(a)

0 5 10 15 20 25
−2

−1

0

1

2

3

4

5 mRNA degradation

mRNA export

degradation of Cry1 (n)
mRNA degradation

unbinding of Per2pC from Cry1 (n)
mRNA degradation

binding of Per2pC to Cry1 (n)

unbinding of Per2p from Cry1 (n)
unbinding of Per2pC from Cry2 (n)

unbinding of Per2p from Cry1

rank

se
ns

iti
vi

ty

(b)

0 5 10 15 20 25
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

unbinding of Cry from Per2 GBCCRn

mRNA degradation

translation
unbinding of Cry from Cry1 GBCCRn

mRNA export

degradation (n)

binding of Per2pCCry1 to Per2 GBCC
translation

transcription

degradation (c)

rank

se
ns

iti
vi

ty

(c)

0 5 10 15 20 25

−6

−4

−2

0

2

4

6

8

10

12

14 mRNA degradation

mRNA export

degradation (n)
degradation (c)

unbinding of Per2pC from Cry1 (n)
mRNA export

binding of Per2pC to Cry1 (c)

degradation (c)
mRNA degradation

binding of Per2pC to Cry1 (n)

rank

se
ns

iti
vi

ty

(d)

Figure 6-6: Period-neutral relative phase direction for the dusk-to-dawn phase in the original
model, ranked by absolute magnitude of step size. (a) mCry1 dusk, ranked by relative
stepsize; (b) mCry1 dusk, ranked by absolute stepsize; (c) mPer2 dusk, ranked by relative
stepsize; (d) mPer2 dusk, ranked by absolute stepsize; Black, Cry1-related parameter; blue,
Cry2-related parameter; green, Per1-related parameter; red, Per2-related parameter. The
sensitivities represented here are part of a sensitivity direction, and can only be considered
in the context of the entire vector.

models. However, to compensate for the period change (magenta) it takes a group of

four (in the original model) or six (in the extended model) parameters that participate

significantly. The mechanism is different for the second, mPer2-based, definition of dusk.

The phase change is implemented by contributions of the first ten parameters, with the first

parameter making the biggest contribution by far, but the others contributing significantly.

Throughout the same parameters, the period changes occur such that they balance each

other, with again 4 and 6 significant changes in both models, respectively. It should be
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Figure 6-7: Period-neutral relative phase direction for the dusk-to-dawn phase in the ex-
tended model, ranked by absolute magnitude of step size.(a) mCry1 dusk, ranked by relative
stepsize; (b) mCry1 dusk, ranked by absolute stepsize; (c) mPer2 dusk, ranked by relative
stepsize; (d) mPer2 dusk, ranked by absolute stepsize; Black, Cry1-related parameter; blue,
Cry2-related parameter; green, Per1-related parameter; red, Per2-related parameter; ma-
genta, Bmal1-related parameter; cyan, Rev-Erbα-related parameter; yellow, ROR-related
parameter. The sensitivities represented here are part of a sensitivity direction, and can
only be considered in the context of the entire vector.

emphasized again that this balanced parameter modification is needed for the maximum

phase change with zero period change. It might be possible to modify the phase in a period-

neutral manner using a simpler mechanism, however the phase change achieved would be

smaller.

This result is a graphical representation of what was found throughout this study. Mod-

ifying one property significantly (here, a relative phase) without another (here, the period)

requires a concerted effort of several parameter changes. The parameters changed here,
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Figure 6-8: Changes in relative phase (green) and period (magenta) caused by a step in
period-neutral phase direction. (a) Original model, mCry1 dusk; (b) Extended model,
mCry1 dusk; (c) Original model, mPer2 dusk; (d) Extended model, mPer2 dusk; The order
of parameters is taken from the ranking by absolute parameter change in Figure 6-6 and
6-7, right side, respectively.

again, include some of the parameters that were found to be “key players” in setting the

period, mRNA amplitudes and relative phases in the extended model, such as the Per2

mRNA export rate, the degradation nuclear Cry1, the unbinding of Per2ppC from Cry1

and the degradation of Per2ppC.
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6.2.9 Can the Lumped Models Finitely Adjust the Dawn-to-dusk Phase

Without Changing the Period?

Both models’ ability to change the dawn-to-dusk distance in a finite way is considered next.

The dusk definition used here and in the remainder of the study is the maximum in Cry1

mRNA. In order to not overestimate the models’ ability to change individual parameters, the

numerical experiments shown here were all performed on the lumped ones. The sensitivity

calculations that were presented before for the unlumped models are repeated here for the

lumped models. Figure 6-9 shows the top ranked parameters based on the magnitude of

their scaled relative angular phase sensitivity, ‖ ∂ ln γ
∂ ln pi

‖, along with the rankings based on the

magnitudes of relative (top right) and absolute (bottom left) parameter sensitivities in the

period-neutral phase direction, ‖pi

β

(

∂β
∂pi

)

T
‖ and ‖

(

∂β
∂pi

)

T
‖, respectively. The mechanism

of period-neutral phase change is shown in the bottom, right graph. The same results are

shown in Figure 6-10 for the extended model. The results shown here do not add any detail

to the previous, detailed sensitivity analyses and are only shown for completeness. The

mechanism for period-neutral phase setting is also similar to the detailed models and still

involves a group of six to eight parameters in both models, respectively.

How Local is the Sensitivity Information?

The knowledge that sensitivity information is inherently local begs the question if the com-

putation of a period-neutral phase direction is meaningful in a sense beyond infinitesimal

variations. To understand how far the linear approximation made in sensitivity analysis is

valid, steps of different, finite size in parameter space are taken into the period-neutral phase

direction for each model. Results are shown in Figure 6-11, where the absolute step sizes σ

are reported relative to the lengths of the two different vectors, so that ∆p = σ
(

∂β
∂p

)

T
for

each model.

For both models, smaller steps result in significant phase change with negligible period

change. Thus, sensitivity information is valuable to understand how small parameter vari-

ation can affect the phase behavior of the model. As the stepsize increases, the period is

more and more affected, and an obvious non-linear relationship between phase and period is

found as for both models eventually the phase decreases while the period increases further.
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Figure 6-9: Dawn-to-dusk in the original model. The dusk definition was the mCry1 dusk.
Top left: Scaled relative Dawn-to-Dusk angular phase sensitivities ∂ lnγ

∂ lnp
in the lumped,

original model. Top right: Ranked absolute magnitudes of relative period-neutral lumped

phase sensitivities p
β

(

∂β
∂p

)

T
. Bottom left: Ranked absolute magnitudes of absolute period-

neutral lumped phase sensitivities
(

∂β
∂p

)

T
. Bottom right: Changes in relative phase β

(green) and period (magenta) caused by a step in period-neutral phase direction. The order
of parameters is taken from the ranking by absolute parameter change in bottom, left.

Stepwise Change in Period-Neutral Phase

A very simple optimization procedure was used to study whether the mammalian circadian

clock can vary the dawn-to-dusk distance over a wider range of values. Again, the period-

neutral phase direction was computed. Then a step of normalized length γ = 0.1 was taken

in parameter space, so that ∆p = γ

‖
“

∂β
∂p

”

T
‖

(

∂β
∂p

)

T
. The normalization allows for better

comparison between the two models. At the new parameterization, a new period-neutral

phase direction was computed, normalized, and another step of the same length was taken.

The results of this procedure for both the original and the extended model are shown in
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Figure 6-10: Dawn-to-dusk in the extended model. The dusk definition was the mCry1
dusk. (a) Scaled relative Dawn-to-Dusk angular phase sensitivities ∂ ln γ

∂ lnp
in the lumped,

original model. (b) Ranked absolute magnitudes of relative period-neutral lumped phase

sensitivities p
β

(

∂β
∂p

)

T
. (c) Ranked absolute magnitudes of absolute period-neutral lumped

phase sensitivities
(

∂β
∂p

)

T
. (d) Changes in relative phase β (green) and period (magenta)

caused by a step in period-neutral phase direction. The order of parameters is taken from
the ranking by absolute parameter change in bottom, left.

Figure 6-12.

Both models appear to have a very similar range of values in which the length of the sub-

jective day can fall. Both models can increase the length of subjective day by approximately

two hours, while not changing the period by more than 2% (or one half-hour). Interestingly,

as the last value in either figure is approached, the models show different behavior. The

original model continues to show oscillatory behavior, and in the next step the phase can

be further lengthened, however, the period exceeds the 2% limit and thus the next step
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Figure 6-11: Changes in relative phase and period caused by a steps of different sizes σ
in the period-neutral phase direction for lumped parameterization of both models. The
relative phase was defined by the time between the minimum and maximum total mCry1
concentration. (a) Original model; (b) Extended model.

was rejected. In the extended model, the model enters a regime of damped oscillation, the

period shortens dramatically, and eventually the oscillation is lost, as more steps are taken.

6.3 Discussion and Conclusions

There are two main conclusions that can be drawn from the work presented in this Chapter.

First, it is observed that the mammalian circadian clock model is not modular in the way

functionality is distributed within the network structures. While one feedback loop sets

the period, a small number of “key parameters” were found to play an important role in

the setting of the period, the amplitudes and phases under study. These “key parameters”

were mainly located in the Per2 negative feedback loop as well, but they do not form a

contiguous stretch of reactions. Rather, they appear to act at certain key points in the

loop. This result is somewhat counterintuitive, given that the clock has so many feedback

loops which could be hypothesized to be functional modules that add specific functionality

and given that hints at a more modular mechanism were discovered experimentally [2]. To

add more detail, it appears that the “centralized” part of the amplitude and phase control

in the form of the “key parameters” is prominently present in all species whose expression is

under similar control by the BCC. The expression of Bmal1 is regulated differently, which

is reflected to a certain degree in different profiles of high-sensitivity parameters. Some
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Figure 6-12: Changes in relative phase and period caused by a series of steps of constant size
in the period-neutral phase direction for lumped parameterization of both models. At each
step, the best period-neutral direction was recomputed and normalized to length one. The
step size was γ = 0.1. The relative phase was defined by the time between the minimum
and maximum total mCry1 concentration. (a) Original model; (b) Extended model. (c)
Changes in parameters at the end of optimization, ranked by relative magnitude for the
original and (d) extended model

“key parameters” however still appear in the top of the rankings. All amplitudes and

relative phases have a significant proportion of high-sensitivity, “local” parameters, i.e.,

parameters that are involved in the feedback loop in which the phase is measured. The

control of these functions appears shared between central control mechanisms and local

control mechanisms. Others have found similar overlap between the sensitivity profiles

of different network functionalities, in different models of the ciracadian clock [10, 37],

suggesting that this overlap might be a general property of circadian clock models.

In the second main result, it is found that there is very little difference between the
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original and the extended model. In other words, the addition of several feedback loops

appears to have neither constrained nor extended the network’s abilities to perform the

functions that were considered here. This insight adds further support to the notion that

additional feedback loops do not appear to be additional functional modules.

It was shown here that sensitivity analysis, in particular different kinds of phase sensitiv-

ity analyses, are useful in understanding network dynamics and trade-offs in functionality.

It was also observed that knowing the molecular background for what one studies with

mathematical tools is crucial to obtain a meaningful result. In order to perform a detailed,

mathematical analysis of the implementation of a variable-length perceived day in the mam-

malian clock, more detailed experimental knowledge is needed. One experiment that would

shed light into the correct definition of “dawn” and “dusk” would be to expose laboratory

animals to different L:D (light:dark) ratios while maintaining an overall 24-hour period.

Then, by recording the resulting mRNA concentrations over time, one could determine

what happens on a molecular level when the timing of dawn and dusk change, which would

be useful in formulating the PLCs needed for the mathematical analysis that is performed

here. Furthermore, if more detailed information is found eventually, it would be of interest

to implement an even more detailed version of the extended model that could account for

both dawn and dusk tracking. Then the sensitivity analysis method could be extended to

forced oscillations and the relevant studies could be undertaken under entrained conditions.
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Chapter 7

Feature-Based Parameter Fitting

for Oscillatory Systems Biology

Models

Abstract

The mathematical modeling of biological or physical systems under study is part of almost
all research in systems biology. An important part of the modeling process is the choice of
parameter values, which in the best case is derived directly from experimental knowledge.
When such knowledge is not available, parameters are fitted, usually by matching numerical
results from model simulations to experimental data points using techniques such as least
squares. However, the availability and quality of different types of data vary widely, creating
challenges that are discussed here. In addition, it is shown here that least squares fitting
can be difficult for oscillatory models. In this work, we propose to use dynamical model
features directly for parameter fitting. Data like the timing of particular events or the period
of oscillation is often more readily available and more reliably obtained than concentration
time-series data. We provide a mathematical formulation to perform parameter fitting
so that model features match features known from experimental biology. Examples of
such features include timing of events such as transitions between cell cycle phases, timing
of peaks in concentrations of protein or mRNA, the existence of oscillations or damped
oscillations, as well as their frequencies. An example of the application of this strategy is
taken from circadian biology. While feature-based parameter fitting can be a stand-alone
technique, it is fully compatible with simultaneous concentration-based parameter fitting,
and may show its greatest promise in this context.

189



7.1 Introduction

The formulation of mathematical models that capture the current knowledge of a particular

biological network is a promising avenue of research in systems biology. Through the ap-

plication of mathematical models, general properties of the system can be understood and

analyzed to a depth that goes beyond understanding individual reaction mechanisms and is

more predictive than mere rationalization of observation affords. A necessary part of most

modeling approaches is parameterization. Parameter values have to be identified in such a

way that the model’s behavior closely resembles what is known from experimental biology.

In the best case, the model parameters represent individual chemical reactions with rates in-

dividually determined from experiments. However, this scenario is not always realistic, and

it is often necessary to fit the model behavior to the available measured data. By varying

the parameters in a systematic way, it can be possible to identify a parameterization that

yields the best match between simulation and experiment. Two requirements for success

in this process are that enough data is available and that the model is able to represent

the data at the optimal parameterization. If the optimized parameters match experimental

data sufficiently better than all others it may represent the most likely parameterization.

This work is concerned with parameter estimation for dynamical models of biological

systems that are formulated as systems of nonlinear ordinary differential equations (ODEs).

The dynamical system is written as

ẏ(t,p;y0) = f(y(t,p;y0),p), (7.1)

where y are the states, or concentrations, in the model, and p are the model parameters,

which can be chemical reaction rate constants or constants associated with transport or

other physical processes.

7.1.1 Existing Methods for Parameter Estimation

A method commonly used for parameter estimation in biological models is least-squares (LS)

fitting. It involves the minimization of the squared error between experimental data xdata

and model, or model-derived, data xfit. The data are typically species concentrations over a

time horizon that is determined by the experimental setup, in which case x(t,p) = y(t,p).

Alternatively, a measurement function of the concentration data is, used in which case
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x(t,p) = g(y(t,p)) [11]. Regardless of which type of data is used, least-squares fitting

involves minimizing an objective or cost function

Ω(p) =

ndata
∑

i=1

ωi(xfit(ti,p) − xdata(ti))
2, (7.2)

where ωi are optional weighing or scaling factors that are assumed to be one for the remain-

der of this chapter. The goal of any parameter estimation procedure is to minimize Ω and

moreover, to find a unique, isolated minimum. As is evident from the formulation, the qual-

ity of fit can depend strongly on the number of experimental measurements, ndata, and the

dimensionality of the vector x(ti), or in other words on the ability to measure many relevant

concentrations in the system. It is essential to measure enough of the most informative,

yet experimentally accessible, concentrations yi at each time. This issue is addressed in

the field of identifiability and experimental design, e.g. in references [51, 15, 57, 7]. Often,

gradient-based local optimization techniques are used to minimize Ω, where the gradient in-

formation can easily be obtained by integrating the model sensitivities sjk =
∂yj

∂pk
along with

the model states y over the time horizon, e.g., using software packages such as CVODES [43]

or Jacobian [1]. The LS algorithm is widely available to systems biologists in software pack-

ages such as Jacobian and the MATLAB SimBio Toolbox (The Mathworks, Inc.; Natick,

MA, USA). A second prevalent method for parameter fitting is called maximum likelihood

estimation, which relates the likelihood of the experimental observation being produced

by a parameterized model to the likelihood of the parameter set. If a normal distribution

of experimental noise is assumed, the ML estimation is mathematically equivalent to LS

estimation. A good overview of the current state of parameter fitting in systems biology is

given in reference [51]. This chapter uses LS fitting for all comparisons mainly because the

feature-based method is both competitive and fully compatible with it.

7.1.2 Feature-based Parameter Estimation

The main concept of feature-based parameter estimation is to specifically reward agreement

between dynamical features in model and experiment rather than between concentration

data. Features extracted from experiments and from models are compared, as is the concen-

tration data in the conventional LS approach. The details of this formulation are discussed

in Section 7.2.2. Examples of model features include the timing and height of a peak in

191



a measurable concentration, or the existence and period of an oscillation. This strategy

has a conceptual advantage in that the model can be fit directly to what the biologist

knows is important for system function. The strategy changes the scope of the optimiza-

tion formulations; in particular, constraints are introduced which are not typically present

in conventional LS algorithms. The ramifications of having constraints in the context of

parameter identifiability are discussed in Section 7.2.3. The cost function surface depends

on the structure of the cost function; different surfaces can have different properties (i.e.,

convexity, smoothness). One surface may be significantly more convex than another (i.e.,

fewer local minima), which can lead to substantial improvement in parameter identification,

particularly if the initial guess for the parameterizations is poor.

7.1.3 Types of Available Data

Examples for concentration data that might be available for parameter fitting include data

from mass spectrometry; fluorescence based measurements of protein concentrations in vitro

or in vivo from single cells, cell extracts or cell culture; microarray data; data derived from

optical processing of different types of blots; to name a few. This multitude of sources and

different measuring techniques causes several challenges. Data is generally noisy, concen-

trations can often only be determined in a relative or indirect fashion, and it can be hard to

combine concentration data obtained in different laboratories or experiments due to the lack

of common controls. Often, concentration data is represented in normalized form, where

the maximum observed concentration is 100%, to mitigate some of these effects. We have

observed, however, that what is often more comparable between experiments from different

sources is what will be called “feature data” for the remainder of this work. An example is

the timing of events such as peaks in concentrations. This is particularly so if they repeat

in periodic biological systems, as is the case for the circadian clock. Another example is the

order of a sequence of events in the form of peaks of different cyclins in the cell cycle. In

fact, it is sometimes possible to determine feature data without measuring any concentra-

tion data of the modeled species, e.g., the period of oscillation in the circadian clock can be

determined using activity data from laboratory animals [26], and the time spent in different

phases of the cell cycle can be determined by measuring DNA content.
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7.2 Mathematical Methods

7.2.1 Example Features and Their Sensitivities

Period of Oscillation

The period of oscillation is a feature that is very important in the fitting of oscillatory

systems. It can be determined by solving a boundary value problem to find the exact

periodic orbit of the oscillation. Its sensitivity with respect to the system parameters can

then be calculated as shown in Chapter 2.

Peak Time

If the timing of a peak in species yi, or the relative timing between peaks, is of interest for

parameter fitting, the following equation can be used to, not necessarily uniquely, define

that time

fi(y(tpeak,p;y0),p) = 0. (7.3)

Eq. (7.3) can be differentiated with respect to the parameters p to yield

∂fi

∂y

(

dy

dt

∣

∣

∣

∣

t=tpeak

∂tpeak

∂p
+

∂y

∂y0

∣

∣

∣

∣

t=tpeak

∂y0

∂p
+
∂y

∂p

∣

∣

∣

∣

t=tpeak

)

+
∂fi

∂p
= 0, (7.4)

where
∂tpeak

∂p
is the desired sensitivity information (or peak time sensitivity). In limit-cycle

oscillatory systems, special attention should be paid to the quantity ∂y0

∂p
, the calculation of

which is detailed in Chapter 2.

Peak Height (Amplitude)

Using a peak height as a feature for parameter fitting requires finding the peak time, and

then using the concentration of the desired species yi(tpeak,p;y0) at that time. Its sensitivity

dyi

dp is computed according to

dyi

dp
=
∂yi

∂p

∣

∣

∣

∣

t=tpeak

+
∂yi

∂y0

∣

∣

∣

∣

t=tpeak

∂y0

∂p
.
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Threshold Crossing Time

The time at which a concentration yi crosses a threshold α can be defined as

yi(tcross,p;y0) = α,

and differentiated to yield

∂yi

∂p

∣

∣

∣

∣

t=tcross

+
∂yi

∂y0

∣

∣

∣

∣

t=tcross

∂y0

∂p
+
dyi

dt

∣

∣

∣

∣

t=tcross

∂tcross

∂p
= 0.

Here again, the quantity ∂tcross

∂p
is the sensitivity information of interest.

It should be noted that the term ∂y0

∂p
appears in most of the sensitivity equations for the

feature sensitivities. This quantity is sometimes overlooked, but needed in some situations.

One example is a limit-cycle oscillator, where the starting point at time zero lies on the

periodic orbit. Another example is a system that is at a steady state at time zero. In

both of those cases, the starting point for the dynamic simulation, y0(p), depends on the

parameters of the system, because the parameters determine the steady state or periodic

orbit. If it can be ascertained that the initial conditions of the dynamic simulation are

independent of the parameters, as is the case in a non-limit-cycle oscillator, the term drops

and the equations simplify accordingly.

7.2.2 Optimization Formulation for Parameter Estimation

Direct Method Using Feature Sensitivities

The optimization itself is then similar to a least-squares formulation, but instead of the

concentrations, the feature data now appear in the cost function

Ω(p) =

nf
∑

i=1

ωi(φi(p) − φi,data)
2, (7.5)

where Ω is the cost function, nf is the total number of features fitted, ωi are optional

weighting coefficients, φdata is the feature data from experimental or other knowledge, and

φfit is the feature prediction from simulation. The problem statement is then simply

min
p

Ω(p) (7.6)
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A gradient-based numerical optimization algorithm further requires the input of gradient

information, or in other words the sensitivity of the cost function with respect to the pa-

rameters. The chain rule can be applied to the cost function, and then the sensitivities of

the features can be substituted into the resulting equation,

∂Ω

∂p
(p) =

nf
∑

i=1

2ωi(φi(p) − φi,data)
∂φi

∂p
(p). (7.7)

The only constraints are typically upper and lower bounds on parameter values known from

experiments or derived from physical feasibility considerations, and the constraint deriva-

tives are either zero (for constraints not related to the parameter) or one (for constraints

relevant to the parameter). A severe limitation of this approach is the problem of leaving

the implicit feasible region. In other words, if one of the features disappears (e.g., the

optimization algorithm leaves the oscillatory region and there is no period to measure as a

feature), the algorithm has difficulty recovering. This limitation applies in particular to the

initial guess used for the parameter estimation. If no initial guess is known that yields fea-

tures with reasonable values, the algorithm cannot even begin. This limitation is addressed

in a second approach.

Independent Optimization Variables

An alternative to the above direct method is to treat the measured features as well as the

parameters as independent variables, and then to use constraints to ensure that all of the

independent variables are consistent (i.e., the current solution is feasible). The resulting

problem statement is

minp,φ,y0
Ω(p,φ,y0) (7.8)

s.t. g(φ,p,y0) = 0

(7.9)

where

Ω(p,φ,y0) =

nf
∑

i=1

ωi(φi − φi,data)
2, (7.10)
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and g(φ,p,y0) = 0 is a system of equations defining all features φ and any dependency of

y0 on p, as is the case in limit-cycle oscillators. An example using this approach is described

in Section 7.3.2.

In this approach the cost function is the same as in the previous strategy. However,

the dependency of the features and initial conditions on the parameters has been removed

from the cost function and is transferred into the constraints of the optimization. This

eliminates the need to compute feature sensitivities during the optimization, and all gra-

dient information for cost function and gradients only contains the sensitivities ∂y
∂p

, which

can be computed easily. This strategy has been found to be numerically more robust for

the optimization of oscillatory systems. It possesses an implicit control against crossing

bifurcations into a parameter region where the oscillatory behavior disappears. The same

properties direct an initial guess that does not oscillate into the feaasible region. This

event corresponds to a constraint violation, and gradients can be computed to direct the

search back into the feasible region. The exact mechanism depends on the algorithm of the

optimization software used to solve the problem.

7.2.3 Feature Fitting in the Context of Identifiability

The concept of structural identifiability was introduced by Bellman & Aström in 1970 [14].

The problem formulated there is to decide, given a model and set of measured outputs,

whether it is possible to determine all parameters uniquely. The approach they used is a

least-squares based cost function Ω(p) in an unconstrained optimization. The term “local

identifiability” is defined as Ω(p) having a strict local minimum at Ω(pnom) where pnom

is the nominal parameterization at which the measured output was generated (i.e., it is a

priori unknown). Global identifiability requires a global minimum, and a sufficient condition

is that the Hessian of the cost function Ωpp is positive definite (implying strict convexity

of Ω(p)) for all p in the range considered. Structural identifiability implies that the local

or global identifiability properties of a given model hold for almost all nominal values of p

(except on a set of measure zero) [50]. For nonlinear, dynamic problems it is challenging to

assess the properties of the Hessian matrix of any cost function over the entire parameter

range [57], and algorithms developed for the study of a priori global identifiability are scarce

[6]. Both global and structural identifiability analyses are beyond the scope of the work

presented here, and local identifiability is evaluated a posteriori at the nominal point in

196



parameter space.

Assuming the idealized case that the model is correct and no error is present in the

experimental data, the value of the least-squares problem in Eq. (7.2) at the true solution

is zero. At this point the second-order information in the Hessian matrix vanishes and the

first-order sensitivity matrix determines the properties of the Hessian at that point:

Ωpp(p) =

ndata
∑

i=1

ny
∑

j=1

2
∂yi,j

∂p
(p)

∂yi,j

∂p
(p)T −

ndata
∑

i=1

ny
∑

j=1

2(ydata,i,j − yi,j(p))
∂2yi,j

∂p2
(p). (7.11)

It is assumed that the concentrations y can be directly determined experimentally and ny

is the number of measured concentrations. The first term in Eq. (7.11) corresponds to the

Fisher Information Matrix (FIM), when measurement errors are mutually independent and

follow a standard normal distribution (N(0,1))

F(p) =
∑

i

∂yi

∂p
(p)

∂yi

∂p
(p)T.

This matrix has been used to evaluate local identifiability [57, 15, 39, 7, 50]. The eigenvalue

spectrum of the FIM is informative, as it indicates the local shape of the minimum. One

single, zero eigenvalue makes the system locally unidentifiable [15, 39] because it corresponds

to a one-dimensional “valley” in the cost function surface. A parameter variation in the

direction of the valley (i.e., direction of the associated eigenvector) results in no change of

the cost function Ω(p).

The following general observation is made when one compares the literature on local

identifiability with the approach presented in this work. In the LS fitting method (e.g.,

[14, 50, 39]), an unconstrained optimization problem is formulated, i.e., the analysis of the

Hessian of the cost function at the solution point is sufficient to understand the quality of

the solution found. However, in the case of feature fitting, the feasible region is further

constrained by equality constraints. It is therefore true that the feasible region of the

constrained optimization problem in feature fitting must be a subset of the feasible region

without the equality constraints. In other words, if one analyzes only the Hessian of the cost

function at the solution point, the local identifiability of the system can be underestimated.

To evaluate identifiability in a constrained parameter estimation problem, the nullspace

of the Hessian N(Ωpp) was projected into the row space of a matrix describing the linearized
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constraints,

A = [∇g].

A thus has as many rows as there are constraints. The dimension of the subspace

W = AT(AAT)−1AN(Ωpp),

dim(W) is a measure of how much the constraints have limited the possible solutions to the

parameter estimation problem. An identifiability score can be computed as

σ = rank(Ωpp) + dim(W). (7.12)

If s is equal to the number of variables in the parameter estimation problem, the system

is uniquely locally identifiable. If σ is smaller, one or more parameters or directions in

parameter space are unconstrained and the system is unidentifiable.

This realization indicates that the period is a particularly “potent” feature. Its definition

requires n equality constraints that define the BVP, which results in a system of equations of

rank n in the case of a limit-cycle oscillator, similar to Eq. (2.18). This potential to reduce

the dimensionality of the feasible region by up to n dimensions, combined with the fact

that the period is typically easy to determine experimentally, makes this feature extremely

useful for parameter estimation.

7.3 Results and Discussion

7.3.1 Motivational Examples

The Fitting Strategy Changes the Cost Function Surface

In the following, an abstract, motivational example is given to show how the different fitting

strategies result in different cost functions. The single feature in this model is assumed to be

a peak time of a concentration c, and the time course of that same concentration is used for

comparison. Presumably, different parameterizations pi lead to different model behaviors,

some of which might have peaks in concentration c (Figure 7-1, left). Depending on the

cost function used to evaluate the quality of fit, very different results are obtained for the

same parameterization. If least-squares fitting based on concentration data is performed,
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the cost function value for peak times away from the true peak time will be virtually

constant in this simple example. A steady-state solution for c with no peak, as found for

parameterization p3, might be competitive with those solutions, having the same or even

lower error compared to those parameterizations that show the desired peaking behavior.

If the parameter search is begun in a region with this property, the cost function gradient

is too close to zero to lead the search effectively to the true parameterization (Figure 7-1,

right). On the other hand, the search based on the peak time has a two-fold advantage.

First, only parameterizations that produce the desired behavior are allowed in the search.

Second, the resulting cost function gradient points toward the true parameterization, no

matter how far the peak time of the initial guess is away from the true peak time (Figure

7-1, right).
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Figure 7-1: Left: Data (red) and model trajectories depending (solid and dashed lines) for
4 different parameterizations. Right: Cost functions for different fitting strategies. Red,
cost function for peak-time based feature fit; black, cost function for concentration-based
least-squares fit.

This effect is illustrated by a numerical example with only two parameters, which allows

for plotting of the cost function directly. Two parameters in a harmonic oscillator were fit.

The hypothetical concentration c(t) over time was calculated as

c(t, ω, α) = sin(ωt + α), (7.13)

where the nominal parameterization was the frequency ωnom = 1.0 and the phase αnom =

0.0. The least-squares cost function was calculated as

ΩLSQ(ω,α) =

∫ 3T

0
(cnom(t) − c(t, ω, α))2dt, (7.14)

199



where T = 2π/ω was period of the current parameterization. The features used for fitting

in this example were the times at which c(t) peaks, tpeak,i, resulting in a cost funtion

ΩFF (ω,α) =
3
∑

i=1

(tpeak,nom,i − tpeak,i(ω,α))2, (7.15)

where the equality constraints of the corresponding “independent variables”-optimization

formulation would correspond to gi = dc
dt (tpeak,i, ω, α) for each peak over the first three

periods. The cost function surfaces for both examples were calculated over a range of

−90% to +100% for the frequency ω and −100% to +100% for the phase α, and are shown

in Figure 7-2. It is shown that the cost function surface, in particular in the frequency
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Figure 7-2: Cost function surface for least-square, concentration-based parameter estimation
(left) compared to feature based (right) parameter estimation based on the period and phase
of a sine-wave function. The nominal point is in both cases at phase α = 0 and frequency
ω = 1.

direction, is more convex for the feature fit approach. In the LS approach, the cost function

surface is shallow and rippled when far away from the minimum; a local optimizer might

be unable to locate the true (global) minimum at the nominal point. Near the minimum

ΩLSQ is highly non-convex, making convergence difficult as well. In both approaches a

similar amount of non-convexity in the phase direction persists. This example shows how

the approach to fitting can change the shape of the resulting cost function significantly, and

it is this observation that motivates the feature fitting approach.
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Certain Features Can Dominate the Least-Squares Fitting Cost Function

Here, an example from the circadian literature is used to demonstrate how a feature (the

period of oscillation) can dominate the error in a least-squares-fitting approach. In their

2003 publication, Forger and Peskin provide information on which of the 38 parameters

contribute more or less to the “badness of fit” at the best fit parameter choice [29]. This

“badness of fit” is an evaluation in the least-squares sense of the mRNA concentrations at

several time points as well as scaled, relative peak- and trough-concentrations of proteins

where data were available. A relative sensitivity is computed where the effect of a 10%

parameter change on the “badness of fit” is evaluated. In Figure 7-3, this quantity is

plotted together with the scaled sensitivity of the period with respect to the corresponding

parameter.
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Figure 7-3: Comparison between the feature sensitivity ∂ lnT
∂ lnp

and the scaled sensitivity of
the “Badness of the Fit” as reported by Forger & Peskin [29] for a concentration-based
least-squares fit. Both data sets were normalized by the length of the respective sensitivity
vector for all parameters, for direct, relative comparison.

It is noticeable that there are several parameters where the sensitivity of the “badness

of the fit” is very large. Those same parameters have high magnitudes of scaled period

sensitivities. In fact, the parameters with the top ten magnitudes in both measures are the

same and their order is barely different. Also, both measures result in a small number of

parameter sensitivities being significantly larger than most. It appears that the effect that

worsens the quality of fit is not the change of the concentrations that are being measured in

the cost function, but rather the change in overall period of oscillation. If the period in the

model does not fit the period of the data, this effect dominates the error. In other words,

201



the optimization procedure might weigh the agreement in the period more than agreement

in individual concentrations, which may not be the intended outcome.

7.3.2 Application to the Goodwin Circadian Oscillator

In a comparative study, one feature-based approach to parameter estimation was compared

side-by-side to a conventional, least-squares-based approach using two different data sets.

The methods were applied to the Goodwin oscillator, a small circadian clock model that

was presented previously in Section 2.6.1. In all cases, a significant number of converged

optimization runs was generated, and the results were compared in two different metrics.

First, the resulting fit model was scored against perfect data (i.e., continuous data from the

model in nominal parameterization in all concentrations, starting from the nominal initial

conditions). Second, the estimated parameters were compared to the nominal parameters.

The mean and standard deviations of both scoring metrics are shown.

Problem Formulation

The least-squares (LS) problem was formulated as follows:

min
y0,p

6
∑

i=1

(ydata(ti) − y(ti,p;y0))
2, (7.16)

where ydata(ti) as well as y(ti,p;y0) were either the complete 3-dimensional vector of con-

centrations (labeled LSQ - 3× 6), or only the last concentration (labeled LSQ - 1× 6). The

two situations correspond to different amounts of experimental data available, because it

is not always possible to measure concentrations for all species of a model. This approach

was numerically implemented using the fmincon function in the MATLAB Optimization

Toolbox version 3.1.1., which uses a a trust-region dogleg algorithm with BFGS Hessian

update in its medium-scale setting. The only bounds that were used were upper and lower

bounds on the parameters and initial conditions.
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Alternatively, the feature fitting approach was formulated as

miny0,p,φ,T (Tdata − T )2 + (φdata − φ)2 (7.17)

s.t. f3(y(0,p;y0),p) = 0

y(T,p;y0) − y0 = 0

f2(y(φ,p;y0),p) = 0

f1(y(0,p;y0),p) ≤ 1e−4.

The cost function contains the least-squares type error of two features, the period of oscilla-

tion, and the peak time of species 2. The first constraint, which is a phase locking condition

to specify the time zero reference (as discussed in Chapter 2), is an implicit third feature.

The fourth constraint is an inequality constraint that excludes stationary points from the

feasible region. This approach is numerically more difficult due to the presence of multiple

nonlinear constraints and was implemented in C, using the software packages SNOPT [34]

for the constrained optimization and CVODES [43] for the integration of the differential

equations. The nominal parameterization used to generate the data ydata(ti), Tdata and

φdata were pnom = (6.0, 3.287, 2.250, 0.153, 0.153, 0.114), y0,nom = (0.01, 0.117, 2.307). This

parameterization yields a Tdata = 27.0 and φdata = 10.0. In both methods, the upper

and lower bounds on the parameters were the same at pLB = (2.0, 2.0, 1.0, 0.1, 0.1, 0.1)

and pUB = (6.0, 6.0, 6.0, 2.0, 2.0, 2.0) and the initial conditions were the same, at y0,LB =

(0.005, 0.1, 2.0) and y0,UB = (0.015, 0.15, 2.5).

Using the parameter bounds, 500 initial guesses were randomly generated for the pa-

rameters and initial conditions. All 500 were used to generate 65 converged feature fitting

optimization runs. Only the first 100 were used to generate 80 (LSQ - 3× 6) and 73 (LSQ -

1×6) converged runs for the two different LSQ optimization runs, respectively. A converged

run was one in which the optimizer terminated with an optimal solution with the value of

the cost function Ωfit ≤ 0.001.

The results are shown in Figures 7-4 and 7-5. First, the fit models of all converged

runs are scored against the perfect (nominal) trajectory in all concentrations. The error is

calculated as

ǫ(p) =

∫ Tdata

0
(ydata(t) − y(t,p;y0))

2dt, (7.18)
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This error is plotted in Figure 7-4 (left), and its mean and standard deviation in Fig-

ure 7-4 (right). The resulting parameterizations are represented in Figure 7-5 where the
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Figure 7-4: Error against the nominal trajectories for all converged runs for the three
different fitting algorithms. Left: Error ǫ for all runs; Right: Mean and standard deviation
for all runs; LSQ - 3 × 6: 6 data points in all three concentrations were available for least-
squares fitting; LSQ - 1 × 6: 6 data points in one concentration (Z) were available for
least-squares fitting; FF: Feature fitting based on period and peak time of concentration
(Y);

mean and standard deviation for each parameter is shown as a function of the fitting

method. It is found that only in the case of the feature fitting approach do the nom-

inal parameter values fall within one standard deviation of the mean parameter value

found by the fitting algorithm. The mean fit parameter values are always closer to the

true value for the feature fit than for either of the other methods. In particular, for pa-

rameters k4 through k6, the parameters were identified uniquely with very small devia-

tions. These parameters were found to have high period sensitivities in Section 2.6.1 (at

a different parameterization). The scaled period sensitivity vector at the nominal point is

∂ lnT
∂ lnp

= (0.000125, 0.00071,−0.00035,−0.370,−0.370,−0.232) and the scaled phase sensitiv-

ity vector is ∂ ln φ
∂ lnp

= (0.0001, 0.0013, 0.0006, 0.387, 0.386, 0.241). In both cases, parameters

k4 through k6 had orders of magnitude larger sensitivities than the first three parameters.

Thus using data on three features resulted in a fit that is very competitive to the fit

obtained using a relatively complete set of concentration data. It is superior to a fit where

only one out of three concentrations was measured. If judged by parameter identification,

the feature-based fit performs better than both concentration-based least-squares fits.
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Figure 7-5: Mean and standard deviation of normalized parameterizations p/pnom after
fitting, depending on the algorithm. LSQ - 3 × 6: 6 data points in all three concentrations
were available for least-squares fitting; LSQ - 1× 6: 6 data points in one concentration (Z)
were available for least-squares fitting; FF: Feature fitting based on period and peak time
of concentration (Y);

Local Identifiability Evaluation

The identifiability score σ is determined for the nominal solution of the Goodwin oscillator,

pnom, given different combinations of concentration time-series and feature data. It is

assumed that either only the concentration Z is experimentally measurable, or that both

concentrations Y and Z are measurable. Time series with equally spaced data points

are generated for different numbers of data points, ranging from 3 to 16. These sets of

concentration time series data are evaluated for local identifiability, alone and in comparison

with different combinations of feature data, using Eq. (7.12). For direct comparison, the

identifiability score is adjusted for the number of features used in the cost function, which

increases the number of variables but also the rank of the Hessian by the same value. The

score reported here is σ = rank(Ωpp)+dim(W)−nfeature, and its maximum value is σ = 9

for all cases. The results are shown in Figure 7-6. In both cases, the identifiability score

that can be reached by increasing the number of time points reaches a plateau at σ = 6

and σ = 8 respectively. Feature data can then increase the identifiability score, though
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Figure 7-6: Identifiability score σ for the Goodwin oscillator and different amounts of
concentration and feature information. The score σ is adjusted for the number of features
used, so that full identifiability always corresponds to σ = 9. Left: One concentration is
experimentally measurable. Right: Two concentrations are experimentally measurable. A
cut-off of 1e−4 for an eigenvalue was used to determine that the associated eigendirection
was essentially unconstrained. “PLC” indicates that the first constraint in Eq. (7.18) was
used, “T” indicates that the second constraint was used and “φ” indicates that the third
constraint was used.

more so if only one concentration is measurable. If two concentrations are measurable and

five or more data points are available, the two features period and PLC do not increase the

identifiability score. In both cases, full identifiability (σ = 9) is reached only by using the

available features, period T and relative phase φ, even if relatively many time points are

available in the concentration data. It is evident that feature data adds most information

under data-poor circumstances, which is often the case in biological system of moderate to

large scale.

7.3.3 An argument for mass-action kinetics

In many instances in the history of biological model formulations, certain known “formu-

lae” were employed in cases where a particular feature or behavior was desired in the final

model. Examples include the use of Hill equations, Michaelis-Menten terms and Goldbeter-

Koshland switches [68, 100]. These formulations are very useful in cases where the corre-

sponding assumptions are justified and where the model parameters can be mapped back

to actual physical processes. However, in many biological situations, such assumptions are

not easy to validate. The method presented here allows fitting of any model topology, in
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particular pure mass-action models, directly to the desired feature behavior. This enables

the modeler to stay closer to the biochemical reality while representing behavior typically

associated with higher-order functional forms. The resulting parameter fit will be meaning-

ful because the parameter set maps directly to physical processes such as binding events,

chemical reactions or transport processes.

7.4 Conclusions

The cost function surface of a parameter estimation optimization depends on the formula-

tion. It was shown here that the use of suitable feature-based cost functions can result in a

more convex cost function surface in at least one dimension, with a steeper gradient towards

the true minimum. Second, it was shown that feature fitting can provide a competitive pa-

rameter estimation using different types of data than concentration data. In particular,

the period appears to be a feature that contains a large amount of information that is use-

ful for parameter estimation, likely due to the implicit definition of a higher-dimensional

boundary value problem in the constraints of the feature-based optimization algorithm.

Furthermore, feature fitting can be an alternative or a complement to concentration-data

based parameter fitting, given that the cost function itself can be added to any least-squares

approach. One known problem with fitting parameters in biological models to data, even

when large amounts of high quality data are available, is that some parameters will be

poorly constrained [39]. Adding other dimensions to the cost function in the form of de-

sired feature behavior of the fitted model can only help to constrain parameters further,

and in a biologically meaningful way.
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Chapter 8

Conclusions

Several contributions are made in this thesis. First, a rigorous mathematical treatment

of sensitivity analysis for all types of autonomous oscillators is presented. The previously

neglected influence of the phase locking condition (PLC) on the solution of the sensitiv-

ity equations is demonstrated to have important effects for understanding and computing

relative phase sensitivities. Through a three-part decomposition of the sensitivities, the

influence of a given parameter on the period, phases and amplitudes of the system is distin-

guished and made accessible for analysis. Moreover, the application of sensitivity analysis

to models of the mammalian circadian clock can result in meaningful insights, under cer-

tain conditions. First, the sensitivity analysis has to be applied to a model with sufficient

physical basis that the individual parameters have meaning on a molecular, mechanistic

basis. Second, in particular for phase sensitivity analysis, it is very important to cast any

biolgical observation into the correct mathematical formulation. If the choice of PLC does

not represent the biology behind the tracking of the phase, the resulting phase sensitivities

will not be biologically meaningful (although they might be interesting on a structural level

for more abstract network analysis). When a detailed, mechanistic model is available, and

the sensitivity analysis is well tailored to a biological question or observation, it was shown

that one can obtain results that explain the mechanistic basis of a biological feature, can

give an indication of the involvement of certain network structures (negative or positive

feedback loops) in its control, and can link information gained from experiments back to

structural insight at the network level.

It deserves mention that as biological knowledge expands, the models representing this
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knowledge will grow in size and their mathematical analysis will depend on having tools

available that scale well. Each of the methods developed and presented in this thesis work

well for models of considerable size, such as those that were analyzed here and scale favorably

as model size increases further.

Through system-wide analyses a general picture of the network design can be gained.

While after performing period sensitivity analysis alone, it seemed as though there might

be a one-to-one correspondence between network architecture and function, this first im-

pression was modified after studying several relative angular phase sensitivities in the same

network. When several performance metrics were compared (amplitudes, phases, period),

the resulting picture was that there exist certain “key parameters” that are involved in con-

troling almost all of them. This new insight moves the emphasis away from the hypothesis

of a modular network design and towards a picture of an integrated network design in which

all functions are carefully balanced against each other and are implemented in a concerted

fashion.

The biggest limitation of sensitivity analysis is its local nature. Therefore, a clear future

direction for this work would be to use dynamic optimization for the study of network

behavior as a function of network parameterization. In Chapters 3 and 6 some work in

this direction was presented, where the phase was modified over a wide range while a

constant period was maintained. Of course, the algorithm used there was very simplistic

and more definite answers could likely be obtained by using more sophisticated optimization

software (e.g., SNOPT [34]) that determine the optimal step size at each step along with

the optimal search direction. By observing how two or more network performance metrics

can or cannot be modified independently, insights into network performance under multi-

objective challenges from the outside might be gained. Multiple simultaneous demands

are likely to be present in nature. For example, it is reasonable to think that a minimum

amplitude must be maintained in order to be able to process clock output. At the same

time, the period should be kept constant, while relative phases may be adapted to match

different contingencies. Given the observation that multiple network functions might locally

be regulated in a concerted way, it would be interesting to see how this compromise and

concerted action translates beyond the local scope.

In order to gain the most biologically meaningful results, the model must be kept as close

as possible to the most recent advances in molecular circadian biology. In Chapter 4 it was

210



demonstrated that the extended model developed here shows good agreement with mutant

behaviors and other experimental data. The choice of parameterization for biological models

is notoriously difficult for several reasons. One is that experimental data for individual

reaction rate constants is scarce. Second, even with a significant amount of data, biological

models often seem to exhibit a certain “sloppiness” in their parameter estimation [39];

in other words it is impossible to identify all parameters uniquely. However, the choice of

parameterization has a significant impact on the results of sensitivity analysis. In this work,

only one parameterization for the extended model was studied extensively, whereas several

others could be identified that matched the data equally well. For comparison purposes,

the parameterization closest to the original model by Forger and Peskin was used, but in

general, no such restriction needs to be made. In order to obtain a more complete picture, it

might be beneficial to establish a set of likely parameterizations, which might all match the

known mutant behavior and trajectory data equally well, and perform sensitivity analysis

on the resulting ensemble of models. In doing so, conclusions and predictions could be

made from commonalities among models, whereas disagreement might indicate the need for

further experimentation [16].

A complementary approach was suggested in Chapter 7, where it was shown that feature

sensitivity analysis can be useful in parameter estimation, and a procedure was presented

that helped to identify more parameters than through concentration-based least squares

fitting alone. This approach could be used for larger models and is fully compatible with

any other type of least-square based fitting algorithm. Such a combination, used with as

much of the experimental data as available, might narrow the parameter choices that are

available for the extended model considerably.
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Appendix A

Data for Alternative Parameter

Sets in Chapter 3
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Table A.1: Parameter indices and descriptions. Parameters of index 25 and higher are
unique to the extended model and represented in italics.

Index Description

1 Max. rate of Per2/Cry transcription

2 MM const. of Per2.Cry transcription

3 Inhibition constant of Per2/Cry transcription

4 Concentration of constitutive activator

5 Hill coeff. of Per2/Cry transcription inhibition

6 Per2/Cry mRNA degradation

7 Per2/Cry complex formation

8 No. of Per2/Cry complex forming subunits

9 PER2/CRY (c) degradation

10 PER2/CRY nuclear import

11 PER2/CRY nuclear export

12 PER2/CRY (c) degradation

13 Max. rate of Bmal1 transcription

14 MM rate of Bmal1 transcription

15 Hill coeff. of Bmal1 transcription activation

16 Bmal1 mRNA degradation

17 BMAL1 translation

18 BMAL1(c) degradation

19 BMAL1 nuclear import

20 BMAL1 nuclear export

21 BMAL1(n) degradation

22 BMAL1(n) activation

23 BMAL1*(n) deactivation

24 BMAL1*(n) degradation

25 Max. rate of REV-ERBα synthesis

26 MM const. of REV-ERBα synthesis

27 Inhibition constant of REV-ERBα synthesis

28 Hill coeff. of inhibition of REV-ERBα synthesis

29 REV-ERBα degradation

30 Hill coeff. of activation of Per2/Cry transcription

31 Inhibition const. of Bmal1 transcription

32 Hill coeff. of activation of REV-ERBα synthesis
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Table A.2: Consensus rankings of parameters by magnitude of AUC of scaled amplitude
sensitivities in the basic model for alternative parameter sets (AP1-AP10).

Parameter set 1 2 3 4 5 6 7 8 9 10

AP1 (Amp) 14 3 8 12 16 6 13 5 17 10

AP1 (Phase) 3 14 16 8 13 12 15 5 17 6

AP1 (Per) 10 6 5 12 8 9 11 24 15 14

AP2 (Amp) 15 14 3 8 1 24 13 2 5 17

AP2 (Phase) 15 3 14 8 1 24 16 2 13 17

AP2 (Per) 15 14 3 8 12 24 1 5 16 2

AP3 (Amp) 14 3 8 16 17 13 15 5 10 12

AP3 (Phase) 14 3 8 16 5 13 15 17 10 6

AP3 (Per) 6 12 5 10 8 11 9 24 14 1

AP4 (Amp) 3 14 12 8 16 5 13 17 10 6

AP4 (Phase) 3 14 12 8 16 13 17 5 6 10

AP4 (Per) 6 10 5 8 12 14 24 3 9 1

AP5 (Amp) 15 14 3 1 6 2 4 16 13 5

AP5 (Phase) 3 12 7 10 8 1 6 2 4 9

AP5 (Per) 1 2 4 5 8 10 6 3 12 7

AP6 (Amp) 15 14 3 8 16 17 13 1 2 24

AP6 (Phase) 3 15 14 10 12 8 5 1 2 16

AP6 (Per) 6 15 5 10 12 14 8 9 3 1

AP7 (Amp) 3 14 16 13 5 12 6 8 5 10

AP7 (Phase) 3 14 5 16 13 12 8 6 17 10

AP7 (Per) 10 6 5 8 14 3 24 12 9 16

AP8 (Amp) 14 3 15 12 6 8 5 16 13 17

AP8 (Phase) 14 3 15 12 6 8 16 13 5 17

AP8 (Per) 6 10 5 8 24 14 15 3 21 9

AP9 (Amp) 15 14 3 8 12 10 16 6 5 1

AP9 (Phase) 3 15 8 14 12 10 5 1 16 2

AP9 (Per) 10 5 8 6 15 14 3 9 12 24

AP10 (Amp) 16 13 8 3 14 5 22 21 7 15

AP10 (Phase) 13 16 17 14 3 8 5 21 15 24

AP10 (Per) 5 8 10 12 6 9 11 14 3 24
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Table A.3: Consensus rankings of parameters by magnitude of AUC of scaled amplitude
sensitivities in the model including the Rev-Erbα loop for all alternative parameter sets
(AP1-AP10).

Parameter set 1 2 3 4 5 6 7 8 9 10

AP1 (Amp) 26 2 31 29 25 27 8 3 16 13

AP1 (Phase) 26 2 25 29 31 3 8 27 5 16

AP1 (Per) 10 6 8 5 12 26 2 25 31 29

AP2 (Amp) 8 13 17 14 3 5 2 32 24 6

AP2 (Phase) 5 3 30 10 12 8 2 16 13 28

AP2 (Per) 12 5 10 6 9 8 13 17 16 24

AP3 (Amp) 25 29 10 27 17 3 13 17 8 26

AP3 (Phase) 3 8 5 25 29 27 10 2 31 16

AP3 (Per) 10 5 8 12 9 6 11 27 16 3

AP4 (Amp) 28 3 10 8 12 2 16 14 27 12

AP4 (Phase) 3 12 8 5 10 2 6 28 27 25

AP4 (Per) 12 6 10 5 9 8 13 17 16 14

AP5 (Amp) 3 13 5 14 16 12 17 24 8 27

AP5 (Phase) 5 3 30 2 12 16 13 14 10 17

AP5 (Per) 13 17 16 14 6 5 24 10 8 22

AP6 (Amp) 3 13 17 14 10 27 28 26 12 17

AP6 (Phase) 3 12 5 10 27 28 6 8 2 26

AP6 (Per) 6 10 5 12 8 9 13 17 16 14

AP7 (Amp) 8 6 17 10 3 12 5 19 13 27

AP7 (Phase) 3 8 10 5 12 16 13 6 17 14

AP7 (Per) 5 8 12 9 10 6 13 14 16 17

AP8 (Amp) 8 5 30 10 3 22 17 18 24 2

AP8 (Phase) 5 30 3 8 10 13 14 16 17 24

AP8 (Per) 5 8 12 9 10 6 13 14 16 17

AP9 (Amp) 26 25 2 10 8 15 24 16 13 17

AP9 (Phase) 26 3 2 25 29 5 12 24 6 22

AP9 (Per) 6 10 5 2 8 9 26 12 29 25

AP10 (Amp) 13 17 27 14 24 22 21 2 5 30

AP10 (Phase) 5 17 16 13 14 2 24 3 30 22

AP10 (Per) 6 12 5 10 8 9 13 16 17 14
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Figure A-1: PCA based clustering of the δ-trajectories for basic model alternative parameter
sets 1-6. Each column represents once principal component. Top row: trajectories within
the mode. Second row: trajectories within the “anti-mode”. Bottom row (green): Principal
component or cluster centroid.
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Figure A-2: PCA based clustering of the δ-trajectories for basic model alternative parameter
sets 7-10. Each column represents once principal component. Top row: trajectories within
the mode. Second row: trajectories within the “anti-mode”. Bottom row (green): Principal
component or cluster centroid.
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Figure A-3: PCA based clustering of the δ-trajectories for extended model alternative pa-
rameter sets 1-6. Each column represents once principal component. Top row: trajectories
within the mode. Second row: trajectories within the “anti-mode”. Bottom row (green):
Principal component or cluster centroid.
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Figure A-4: PCA based clustering of the δ-trajectories for extended model alternative pa-
rameter sets 7-10. Each column represents once principal component. Top row: trajectories
within the mode. Second row: trajectories within the “anti-mode”. Bottom row (green):
Principal component or cluster centroid.
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Table A.4: Alternative parameter sets (APi), and the resulting period of oscillation for the basic model.

j AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10

1 16.948 5.3762 11.538 15.541 16.423 9.4634 7.6179 15.849 12.147 12.963

2 1.9219 1.5185 0.72606 1.967 1.6232 0.75005 1.0672 0.52879 0.73794 0.58793

3 0.50307 0.43483 0.5211 0.96559 0.49207 0.77701 0.91474 0.36897 0.30359 0.72536

4 0.011866 0.0096603 0.0057659 0.018825 0.018053 0.013811 0.018744 0.017675 0.0074928 0.015844

5 10.128 13.103 11.765 15.647 8.2183 12.367 7.723 7.5819 9.6084 9.4873

6 0.13272 0.071764 0.14687 0.15305 0.12755 0.12127 0.19646 0.19733 0.084221 0.11395

7 0.41987 0.53558 0.57556 0.30906 0.23914 0.38889 0.27974 0.29022 0.5575 0.26265

8 3.1419 2.2377 2.267 3.0129 3.4407 1.5888 3.7329 2.857 3.1449 1.3716

9 0.066545 0.092017 0.028563 0.053147 0.099436 0.095459 0.031556 0.030147 0.086471 0.048232

10 0.26227 0.17646 0.17291 0.35706 0.45197 0.18727 0.25333 0.22123 0.40024 0.1689

11 0.035313 0.01749 0.037398 0.033827 0.023915 0.021095 0.012636 0.015619 0.013819 0.029749

12 0.13156 0.19194 0.21944 0.12807 0.20036 0.12403 0.078007 0.060601 0.085849 0.15256

13 5.7909 5.2434 5.6102 2.8112 2.4221 4.8888 2.0122 2.6068 3.0136 7.0463

14 3.5055 4.0476 3.2513 3.5194 4.2369 4.0131 2.3412 1.2423 3.055 1.1773

15 2.2511 2.7372 3.5502 4.6652 5.8604 2.7283 3.2224 5.3156 3.0142 3.2651

16 0.63441 0.7086 0.64566 0.7465 0.86234 1.4961 0.45843 1.1419 0.64032 0.79196

17 0.24444 0.32395 0.4772 0.448 0.1422 0.12801 0.17367 0.47953 0.15176 0.34017

18 0.10846 0.057606 0.058059 0.10853 0.041939 0.087784 0.05229 0.036854 0.10568 0.037084

19 0.40192 0.54758 0.51108 0.33498 0.27955 0.62827 0.70382 0.63693 0.76067 0.47272

20 0.041124 0.1128 0.044158 0.1033 0.031673 0.10153 0.044913 0.042738 0.038017 0.047785

21 0.078582 0.082612 0.20207 0.21218 0.14608 0.15541 0.14981 0.097508 0.12397 0.16849

22 0.14344 0.16784 0.092998 0.17135 0.069093 0.11584 0.15252 0.070324 0.13677 0.14812

23 0.0037021 0.003358 0.001595 0.0031332 0.0043118 0.0042981 0.0054928 0.0036765 0.0057972 0.0051884

24 0.14079 0.16728 0.10819 0.14993 0.13119 0.11233 0.13267 0.15033 0.048505 0.15665

T 24.238 24.117 24.216 23.122 23.174 23.326 23.701 23.378 24.503 24.532
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Table A.5: Alternative parameter sets (APi), and the resulting period of oscillation for the extended model.

j AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10

1 24.113 18.357 29.836 26.16 17.706 16.889 17.977 28.74 9.8219 20.569

2 0.78665 1.4326 0.51986 1.2076 1.9555 1.6336 0.71526 0.79336 1.4445 0.79131

3 0.33667 0.84649 0.61133 1.1918 1.2115 0.97433 1.0825 1.2063 0.64732 1.1945

4 0.0014254 0.0017861 0.00066616 0.0010587 0.0010782 0.0011091 0.0019001 0.0019251 0.00069789 0.0015786

5 7.2969 6.4912 10.873 11.524 10.12 15.51 9.8032 8.1469 9.8746 7.171

6 0.13078 0.10601 0.073071 0.14712 0.16104 0.18768 0.064134 0.094811 0.16529 0.21061

7 0.20296 0.37864 0.27547 0.53999 0.38963 0.29843 0.30302 0.25677 0.50019 0.24932

8 2.1539 3.4864 2.4171 3.2377 2.5518 3.3361 3.4798 1.6592 3.0736 3.3261

9 0.043366 0.0957 0.098295 0.056944 0.091382 0.13932 0.12788 0.12639 0.09613 0.06651

10 0.20499 0.17603 0.45644 0.16835 0.28335 0.30459 0.23766 0.13284 0.25391 0.13216

11 0.031313 0.036483 0.016474 0.016494 0.032606 0.032954 0.02323 0.028832 0.017935 0.026318

12 0.1411 0.19251 0.098654 0.23748 0.070647 0.097437 0.21139 0.14092 0.060379 0.15689

13 3.2078 5.795 4.9807 4.7145 5.3285 3.3246 2.4646 5.0086 5.9107 2.699

14 0.57898 0.79877 0.64719 1.4025 1.1718 1.8855 1.8834 1.2299 1.1169 1.5293

15 5.4331 3.8594 2.7728 4.3961 4.8853 5.2269 1.997 5.8492 2.5623 3.3535

16 2.4854 2.3754 3.5967 1.799 1.0282 0.90344 2.6073 0.97291 1.085 1.5386

17 0.079644 0.10462 0.12333 0.10408 0.11364 0.15253 0.20766 0.26548 0.18209 0.19336

18 0.026116 0.020629 0.04767 0.053097 0.015587 0.051238 0.039103 0.016537 0.017873 0.026655

19 0.19831 0.21543 0.24068 0.28046 0.2285 0.25147 0.23946 0.23252 0.11319 0.20568

20 0.03774 0.074566 0.1146 0.062649 0.065986 0.043952 0.094361 0.08607 0.1074 0.064746

21 0.03626 0.022435 0.054461 0.044406 0.040901 0.054349 0.034704 0.037035 0.056421 0.022393

22 0.043536 0.054614 0.048677 0.052601 0.049908 0.026935 0.055541 0.018544 0.035791 0.015405

23 0.0035366 0.0028077 0.0058623 0.0035036 0.0041181 0.003249 0.0041119 0.0022721 0.0027815 0.0043574

24 0.027673 0.024501 0.026507 0.019284 0.021261 0.029554 0.038916 0.033259 0.026623 0.025676

25 9.6404 13.95 10.633 17.274 8.8036 20.522 7.1693 7.694 17.661 16.925

26 1.6652 1.382 1.38 0.69298 1.3859 1.7573 1.7606 1.9977 1.411 1.4465

27 2.0752 0.68734 1.3677 2.1954 1.0028 0.71365 2.157 0.68326 1.3152 1.3226

28 3.0201 2.2012 1.6414 3.0285 3.4113 2.803 3.9414 3.6475 1.0509 3.0908

29 2.5649 1.6523 1.9026 1.6781 2.3725 1.0762 2.9953 1.7865 2.0334 2.5888

30 8.8397 3.3373 4.8962 4.0958 4.0227 2.7882 3.7609 6.3736 6.2542 7.626

31 0.75673 1.3578 1.5838 0.75482 1.7177 0.87667 0.64014 1.0488 0.90119 1.775

32 1.9053 1.1783 0.61243 1.5647 1.5974 1.5249 1.1574 1.9349 1.9451 1.1885

T 24.244 23.348 23.43 24.596 23.062 23.058 24.412 24.216 24.156 23.21
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Table B.1: Alternative lumped parameter sets (APi), and the resulting period of oscillation for the model by Forger % Peskin [29].

Rankings of the top 25, scaled period sensitivities ∂ ln T
∂ lnp

by absolute magnitude, for the alternative parameter sets presented in Table B.2.
The parameter indices of the unlumped parameters are shown for each alternative parameter set and each of the top 25 ranks.

rank AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10 AP11

1 10.0 20.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 20.0

2 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031

3 2.533 2.533 2.533 2.533 2.533 2.533 2.533 2.533 5.067 2.533 1.267

4 6.784 3.392 1.696 6.784 3.392 1.696 1.696 1.696 3.392 3.392 1.696

5 0.165 0.082 0.165 0.082 0.082 0.165 0.165 0.082 0.165 0.082 0.082

6 0.090 0.090 0.045 0.090 0.090 0.045 0.090 0.180 0.090 0.180 0.180

7 0.436 0.872 0.436 0.872 0.436 0.436 0.436 0.436 0.436 0.872 0.436

8 0.594 0.594 0.594 0.297 0.594 0.594 1.188 0.297 0.297 0.594 0.594

9 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465

10 5.087 10.17 5.087 5.087 10.17 5.087 5.087 5.087 10.17 5.087 5.087

11 0.266 0.266 0.133 0.266 0.266 0.133 0.266 0.533 0.133 0.266 0.266

12 0.352 0.352 0.352 0.352 0.176 0.352 0.352 0.352 0.352 0.352 0.352

13 2.307 1.153 1.153 2.307 2.307 1.153 1.153 1.153 2.307 2.307 2.307

14 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.357 0.713

15 0.836 0.418 0.836 0.836 0.836 0.836 0.836 0.418 0.836 1.673 0.836

16 0.143 0.143 0.143 0.286 0.286 0.143 0.286 0.286 0.572 0.286 0.572

17 1.453 1.453 1.453 0.727 1.453 1.453 1.453 1.453 0.727 1.453 1.453

18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

19 15.42 7.712 7.712 7.712 7.712 7.712 7.712 7.712 7.712 15.42 7.712

20 738.3 1476.5 1476.5 1476.5 1476.5 1476.5 1476.5 1476.5 1476.5 2953.0

21 23.78 23.78 23.78 47.56 11.89 23.78 11.89 23.78 23.78 23.78 23.78

22 807.4 807.4 1614.8 807.4 807.4 1614.8 807.4 807.4 1614.8 807.4 807.4

23 308.8 308.8 308.8 308.8 308.8 308.8 308.8 308.8 308.8 154.4 308.8

24 9.034 4.517 9.034 9.034 18.069 9.034 9.034 9.034 9.034 9.034 9.034

25 15.323 7.662 7.662 7.662 15.323 7.662 7.662 7.662 7.662 7.662 7.662
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26 0.046 0.046 0.023 0.046 0.046 0.023 0.046 0.046 0.046 0.046 0.046

27 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420 0.420

28 0.210 0.210 0.210 0.210 0.421 0.210 0.210 0.105 0.210 0.105 0.210

29 1.809 3.618 3.618 1.809 3.618 3.618 7.236 3.618 3.618 1.809 3.618

30 0.133 0.066 0.133 0.133 0.066 0.133 0.066 0.133 0.266 0.133 0.066

31 21.76 21.76 10.88 43.53 21.76 10.88 21.76 21.76 21.76 21.76 21.76

32 16.25 16.25 16.25 16.25 32.51 16.25 16.25 16.25 16.25 16.25 16.25

33 6.211 12.42 6.211 6.211 6.211 6.211 3.106 6.211 3.106 3.106 6.211

34 0.188 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377 0.377

35 0.299 0.597 0.299 0.597 0.597 0.299 0.299 0.597 0.299 0.299 0.299

36 15.11 15.11 7.56 15.11 7.56 7.56 15.11 30.22 15.11 15.11 7.56

37 0.00017 0.00034 0.00034 0.00034 0.00034 0.00034 0.00017 0.00034 0.00034 0.00017 0.00034

38 115.8 115.8 115.8 57.9 57.9 115.8 231.5 115.8 115.8 115.8 231.5

T 23.96 23.99 24.75 24.85 24.25 24.65 23.96 23.67 24.06 24.41 24.32

225



Table B.2: Rankings of the top 25, scaled period sensitivities ∂ ln T
∂ lnp

by absolute magnitude, for the alternative parameter sets presented
in Table B.2. The parameter indices of the unlumped parameters are shown for each alternative parameter set and each of the top 25
ranks.

j AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10 AP11

1 224 34 34 34 34 34 34 34 34 34 34

2 17 224 224 224 224 224 224 224 223 224 224

3 34 222 17 8 17 17 17 17 16 180 19

4 66 17 19 17 19 19 19 19 39 211 17

5 19 19 66 231 66 66 66 66 23 17 66

6 65 231 91 19 91 91 91 91 9 66 91

7 222 66 27 222 64 27 27 21 224 209 223

8 91 8 35 66 27 35 223 20 22 24 16

9 35 149 56 211 7 56 35 27 1 2 23

10 231 91 7 91 35 7 209 38 19 25 39

11 7 211 209 65 56 222 7 222 10 40 171

12 209 201 222 39 23 40 199 223 56 99 21

13 211 27 65 23 39 22 56 201 64 173 1

14 27 43 23 56 222 23 171 56 33 93 22

15 38 38 39 149 184 39 23 211 27 39 20

16 49 56 171 24 163 147 39 165 43 23 27

17 39 65 199 2 65 65 16 2 5 190 9

18 23 147 223 223 223 231 163 24 41 91 163

19 134 23 43 157 38 149 40 16 231 179 33

20 180 39 147 40 209 155 25 39 222 97 64

21 8 64 231 25 43 58 21 23 8 7 38

22 41 157 40 22 25 163 20 173 38 186 222

23 157 49 25 1 40 171 64 199 91 223 10

24 56 20 211 41 1 49 222 65 122 21 56

25 171 51 149 16 22 41 1 209 17 20 24
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