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Abstract 

The systematic design of experiments to optimally query physical systems through ma-
nipulation of the data acquisition strategy is termed optimal experimental design (OED).  
This dissertation introduces the state-of-the-art in OED theory and presents a new design 
methodology, which is demonstrated by application to DC resistivity problems.  The pri-
mary goal is to minimize inversion model errors and uncertainties, where the inversion is 
approached via nonlinear least squares with L1 smoothness constraints.  An equally im-
portant goal is to find ways to expedite experimental design to make it practical for a 
wider variety of surveying situations than is currently possible. 
 A fast, sequential ED strategy is introduced that designs surveys accumulatively by 
an efficient method that maximizes the determinant of the Jacobian matrix.  An analysis 
of electrode geometries for multielectrode data acquisition systems reveals that experi-
ment-space can be usefully decimated by using special subsets of observations, reducing 
design CPU times.  Several techniques for decimating model-space are also considered 
that reduce design times.   
 A law of diminishing returns is observed; compact, information-dense designed sur-
veys produce smaller model errors than comparably sized random and standard surveys, 
but as the number of observations increases the utility of designing surveys diminishes.  
Hence, the prime advantage of OED is its ability to generate small, high-quality surveys 
whose data are superior for inversion.  
 Designed experiments are examined in a Monte Carlo framework, compared with 
standard and random experiments on 1D, 2D and borehole DC resistivity problems in 
both noiseless and noisy data scenarios and for homogeneous and heterogeneous earth 
models.  Adaptive methods are also investigated, where surveys are specifically tailored 
to a heterogeneous target in real time or in a two-stage process. 
 The main contributions this thesis makes to geophysical inverse theory are: 1) a fast 
method of OED that minimizes a measure of total parameter uncertainty; 2) novel tech-
niques of experiment-space and model-space decimation that expedite design times; 3) 
new methods of adaptive OED that tailor surveys to specific targets; and 4) though the 
OED method is demonstrated on geoelectrical problems, it can be applied to any inverse 
problem where the user controls data acquisition.  
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T T T
new new old old= +g g g g g g  and that T

new newg g  is the energy in g that maps to ‘new 
information’ space and T

old oldg g  is the energy that maps to ‘old information’ 
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Chapter 1  

Introduction 

1.1 Motivation 

In exploration geophysics, it is not uncommon that little or no information is available 

on an area of interest prior to surveying.  The traditional approach is to deploy a stan-

dardized or ad hoc survey to query the earth, and it is taken for granted that such sur-

veys are sufficient to query arbitrary targets.  Contextually, ‘sufficient’ means that the 

acquisition strategy is adequate to produce a data set whose inversion is robust in 

terms of modeling accuracy, which depends strongly on the conditioning of the in-

verse problem, and/or in terms of model uncertainty, which depends strongly on the 

noise in the data and the degree to which it influences the inversion model.  However, 

there is no a priori reason to assume that a standardized survey shall produce a data 

set whose inversion produces either particularly accurate models or particularly small 

modeling uncertainties.  In this sense, standardized geophysical surveys are arbitrary 

and generally suboptimal, for the data they produce are not tailored for the unique 

spatial distribution of material properties at any particular target site.  Standardized 

surveys might produce data that are often adequate, but they generally do not produce 

data that are optimal for particular targets. 

 At first glance, geophysical survey optimality can be qualitatively defined as the 

degree to which the data created by a survey ‘illuminate’ the target region.  For exam-

ple, a survey might be termed optimal if its inverted data produce the most accurate 
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model of the material property of interest when compared to models created by other 

surveys.  Alternately, it may be more natural to define optimality by a survey whose 

inverted data are maximally impervious to the effects of data noise.  If one intends to 

tailor a geophysical survey to an individual target site, a critical first step is to clearly 

define what survey optimality shall mean in that context. 

 The deliberate creation of geophysical surveys tailored for specific settings is 

termed optimal experimental design (OED).  Tangentially, the terms survey and ex-

periment shall hereafter be used interchangeably.  Optimal experimental design is dis-

tinguished principally by the fact that it treats design as a computational problem.  

Rather than taking an empirical or ad hoc approach to the design of geophysical ex-

periments, optimal experimental design differentiates itself in that some sort of design 

objective is mathematically posed and then solved in a computational, optimization 

framework.  There are numerous ways of implementing OED depending on the goals 

of the geophysicist and the setting in which it is applied.  Nonetheless, at the end of 

the day, all varieties of optimal experimental design have the same prime objective: to 

create a compact set of observations that minimizes expense (in terms of time and 

money) while producing superior data quality. 

 Where geophysical data acquisition and analysis are concerned, there are arguably 

two distinct classes of experimental design:  Adaptive and Specific OED.  Adaptive 

OED, which might also be called Unspecific OED, assumes that a functional relation-

ship between data and model is known but that information on the particular target 

region is unspecified.  This is why it is adaptive; the experiment can be refined or 

adapted as information on the target is gathered. Specific OED also assumes that a 

functional relationship between data and model is known, but in contrast to Adaptive 

OED, information on the particular target region is already known or specified.  In 

this light, adaptive OED is really just a generalization of Specific OED, because spe-

cific models are hypothetically refined through time, allowing the designer to itera-

tively adapt the experiment to be better tailored to the site where it is employed.   On 

the face of things, Specific OED is debatably the easier of the experimental design 

frameworks because the designer can focus on optimizing a survey for a single, 
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known model.  Adaptive OED is more complicated because the geophysicist must es-

tablish design objectives and solver algorithms for a problem where model informa-

tion does not initially exist or is being refined in real time. 

 There are two important distinctions worth noting here.  First, there is a difference 

between active and passive experimental design problems.  ‘Active’ refers to active 

remote sensing techniques, where the observer controls both when/where observations 

are made and when/where energy is injected into the system.  ‘Passive’ refers to pas-

sive remote sensing techniques, where the observer controls when/where observations 

are made but not when/where energy is injected into the system.  DC resistivity is an 

example of active remote sensing, where the observer injects electrical current into 

the system at known positions and times and observes how the intervening medium 

reacts to the excitation.  Earthquake location is an example of passive remote sensing, 

where the observer waits for, or depends on, an event (an excitation source) to make 

observations, and which frequently also entails trying to locate the excitation source. 

 The second distinction is between what might be termed functional and non-

functional experimental design.  ‘Functional’ experimental design refers to situations 

where there is a known mathematical/physical relationship between data and model, 

whereas ‘non-functional’ ED refers to the case where no such relationship is known.  

The former case applies for standard inverse problems, which assume as given a 

mathematical relationship between data and model, while the latter case typically ap-

plies where no deterministic mathematical relationship is posited but where a statisti-

cal relationship is at least assumed. 

 To appreciate the difference between an optimal and a non-optimal experiment, let 

us consider an amusing, albeit unrealistic, lunar physics problem.  There is an astro-

naut on the moon who wants to be a professional baseball pitcher.  This astronaut has 

brought a baseball to the moon to conduct an experiment where he will throw the ball 

as hard as he can while his companion records the trajectory of the ball using time-

lapse photography.  The pitching astronaut wants to determine (1) the moon’s gravita-

tional acceleration, (2) his release velocity and (3) how tall he is.  Unfortunately, his 

companion is so tickled by the experiment that she cannot help laughing while taking 
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measurements and is jiggling the camera, creating errors in observation both in the 

horizontal and vertical axes.  For the sake of exposition, let us assume that the time-

lapse camera can be programmed to take snapshots at any instant desired, with infi-

nite precision.  The equations of state governing this simple problem are 

 
( ) ( )

( ) ( )

0

21
2

x

y

x t v t t

y t gt h t

ε

ε

= +

= − + +
 (1.1) 

where x(t) and y(t) are the x and y positions of the ball recorded at time t, v0 is the re-

lease velocity, g is the gravitational acceleration on the moon, h is the height of the 

pitching astronaut, and  and ( )x tε ( )y tε  are the errors in observation created by the 

laughing astronaut at time t.  An example of what the time-lapse photo might look like 

is shown in Figure 1-1.   

 The problem is to invert the noisy x and y positions to derive the most accurate 

possible estimates of g, v0 and h.  The astronauts have decided to conduct the experi-

ment two different ways.  The first experiment records the ball’s position at 50 equis-

paced time intervals, from the moment of release to the moment of landing, and the 

second experiment records the ball’s position 50 times according to a very particular 

sampling schedule (Sampling Schedules 1 and 2, respectively; see Figure 1-2).  To 

reiterate, let us assume that the camera can be programmed to take snapshots with in-

finite precision at any instant in time, even if these instants are separated by an infini-

tesimal increment of time.   

 To get an idea which of the experiments is superior for accurately estimating the 

inversion parameters, we performed a Monte Carlo investigation wherein each ex-

periment was simulated 1000 times with different realizations of observation noise, 

and the data were inverted for each instance.  This simulates the expected range of 

modeling errors that would be caused by the laughing astronaut.  Figure 1-3 shows 

cross-plots of the parameter estimates for the Monte Carlo simulations of the two ex-

periments and histograms of their model % rms errors.  The scatter plots clearly indi-

cate that the expected ranges of percent error in the parameter estimates are smaller 

with respect to Sampling Schedule 2, especially for estimates of lunar gravitation, g.  
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The histogram in Figure 1-3 further validates that Sampling Schedule 2 is better than 

Schedule 1.  The histogram shows the model % rms errors for all three parameters to-

gether, and it clearly shows that Sampling Schedule 1 has a higher probability of pro-

ducing large model errors compared to Schedule 2.  Hence, the astronauts should use 

Sampling Schedule 2 to get the best estimates of g, h and v0, so long as the laughing 

astronaut cannot get control of herself!  For the curious reader, the true values were g 

= 1.6 m/s2, v0 = 35.8 m/s and h = 1.8 m.  The estimated values were g = 1.6 ± 0.08 

m/s2, v0 = 35.8 ± 0.03 m/s and h = 1.8 ± 0.04 m for Sampling Schedule 1 and g = 1.6 

± 0.05 m/s2, v0 = 35.8 ± 0.03 m/s, and h = 1.8 ± 0.03 for Sampling Schedule 2.  These 

estimates further demonstrate that Schedule 2 produced less model uncertainty than 

did Schedule 1.   

 Naturally, the reader might wonder where Sampling Schedule 2 came from for this 

astronomical sports problem.  That question is at the heart of this research.  This ques-

tion is addressed in this thesis in the limited framework of geoelectrical problems, but 

the reader should appreciate that the ideas presented here are applicable to any re-

mote sensing technique. 

1.2 Context 

As the title states, geophysical optimal experimental design in this thesis is ap-

proached in the context of geoelectrical problems.  To provide a general reference for 

survey design, a brief introduction to the instrumentation and procedures by which 

resistivity data are collected and inverted is provided.  Please note that only 1D and 

2D problems are examined in this research.   

 Figure 1-4 shows a cartoon representation of a resistivity setup for 2D surface re-

sistivity.  Instrumentation and procedures for 1D resistivity are similar to the 2D case 

shown here, and what differences exist will be discussed.  A number of survey elec-

trodes are arrayed collinearly along the ground, most often at equispaced intervals, 

and are connected to a resistivity meter via a multiplexor.  In nearly all resistivity ap-

plications, four electrodes are used to make a field observation; two as a current or 

 37



source dipole, across which a known current is injected into the ground; and two as a 

potential or receiver dipole, across which the earth’s response to the injected current 

is measured as an electrical potential.  The resistivity meter is the primary instrument 

in field exercises.  This instrument contains a program/schedule that specifies the 

combinations of 4-electrode or quadrupole observations comprising a survey or ex-

periment. The resistivity meter communicates this program to the multiplexor, which 

is like a sophisticated switchboard that accepts and executes observation commands 

from the resistivity meter.  Following these instructions, the multiplexor opens and 

closes relays to the electrodes for each source/receiver combination.  The current di-

pole is excited from the power supply, which forms a closed electrical loop with the 

multiplexor, and the values of injected current and observed potential pass from the 

multiplexor back to the resistivity meter.  The master computer has one or more roles.  

It can be used to control the resistivity meter, communicating survey instructions, 

and/or it inverts the resistivity data via an inversion algorithm.  Geoelectrical inver-

sions are typically carried out on piecewise constant, mesh-grid models of the earth, 

like the one shown in Figure 1-4.  In view of the work carried out in this thesis, the 

master computer may also be tasked with optimizing geoelectrical surveys in the field 

and automatically passing these survey instructions to the resistivity meter for execu-

tion. 

 The field setup described above is what is known as an automated multielectrode 

system.  Once the electrodes and cables have been laid out and the resistivity meter 

(or the master computer) has been programmed with a geoelectrical survey or experi-

ment (a suite of quadrupole observations), the field operator simply hits the ‘execute’ 

button and the resistivity data set is automatically collected.  For the 20-electrode 

setup in Figure 1-4, it might take one hour to lay out the electrodes and cables.  A sur-

vey of several hundred to as many as a thousand observations would typically be col-

lected with this number of electrodes, and depending on the sophistication of the mul-

tiplexor, the field data might take anywhere from a half hour to two hours to collect.  

Because the survey electrodes must be pre-placed to take advantage of automated data 

collection, there are a finite number of possible quadrupole combinations.  The com-
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binatorial character of these surveys presents interesting challenges for geoelectrical 

experimental design as will be seen in later chapters. 

 Setup and data collection for 1D resistivity is slightly different.  First, one-

dimensional resistivity assumes the earth can be modeled by a series of horizontal 

layers, rather than by a piecewise-constant mesh.  Second, while it is necessary to pre-

place the electrodes for automated 2D data collection, 1D resistivity actually goes 

faster without automation, so electrodes can be placed anywhere along the survey 

line.  As will be seen later on, this opens up 1D resistivity experimental design to an 

infinitude of possible observations, which poses its own unique challenges. 

1.3 Background 

Despite nearly five decades since survey optimization began to appear in the litera-

ture, experimental design is still an emerging field in computational geophysics.  Im-

provements in fast, cheap computing have helped geophysical data inversion to blos-

som over the past several decades, and modern computational power is now making 

geophysical experimental design a serious possibility.  There are two reasons it has 

taken OED so long to develop. First, geophysical inverse theory/practice ostensibly 

needed to mature first (10,000 papers have been published on data inversion over the 

past five decades while only 100 have been published on experimental design over the 

same interval (Maurer & Boerner, 1998a).  It could not have been readily obvious to 

inversion practitioners the importance of the experiment until geophysical inversion 

had itself fully matured; only then would it be natural to inquire whether smarter data 

could be collected.  Second, OED is generally more computationally expensive than 

data inversion.  The high computational overhead of OED derives from the fact that 

its search space (experimental space) is frequently discrete, combinatoric and com-

patible only with so-called exhaustive or global search algorithms like the genetic al-

gorithm, simulated annealing, et cetera (e.g. Curtis, 1999b). 

 Research in geophysical OED has increased in the past decade, with contributions 

coming primarily from the independent and collaborative works of Maurer (1998a; 
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1998b; 2000), Curtis (1999a; 1999b; 2000; 2004) and their associates (Stummer et al., 

2002; van den Berg et al., 2003; Stummer et al., 2004), with a few other authors hav-

ing published during this time as well (Forsell & Ljung, 2000; Furman et al., 2004; 

Narayanan et al., 2004; Wilkinson et al., 2006a; Wilkinson et al., 2006b; Furman et 

al., 2007).   

 Geoscientists have considered optimal experimental design for such problems as 

cross-borehole seismic tomography (Curtis, 1999a), microseismic monitoring surveys 

(Curtis et al., 2004), oceanographic acoustic tomography (Barth & Wunsch, 1990),  

1D electromagnetic soundings (Maurer & Boerner, 1998a; Maurer et al., 2000), 2D 

resistivity (Stummer et al., 2002; Stummer et al., 2004; Wilkinson et al., 2006a; Wil-

kinson et al., 2006b), seismic amplitude versus offset (van den Berg et al., 2003), and 

oceanographic bathymetry inversion (Narayanan et al., 2004).  These works use a va-

riety of objective functions to establish a mathematical definition of experiment opti-

mality, but all are alike in that the basic formulation of the OED problem, as will be 

seen in the next chapter.  

 Recent work in geoscientific experimental design (see any of the aforementioned 

citations) has been based on the linear approximation of (predominately) nonlinear 

model functions, whose elements have been manipulated in an optimization frame-

work to give rise to optimal data acquisition strategies.  Aside from linearization, the 

defining characteristic of many of these efforts has been their use of so-called global 

or stochastic search methods to optimize data surveys.  Examples of such optimiza-

tion techniques include simulated annealing and genetic algorithms, both of which 

have been employed in experimental design exercises (e.g., Barth & Wunsch, 1990; 

Curtis, 1999a, respectively).  It is well known that global search strategies are well 

suited to finding global minima, even in the presence of multiple local minima, which 

is one of the reasons these methods have been so widely used in experimental design 

research (Curtis & Maurer, 2000).  However, though they can be guaranteed to find 

global minima, global search strategies are among the least efficient optimization 

techniques (acknowledging that sometimes they are among the only strategies for 

finding global minima for certain kinds of problems, such as combinatorial problems 
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(Du & Pardalos, 1998)).  Design computation times on the order of hours or days 

have been reported in the literature (e.g., Curtis & Snieder, 1997; Wilkinson et al., 

2006a) for modestly-sized inverse problems. 

 Because of the mathematical nature of optimal experimental design, a discussion 

of the background of OED methodologies is forestalled until the next chapter, where 

it provides an instructive foundation for a proposed, novel method of OED. 

 In some situations, the computational expense of optimal experimental design, 

implemented via global search methods, may be comparatively low, such that the user 

is willing to accept the cost/benefit ratio, where cost equates with the computation 

time and benefit equates with the degree to which data quality can be improved.  

However, there are plenty of practical situations where the cost/benefit ratio is pro-

hibitively high.  For example, suppose a team of geophysicists is given a week to as-

sess a geothermal region with a set of 20 electromagnetic soundings distributed over 

tens of square kilometers of unknown subsurface.   Once some prelimnary soundings 

have been performed and subsurface images produced, the team may wish to adapt 

their EM surveys, based on that information, to reduce inversion model uncertainties. 

However, an OED method that takes hours or days per survey would clearly be im-

practical. 

  The question naturally arises: Can experimental design be formulated so that the 

inefficiency of global search methods can be avoided?  Or, put another way, can OED 

be streamlined to make it practical for a wide variety of remote sensing settings? 

1.4 Thesis Plan 

The primary objective of this thesis is to develop a method for systematically design-

ing geoelectrical surveys that produce smart data, data that have superior characteris-

tics for inverse problems.  To be clear then, the geophysical experimental design exer-

cises examined herein are functional, meaning that constitutive equations governing 

the relationship between model and data are given, and they pertain to active remote 

sensing techniques, because the observer controls both the sources and receivers.  The 
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systematic design of experiments is treated as an optimization problem, solvable by 

any number of optimization algorithms.  The concept of smart data is fully developed 

in Chapter 2, where a mathematical objective function is proposed whose minimiza-

tion gives rise to optimal experiments.  Chapter 2 also discusses several historic ob-

jective functions that have previously been published, in an effort to clarify the mean-

ing of survey optimality.  This chapter concludes with the introduction of several 

novel experimental design optimization algorithms.  Chapters 3 – 5, which are anno-

tated below, examine the design methodology in the context of three geoelectrical 

scenarios of increasing difficulty, in the sense that the number of model parameters 

increases for each scenario.  This necessitates various tricks and workarounds that at-

tempt to expedite the design procedure, which becomes slower commensurate with an 

increase in the number of model parameters for which experiments are designed. 

 Chapter 3 applies the theory developed in Chapter 2 to 1D surface resistivity prob-

lems, particularly in the presence of noisy data.  A distinction between continuous and 

discrete experimental search spaces is discussed, which has ramifications for the types 

of solver algorithms one can apply to the design problem. Designed surveys are com-

pared with standard Schlumberger and Wenner surveys in a Monte Carlo framework 

to produce a statistically meaningful purview of their relative inversion performances.  

Both unspecific (homogeneous earth assumption) and adaptive OED approaches are 

examined.  In addition, Chapter 3 examines the issue of data noise created by elec-

trode misplacement and comes up with a surprising discovery. 

 Chapter 4 examines the novel OED method in the context of single-borehole DC 

resistivity.  As in Chapter 3, designed surveys are compared with standard and random 

surveys in a Monte Carlo setting.  Both unspecific and adaptive experimental designs 

are considered, and especially ‘real-time’ adaptive OED is taken up and examined at 

length.  Chapter 4 works with discrete experimental design spaces, which are benefi-

cially reduced in size through a novel examination and application of the properties of 

electrical resistivity tomography (ERT) quadrupoles.  Both noiseless and noisy data 

scenarios are investigated.  
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 Chapter 5 investigates the OED method in the context of 2D surface resistivity.  

The number of model parameters in this chapter is the largest of the three chapters, 

and special attention is paid to expediting the design algorithm through several novel 

model-parameter reduction schemes.  Again, designed surveys are compared with 

standard and random surveys in a Monte Carlo setting, and both unspecific and adap-

tive OED techniques are considered. 

 Chapter 6 summarizes the results, insights and conclusions of this thesis.  Follow-

ing the concluding chapter are four Appendices.  Appendix A introduces the Differen-

tial Evolution algorithm, which is used to search the continuous experimental search 

spaces in Chapter 3.  Appendix B provides an alternate analytic derivation explaining 

empirical results in Chapter 3 concerning electrode misplacement errors.  Appendices 

C and D tabulate the Pseudosection and ERL surveys, respectively, which are used 

extensively throughout Chapters 4 and 5. 

1.5 Contributions 

Below is a list of significant contributions this thesis adds to the fields of optimal ex-

perimental design and geoelectrical theory in general. 

• A novel, computationally inexpensive basic method for optimizing data acqui-

sition strategies, which is applicable not only to geoelectrical problems, but 

also to any active source remote sensing technique that relies on data inver-

sion. 

• Several novel techniques of adaptive experimental design. 

• Identified a law of diminishing returns for optimal experimental design, show-

ing that OED is best used to create compact, smart data sets. 

• Several computational expedients that can usefully be applied to any kind of 

optimal experimental design problem. 

• An analysis of how electrode misplacement errors affect data noise, and 

thereby modeling errors, for 1D resistivity. 
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• An analysis of electrode geometries for fixed-electrode surveys that identifies 

a significant cause of resolution limitations in the inverse problem. 

• An analysis of electrode geometries for fixed-electrode surveys showing that 

all quadrupole observations can be classified as one of three types.  Further 

analysis of these three configurations demonstrates that one of the most widely 

used geoelectrical survey, the Pseudosection survey, produces markedly infe-

rior data quality. 
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Figure 1-1 Example of a noisy time-lapse shot. 
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Figure 1-2 Two sampling schedules (experiments) the astronauts can use to observe 
the ball trajectory.  Schedule 1 uses equispaced time intervals from the ball’s release 
to its landing.  Schedule 2 uses an ‘optimized’ experiment where most of the sample 
snapshots are taken right after release and right before landing.  Noisy data from these 
two experiments are ultimately used to estimate the lunar gravitational acceleration, g, 
the release velocity of the pitching astronaut, v0, and height of the pitching astronaut, 
h.
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Figure 1-4 Cartoon of a typical setup for an automated, multielectrode 2D resistivity 
system.  Because data are automatically collected, the electrodes must be pre-placed 
and remain in position during the survey.  The resistivity meter contains a user-
supplied progam that describes the resistivity survey, which is communicated to the 
multiplexor.  The multiplexor is like a sophisticated switchboard that accepts com-
mands from the resistivity meter on which quadrupoles to use for each datum in the 
experiment.  The power supply forms a closed electrical loop with the multiplexor and 
supplies the source electrodes with current.  A master computer is sometimes used to 
remotely control the resistivity meter, making the resistivity meter a slave.  The mas-
ter computer also inverts the resistivity data and, in the future, may be responsible for 
designing optimal experiments. 
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Chapter 2  

Theory 

2.1 Basics 

Optimal experimental design can be qualitatively viewed as a systematic method to 

maximize the connection between the data collected and the model from which they 

derive.  Whenever there is a known mathematical relationship between data space and 

model space, experimental design is clearly contingent upon that relationship.   The 

relationship between geophysical data and model is expressed by some forward op-

erator g, which maps a model m to data d, via 

 ( )d g m= . (2.1) 

g may either be linear or nonlinear with respect to m, though in the context of geo-

physical problems, it is almost always nonlinear. For example, for geoelectrical prob-

lems, Poisson’s equation states that 

 ( ) ( )σ φ δ∇ ⋅ = −∇ ⋅ ∇ =J x , (2.2) 

where J is the current density, σ is the spatial distribution of electrical conductivity 

(the reciprocal of resistivity, ρ), and φ is the electrical potential field arising from a 

point current source at position x.  In this context, the data, d, correspond to the po-

tential field, φ, and the model, m, corresponds to the electrical conductivity distribu-

tion, σ (or its reciprocal, ρ).  Hence, g is a nonlinear function that operates on the 

conductivity distribution (model) to produce data (electrical potentials) such that both 
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data and model satisfy the nonlinear partial differential equation in (2.2).  For the 

purposes of the following theory, it shall be necessary to assume that the forward op-

erator is at least once differentiable with respect to the model values; that is, g m∂ ∂  

must exist. 

 Equation (2.1) is incomplete insomuch as it does not explicitly account for the ex-

periment that is used to establish the connection between model and data.  It is more 

accurate to explicitly state this mapping as 

 ( );d g m ω= , (2.3) 

where ω is a data station (see Figure 2-1.a), which can be thought of as a point in ex-

periment space.  Equation (2.3) explicitly expresses a mapping from two spaces 

(model and experimental space) to one space (data space), but this is still not yet a 

fruitful way to think about optimal experimental design.  Rather, experimental space 

is a large, possibly infinite, set of mappings, where each mapping associates with a 

single experiment (Figure 2-1.b) that links data and model space in a unique way.  

Some mappings are two-way (invertible), some are one-way (noninvertible), and each 

has a different ‘quality’ or ‘fitness’, specifying how strongly it connects data space 

and model space together.   

 Viewed in this simple, qualitative manner, the object of the experiment designer is 

to find an experiment from the set of all possible experiments that produces the high-

est ‘quality’ mapping between model and data.  Preferably, this mapping should be 

two-way or what is known in real analysis as an injective or one-to-one mapping 

(Bartle & Sherbert, 2000).  Briefly, denoting data space D and model space M, an in-

jective mapping between M and D requires that every model in M maps to a unique 

data set in D, bearing in mind that the mapping is actualized by the particular experi-

ment used (see Figure 2-1).  Injectivity ensures uniqueness in the forward and inverse 

mappings between M and D, and it thereby also ensures that the modeling operator, g, 

is invertible, as alluded to above.  This follows because ( );g m ω  is invertible with 

respect to m if and only if ( )( )1 ;g g m mω− =  for all m.  If m M∈  and ( );g m Dω ∈ , 

and if every m in model space maps to a unique ( );g m ω  in data space, then the in-
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verse mapping, from D to M, logically must return ( );g m ω  to the point in model 

space from which it originated.  Hence, if g is injective then ( )( )1 ;g g m mω− =  for all 

m, satisfying the definition of invertibility.  The question is: what has this to do with 

geophysical inverse problems?   

 The answer to that question is straightforward: we should like for designed ex-

periments to give rise to well-posed inverse problems that have unique solutions. 

Therefore, we seek an experiment, ω, that ensures the invertibility of Equation (2.3) 

such that for any model, m, we can solve for a unique d.  To do this, the experimental 

design problem must be cast in the mathematical framework of the inverse problem.  

The ‘quality’ of an experiment must depend in part on the ‘strength’ of the forward 

mapping it produces from model to data space but especially on the ‘strength’ of the 

inverse mapping it produces from data to model space.  Consequently, experimental 

‘quality’ must be conflated with the inverse problem.  Later on, it will become neces-

sary to consider the possibility that an inverse problem can never be well posed, and 

this necessarily affects the definition of experiment ‘quality’.  For now, however, it is 

important to lay the basic foundation for optimal experimental design, and focusing 

on problems that can be well determined is a good starting point. 

 Equations (2.1) and (2.3) are nonlinear continuous expressions.  To estimate the 

model that gives rise to some observed data, Equation (2.3) must be inverted.  To do 

so for geophysical problems, the earth is traditionally discretized into semi-infinite 

discrete layers (1-dimensional models) or into regular/irregular meshes (2- and 3-

dimensional models) within which earth material properties are treated as constant.  

An analogous mathematical relationship is then established between the discretized 

earth model and the constitutive equations that govern the physical phenomenon of 

interest (electromagnetic, elastic, gravitational, etc.).  From the discretized representa-

tion derive data vectors, d, and discretized-model vectors, m.  A linear approximation 

of g is generated by first-order Taylor expansion (e.g., Lanczos, 1961), giving rise, in 

matrix-vector notation, to 

 ∆ = ∆d G m , (2.4) 
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where G is the sensitivity (Jacobian) matrix, comprising the partials of ( , ig )ωm  with 

respect to the discretized model parameters mj: 

 ( ); i
ij

j

g
G

m
ω∂

≡
∂
m

. (2.5) 

For Equation (2.4) to be a tractable geophysical problem in the inverse sense, it is 

necessary to model the earth with a finite number of discrete parameters such that 

piecewise-constant models approximate the earth.  The following development treats 

earth models as being piecewise-constant approximations to the true earth model, and 

particularly, the mathematical formulation of the optimal experimental design prob-

lem is cast in terms of piecewise constant models.   

 Because of its widespread use throughout the remainder of this and subsequent 

chapters, it is necessary to formally define a data sensitivity kernel (hereafter labeled 

simply sensitivity kernel), which is the vector of partials of g with respect to all model 

parameters for a single data observation: 

 ( );g ω∂
≡

∂
m

g
m

, (2.6) 

where ω is a single observation or data station.  Clearly, the rows of G comprise these 

sensitivity kernels: 
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where gj is the sensitivity kernel corresponding to the jth data station, ωj, and where 

there are a total of D observations. 

 It should be clear that Equation (2.4) linearly approximates Equation (2.3) in the 

neighborhood of the discrete model, m, and that G is thus a linear approximation of 

the nonlinear forward operator, g.  The Jacobian and its generalized inverse, G and 

G*, respectively, are the algebraic operators upon which optimal experimental design 

typically operates, either explicitly or implicitly.  This is because these two matrices 
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govern the transformations or mappings back and forth between data and model 

space.  In a sense, G and G* contain information on how these transformations are 

actuated, an idea that is revisited later in this chapter.  If the information in G and G* 

is ‘strong’, the mapping between M and D is strong.  If G is singular, the mapping be-

tween model and data space is not two-way and G* is technically undefined.  How-

ever, this is typically circumvented by imposing additional ‘external’ information in 

the form of so-called model regularization, which enforces an assumption about the 

earth model such as smooth spatial variability.  In point of fact, as will be seen in the 

next section, researchers have proposed several different measures of experiment 

‘quality’, and all of these operate in some fashion on G or G*.  

 Nonlinear least squares inversion starts with an initial guess in model space and 

iteratively describes a trajectory through model space as updates are generated:  

 
*

1

n n n

n n+

∆ = ∆

n= + ∆

m G d
m m m

, (2.8) 

where m0 is a user-specified initial model guess and where  and  are respec-

tively the Jacobian matrix and residual vector at the nth iteration, both of which are 

implicitly dependent on the nth-iteration model vector, mn.  For nonlinear inversion, 

an experimental design should ideally be optimal not only with respect to the true so-

lution (which is typically unknown) but also desirably with respect to each of the 

models through which the inversion passes on its trajectory to the true solution. This 

objective cannot be practically satisfied because it requires foreknowledge of the in-

version’s trajectory through model space, but it serves to highlight the necessity for 

OED to be realistically posed.  This point cannot be overstressed; the majority of pub-

lished studies have simply used true models (Maurer et al., 2000), homogeneous 

models (e.g. Stummer et al., 2004), or checkerboard models (Curtis, 1999b) for de-

signing geophysical experiments.  We do not claim that such approaches are without 

merit, only that they are unrealistic for actual field exercises; it is no more probable 

that we know the true earth model a priori than it is that the earth is homogeneous or 

a checkerboard.  Such exercises are certainly instructive and guide us to deeper in-

sights into the geophysical OED endeavor, which is, after all, still only in its nas-

*
nG nd
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cence.  Nonetheless, the purpose of optimal experimental design should be to create 

surveys that are individually tailored to the specific target being queried, not to ge-

neric or unrealistic models.  The models above should only be used as starting points, 

and subsequent experiments should then be adapted to the target as refining informa-

tion becomes available.   

 These concepts are exemplified in a hypothetical, 2-parameter problem shown in 

Figure 2-3.  Panel (a) shows an ‘inversion trajectory’ through model space for a 

nonlinear inverse problem with noisy data.  The green dot indicates the initial model 

guess for which an optimal experiment has ostensibly been designed.  Based on the 

discussion above, the initial model could be, for example, homogeneous or a checker-

board (e.g., but not the true model because this can never realistically be known!).  

The grey region around the initial model delineates the neighborhood for which the 

designed experiment is ‘optimal’, bearing in mind that the experiment has been de-

signed with respect to a linear approximation of the forward operator.  The final solu-

tion (red dot) is not within this ‘optimal design’ region and therefore the experimental 

design cannot be said to be optimal with respect to it.  As regards Panel (a), it would 

be ideal if it were possible to create an experiment that was optimal at all points along 

the inversion trajectory, but as was pointed out above, this presumes foreknowledge 

of the inversion trajectory, which is impossible.  In point of fact, the inversion trajec-

tory is dependent on the experiment, and if we alter the experiment we alter the tra-

jectory.  So even if we knew the trajectory in Panel (a), it would pertain only to the 

experiment that was used to perform that inversion.  Any alteration of this experi-

ment, through design, would create a different, unknown trajectory for which there 

would be no guarantee of optimality along its path.  This explains why nonlinear ex-

perimental design, as it might be called, would be very difficult, if not impossible. 

 Figure 2-3.b shows a hypothetical example of what the inversion trajectory for 

this simple 2-parameter might look like if we were to implement some sort of adap-

tive experimental design.  Figure 2-3.a demonstrated that, owing to the limitations 

imposed by linear approximation of Equation (2.3), an experiment designed for a 

model significantly different from the true model could not guarantee experiment op-
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timality in the neighborhood of the true model.  If we designed a new, optimal ex-

periment with respect to the converged solution in Figure 2-3.a (red dot), it is hypo-

thetically possible to improve inversion accuracy (defined as the model rms error be-

tween the true solution and the inversion model) and ensure that the designed experi-

ment produces a region of optimality (grey area) more likely to encompass the true 

solution.  Effectively, this new experiment would be deliberately adapted to the true 

model (or at least to one in the neighborhood of the true model), rather than to an ar-

bitrary model such as a homogeneous or checkerboard earth.  A well-designed ex-

periment would hypothetically produce an inversion model closer to the true model as 

well as a region of optimality that encompasses both the inversion model and the true 

model. 

 Many researchers have underemphasized that (2.4) is a linear approximation of 

(2.3) and is thus only valid in a small neighborhood about the current point in model 

space.  This also means that G is only valid in this neighborhood (an important dis-

tinction for nonlinear least squares inversion).  Curtis and Spencer (1999c) were the 

first to point this out in the literature, and van den Berg et al. (2003) are the only re-

searchers to date who have explicitly addressed this nonlinearity. 

 So far, we have developed some of the basic foundations for thinking about geo-

physical OED, but in the preceding developments, definitions of ‘survey optimality’, 

‘data quality’ and the ‘strength’ of the mapping between data and model space were 

not set forth.  The following section introduces a short history of contemporary OED 

for earth science problems.  Within this section, the concept of design optimality will 

come into focus, paving the way for the introduction of a novel OED methodology 

that is the showpiece of this entire work. 

2.2 Historic Objective Functions and OED Algo-
rithms 

In this section, a number of historic OED objective functions are reported followed by 

a mathematical discussion that elucidates their meaning or intention.  The section then 
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closes with a discussion of the characteristics of OED problems that has induced pre-

vious reasearchers to employ global search optimization algorithms. 

 Curtis (1999a) identified five OED objective functions from the literature, all of 

which operate on the eigenspectrum of : TG G

 ( ) { }| , 1,...,T T
i i i i iλ λ λ≡ = ∀ =G G G Ge e N . (2.9) 

This list of objective functions includes: 

( )
1

1 1 2

tr TN
i

T
i

λ
λ=

Θ = =∑
G G

G G
, (Curtis & Snieder, 1997)  (2.10) 

2 log for pre-defined fixed k kλΘ = , (Barth & Wunsch, 1990) (2.11) 

3 ,  such that  for some pre-defined tolerance kk λ δ δΘ = > , (Curtis, 1999a) (2.12) 

( 1

4
1

1 tr
N

T

i i

δ
λ δ

−

=

− ⎡Θ = = − +⎢⎣+∑ G G I) ⎤
⎥⎦

, (Maurer & Boerner, 1998a) (2.13) 

5
1

log      if 
log ,  where 

Penalty    if  

N
i iT

i i
i i

δ

λ λ δ
γ γ

λ δ=

≥⎧
Θ = = ≡ ⎨ <⎩

∑G G , (Rabinowitz & 

Steinberg, 1990; Steinberg et al., 1995)  (2.14) 

Other objective functions that have recently been proposed include: 
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where M is the number of model parameters, D is the number of data observations, 

and αj is a weighting term corresponding to the jth model parameter that allows the 

user to ‘focus’ an experimental design on particular parameters or regions.  Addition-

ally, Stummer et al. (2004) and Wilkinson et al. (2006a; 2006b) have proposed some-

what complicated objective functions that effectively attempt to maximize the similar-

ity between the model resolution matrices of a designed experiment and the (hypo-
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thetical) experiment of all possible observations.  Briefly, the model resolution matrix 

is most generally defined as 

  (2.17) *=R G G

where G* is the generalized inverse of G (Backus & Gilbert, 1970; Menke, 1989).  

The resolution matrix is a square symmetric matrix, having the same number of di-

mensions as the model vector, m.  Its columns (or rows) specify the degree to which 

each model parameter in m can be resolved.  If the ith column of R, which corre-

sponds to the ith model parameter in m, takes a value of 1 at its ith index and zeros 

elsewhere, we say the that the ith model parameter is perfectly resolvable, given the 

experiment.  Otherwise, the ith model parameter is obviously not perfectly resolvable 

(Backus & Gilbert, 1970), and this means that the inversion is ill-posed and must rely 

on some form of model regularization.  Hence, the resolution matrix will be the iden-

tity matrix whenever the inverse problem is well-posed and something other than the 

identity matrix when it is ill-posed. 

 It is instructive to consider the meaning of these various objective functions listed 

in Equations (2.10) - (2.16), in order to establish a framework for the reader to under-

stand contemporary OED, which will also clarify the motivation for the novel OED 

method introduced in this research.  As most of these objectives depend on the eigen-

spectrum (Equation (2.9)), a natural starting point is to discuss the Singular Value De-

composition (SVD) and Spectral Decompositions of a Jacobian matrix, G, and its 

auto-inner product, GTG, respectively.  

2.2.1 The Singular Value Decomposition of G  

The SVD of a sensitivity matrix, G, is 

 , (2.18) T=G UΣV

where U and V are orthonormal bases spanning data and model space, respectively, 

(Lanczos, 1956; Golub & Van Loan, 1996; Strang, 2003) and Σ is the diagonal matrix 

of singular values, σi, of G.  To appreciate that U and V respectively span data and 

model space, observe that U is a square matrix whose columns and rows, by defini-
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tion, are orthonormal.  If G has D rows, each of which corresponds to the sensitivity 

kernel of a single datum, then U has dimensions of D × D.  Hence, U contains a set 

of mutually orthonormal columns that necessarily span D-dimensional data space.  

By the same argument, if G has M columns, each of which corresponds to the sensi-

tivities of a single model parameter to all data observations, then V has dimensions of 

M × M.  Ergo, V contains a set of mutually orthonormal columns that span M-

dimensional model space.  We now avail ourselves of two facts: (1) any matrix of or-

thonormal vectors is a rotation matrix and is therefore length-preserving and (2) UTU 

= I. Therefore, without loss of generality, an equivalent form of Equation (2.4) is 

 ′ ′∆ = ∆Σ m d , (2.19) 

where  and .  In effect, Equation (2.19) expresses the same 

mathematical relationship as Equation (2.4), except that both data and model vectors 

have been rotated into a different coordinate system.  In this transformed system, the 

sensitivity kernels of each observation (the rows of G) have been rotated such that 

their interactions (or cross-talk, if you will) have been zeroed out.  Equation (2.19) 

expresses a set of linearly independent equations, such that the jth component of 

interacts solely with to the jth component of 

T′∆ ≡ ∆m V m T′∆ ≡ ∆d U d

′∆m ′∆d .  Though ′∆m  and  do not 

obviously relate to real quantities in the physical world, this coordinate system pro-

vides a mathematical artifice allowing us to perceive the ‘strength’ of the connection 

between data and model space.  In this coordinate system, the larger is σj (the jth ele-

ment along the diagonal of Σ), the stronger is the connection between the jth elements 

of  and .  Hence, the singular values of G, contained along the diagonal of Σ, 

inform the strength of connection or bridge between data and model space. 

′∆d

′∆m ′∆d

2.2.2 The Spectral Decomposition of GTG 

The leap from the SVD of G to the spectral decomposition of GTG is a small one, for 

it is straightforward to see that if G is decomposed as in Equation (2.18) then GTG is 

given by 
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 . (2.20) T T=G G VΣ ΣVT

The same arguments that applied above apply here, except that (again without loss of 

generality) Equations (2.4) and (2.19) are now equivalently expressed as 

 T ′ ′′∆ = ∆Σ Σ m d , (2.21) 

where .  Effectively, Equation (2.19) is the same as (2.21), except that 

(2.19) has been left-multiplied by an additional  term.  Customarily, the spectral 

decomposition denotes the eigenvalue matrix as Λ, where 

T T′′∆ ≡ ∆d Σ U d
TΣ

 T=Λ Σ Σ ; (2.22) 

hence the ith eigenvalue of GTG is seen to be equivalent to the square of the ith singu-

lar value of G: 

 2
i iλ σ≡ . (2.23) 

 Consequently, the notion of the information that the singular values of G provide 

about the connection between data and model space is essentially identical to the no-

tion of the information that the eigenvalues of GTG provide.  The only difference is 

that, in the latter case, the singular values have been squared. 

 It is worth mentioning that obs pred∆ = −d d d , where dobs is the vector of observed 

data and dpred is the vector of predicted data for model m.  The observed data vector 

will typically contain data noise so that dobs can be partitioned into 

 obs true= +d d e , (2.24) 

where dtrue is the ‘true’ data, without noise, and e is the vector of data noise.  Conse-

quently,  

 
( )

( )

T T T
true pred

T T T T
true pred

′∆ = ∆ = − +

′′ ′′∆ = ∆ = − +

d U d U d d U e

d Σ d Σ U d d Σ U eT
, (2.25) 

showing how data noise in the original, untransformed system is projected into the 

transformed systems.  In the SVD case, data errors project onto U, and in the spectral 

decomposition case, they project onto .  In terms of least squares, the more these 

projections ‘reject’ the energy in e, the more accurate the solution to the inverse prob-

UΣ
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lem will be, because, in a real sense, the undesirable information in e is not permitted 

to map from data space to model space. 

2.2.3 Understanding Historic OED Objective Functions 

With the insights gathered by studying the singular- and eigenspectra  (the ordered 

sets of diagonals of Σ and Λ, respectively) of G and GTG, respectively, we are now 

poised to examine the significance of the OED objective functions posed in Equations 

(2.10) - (2.15).    

 Before we begin this discussion, it is useful to make a brief detour to learn about 

so-called power means (Bullen, 2003).  A p-mean, or power mean of order p, of a set 

of numbers, x, is of the form 

 ( )
1/

1

1
p

n
p

p
j

m
n =

⎛ ⎞
≡ ⎜

⎝ ⎠
∑x jx ⎟ , (2.26) 

where xj is the jth element in a set or vector, x.  Equation (2.26) is a generalization of 

the ‘mean’ and encompasses such averages as the arithmetic, harmonic and geometric 

means.  To see this, consider the case where p = 1, which gives rise to the arithmetic 

mean, or the case where p = -1, which gives rise to the harmonic mean, or the case 

where p = 2, which gives rise to the root-mean-square.  The case where p = 0 can be 

approached through the theory of limits to show that it gives rise to the geometric 

mean (Bullen, 2003).  Other ‘means’ that can be calculated by this formula include m∞ 

and m-∞, which can be shown to equal the maximum and minimum of the set x, re-

spectively (Bullen, 2003).  One of the intriguing (and useful) properties of  p-means is 

that they are monotonic increasing as a function of p (Bullen, 2003), when the values 

in x are nonnegative.  That is, 1p pm m +≤  for all p, so long as the elements of x are 

strictly nonnegative.  We can appreciate this by observing that, for a set of nonnega-

tive numbers, the harmonic mean is always less than or equal to the geometric mean, 

and the geometric mean is always less than or equal to the arithmetic mean.  The 

monotonicity of Equation (2.26) in p is therefore relevant to singular or eigenspectra, 

which by definition comprise a set of nonnegative scalars. 
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 Based on the preceding facts, the reader may have already intuited that power 

means differ in their sensitivity to the values in x, depending on the power, p, to 

which its elements have been raised.  Indeed, negative power means (p < 0) are biased 

toward the small values in x, while positive power means are biased toward large val-

ues, until, in the limit as p approaches ±∞, the minimum or maximum values of x re-

spectively attain (Bullen, 2003). 

 Several of the historic objective functions in Equations (2.10) - (2.15) can be cast 

in terms of the power means of eigenspectra, particularly functions Θ1, Θ4, Θ5 and Θ6. 

Let us examine how this is so and what that means in terms of experimental design.  

Recall that Equations (2.19) and (2.21) express the same relationship between data 

and model as (2.4) but in a rotated reference frame that allows us to more easily per-

ceive the ‘strength’ of the connection between the two spaces from which the data and 

model vectors derive.  We treat the singular or eigenvalues of G or GTG expressed in 

these reference frames, respectively, as correspondent with the information that the 

experiment provides about the connection between data and model space.  The greater 

are the singular values, σj, or their squares, λj, the greater is the connection informing 

the mapping between data and model space.   

 From an experimental design standpoint, it is of course impossible to control the 

individual singular or eigenvalues simultaneously.  It should not be assumed that an 

observation sensitivity kernel (a single row of G) communicates its information to 

only one singular value in G, which could only be the case if the sensitivity kernel 

were exactly parallel to one singular vector in V.  Rather, a sensitivity kernel typically 

distributes its ‘information’ over many (possibly all) singular values because multiple 

singular vectors will generally span its components.  This shows that experimental 

design exercises cannot, in general, exert precise control over individual singular- or 

eigenvalues.  For example, the addition of one observation to an experiment obvi-

ously entails the introduction of its sensitivity kernel as a new row in G, and this sen-

sitivity kernel will generally not be exactly parallel to only one singular vector in V; 

instead, the information in the sensitivity kernel ends up being distributed between 
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multiple singular values, in proportion to the degree of parallelism the sensitivity ker-

nel has with each of the singular vectors in V. 

 It is a consequence of the foregoing discussion that the historic objective functions 

listed above were primarily posed in terms of the complete set of eigenvalues or the 

eigenspectrum.  There are a couple exceptions to this, and they will be discussed in 

due course.  In a sense, these objective functions pose various measures of global in-

formation or sensitivity, not distinguishing between individual eigenvalues but lump-

ing them together in various ways, which returns us to power means.  Objective func-

tions Θ1, Θ4 and Θ6 are all seen to be variations on a theme of power means, for they 

can be equivalently represented as 
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Because these are objective functions, we seek to find their maxima.  Hence, without 

loss of generality these expressions can be simplified to 

 ( )1 1
1

1 m
λ

′Θ = λ  (2.30) 

 ( )4 1m δ−′Θ = +λ  (2.31) 

and 

 ( )6 0m′Θ = λ . (2.32) 

These simplified objective functions have the same stationary points as those above 

and therefore could be substituted in the optimization problem if one wished.  In this 

context, we are trying to understand what these objectives mean.  Cast in terms of 

power means, it is evident that these three objectives equate experiment optimality 

with various averages of the eigenspectrum.  As discussed above, if we think of the 
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eigenvalues of GTG as an information bridge that connects data and model spaces, 

then these objectives propose to maximize the average information an experiment 

provides.  Each objective function does this a bit differently.  Based on our knowledge 

of power means, it should be clear that the (normalized) arithmetic mean in (2.30) is 

more sensitive to large eigenvalues than small ones, while the geometric and har-

monic means in (2.32) and (2.31), respectively, are progressively more sensitive to 

small eigenvalues (and less so to large ones).  From an inversion point of view, the 

latter two objectives would be better at guarding the inverse problem from the desta-

bilizing influence of small eigenvalues than the first, but the choice of OED objective 

is up to the user and should depend on the particulars of the inverse problem. 

 Θ5 (Equation (2.14)) is similar to the geometric mean of the eigenspectrum be-

cause the product of N numbers is easily converted into a sum of their logarithms by 

taking the natural log of the product.  The natural logarithm is monotonic increasing; 

so stationary points of the logarithm of an objective function are equal to the station-

ary points of the objective function itself.  Hence, up to the special penalty terms that 

Rabinowitz and Steinberg (1990; 1995), Θ5 is identical to Θ6 and  (Equations 

(2.15) and (2.32), respectively), which has been discussed above. 

6′Θ

 Objective functions Θ2 and Θ3 (Equations (2.11) and (2.12)) do not look at aver-

ages of the eigenspectrum (information averages) but rather at a single, indexed ei-

genvalue in the spectrum.  Barth and Wunsch’s (1990) log kλ -objective seeks an ex-

periment that simply maximizes the kth eigenvalue, where k might correspond with the 

smallest eigenvalue or, more precisely, the smallest non-zero eigenvalue (which is 

relevant for rank-limited sensitivity matrices).  Curtis’s (1999a) k-objective approach 

is somewhat similar, except that it attempts to maximize the number of eigenvalues 

greater than a prescribed tolerance, δ.  Thinking again in terms of eigenvalues as 

measures of information, both these methods attempt to maximize the total informa-

tion that an experiment provides, but they do so by disregarding all eigenvalues with 

indices greater than k.  In this manner, designed experiments will be more biased to-

ward the eigenvalues that can be made large, rather than those that cannot.  These 
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methods intentionally sacrifice or ignore the information that experiments provide 

about the most insensitive model parameters, because this information (their sensitivi-

ties) will always be irremediably small.  Philosophically, it is as if to say ‘it is better 

to expend time designing experiments that maximize useful, rather than useless, in-

formation’.  Effectively, there is no point trying to design an experiment that concerns 

itself with maximizing the sensitivity of a model parameter whose sensitivity can 

never exceed 10-15, say; the model parameter will always be numerically irresolvable.  

 Objective function Θ7 (Equation (2.16)) expresses a weighted-average cumulative 

sensitivity, an alternate measure of global sensitivity or information, where the abso-

lute values of each model parameters’ sensitivities (columns of G) are summed up and 

then weighted according to focusing criteria (Furman et al., 2004).  If no focusing is 

desired, all weight factors are set to unity.  For comparative reasons, we consider here 

only the case where these weight factors are set to unity, so that Θ7 quantifies truly 

global information like the preceding objective functions.  In this case, Θ7 simplifies 

to 
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As an aside, the Frobenius norm of G is denoted as 
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(Golub & Van Loan, 1996) which bears a close resemblance to (2.33).  The square of 

the Frobenius norm can be expressed equivalently in a number of useful ways, such as 
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where  is the trace operator and λn is the nth of N eigenvalues of GTG (Golub & 

Van Loan, 1996).  But for the square term, Equation (2.33) and (2.35) are identical, 

( )tr i
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showing that the objective function of Furman et al. (2004) is strikingly similar to the 

arithmetic mean of the eigenvalues.  Therefore, based on the preceding discussion, we 

surmise that this objective function must be more sensitive to large eigenvalues than 

to small ones.  In any case, this objective function is another example of measuring 

experiment optimality according to an average of the global information (sensitivity) 

an experiment provides. 

 As mentioned above, resolution-matrix-based objective functions (Stummer et al., 

2004; Wilkinson et al., 2006a; Wilkinson et al., 2006b) have also recently been intro-

duced.  These objective functions particularly address the situation where the inverse 

problem cannot be well posed, which means that the resolution matrices their objec-

tive functions operate upon are not identity matrices.   

 These are sophisticated, technical objective functions that cannot easily be reca-

pitulated in a single expression, and the interested reader is referred to the listed cita-

tions.  Nonetheless, it is possible to briefly, verbally describe them.  The primary dis-

tinction between these and other OED objective functions is that they compare candi-

date experimental designs with the hypothetical experiment comprising all possible 

observations, under the assumption that this ‘all-encompassing’ experiment is the best 

(though impractical) experiment to query a target site.  The purpose of these objective 

functions boils down to minimizing the disparity between the ‘quality’ of the designed 

experiment and the ‘all-encompassing’ experiment.  This is actualized through mini-

mizing a weighted difference between the resolution matrix of a candidate experimen-

tal design and the resolution matrix of the ‘all-encompassing’ experiment. 

 These resolution-matrix-based approaches are not particularly approachable 

through eigenanalysis except to observe that the comparative approach the authors 

have developed, which looks at the disparity between the ‘quality’ of a candidate de-

sign versus the ‘quality’ of an ‘all-encompassing’ design, does in a sense compare 

their eigenspectra.  The more the eigenspectrum of the candidate design matches that 

of the ‘all-encompassing’ design, the higher is its quality metric.  In other words, the 

more the eigenspectrum of a designed experiment matches that of the ‘all-
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encompassing’ design, the closer it approaches to the ‘ideal’ information afforded by 

the ‘all-encompassing’ experiment. 

2.2.4 Historic OED Optimization Algorithms 

At heart, all geophysical OED exercises come down to some sort of optimization 

problem.  An objective function that quantifies experiment ‘quality’ must be posed, 

and some sort of solver algorithm must then be applied to find its stationary points.  

Complicating is the fact that a solver algorithm necessarily depends on the particulars 

of the objective function, and not all solver algorithms are equal in the speed at which 

they converge.  Now that we have an intuitive sense for what the several historic ob-

jective functions in the previous section were crafted to achieve, we now turn our at-

tention to the solver algorithms that can find their stationary points. 

 This discussion shall be brief, for there are only a few optimization algorithms 

that are readily applicable to the objective functions in Equations (2.10) - (2.16).  The 

minima/maxima of nearly all the historic objective functions listed above can only 

reasonably be found by using so-called global search strategies, such as the Genetic 

and Simulated Annealing algorithms (Smith et al., 1992).  For example, Curtis and 

Snieder (1997), Maurer and Boerner (1998a), Curtis (1999a; 1999b), Furman et al. 

(2004) have all used genetic algorithms, while and Barth and Wunsch (1990) and 

Hardt and Scherbaum (1994) have used simulated annealing.   

 The reason for using stochastic optimization techniques to find stationary points 

of these objective functions, rather than using faster gradient-following approaches 

(e.g., least squares, steepest descent, etc.), stems from two simple facts.   

 First, by the chain rule, the partials of an eigenvalue-dependent objective function, 

with respect to a data observation are of the form 

 ( )
j jω ω

∂Θ ∂Θ ∂
=

∂ ∂ ∂
λ λ

λ
, (2.36) 

where λ is the vector of eigenvalues of G (eigenspectrum) and ωj is the jth observation 

in an experiment.  The partials of Θ with respect to λ are easy enough to determine, 
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but it is not at all obvious how one derives the partials of an eigenvalue with respect 

to an observation, making Equation (2.36) intractable. 

 Second, there are frequently experimental design situations where the partial de-

rivatives of Θ with respect to ωj are simply undefined, because an infinitesimal per-

turbation of ωj is itself undefined.  For example, a geoelectrical exercise where the 

relative positions of electrodes are fixed precludes the concept of an infinitesimal per-

turbation of a data station.  Examples of this include resistivity borehole logging 

tools, whose electrodes are in fixed relative positions, or 2D surface resistivity sur-

veys where the electrodes are positioned at equidistant intervals.  Clearly, such cases 

preclude the notion of minute changes in observation position.  Instead, the OED op-

timization problem is combinatoric; there are a finite (but usually large) number of 

discrete experiments to choose from.  The set of all such experiments defines a dis-

crete experimental space, where the notion of gradients is undefined.  Currently, such 

combinatoric optimization problems can only be solved using stochastic search algo-

rithms like those mentioned above.  Of course, one can also conceive of experimental 

design situations where experimental space is continuous; that is, infinitesimal 

changes in the position of sources and receivers are permitted; but, in the case of 

geoelectrical problems for example, where two sources and two receivers are needed 

to make each observation (because of the dipolar nature of the EM domain), the de-

sign problem still has a combinatoric overtone because each data observartion entails 

the combination of four electrode positions. 

 Though stochastic (global) search methods are best for handling local minima in 

the objective function landscape, they are computationally expensive.  The search 

spaces upon which they work can be amazingly large.  For example, if we wish to col-

lect just 20 from a set of 2000 available observations, there are  possible 

combinations to choose from.  Exhaustively evaluating the OED objective function 

for this many experiment combinations is clearly impossible.  While genetic and 

simulated annealing algorithms make the problem tractable, efficiently reducing the 

number of objective function evaluations by many orders of magnitude, they still re-

quire hundreds of thousands or even millions of such evaluations (Smith et al., 1992).  

47
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When we further consider that many of the historic objective functions require either 

complete or partial eigenanalysis, whose computations go as O(n3) (Golub & Van 

Loan, 1996) or O(n2) (Curtis et al., 2004), it is easy to appreciate that these optimiza-

tion techniques can take a very long time to converge, for these computations must be 

executed perhaps millions of times.  Surprisingly few authors have actually reported 

the CPU times it took to run their optimization algorithms (perhaps because these 

times were so large!).  Of those who did, CPU times of between 1 and 24 hours have 

been reported for OED problems implemented by genetic algorithms (Curtis & 

Snieder, 1997; Wilkinson et al., 2006b).  From a practical standpoint, OED techniques 

that require hours or days to establish optimal experiments are of limited use.  Such 

lengthy design times prohibit their use in many real-world field exercises.  For exam-

ple, large-scale geoelectrical water/geothermal prospecting exercise that need to im-

age an unknown subsurface over many square kilometers in a short period of time 

could not reasonably employ most current methods of OED.  On the other hand, sce-

narios where lengthy OED computation times would be acceptable would be in long-

term monitoring operations or in planning oilfield operations where rig time is far 

more expensive than computation time. 

2.3 Novel Optimal Experimental Design Objective 
Functions 

Two novel OED objective functions are proposed in this section.  These functions at-

tempt to satisfy the dual objectives of maximizing the information magnitude and 

complementarity provided by designed experiments.  It will be seen that, in a sense, 

information magnitude ensures a strong link between data and model space, while in-

formation complementarity ensures that this link is well balanced, preventing unnec-

essary bias toward the most well-resolved model parameters.  Most importantly, a de-

terministic greedy design algorithm based on these concepts is introduced that se-

quentially builds experiments, one observation at a time.  This approach allows opti-

mal experiments to be designed in a matter of minutes or even seconds (depending on 
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the size of the inverse problem), thus bringing geophysical OED one step closer to 

real-world applicability.  

2.3.1 Information Magnitude and Complementarity 

Recall from previous discussion that we have been associating the term information 

with the sensitivities of the forward operator contained in the Jacobian matrix, G.  

Particularly, we may think of the sensitivity kernel of an observation (Equation (2.6)) 

as being a multidimensional information vector corresponding to the observation.  In 

semi-qualitative terms, the degree of linear independence of one sensitivity kernel 

with respect to other sensitivity kernels is a measure of the relative information com-

plementary of the corresponding observation.  To see this, consider two data stations 

whose sensitivity kernels are highly correlated; though they are separate observations, 

the high correlation of their sensitivity kernels means they provide essentially the 

same information about the target.  In contrast, two stations whose sensitivity kernels 

are minimally correlated provide complementary information.  Calling this idea 

‘complementarity’ is a propos both logically and mathematically.  Logically, two 

things are complementary if each ‘supplies’ something the other lacks. Mathemati-

cally, two angles are complementary if they sum to 90 degrees; and if the angle be-

tween two sensitivity kernels is 90 degrees, their correlation is zero and they are line-

arly independent.  Hence, simply put, information complementarity addresses the mu-

tual orthogonality, or linear independence, of the sensitivity kernels in an experiment. 

 Cast in this light, it is straightforward to appreciate the meaning of information 

magnitude.  If complementarity deals with the mutual orthogonality of sensitivity 

kernels, then magnitude is simply the length or vector-norm of a sensitivity kernel.  

The greater is the norm of its sensitivity kernel, the greater is the relative information 

magnitude that the corresponding observation supplies connecting data and model 

space. 

 Taken together, the relative magnitude and complementarity of the information 

vector of a data station, with respect to other data stations, is a useful measure of its 

relative importance in an experiment.  In the end-member case, an ideal experiment 
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would create a sensitivity matrix that was an orthogonal basis; that is, the inner prod-

ucts of all information vectors (the sensitivity kernels along the rows of the Jacobian) 

would yield an identity matrix (up to a multiplicative factor).  In such an ideal case, 

each datum would provide a wholly unique piece of information about the target site, 

in such a way that the magnitude of its information vector would be equal to the mag-

nitudes of all other information vectors.   

 What is being described above relates in part to the resolution and information 

density matrices: 

 , (2.37) 
*

*

≡

≡

R G G
D GG

(Backus & Gilbert, 1970).  An ideal experiment would cause both matrices to be the 

identity.  However, this is not the whole story.  It is well known that the SVD of a ma-

trix can be truncated so that only the left and right singular vectors corresponding to 

nonzero singular values are retained.  This truncated SVD is identical to the full SVD 

in the sense that both matrix products equal the original matrix:  

 , (2.38) T= =G UΣV UΣVT

where  and  are the columns of U and V, respectively, corresponding to nonzero 

singular values and where  is a square matrix (a submatrix of ) containing the 

nonzero singular values of G (Lanczos, 1956; Golub & Van Loan, 1996).  Conse-

quently, both R and D can be expressed in terms of their truncated singular value de-

compositions (Equation (2.18)): 

U V

Σ Σ

 , (2.39) 
*

*

T

T

≡ =

≡ =

R G G VV
D GG UU

again where  and   are respectively the truncated left and right singular vectors of 

G (Lanczos, 1956; Menke, 1989; Tarantola, 2005).  Singular vectors are unit vectors, 

so neither the resolution matrix nor the information density matrix contains informa-

tion on the singular values of G.  Hence, while these matrices inform the linear inde-

pendence of data stations, they contain no detail on the relative ‘strength’ of the in-

formation bridging model parameters and data; i.e., they address information com-

U V
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plementarity but not magnitude.  As alluded to previously, that information is embed-

ded in the singular values of G.  Ergo, like the historic objective functions discussed 

above, our objective functions must also somehow incorporate the singular spectrum, 

either implicitly or explicitly. 

2.3.2 Establishing the OED Objective Functions 

According to the previous development, our experimental design objective functions 

must comprise two measures of quality: (1) the linear independence and (2) the mag-

nitude of each data station’s information vector or sensitivity kernel.  Put in geometric 

terms, each row of G is an information vector for one observation; the objective is to 

simultaneously maximize both the magnitude and the mutual orthogonality of these 

vectors.   

 As will be seen below, the key distinction to this objective is that, unlike nearly all 

the historic objective functions discussed previously, it can be maximized without cal-

culating the SVD of G at all (or, at least without having to initially calculate it), which 

is an  operation.  Rather, we propose an objective function whose main compu-

tational expense is in performing vector-space projections.  Additionally, it will be 

shown that this objective function is amenable to sequential experimental design via a 

greedy optimization algorithm.  In contrast to the historic design strategies, which re-

quire that the entire experiment be designed all at once, our optimization technique 

executes sequentially, adding observations to a base experiment one at a time. 

( )3O n

2.3.3 Objective Function #1: Basic Algorithm 

The first proposed objective function is most easily expressed by outlining the algo-

rithm into which it is embedded (see Flowchart 2-1); each algorithm step is annotated 

below. 

1-i. The initial observation goes into the base experiment, which will be denoted , where bΩ

{ }|  the set of all permitted observationsbΩ ⊂ Ω .  This first observation is the one 

whose sensitivity kernel is of maximal length (as will be shown later, the choice for this 
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initial observation maximizes an alternate but equivalent expression of the experimental 

design objective function).  Construct the sensitivity matrix for bΩ  and denote this .  

Define  to be the complement of 

bG

cΩ bΩ ; i.e., b cΩ = Ω ∪ Ω .  Hence,  is the set of 

remaining candidate observations.  Finally, define  to be the sensitivity matrix for 

cΩ

cG cΩ .  

It follows by these definitions that T T
c b

T⎡ ⎤= ⎣ ⎦G G G , where G is the sensitivity matrix of 

all permitted observations, corresponding to Ω . 

1-ii. Increment n. 

1-iii. Evaluate the candidacy of each observation remaining in cΩ  for addition to the base ex-

periment, .  For each row in (the sensitivity kernels of the candidate observations 

remaining in ), subtract from it its projection onto the row space spanned by , and 

then evaluate the norm of the residual.  The residual is perpendicular to the row space 

spanned by , so it represents the complementary information the corresponding ob-

servation would potentially bring to the base experiment.  The magnitude of this residual 

therefore quantitatively specifies the strength of this complementary information. 

bΩ cG

cΩ bG

bG

 

Mathematically, this metric is expressed as 

 ( ) ( ) ( )k
b ckΘ = −I P g , (2.40) 

where  is the row-space projection matrix of , defined bP bG

 ( ) ( ) ( )
1T T

b b b b ck
−⎡Θ = −⎢⎣

I G G G G g k⎤
⎥⎦

, (2.41) 

and ( )k
cg  denotes the sensitivity kernel of the kth candidate observation in cΩ  

and is just the kth row of : cG

 , (2.42) ( ) ( ),: Tk
c c k≡g G

expressed in colon notation.  Note that Equation (2.41) can be executed rapidly by left-

multiplying the projection matrix with  and taking the square root of the sum of the 

squares of the columns of the resulting matrix.  This avoids using FOR loops. 

T
cG

 

1-iv. Once all candidate observations have been evaluated according to (2.40), the one that 

maximizes  is added to the base experiment. ( )kΘ
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1-v. Choice of stopping criterion is up to the user.  Here, we specify a maximum number of 

observations, D.  Other possibilities might include: a threshold term on the smallest ei-

genvalue (or any eigenvalue of specified index); an information improvement threshold 

requiring that at least one candidate observation evaluates (according to (2.40)) to above 

some specified threshold; et cetera. 

1-vi. If the stopping criterion is met, the OED algorithm may exit.  Otherwise, go to step (ii) and 

repeat.  ■ 

  

 Equation (2.40) can be expressed in a number of equivalent ways.  It can be sim-

plified (for heuristic if not for practical purposes) to 

 ( ) ( )kT
b ckΘ = N g , (2.43) 

where  denotes the null space of the Jacobian of the base experiment, .  Bear in 

mind that the null space of a matrix is the orthogonal complement of its row space 

(Strang, 2003). That is, the null space of a matrix is perpendicular to its row space.  

Viewed in this way, the OED objective function is seen to favor candidate observa-

tions whose sensitivity kernels are of maximal length after projection onto the null 

space of ; in other words, candidate observations in 

bN bG

bG cΩ that provide the highest-

magnitude complementary information are chosen.  The simple cartoon in Figure 2-4 

helps to visualize what the basic design algorithm is doing.  

 Alternately, observe that if  is expanded by substituting the SVD of  for  

itself (let ) and then simplified, the projection matrix equals the model 

resolution matrix.  That is 

bP bG bG

T
b =G UΣV

  (2.44) T
b b= =P R VV

where  denotes the truncated right singular vectors of  (those associated with 

nonzero singular values).  Hence, another equivalent form of 

V bG

( )kΘ  is  

 ( ) ( ) ( )k
b ckΘ = −I R g , (2.45) 

which, by corollary, means that the null space of  equals the identity minus the 

resolution matrix. 

bG
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 Lastly, and most practically, one can avoid explicitly calculating Pb or Rb all to-

gether (which involves either the SVD or a matrix inversion) by taking advantage of 

Gram-Schmidt orthonormalization (Golub & Van Loan, 1996; Strang, 2003).  Each 

time a new data station is added to the base experiment, we can use the Gram-Schmidt 

method on its sensitivity kernel to create a unit residual vector that is orthogonal to 

the space spanned by the sensitivity kernels of the data stations already included in 

the base experiment.  Like Eq. (2.40), Gram-Schmidt works by subtracting the projec-

tion of a new vector onto the subspace spanned by the extant Gram-Schmidt vectors 

(making the residual orthogonal) and then normalizing the residual to unit length 

(making it orthonormal) (Golub & Van Loan, 1996 ).  In this fashion, we can build an 

orthonormal matrix, , which spans exactly the same row space as .  Here is how 

this works.  Suppose the sensitivity kernel of the first data station in the base experi-

ment is 

bΓ bG

( )1
bg . Its transpose occupies the first row of , but we wish to employ Gram-

Schmidt, so we normalize 

bG

1
bg  to have unit length and place the transpose of this vector 

in the first row of the orthonormal matrix, .  Now suppose the sensitivity kernel for 

the next data station we add is 

bΓ

( )2
bg .  We execute Gram-Schmidt as follows: 

 ( )( ) ( )1 2T T
b b b b b

−
= −r I Γ Γ Γ Γ g , (2.46) 

and define 

 =
rγ
r

, (2.47) 

so γ is a unit vector orthogonal to the space spanned by the Gram-Schmidt vectors in 

.  We then augment  by appending bΓ bΓ γ as a new row vector: 

 : b
b T

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

Γ
Γ

γ
, (2.48) 

and Eqs. (2.46) - (2.48) are repeated each time a new data station is added to the base 

experiment.  There are two reasons for employing the Gram-Schmidt method.  First, it 

has already been pointed out that  is an orthonormal matrix that spans exactly the 

same row space as .  Thus,  can be substituted for  in (2.40):  

bΓ

bG bΓ bG
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 ( ) ( )( ) ( )1 kT T
b b b b ck

−
Θ = −I Γ Γ Γ Γ g . (2.49) 

 Second,  is orthonormal, so  bΓ

 T
b b =Γ Γ I ; (2.50) 

hence, (2.46) can be simplified to 

 ( ) ( )2T
b b b= −r I Γ Γ g , (2.51) 

and (2.49) simplifies to 

 ( ) ( ) ( )kT
b b ckΘ = −I Γ Γ g . (2.52) 

In words, the computationally expensive inverse in (2.40), which is needed to perform 

row-space projections, can be avoided by using the Gram-Schmidt orthonormalization 

described above.  In practice, this technique is the most efficient way of executing our 

greedy, sequential OED algorithm.  

 A graphical example is provided in Figure 2-5 to offer insight into this OED ob-

jective function.  It is cast in terms of the singular value decomposition of  for ex-

periments of increasing size so the reader can visualize the concepts laid out.  The ex-

ample is for a borehole resistivity problem where 10 electrodes have been deployed to 

query a heterogeneous earth (a thorough examination of the borehole OED problem is 

offered in a later chapter). 

bG

2.3.4 Mathematical Significance of the Basic Algorithm 

The basic design algorithm outlined above addresses the design problem in terms of 

information complementarity and magnitude, but it is instructive to understand what 

the algorithm is doing at a more fundamental mathematical level. 

 First, according to the OED theory laid out above, the sensitivity kernel of the 

next observation chosen for the experiment, denoted ĝ , is of maximal length after 

projection onto the null space of Gb, which is the Jacobian of the base experiment, 

and therefore maximizes the objective function 

 ( )( )1
ˆT T T

b b b b

−
Θ = − ˆg I G G G G g , (2.53) 
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where it should be remarked that Equation (2.53) is just the square of Equation (2.40).  

The question is: what is the mathematical significance of (2.53)?  Below, we will 

prove that the expression in (2.53) is mathematically equivalent to the ratio of two 

determinants.  

 We must first make a short detour through a little linear algebra.  Consider a block 

matrix:  

 
⎡ ⎤′ = ⎢ ⎥
⎣ ⎦

A
A

B
 (2.54) 

where  and  such that m n×∈A R p n×∈B R m p n+ ≤ .  Its auto-outer product is  

 
T T

T
T T

⎡ ⎤
′ ′ = ⎢ ⎥

⎣ ⎦

AA AB
A A

BA BB
. (2.55) 

We want to find a simple expression for the determinant of T′ ′A A  that depends only 

on A and B: 

 ( )det det
T T

T
T T T

⎛ ⎞⎡ ⎤
′ ′ = ⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

AA AB
A A

B A A A
. (2.56) 

We transform  by the following multiplication: T′ ′A A

 ( )
( )( )

1

1

T
T T T T

T T TT T

−

− T

⎡ ⎤⎡ ⎤⎡ ⎤ − ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

AA 0AA AB I AA AB
BA B I A AA A BBA BB 0 I

. (2.57) 

Taking the determinant of (2.57) yields 

( ) ( )
( )( )

1

1det det det
T

T T
T

T T T

−

−

⎛ ⎞

T

⎡ ⎤⎛ ⎞⎡ ⎤− ⎜ ⎟⎢ ⎥⎜ ⎟′ ′ ⎢ ⎥ = ⎜ ⎟⎢ ⎥⎜ ⎟ −⎢ ⎥ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎣ ⎦⎝ ⎠

AA 0I AA ABA A
BA B I A AA A B0 I

. (2.58) 

Taking advantage of the fact that the determinant of a block upper (or lower) triangu-

lar matrix is the product of the determinants of its diagonal blocks (Golub & Van 

Loan, 1996), the second and third determinants in Equation (2.57) reduce to 
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( )

( )( ) ( ) ( )( )( )

1

1
1

det 1

det det det

T T

T

T T T
T T T T

−

−
−

⎛ ⎞⎡ ⎤−⎜ ⎟⎢ ⎥ =
⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥ = −⎜ ⎟⎢ ⎥−⎜ ⎟⎣ ⎦⎝ ⎠

I AA AB

0 I

AA 0
AA B I A AA A B

BA B I A AA A B
T

.(2.59) 

Substituting (2.59) into (2.58), we have the general case that 

 ( ) ( ) ( )( )( )1
det det detT T T T −

′ ′ = −A A AA B I A AA A BT . (2.60) 

If we take the special case where B = aT, Equation (2.60) reduces to 

 ( ) ( ) ( )( )1
det detT T T T T −⎡ ⎤′ ′ = −⎢ ⎥⎣ ⎦

A A AA a I A AA A a . (2.61) 

 Now, letting 

 
ˆ

b
b T

⎡ ⎤′ = ⎢ ⎥
⎣ ⎦

G
G

g
, (2.62) 

and subsituting Gb for A,  for b′G ′A , and ĝ  for a, Equation (2.61) says that 

 ( ) ( ) ( )( )1
ˆdet detT T T T T

b b b b b b b b

−
ˆ⎡ ⎤′ ′ = −⎢ ⎥⎣ ⎦

G G G G g I G G G G g . (2.63) 

Rearranging yields 

 
( )
( ) ( )( 1det

ˆ
det

T
b b T T T

b b b bT
b b

−′ ′
= −

G G ) ˆg I G G G G g
G G

, (2.64) 

from which it is plain that the OED objective function (Equation (2.53)) can alter-

nately be written 

 ( ) ( )
( ) ( ) ( )( ) ( )

1det

det

T
b b T T T

c b b b b cT
b b

k k
−′ ′

Θ = = −
G G

g I G G G G g
G G

k , (2.65) 

where  is the kth candidate from the candidate set, ( )c kg cΩ .  In words, the basic OED 

objective function expresses the ratio of the determinant of the augmented Jacobian 

over the determinant of the base Jacobian.  In seeking the best candidate observation 
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via our method of projections, the OED algorithm is implicitly maximizing ratio of 

the next determinant to the preceding one. 

 Incidentally, the nullspace term betwixt the sensitivity kernels in (2.65) is idempo-

tent; therefore, without loss of generality we see that maximizing (2.65) is equivalent 

to maximizing  

 ( ) ( )( ) ( )
1T T

b b b b ck
−

Θ = −I G G G G g k , (2.66) 

which is identically the objective function expression first seen in (2.43). 

 As an aside, a consequence of the fact that the design algorithm attempts to se-

quentially maximize the determinant of the Jacobian matrix is that the initial observa-

tion in the base experiment must be the one whose sensitivity kernel is of maximal 

length (see Flowchart 2-1, Step 1-i).  After all, the determinant of the auto-outer prod-

uct of a sensitivity kernel equals its squared length, so the algorithm self-consistently 

chooses the observation whose sensitivity kernel is of maximum length. 

 Now that we understand the OED objective function to be maximizing the ratio of 

the deteriminants of the Jacobians of augmented and base experiments, we turn our 

attention to its significance from a design standpoint. The determinant of the outer 

product of a Jacobian matrix with itself is a measure of an experiment’s global sensi-

tivity to the model parameters.  To see this, consider the fact that the model covari-

ance matrix is given by 

 ( ) 12 T
m dσ

−
=C G G  (2.67) 

where 2
dσ  is the data variance (Note: here, we assume uncorrelated data noise that is 

statistically invariant from data station to data station.  A more general form of Cm 

that does not impose these assumptions exists, but the purposes of exposition, Equa-

tion (2.67) will suffice.)  The eigenvalues of Cm are  

 ( ) ( )
2
d

j m T
j

σλ
λ

=C
G G

. (2.68) 
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Up to zero eigenvalues, the eigenvalues of GGT and GTG are identical.  Therefore, the 

determinant of GGT is the product of the nonzero eigenvalues of both GTG and GGT.  

Thus,  

 ( ) ( )
2

1

det
det

nn
T d

j
j m

σλ
=

= =∏GG
C

. (2.69) 

The determinant of Cm is a measure of the volume of parameter uncertainty at a par-

ticular point in model space (Narayanan et al., 2004).  Equation (2.69) thus tells us 

that the determinant of the outer product of the Jacobian with itself is a measure of the 

overall data sensitivity to the model parameters.  The larger it is, the more sensitive 

are the experimental data to the model.  This measure is also particularly sensitive to 

small eigenvalues because they cause the determinant to become small, immediately 

indicating that the experimental data are insentive to one or more parameters.  There-

fore, an experiment that maximizes ( )det TGG  minimizes the last expression in (2.69) 

and therefore minimizes the volume of parameter uncertainty.  It was demonstrated 

that the OED methodology maximizes the ratio of the determinants of the next and 

current experiments; thus, it is now clear that this method produces a sequence of ob-

servations, each of which minimizes the parameter uncertainty volume with respect to 

the observations preceding it. 

 Under particular conditions, the design algorithm, which sequentially maximizes 

(2.65), can produce a globally optimal experiment, where global optimality is defined 

as maximizing the determinant of the GGT over the space of all possible experiments 

of the same size.  If the sensitivity kernels of the all observations are linearly inde-

pendent then GGT is a diagonal matrix whose eigenvalues are identically the elements 

along the diagonal.  At any iteration of the sequential design procedure, the design 

algorithm maximizes (2.65), which can be alternately written as 

 

1

1

1

n

j
j
n

j
j

λ

λ

+

=

=

′
Θ =

∏

∏
, (2.70) 
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where jλ′  and jλ  are the eigenvalues of T
b b′ ′G G  and , respectively.  But if 

 and  are diagonal matrices, taking advantage of (2.55), it follows that 

T
b bG G

T
b b′ ′G G T

b bG G

 for 1, ,j j   j nλ λ′ = = … . (2.71) 

Hence, Equation (2.70) simplifies to 

 1nλ +′Θ = . (2.72) 

Therefore, at each sequence step, the design algorithm picks the observation that 

maximizes the next eigenvalue in the eigenspectrum of b′G , and since this choice does 

not affect the preceding eigenvalues in Gb, the algorithm maximizes the determinant 

of over the space of all possible experiments of n + 1 observations. T
b b′ ′G G

 In general, however, the design methodology does not guarantee global optimality 

as defined here.  Consider the following simple example: we have three available ob-

servations, of which two will be chosen for experimentation.  Suppose the Jacobian 

matrix for all three observations is 

 
1

2

3

1.45 2.21 0.01
2.32 0.74 0.27
0.71 1.81 1.10

T

T

T

⎡ ⎤ −⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

a
A a

a
, (2.73) 

which yields 

 
7 5 3
5 6 0
3 0 5

T

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

AA . (2.74) 

The design algorithm will first choose the observation corresponding to a1 because 

 ( ) ( ) ( )1 1 2 2 3 3det 7 det 6 det 5T T= ≥ = ≥ =a a a a a aT . 

Now the design algorithm has two choices for the second observation, and it will 

choose the one that produces the larger determinant of the following two submatrices: 

 
7 5 7 3

and
5 6 3 5

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

. 
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The design algorithm will pick the observation corresponding to a3 because 

 
7 5 7 3

det 17 det 26
5 6 3 5

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤
= ≤ =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
. 

Thus, according to the design methodology, the first and third observations are chosen 

as forming an optimal experiment.  However, notice that the determinate correspond-

ing to the second and third observations is 

 
6 0

det 30
0 5

⎛ ⎞⎡ ⎤
=⎜ ⎟⎢ ⎥

⎣ ⎦⎝ ⎠
, 

which is larger than the determinant for the ‘designed’ experiment.  Therefore, in gen-

eral, the design procedure does not produce globally optimal experiments.  Rather, it 

offers a compromise between the computation time of OED and global optimality, by 

finding sub-optimal experiments in a fraction of the time. 

2.3.5 Maximum Attainable Rank 

The reader may have detected an oversight in Objective Function #1.  It is a mathe-

matical fact that the rank of Gb can never exceed the number of model parameters.  To 

see this, note that the rank of any matrix is always less than or equal to the lesser of it 

number of rows and columns: 

 ( ) ( )rank min ,R C≤A , (2.75) 

where A has R rows and C columns (Golub & Van Loan, 1996; Strang, 2003).  Logi-

cally, if the earth has been discretized into M model cells, no matter how many ob-

servations we choose to populate the base experiment with, the rank of Gb can never 

be greater than M. 

 The preceding fact is significant if D, the maximum number of observations we 

wish to design our experiment with, exceeds M.  For simplicity, let us say that 

dim(Gb) = D-1×M with D-1 ≥ M and that rank(Gb) = M.  We wish to add a new ob-

servation to the base experiment, but there are exactly M nonzero singular values that 
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correspond to the M right singular vectors in V; hence, Gb has no nullspace (because 

the nullspace of any matrix consists of the right singular vectors associated with zero 

singular values).  Therefore, Θ(k), as defined in Equation (2.43), evaluates to zero for 

all candidate observations in .  Consequently, when the sequential design algo-

rithm reaches the maximum attainable rank (MAR) of the Jacobian matrix, some al-

teration of the objective function is needed to evaluate the candidacy of additional ob-

servations. 

cΩ

 In later chapters, the definition of maximum attainable rank will be expanded to 

address ill-posed inverse problems, where the rank of the Jacobian matrix cannot even 

reach M, no matter how many data observations are collected. 

2.3.6 Objective Function #2: Addressing Maximum At-
tainable Rank 

It was explained that if the number of desired observations, D, is greater than the 

maximum attainable rank of the sensitivity matrix, Equations (2.40) - (2.45) will 

evaluate to zero for all n greater than or equal to the MAR.  This follows because 

once  attains its maximum possible rank, it spans the same row space as G (the 

Jacobian of all permitted data stations); thus any candidate, 

bG

( )k
cg , which by definition 

resides in the row space spanned by G, must reside wholly in the row space spanned 

by , making it perpendicular to the nullspace of .  Therefore, if D is larger than 

the MAR of G, the objective function must be modified. 

bG bG

 Mindful that the basic design objective function is equivalent to a ratio of deter-

minants (per Equation (2.65)), we would like to find a way to evaluate this ratio effi-

ciently when Gb reaches and exceeds its MAR.  When the design algorithm is in the 

regime of underdetermined problems (the basic algorithm above), where there are 

fewer observations than unknowns, the determinant is evaluated in terms of the auto-

outer product of a Jacobian matrix with itself (again, per Equation (2.65)).  This guar-

antees that the determinant is nonzero because there are always exactly as many ei-
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genvalues in the outer product as there are observations, and the eigenvalues are all 

nonzero.  However, when the algorithm reaches the well-determined regime, where 

there are as many or more observations than unknowns, the outer product of a Jaco-

bian with itself gives rise to zero eigenvalues, causing the determinant to be zero.  At 

this point, instead of working with the auto-outer product, we switch to the auto-inner 

product, bearing in mind that the eigenvalues of the auto-outer and auto-inner prod-

ucts of a matrix are identical up to zeros.  Therefore, in the well-determined regime, 

we must alter Equation (2.65) to 

 
( )
( )

det

det

T
b b

T
b b

′ ′
Θ =

G G

G G
. (2.76) 

The trick is to find a way of evaluating this expression efficiently so as to maintain 

the computational advantage of sequential design, requiring us to make another brief 

algebraic tangent. 

 Consider the block matrix ′A  in Equation (2.54).  In lieu of taking its auto-outer 

product as previously, we take its auto-inner product, yielding 

 T T′ ′ T= +A A A A B B . (2.77) 

The ratio of determinants of the augmented and base matrices is given by 

 
( )
( ) ( ) (1det

det
det

T
T T T

T

−′ ′
)⎡ ⎤= +⎢ ⎥⎣ ⎦

A A
A A A A B B

A A
. (2.78) 

Distributing through in the argument of the right hand determinant in (2.78), we have 

 
( )
( ) ( ) 1det

det
det

T
T T

T

−′ ′ ⎡ ⎤= +⎢ ⎥⎣ ⎦

A A
I A A B B

A A
. (2.79) 

If we take the case where B is a row vector, T=B a , (2.79) becomes 

 
( )
( ) ( ) 1det

det
det

T
T

T

−′ ′
T⎡ ⎤= +⎢ ⎥⎣ ⎦

A A
I A A aa

A A
. (2.80) 

Now consider the following block matrix expression: 

 83



 ( ) ( )
( )

11

1

11

1

T T TT T

T T

−−

−

⎡ ⎤⎡ ⎤ +⎡ ⎤ − ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦ −⎣ ⎦ ⎢ ⎥⎣ ⎦

a A A a 0a A A a I
I 0 a A A a I

. (2.81) 

Taking the determinant of Equation (2.81), we have 

 ; (2.82) ( ) ( )1
det 1T T T T−⎡ ⎤+ = +⎢ ⎥⎣ ⎦

I A A aa a A A a
1−

and substituting back into (2.80), we get 

 
( )
( ) ( ) 1det

1
det

T
T T

T

−′ ′
= +

A A
a A A a

A A
. (2.83) 

It is straightforward to that show Equation (2.83) can be equivalently expressed as 

 
( )
( ) ( )

21det
1

det

T
T

T

−′ ′
= +

A A
A A A a

A A
. (2.84) 

 Now, letting 

 ( )
b

b T
c k

⎡ ⎤
′ = ⎢ ⎥

⎣ ⎦

G
G

g
, (2.85) 

where  is the kth sensitivity kernel in the candidate set, ( )c kg cΩ , and substituting Gb 

for A,  for , and b′G ′A ĝ  for a, Equation (2.84) says that 

 ( ) ( )
( ) ( ) ( )

21det
1

det

T
b b T

b b b cT
b b

k k
−′ ′

Θ = = +
G G

G G G g
G G

. (2.86) 

Because the objective is to maximize Equation (2.86), we can simplify it without loss 

of generality to  

 ( ) ( ) ( )
1T

b b b ck
−

Θ = G G G g k . (2.87) 

Equation (2.87) expresses the same objective (a ratio of determinants) as Equation 

(2.66) except that it is arranged to handle the well-determined case, whereas the latter 

was arranged to handle the underdetermined case. 

 84



 In light of the foregoing, Objective Function #1 can now be modified to accom-

modate D greater than the MAR.  Flowchart 2-2 elucidates the idea; each step of the 

algorithm is annotated below. 

 

2-i. Same as Step 1-i. 

2-ii. Same as Step 1-ii. 

2-iii. Same as Step 1-iii. 

2-iv. Same as step 1-iii and 2-iii except the objective function is altered per Equation (2.87) to 

avoid zero eigenvalues.  

2-v. Same as Step 1-iv. 
2-vi. Same as Step 1-v.   

■ 

2.3.7 Objective Function #3: Adaptive Optimal Experi-
mental Design 

Either Objective Function #1 or #2 can be employed to perform a sort of ad hoc adap-

tive OED, wherein a preliminary data set is collected and inverted to provide an initial 

earth model; this working model can then be used to design a tailored experiment 

whose purpose is to minimize parameter uncertainty by maximizing resolution.  

 An alternate and possibly more elegant approach would be to design the experi-

ment in real-time, as data are being collected and inverted.  Flowchart 2-3 diagrams 

this idea; each step of the algorithm is annotated below. 

 

3-i. Collect n initial observations.  These initial observations can derive from a standard sur-

vey or can be designed to optimally query a homogeneous target.  Make an initial guess 

for the earth model, m0, perhaps starting with a homogenous earth.  Set the algorithm 

counter to n = 0. 

3-ii. Increment the counter, n := n + 1. 

3-iii. Perform one or two iterations of a nonlinear least squares inversion, using some type of 

regularization to ensure stability.  Update the model to mn+1. 
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3-iv. Check n to determine which Step to follow next.  Define D as the desired number of ob-

servations to populate the experiment with and nmax as the maximum number of iterations 

the coupled design/inversion algorithm is permitted ( ).  If n , proceed to 

Step (v), the OED step; if , proceed to Step (vii), the stopping criterion.  Once n 

exceedsD, the experimental design pathway (Steps (v) and (vi)) is deactivated and the 

algorithm proceeds thereafter as an ordinary NLLS inversion. 

maxn ≥ D < D

n ≥ D

3-v. Use Objective Function #1 or #2 (depending on whether n is greater than the MAR) to 

determine the next observation to be added to the experiment.  Bear in mind that , 

 and G  change at each iteration because the earth model, mn, changes.  This obvi-

ously significantly increases computational expense. 

bG

cG

3-vi. Collect the new observation prescribed in Step 3-v. 

3-vii. The stopping criterion is a matter of user choice.  The criterion specified here is a data 

rms error threshold coupled with a maximum permitted number of iterations, nmax. 

3-viii. If either stopping criterion is met, the algorithm exits.  

■ 

This technique requires model regularization since the inverse problem will be ill 

posed as long as the number of observations is less than the number of model parame-

ters (Note: it will always be ill posed if the number of parameters exceeds the MAR).  

The main contingency that can destabilize this method is that the experimental design 

phase is dependent on the current state vector, mn, which is in turn dependent on the 

type of inversion being used (the current model vector depends on inversion algo-

rithm details such as regularization scheme, Lagrange multipliers, data and model re-

scaling, constraints, and so forth).  Hypothetically, this method can converge to a lo-

cal minimum or fail to converge all together if the experimental design subroutine 

does not prescribe observations that maximize resolution with respect to the true, un-

known model, or any model in the neighborhood of the true model. 
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2.3.8 Applications 

In the following chapters, these experimental design techniques are employed in three 

different geoelectrical scenarios.  Not every OED methodology developed here is 

used in every chapter, because different geophysical scenarios call for different ap-

proaches.  Furthermore, additional aspects of our OED method are presented in the 

context of these chapters, instead of being presented here.  This was done for the 

pedagogical reason that these insights would be more intelligible in the context of ac-

tual geophysical problems, rather than if they had been divorced from their applica-

tions. 
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Figure 2-1 Cartoon depictions of the relationships between data-, model-, and experi-
mental-space.  (a) Points in model- and experimental-space are mapped by the for-
ward operator, g, to data space.  This is an ambiguous way of describing the mapping 
because it does not distinguish between invertible and noninvertible mappings. (b) An 
alternate way of representing the mapping from model- to data-space.  Each experi-
ment, denoted Ωn, creates a unique mapping, via g, between model- and data-space.  
The strength of the mapping is represented by its line weight, and two-way arrows 
represent invertibility, while one-way arrows represent non-invertibility. 
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Figure 2-2 Cartoon examples of injective and non-injective mappings.  Panel (a) 
shows an injective mapping between M and D.  Injectivity does not require that every 
point in D has a mate in M, but it is a sufficient condition to ensure the invertibility of 
the mapping.  This is reasonable from a geophysical standpoint, as one can easily 
come up with data sets that cannot possibly be observed in the real world.  Panel (b) 
shows an example of a non-injective (non-invertible) mapping.  In this situation, 
models 3 and 4 both map to data set U, which means that an inverse mapping from U 
could not distinguish whether the data derived model 3 or 4.  Hence, non-injectivity is 
synonymous with non-invertibility and model nonuniqueness. 
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Figure 2-3 Example of ‘inversion trajectories’, the paths through model space that a 
nonlinear least squares algorithm follows as it converges on the solution.  The green 
dot is the initial model guess, the red dot is the converged solution and the black dots 
indicate ‘way points’ along the trajectory to the converged solution.  The yellow star 
indicates the true model, which typically does not minimize the data rms error when 
data are noisy.  Panel (a) depicts a situation where an experiment has been designed to 
be optimal with respect to an initial model guess far from the true solution.  The grey 
region depicts a hypothetical neighborhood around the initial model guess for which 
the designed experiment is ‘optimal’.  Panel (b) depicts the situation where an ex-
periment has been optimally adapted to an inversion model (green dot) that is as-
sumed to be close to the true solution.  In this case, the designed experiment is hy-
pothesized to create a region of experiment optimality with a higher likelihood of 
containing both the inversion model and the true model. 
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Flowchart 2-1 Basic algorithm for performing sequential experimental design. 
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Figure 2-4 Visualization of the basic OED algorithm.  If g1 is the sensitivity kernel of 
the first observation in the base experiment, the algorithm determines the lengths of 
the senstivitiy kernels of each candidate observation after projection onto the null 
space of g1 (which is orthogonal by definition to the space spanned by g1).  The col-
ored dashed lines represent these projections.  The algorithm chooses the candidate 
whose projection is of maximal length in this orthogonal direction.  In this case, the 
algorithm would choose g3.  Observe that g2 is longer than g3, but its projection onto 
the null space of g1 is smaller, so the algorithm does not choose it. 
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Figure 2-5 Demonstration showing how the experimental design objective function 
affects the singular spectrum of G  as a function of iteration number.  Shown are the 
singular spectra of G  at design iterations 5,10, 15, 20, 25, and 28 (the iteration num-
ber equals the number of observations currently in the base experiment).  This exam-
ple derives from a borehole resistivity setting (which is fully explored in Chapter 4) 
where 10 electrodes have been deployed to query a heterogeneous earth model.  The 
details of the borehole problem are irrelevant here; what is important is the behavior 
of the singular spectra as more observations are added to the base experiment.  The 
top and bottom panels are identical but for the scale along the y-axis.  Also shown is 
the singular spectrum for a standard resistivity survey called the Pseudosection survey 
(again, the particular details are irrelevant; what is relevant is how the spectra of the 
designed experiments compare with the spectrum of a widely-used, standard experi-
ment).   

b

b
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Observe that as the number of observations increases all singular values increase.  
This is because the sensitivities of the added observations are not strictly linearly in-
dependent with respect to their predecessors in the base experiment.  Also observe 
that the spectra of the designed experiments are categorically greater than the spec-
trum for the standard Pseudosection survey.  
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Flowchart 2-2 Modification of the basic OED algorithm that addresses experiments 
whose number of observations may exceed the maximum attainable rank of the Jaco-
bian matrix.  When the number of observations is less than the maximum attainable 
rank, this algorithm is identical to the Basic Algorithm in Flowchart 2-1.   
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Flowchart 2-3 Algorithm describing a possible method for performing adaptive opti-
mal experimental design. This is an integrated form of OED, wherein the operations 
of data collection, inversion, and experimental design are executed cyclically, until 
convergence.  D specifies the number of observations the designed experiment will 
have and nmax specifies the maximum number of iterations the super-algorithm is 
permitted before termination. 
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Chapter 3  

One-Dimensional DC Resistivity 

3.1 Introduction 

One-dimensional resistivity is among the oldest geoelectrical methods.  It assumes 

that the earth can be approximated as a series of infinite, horizontal layers of differing 

thicknesses and resistivities.  One-dimensional models impose the strongest assump-

tions on the lithological structure of the earth and therefore are mainly useful in situa-

tions where it is reasonable to apply such assumptions, such as might be the case in 

alluvial settings or when seeking the depth to the water table.  Despite the strong re-

strictions 1D methods impose on the earth model, they are very appealing to the ex-

ploration geophysicist because they are easy to deploy and execute in the field and 

because inversion of their data is usually quite rapid, owing to a relatively small num-

ber of parameters as compared with 2D or 3D methods. 

 This chapter examines optimal experimental design applied to surface one-

dimensional resistivity problems.  The sequential OED technique developed previ-

ously is adapted and applied.  We briefly develop the numerics used for 1D resistivity 

forward modeling and inversion, from which several issues germane to the 1D prob-

lem are identified that affect experimental design.  Additional aspects of the experi-

mental design problem, which are better addressed without using the OED methodol-

ogy, are also explored.  
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A primary objective of this research is to investigate the 1D resistivity problem in the 

presence of data noise.  There are three sources of data error for 1D resistivity: (1) 

random errors due to things like unknown electric fields in the ground and instrument 

precision; (2) systematic errors due to localized heterogeneities in the earth, which 

cannot be accounted for by using a 1D earth model; and (3) electrode placement er-

rors, which impart error by misrepresenting the assumed positions of the electrodes.  

Random errors in the data are easily addressed, and indeed, several investigations 

herein are devoted to exploring OED with respect to this kind of noise.  Data errors 

due to local heterogeneities, however, cannot be addressed because 1D modeling sim-

ply does not account for any but vertical heterogeneity (Beard & Morgan, 1991).  

Electrode placement errors are more difficult to appreciate and quantify than random 

errors, but they can significantly impact data quality.  We examine the electrode 

placement problem in detail and arrive at a surprising and novel discovery. 

 Several separate research topics are compiled herein, and a slightly unorthodox 

format has been adopted to present this research.  Rather than presenting holistic sec-

tions on theory, methodology, results and discussion for the entire chapter, each ‘sub-

topic’ is self-contained, with pertinent theory, methodology and so forth being pre-

sented in context.  These subtopics collectively hang upon the framework of optimal 

experimental design for 1D resistivity, which is the main topic of this chapter.  The 

subtopics are presented in the following order: (1) Modeling and Inversion; (2) De-

termining the Number of Layers; (2) Continuous Versus Discrete Experimental De-

sign Search Spaces; (4) Positioning Survey Electrodes; (5) General Surveys for Un-

known Earth Models; (6) Adaptive Optimal Experimental Design.  Following these 

sections, a Conclusion is provided that integrates and summarizes the results of the 

various topic areas. 

3.2 Modeling and Inversion 

We adopt the exact, analytic solution for multiple horizontal resistivity layers reported 

by Parasnis (1997).  Parasnis’ solution is actually a succinct synopsis of the original 
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solution, which was introduced by Koefoed et al. (1979) for modeling apparent resis-

tivity as a function of intrinsic resistivity and layer thicknesses over multiple pancake 

layers: 

 ( ), ,a fρ ω= ρ h , (3.1) 

where aρ  is apparent resistivity, expressed here explicitly as a function of layer resis-

tivities and thicknesses in the vectors ρ and h, respectively, and a data station, ω, 

which is some 4-electrode configuration (a transmitter dipole and a receiver dipole). 

The details of the method shall not be repeated here (the interested reader is referred 

to the aforementioned works).  Equation (3.1) is used to forward model 1D resistivity 

and to establish the inverse problem, which employs the Jacobian matrix, populated 

with the partial derivatives of aρ  with respect to ρ and h.  This approach to 1D resis-

tivity modeling and inversion is called the variable-thickness method and has been 

identified as one of the most robust for accurately resolving model parameters 

(Simms & Morgan, 1992). 

 The format for the 1D resistivity problem is shown in Figure 3-1.  A sequence of n 

layers with differing resistivities, ρj, and layer thicknesses, hj, overlies a half-space of 

resistivity ρn+1.  Four electrodes are positioned collinearly and symmetrically about 

the center axis of the sounding to collect a datum.  It is permissible to employ this 

symmetry because there is no lateral heterogeneity in the model, which would other-

wise require asymmetric electrode configurations.  The outer electrodes are positioned 

a distance L from the center of the sounding and the inner electrodes are each posi-

tioned a distance l.  Traditionally, current electrodes form the outer pair while poten-

tial electrodes form the inner pair, but reciprocity allows for these roles to be inter-

changed.  

 The Schlumberger and Wenner electrode configurations  (see Figure 3-2) have 

traditionally been the most widely used for vertical electrical soundings (VES), 

though the Schlumberger spread is noted to be the superior of the two (Zohdy, 1990).  

The main distinction between the two spreads is that the ratio of the outer to inner 

electrode spacing for the Schlumberger spread is usually set to be greater than 5 
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( 5L l > ), while the Wenner spread fixes this ratio to be 3 ( 3L l = ).  The reason 

Schlumberger spreads have typically employed L/l ratios of 5 or greater is because 1D 

apparent resistivity modeling has historically employed approximations to the full 

nonlinear forward model function (e.g., Mundry, 1980; Arnason, 1984), and L/l > 5 

ensured modeling accuracy to within 3%. 

 However, the nonlinear forward function in this work has not been approximated 

so we are not restricted to this convention.  Denoting a current dipole AB and a poten-

tial dipole MN, a resistivity observation is made by injecting a current, I, across AB 

and measuring the resulting potential, V, across MN.  V and I are converted to appar-

ent resistivity, ρa, by 

 a
Vk
I

ρ = , (3.2) 

where k is the so-called geometric factor, which accounts for the relative positions of 

the four electrodes.  The geometric factor is given by 

 
11 1 1 12k

AM AN BM BN
π

−
⎛= − − +⎜
⎝ ⎠

⎞
⎟  (3.3) 

(Parasnis, 1997) for resistivity measurements made on the surface, where the ‘overbars’ 

are length operators.  Equation (3.3) can be simplified for Schlumberger and Wenner 

spreads to 

 
2 2

2S
L lk

l
π −

=  (3.4) 

and 

 4
3Wk Lπ

= , (3.5) 

respectively.  The geometric factor should not be too large because it causes the po-

tential measurement to be small, approaching instrument resolution (Stummer et al., 

2004).   Sharma (1997) recommended a threshold of k at around 5500 m, though the 

choice of geometric factor must ultimately depends on the resolution of the particular 

field instrument and the magnitude of expected electromagnetic noise at a particular 

site.  A heuristic cartoon is provided in Figure 3-3, plotting the ratio of the predicted 
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voltage over the injected current as a function of the geometric factor for a homoge-

neous earth.  Geometric factor considerations are at our discretion for synthetic stud-

ies.  However, to retain a measure of real-world practicality, the geometric factor 

threshold of 5500 m is adopted herein to comply with assumed limitiations of instru-

ment precision and to minimize EM data noise, which amplified by large k values.  

However, though it addresses realistic noise problems for resistivity surveys, we ac-

knowledge that this threshold is arbitrary in the context of synthetic trials. 

 Regardless the particular type of electrode spread used, a series of unique Ll com-

binations are used to collect the resistivity sounding data set.  As a rule of thumb, 

large L spacings are required to penetrate deeper into the earth.  For a homogeneous 

earth, it has been shown (Telford et al., 1990) that the fraction of the total injected 

current that flows horizontally below depth z is given by 

 121 tanxI z
I Lπ

− ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

. (3.6) 

To ensure that at least half the current flows below a depth, z, the outer electrode 

spacing, L, must be equal to or greater than z (see Figure 3-4).  However, much larger 

L/z ratios are recommended (as great as L/z = 5, which ensures that approximately 

85% of the current flows below the depth, z) to maximize sensitivity to the deepest 

formations.  If the maximum depth of investigation is chosen to be 50 m, for example, 

it is recommended that the largest outer electrode spacing be set 250 m from the cen-

ter of the sounding, if possible.  Owing to the nonlinearity of (3.6), 1D surveys typi-

cally distribute the outer electrodes exponentially.  This is exemplified by the 

Schlumberger and Wenner surveys seen in Figure 3-2, which are characteristic of VES 

surveys.  

 Data inversion is carried out using nonlinear least squares formalism.  The Jaco-

bian matrix of the forward model is calculated with respect to layer resistivities and 

thicknesses at each iteration of the inversion.  Additionally, the problem is log-

rescaled, to ensure the positivity of resistivities and layer thicknesses and to improve 

convergence times.  The inversion is stabilized by parameter damping, which is con-
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trolled by a Lagrange multiplier whose value is governed by the Levenberg-

Marquardt algorithm. 

 One distinction of 1D resistivity as it is modeled here is that the discretization of 

the earth is not predetermined, in contrast to the pre-specified meshes that are used in 

2D and 3D problems.  Because the 1D problem treats layer thicknesses as unknowns, 

earth discretization is a free variable.  The point is that the design procedure must ac-

commodate not only the resistivities of each of the layers, but their thicknesses as 

well. 

3.3 Determining the Number of Layers 

In order to execute our sequential experimental design procedure, it is important to 

determine the correct number of layers the target site should be modeled with.  A pri-

ori, we cannot know how many layers to fit the data with, and there is no guarantee 

that the number can be deduced by inspecting the raw field data.  There is a large lit-

erature on methods of model determination, but the purpose here is to demonstrate 

that we generally can determine the number of layers, thereby facilitating the OED 

exercise, which depends on a working earth model.  The particular method by which 

we determine the number of layers is not so relevant as just showing that we can per-

form the exercise. 

 Simms and Morgan (1992) proposed that a series of inversions with successively 

more layers be executed, keeping track of the model and data errors as a function of 

the number of layers.  The following development paraphrases that paper.  Both 

model and data errors should decrease as the number of layers increase, which is pre-

dicted along the diagonal line in Figure 3-5 (reproduced from (Simms & Morgan, 

1992)). The point at which the model and data rms errors are closest to the origin is 

taken as the best model.  Afterwards, the addition of more layers cannot significantly 

reduce the data rmse and these models represent the set of nonunique solutions.  

However, these nonunique solutions typically induce larger model rms errors, as pre-

dicted along the horizontal line Figure 3-5.  Eventually, the number of layers becomes 
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so large that the inverse problem cannot resolve all parameters and is ill posed, as 

predicted along the vertical line in Figure 3-5. 

 Simms and Morgan’s method was examined by repeating one of their examples.  A 

2-layer model over a halfspace was created.  The top layer was 1 m thick with a resis-

tivity of 1 Ωm; the second layer was 5 m thick with a resistivity of 0.2 Ωm; and the 

substratum had a resistivity of 1 Ωm.  20 data points were synthesized at logarithmic 

outer electrode spacings of approximately 6 positions per decade, from 1 to 1000 m.  

Inner electrode spacings were forced to have a geometric factor no greater than 5500 

m.  The data were contaminated with 5% Gaussian noise.  The model and synthetic 

field data are shown in Figure 3-6.  The data were inverted for increasing numbers of 

layers, and percent rms errors were calculated for both model and data.  The results 

are shown in Figure 3-7.  The numbers next to each model/data pair indicate the num-

ber of layers for which the data were inverted.  This result nicely validates the heuris-

tic that Simms and Morgan put forth.  The correct number of layers (over the half-

space) is two, which is evident in the cross plot.  As predicted, the data error is essen-

tially invariant for models using more than two layers, while the model error in-

creases. 

 In practice, real-world problems preclude calculation of the model error, because 

the true model is unknown.  In many cases, inspection of the data rmse curve is suffi-

cient to determine the correct number of layers.  The curve will typically decrease 

rapidly, asymptoting at the point where the correct number of layers is tried; after-

wards, the curve flattens, indicating that additional layers do not significantly im-

prove the solution.  Figure 3-8 shows a real field sounding that was collected by the 

ERL in Curaçao in 2001, during a water prospecting campaign.  The data were in-

verted for one to four layers. The data misfit curve indicates that the appropriate 

model has two layers over an infinite half-space.   

 Simms and Morgan (1992) also developed an F-test that discriminates between 

competing layer models.  The F-test is a statistical method for determining whether 

two sample variances originate from the same distribution.  It is useful for model dis-

crimination because it provides an easy way to determine whether the data rms errors 
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for two models are statistically significantly different.  If an F-test between two mod-

els indicates that their errors are statistically different (at a confidence level, α), the 

model with the larger misfit is rejected; otherwise, the model with larger number of 

parameters is rejected.  The F metric is defined as 

 
2
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2
2

s mF
s n

≡ , (3.7) 

where  and  are sample variances, and m and n are the number of degrees of free-

dom of the two samples (typically equal to the number of elements in each sample).  

It is conventional, though not required, to place the larger of the two sample variances 

in the numerator, making F > 1.  Equation (3.7) is modified for our purposes by sub-

stituting the data ms errors of two competing models for  and , and by observing 

that m = n because the same number of observations are used for both models: 
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This ratio is compared with an F-table at a specified confidence level, α, to ascertain 

whether the difference between rms errors is statistically significant.   

 F-tests were conducted on the various layer models in the preceding example.  20 

observations were made, so the degrees of freedom were m = n = 20.  Confidence lev-

els for the F value for samples with 20 degrees of freedom are 2.1242 with 95% con-

fidence, 1.6023 with 85% confidence, and 1.3580 with 75% confidence.  Table 3-2 

reports the percent rms errors for data and model as well as the F values between suc-

cessive layer models.  The F value between the one- and two-layer models greatly ex-

ceeded the 95% confidence level, so the 2-layer model is chosen over the 1-layer 

model.  The F value between the 2- and 3-layer models, however, fails to be signifi-

cant even at the 75% confidence level, and none of the remaining F values are signifi-

cant either.  Therefore, the F-test indicates that the best model is the 2-layer model, 

which we know to be correct.  It is especially noteworthy that the F-test picks the 2-

layer model because the data errors for models with 3 or more layers are actually 

smaller.  For real-world applications, we would not know the model error reported in 
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the first row of Table 3-2, and while the combination of the two error terms allows us 

to easily discriminate between models, the F-test has clearly distinguished itself as a 

robust discriminator when the data are the only information available. 

In light of the preceding discussion, it is hereafter assumed that the correct layer 

model can be identified, freeing us to focus on other details of optimal experimental 

design in the coming sections. 

 One closing remark is needed regarding nonuniqueness. There are several causes 

of nonuniqueness.  Underdetermined problems are nonunique because there are fewer 

observations than parameters.  The principle of equivalence, which is dramatically 

exemplified in gravimetry for example, gives rise to nonuniqueness because different 

earth models can beget precisely the same data, no matter how many observations are 

made.  Poor model resolution, attendant to an inadequately designed experiment or to 

the physical nature of a problem, also causes nonuniqueness.  1D resistivity is subject 

to all these kinds of nonuniqueness, though to a far smaller degree than 2D and 3D 

methods. In fact, most 1D resistivity problems can usually be well posed.  That is to 

say, there is a unique solution to the inverse problem (provided not too many layers 

are used) as indicated in Figure 3-5.  The nonuniqueness shown in that figure differs 

from the types listed above; it comes from treating the parameterization of the earth 

as a free variable.   

 Ultimately, most 1D resistivity problems can be well posed as long as one uses 

some sort of model discrimination, like the F-test, and so long as the experiment is 

adequate for the target site.   

 A corollary of well-posed inverse problems is this: noiseless data can always be 

inverted to yield the true solution (provided the correct model functional has been 

chosen).  Whereas optimal experimental design for ill-posed problems must address 

modeling errors caused both by noisy data and resolution limitations, OED for well-

posed problems can focus strictly on minimizing the effects of data noise.  Thus, a 

primary objective of later investigations is to demonstrate that our sequential OED 

technique can produce data sets for 1D resistivity that have superior noise rejection 

capabilities. 
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3.4 Continuous Versus Discrete Experimental Search 
Spaces 

The formulation of the 1D resistivity forward and inverse modeling, as implemented 

here, permits electrodes to be placed anywhere, continuously along the surface.  This 

is in contrast to the restrictions imposed by using 2D and 3D transmission line net-

work analogs (e.g., Madden, 1972; Zhang et al., 1995; Shi, 1998), which permit elec-

trodes to be placed only at discrete input/output nodes of an equivalent resistor-

network.  Consequently, 1D resistivity OED has an infinite number of 4-electrode 

combinations to choose from, whereas 2D/3D OED has a finite number.  Conse-

quently, the update subroutine of our sequential OED algorithm (which picks the next 

best observation to add to the base experiment) no longer searches a finite set of per-

mitted observations but an infinite one.  The update subroutine must not only pick the 

combination of four electrodes to be used but also the positions of those electrodes. 

 The update subroutine of our greedy, sequential OED algorithm chooses the ob-

servation whose sensitivity kernel, after projection onto the null space of the base 

Jacobian matrix, is of maximal length, ensuring that it contributes maximal comple-

mentary information.  If there are a finite number of permitted observations, it is per-

missible to exhaustively evaluate each according to this objective.  If there are infi-

nitely many, we are forced to use a different optimization approach, since an exhaus-

tive search is impossible.  In this research, we utilize an evolutionary algorithm called 

differential evolution (see Appendix A for details) for determining the optimal obser-

vation to be added to the base experiment. 

3.5 Survey Electrode Placement 

The xy-symmetry of one-dimensional earth modeling permits a VES observation to be 

made using electrodes symmetrically positioned about the center of the survey, typi-

cally with the current dipole on the outside and the potential dipole within (as in 

Figure 3-1).  This allows us to cast the experimental design problem in terms of L-l 
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pairs, rather than x1-x2-x3-x4 4-tuples, where xi denotes the position of the ith electrode, 

independent of the others.  The main thrust of this section is to examine the effects of 

electrode placement on data noise and thereby on errors in inverse modeling. 

 Field technicians cannot place survey electrodes with infinite accuracy, and some 

error will be introduced into the data by placement errors.  These errors are most pro-

nounced when any two electrodes are close together.  The percent error in the geomet-

ric factor, as a function of these placement or sampling errors, is examined in detail to 

ascertain the degree to which this kind of noise contaminates the data. 

 As described in Equation (3.2) and shown in Figure 3-1, an apparent resistivity 

field datum derives from measured currents and voltages as well as the geometric fac-

tor of 4-electrode data stations.  Of these three quantities, the geometric factor is not 

actually measured.  It is rather calculated using Equation (3.3), under the assumption 

that the spread electrodes have been placed at their appropriate positions.  In other 

words, calculation of the geometric factor assumes there has been no error in placing 

the electrodes.  In practice, infinitely precise electrode placement is impossible for a 

variety of reasons.  There may be an obstacle where the electrode needs to be placed, 

the field tape measure may get jostled as the survey is being laid out, an electrode 

might be driven into the ground at an angle, or the field technician might accidentally 

set an electrode slightly off its desired position.  The purpose of this investigation is 

to quantify the effects of electrode misplacement to better understand how much or 

how little this kind of error ultimately affects data inversion.   

 Multiple Monte Carlo investigations were performed to determine the statistics of 

the error introduced by electrode misplacement in calculating the apparent resistivity.  

Various combinations of outer and inner electrode spacing were tried; for each Ll 

combination, 105 realizations of electrode misplacement were generated and the ap-

parent resistivities were calculated, creating large samples from which to quantify the 

expected error.  Error was quantified by determining the coefficient of variation for 

each Ll combination.  The coefficient of variation is a statistic that measures the rela-

tive variability of a random variable by the ratio of its standard deviation to its mean, 
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k
σ

= . (3.9) 

The coefficient of variation provides a normalized measure of the expected scatter 

about the mean of a random variable.  It is particularly useful in this Monte Carlo ex-

ercise because it is directly proportional to the 95% confidence limits for the apparent 

resistivity when these limits are expressed in terms of percent error.  To see this, note 

that the 95% confidence interval, in terms of percent error, is given by 

 ( ) ( )95% 1.96C.I. 95% 1.96
k

c
k k

σ± ∆ ±
≡ = = ± , (3.10) 

for an underlying random variable that is normally distributed (which is the case for 

these Monte Carlo exercises).  Equation (3.10) shows that the percent-error confi-

dence limits are directly proportional to the coefficient of variation.  Two separate 

cases of misplacement error were considered: one assuming that 95% of all placement 

errors fall between ±1 cm of the desired position; and the other assuming that 95% of 

errors fall between ±2 cm.  All placement errors were normally distributed with zero 

mean. 

 The results of all Monte Carlo simulations are synopsized in the two panels shown 

in Figure 3-9.  The simulation statistics have been organized into families of curves.  

Each curve shows the coefficient of variation for fixed L and is plotted against the ra-

tio of the inner to outer electrode spacing, l/L, which is bounded between 0 and 1.  

Observe that the expected error decreases as the outer electrode spacing, L, becomes 

large.  This is explained by noting that the geometric factor should be less sensitive to 

placement errors when the relative distances between electrodes are large.  The same 

explanation applies when we trace the curves from left to right, for l/L increasing 

from 0 to 1.  Again, the smallest errors in the geometric factor occur when the elec-

trodes are relatively far from one another, whereas the largest errors occur when any 

pair of electrodes is close together.  Also shown in these panels are the ±10%, ±5%, 

and ±2.5% error confidence levels calculated according to Equation (3.10).   These 

give an idea the values of L and l one should choose if one wishes to avoid percent 

data errors (due to electrode misplacement) in excess of some threshold. 
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 One of the most surprising aspects in Figure 3-9 is the position where each of the 

error curves goes through its minimum.  The dots in both panels indicate these posi-

tions.  Though there is some scatter due to finite sampling, the mean value of these 

minima is , where 0.01 is the standard deviation.  This suggests that 

there is a unique value for the inner electrode spacing that, as a function of the outer 

electrode spacing, minimizes data error due to electrode misplacement.  This unusual 

discovery precipitated an investigation to determine whether this ratio could be de-

rived analytically.  The following derivation indicates that a value very close to this 

ratio does indeed minimize the error due to electrode misplacement. 

/ 0.43 0.01l L = ±

 An expression for the geometric factor, equivalent to that given in Equation (3.3), 

is 
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and where 1 2 3 4x x x x< < < , which ensures that the potential dipole is internal to the 

current dipole.  This electrode configuration (the potential dipole internal to the cur-

rent dipole) forces k to be strictly positive.  Now consider the gradient of the natural 

logarithm of k with respect to the electrode positions, x1, x2, x3 and x4 
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where [ ]1 2 3 4, , , Tx x x x=x .  The elements of g specify the instantaneous percent change 

in k with respect to the four electrode positions, because ( ) (/ /
ix ik k k k x )∂ ≈ ∆ ∆ .  A use-

ful perspective on g is to note that its elements are the normalized sensitivities of the 

geometric factor to perturbations in electrode positioning.  The ‘perturbations’, in this 

case, are random fluctuations in each electrode’s position, owing to placement error.  

Therefore, to minimize the expected percent error in k, the elements of g must be 

minimized.  However, the signs of the partials in (3.13) are ambiguous, but this is 

overcome by squaring the elements of g.  Thus, the general minimization problem is 

to find  satisfying x̂

 ( ) 2ˆ arg min=
x

x g x . (3.14) 

 To execute the above derivation, we must first determine g with respect to x, but it 

is convenient to skip a step here: rather than express g with respect to x, we evaluate g 

and then make the following substitutions for x: 1 2 3 4, , ,x L x L x L x Lα α= − = − = = .  

These substitutions force the electrodes to be symmetrically situated about the center 

of the survey and give rise to the following expression for g: 
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The preceding substitutions also effect a modification of Equation (3.14).  Rather than 

finding  that satisfies Equation (3.14), we now seek x̂ α̂  that does the same, using 

Equation (3.15).  Equation (3.14) now takes the form 
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which is satisfied over the interval 0 1α≤ ≤  by 

 0.429195α ≅ . (3.17) 

This value of α was determined using a symbolic equation solver in Mathematica on 

Equation (3.16) (Note: For the interested reader, a thorough derivation of these 

mathematics is provided in Appendix B).  This validates the observation from Figure 

3-9 that the l/L ratio is indeed constant (regardless of the outer electrode spacing) with 

a value of  ~0.43, which is very close to the estimated minima seen in Figure 3-9.  

 The preceding concept was tested by Monte Carlo simulation.  A Schlumberger 

survey, customarily used by the ERL, was compared with a survey designed using 

Equation (3.17).  The two surveys are tabulated in Table 3-1, columns 1 and 3. The 

outer electrode spacing of the designed survey was set to be identical to that for the 

Schlumberger survey, with the inner electrode spacings set to be 0.43L.  Although not 

reported in Table 3-1, the geometric factors of these surveys are both below the re-

quired threshold of 5500 m mentioned earlier.  Five hundred realizations of electrode 

misplacement were generated for each survey, from which noisy field data were syn-

thesized and inverted.  The placement errors were normally distributed with zero 

mean and a standard deviation of ~0.005 m, causing 95% of the errors to be within ±1 

cm.  The underlying earth model, shown in  

Figure 3-10, was a 2-layer model with a 10 m thick surface layer of 200 Ωm, a 10 m 

thick intermediate layer of 50 Ωm, and a 400-Ωm basement.   

 The relative performance of the two surveys was compared by numerically ap-

proximating the mean absolute percent error (MAPE) between the true and predicted 

sounding curves for each realization.  The MAPE metric is given by 

 
( ) ( )

( )
max

max 0

1MAPE
z z z

dz
z z

ρ ρ
ρ

−
= ∫ , (3.18) 

where  is the true model profile and ( )zρ ( )zρ  is the predicted model profile, and 

where zmax is set to the maximum desired depth of investigation.  Note that the outputs 

for our 1D inversion are resistivities, ρj, and layer thicknesses, hj.  These are con-

verted into a discrete approximation of the continuous profile, ( )zρ , in order to nu-
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merically approximate Equation (3.18).  Cumulative distributions of the MAPE are 

shown for both surveys in Figure 3-11.  Also shown are the 90% confidence levels for 

both surveys.  The Designed and Schlumberger surveys produce MAPEs less than 

~20% and ~34%, respectively, with 90% confidence.  More important than this is the 

fact that the cumulative frequency distribution of modeling errors for the Designed 

survey is almost entirely to the left of the distribution for the Schlumberger survey.  

This indicates that the frequency distribution of model errors for the Designed survey 

is shifted to the left (smaller model errors) relative to the frequency distribution of 

model errors for the Schlumberger survey.  Hence, the Designed survey produces a 

statistically significant reduction in model error. 

The preceding demonstration validates the hypothesis that, to minimize the effects of 

electrode misplacement on inversion, one can place the inner electrodes at 43% of the 

outer electrode spacing.  It also confirms the analytic derivation in Equations (3.11) - 

(3.17). 

 Notably, the Wenner spread (Figure 3-2) employs a constant ratio of , 

which is closer to the observed (and analytically derived) 

/ 1/l L = 3

3/ 0.4l L = shown here than 

the ratio for Schlumberger spreads, which is typically / 1/l L 5≤ .  So, while the Wen-

ner spread has been in disfavor historically (Zohdy, 1990), given modern inversion 

practices, it may be that the Wenner spread is in some ways superior to the Schlum-

berger spread. 

 In closing this section, it is important to recapitulate.  The demonstrations and 

analyses here have shown that the inner electrode spacing should simply be set to 

43% of whatever is the outer electrode spacing.  This is true if the only source of data 

noise is expected to derive from electrode misplacement.  As will be seen in subse-

quent sections, if the primary source of data noise is random fluctuations due to un-

known EM sources, the ‘43% Rule’ does not apply.  In point of fact, if we wished to 

perform 1D resistivity OED that simultaneously addressed both noise sources – elec-

trode misplacement and random EM fields – the design algorithm would have to be 

altered such that both noise types were accounted for.  This scenario is not addressed 

in this research, but it is conjectured that this would be a significantly harder design 
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problem.  This derives from the fact that electrode misplacement errors, which ulti-

mately affect calculation of the geometric factor, k, necessarily multiply random errors 

in a potential observation.  This is evident from inspection of Equation (3.2), for if we 

replace k with , where ke is the error in calculating the geometric factor due 

to electrode misplacement, and if we replace V with 

ek k k= +

eV V V= + , where Ve is error in 

the potential measurement due to random fluctuations of an EM field, the apparent 

resistivity calculation clearly depends on the product of ke and Ve.  This ultimately 

means that the diagonal elements of the data-error covariance matrix differ and are 

observation-dependent.  It is probable that our sequential OED technique could be 

adapted to scenarios where the magnitude of data noise varies from observation to ob-

servation, but this prospect remains to be addressed. 

3.6 General Surveys for Unknown Earth Models 

In Chapter 1, we briefly described two general types of optimal experimental design, 

unspecific and specific OED.  Unspecific OED was the term used to describe experi-

mental design problems when no model information is available on a target site.  In 

such cases, it is reasonable to start from the assumption that the earth is homogene-

ous.  The purpose of unspecific OED therefore is to design an experiment optimized 

for a homogeneous earth, on the assumption that such an experiment can serve as a 

general survey in unknown areas.  We are of course free to perform additional opti-

mized surveys afterward, to improve imaging accuracy, and it should be clear that 

these surveys derive from specific OED, because a working model is now specified. 

 We would like to design a pseudo-optimal 1D resistivity experiment for situations 

where no information is available on the true earth model, and we begin by assuming 

a homogeneous earth.  Recall that our sequential OED technique essentially operates 

on the sensitivity kernels of permitted observations.  The following discussion dem-

onstrates that a number of practical problems arise pertaining to these sensitivity ker-

nels when a homogeneous earth model is assumed.   
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 First, there is only one model parameter for a 1D homogeneous earth; there is only 

one resistivity – the resistivity of the halfspace – and there are no layer thicknesses.  

This means that the observation sensitivity kernels are scalars, not vectors.  The key 

feature of our sequential OED method is that it attempts to simultaneously maximize 

information complementarity and magnitude, but information complementarity relates 

to the orthogonality of sensitivity kernel, and orthogonality is undefined for one-

dimensional vectors.  Consequently, the sequential OED method is inapplicable, be-

cause information complementarity is undefined.  In effect, as there is only one pa-

rameter, only one observation would be needed to determine it.  But the objective is to 

create an experiment that is robust not only for homogeneity but for heterogeneity as 

well.  As stated at the beginning of this section, we would like to design an experi-

ment that can be used as a primary survey when no knowledge of the earth structure is 

available, and a survey with only one observation would be absurd. 

 A potential workaround would be to introduce the artifice of a multilayer earth 

with identical layer resistivities.  Still, this poses practical problems.  The partial de-

rivatives of apparent resistivity with respect to layer resistivities are dependent on the 

layer thicknesses, even though the resistivities are identical.  In other words, two dif-

ferent layer models will give rise to different sensitivity kernels, even though the 

earth is actually identical for both models.  Additionally, the partial derivatives of ap-

parent resistivity with respect to layer thicknesses will all be zero because perturbing 

the thickness of a layer whose resistivity is identical to adjacent layers will not affect 

the predicted data.  Consequently, the artificial partitioning of a homogeneous earth 

results in arbitrary sensitivity kernels.  Because different partitionings create different 

sensitivity kernels, different experimental designs will arise for arbitrary partition-

ings.  Clearly, it is impractical to set up the OED problem by this artifice. 

 The foregoing problems with observation sensitivity kernels imply that our OED 

technique must be abandoned for 1D homogeneity.  Instead, an analytic approach is 

put forth.  We propose that a pseudo-optimal experiment for a homogeneous earth will 

be one whose current fractions, as described in Equation (3.6) (see Figure 3-4), are 

linearly distributed over some user-defined range, as shown in Figure 3-12.  Intui-
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tively, this ensures that each depth interval from the surface to the maximum desired 

investigation depth, zmax, is apportioned an equal current fraction.  Mathematically, we 

are specifying that the ratio, Ix/I, should be a linear function of j, where j is the jth ob-

servation from a set of n observations: 

 ( ) for 1, 2, ...,xI j a j b j n
I

= + = , (3.19) 

where a and b are linear coefficients that are yet to be determined.  Now, if we define 

Lmin as the minimum permitted outer electrode spacing (this will be user specified), 

Lmax as the maximum permitted electrode spacing (user specified), and zmax as the 

maximum desired depth of investigation (user specified), a system of two equations 

arise, 
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that are solved for a and b, producing 
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Combining (3.21), (3.19) and (3.6) and solving for L as a function of the jth observa-

tion, we end up with the following prescription for outer electrode spacings: 
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Below, we examine the foregoing prescription for outer electrode spacing to deter-

mine whether it can indeed produce superior data.  Three surveys were compared in a 

Monte Carlo simulation over the synthetic target in 

Figure 3-10.  The three surveys were the Schlumberger, Wenner and ‘Designed’ sur-

veys shown in Table 3-1, columns 1, 2 and 4.  The inner electrode spacings for the 

Designed survey were permitted to be greater than or equal to 0.15 m or no less than 

would cause the geometric factor to exceed 5500 m.  The former restriction was em-

ployed in deference to Figure 3-9 where it was shown that extremely small l/L ratios 

give rise to large errors in calculating apparent resistivity field data.  The latter was 

employed in deference to the limits of instrument resolution discussed previously.  

Five hundred realizations of noisy data were synthesized for each survey and in-

verted.  The noise for each realization was 5% Gaussian. 

 Figure 3-13 synopsizes the results of this Monte Carlo investigation.  Panels a-e 

show the cumulative frequencies of percent error between the true and predicted 

model parameters, ρ1, ρ2, ρ3, h1 and h2.  These panels also show the 95% confidence 

intervals for each parameter with respect to the three experiments.  Differences be-

tween the confidence intervals for the five parameters are small enough between the 

three surveys to argue that their performances are essentially identical, though the 

‘Designed’ survey distinguishes itself with respect to the ρ2 and h2 parameters where 

it produces expected modeling errors 2 to 3% smaller than the Schlumberger and 

Wenner surveys. The three surveys also appear to perform similarly when we examine 

the cumulative frequency of total modeling error shown in Panel f (this panel shows 

the cumulative distribution of MAPEs, as defined in (3.18)).  All three surveys pro-

duce basically the same 95% confidence level for mean absolute percent error.  From 

these results, it is concluded that any of the three surveys would be adequate as a pri-

mary survey over an unknown target.  Surprisingly, the Wenner survey performs as 

well as the Schlumberger survey, which apparently contradicts the rule of thumb that 

the Schlumberger is the better of the two (Zohdy, 1990).  This can possibly be ex-

plained by noting that the above rule of thumb originated prior to the widespread use 

of 1D resistivity inversion (note, the original edition of Zohdy’s manuscript was writ-
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ten in 1974).  The primary argument favoring Schlumberger surveys was that they 

display greater peak-to-peak variation in apparent resistivity data than does Wenner 

over the same interval.  However, from an inversion standpoint, a data set with greater 

maximum data variability than another does not necessarily imply that it will produce 

a superior inversion model.  A second explanation could simply be that the Wenner 

and Schlumberger surveys happen to perform equally well on this particular earth 

model.  A third explanation could be that the gradient of the error landscape (the data 

rms error as a function of the model parameters) is relatively small in the neighbor-

hood of the true solution, no matter which of the three surveys is used.  Because the 

inversion algorithm implements a version of nonlinear least squares, ubiquitously 

shallow gradients in proximity to the true solution would cause all three surveys to 

have similar modeling errors, forcing the conclusion that the three work equally well. 

 Whatever the case, it is apparent that the ‘Designed’ survey is generally no more 

robust than the Schlumberger or Wenner surveys when no model information is avail-

able.  Therefore, it is admissible to use any of the three as a primary survey over an 

unknown target.  As mentioned at the beginning of this section, we are free to opti-

mize additional experiments once the primary survey has produced a working earth 

image.  This would be an example of what we term Two-Stage (or Multi-Stage) Adap-

tive OED, which is examined below. 

3.7 Sequential Versus Global Design Algorithms 

In Chapter 2 it was explained that the novel design methodology can be implemented 

by a greedy algorithm, which sequentially adds observations one at a time that are (lo-

cally) optimal with respect to the observations currently in the base experiment.  This 

algorithm differs from traditional OED optimization algorithms that operate on entire 

experiments at once, such as the genetic and simulated annealing algorithms, which 

were previously identified as being widely used in OED exercises.  This difference in 

optimization strategy has two significant aspects: (1) the sequential technique exe-

cutes in a fraction of the time needed for global search strategies and (2) because the 
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sequential method chooses updates that are locally optimal (that is, they are optimal 

with respect the observations preceding them in an experiment but not necessarily 

with antecedent ones), it does not guarantee that the resulting experiments are glob-

ally optimal.  Hence, the novel sequential design method sacrifices global experiment 

optimality for increased computation speed. 

 The question is: how suboptimal are sequentially designed experiments as com-

pared with globally designed ones, and how much timesavings can they be expected 

to produce?  In this section we examine a simple 1D resistivity OED problem and 

compare the results that arise from sequential and global optimization strategies.  Be-

cause we are comparing two optimization algorithms, this section addresses their 

abilities to maximize the objective function.  In other words, the comparison is based 

on the efficiency and robustness of each algorithm strictly with respect to the OED 

objective function, not with respect to the subsequent designed experiments’ abilities 

to produce high quality data.  Whether the OED objective function is itself appropri-

ate for experimental design exercise is addressed elsewhere.   

 At each iteration of the sequential design method, Equation (2.65) shows that de-

sign objective is equivalent to maximizing the ratio of the determinants of the Jacobi-

ans of the augmented and base experiments.  Because the base experiment is fixed at 

any given iteration, maximizing this ratio is equivalent to just maximizing the deter-

minant of the augmented Jacobian.  Therefore, the appropriate objective function to 

consider for the global search strategy is just the determinant of the Jacobian of the 

experiment. 

 The two-layer earth model in Figure 3-10 was used as the basis for desiging ex-

periments of 5, 10, 15 and 20 observations via the novel sequential method and via a 

global search strategy executed by a genetic algorithm, operating on the determinant 

of the Jacobian matrix.  The results  are tabulated in Table 3-3.  Observe that the se-

quential design method used a decreasing fraction of the global CPU time (the time it 

took for the global search algorithm to converge) as the number of observations in-

creases.  Furthermore, observe that the relative opimality of sequentiallly designed 
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experiments (measured as a fraction of the global optimum produced by the genetic 

algorithm) increased as the number of observations increased.   

 A crossplot of the fractional optimality of sequential designs versus the fractional 

CPU time is shown in Figure 3-14 to help visualize the results in Table 3-3.  This fig-

ure plainly shows that the sequential design method closes the gap between itself and 

global design methods with regard to the optimality of designed experiments for in-

creasing numbers of observations, reaching nearly 92% of global optimality at 20 ob-

servations.  Coupled with this is the fact that the sequential method significantly re-

duced relative CPU time, requiring only ~1% as much CPU time as the global search 

strategy for 20 observations.   Though this comparison looks at only one design sce-

nario, it establishes the tantalizing hypothesis that the sequential design strategy not 

only asymptotes to the global optimum for large numbers of observations but that it 

also does so at an increasingly efficient rate as compared with global search strate-

gies. 

 Figure 3-15 provides a sense for the relative optimality of sequentially and glob-

ally designed surveys as compared with randomly generated surveys.  Ten thousand 

surveys of 20 observations were randomly generated and the determinants of their re-

sulting Jacobians were tallied.  The histogram shows the probability distribution of 

the optimality ( ) of randomly generated surveys as well as the optimal-

ity of sequentially and globally designed ones of 20 observations.  Even with log scal-

ing along the x-axis, it is quite clear that both designed surveys are beyond the right 

tail of the distribution, demonstrating that they do indeed produce statistically signifi-

cant solutions to the design objective function. 

10log det TG G

3.8 Adaptive Optimal Experimental Design 

The objective of the following research is to determine whether our sequential OED 

algorithm could significantly improve 1D resistivity data quality.  Because the num-

ber of inversion parameters for 1D resistivity is small (as compared with 2D and 3D 

methods, for example), the inverse problem can normally be well posed, as long as 
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there are no resolution issues brought about by extremely thin layers or by trying to 

invert for layers deeper than the practical resolution limits of the experiment (gov-

erned by the maximum outer electrode spacing).  Of course, parameter resolution is 

always an issue for surface geoelectrical methods because it drops off rapidly as a 

function of depth.  Thus, even though a 1D inverse problem may technically be well 

posed, it may still suffer from the effects of poor conditioning of the Jacobian matrix.   

 One of the most pronounced effects of a poorly conditioned inverse problem is 

large modeling error due to noise in the data.  This is evident by considering the 

model covariance matrix: 

 ( ) 12 T
m dσ

−
=C G G , (3.24) 

where G is the Jacobian and 2
dσ  is the expected variance of the data noise (This for-

mulation of the model covariance matrix assumes that data errors are uncorrelated and 

have the same variance.  More general expressions for Cm exist).  When G is poorly 

conditioned, one or more of its singular values are near zero.  Upon inverting, these 

small singular values blow up, causing the diagonals of ( ) 1T −
G G  and Cm to be large.  

The diagonal of Cm contains the expected variance of each model parameter (as a 

function of noise in the data of variance 2
dσ ) about its true value; if these variances 

are large, there is a large uncertainty associated with parameter estimates, and large 

uncertainties mean that significant biases can arise in the predicted model.  Conse-

quently, the prime objective of OED for 1D problems is to minimize model errors in-

duced by data error as it propagates through the inverse. 

 In the following investigation, we examine an adaptively optimized 1D experi-

ment.  We approach the imaging problem in two stages.  In the first stage, a Schlum-

berger survey was used to synthesize a noisy data set over the target site shown in  

Figure 3-10.  These data were inverted to produce the working model shown in Figure 

3-16.  Using this model as input to the sequential OED algorithm developed in Chap-

ter 2, we then designed an experiment optimized for the working model (see Table 

3-1, column 5).  In the second stage, a new noisy data set was synthesized based on 
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the optimum experiment and a second inversion was performed.  This is an example 

of Two-Stage Adaptive OED.  In all cases, data noise was 5% Gaussian. 

 The performance of the designed experiment was evaluated by comparing it with 

Schlumberger and Wenner soundings used as second-stage surveys.  A Monte Carlo 

simulation was executed with 500 realizations of noisy data that were inverted by the 

three second-stage surveys.  The results are shown in Figure 3-17.   

 Panels a-e show the 95% confidence limits for the five model parameters (ρ1, ρ2, 

ρ3, h1 and h2).  Except for ρ1, the designed experiment produces smaller ranges of ex-

pected error for the parameters than the Schlumberger and Wenner surveys.  However, 

ρ1 has the smallest range of expected error of the five parameters, never exceeding ± 

1%.  Despite the fact the designed experiment does not constrain this parameter as 

well as the other two surveys, the magnitude of the error is of negligible importance.  

Significantly, the optimized experiment reduces the range of error for ρ2 and h2 (Pan-

els b and e) by approximately 15%, compared with the Schlumberger and Wenner 

surveys.  These two parameters are clearly the least well resolved of the five, so a re-

duction in their uncertainties will have a large effect on the total modeling error.  It is 

notable that the error distributions for ρ2 and h2 are nearly identical.  This indicates 

that these two parameters are highly correlated, which will generally destabilize the 

inversion and slow convergence.  Despite the evident improvement of the optimized 

survey over the other two surveys, even the designed survey apparently fails to break 

the correlation between ρ2 and h2.  This illustrates a fundamental fact about surface 

resistivity inversion: resolution limitation is an incontrovertible physical reality that 

cannot be completely eradicated, even by careful survey design (Madden & Mackie, 

1989; Madden, 1990).  The most OED can do is minimize resolution limitation by re-

ducing parameter correlation. 

 Panel f in Figure 3-17 compiles the modeling errors into a single metric.  Shown 

are the cumulative distributions of mean absolute percent error (Equation (3.18)) for 

the three surveys.  Also shown are two ‘benchmark’ lines: the 90% confidence limit 

(horizontal, black, dashed line) and the MAPE from stage-one model (vertical, black, 

dashed line).  The other dashed lines project the intersections of the error curves with 
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the benchmarks onto the appropriate axes.  The 90% confidence limit for the designed 

survey is ~49% modeling error, while it is ~83% for the Schlumberger and Wenner 

surveys.  This is a significant reduction in the expected total model error and is taken 

as evidence that the designed survey produces superior data quality.  Additionally, 

~86% of modeling errors for the designed survey are less than the error for the stage-

one model, indicating that the optimized experiment produces a statistically signifi-

cant reduction in modeling errors arising from data noise (this is seen by tracing the 

horizontal, red, dashed line to the frequency axis).  In contrast, only ~62% and ~58% 

of model errors produced by the Schlumberger and Wenner surveys, respectively, 

were less than the one-stage model error. 

 Withal, Figure 3-17 offers compelling evidence that our sequential OED method 

does indeed produce statistically superior data quality in the presence of data noise, as 

compared with standard 1D resistivity surveys.  An alternate way of presenting these 

Monte Carlo exercises is to show the average model profiles with error bars for each 

survey.  Figure 3-18 shows the average model profiles and error bars (two standard 

deviations), as well as the true model and Stage-One model for comparison.  All three 

experiments produce average model profiles that visually match better with the true 

model than does the Stage-One model.  Additionally, all three experiments produce 

roughly equal (ands small) model errors for the resistivities in the two overburden 

layers as well as in the halfspace, though careful scrutiny shows that the adaptively 

Designed survey does indeed produce smaller modeling errors with respect to the 

thickness of the surface layer and the resistivity of the intermediate layer.  The adap-

tively Designed survey, however, very evidently reduced the model uncertainty asso-

ciated with the thickness of the intermediate layer, as compared with the Schlumber-

ger and Wenner soundings.  Lastly, the Designed survey also produced an average 

model that more closely matches the true earth model. 

 It is instructive to examine the reasons why this OED technique can produce data 

sets with superior noise rejection characteristics.  In Chapter 1, we described a greedy 

OED algorithm that designs experiments by sequentially adding observations to a 

base experiment.  Additional observations are chosen according to their relative ‘fit-
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ness’ with respect to the base experiment.  Fitness is qualitatively defined with respect 

to two objectives: maximum information content and maximum information comple-

mentarity.  The observation from the set of permitted observations that maximizes 

these two objectives is chosen as the next to be added to the base experiment.  The 

fitness of a candidate observation is quantized by taking the vector norm of the pro-

jection of its sensitivity kernel onto the null space of the Jacobian of the base experi-

ment.  By projecting a sensitivity kernel onto the null space, only those components 

of the kernel that are orthogonal to the Jacobian of the base experiment are preserved 

(it is a residual of sorts).  The orthogonality condition thus addresses information 

complementarity, while the vector norm of the projection handles information magni-

tude.   

 In short, we augment the Jacobian of the base experiment by appending a row vec-

tor (sensitivity kernel) whose length is maximal along a direction orthogonal to the 

space spanned by the Jacobian.  From this point of view, it should be clear that the 

added row is treated like an eigenvector and its magnitude is treated like an eigen-

value.  An arbitrary eigenvector is orthogonal to the space spanned by all other eigen-

vectors; and the projection of a sensitivity kernel onto the null space of the Jacobian 

is orthogonal to the Jacobian, so it is orthogonal to the eigenvectors of the Jacobian. 

This shows that the projection is like an eigenvector; and if the projection is like an 

eigenvector, it follows immediately that its magnitude is like an eigenvalue.  Based on 

this discussion, maximizing the fitness metric is an attempt to maximize each of the 

singular values of the Jacobian matrix of the final experiment. 

 An alternate expression of the model covariance matrix in (3.24) is 

 , (3.25) 2 2 T
m dσ −=C VΣ V

where V contains the right singular vectors of G (which incidentally span model 

space) and where  is a diagonal matrix containing the inverse squared singular 

values of G (e.g., Backus & Gilbert, 1970; Menke, 1989; Tarantola, 2005).  To mini-

mize modeling errors induced by data noise, we should minimize the diagonal ele-

ments of Cm as much as possible.  In light of the foregoing discussion, it is now clear 

that the sequential OED method does this: it attempts to maximize the singular values 

2−Σ
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of G, which in turn minimizes the elements of 2−Σ , causing the diagonal of Cm to be 

as small as possible.  Note that V is an orthonormal basis, and all orthonormal bases 

are rotation matrices, so even though Cm is not directly proportional to  it is true 

that 

2−Σ

 ( ) 2trace trace( )m dσ −=C Σ 2 , (3.26) 

because rotation matrices are length preserving.  This proves that the sequential OED 

method does in fact seek to maximize data quality by maximizing a data set’s noise 

rejection characteristics. 

 To illustrate the preceding development, Table 3-4 lists the diagonal elements of 

the model covariance matrices for the Schlumberger, Wenner and Designed experi-

ments investigated in this study.  As the diagonal of Cm contains expected parameter 

variances, the square root has been taken to express parameter uncertainties in terms 

of standard deviations.  Additionally, each standard deviation has been normalized by 

the parameter value, so the tabulated entries express the expected degree of relative 

parameter uncertainty (this is called the coefficient of deviation, which is the ratio of 

the standard deviation to the mean).  Parameter uncertainties were all evaluated with 

respect to the stage-one model (Figure 3-16), which was the initial guess for the 

stage-two inversion, and with respect to the true model.  Looking at the normalized 

parameter uncertainties for the stage-one model, the designed survey clearly has the 

lowest uncertainties, except for ρ1 and h1.  However, the uncertainties for these two 

parameters are so low in general that it is inconsequential that the designed survey 

produces larger uncertainties.  The same pattern is seen for the true model.  Impor-

tantly, the designed survey shows the greatest improvement for parameters with the 

most uncertainty.  This provides another piece of evidence supporting the conclusion 

that the sequential OED method produces data sets with superior noise rejection ca-

pability.  In addition, it is apparent that the design method redistributes parameter un-

certainties, sacrificing some of the certainty of the well-resolved parameters to im-

prove the certainty of less well-resolved ones. 

 The last issue to consider with regard to our greedy OED method is computation 

time.  For the technique to be useful, it must be reasonably applicable in the field.  

 124



Figure 3-19 shows the CPU time for experimental designs from 1 to 36 observations.  

All CPU times were clocked on a dual 2GHz laptop with 2GB RAM.  Two points are 

notable: first, the CPU time is basically ( )O n , essentially linear with respect to the 

number of observations; second, the total CPU time is on the order of minutes or even 

seconds, depending how large a survey is desired.  These two points signify that our 

greedy OED algorithm imposes minimal computational demands, and there is no rea-

son the method cannot be practically implemented in real-world settings.  However, 

one cannot escape the fact that the survey electrodes must be repositioned for an 

adaptive OED exercise and this will slow down field operations significantly. 

3.9 Integration and Summary 

This chapter has explored various aspects of optimal experimental design applied to 

1D surface resistivity.  A large portion of the document has been dedicated to compil-

ing and expanding our knowledge of the 1D resistivity problem in order to lay the 

groundwork for the sequential OED method introduced in Chapter 1.  The following 

remarks summarize and integrate our research to provide a macroscopic view of 1D 

experimental design as it has been investigated and developed herein. 

3.9.1 Modeling and Inversion 

The one-dimensional resistivity forward and inverse problems have been approached 

using a variable-thickness modeling scheme first introduced by Simms and Morgan 

(1992).  This method is particularly robust because it uses a small number of parame-

ters (as compared with fixed layer-thickness approaches that large numbers of layers 

and resistivities).  Small numbers of parameters are desirable for OED because the 

optimization algorithm executes quickly.  Moreover, the inverse problem can usually 

be well posed when there are only a few model parameters, and this equates with im-

proved model resolution as well as improved data noise rejection characteristics. 
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3.9.2 Determining the Number of Layers 

A critical issue for 1D resistivity is to determine the correct number of layers a target 

site should be modeled with.  One-dimensional resistivity is unusual in this sense, be-

cause not only do we need to identify earth parameters that minimize the data rmse, 

we must also identify the correct modeling function.  A two-layer model has a differ-

ent modeling function than a three-layer model, for example.  Consequently, we must 

discriminate between competing layer models.  If the layer-model is incorrect, ex-

perimental design runs the risk of optimizing for a scenario significantly different 

than the true model.  The ramification of which would be that the designed experi-

ment might bias against the true model, precluding correct identification.  

 We addressed this problem by employing Simms and Morgan’s F-test methodol-

ogy (Simms & Morgan, 1992), and we conclusively demonstrated that the correct 

layer-model could be identified.  This is of practical significance for adaptive OED, 

where an experiment is tailored to a working model that has been created by inverting 

an initial data set.  Subsequent investigations assumed that the correct layer model 

could always be found, allowing these investigations to avoid the distraction of model 

discrimination. 

3.9.3 Continuous Versus Discrete Experimental Search 
Spaces 

Because of the way the 1D resistivity problem has been formulated, electrodes are 

permitted to be placed anywhere on the continuum of the survey line.  Thus, there are 

infinite combinations of 4-electrode configurations available for experimentation.  

This means that the experimental design search space is infinite, not discrete.  OED 

search spaces for 2D and 3D resistivity, in contrast, are discrete (for the transmission 

network analogue) because the electrodes can only be placed at pre-determined posi-

tions.  To search an infinite space of permitted observations, a modification was made 

to the sequential OED algorithm.  The algorithm was initially designed to exhaus-

tively evaluate each candidate observation in a discrete set.  Instead, a differential 

evolution algorithm (see Appendix A) was substituted for the exhaustive search.  The 
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DE algorithm quickly searches the experiment space for the best candidate observa-

tion to be added to the base experiment. 

 The main issue with reverting to a search algorithm on an infinite search space, as 

opposed to performing an exhaustive perusal of a discrete search space, is additional 

computation expense.  However, because the number of observations for 1D resistiv-

ity is normally small, the computation time for experimental design was shown to be 

linear with respect to the number of observations desired.  It was shown that a rea-

sonably sized experiment could be designed in a matter of minutes or seconds, which 

is certainly practical for real-world implementation. 

3.9.4 Survey Electrode Placement 

 This investigation was slightly off topic with regards to our sequential OED 

method.  However, it was included because its results were both novel and unex-

pected.  We examined the data errors created by accidental electrode misplacement.  It 

was shown that electrode misplacement creates a nontrivial error in calculating the 

apparent resistivity of an observation.  Because the inversion operates on the apparent 

resistivities created by each observation in an experiment, electrode misplacement 

errors ultimately compromise the quality of the inversion model.  A careful analysis of 

these errors showed that the optimal placement of survey electrodes is such that the 

inner electrode spacing should be approximately 43% of the outer electrode spacing, 

regardless how large the expected placement errors are. 

 It was also seen that data errors decrease as a function of increasing outer elec-

trode spacing.  Additionally, data errors are largest whenever any two electrodes in a 

4-electrode observation are close together. 

 It is worth pointing out that our sequential OED technique would never predict 

this outcome.  The reason is most easily appreciated by considering the model covari-

ance matrix expressed in Equation (3.24) or (3.25).  An analysis of the noise rejection 

characteristics of our sequential design algorithm showed that an optimally designed 

experiment minimizes the diagonal of the model covariance matrix by minimizing the 
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diagonal of .  That is, the design algorithm operates exclusively on the Jaco-

bian matrix, G.  This approach treats the noise in the data (which is represented by 

( ) 1T −
G G

2
dσ  

in Equations (3.24) and (3.25)) as independent of the observation.  By contrast, the 

electrode misplacement approach treats the noise in the data as dependent on the ob-

servation.  Hence, whereas the objective of our sequential design algorithm is to 

minimize the diagonal of ( ) 1T −
G G , the objective for electrode placement error is to 

minimize 2
dσ .  An interesting follow-on study would be to attempt experimental de-

sign with respect to both considerations: electrode misplacement (observation-

dependent) and random data noise (observation-independent). 

3.9.5 General Surveys for Unknown Earth Models 

A general survey, pseudo-optimal for any reasonable earth model, would be of sig-

nificant practical use, either as a standalone survey or as the primary survey in a two-

stage adaptive OED framework.  A general survey would be used in cases where no 

useful knowledge of the earth structure is available.  We argue, that absent any 

knowledge of the earth structure, it is reasonable to start from a homogeneous as-

sumption.  However, it was shown that our OED algorithm could not usefully be ap-

plied to a homogeneous earth because of difficulties relating to the partials of the 

forward operator with respect to the model parameters. 

 In lieu of our sequential design approach, it was hypothesized that a survey that 

evenly distributed the horizontal fraction of the total current over a specified depth 

interval would produce superior data quality.  A comparative examination of the 

Schlumberger, Wenner and Designed surveys over a heterogeneous target however 

indicated that the three surveys performed nearly identically in the presence of data 

noise.  It was therefore concluded that any of the three surveys would be adequate as 

a general survey.   

 A surprising result was the fact that the Wenner survey performed as well as the 

Schlumberger.  Common wisdom maintains that the Schlumberger survey produces 
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superior data.  However, this wisdom was never based on data inversion, but rather on 

the inspection field data.  It could be that this rule of thumb needs revision in light of 

modern inversion practices.  Inspection of parameter uncertainties shown in Table 3-4 

suggests that the Schlumberger survey does indeed perform better than the Wenner 

survey; but the percent difference between the two never exceeds ~20%, which is not 

insignificant but neither is it particularly significant. 

3.9.6 Sequential Versus Global Design Algorithms 

It was shown that the sequential design methodology does indeed produce suboptimal 

experiments compared to global search methods.  However, the sequential method 

approaches global optimality as the number of observations increases, reaching more 

than 90% optimality in the study conducted here.  Additionally, the fractional CPU 

time required for the sequential method decreases significantly as the number of ob-

servations increase, reaching about only 1% in this study. 

 The preceding two facts indicate that the novel sequential design method produces 

extremely high-quality, albeit suboptimal, data quality in a fraction of the time needed 

to design experiments by stochastic search methods.  As always, there is a trade-off 

that end users must decide for themselves.  Is it worth the large additional computa-

tional expense needed to execute a stochastic search to eke out the last 10 to 20% of 

optimality that an experiment potentially could have or would it be acceptable to live 

with 80 to 90% optimality achieved in 1 to 5% of the computation time?  Clearly, this 

an issue of diminishing returns and one in which Pareto’s Principle might be invoked.  

A large additional input would be required to realize only a small/modest increase in 

output.  Ultimately, the fact that the sequential method closes the gap in terms of op-

timality between itself and global search methods as experiment sizes increase argues 

strongly for its application in real-world problems.  It is hypothesized that the sequen-

tial method may indeed produce global optima as the number of observations contin-

ues to increase, but this must be tempered by the fact that OED is subject to a general 

law of diminishing returns (as shown elsewhere in this thesis), which asserts that arbi-

trarily large random surveys can perform as well as deliberately designed ones. 
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 An interesting possibility would be to create a hybrid optimization technique that 

couples the two strategies.  In the first stage, a sequential design could be performed 

to produce an experiment close to, but not quite, optimal.  This experiment would 

then be used to seed a global search algorithm, allowing the algorithm to start in the 

neighborhood of the optimal experiment and possibly greatly reducing convergence 

times. 

3.9.7 Adaptive Optimal Experimental Design 

Having previously examined various relevant issues for 1D resistivity OED, the last 

investigation in this chapter finally turned its attention to the application of our se-

quential OED method on 1D problems.  A two-stage approach was adopted, where an 

initial noisy data set was inverted and then an optimal survey was designed based on 

the working model from the stage-one model.  Noisy data were generated for the op-

timal survey and a second inversion was conducted.  An examination of modeling er-

rors showed that the designed survey significantly outperformed both the Schlumber-

ger and Wenner surveys, which were also used as second stage surveys for compari-

son.  This exemplified the fact that our design methodology does indeed produce data 

sets with superior noise rejection characteristics. 

 An analysis looking at how our design technique endows experiments with supe-

rior noise cancellation properties showed that it produces model covariance matrices 

with smaller elements along the diagonal.  As these elements correspond to the ex-

pected parameter uncertainties in the presence of data noise, smaller values imply that 

the inversion models produced by designed experiments are more accurate or, equiva-

lently, less uncertain. 

 It was also observed that the designed experiment forfeited some of the resolution 

for highly resolved parameters in favor of accentuating the resolution of less well re-

solved parameters.  Philosophically, this is good situation.  It would of course be ideal 

if we could simply decrease the uncertainty (which equates with resolution) associ-

ated with poorly resolved parameters, but the nature of the 1D resistivity forward 

problem apparently precludes this.  The next best thing would be to trade some of the 
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resolution of the well-resolved parameters for improved resolution of the least well-

resolved parameters, which is the behavior that has been observed. 

 Overall, the two-stage AOED technique has shown itself to be a useful means of 

reducing model uncertainties in the presence of data noise. 
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Figure 3-1 General 1D resistivity model.  The earth is modeled as a series of infinite 
parallel layers, each having a unique resistivity, ρj, and layer thickness hj.  The bottom 
‘layer’, labeled ‘Substratum’, is an infinite half-space.  Also shown is a typical quad-
rupole configuration for querying the site.  It is convenient to situate the sounding 
electrodes symmetrically about the centerline of the sounding, as shown.  This can be 
done because there is no lateral heterogeneity in the model, which would otherwise 
necessitate asymmetric electrode configurations.  L specifies the outer electrode spac-
ing and l specifies the inner spacing.  Typically, the outer electrodes are current-
bearing and the inner ones are potential-measuring, but reciprocity permits these roles 
to be reversed.  Several different Ll combinations are used to collect a data set.
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Figure 3-2 Schlumberger and Wenner electrode arrangements.  The Wenner arrange-
ment forces adjacent electrode spacings to be equal, causing the outer electrode spac-
ing, L, to be 3 times the inner spacing, l.  The Schlumberger arrangement customarily 
forces the outer electrode spacing, L, to be five times greater than the inner spacing, l. 
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Figure 3-3 An example of the ratio of predicted voltage over injected current (which 
is the apparent resistance of an observation) as a function of the geometric factor, k, 
for a homogeneous earth.  Also shown is a recommended geomectric factor threshold 
of 5500 m (Sharma, 1997).  Note that, at k = 5500 m, the ratio of V over I is nearly 
10-4.  This means the magnitude of the voltage observation would be approximately 
only one ten thousandth of the magnitude of the injected current.  A voltage only one 
ten thousandth the magnitude of the injected current approaches the instrument preci-
sion of most modern resistivity meters.  Moreover, any random EM noise will also be 
added to the potential observation and then be amplified by the geometric factor, ac-
cording to Equation (3.2).
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Figure 3-4 This graphic shows the fraction of the total current that flows horizontally 
below depth z for a homogeneous earth (after (Telford et al., 1990)).  The outer elec-
trode spacing has been normalized by the depth scale. 
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Figure 3-5 The predicted path of data and model errors as a function of the number of 
layers (after (Simms & Morgan, 1992)).  As the number of layers increases, both data 
and model errors decrease along the line labeled ‘Unique’.  This line is so labeled be-
cause there is hypothetically a single, unique model that minimizes the data error (for 
a specified number of layers).  The point where the path inverts is the point where 
data and model errors are both minimized, and this point indicates the correct layer 
model.  As the number of layers increase beyond this point, the data error will not 
significantly reduce, but model errors will increase.  This is a region of nonunique-
ness, because there are multiple models that equally minimize the data error, which is 
the definition of nonuniqueness.  Eventually, the number of layers becomes so large 
that the inverse problem is ill-posed, which is denoted along the line labeled ‘No 
Resolution’. 
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Figure 3-7 Cross plot of data percent rms error versus model percent rms error.  As 
predicted, the phase plot goes through a minimum for the two-layer model, which is 
the correct layer model.  Thereafter, model errors increase while data error remains 
fairly constant.  This is the region of nonuniqueness, where multiple models equally 
minimize the data error. 
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Table 3-2 Percent data and model rms errors and F-values reporting the ratios of the 
mean squared errors for models of successive numbers of layers.  To illustrate, the 
first F-value is the ratio of the mean squared error of the one-layer model to the mean 
squared error of the two-layer model; the next F-value is the ratio of the data mse of 
the two-layer to three-layer model, and so on.  Because twenty data were used, F-test 
confidence levels were calculated for samples both with 20 degrees of freedom.  The 
F-test is significant at 95% confidence if the F-value exceeds 2.1242; for 85% confi-
dence, the F-value must exceed 1.6023; for 75% confidence, the F-value must exceed 
1.3580.  From F-values listed above, it is clear that the two-layer model is the correct 
model.  Interestingly, note that the percent data rms error is monotonic non-increasing 
from 1 to 7 layers.  The F-test has allowed us to statistically identify the proper layer-
model despite non-increasing data errors.  
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Figure 3-9 Families of curves showing expected errors in apparent resistivity esti-
mates due to errors in electrode placement.  The curves plot the coefficients of varia-
tion (standard deviation over the mean) of apparent resistivity versus the ratio of the 
inner electrode to outer electrode spacing.  The curves are organized according to 
fixed L; for example, the curve labeled ‘2’ illustrates coefficients of variation for Ll-
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pairs where the outer electrode spacing is fixed at 2 m.  The top panel shows results 
for electrode placement errors that are ± 1 cm, with 95% confidence; the lower panel 
is for placement errors of ± 2 cm with 95% confidence.  Dashed lines show thresholds 
of ± 10%, ± 5% and ± 2.5% data error, for reference.  Two notable points are: (1) ex-
pected data errors decrease as the outer electrode spacing increases and (2) the curves 
all appear to go through minima (black dots) at the same point, where 

0.43 0.01l L ≅ ± .  
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Figure 3-10 Two-layer model with a conductive intermediate layer sandwiched be-
tween two more resistive layers. 
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Figure 3-11 Model error cumulative distributions for a Monte Carlo comparison of the 
Schlumberger survey and a survey designed to minimize data errors created by elec-
trode misplacement.  Errors are reported as mean absolute percent error between the 
true model and the inversion model.  At 90% confidence (horizontal dashed line) the 
designed survey produces modeling errors no greater than ~20% (vertical, red dashed 
line), whereas the Schlumberger survey produces modeling errors no less than ~34% 
(vertical, blue dashed line). 
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Figure 3-12 Cartoon depicting a pseudo-analytical scheme for choosing electrode po-
sitions for a general survey, to be used over unknown targets.  The solid curve (after 
(Telford et al., 1990)) expresses the fraction of the horizontal current, Ix/I, flowing 
below depth z, as a function of the outer electrode spacing (which has been normal-
ized by z).  It was hypothesized, that if one picks a set of Ix/I terms that increase line-
arly, the derived experiment would provide equal coverage over the depth column of 
interest.  The horizontal dashed lines indicate an example of a set of linear Ix/I picks, 
and the vertical dashed lines show the prescribed L/z positions.  If a maximum inves-
tigation depth of zmax is desired, one can easily convert the prescribed L/z positions 
into L positions. 
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Table 3-3 Comparison of sequential and global optimization algorithms for a 1D re-
sistivity OED problem.  The model for which designs were executed is shown in 
Figure 3-10.  The underlying objective was to maximize the determinant of the (auto-
inner product) of the Jacobian matrix, .  Fractional CPU Times and Frac-
tional Optimality are also shown, reporting the ratios of sequential-over-global CPU 
time and sequential-over-global optimality (as measured by ), respectively. 

det G GT

Tdet G G
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Figure 3-14 Graphical synopsis of results tabulated in Table 3-3.  Shown is a crossplot 
of the sequential-over-global optimality ratio versus the sequential-over-global CPU 
time ratio.  Numbers under each point indicate the number of observations used in the 
designs. 
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Figure 3-15 Comparison of 20-observation surveys.  The bar plot shows the probabil-
ity distribution of  for 10,000 randomly generated surveys.  Also shown 
is  of the sequentially (blue line) and globally (red line) designed surveys.  
Note the x-axis is log scaled to accommodate the many orders of magnitude in the de-
terminants of randomly generated surveys. 

det G GT

Tdet G G
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Figure 3-16 True earth model (solid line) and stage-one inversion model (broken line) 
from a noisy Schlumberger data set.  Five percent Gaussian noise had been added to 
the Schlumberger data. 

 151



 

Fi
gu

re
 3

-1
7 

C
um

ul
at

iv
e 

er
ro

r d
is

tri
bu

tio
ns

 fo
r a

 M
on

te
 C

ar
lo

 c
om

pa
ris

on
 o

f t
hr

ee
 s

ur
ve

ys
 (S

ch
lu

m
be

rg
er

, W
en

ne
r a

nd
 D

es
ig

ne
d)

 
us

ed
 a

s 
se

co
nd

-s
ta

ge
 i

nv
er

si
on

s.
  

Pa
ne

ls
 a

-e
 s

ho
w

 p
er

ce
nt

 e
rr

or
s 

fo
r 

th
e 

fiv
e 

m
od

el
 p

ar
am

et
er

s 
an

d 
95

%
 c

on
fid

en
ce

 i
nt

er
va

ls
 

(v
er

tic
al

, c
ol

or
ed

 d
as

he
d 

lin
es

). 
 P

an
el

 f 
sh

ow
s 

th
e 

cu
m

ul
at

iv
e 

di
st

rib
ut

io
ns

 o
f m

ea
n 

ab
so

lu
te

 p
er

ce
nt

 e
rr

or
s 

fo
r t

he
 th

re
e 

su
rv

ey
s.

  
A

ls
o 

sh
ow

n 
in

 P
an

el
 f 

ar
e 

th
e 

90
%

 c
on

fid
en

ce
 le

ve
ls

 (
ho

riz
on

ta
l, 

bl
ac

k 
da

sh
ed

 li
ne

 a
nd

 c
ol

or
ed

 v
er

tic
al

 li
ne

s 
pr

oj
ec

te
d 

fr
om

 th
e 

in
te

rs
ec

tio
ns

 o
f 

th
e 

90
%

 c
on

fid
en

ce
 l

ev
el

 a
nd

 t
he

 e
rr

or
 c

ur
ve

s 
to

 t
he

 x
-a

xi
s)

 a
nd

 t
he

 M
A

PE
 o

f 
th

e 
st

ag
e-

on
e 

in
ve

rs
io

n 
m

od
el

 
(v

er
tic

al
, b

la
ck

 d
as

he
d 

lin
e 

an
d 

co
lo

re
d 

ho
riz

on
ta

l l
in

es
 p

ro
je

ct
ed

 fr
om

 th
e 

in
te

rs
ec

tio
ns

 o
f t

he
 s

ta
ge

-o
ne

 M
A

PE
 li

ne
 a

nd
 th

e 
er

-
ro

r 
cu

rv
es

 to
 th

e 
y-

ax
is

). 
 F

ro
m

 th
es

e 
it 

is
 s

ee
n 

th
at

 th
e 

de
si

gn
ed

 s
ur

ve
y 

pr
od

uc
es

 e
xp

ec
te

d 
%

 m
od

el
in

g 
rm

s 
er

ro
rs

 o
f 

le
ss

 th
an

 

 
15

2



~4
9%

 w
ith

 9
0%

 c
on

fid
en

ce
, w

hi
le

 t
he

 S
ch

lu
m

be
rg

er
 a

nd
 W

en
ne

r 
su

rv
ey

s 
pr

od
uc

e 
si

gn
ifi

ca
nt

ly
 p

oo
re

r 
m

od
el

in
g 

er
ro

rs
, b

ei
ng

 
on

ly
 le

ss
 th

an
 ~

83
%

 w
ith

 9
0%

 c
on

fid
en

ce
.  

It 
is

 a
ls

o 
se

en
 th

at
 ~

86
%

 o
f m

od
el

in
g 

er
ro

rs
 fo

r t
he

 d
es

ig
ne

d 
su

rv
ey

 a
re

 le
ss

 th
an

 th
e 

er
ro

r 
fo

r 
th

e 
st

ag
e-

on
e 

in
ve

rs
io

n,
 w

hi
le

 o
nl

y 
~6

0%
 o

f 
th

e 
Sc

hl
um

be
rg

er
 a

nd
 W

en
ne

r 
er

ro
rs

 a
re

 l
es

s 
th

an
 t

he
 s

ta
ge

-o
ne

 e
rr

or
.

 
15

3



 

Fi
gu

re
 3

-1
8 

M
on

te
 C

ar
lo

 r
es

ul
ts

 f
or

 th
re

e 
ex

pe
rim

en
ts

 u
se

d 
fo

r 
a 

se
co

nd
-s

ta
ge

 in
ve

rs
io

n,
 a

ll 
st

ar
tin

g 
w

ith
 a

n 
in

iti
al

 m
od

el
 g

ue
ss

 
fr

om
 th

e 
‘S

ta
ge

-O
ne

’ i
nv

er
si

on
 m

od
el

.  
In

 a
ll 

ca
se

s,
 d

at
a 

w
er

e 
co

nt
am

in
at

ed
 w

ith
 5

%
 G

au
ss

ia
n 

no
is

e 
an

d 
in

ve
rs

io
n 

m
od

el
s 

w
er

e 

 
15

4



ge
ne

ra
te

d 
fo

r 5
00

 s
uc

h 
re

al
iz

at
io

ns
.  

Sh
ow

n 
ar

e 
th

e 
tru

e 
m

od
el

 p
ro

fil
e 

(s
ol

id
 b

la
ck

 li
ne

), 
th

e 
‘S

ta
ge

-O
ne

’ i
nv

er
si

on
 m

od
el

 (b
ro

ke
n 

bl
ac

k 
lin

e)
, a

nd
 th

e 
M

on
te

 C
ar

lo
 a

ve
ra

ge
 m

od
el

s 
fo

r t
he

 S
ch

lu
m

be
rg

er
 (b

lu
e)

, W
en

ne
r (

gr
ee

n)
 a

nd
 a

da
pt

iv
el

y 
D

es
ig

ne
d 

(r
ed

) s
ur

-
ve

ys
.  

A
ls

o 
sh

ow
n 

ar
e 

M
on

te
 C

ar
lo

 e
rr

or
 b

ar
s 

at
 tw

o 
st

an
da

rd
 d

ev
ia

tio
ns

, t
o 

gi
ve

 a
n 

id
ea

 o
f 

th
e 

de
gr

ee
 o

f 
pa

ra
m

et
er

 u
nc

er
ta

in
ty

 
ea

ch
 e

xp
er

im
en

t p
ro

du
ce

d.
 

 
15

5



 

 

Table 3-4 Normalized parameter uncertainties predicted by taking the square root of 
the diagonal of the model covariance matrix and dividing by the model parameter 
values (Note: this is the coefficient of variation).  The ‘stage-one model’ column 
compares parameter uncertainties for the Schlumberger, Wenner and adaptively opti-
mized surveys evaluated at the stage-one model.  The ‘true model’ column shows the 
same, except evaluated at the true model.  The designed survey generally produces 
smaller parameter uncertainties, particularly with respect to the least well-resolved 
parameters, ρ2 and h2.  However, it trades resolution of the well-resolved parameters, 
ρ1 and h1, to do this.  Nonetheless, uncertainties for the well-resolved parameters are 
so small that this trade is reasonable.  
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Figure 3-19 CPU times for experiments from 1 to 36 observations designed using our 
sequential OED algorithm.  All CPU times were clocked with a dual 2GHz laptop 
with 2GB RAM. 
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Chapter 4  

Single Borehole DC Resistivity 

4.1 Introduction 

Researchers have examined various aspects of axially symmetric borehole DC resis-

tivity modeling and inversion for more than two decades (e.g., Yang & Ward, 1984; 

Zemanian & Anderson, 1987; Liu & Shen, 1991; Zhang & Xiao, 2001; Spitzer & 

Chouteau, 2003; Wang, 2003).  These methods model the earth with a set of rectangu-

lar prisms that are treated as being axially symmetric about the borehole.  Axial sym-

metry imposes a strong assumption on the lithological structure of the earth, for there 

are only a limited number of scenarios where this symmetry attains, particularly hori-

zontal layering.  Despite the strong restriction, axially symmetric geoelectrical imag-

ing is useful in settings where data can only be collected from a single borehole, de-

spite the limitation that the azimuthal position of a discrete 3D anomaly cannot be 

pinpointed because of the non-directionality of source and receiver electrodes. 

 This chapter examines optimal experimental design applied to single-borehole DC 

resistivity.  The borehole problem is cast in cylindrical coordinates, and the forward 

and inverse problems are discretized using a transmission network analogy (Swift, 

1971; Madden, 1972; Zhang et al., 1995; Shi, 1998) adapted to cylindrical coordi-

nates.  We briefly develop the numerics used for the borehole resistivity forward and 

inverse problems, from which several issues pertinent to the design of experiments in 
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the borehole are identified.  Additionally, some effort is spent circumscribing the 

OED problem with respect to electrical tomography problems, which can serve to ex-

pedite design times not only for borehole problems but any geoelectrical scenario 

where electrode positions are fixed on a pre-determined grid.  Multiple experimental 

design objective functions proposed in Chapter 2 are examined, all of which were 

solved using our greedy, sequential design algorithm.  Inversion results have been 

produced for all investigations in order to compare optimally designed experiments 

with randomly generated and standardized ones.  Finally, several adaptive OED tech-

niques are explored. 

 This chapter comprises several research areas, and a slightly unorthodox format 

has been adopted to present this research.  Rather than presenting holistic sections on 

theory, methodology, results and discussion for the entire chapter, each ‘subtopic’ is 

self-contained, with pertinent theory, methodology and so forth being presented in 

context.  These subtopics comprise the framework of optimal experimental design for 

single-borehole DC resistivity.  The subtopics are presented in the following order: 

(1) Modeling and Inversion; (2) Electrical Resistivity Tomography and Experimental 

Design; (3) Comparing the Three Quadrupole Configurations; (4) Random Experi-

ments Versus Designed Experiments; (5) Two-Stage, Adaptive Experimental Design; 

(6) In-Line, Adaptive Optimal Experimental Design; (7) Small Batch, Adaptive Ex-

perimental Design; (8) Noisy Data and Experimental Design.  Following these sec-

tions, a Summary is provided that integrates and summarizes the results of the various 

topic areas. 

4.2 Modeling and Inversion 

The single-borehole resistivity problem places both transmitting and receiving elec-

trodes along the borehole axis.  As explained above, the azimuth of a resistivity fea-

ture cannot be resolved in this formulation, so the forward and inverse models are 

simplified by forcing resistivity to be azimuthally independent.  Consequently, cylin-

drical coordinates were adopted, with resistivity being radially symmetric about the 
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borehole axis (Figure 4-3).  In this manner, the borehole resistivity problem can be 

treated as a –pseudo-2D tomography problem as an effect of this simplification.  This 

model may be oversimplified for many field situations, but the purpose of this paper 

is to investigate optimal experimental design so it is reasonable to consider problems 

that do not unnecessarily complicate or mask the effects specifically attributable to 

designed experiments. 

 The pseudo-2D borehole resistivity forward and inverse problems were treated 

using an adaptation of the transmission line network analogy introduced by Swift 

(1971) and Madden (1972) and employed by Zhang et al. (1995) and Shi (1998).  This 

method approximates the earth as a discrete mesh of impedances connected together 

in a network and subject to Kirchoff’s First and Second Laws.  Mixed boundary con-

ditions, introduced by Zhang et al. (1995), were used at the boundaries of the model 

grid.  Solving the transmission network equations, one can model the potentials ob-

served at electrodes along the borehole string owing to current-sources applied else-

where along the string. Moreover, the sensitivities of these data, with respect to the 

formation resistivities in the model cells, can also be determined from the transmis-

sion network equations, yielding the Jacobian matrix, G, which is used for experimen-

tal design and for data inversion.  The interested reader is referred to the preceding 

citations for exact details 

 The inversion program used in this chapter employed nonlinear least squares for-

malism with an L1-norm constraint on the gradient of the model parameters.  The lin-

earized forward problem is denoted 

 ∆ = ∆G m d , (4.1) 

where G is the Jacobian matrix, ∆m is the model update vector, and ∆d is the differ-

ence between observed and predicted data.  Formally, the inversion objective was 

given by 

 2

2
λΘ = ∆ − ∆ + ∇d G m m

1
, (4.2) 

where λ is a Lagrange multiplier governing the trade-off between the two competing 

objectives. The Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) 

 161



 

was used to govern the tradeoff factor, λ, between data rms error and the L1 model-

smoothness constraint. 

4.3 Electrical Resistivity Tomography and Experi-
mental Design  

To optimize the use of computational resources for ERT-based experimental design, it 

is worthwhile to first examine the character of the experimental space, with a particu-

lar interest in finding shortcuts that can expedite the design algorithm.   

 Daily et al. (2004) and Stummer et al. (2004) have shown that for a set of N elec-

trodes there exist  (thrice ‘N choose 4’) unique combinations of quadrupole 

transmitter/receiver combinations.  To understand this, observe that there are  

unique combinations of four electrodes from a set of N.  There are 24 ways of permut-

ing four electrodes, which suggests that there should be a total of  different 

transmitter/receiver combinations.  However, mindful that both transmitter and re-

ceiver are dipoles, there are only 

43 N C

4N C

424 N C

4 26 C=  unique combinations from any set of 4 elec-

trodes (i.e., once the transmitter dipole is specified, the receiver dipole is also auto-

matically specified, and vice versa) so the total number of transmitter/receiver pairs 

appears to be .  Finally, reciprocity stipulates that the roles of transmitter and 

receiver are interchangeable, so the true number of transmitter/receiver pairs comes 

out to be  as has been indicated in the literature.   

46 N C

43 N C

 The nature of ERT experimental space, which comprises these  transmit-

ter/receiver combinations, becomes a bit clearer.  If 20 electrodes have been deployed, 

then there are 14,535 unique transmitter/receiver combinations or data stations.   If 

the geophysicist chooses to design an experiment with S data stations, there are 

 for the designer to choose from; this is the size of the space over which the 

designer’s algorithm must search.  To get some sense of the size of this search space, 

if S = 200 then there are approximately 10457 surveys in the search space!  It should 

43 N C

14,535 SC
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also be clear that this is a discrete search space.  Infinitesimal changes in a survey are 

undefined, as are continuous transitions from one survey to the next.  This is why re-

searchers have been forced to use so-called global search algorithms that are suited 

for discrete search spaces (unlike faster algorithms that rely on the gradient informa-

tion). 

 The discussion above outlines the extent to which current research has elucidated 

ERT experimental space.  It is nevertheless possible to delve deeper.  To do so it is 

necessary to draw attention to two facts.  The first concerns the factor of three in 

.  It specifies the three unique ways in which any four electrodes can be ar-

ranged into transmitter and receiver dipoles (accounting for reciprocity and polarity 

switching).  These three transmitter/receiver combinations are named internal, exter-

nal, and straddling and are shown in Figure 4-1.  The second fact is this: any quadru-

pole transmitter/receiver data station can be expressed as a unique superposition of 

four pole-pole data stations.  To demonstrate, let A and B be transmitter electrodes 

and let M and N be receiver electrodes.  The potential difference measured across M 

and N due to the current transmitted across A and B is expressed as 

43 N C

 ABMN AM AN BM BNφ φ φ φ φ≡ − − + , (4.3) 

where AMφ  is the theoretical potential at receiver pole M due to a current injected at 

transmitter pole A.   

 It is evident therefore that the  data stations that comprise experimental 

space are all linear combinations of the  possible pole-pole stations.  Experimen-

tal space can therefore be algebraized by indexing the set of all pole-pole data stations 

for N electrodes and creating an incidence or picker matrix, P, which linearly com-

bines the indexed pole-pole stations to create quadrupole stations.  In obedience to 

(4.3), each row of P consists of zeros except for four entries, which are set to ‘1s’ and 

‘-1s’ and which are indexed to pick the appropriate pole-pole data stations necessary 

to create particular quadrupole stations.  P has dimensions 

43 N C

2N C

4 23 N NC C×  (  for the 

total number of transmitter/receiver stations and  for the total number of pole-

43 N C

2N C

 163



 

pole data stations).  Viewed in this way, P is seen to be a map between pole-pole and 

quadrupole experimental spaces. 

 With experimental space algebraized, additional insight arises.  Because all quad-

rupole data stations are linear combinations of pole-pole stations, it follows that the 

vector space spanned by quadrupole data stations can have no more dimensions than 

the space spanned by pole-pole stations.  The proof is simple: P is a matrix that maps 

pole-pole stations to quadrupole stations and the rank of a rectangular matrix cannot 

exceed the lesser of its dimensions.  P has  rows, one for each possible quadru-

pole station, and  columns, one for each possible pole-pole station, ergo 

43 N C

2N C

 ( ) ( ) (4 2 2
1rank min 3 , 1
2N N NC C C N N≤ = =P )− . (4.4) 

This an important, fundamental result.  The general linearized forward problem ex-

pressed in Eq. (4.1) can be modified to explicitly incorporate P as follows: 

Let 

 ( ) ( )2 ∆ = ∆G m d 2  (4.5) 

define the forward linear problem for pole-pole data stations, where ( )2G  and ( )2∆d are 

respectively the pole-pole sensitivity matrix and pole-pole data vector.  The quadru-

pole forward problem is then defined as 

 ( ) ( )4 ∆ = ∆G m d 4 , (4.6) 

where 

 ( ) ( ) ( ) ( )4 2 4 and ≡ ∆ ≡G PG d P d 2∆ . (4.7) 

 A straightforward result from linear algebra specifies that the rank of the product 

of two matrices cannot exceed the lesser of their ranks; hence, 

( )( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( )

4 2 2
2

4

rank rank min rank , rank rank

1rank 1
2

N C

N N

⎡ ⎤= ≤ ≤⎣ ⎦

∴ ≤ −

G PG P G P

G

=
. (4.8) 

In words, it is impossible for the quadrupole sensitivity matrix to span a space larger 

than  dimensions.  For example, if 20 electrodes are deployed, the rank of 2N C ( )4G  

cannot exceed 190, no matter the number of model parameters or the number or data 
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points collected.  This is one of the reasons why electrical resistivity tomography is so 

difficult: the inverse problem is almost always ill posed, even when more data points 

have been collected than there are parameters.  More to the point, if there are more 

than  model parameters, 2N C ( )4G  will be singular, and this is why resistivity inversion 

traditionally relies on regularization and constraint methods. 

 The ill posedness of resistivity inversion is even worse than is suggested above.  

We have empirically observed (though not yet proven) that 

 ( ) (2
1rank 3
2N C N N N )≤ − = −P ; (4.9) 

hence 

 ( )( ) (4 1rank 3
2

N N )≤ −G  (4.10) 

For a 20-electrode array, this means that the maximum attainable rank of ( )4G  is 170.  

The idea of a maximum attainable rank becomes important in the following sections, 

where we pose several new experimental design objective functions. 

 The algebraic perspective outlined above suggests that a more thorough considera-

tion of the three quadrupole configurations (internal, external and straddling) be 

made.  For example, can experiments be designed with only one configuration type, 

usefully reducing experimental space and expediting design?  Two pieces of evidence 

are considered: the cumulative sensitivity of all electrode configurations of similar 

type (using a homogeneous earth) and the rank of the associated picker matrix.  Cu-

mulative sensitivities were calculated by  

 ( )2

1type

K

ik kj
i k

P G
∈Ω =
∑ ∑ , (4.11) 

where  and  is the set of all row-indices of P whose associated quadru-

pole configurations are of one type (internal, external or straddling).  The associated 

picker matrix is the submatrix  for all 

2NK C= typeΩ

ikP typei ∈ Ω .  For simplicity, these submatrices 

are denoted .  The rank of a picker submatrix is important because, 

as explained above, the rank of 

( ) ( ) ( ),  and I EP P P S

( )4G  cannot exceed the rank of the picker submatrix, 
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so picker submatrices should ideally have the maximum attainable rank, ( )3 2N N − .  

In other words, the rank of a picker submatrix governs the rank of the Jacobian matrix 

and thereby the attainable resolution of the inverse problem.  Figure 4-2 shows the 

cumulative sensitivities and ranks of ( ) ( ) ( ),  and I EP P P S .  Based on this figure, it ap-

pears that the internal- and straddling-type configurations are considerably superior to 

the traditional external-type, which is the most widely used quadrupole configuration 

in resistivity tomography.  This would suggest that significant improvements in data 

quality can be realized simply by using configuration types other than the external 

type.  This hypothesis is explored more fully in following sections.  

4.4 Comparing the Three Quadrupole Configurations 

Three quadrupole data station types were identified above, internal, external and 

straddling (see Figure 4-1).  This investigation explored the hypothesis that the exter-

nal-type configuration would give rise to experiments having the poorest data quality 

and that the internal- and straddling-type configurations would provide relatively su-

perior data quality.  A Monte Carlo approach was adopted wherein random experi-

ments consisting of configurations of only one type were generated and their data in-

verted.  Fifty realizations were created for each configuration type to provide a statis-

tical measure of the expected data quality.  The model rms error between the true and 

inverted models was used as a quality metric.  Experiments from 28 to140 data sta-

tions were investigated to derive performance curves as a function of observation 

number.  All synthetic data were noiseless for these exercises. 

 It was speculated that the performance of the three configuration types would be-

have asymptotically as the number of observations increased, indicating a law of di-

minishing returns.  Additionally, it was also speculated that the performances for the 

internal- and straddling-type configurations would be similar to one another and supe-

rior to the external-type performance curve.  All inversions were run for exactly 20 

iterations to expedite the investigation and to ensure the consistency of comparison. 
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 The discretized model in Figure 4-4 was used for these comparisons.  A back-

ground of 100 Ωm was used with two embedded anomalies a conductive anomaly (A) 

of 20 Ωm and a resistive anomaly (B) of 500 Ωm.  Ten borehole electrodes were de-

ployed from the surface to a depth of 9 meters at equispaced 1m intervals to query the 

target.  A 26×16 irregular mesh was used (including boundary condition cells), with 

cell sizes increasing proportionally as their distance from the borehole array. 

 The results are synopsized in Figure 4-5.  As predicted, random experiments com-

prising either solely internal or straddling quadrupoles outperform random ones using 

the external configuration, particularly when more than 28 observations are used.  For 

fewer than 28 observations, external-configuration experiments tend to outperform 

internal-configuration ones but cannot be said to outperform straddling-configuration 

ones, which have a nontrivial probability of producing very small relative model rms 

values.  Also as expected, the performance of experiments comprising internal and 

straddling configurations are comparable, as predicted.   

 Figure 4-2 helps to explain these performance curves.  As shown in that figure, the 

maximum attainable rank of a Jacobian matrix comprising only external-type quadru-

poles was 28 (for 10 electrodes).  The MAR indicates the maximum number of non-

zero singular values the Jacobian can have and thus relates to the resolution capabili-

ties of the experiment because the trace of the resolution matrix equals the rank of the 

Jacobian f(Lanczos, 1956).  Therefore, no more than 28 model parameters could be 

uniquely resoved by external-type experiments, no matter how large they were per-

mitted to be.  This explains why the performance curve for the external configuration 

is essentially independent of the number of observations; no matter how many obser-

vations there are (from 28 to 140), no more than 28 model parameters will ever be 

uniquely resolvable, and the flatness the performance curve illustrates this fact.  In 

contrast, internal-type and straddling-type experiments could resolve as many as 34 

and 35 model parameters, respectively.  Therefore, the resolving power of external 

and straddling quadrupole surveys is greater.  This also explains why their perform-

ance curves decrease and then asymptote (once their resolution limits are met) over 

the interval from 28 to 140 observations. 
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 The performance curves for internal and straddling configurations ramp down 

quickly, asymptoting around 50 to 60 observations and remaining fairly constant 

thereafter, as additional observations are added.  This is taken as evidence that ex-

perimentation does obey a law of diminishing returns; that is, as an experiment in-

creases in size, ever-larger numbers of observations must be added to usefully im-

prove data quality (as measured by model rms error).  This is a point of common 

sense, but it establishes the compelling prospect that compact experiments can be de-

liberately designed, whose performance is comparable with much larger random ex-

periments.   

 The possibility of collecting small, information-dense data sets, rather than large, 

information-sparse ones is in itself sufficient motivation for the serious geophysical 

inversion practitioner to systemically design experiments whenever possible.  It is 

noteworthy that the Pseudosection survey (one of the most common quadrupole 

geoelectrical surveys in use today) consists solely of external-configuration data sta-

tions.  In light of the preceding results, it should be clear that the Pseudosection sur-

vey is inadequate to produce robust data and its use for data collection and inversion 

should be avoided henceforth. 

4.5 Random Experiments Versus Designed Experi-
ments 

One way of assessing whether our experimental design methodology produces supe-

rior data quality is to compare designed experiments with randomly generated ones.  

In this section, optimal experiments were designed based on a homogeneous earth 

model, using the design strategies described in Chapter 2.  A series of trials were exe-

cuted for random and designed experiments to quantify their relative performances as 

a function of the number of observations used.  As a result of preceding investiga-

tions, designed experiments used only straddling-type electrode configuration.  This 

reduced the search space and thereby expedited design times.  
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 Experiments using from 28 to 140 observations were designed or randomly gener-

ated, and noiseless synthetic data were simulated for each survey, querying the het-

erogeneous model in Figure 4-4.  Each synthetic data set was then inverted to produce 

an inversion model.  To gather statistics, twenty-five random experiments were real-

ized for each number of observations.  ‘Standard’ experiments of 28 and 140 observa-

tions were also considered, as these were expected to outperform random experi-

ments.  The ‘standard’ experiment of 28 observations was the Pseudosection survey 

and the one of 140 was the ERL survey (see the Appendices C and D for details on 

these two surveys).   

 Once again, a law of diminishing returns was hypothesized.  That is, as the num-

ber of observations increased, the difference between the qualities of designed and 

random experiments was expected to decrease.  The quality metric adopted for com-

paring the relative performances of all experiments was the model rms error.  

Figure 4-6 graphs the experiment performances (model rms errors versus number 

of observations).  A scatter plot of the final model rms errors are shown for all random 

experiments, as well as the designed experiment performance curve and the perform-

ance for two standardized experiments.  The prime feature of Figure 4-6 is that de-

signed experiments produced categorically lower model rms errors (higher data qual-

ity) than the expected performance of comparably sized random or standard experi-

ments.  

 Notice in Figure 4-6 that, occasionally, a random experiment produced a smaller 

model rmse than the designed experiment of the same size.  One possible explanation 

has to do with our greedy sequential OED algorithms. These algorithms are intention-

ally crafted to be expeditious, and they consequently produce experiments that cannot 

be guaranteed to be globally optimal.  By choosing to minimize our design objective 

function through a sequence of locally optimal, rather than globally optimal, observa-

tions, design times can be substantially reduced.  However, the trade-off is that a set 

of locally optimal observations does not necessarily ‘add up’ to a globally optimal ex-

periment.  Globally optimal experiments may exist, but they can only be found by us-

ing the much slower global search algorithms discussed previously.  A truly globally 

 169



 

optimal experiment would hypothetically give rise to data whose inversion would 

produce a vanishingly small model rms error (for noiseless data).  The probability that 

a random experiment could produce a lower model rms error than this hypothetical 

experiment would literally be zero.  The issue is the amount of time needed to dis-

cover this globally optimal experiment.  Rather than expending hours or days seeking 

global optimality, why not design experiments that produce excellent, though subop-

timal, results for a fraction of the computational expense?  This is the so-called 

Pareto Principle, which asserts that ‘80% of the consequences stem from 20% of the 

causes’.  In this context, we assume we can achieve something like 80% experiment 

optimality for 20% of the computational effort (though, in fact, it is more like 1% or 

0.1% of the computational effort). 

 An alternate explanation for the occasional random experiment outperforming a 

designed one in Figure 4-6 is that the designed experiments were crafted based on a 

homogeneous earth model.  As was discussed in Chapter 2, the optimality of a de-

signed experiment, with respect to one model, does not guarantee its optimality with 

respect to another, distant model. 

 It is also evident from Figure 4-6 that this experimental design methodology obeys 

a law of diminishing returns.  The designed experiment performance curve asymp-

totes within the first 40 observations or so, and the expected performance curve for 

random experiments continues to slowly decrease, reducing the difference between 

the performances of designed and random experiments.  Therefore, the clear benefit 

of OED is that it produces high-quality, compact, smart data sets with dense comple-

mentary information.  It is also inferred from Figure 4-6 that there is a critical number 

of observations beyond which experimental design is no longer worthwhile, because 

it becomes increasingly likely that a random experiment could perform as well as a 

designed one.  Consequently, if time and money are of material importance, it be-

hooves the exploration geophysicist to design their experiments rather than relying on 

standardized survey geometries or random surveys.  The small computational expense 

our greedy design algorithms require only strengthens that argument. 
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 A ‘piano role’ cartoon depicts the experiment designed with 28 observations 

(Figure 4-7).  There is no discernible pattern in this set of 28 data stations, which is 

unfortunate because if there were it would have been possible to write down a simple 

recursive formula for creating ‘optimal’ designs using any number of electrodes.  As it 

is, it appears that we must resort to computational design methods.  

Figure 4-8 shows the CPU time for experimental designs of increasing numbers of 

observations.  All computations were carried out on an HP laptop with dual 2GHz 

processors and 2GB RAM.  The key point is that our novel sequential OED method-

ology executes in a matter of seconds.  This is in contrast to traditional global search 

methods that must evaluate their objective functions literally hundreds or thousands 

more times, and which thus require significantly more CPU time.  Thus, our sequen-

tial methodology provides a significant contribution to optimal experimental design 

theory and significantly closes the gap between the theory and practical application of 

OED. 

 As pointed out above, the designed experiments in this study were created assum-

ing a homogeneous half-space.  In this respect, we should refrain from calling them 

optimal because they have not been tailored to the particular target they query.  How-

ever, the fact that experiments designed for a homogeneous half-space and employed 

on a heterogeneous target produce such superior results is testimony to how much 

room for improvement there is in executing geoelectrical surveys. 

4.6 Two-Stage, Adaptive Optimized Experimental De-
sign 

This study investigated the utility of performing an initial survey/inversion followed 

by an experimental design phase and a second inversion.  In this respect, the proce-

dure can be thought of as two-stage: Stage One collects and inverts a standardized 

data set, producing a working model or image of the earth; Stage Two designs an ex-

periment tailored for the working model and then collects and inverts a second data 

set, using the preliminary model as an initial guess for the inversion algorithm.  A 
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Pseudosection data set was initially generated and inverted to produce the working 

model.  Experiments were then tailored for that model.  Data for the new experiments 

were then generated and inverted, and the resulting image misfit was measured to 

evaluate performance.  Experiments of 28 and 140 observations were designed and 

compared with the Pseudosection and ERL surveys.  To determine whether the per-

formance of designed experiments showed bona fide improvement a Monte Carlo 

study was conducted using 100 randomly generated 28-observation experiments for 

Stage Two.  A performance histogram was then created, offering a probabilistic per-

spective on the relative performance of designed experiments. 

 The results are shown in Figure 4-9 (the inversion result for the 140-observation 

ERL survey is also shown for comparison).  This simple form of adaptive OED per-

forms very well.  Panel (a) shows that the 28-observation designed experiment re-

duced model rms error by over an order of magnitude compared with the initial sur-

vey.  Importantly, the designed survey captured the correct shape of the 500 Ωm resis-

tive anomaly, which was misrepresented by the Pseudosection image.  Compared with 

the 28-observation examples in Figure 4-6 (indeed, compared with any size experi-

ment in Figure 4-6) this small, adapted experiment performed exceptionally.  Panel 

(b) shows the result for a 140-observation designed experiment.  As expected by the 

law of diminishing returns, the model rms error for this designed experiment is not 

significantly better than its smaller cousin in Panel (a), suggesting that the smaller 

experiment would suffice in view of financial considerations.  Both designed experi-

ments outperform the ERL survey shown at right in Panel (b). 

 The results of this investigation are very exciting: small, adapted experiments can 

significantly improve data quality.  In Panel (a), only 56 observations were made (28 

each for the Pseudosection and designed surveys).  The ERL survey, by comparison, 

used 140 observations without producing a better image.  The total computation time 

for the two inversions and one design phase was 125 seconds for the 28/28 trial (60 

seconds for each inversion and 5 seconds for the design phase) and 160 seconds for 

the 28/140 trial (60 seconds for each inversion and 40 seconds for the design phase).  

The conclusion is obvious: rather than collect a large data set, which poses a financial 
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burden, this simple, two-stage adaptive technique can be employed to produce supe-

rior imaging at a fraction of the cost.   

 To determine whether the 28-observation design was statistically superior or just a 

product of chance, it was compared with 100 random experiments of 28 observations.  

As with the designed experiment, the inversions of all random survey data were ini-

tialized with the same Pseudosection image.  The histogram in Figure 4-10 shows the 

outcome; the adaptively designed experiment outperformed 95% of all random sur-

veys, demonstrating that the AOED procedure produced experiments whose superior-

ity is statistically significant.   

 One reason that the designed experiments performed so well is that the initial 

model plugged into the 2nd stage inversion is the Pseudosection image.  In previous 

inversions, where no prior information was available, the starting model was a homo-

geneous half-space.  In this case, the inversion algorithm did not have far to travel 

through model space, nor was it in jeopardy of falling into local minima or diverging.  

This statement is true of designed experiments but not the random ones.  The Monte 

Carlo performance histogram (Figure 4-10) was bimodal, with the higher mode peak-

ing around a model rms error of 30 Ωm.  This indicates that some fraction of the ran-

dom experiments actually caused divergence.  It is concluded that optimized experi-

ments perform so well because they were deliberately, systematically designed to per-

form well.  Even though the Pseudosection earth model was incorrect, it was close 

enough to the true model that the tailored surveys performed outstandingly. 

4.7 In-Line, Adaptive Optimized Experimental De-
sign 

Of the trials performed in this chapter, this was the most ambitious.  The prospect of 

performing real-time or in-line experimental design was examined.  Complete details 

of the methodology are outlined in Chapter 2, but a brief recap is offered here.  This 

technique operates by sequentially executing experimental design in line with data 

inversion; as the earth model comes into focus, so to speak, additional observations 
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are added one at a time and inverted under the supposition that they have been opti-

mized to ‘steer’ the inversion toward the true model.  The method is thus seen to be an 

integrated super-algorithm that cyclically alternates between a model-update phase 

(through partial inversion) and an experimental-design phase.  Each time the model 

vector is updated  (via one or two iterations of a NLLS inversion), an additional ob-

servation is prescribed for the base experiment, using our design methodology; the 

observation is then collected and a new model update is made, completing one cycle.  

The super-algorithm continues this process until one or more stopping criteria are 

met. 

 Using this integrated design strategy, experiments of 28 and 140 data stations 

were designed.  Standard Pseudosection and ERL surveys were also considered as a 

means of comparison.  As previously, the experiment quality metric used to assess 

relative survey performance was the model rms error.    During the inversion step, the 

nonlinear inversion algorithm was allowed two iterations, increasing the probability 

that the working model had incorporated the information provided by each new ob-

servation.  Ten initial data stations were used to seed the algorithm, which were speci-

fied by designing a 10-observation experiment optimized for a homogenous earth. 

It was initially thought that this technique would outperform all techniques investi-

gated in this chapter, both in terms of model rms error and possibly in overall compu-

tation time.  But, as will be seen, this supposition proved to be incorrect. 

 Figure 4-11 shows the inversion images for Trials 1 and 2, where 28- and 140-

observation designs were attempted, respectively.  Panel (a) shows the 28-observation 

results and Panel (b) shows the 140-observation results.  The standard surveys (Pseu-

dosection and ERL surveys) were executed as though they had been sequentially de-

signed (like the designed surveys), to account for the effects of the serialized inver-

sion. This ensured that the comparison between designed and standard experiments 

would be unbiased by the inversion method.   

 Neither designed experiment performed particularly well with regard to compara-

bly sized standard surveys.  The in-line AOED experiments shown here were not only 

unremarkable compared with standardized surveys, but they performed more poorly 
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than – or, at best, comparably to – the experimental designs in Figure 4-6, where a 

homogeneous earth model was used as the design target.  Their performance was also 

significantly inferior to the two-stage designed experiments above (see Figure 4-9).  

Moreover, the need to recalculate the Jacobian in the design step, after each observa-

tion is added, significantly increased the computational burden of this method.  The 

28-observation trial executed in a little more than 600 seconds, and the 140-

observation trial took more than 3000 seconds, compared with 125 and 160 seconds, 

respectively, for the Two-Stage approach above. 

Figure 4-12 offers a different perspective.  It shows the performance curves for 

standard and designed experiments as a function of observation number, as the ex-

periments were being built.  While both designed and standard surveys fared poorly at 

28 observations, the designed experiment improved rapidly thereafter, asymptoting by 

~50 observations.  The standard survey improved a bit but leveled off until ~75 ob-

servations where it finally improved to a level comparable with the designed survey.  

An explanation for the rapid and drastic improvement of the designed experiment 

around 30 observations is that the number of experimental observations has ap-

proached the maximum attainable rank ( 10 2 10 35C − = ) for this problem.  This is a 

matter of course, because the objective function deliberately favors additional obser-

vations whose information is maximally complementary with respect to the base ex-

periment.  Thus, it is conjectured that in-line adaptive OED might be expedited by 

simply specifying a number of observations equal to or slightly greater than the 

maximum attainable rank of the problem. 

 There are at least three significant drawbacks to in-line adaptive OED as it has 

been demonstrated here.  First, it is computationally demanding.  Each time the de-

sign step is executed, it requires recalculation of the sensitivity matrix of all permitted 

data stations, G, because the earth model has been updated.  As the size of the inverse 

problem increases, significantly more computational expense will be required to ag-

gregate the designed experiment.  Second, the design step depends on the current 

working model, which in turn depends on the inversion algorithm.  If the inversion 

begins to diverge, the design step will add observations optimized for the diverging 

 175



 

model, possibly further destabilizing the inversion and setting up a negative feedback.  

Third, it is confounding to determine an appropriate regularization schedule.  The 

Levenberg-Marquardt algorithm is quite effective for traditional inverse problems 

where the data set remains unchanged from start to finish, but there is an added de-

gree of complexity in trying to tune λ as the data set itself changes.  Though it is not 

discussed in this document, a great deal of time was spent tuning the whole in-line 

procedure to produce any kind of useful result. 

4.8 Small Batch, Adaptive Optimal Experimental De-
sign 

Given the results of In-Line AOED section above, a slight modification to the in-line 

algorithm was implemented to try to improve performance.  Steps 3-iii and 3-v in 

Flowchart 2-3 were altered as follows:  

 

3-iii'. Perform between three and seven iterations of a nonlinear least squares inversion, using 

some type of regularization to ensure stability.  If at any time between the third and sev-

enth iteration the data rms error increases, terminate the inversion, update the model to 

mn+1 and proceed to Step 3-iv. 

3-v’. Use Objective Function #1 or #2 (depending on whether n is greater than the maximum 

attainable rank) to determine the next η observation to be added to the experiment. 

■ 

 The difference between Step 3-iii' and 3-iii is that more iterations were allowed be-

fore the updated model was passed on, hopefully allowing the model to approach 

closer to the true model before the design step was executed.  The difference between 

3-v’ and 3-v was that η observations, rather than only one, were added to the experi-

ment before the inversion step was revisited.  The purpose for 3-v’ is similar to that for 

3-iii', namely to increase improvements to the model before it is passed to the next step 

of the super-algorithm.  This modified algorithm might be called small batch adaptive 

AOED because it builds the experiment in groups or batches of observations, rather 
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than by single additions.  The ultimate purpose of these modifications was twofold: 1) 

reduce the computational expense associated with the design step (which requires re-

calculation of the sensitivity matrix) and 2) improve the final model rms error. 

An example trial was executed that built an optimal experiment in groups of seven 

observation (η = 7), starting with 7 initial or seed observations, to a total of 56 obser-

vations.  As specified in Step 3-iii', the nonlinear inversion algorithm was permitted 

between 3 and 7 iterations before passing control to the design step.  For comparison, 

the ERL and Pseudosection surveys were also treated as being designed in a batch-

built manner.  As before, the reason for this was to remove the effects of the serial in-

version in the comparison between standard and designed experiments. 

 Figure 4-13 displays the result for the 56-observation AOED trial.  By the terminus 

of this method, it had achieved a model rms error comparable to the asymptote seen in 

Figure 4-12.  The total computational time for this was 261 seconds, less than half the 

time required to execute the In-Line AOED approach for 28 observation above.  Thus, 

one of the two stated purposes of this exercise has been met: the computational bur-

den has been reduced without sacrificing image quality (as measured by the model 

rms error).  A different viewpoint on the comparison between Batch and In-Line 

AOED is provided by Figure 4-14, which shows the performance curves of both 

methods as a function of the number of observations.  The shapes of the two curves 

are similar, but the batch method reduced model rms error earlier, suggesting that this 

technique may be more robust, especially when small numbers of observations are 

used. 

 The standard Pseudosection and ERL surveys were also executed in this batch ap-

proach to ascertain how they behaved in comparison with the designed experiment.  

For the sake of brevity, the inversion images are not shown, but the final model rms 

errors were 68.09 Ωm and 4.55 Ωm, respectively, for the Pseudosection and ERL sur-

veys.  Clearly, the batch-designed experiment of 56 observations produced a final 

model rms error comparable to that for the ERL survey, but the ERL survey used 140 

observations, so we conclude that this batch method does indeed produce smart, con-

densed data sets. 
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 It is concluded from this exercise that small batch AOED is an improvement over 

the In-Line technique discussed previously.  While the final rms errors were compara-

ble, the computational burden was significantly reduced by more than a factor of two 

in the batch method.  Additionally, it is surmised that the batch method is less prone 

to divergence than the In-Line method, which is of considerable concern for these 

types of techniques.   

 At the end of the day, though the batch method has performed well, we would not 

necessarily recommend it for real-world application.  The procedure incorporates data 

collection, experimental design, and inversion into one super-algorithm that can os-

tensibly be deployed to great advantage in the field.  After all, if the geophysical ex-

plorer could collect and invert an optimal data set in real-time, creating an optimal 

image right in the field, it would represent a significant advance in exploration meth-

ods.  However, there are a number of algorithm hyperparameters (the regularization 

schedule, the number of inversion iterations allowed per batch, and the batch size it-

self) that must be tuned in order to get good results.  If these hyperparameters are not 

properly tuned, the entire integrated procedure can diverge or converge to local min-

ima, resulting in wasted time and money.  In short, there is no fail-safe way to prevent 

these last two AOED procedures from going awry.  Nonetheless, additional research 

in this area is needed. 

4.9 Noisy Data and Experimental Design 

Having now examined the effects of optimal experimental design with respect to 

noiseless data scenarios for borehole DC resistivity, it is natural to turn our attention 

to its application in realistic, noisy-data situations.   

 In this section, the Two-Stage Adaptive OED method discussed above was imple-

mented in the presence of noisy data.  A stage-one model, shown in Figure 4-15, 

which came from a Pseudosection survey of 28 noisy observations over the heteroge-

neous target in Figure 4-4, was used as the experimental design earth model.  Stage-

two experiments of 140 observations were designed using ‘All’ and ‘Straddling’ quad-
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rupoles, and these were compared with the ERL survey, which was also used as a sec-

ond stage survey.  A series of Monte Carlo simulations was performed where 50 reali-

zations of 3% Gaussian noise were added to the data sets for each survey and the con-

taminated data were then inverted. 

 The results from these Monte Carlo simulations were a bit lackluster and afforded 

an instructive viewpoint on the limitations of our design methodology.  In light of the 

results reported above on the Two-Stage AOED method, it was expected that these 

noisy-data studies would further solidify evidence that the 2-stage adaptive design 

strategy generally produces smarter data sets, with superior inversion modeling char-

acteristics.  Figure 4-16 shows the average second stage models for the ‘ERL’, ‘All’ 

and ‘Straddling’ experiments of 140 observations (Panels a - c).  Visually, the three 

results are nearly indistinguishable, though it appears that the average ‘Straddling’ 

image has better identified the magnitude of the resistive anomaly.  The right hand 

panels in this figure (Panels d – f) show ‘Monte Carlo Parameter Uncertainties’, 

which are evaluated by the expression 
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where ( )ˆ k
ijρ  is the inversion-model resistivity of the ijth cell for the kth noise realization 

and ijρ  is the true resistivity of the ijth cell.  The parameter uncertainties are therefore 

like standard deviations about the true model.  Curiously, though the average ‘ERL’ 

model looks to be the worst of the three images, its largest parameter uncertainties 

(Panel d) are concentrated directly around the resistive anomaly.  Whereas the ‘All’ 

and ‘Straddling’ designs both create larger uncertainties (Panels e and f) elsewhere in 

the target window but smaller uncertainties around the resistive anomaly.  This de-

rives from the fact that the design methodology qualitatively seeks to equalize the re-

solving power of an experiment throughout the target window.  As was seen in the 

previous chapter on 1D resistivity, depending on the earth model, the design method 

may sacrifice the sensitivity of some well-resolved parameters to increase the sensi-

tivity of other less well-resolved ones.  Clearly, the most poorly resolved parameters 
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for this particular earth model are the ones with large resistivity values, and it is plain 

from Figure 4-16.d-f that the designed experiments have ‘deliberately’ and somewhat 

successfully reduced their uncertainty. 

 It is difficult to determine from Figure 4-16 whether the 2nd stage designed ex-

periments have truly produced smarter data compared with the 2nd stage ERL survey.  

An alternate representation of these Monte Carlo simulations is shown in Figure 4-17.  

These ‘performance curves’ are just the normalized cumulative frequency of modeling 

errors produced by each experiment in the Monte Carlo exercises.  There are two ob-

vious features in this figure. First, the distributions of modeling errors for designed 

surveys are generally to the left of those for the ERL survey, meaning that the de-

signed surveys generally produce smaller errors than the ERL survey.  But – and this 

is the second feature – a portion of the ‘performance curves’ for the designed surveys 

also fall significantly to the right of the ERL curve, corresponding to large model % 

rms errors.  These two facts signify that the probability distributions of modeling er-

rors for the designed surveys are left-skewed and peak at smaller values than the 

probability distribution for the ERL survey; but the probability distributions for the 

designed experiments also have long right-sided tails that extend significantly beyond 

the right-hand tail for the ERL survey.  This means the designed experiments gener-

ally produce smarter data than the ERL survey but at the apparent risk of occasionally 

actually producing ‘dumber’ data.   

 An alternate analysis looks at the comparative probabilities that one experiment 

will outperform another.  To do this, we evaluated all permutations of the differences 

in Monte Carlo modeling errors between two experiments and determined the average 

number of times the difference was positive or negative.  Mathematically, this is ex-

pressed as  
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and ( )A
iE  and ( )B

iE  are the ith and jth Monte Carlo model % rms errors for Experiments 

A and B, respectively.  p approximates the probability that Experiment A will produce 

a smaller model % rms error than Experiment B; and 1 – p approximates the comple-

mentary probability that Experiment B will outperform Experiment A.  These prob-

abilities do not indicate by how much one experiment is expected to outperform an-

other, but this is simply determined by taking the difference between their average 

model % rms errors: 
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 Table 4-1 compiles the comparative probabilities of producing smaller modeling 

error and average differences in modeling error between the three experiments.  Each 

column in Panel (a) indicates the probability that the survey in the column header will 

produce smaller modeling errors than the competing surveys in the row headers.  So, 

for example, the 2nd stage ‘All’ design has a 42% chance of producing a smaller 

model % rms error than the 2nd stage ‘Straddling’ design.  Inspection of the compara-

tive probabilities in Panel (a) indicates that both designed experiments are more than 

50% likely to produce smaller model errors than the ERL survey.  Had these prob-

abilities been 50% or less, it would have signified that the designed surveys were sta-

tistically no better (or even worse) for producing high quality data than the ERL sur-

vey.  However, neither the ‘All’ nor ‘Straddling’ designs produced comparative prob-

abilities with the ERL survey that were vastly greater than 50%, being only 61% and 

72%, respectively.  Thus, while the designed surveys clearly have a statistically 

proven advantage over the ERL survey, the advantage is arguably small, begging the 

question whether it is worthwhile to undertake design at all in this case.  When one 

further considers that the average differences in model % rms error between the de-

signed surveys and the ERL survey was at most only 2.2%, it becomes harder to claim 

that the statistical advantage that the designed surveys apparently have is anything but 
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a paper tiger.  Still, one wonders whether, through some modification of the design 

objective function, the long right-sided tails seen in Figure 4-17 could be eradicated, 

allowing us to unequivocally proclaim that designed experiments always produce 

smarter data.  It is because of these tails that the average model % rms errors for all 

surveys are nearly equal and that the probabilities of producing smaller modeling er-

rors are not larger for the designed experiments. 

 It is worth briefly noting that Figure 4-16 and Figure 4-17 and Table 4-1 all indi-

cate that the ‘Straddling’ design outperformed the ‘All’ design, as was noted above.  

This fact is carefully scrutinized in the next chapter. 

 In closing this section, an outstanding question remains: why did the noiseless 2-

stage AOED example above (Figure 4-9) produce over an order of magnitude im-

provement in overall modeling accuracy (measured by model % rms error), as com-

pared with the ERL survey, while the noisy Monte Carlo cases examined here showed 

almost negligible comparative improvements?  There are two possible explanations, 

which are not necessarily mutually exclusive.   

 The first explanation concerns the model regularization scheme employed by the 

inversion.  All inversions carried out in this chapter used an L1-smoothness constraint 

on the spatial gradient of the model, and the strength of this constraint has been con-

trolled by a Lagrange trade-off parameter (per Equation (4.2)).  These borehole resis-

tivity inversions are inherently ill posed because there are more model parameters 

than the maximum attainable rank of the Jacobian matrix; hence, some form of model 

regularization is a necessity.  When the data are noiseless, the Lagrange multiplier 

must be large enough to promote inversion stability but not so large as to overly bias 

the inversion model.  In a manner of speaking, we can allow the Lagrange multiplier 

to become small (in the Levenberg-Marquardt sense) as the inversion converges to let 

the data ‘speak for themselves’, because there is no error in the data to derail the in-

version process.   

 However, when the data are noisy, the smoothness constraint performs not only as 

a stabilizing functional but also as a sort of noise filter.  Ill-posedness, by definition, 

means that one or more model parameters are practically irresolvable and that the in-
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verse problem gives rise to nonunique solutions.  A poorly resolved parameter is very 

insensitive to the data, which means, from a forward modeling point of view, that it 

can be perturbed by a large amount without significantly altering the predicted data.  

Turning this idea around, it follows that if there is noise in the observed data, poorly 

resolved parameters could take on extravagantly large or small values in an attempt to 

minimize the data rmse.  It is for this reason that model regularization is especially 

critical to ill posed inverse problems faced with noisy data.  The only way to prevent 

poorly resolved parameters from ‘blowing up’ or vanishing in the presence of noisy 

data is to rely more heavily on the regularization constraint, which in this case en-

forces an assumption of local smoothness.  It is in this sense that we argue that the 

smoothness constraint must also act as a data noise filter.   

 In short, out of necessity the Lagrange multiplier in Equation (4.2) was kept sig-

nificantly larger (two to three orders of magnitude, in fact) for these noisy data trials 

than for the preceding noiseless trials.  However, regularization methods bias the final 

inversion result, so if the Lagrange trade-off parameter between data rmse and model 

smoothness is kept large, the final inversion image is biased toward smoothness more 

than toward a small data rmse.   

 The reason designed surveys did not perform more spectacularly in the presence 

of data noise now becomes clear.  The design methodology is concerned with the in-

formation provided by the experiment, which can be approached through the singular 

values of the Jacobian matrix, G.  But if the inversion has been heavily biased (out of 

necessity) toward smooth models, to protect against the ill effects of data noise, this 

information is in the constraint matrix (which is represented by the second term in 

Equation (4.2)), not in G.  The design methodology does not address the model regu-

larization term and therefore does not produce surveys with particularly outstanding 

data quality as compared with standard surveys. 

 In light of the foregoing discussion, a second possible explanation for the lacklus-

ter performance of designed surveys in the presence of data noise may have to do with 

the design objectives.  Recall from Chapter 2 that the design technique can be broken 

into two stages, depending on whether the base experiment contains more or less ob-

 183



 

servations than the maximum attainable rank of the Jacobian matrix (see Flowchart 

2-1 and Flowchart 2-2 for details).  The second stage deals with the addition of obser-

vations after the number of observations in the base experiment has exceeded the 

maximum attainable rank (Flowchart 2-2).  The objective in this second stage is to 

increase the magnitude of the smallest singular values in the Jacobian of the base ex-

periment.  Let us take a brief detour to consider the actual inversion step that mini-

mizes Θ in Equation (4.2) with respect to ∆m: 

 ( ) ( )1T T T Tλ
−

∆ = + ∆ −m G G L L G d L Lm  (4.16) 

where G is the Jacobian matrix, L is the linearization of the L1-smoothness operator, 

∆d is the difference between observed and predicted data, ∆m is the model update 

vector, m is the current model vector and λ is the Lagrange trade-off parameter be-

tween data rmse and model smoothness.  From an inversion standpoint, we are con-

cerned with the eigenvalues inside the matrix inverse in (4.16), and it should be evi-

dent that these eigenvalues depend on the magnitude of λ.  If λ is very large, the ei-

genvalues of the inverse matrix are dominated by the eigenvalues of LTL; and con-

versely, if λ is very small, the eigenvalues of GTG dominate.  This means, in particu-

lar, that the small nonzero eigenvalues of GTG will be ‘swamped out’ by the eigen-

values of LTL whenever λ is large.  And because the 2nd stage of the design algorithm 

attempts to maximize these small eigenvalues in GTG, the effort is essentially wasted, 

for the eigenvalues of λLTL overpower the small eigenvalues in GTG (Figure 4-18).  

Hypothetically, the observations in a designed experiment that attempt to maximize 

the smallest eigenvalues in GTG are rendered useless (uninformative) when the model 

regularization term is dominant.  It might in fact be better to choose additional obser-

vations that maximize the large eigenvalues in GTG.  Such observations would at 

least ostensibly inform the inversion because they would be expected to affect the ei-

genvalues of GTG above a ‘water level’ imposed by λLTL. 
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4.10 Integration and Summary 

This chapter has examined multiple methods of optimal experimental design applied 

to a heterogeneous earth model, cast in a pseudo-2D borehole DC resistivity frame-

work.  As well, key issues pertaining to fixed-electrode electrical resistivity tomogra-

phy were explored, from which several useful insights were elucidated that not only 

inform geophysical experimental design but ostensibly the ERT method itself.  Sev-

eral subtopics were considered throughout this chapter; below is a brief synopsis 

highlighting the main features and/or results from each of subtopic. 

4.10.1 Modeling and Inversion 

The single-borehole DC resistivity forward and inverse problems have been addressed 

using the transmission line network analogy (e.g., Swift, 1971; Madden, 1972; Zhang 

et al., 1995; Shi, 1998).  With only one borehole in which to place survey electrodes, 

the azimuthal position of resistivity features was irresolvable, allowing the earth 

model to be simplified to axially symmetric cylindrical coordinates. All inversions 

implemented model regularization via the L1-norm of the spatial gradient of the 

model.  This permitted inversion models to have sharp contrasts because contrasts are 

not as heavily penalized by an L1-norm as they would be by an L2-norm smoothness 

constraint. 

4.10.2 Electrical Resistivity Tomography and Experimen-
tal Design 

Careful examination of the electrical resistivity tomography problem has produced 

several significant and novel results that are important not only for design but for the 

ERT problem itself.  

 

• The maximum attainable rank of the Jacobian matrix for an arbitrary experiment 

comprising quadrupole data stations is 2N C N− , where N is the total number of 

survey electrodes. 

 185



 

 

It was shown that the maximum attainable rank of the Jacobian matrix for an arbi-

trary quadrupole experiment is 2N C N− , where N is the total number of survey 

electrodes.  The concept of maximum attainable rank clarifies why geoelectrical 

inverse problems are often ill posed – even if there are more data than model pa-

rameters, if the maximum attainable rank is less than the number of model pa-

rameters, the problem is still ill posed.  Maximum attainable rank is also pivotal to 

the experimental design objective functions introduced in this work. 

 

• The straddling-type electrode configuration is superior for geoelectrical surveys. 

 

Three quadrupole configuration types were identified: external, internal, and 

straddling.  It was empirically shown that, for 10 survey electrodes, the maximum 

attainable ranks (MARs) of Jacobians comprising quadrupole observations of only 

one type were 28, 34 and 35 for the external, internal and straddling configura-

tions, respectively.  The MAR for the Jacobian of all possible quadrupole observa-

tions is also 35.  The MAR is diagnostic of the resolution limitations of an ex-

periment, for it quantifies the maximum number of nonzero eigenvalues the lin-

earized inverse problem can have, and this number is almost always smaller than 

the number of model cells for which a 2D resistivity inversion attempts to solve.  

As a rule of thumb, therefore, one should seek to design experiments that maxi-

mize the MAR, indicating that straddling-type quadrupole configurations are the 

best of the three configuration type.  The relative magnitude and distribution of 

cumulative sensitivities of the three configuration types (based on a homogeneous 

model) correlated with their MARs; to wit, external-type configurations produced 

the poorest cumulative sensitivity, while the internal and straddling types pro-

duced comparable and larger cumulative sensitivities.  It was subsequently dem-

onstrated by Monte Carlo exercises that experiments consisting of either strad-

dling or internal configurations do indeed outperform experiments comprising 
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only internal configurations, especially as the number of observations in the ex-

periment becomes large.   

 

• The Pseudosection survey produces poor data quality and should perhaps be dis-

continued. 

 

The Pseudosection survey is made only of external-type electrode configurations, 

and this configuration type was identified as producing the poorest data quality of 

the three configuration types – it lacks both sensitivity and resolution.  This was 

plainly demonstrated by Monte Carlo exercises that consistently showed the Pseu-

dosection survey performing worse than nearly any other experiment of the same 

size. 

 

• The straddling-type configuration can be used exclusively for experimental de-

sign, expediting the design algorithm. 

 

The MAR of the Jacobian for experiments consisting only of straddling-type elec-

trode configurations was shown to equal the MAR of the Jacobian of all data sta-

tions, and the cumulative sensitivity of all straddling-types was the best of the 

three configuration types.  Consequently, it was hypothesized that this configura-

tion type could be used exclusively in the design enterprise, expediting the design 

algorithm by reducing the number of permitted observations by two thirds.  All 

experimental designs in this paper comprise only this configuration type, and the 

results summarized below support its exclusive use. 

4.10.3 Random Experiments Versus Designed Experiments 

A series of Monte Carlo exercise were executed to compare randomly generated ex-

periments of different numbers of observations with designed and standard experi-

ments.  The designed experiments were created assuming a homogeneous earth 

model.  All trials used noiseless data. 
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• Designed experiments produce superior data sets. 

 

Based on model rms errors, it was shown that designed experiments produced sta-

tistically significant improvements in data quality as compared with random and 

standardized surveys, even though the designed experiments were created assum-

ing a homogeneous earth.  It is therefore concluded that the methods of OED de-

veloped in this work represent a bona fide advance in the design of experiments 

for borehole resistivity. 

 

• Designed experiments are suboptimal but statistically more likely to produce high-

quality data sets than random or standard surveys. 

 

Because the methods of experimental design laid out in this research are sequen-

tial (greedy), they do not necessarily produce truly optimal experiments.  It was 

seen that there is a small (but nonzero) probability that an arbitrary random ex-

periment could produce a better inversion result than a designed one.  The only 

way to produce truly optimal experiments is to use global search strategies, which 

are prohibitively expensive for real-world applications.  Instead, the Pareto Prin-

ciple is invoked, where it is qualitatively argued that our design methods can 

achieve ~80% optimality for ~20% of the work. 

 

• Experimental design is subject to a law of diminishing returns 

 

It was shown that geophysical OED obeys a law of diminishing returns.  That is, 

as the number of observations increases, relative improvements in the perform-

ance of designed experiments diminish.  Consequently, as the number of observa-

tions becomes large, the utility of designing an experiment (rather than randomly 

generating one) diminishes.  Therefore, the primary benefit of experimental design 

methods lies in the fact that they produce compact, smart data sets with high in-
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formation density, which is of critical importance from a financial and temporal 

standpoint.  The maximum attainable rank should impinge on where this perform-

ance transition occurs.  Based on the Monte Carlo exercises, this threshold might 

be approximately one and a half to two times the MAR.  Beyond that point, im-

provements in designed experiment performance were fairly small.  

4.10.4 Two-Stage AOED 

This investigation studied the possibility of performing experimental design on an 

earth model that was created by an initial Pseudosection inversion.  It was a first at-

tempt to deliberately adapt an experiment to a heterogeneous model, which would 

then be used as an initial guess in a second inversion.  To confirm that this form of 

adaptive OED actually produced superior results, a comparative Monte Carlo simula-

tion was conducted wherein 100 randomly generated experiments were used as the 

second stage experiment. 

 

• Two-stage adaptive OED produced exemplary results, surpassing experimental 

designs based on homogeneous earth models, and surpassing standard surveys. 

 

Two-Stage AOED produced the best results of any investigation in this chapter.  

The model rms error for the 28/28 trial (28 observations in the Pseudosection sur-

vey and 28 in the designed experiment) was well over an order of magnitude 

smaller than that for the Pseudosection survey itself; and the result for the 28/140 

trial (28 observations for the Pseudosection survey and 140 for the designed ex-

periment) was twice as good as that for the 28/28 trial.  That the 28/140 result was 

only twice as good as the 28/28 trial further demonstrates the law of diminishing 

returns.  Based on these results, it was speculated that a reasonably small second-

stage experiment (no bigger than the MAR) could be designed and executed that 

would produce superior data quality and inversion results.  In both cases, total 

computation did not exceed 3 minutes (for two inversions and one design).  The 
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ERL survey was also used as a second-stage experiment but did not produce re-

sults significantly better than if it had started with a homogeneous initial guess.   

 

Additionally, the Monte Carlo exercises showed that the 28/28 designed experi-

ment produced a result better than 95% of 28/28 trials conducted with a randomly 

generated second stage experiment.  This establishes beyond question that the 2-

stage AOED methodology is creating significantly superior data by design and is 

not a statistical anomaly.  The primary benefit of this technique is that, for rea-

sonably small additional cost, model accuracy can be considerably improved. 

4.10.5 In-Line and Small Batch AOED 

These investigations explored the possibility of performing experimental design in 

real-time or in line with data collection and inversion, creating a geophysical tech-

nique that would allow the user to collect and invert a high-quality data sets in the 

field.  Two approaches were considered.  Both started with a small initial experiment 

and one adaptively built the experiment one observation at a time while the other 

adaptively built the experiment in small batches. 

 

• In-line experimental design does not outperform 2-stage design and requires more 

CPU time. 

 

Despite the potential benefits that an integrated experimental design approach 

seemingly offers geophysical exploration, our investigations showed that it pro-

duces a final earth image inferior to the 2-stage method.  Moreover, the in-line 

technique required more than twice as much CPU time.  This method does demon-

strate the law of diminishing returns, so some decrease in computational expense 

can be made by prudently choosing the number of observations.  Even so, the 

method still requires more CPU time than the 2-stage method, and without pro-

ducing a superior image. 
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• Small Batch OED performed comparably with in-line design, using a smaller 

number of observations but still did not outperform 2-stage design.  While small 

batch AOED required less CPU time in total, it still required more than the 2-

stage AOED method. 

 

The small batch approach produced comparable model rms error to the in-line 

AOED method.  To its credit, this technique did so at less computational expense 

– especially with regard to the number of times the Jacobian matrix must be recal-

culated.  Additionally, it was argued that a batch approach would be less prone to 

inversion divergence or to local minima.  At the end of the day however, this 

method still has higher computational overhead than the 2-stage method, and like 

the in-line approach, it did not produce a superior image. 

 

• Both in-line and small batch AOED require considerable hyperparameter tuning, 

making them risky to deploy in the field. 

 

With some effort, it may be possible to tune both the in-line and small batch 

AOED algorithms to perform better than has been shown in this research.  But the 

need for such careful tuning counts against these methods.  Fully integrated and 

automated geophysical techniques like in-line and small batch AOED should be 

usable ‘straight out of the box’ so to speak.   

 

Because the experimental design phase of these techniques is dependent on the 

current model vector, which is in turn dependent on the inversion algorithm, there 

is an unaddressed possibility that the entire procedure can catastrophically di-

verge, with no safety mechanism to counteract divergence.  This translates into the 

potential for considerable wasted time and effort, which runs counter to the spirit 

of optimal experimental design. 
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4.10.6 Noisy Data and Experimental Design 

A series of Monte Carlo exercises was undertaken to evaluate the utility of a Two-

Stage AOED approach in the presence of 3% Gaussian noise added to the data.  Two 

second-stage experiments were designed using our sequential design algorithm on a 

Stage-One model produced by the Pseudosection survey.   The performances of the 

designed surveys were compared with the performance of the ERL survey, which was 

also employed as a second stage survey. 

 While the designed 2nd stage experiments were statistically shown to outperform 

the ERL survey, the margin of improvement they offered was considerably smaller 

than was seen in the noiseless case discussed above.  In point of fact, the designed 

surveys were generally more likely to produce smaller modeling errors in the pres-

ence of noisy data, but the distribution of their modeling errors also had a significant 

right-sided tail, such that they occasionally produced significantly larger modeling 

errors.  Thus, on average, the designed and standard surveys all appeared to have 

nearly identical performances. 

 Two reasons were posited for the significantly poorer performance of 2nd stage 

designed experiments in the presence of data noise (as opposed to their performances 

in the noiseless data case).  First, it was necessary to rely more heavily on the 

smoothness constraint in the presence of data noise to prevent poorly resolved pa-

rameters from taking on physically unreasonable values.  This undermined the utility 

of designed experiments, which were tailored to maximize the information that the 

experiments provided on the earth model, not the information imposed by a model 

smoothness constraint.  Second, as a consequence of the extra reliance placed on the 

model regularization scheme, the experimental design objectives were counter-

manded, as they were geared toward maximizing the small eigenvalues of the Jaco-

bian matrix.  All but the largest eigenvalues were ‘swamped out’ by the eigenvalues of 

the constraint matrix, rendering ineffective the observations in the experimental de-

sign that were specifically chosen to maximize the small eigenvalues of the Jacobian.  

It was hypothesized that, in such ill posed cases as those examined here, it might be 

better to design experiments whose observations preferentially increase the largest 
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eigenvalues of the Jacobian, above the water level of the eigenspectrum of the con-

straint matrix.  This hypothesis remains to be investigated. 
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Figure 4-1 The three unique quadrupole configuration types: external, internal, and 
straddling. 
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Figure 4-3 Cartoon describing the borehole model.  Because one borehole is used, re-
sistivity is treated as being azimuthally invariant as shown above.  Consequently, the 
problem is reduced from 3D to 2D. 
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Figure 4-4 Resistivity model used in this chapter.  Ten electrodes (arrows at left) were 
placed at equispaced intervals of 1m along the borehole, from the surface to a depth 
of 9 meters.  The background resistivity was set to 100 Ωm and anomalies A and B 
were set to 20 Ωm and 500 Ωm, respectively.  The discretized model extends beyond 
what is shown here because boundary blocks were needed to ensure modeling accu-
racy.  The model used a total of 416 parameters. 
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Figure 4-5 Performance of the three electrode configuration types based on a Monte 
Carlo investigation.  Curves show the median model rms error for 50 randomly real-
ized experiments using one of the three configuration types.  Also shown are ‘error 
bars’ illustrating the 25th and 75th percentiles. 
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Figure 4-6 Performances for random, designed, and standardized surveys. Shown are 
model rms errors as a function of number of observations.  The performance of ran-
domly generated experiments (Monte Carlo) is shown in blue scatter plot, with an ex-
pected performance curve shown in solid red.  The performance of designed experi-
ments is shown by the green triangles, and the performance of two standardized sur-
veys (Pseudosection and ERL) are shown by the orange squares. 
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Figure 4-8 Computational expense for the sequential OED algorithm. 
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Figure 4-9 Results of two Two-Stage Adaptive Optimal Experimental Design trials.  
The first stage of this procedure inverts an initial dataset (Pseudosection survey) and 
the second stage designs an optimal experiment based on the inversion image.  The 
second data set is then inverted, completing the procedure.  Final model rms errors are 
shown in the top right corner of all panels.  (a) The 28/28 trial (28 observations for 
the Pseudosection survey, 28 for the designed experiment).  (b) The 28/140 trial, as 
well as the inversion result for the standard ERL survey for comparison. 
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Figure 4-10 Histogram showing the frequency distribution of model rms errors for 
random experiments of 28 observations executed as second-stage surveys, compared 
with an adapted experiment also executed as a second-stage survey.  The input model 
for all inversions was the heterogeneous model created in the first stage inversion of 
Pseudosection data (shown in Figure 4-9).  The red line shows the model rms error 
attained for the adaptively designed experiment of 28 observations.  The model rms 
error of the designed experiment is in the lowest 5th percentile, meaning it outper-
formed 95% of the random experiments. 
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Figure 4-11 Results of two In-Line Adaptive Optimal ED trials.  This AOED proce-
dure starts with a small, initial dataset, which is partially inverted to produce an up-
dated model; the model is then used in an experimental design phase to determine a 
single observation to be added to the experiment; the augmented data set is then par-
tially ‘re-inverted’, and the procedure continues cyclically, until convergence.  Final 
model rms errors are shown in the top right corner of each panel.  Inversion results for 
standardized surveys of equal size are shown for comparison.  Note: the Pseudosec-
tion and ERL comparisons offered in this figure were executed as though the design 
algorithm had designed them.  In this fashion, the effects of the ‘serial’ inversion im-
plicit in this technique were accounted for.  (a) 28-observation design and the Pseu-
dosection survey comparison.  (b) 140-observation design and the ERL survey com-
parison.  
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Figure 4-12 Performance curves for inline, adaptively designed surveys and standard-
ized surveys, as a function of the number of observations.  The dashed lines indicate 
the 28- and 140-observation positions, which correspond respectively to the Pseu-
dosection and ERL surveys. 
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Figure 4-13 Small Batch AOED trial.  A 56-observation experiment was designed in 
batches, following the same guidelines as the Inline AOED procedure exemplified in 
Figure 4-11, except observations were added in groups of seven, rather than singularly. 
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Figure 4-14 Performance curves for Inline and Small Batch AED, as a function of 
number of observations. 
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Figure 4-15 Stage one model generated by inverting Pseudosection data (28 observa-
tions) contaminated with 3% Gaussian noise.  This was the working model used to 
design experiments for a Stage-Two inversion. 
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Figure 4-16 Average models (left hand panels) and model uncertainties (right hand 
panels) for Monte Carlo simulations of 3% Gaussian noise contaminating ‘ERL’, ‘All’ 
and ‘Straddling’ data sets of 140 observations in a Two-Stage AOED exercise.  50 re-
alizations of noise were generated for each case.  Parameter uncertainties were esti-
mated by calculating the model % rms error between the true model (Figure 4-4) and 
the inversion models for all 50 realizations for each experiment. 
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Figure 4-17 Normalized cumulative frequency of modeling errors for Monte Carlo 
simulations of noisy data for ‘ERL’, ‘Straddling’ and ‘All’ experiments of 140 obser-
vations executed as stage-two inversions.  
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Table 4-1 Monte Carlo comparison of the ‘ERL’, ‘Straddling’ and ‘All’ surveys using 
140 observations as 2nd stage inversions.  (a) Comparative probabilities of producing 
smaller model % rms error between the three designed experiments according to 
Equation (5.20).  Each column records the probabilities that the experiment in that 
column will produce a smaller model % rms error than the experiments in the compet-
ing rows. (b) Difference between average model % rms errors for the three experi-
ments.
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Chapter 5  

Two-Dimensional Surface DC Re-
sistivity 

5.1 Introduction 

Two-dimensional surface resistivity is a well-established geoelectrical method for 

producing cross-sectional images of earth resistivity.  Forward and inverse modeling 

typically assumes that the earth can either be approximated by a series of infinite, rec-

tangular bars perpendicular to the strike of the survey (e.g., Tripp et al., 1984; Mcgil-

livray & Oldenburg, 1990; Loke & Barker, 1995), or as a finite 3D grid where semi-

infinite off-axis model cells are used as boundary blocks to satisfy far-field boundary 

conditions (e.g., Mackie et al., 1988; Shi, 1998; Rodi & Mackie, 2001).  Two-

dimensional models impose less stringent restrictions on the distribution of earth me-

dia than 1D models, and they can therefore model a wider variety of lithologic scenar-

ios, such as subsurface cavities, subterranean rivers, mineral deposits and engineering 

structures. 

 This chapter explores optimal experimental design applied to surface two-

dimensional resistivity problems.  The sequential OED technique developed previ-

ously is adapted and applied to a number of simple case studies.  Below, we briefly 

develop the numerics used for 2D resistivity forward/inverse modeling before moving 
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on to design applications.  As will be seen, 2D modeling requires a large number of 

model cells, increasing the computational burden of optimized experimental design.  

Consequently, substantial effort is spent attempting to find ways to expedite the de-

sign algorithm.  Of all the results compiled herein, the discussion and development of 

novel design expedients may well be the most important contribution of this research. 

 This chapter catalogs several semi-independent research topics; so, rather than 

presenting holistic sections on theory and methodology for the entire document, each 

topic is self-contained, with pertinent theoretical and methodological details being 

presented contextually.  These topics are offered in the following order: (1) Modeling 

and Inversion; (2) Expediting Design; (3) Homogeneous Designs; and (4) Adaptive, 

Optimal Experimental Design.  Following these sections, concluding statements are 

provided that integrate and summarize the results from these topical areas. 

5.2 Modeling and Inversion 

Two-dimensional surface resistivity modeling and inversion was executed using a 

transmission line network analogy (Swift, 1971; Madden, 1972; Zhang et al., 1995; 

Shi, 1998) in which the earth is discretized and modeled by a network of resistors 

whose resistances depend on intrinsic earth resistivities.  The interested reader is re-

ferred to the above citations for further details.  Mixed boundary conditions, intro-

duced by Zhang et al. (1995), were used at the boundaries of the model grid.  Despite 

the efficiency of this boundary condition method, additional boundary blocks were 

still needed to ensure the accuracy of modeled potentials within the target area.  As 

these additional boundary blocks slow forward and inverse computations, their size 

was increased logarithmically as the distance from the electrical survey to minimize 

their numbers.  Figure 5-1 shows an example of the model grid and target window for 

a survey of 20 electrodes. 

 All inversions in this chapter were carried out by nonlinear least squares formal-

ism.  In particular, Jacobian matrices were explicitly tabulated and inverted, though 

faster techniques of inversion have been introduced, such as the Conjugate Gradients 
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method (e.g., Mackie & Madden, 1993b; Zhang et al., 1995; Shi, 1998; Rodi & 

Mackie, 2001), that do not require the explicit computation of Jacobians.  However, 

our design methodology requires Jacobian matrices, so it was determined that all data 

inversions should employ them as well.  Inversions were carried out using a dual ob-

jective function requiring the simultaneous minimization of both data rms error and 

model roughness.  The model regularization was implemented by means of the L1-

norm of the spatial gradient of the model, in contrast to the more common L2-norm, 

which is also known as basic Tikhonov Regularization (Tikhonov & Arsenin, 1977).  

Mathematically, the objective function for the inversions is 

 ( ) 2

2
λΘ = − + ∇m d Gm m

1
, (5.1) 

where d is the data vector, G is the Jacobian matrix, m is the model vector and λ is a 

Lagrange multiplier governing the trade-off between the two competing objectives.  

By using the L1-norm instead of the L2-norm, sharper inversion images could be cre-

ated because the L1-norm is less sensitive to large resistivity contrasts between adja-

cent model cells.  For these iterative nonlinear least squares inversions, the Leven-

berg-Marquardt algorithm was used to govern the Lagrange multiplier (Levenberg, 

1944; Marquardt, 1963). 

5.3 Expediting Design: Reducing the Size of the 
Jacobian Matrix 

Poisson’s equation governs the electrostatic domain for resistivity problems.   It is a 

continuous differential equation of state, and to practically model and invert 2D resis-

tivity data, the earth is discretized into cells of constant resistivity.  For discretized 

modeling to accurately reflect solutions to Poisson’s equation, boundary conditions 

must be satisfied, which usually entails either or both the Neumann and Dirichlet BCs 

(e.g., Pelton et al., 1978; Tripp et al., 1984) or some type of mixed boundary condi-

tion (Dey & Morrison, 1979; Zhang et al., 1995), depending on the problem set up.  

To actualize these boundary conditions, additional boundary blocks are added around 
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the edges of the discretized target area.  These boundary blocks are necessary to 

achieve accurate modeling results, but they are nuisance parameters from an inversion 

standpoint because we must solve for their resistivities despite the fact that these re-

sistivities are of no interest.  The efficient, mixed boundary conditions introduced by 

Zhang et al. (1995) were used for the forward and inverse modeling in his work, but 

even so, with additional left, right and bottom boundary blocks, the total number of 

resistivity cells needed for an array of 20 electrodes was nearly 1100 (21 row cells x 

51 column cells). 

 From the perspective of our OED method, an inverse problem in 1100 parameters 

is large.  Calculating the nullspace of the Jacobian of the base experiment (which 

must be performed each time a new observations is to be added) is still within our 

present-day computational means, but the nullspace matrix will have approximate di-

mensions of , where n is the number of observations currently in the 

base experiment.  Not only will calculating this matrix take time, but also its storage 

in memory approaches present-day limitations (for workstations, personal computers, 

etc.).  Naturally, one wonders whether there is a way to expedite OED computations 

by reducing the size of the Jacobian matrix and thereby the size of the nullspace ma-

trix.   

(1100 1100 n× − )

 Below, two different methods are introduced for usefully reducing the size of the 

Jacobian matrix for the purposes of experimental design.  The first proceeds by delib-

erately truncating the Jacobian matrix according to a user-specified threshold term.  

The second proceeds by compressing the information in the Jacobian matrix.  Both 

techniques are fully developed initially, and the section then concludes with a com-

parative examination to assess their relative utility. 

5.3.1 Truncating the Jacobian Matrix, Method 1 

The first and most straightforward method for reducing the size of the OED Jacobian 

matrices introduces the idea of truncation.  Because the boundary blocks in Figure 5-1 

(e.g.) are outside the target area where the survey electrodes are placed, their sensi-
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tivities are relatively small.  This, of course, means that some form of model regulari-

zation is needed to prevent the resistivities in these model cells from diverging to ar-

bitrarily large or small values, and indeed the inversion method described above uses 

a smoothness constraint to impose regularization.  It also means that little can be done 

to improve the sensitivity of these cells to the data.  Consequently, the simplest way 

of reducing the size of the Jacobian matrix would be to remove from it all columns 

that correspond to boundary blocks, leaving only those columns that correspond to 

model cells in the target window. 

5.3.2 Truncating the Jacobian Matrix, Method 2 

A second method of reducing the size of Jacobian matrices is an alternate method of 

truncation.  To motivate this method, consider the following hypothetical Jacobian 

matrix: 

 

0 1 0 4 1
0 2 0 3 3
0 3 0 2 2
0 4 0 1 4

hyp

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

G . (5.2) 

The singular value decomposition of  is hypG

 , (5.3) T
hyp =G UΣV

where 
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0.38 0.76 0.16 0.50
0.52 0.21 0.66 0.50
0.43 0.06 0.73 0.50
0.61 0.61 0.09 0.50

8.77 0 0 0
0 3.48 0 0
0 0 0.98 0
0 0 0 0

0 0 0 1.00 0
0.60 0.41 0.69 0 0

0 0 0 1.00 0
0.53 0.85 0.05 0 0
0.61 0.33 0.72 0 0

−⎡ ⎤
⎢ ⎥−⎢ ⎥≅
⎢ ⎥−
⎢ ⎥− −⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥≅
⎢ ⎥
⎢ ⎥
⎣ ⎦

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥≅
⎢ ⎥
⎢
⎢ − −⎣ ⎦

U

Σ

V

⎥
⎥

. (5.4) 

The rank of  equals the number of its nonzero singular values, 3.  Because two 

columns of  are all zeros, they only make the matrix larger, without adding any 

information.  This is clear not only by noting that 

hypG

hypG

( )rank 3hyp =G  but also by observ-

ing that last column of V is all zeros.  In fact, we can truncate  by removing these 

zero columns.  This does not change the singular values, which means that the same 

information is still present but in a usefully reduced form.  Consider the truncated 

submatrix of , 

hypG

hypG

 

1 4 1
2 3 3
3 2 2
4 1 4

hyp

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

G . (5.5) 

Its SVD is 

 , (5.6) T
hyp =G UΣV

where 
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 . (5.7) 

0.38 0.76 0.16 0.50
0.52 0.21 0.66 0.50
0.43 0.06 0.73 0.50
0.61 0.61 0.09 0.50

8.77 0 0
0 3.48 0
0 0 0.98
0 0 0

0.60 0.41 0.69
0.53 0.85 0.05
0.61 0.33 0.72

−⎡ ⎤
⎢ ⎥−⎢ ⎥≅
⎢ ⎥−
⎢ ⎥− −⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥≅
⎢ ⎥
⎢ ⎥
⎣ ⎦

−⎡ ⎤
⎢ ⎥≅ ⎢ ⎥
⎢ ⎥− −⎣ ⎦

U

Σ

V

Observe that: ; , except that the zeroes column has been removed; and V  

is a submatrix of V, with the first and third rows and fourth and fifth columns re-

moved.  In words, the singular values of  remain unchanged, which means the 

information contents of the two matrices are identical.  However, the right singular 

vectors in V (which comprise an orthonormal basis that spans model space) have been 

reduced from 5 dimensions to 3 dimensions.  This is a method for reducing a high di-

mensional space to a more manageable one, and is known in the literature by multiple 

name, including as principal component analysis (e.g., Jolliffe, 2002).  In fact, the 

singular vectors in are parallel to the associated singular vectors in V in the 5-

dimensional space spanned by V (i.e., we augment each vector in by placing zeroes 

before the first element and between the first and third elements to make them 5-

dimensional).  So not only are the singular values the same, but the relevant singular 

vectors in V and  point in exactly the same directions in the original model space. 

=U U =Σ Σ

hypG

V

V

V

 From an OED standpoint, the first and third parameters (corresponding to the first 

and third columns of ) are essentially irresolvable no matter what observations 

are made.  Therefore, it makes little sense to expend effort trying to design an ex-

periment to resolve these parameters. Our OED technique operates on the nullspace of 

the Jacobian matrix, and this null space contains one or more columns of the V ma-

trix.  Hence, if we reduce the size of V by truncating  to remove poorly resolved 

hypG

hypG
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parameters, the experimental design algorithm can execute more quickly, without bi-

asing the design toward these irremediably poorly resolved parameters.  The impor-

tant point is that the dimension of right singular vectors in V can be usefully reduced 

without significantly altering the information content of the Jacobian matrix.   

 Because many boundary blocks are modeled at great distances from the survey 

electrodes, their sensitivities are small.  Of course, this is one of the reasons why 

model regularization is critical for 2D resistivity problems; the sensitivities of far-

away cells are so small that nearly any resistivity value can be placed in these cells 

without seriously affecting the predicted data.  In effect, the columns of the Jacobian 

matrix corresponding to boundary blocks will have values near zero, while the col-

umns corresponding to cells directly beneath the survey will not.  This is a situation 

very similar to the simple exposition given in Equations (5.2) - (5.7) except the ‘zero’ 

columns will not be identically zero but nearly so.  If we deliberately disregard the 

boundary blocks in the design procedure, we can reduce the size of the Jacobian ma-

trix and expedite design.  In a sense, one can think of this as focusing the design on 

parameters we actually wish to resolve, those in the target window.  A similar idea 

was introduced by Curtis (1999b), though it did not address focusing in terms of 

boundary blocks but in terms of a subset of the cells within the target window. 

No column of the Jacobian matrix for a real 2D resistivity problem is ever precisely a 

zero vector, so the remaining issue is to establish a criterion for retaining or discard-

ing columns.  In essence, we must determine which columns are ‘close enough’ to 

zero vectors that they can be discarded for the purposes of experimental design.  This 

problem is approachable by employing a thresholding criterion. 

 Consider a homogeneous earth discretized into 21 × 51 model cells (Figure 5-1.a) 

and queried by 20 electrodes (Figure 5-1.b).  We first calculate the Jacobian matrix of 

all possible 4-electrode observations and then the cumulative sensitivity of each col-

umn, expressed by its L2-norm, which gives rise to a spatial distribution of cumula-

tive sensitivities shown in Figure 5-2.a.  The L2-norm is a useful way to quickly de-

termine how close to zero the elements in any column of the Jacobian are (Note: The 

sensitivities in Figure 5-2.a have been log rescaled (see the colorbar at right) to high-
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light the many orders of magnitude over which they vary).  Because the cumulative 

sensitivities in Figure 5-2.a are the square root of the sums of squared sensitivities, no 

corresponding column element in the Jacobian matrix can exceed the values shown.  

In other words, a cell whose cumulative sensitivity is 10-4 implies that the magnitude 

of no element in the corresponding column of the Jacobian exceeds 10-4.  Hence, 

Figure 5-2.a presents an upper bound on the magnitude of the elements in the corre-

sponding columns of the Jacobian. We can use these cumulative sensitivities to 

threshold the columns of the Jacobian.  A threshold, α, can be specified so that any 

column whose cumulative sensitivity is less than this will be discarded for the OED 

exercise. For example, if we choose α = 10-4, only columns of the Jacobian matrix 

whose cumulative sensitivities exceed 10-4 will be retained for the design exercise.  

This kind of threshold is arbitrary, however, because it does not account for the rela-

tive magnitudes of the cumulative sensitivities; if all sensitivities in the Jacobian were 

on the order of 10-4, nearly all columns would be discarded for the design exercise.   

Instead, we have adopted a percentile-based threshold approach.  If we divide each 

cumulative sensitivity by the sum of all cumulative sensitivities, we produce a rela-

tive measure of each model cell’s cumulative sensitivity with respect to the experi-

ment using all possible 4-electrode observations.  The relative cumulative sensitivities 

are expressed as 

 

2

2

ij
i

j

ij
j i

G
S

G
=

∑

∑ ∑
, (5.8) 

where G is here treated as the Jacobian of all possible 4-electrode observations.  Sj 

conveys the relative cumulative sensitivity of the jth model cell with respect to the 

overall cumulative sensitivity of all model cells queried by all possible 4-electrode 

observations.  For the design exercise, we retain only those model cells whose Sj val-

ues at or above the αth percentile.  For example, Figure 5-2.b shows the spatial distri-

bution of cumulative sensitivities that are at or above the 99.9th percentile (red re-
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gion).  In short, 99.9% of all the sensitivity available for experimentation is relegated 

to a small (red) region directly beneath the survey. 

5.3.3 Compressing the Jacobian Matrix 

Rather than truncating Jacobian matrices, an alternate idea is to compress them.  Be-

low, we develop a mathematical trick that allows the size of the Jacobian of the base 

experiment to be compressed for the purpose of experimental design. 

 To begin, consider the Jacobian matrix of all possible pole-pole arrays over a ho-

mogeneous medium, denoted ( )2G , where the ‘(2)’ superscript signifies that two elec-

trodes are used to make each observation – one source and one receiver pole (Note: 

homogeneity is not required for the following mathematics, but a demonstration of the 

upcoming ideas is made using a homogeneous earth).  For a survey of N electrodes, 

there are  unique pole-pole array combinations, so ( )2 1 / 2N C N N= − ( )2G  must have 

 rows.  Let there be M model cells, and assume that there are at least as 

many of them as pole-pole arrays (which will almost always be the case once bound-

ary blocks are added).  Then the rank of 

( )1 / 2N N −

( )2G  must be equal to or less than 

: ( )1 / 2N N −

 ( )( ) ( )2rank 1 / 2N N≤ −G , (5.9) 

because the rank of any matrix cannot exceed the lesser of its number of columns and 

rows.  That is, ( )2G  has  rows and M columns, where , 

so its rank does not exceed .  Now consider the singular value decompo-

sition of, 

( )1 / 2N N − ( )1 / 2M N N> −

( )1 / 2N N −

 ( )2 T=G UΣV . (5.10) 

It follows that there are only ( )1 / 2N N −  nonzero singular values in  because this 

is the formal definition of rank.  Without loss of generality, 

Σ

( )2G  can equally be ex-

pressed by its truncated SVD: 
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 ( )2 T=G UΣV , (5.11) 

where  and  are truncations of U and V, retaining only the first  col-

umns, and where  is the truncation of Σ, retaining the first 

U V ( )1 / 2N N −

Σ ( )1 / 2N N −  rows and 

columns. 

 Here is where the mathematical trick comes in.  We transform ( )2G  by right multi-

plying it with , creating a transform matrix V

 ( ) ( )2 2 T= = =G G V UΣV V UΣ . (5.12) 

Whereas the dimensions of ( )2G  are 

 ( )( )2
2dim N C M= ×G , (5.13) 

the dimensions of ( )2G  are reduced to 

 ( )( )2
2dim N NC C= ×G 2 , (5.14) 

recalling that .   ( )2 1 / 2NM C N N> = −

 is an incomplete orthonormal basis.  It does not span all of model space, but it 

does span the same model subspace spanned by 

V
( )2G .  Moreover, and this is the criti-

cal point, any set of orthonormal vectors (no matter whether they form a complete ba-

sis or not) form a rotation matrix, and rotation matrices have the nice property that 

they preserve the lengths and angles between vectors (e.g., Golub & Van Loan, 1996; 

Jolliffe, 2002; Strang, 2003).  In short, in Equation (5.12),  rotates the row-vectors 

in 

V
( )2G  but it preserves their lengths and the relative angles between them.  In other 

words, the L2-norm of any row-vector in ( )2G  equals the L2-norm of the correspond-

ing row in ( )2G , and the angle between any two row-vectors in ( )2G  equals the angle 

between the corresponding rows in ( )2G .  But Equation (5.14) indicates that there are 

fewer columns in ( )2G  than in ( )2G , so the act of right multiplying  with V ( )2G  com-

presses the information in the row-vectors of ( )2G  to the more compact row-vectors in 
( )2G  without any loss or distortion of information. 
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 The Jacobian of all quadrupole combinations is given by 

 ( ) ( )4 =G PG 2 , (5.15) 

where P is a sparse picker matrix of ±1s that linearly combines pole-pole arrays to 

create quadrupole arrays.  The transform in Equation (5.12) commutes without any 

loss of generality to produce the transform matrix for ( )4G : 

 ( ) ( ) ( ) ( )4 2 2 4= = =G PG PG V G V  (5.16) 

As before, whereas the dimensions of ( )4G  are 

 ( )( )4
4dim 3N C M= ×G , (5.17) 

the dimensions of ( )4G  are reduced to 

 ( )( )4
4dim 3N NC C= ×G 2 , (5.18) 

recalling that  is the total number of unique 4-electrode combinations available 

for a survey using N electrodes (Daily et al., 2004; Stummer et al., 2004).  Because 

the information in the row-vectors of 

43N C

( )2G  is losslessly compressed, the row-vectors 

in ( )4G  are also losslessly compressed, as they are just linear combinations of the 

rows in ( )2G .  To appreciate this, consider the last term in Equation (5.16); V  rotates 

the row-vectors of ( )4G , but it preserves lengths and angles just as it did for ( )2G . 

 The two key ‘metrics’ in our sequential OED technique are information magni-

tudes and complementarity, both of which have been preserved under the simple com-

pressive, linear transform described above.  Consequently, the lossless compression of 

Jacobian matrices can greatly expedite the design algorithm, because the nullspace 

matrices are reduced from dimensions of M M n× −  to only 2 2N NC C n× − , where n 

is the number of observation in the base experiment.   For example, for a 20-electrode 

survey with 21 × 51 model cells, the nullspace matrix of an uncompressed n-

observation Jacobian has dimensions of 1071 × (1071 – n).  The nullspace matrix of 

the corresponding compressed Jacobian has dimension of 190 × (190 – n).  The design 

algorithm must calculate the nullspace and multiply it by all remaining observation 
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sensitivity kernels each time a new observation is to be added to the base experiment.  

Clearly, the significant reduction in size of the nullspace matrix will profoundly expe-

dite the design process. 

5.4 To Truncate, To Compress or Neither 

To assess the competing Jacobian reduction schemes above, four experiments were 

designed for a 20-electrode survey querying a homogeneous earth discretized into 21 

× 51 model cells (see Figure 5-1).  One survey was designed using the ‘Unaltered 

Jacobian’; the second was designed using the ‘Truncated Jacobian Method 1’, truncat-

ing the Jacobian to retain only the sensitivities of 19 × 9 model cells in the target 

window; the third was designed using the ‘Truncated Jacobian Method 2’, truncating 

at the 99th percentile, similar to Figure 5-2.b; the third was designed using the ‘Com-

pressed Jacobian Method’.  The ‘Unaltered Jacobian’ had dimensions of 

14,535×1071, the ‘Truncated Jacobian Method 1’ dimensions of 14,535×171, the 

‘Truncated Jacobian Method 2’ dimensions of 14,535×339, and the ‘Compressed 

Jacobian’ dimensions of 14,535×190.   

 CPU times were recorded for optimal experimental designs from 1 to more than 

700 observations for each of the design methods and are reported in Figure 5-3.  Rela-

tive to the ‘Compressed Jacobian’ and ‘Truncated, Method 2’ methods, which are 

equally the fastest, the ‘Truncated, Method 1’ and ‘Unaltered’ methods take an aver-

age of 2.93 and 24.14 times longer to execute for designs of the same size.  Clearly, 

all Jacobian reduction schemes significantly improve design times relative to the ‘Un-

altered Jacobian’ method, making them desirable alternatives for the OED exercise.  It 

is also worth noting that the design times for all reduction schemes execute on the or-

der of seconds to minutes, whereas the ‘Unaltered’ approach executes on the order of 

tens of minutes to hours.  This suggests that any of the three reduction techniques is 

truly executable in the field, with only a small amount of time required to design op-

timal experiments. 
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 Expedited design times mean little if they do not produce experiments that rival or 

exceed the performance of experiments designed with the ‘Unaltered Jacobian’ 

method, however.  A Monte Carlo examination was therefore undertaken to compare 

the quality of the expedited designs compared with the ‘Unaltered’ design.  Experi-

ments of 700 observations were designed by each technique for the homogeneous 

earth in Figure 5-1 and were used to synthesize field data over the heterogeneous tar-

get shown in Figure 5-4.a.  For each of the three designs, their synthetic field data 

were contaminated with 50 realizations of 3% Gaussian noise and inverted.  The aver-

age models for each design are shown in Figure 5-4, Panels b – e.  Also shown in 

these panels are the model % rms errors at the 10th, 50th and 90th percentiles (in brack-

ets) for the Monte Carlo exercises, to provide an idea of the distribution of modeling 

errors for each design.  These percentiles were evaluated based on the 50 model % 

rms errors for each Monte Carlo simulation, where the model % rmse is formulated in 

the usual way: 

 ( )
( ) 2

,

ˆ1100
k

k ij ij

i j ij

E
M

ρ ρ
ρ

⎛ ⎞−
= ⎜⎜

⎝ ⎠
∑ ⎟⎟ , (5.19) 

where ( )ˆ k
ijρ  is the inversion-model resistivity of the ijth cell for the kth noise realiza-

tion, ijρ  is the true resistivity of the ijth cell and M is the total number of model cells.   

Comparison of the three percentile levels shows that the ‘Compressed Jacobian’ 

method outperforms both the ‘Unaltered, Method 1’ and ‘Truncated Jacobian’ Meth-

ods for this earth model.  In addition, the ‘Compressed Jacobian’ outperforms the 

‘Truncated Jacobian Method 2’ except for producing a larger median model % rmse.   

 The performances of the ‘Truncated, Method 1’ and ‘Unaltered Jacobian’ designs 

are more similar, though it is inferred that the distribution of modeling errors for the 

‘Truncated, Method 1’ design has a more pronounced right-sided tail because its 90th 

percentile is larger than that for the ‘Unaltered’ design.  Additionally, it is also in-

ferred that the mode of modeling errors for the ‘Truncated’ design is smaller than that 

for the ‘Unaltered’ design because the median value (50th percentile) of the ‘Trun-

cated, Method 1’ design is smaller.  Therefore, it appears that the ‘Truncated Method 
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1’ method produces modeling errors whose distribution is more left-skewed than the 

distribution for the ‘Unaltered’ method, but its distribution also has a longer right-

sided tail.  This means that the ‘Truncated, Method 1’ design has a higher probability 

of producing a smaller model % rmse than the ‘Unaltered’ design, but that occasion-

ally it will produce an outlier with a larger modeling error than the ‘Unaltered’ design. 

Interestingly, the performances of the ‘Compressed’ and ‘Truncated, Method 2’ tech-

niques are similar to one another.  The ‘Compressed’ method produces only slightly 

smaller 10th and 90th percentiles, while also producing a modestly larger median 

model % rms error.  It is possible that, with samples of only 50 realizations, the mar-

gin of error in determining these percentiles is large enough that the two methods per-

form nearly identically.  However, visual inspection of the average models in Panels d 

and e seems to indicate that the ‘Compressed’ method does a better job delineating the 

boundaries and estimating the magnitude of the conductive anomaly, and this is taken 

as evidence that this method is in fact slightly better than the ‘Truncated, Method 2’ 

technique. 

 From these, it is concluded that the ‘Compressed Jacobian’ technique is the best of 

the four design methods.  Not only does it have the smallest design times, it also pro-

duces the smallest modeling errors.  In light of the preceding discussion, it is further 

concluded that both ‘Truncated Jacobian’ techniques are superior to the ‘Unaltered 

Jacobian’ method.  Although the ‘Truncated, Method 1’ technique does have a higher 

probability of producing larger modeling errors, its smaller design time arguably out-

weighs the added risk of poorer performance.  In short, however, the ‘Compressed 

Jacobian’ technique appears to be the one to use for 2D surface resistivity OED. 

 An alternate way of analyzing these Monte Carlo simulations is to establish com-

parative probabilities that one experiment will outperform another.  To do this, we 

subtract the Monte Carlo modeling errors of Experiment B from Experiment A in 

every possible combination and determine the average number of times the difference 

is positive or negative.  Mathematically, this is expressed as  

 2
1 1

1 m m

ij
i j

p
m

δ
= =

= ∑∑ , (5.20) 
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where 

 
( ) ( )1 if 0

0 otherwise

A B
i j

ij

E E
δ

⎧ − <⎪= ⎨
⎪⎩

 (5.21) 

and ( )A
iE  and ( )B

iE  are the ith and jth Monte Carlo model % rms errors for Experiments 

A and B, respectively.  p approximates the probability that Experiment A will produce 

a smaller model % rms error than Experiment B; and 1 – p approximates the comple-

mentary probability that Experiment B will outperform Experiment A.  These prob-

abilities do not indicate by how much one experiment is expected to outperform an-

other, but this is easily determined by taking the difference between their average 

model % rms errors: 

 ( ) ( ) ( )

1 1

1 1m m
AB A

i
i j

E E
m m= =

∆ = −∑ ∑ B
jE . (5.22) 

 Table 5-1.a reports the comparative probabilities that each survey in this Monte 

Carlo exercise will produce smaller model % rms errors relative to the others, accord-

ing to Equation (5.20).  The table is organized column-wise, meaning each column 

contains probabilities that the experiment in the column header will produce smaller 

model errors than the experiments in the row headers.  For example, there is a 36% 

chance that the ‘Unaltered Jacobian’ design will produce a smaller model error than 

the ‘Compressed Jacobian’ design.  Table 5-1.b reports the difference in average 

model % rms error between experiments, according to Equation (5.22).  Again, the 

table is organized column-wise; so on average the ‘Unaltered Jacobian’ design pro-

duces model % rms errors 10.7% larger than the ‘Compressed Jacobian’ design (Note: 

this not 10.7% relative to the ‘Compressed’ design, but in absolute terms; that is, if 

the ‘Compressed Jacobian’ method produces a model % rms error of 20% then the 

‘Unaltered Jacobian’ method is expected to produce an error of 30.7%).   These two 

tables clearly show that the ‘Unaltered Jacobian’ method produces a design that is 

least probable to produce smaller model errors than the other methods and that it in 

fact produces model errors between 5 and 10% larger than the other methods.  Fur-

thermore, the ‘Truncated, Method 1’ approach produces a design that is more than 
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50% probable to produce smaller model errors than any of the other techniques.  

However, though the ‘Truncated, Method 1’ approach produces a design that is 59% 

likely to induce smaller model errors than the ‘Compressed’ method, the average dif-

ference between these two techniques indicates that the ‘Compressed Jacobian’ tech-

nique produces model % rms errors that are 2.7% smaller.  From this fact, it is more 

apparent that the ‘Truncated, Method 1’ technique produces designs that are prone to 

large outliers in model error.  Indeed, the ‘Compressed Jacobian’ technique produces a 

design whose average model % rms error is smaller than any of the other techniques.  

This corroborates the previous conclusion that the ‘Compressed Jacobian’ technique is 

the best of the four design expedients. 

 A final remark is required before concluding this section.  The reader may wonder 

whether the experiments designed by these competing techniques produce the same 

experiment, for the Monte Carlo results suggest they do not.  Indeed, the three ex-

perimental designs were all different, though not entirely disjoint.  It is impractical to 

tabulate or to sensibly plot the three experiments because they each contain 700 ob-

servations.  However, it was observed that, of their 700 observations, the ‘Unaltered’ 

and ‘Compressed’ designs shared 213 observations in common, while the ‘Unaltered’ 

and ‘Truncated, Method 1’ designs shared 232 common observations and the ‘Trun-

cated, Method 1’ and ‘Compressed’ designs shared 212 common observations.  Of 

these three, they shared 167 common observations.  It is speculated that these reduc-

tion schemes produce different experiments (especially the ‘Compressed’ method, 

which was shown to contain the same information, but compressed, as the unaltered 

Jacobian) partially because of numerical errors arising from the calculation of large 

nullspace matrices.  Small errors in the elements of nullspace matrices could be am-

plified when these matrices multiply the sensitivity kernels of candidate observations 

during the design update step.  This would occasion errors in the relative fitness of 

candidate observations, with the possible consequence that the ‘wrong’ observation is 

sometimes added to the base experiment.   
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5.5 Homogeneous Designs 

The design of a scientific experiment typically requires some foreknowledge of its 

outcome insomuch as one can make such a prediction.  Without this foreknowledge, 

experimentation must proceed by trial and error, with the experimenter optimizing the 

experiment over successive trials until useful results are obtained.  This is no less true 

for geophysical exploration.  Without prior knowledge of the earth’s structure, it is 

impossible to design an optimal experiment for a particular target site because the 

experiment cannot be adapted to the site.  Absent such prior information, the best we 

can do is to start from a homogeneous earth assumption.  Afterward, if necessary, a 

second (third, etc.) experiment can be designed that is optimally sensitive to the par-

ticular distribution of earth media at the site.   

 To begin, we consider the design of 2D surface resistivity experiments for a ho-

mogeneous earth.  The sequential OED method described in Chapter 2 was used to 

design a set of experiments optimized for a homogeneous earth model.  In light of the 

developments in the preceding section, the ‘Compressed Jacobian’ method was used 

for all designs, as this was demonstrated to be a superior design technique.  A 20-

electrode spread was simulated over a homogeneous half space with electrodes at 1 m 

equispaced intervals.  Daily et al. (2004) and Stummer et al. (2004) have shown that 

for a set of N electrodes there exist  (thrice ‘N choose 4’) unique combinations 

of 4-electrode transmitter/receiver combinations.  Thus a total of 14,535 (three time 

20 choose 4) 4-electrode data stations are available with twenty survey electrodes. 

43N C

5.5.1 Expediting Design: Designing with Quadrupoles of 
One Type  

14,535 is a significant number of candidate observations, and the design algorithm, 

which evaluates the fitness of all candidates every time an observation is added to the 

base experiment, can take some time to execute.  However, as was observed in Chap-

ter 4, these 14,535 candidate observations can be divided into three groups, according 

to the positioning of their electrodes.  These three groups were identified as the inter-
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nal, external and straddling quadrupole configurations.  It was illustrated in Chapter 4 

that the cumulative sensitivities of the three configuration types differ, with the inter-

nal and straddling types providing the greatest overall sensitivity.  Moreover, the 

ranks of the Jacobian matrices of all observations of each type have been observed to 

differ.  Based on these empirical results, the maximum attainable ranks of the Jaco-

bian matrices are predicted as follows: 

 

( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

2 2

1 2

1 2

1rank 2 3
2

1rank 2 1 2 2
2
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G

G

G

, (5.23) 

where Gext is the Jacobian of all internal quadrupole observations, Gint is the Jacobian 

of all internal quadrupoles, Gstr is the Jacobian of all straddling quadrupoles, and N is 

the number of electrodes used in the survey.  To test the hypothetical ranks in Equa-

tion (5.23), the three Jacobians were generated for a homogeneous earth queried with 

20 electrodes.  For a 20-electrode survey, the ranks of Gext, Gint and Gstr should be 

less than or equal to 153, 169 and 170, respectively (Note: the ranks are predicted to 

be less than or equal to these values because, in real-world applications, the spatial 

resistivity distribution may preclude the Jacobian from reaching its hypothetical 

maximum attainable rank.)  Figure 5-5 shows the cumulative sensitivities for three 

experiments, each consisting of all quadrupoles of a single type.  Also shown in the 

figure are the ranks of the Jacobian matrices, which indeed correspond with their pre-

dicted values.  Notice that the straddling quadrupoles produce the greatest overall 

sensitivity throughout the tomogram window, followed closely by the internal quad-

rupoles, and trailed distantly by the external quadrupoles.  This is the same result as is 

seen in the Chapter 4 and is taken as additional proof that 2D resistivity surveys 

should employ many, if not all, straddling quadrupoles.  Additionally, it is also ob-

served in the Chapter 4 that the rank of the Jacobian of all observations is predicted to 

be , which equals 2N C N− 1 2 1N C− − , the rank of Gstr.  Therefore, the set of straddling 

quadrupoles alone achieves the maximum attainable rank of the Jacobian matrix.  
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That is, the model space spanned by the Jacobian of all straddling observations is 

identical to the model space spanned by the Jacobian of all observations.  Put yet an-

other way, the sensitivity kernel of any non-straddling quadrupole is a linear combina-

tion of the sensitivity kernels of straddling quadrupoles, and therefore provides no in-

formation that the set of straddling quadrupoles itself does not provide. 

 An alternate perspective on internal, external and straddling quadrupoles is of-

fered in Figure 5-7.  Shown are the continuous sensitivity distributions for the three 

quadrupole configurations of the same four electrodes.  Clearly, the external configu-

ration produces the weakest sensitivity, while the internal and straddling configura-

tions penetrate much more deeply and equally into the formation.  In point of fact, the 

straddling configuration produces slightly better sensitivity at depth, while the inter-

nal configuration produces slightly better sensitivity at intermediate distances from 

the array.  This helps explain why the external configuration is so poor for resistivity 

inversions and corroborates the hypothesis that the straddling configuration should 

produce the least rank-limited Jacobians, for it penetrates furthest into the formation, 

maximizing the resolving power of experiments using this configuration. 

 Based on the foregoing demonstration, it is concluded that experimental design 

can be simplified by opting to design surveys using only the straddling configuration, 

rather than using all types.  This reduces the number of candidate observations by two 

thirds (for the 20-electrode case, there are 14,535 candidates in all, but only 4845 

straddling quadrupoles).  Hence, a design algorithm that optimizes surveys using 

straddling quadrupoles should be approximately 67% faster than one using all types.  

This hypothesis is validated in Figure 5-6, which shows the CPU times for experi-

ments designed using all candidate observations (14,535 candidates) and using only 

straddling type observations (4845 candidates).  Computation times are shown for ex-

periments from 1 to over 700 observations.  All CPU times were clocked using a dual 

2 GHZ laptop with 2GB RAM.  The mean percent difference between the two CPU 

curves is ~56%, which is less than the predicted 67%, but nonetheless a significant 

timesavings.  Clearly, our sequential design technique can be greatly expedited by 

taking advantage of the superior quality of straddling type quadrupoles. 
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5.5.2 Demonstration with Noiseless Data 

At this point, there is compelling evidence that 2D resistivity OED can be further ex-

pedited by truncating the set of candidate observations to include only straddling 

quadrupoles.  To be thorough, we examined the performance of designed experiments 

using all observations versus ones designed using external, internal or straddling 

quadrupoles.  Hereafter, we prefix the designed experiments with the labels ‘All’, ‘In-

ternal’, ‘External’ and ‘Straddling’ to indicate the set of quadrupoles from which they 

were designed.  In this investigation, the ‘Standard’ Pseudosection and ERL surveys 

were also considered, to provide benchmark performance levels, and five random ex-

periments were also tried.  All designed experiments were based on a homogeneous 

earth assumption and were given varying numbers of observations.  However, the ob-

jective is to determine whether experiments designed for a homogeneous earth are 

satisfactory to query unknown heterogeneous targets, so the earth model in this inves-

tigation was heterogeneous. Figure 5-8 shows the earth model upon which all experi-

ments were tried; it simulates a large cavity (5000 Ωm) embedded in a 500 Ωm me-

dium above the water table (200 Ωm). 

 Figure 5-9 shows the performance curves (modeling error) for various experi-

ments used to synthesize and invert noiseless synthetic data deriving from the hetero-

geneous model in Figure 5-8.  If we first consider the relative performances of the 

‘External’ (blue), ‘Internal’ (magenta) or ‘Straddling’ (green) designs, it is immedi-

ately evident that the external quadrupole configuration produces the largest modeling 

errors and the straddling and internal configurations produce comparable errors 

(though internal appears to outperform straddling when fewer observations are used 

and vice versa when more observations are used).  This reaffirms the analysis in this 

and Chapter 4, which concluded that the straddling and internal quadrupoles are supe-

rior for experimental design than are the external quadrupoles.  This also reaffirms the 

reason that Pseudosection data produce such poor image quality is because they are 

created only using external-type quadrupoles.   
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 Compared with ‘Internal’, ‘External’ and ‘Straddling’ designs, the ‘All’ experi-

ments (orange) perform better, no matter the number of observations used.  Therefore, 

while the set of all straddling quadrupoles have been shown to span the same model 

space as the set of all possible observations, it initially appears that the flexibility to 

design experiments from the set of all possible observations still produces the best 

overall results.  In such a case, the primary trade-off comes from the additional com-

putation time it takes execute the design algorithm as demonstrated in Figure 5-6.  If 

additional CPU time were an issue, it would be better to trade a little design quality 

by using only the straddling quadrupoles in exchange for faster design times.  How-

ever, subsequent trials will show that experiments designed with straddling quadru-

poles, in the presence of data noise, actually produce data sets with superior noise re-

jection characteristics. 

 Also shown in Figure 5-9 is the performance curve for randomly generated ex-

periments (purple) of varying numbers of observations.  Observations were randomly 

selected from the set of all possible observations.  First, notice that the random ex-

periments perform better than the External designed experiments.  This provides yet 

another piece of evidence against the external quadrupole configuration.   Second, no-

tice that the difference between the performances of ‘Internal’, ‘Straddling’ and ‘Ran-

dom’ experiments reduces as the number of observations becomes large.  This demon-

strates the hypothesized law of diminishing returns: as the number of observations 

becomes large, the relative benefit of designing experiments diminishes.  Indeed, 

Figure 5-9 shows that designed experiments produce the greatest relative improve-

ment in modeling errors (especially designs from the set all observations as compared 

with random experiments) when small numbers of observations are used.  As the 

number of observations becomes large, it is inferred that nearly any experiment (ex-

cept ‘External’) will do as well as any other; there is no need to expend additional 

time designing an optimal experiment if it is only marginally better than a random 

one.  When one considers that larger experiments take longer to design (as per Figure 

5-6), this law of diminishing returns is even more accentuated.  Small designed ex-

periments produce the largest relative improvements in modeling error and take the 
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least time to design, whereas large experiments produce the smallest relative im-

provements but take the most time to design.  Thus, the primary benefit of our OED 

technique is for designing compact, information-dense 2D resistivity surveys. 

 Figure 5-9 also shows the performance of the ‘Standard’ Pseudosection, ERL and 

Decimated ERL surveys (red dots), which for a 20-electrode layout use 153, 383 and 

765 observations, respectively.  The Pseudosection survey, consisting of only external 

quadrupoles, performs more poorly than even a Random experiment of the same size 

and performs comparably with the ‘External’ designs.  Accordingly, exploration geo-

physics should foreswear further use of the Pseudosection survey, except perhaps as a 

preliminary survey to be followed by a designed survey adapted to the target site.  

The ERL survey proves to be an exemplary experiment, producing a model error 

comparable to the ‘All’ design.  If an adapted design will not be used secondarily, the 

ERL survey is commended as an excellent general survey. 

5.5.3 Demonstration with Noisy Data 

The examples in this section have so far only considered experimental performances 

in the presence of noiseless data.  To be thorough, we also examine the real-world 

situation of noisy data.  As the ‘Straddling’ and ‘All’ designs have performed best in 

the preceding example, they are compared with the Pseudosection and ERL surveys of 

153 and 765 observations, respectively.  A Monte Carlo exercise was undertaken 

wherein synthetic data for each survey were contaminated with 50 realizations of 3% 

Gaussian noise and inverted.  Figure 5-10 and Figure 5-11 show the average inversion 

models (over 50 noise realizations) for experiments of 153 and 765 observations, re-

spectively.  Also shown in these figures are the ‘Monte Carlo Parameter Uncertainty’ 

(right-hand panels) and modeling errors at the 10th, 50th and 90th percentiles (brack-

eted numbers beneath the ‘M.C. Model % RMSE’ header in the left-hand panels, see 

Equation (5.19)).  The ‘Monte Carlo Parameter Uncertainty’ is defined as the % rms 

error of each model cell over all 50 noise realizations: 
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where ( )ˆ k
ijρ  is the inversion-model resistivity of the ijth cell for the kth noise realization 

and ijρ  is the true resistivity of the ijth cell.   

 As expected, both the ‘Straddling’ and ‘All’ designs of 153 observations (Figure 

5-10) produce significantly smaller model errors than the Pseudosection data.  In 

point of fact, only 10% of Pseudosection inversions produced model % rms errors 

smaller than 37.30%, which is larger than the median % model rms errors for the 

‘Straddling’ and ‘All’ designs.  Moreover, at least 90% of the modeling errors for both 

designed surveys were smaller than the median error for the Pseudosection.  These 

observations are further exemplified in the first columns of Table 5-2.a-b, which indi-

cate that there is no more than an 11% probability that the Pseudosection survey will 

produce a smaller model error than either the ‘All’ or ‘Straddling’ surveys and will, on 

average, produce model % rms errors 31% larger.  By now, it has been well estab-

lished that the Pseudosection survey, which uses only external type quadrupoles, is a 

very poor resistivity survey, so it comes as no surprise that the designed surveys out-

perform it.  Indeed, the ‘Monte Carlo Parameter Uncertainties’ displayed in the right-

hand panels in Figure 5-10 show that the Pseudosection survey produces considerably 

larger modeling errors throughout the target window than either designed survey.   

 Having again confirmed that the Pseudosection survey is inadequate to ensure data 

quality, let us now compare the performances of the ‘Straddling’ and ‘All’ designs in 

Figure 5-10.  The 10th percentile of the modeling error for the ‘Straddling’ design is 

greater than that for the ‘All’ design, and the 90th percentile is less.  This indicates 

that the ‘Straddling’ design produces less variability in modeling errors than the ‘All’ 

design.  Looking at the ‘Straddling’ and ‘All’ columns in Table 5-2, the ‘All’ design is 

61% likely to produce a smaller model % rmse than the ‘Straddling’ design (Panel 

(a)), but on average the expected model errors produced by the two are identical 

(0.0% difference in Panel (b)).  From these two pieces of evidence, it appears that the 

‘All’ design simply produces more variability in model % rmse than the ‘Straddling’ 

 236



 

design, so while there is higher probability that the ‘All’ design will produce a smaller 

model error, this is counteracted by the fact it will also occasionally produce much 

larger model errors, such that the average modeling errors between the two are basi-

cally equal.  This is corroborated to some degree by considering the spatial distribu-

tion of expected modeling errors in the ‘Monte Carlo Parameter Uncertainty’ panels 

(right-hand panels in Figure 5-10).  The ‘All’ design produces larger model errors in 

the vicinity of the hypothetical ‘cave’ and the ‘Straddling’ design produces larger er-

rors in the hypothetical ‘water table’.  These two error regions apparently counterbal-

ance one another so that the final expected model % rms errors for the two designs are 

equal.  Nonetheless, the ‘All’ design does have a higher probability of producing the 

smaller model error; thus, all else literally being equal, the ‘All’ design is the best 

survey of the three designs.  Hence, when a relatively small number of observations 

are used, it may be worthwhile to design experiments using all possible quadrupole 

types rather than limiting the design to only straddling quadrupoles.  For designs of 

153 observations, Figure 5-6 indicates that it takes only about a minute to design an 

experiment from the set of all quadrupoles and about half a minute for experiments 

designed from the restricted set of straddling quadrupoles.  For such small experi-

ments, there is debatably little difference between expending half or a whole minute 

optimizing an experiment so one might as well design from the set of all quadrupoles.  

Of course, for larger numbers of parameters, the factor-of-two difference in design 

time between ‘Straddling’ and ‘All’ designs becomes more important because design 

time naturally scales with the number of parameters.  Ultimately, the user must deter-

mine whether it is worthwhile to sacrifice data quality in exchange for shorter compu-

tation time. 

 Turning now to designs of 765 observations (Figure 5-11), the situation has 

evened out somewhat.  Both designed experiments still produce smaller model errors 

at the 10th, 50th and 90th percentiles than the ERL survey, but the differences are far 

less pronounced than they were for the designs of 153 observations in Figure 5-10.  

Visual inspection of the ‘Parameter Uncertainties’ in Figure 5-11 also clearly indicates 

that the expected errors in the target window are considerably smaller for designed 
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experiments than for the ERL survey.  Table 5-3 synopsizes the Monte Carlo exercise.  

While the average differences in modeling error are much smaller than they were for 

the preceding example of 153 observations (particularly with respect to the ‘standard’ 

ERL survey), these two tables clearly show that the ERL survey does not perform as 

well as the two designed surveys.  First, the ERL survey only has 19% and 36% prob-

abilities of producing smaller model errors than the ‘Straddling’ and ‘All’ designs, re-

spectively.  Second, the ERL survey produces average model errors at least 7.8% lar-

ger than the two designed experiments.  From these facts, it is evident that the ERL 

survey produces greater variability in modeling error than either designed experiment, 

indicating that the experimental designs produce data with better noise rejection char-

acteristics than the ERL survey.  As regards the relative performances of the ‘Strad-

dling’ and ‘All’ designs of 765 observations, the ‘Straddling’ design is 71% likely to 

produce a smaller model error than the ‘All’ design, according to Table 5-3.a, and 

model % rms errors 3.5% smaller, according to Table 5-3.b.   The superiority of the 

‘Straddling’ design is further borne out by the percentiles in Figure 5-11, which indi-

cate that the ‘Straddling’ design produces smaller model errors at all three percentile 

levels.  Visual inspection of the average ‘Straddling’ and ‘All’ models, as well as the 

‘Parameter Uncertainties’ also strongly support a conclusion that the ‘Straddling’ sur-

vey produces data with superior noise rejection characteristics.  Hence, it is concluded 

that the ‘Straddling’ design is the best of the three experiments of 765 observations in 

this Monte Carlo exercise. 

5.5.4 A Curious Reversal 

An interesting reversal has occurred in Figure 5-11 and Table 5-3, with respect to the 

performances of the ‘Straddling’ and ‘All’ designs.  In Figure 5-10 and Table 5-2, the 

‘All’ design of 153 observations was observed to outperform the competing ‘Strad-

dling’ design of the same size, but the opposite is observed for experiments of 765 

observations.  In the 765-observation case (Figure 5-11), model error percentiles for 

the ‘Straddling’ design were smaller than those for the ‘All’ design, and the corre-

sponding ‘Parameter Uncertainties’ errors in the right-hand panels show that the 
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‘Straddling’ design produced smaller expected errors in the target area.  Moreover, the 

Monte Carlo synopses in Table 5-2 and Table 5-3 show the same pattern, with the 

‘All’ survey appearing to be superior for small numbers of observations and the 

‘Straddling’ design being superior for large numbers.  This result seems incongruous, 

for while the set of straddling quadrupoles has been shown to span the same model 

space as that spanned by the set of all quadrupoles, one would expect that the greater 

variety of observation combinations afforded by using all possible quadrupoles would 

ensure a superior experimental design.    

 A possible explanation for this incongruity is the nature of our greedy design algo-

rithm.  A greedy algorithm, by definition, sequentially finds locally optimal updates to 

a multivariable optimization problem under the assumption that the final solution will 

be (nearly) globally optimal.  Contextually, ‘locally optimal’ means each observation 

in a design is ‘optimal’ with respect to the sequence of observations preceding it in 

the base experiment but not necessarily with any antecedent observations.  In this 

sense our design methodology is greedy and deterministic.  This determinism means 

that a design of 153 observations is automatically a subset of a design of 765; in the 

latter, the leading 153 observations in the sequence of 765 are identically the observa-

tions in the former.  This makes the situation all the more perplexing because Figure 

5-10 indicates that the ‘All’ design of 153 observations outperformed the ‘Straddling’ 

design, but as additional observations were added to these two experiments their rela-

tive performances apparently reversed.   

 Remember that the design algorithm chooses the candidate whose sensitivity ker-

nel is of maximal length after projection onto the nullspace of the Jacobian of the base 

experiment.  Additional observations added to the ‘All’ design of 153 observations 

have satisfied this objective, but perhaps, in a manner of speaking, they have satisfied 

the objective too well.  Here is the idea.  The projection of a sensitivity kernel onto 

the nullspace of the Jacobian matrix is equivalent to subtracting from it its projection 

onto the Jacobian matrix itself.  That is, 

 ( ) 1T T −
= −N Tg g G G G G g , (5.25) 
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where G is the Jacobian matrix, N is the nullspace matrix of G and g is the sensitivity 

kernel of a candidate observation.  The term, ( ) 1T −
G G G GT g , in Equation (5.25) con-

tains the components in g that project onto the space spanned by the Jacobian matrix.  

The information in ( ) 1T −
G G G GT g  is not in the nullspace of G but in the space 

spanned by G.  Therefore, it is not new information but a repetition of information 

already provided by the base experiment. The design algorithm ignores this term be-

cause it only concerns itself with the residual, after this term has been subtracted from 

the sensitivity kernel.  Effectively, the algorithm decomposes a sensitivity kernel into 

vectors of ‘old’ and ‘new’ information, but it evaluates candidacy based solely on the 

‘new’ information vector.  However, each time an observation is added to the base ex-

periment, the so-called ‘old’ information in the sensitivity kernel still exists and ac-

centuates the information already provided by the base experiment.  These ideas are 

demonstrated in the diagram in Figure 5-12.  The vector, gold, contains those compo-

nents of g that reside in the space spanned by G and gnew contains the components of 

g that reside in the nullspace of G (which, by definition, is orthogonal or complemen-

tary to the space spanned by G).  Therefore, the sum of the auto-inner products of gold  

and gnew equals the inner product of g with itself, showing that the energy in g is par-

titioned between ‘old’ and ‘new’ information. 

 The preceding development provides a framework to explain the apparent superi-

ority of the ‘Straddling’ design of 765 observations.  As the ‘All’ and ‘Straddling’ de-

signs sequentially amass observations, it could be that the observations added to the 

‘All’ design provide less ‘old’ information than their counterparts for the ‘Straddling’ 

design.  So, while additional observations in the ‘All’ design may add more ‘new’ in-

formation than their counterparts in the ‘Straddling’ design, they may also be adding 

less ‘old’ information.  In other words, there may be some benefit imparted by the 

straddling quadrupole configuration in that each observation added to the ‘Straddling’ 

design better accentuates ‘old’ information.  Because this is not explicitly part of the 

experimental design objective, it is an ancillary benefit created by designing with 

straddling quadrupoles. 
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 The preceding concepts are examined in Figure 5-13.  Panel (a) shows the parti-

tioning of energy between ‘Old’ and ‘New’ information for consecutive observations 

in both the ‘All’ and ‘Straddling’ designs.  Though the two sets of curves become jag-

ged as the number of observations increase, the ‘Straddling’ design appears to match 

the ‘All’ design with respect to the amount of ‘new’ information each observation 

brings to the experiment.  However, the observations in the ‘Straddling’ design clearly 

contribute more ‘old’ information for large numbers of observations.  This assessment 

is corroborated in Panel (b), where the two sets of curves have been integrated.  In 

this panel, it is apparent that the ‘All’ design produces slightly more ‘new’ informa-

tion than the ‘Straddling’ design, which explains why the ‘All’ design of 153 observa-

tions performs better.  But the ‘Straddling’ design quite evidently produces more ‘old’ 

information as the number of observations becomes large.  This means that the ‘Strad-

dling’ design will overtake the ‘All’ design in terms of data quality because, ulti-

mately, the former produces greater total information. 

5.5.5 Finding a Pattern in Designed Experiments 

Overall, it has been demonstrated that experiments designed for a homogeneous earth 

and employed on a heterogeneous site outperform comparably sized Random experi-

ments and perform as well or better than Standard experiments like the Pseudosection 

and ERL surveys, regardless whether the data are noisy or clean.  The next question 

of interest is whether the observations in these designs can be organized in a manner 

to reveal a pattern that can be easily communicated.  If such a pattern could be dis-

cerned, it would be of significant utility because it would allow us to easily scale ex-

periments up or down according to how many electrodes are used.  In other words, we 

would have a general survey whose data quality could be assured on mathematical 

grounds.   

 Unfortunately, this pattern recognition exercise is harder than it might seem.  Con-

sider a simple experiment of only three observations as shown in Figure 5-14 (red di-

pole injects the source current, blue dipole measures the potential difference).  From a 

purely physical point of view, the rules of electrostatics permit any pair of observa-
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tions to be summed or differenced to produce the third (φ3 = φ1 + φ2, φ2 = φ3 - φ1, and 

φ1 = φ3 - φ2).  This simple experiment technically produces only two bits of unique 

information since knowledge of any two observations implies knowledge of the third.  

The natural question is: if only two observations are needed to produce these two bits 

of information, does it matter which two we choose?  For the sake of exposition, let 

us assume that the three observations query a homogeneous earth.  Now let us con-

sider the sensitivity kernels of the three observations.  From the point of view of the 

inverse problem, two pairs of observations are equivalent if the angles between their 

sensitivity kernels and the sums of their magnitudes are equal.  This stems from the 

fact that the angle between sensitivity kernels measures the complementarity of the 

information they provide and the sum of their magnitudes measures their ‘total 

strength’.  If two pairs of observations are equivalent, they should produce the same 

information complementarity and magnitude.  Table 5-4 shows the magnitudes of, and 

angles between, the sensitivity kernels for the three observations. Clearly, neither the 

sums of magnitudes nor the angles between any two sensitivity kernels are equal.  

Therefore, while the physics allows that any pair of observations provides the same 

information (insomuch as they can be combined to produce the third observation), the 

inversion does not make this allowance.  From an inversion standpoint, the first and 

third observations combine to produce the ‘strongest’ information (sum of magni-

tudes), while the first and second combine to produce the most complementary infor-

mation. 

 Returning to the pattern recognition problem, we would like to be able to inspect a 

designed experiment to discern a simple pattern in the quadrupoles it chooses.  For 

example, for each current dipole in the experiment, we might hope to see a set of re-

ceiver dipoles that can be described by a simple translation of adjacent electrodes 

from left to right.  However, in light of the preceding discussion, there is no reason to 

assume that the design algorithm will choose a set of observations that lends itself to 

such a simple description.  Indeed, because data inversion submits to a stricter defini-

tion of information equality than the physics does, it would be extraordinary if de-

signed experiments were so easily described.  To prove the point, Figure 5-15 shows 
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the first 30 observations for the ‘All’ designed experiment.  A discernible pattern ar-

guably exists for the first 17 observations, but no pattern can easily be seen thereafter.  

Thus, while it would be useful if designed experiments (for homogeneous media) 

were amenable to simple description, it appears that if any pattern exists, it would 

take considerable effort to find it.  Exacerbating this situation is the fact that we do 

not know a priori what pattern we should be looking for.  Perhaps a pattern recogni-

tion algorithm or a clustering algorithm could aid this situation. 

5.6 Adaptive Optimal Experimental Design 

The preceding section explored the optimization of experiments designed to query a 

homogeneous earth but deployed on a heterogeneous target.  Thus far, it has been sta-

tistically demonstrated that such ‘general’ experiments reliably produce smaller mod-

eling errors than random experiments or ‘standard’ experiments such as the Pseu-

dosection and ERL surveys.  Naturally, the next topic of interest is the design of opti-

mal experiments for heterogeneous targets.  In particular, it would be instructive to 

ascertain whether optimal designs for site-specific heterogeneity can produce statisti-

cally smaller modeling errors than experiments that have simply been designed to 

query a homogeneous earth. 

 The exploration geophysicist often has no prior knowledge of the spatial distribu-

tion of the material property they attempt to image.  This was the motivation for de-

signing optimal experiments for a homogeneous earth; absent any knowledge of the 

true earth structure, the most neutral starting assumption is that there is no structure.  

Once an initial image of the target has been generated by inversion, it may be worth-

while to design a second, site-specific experiment that is adapted to the local hetero-

geneity.  This ‘second stage’ survey could hypothetically reduce parameter uncertain-

ties by generating a smarter data set with superior noise rejection characteristics, as 

compared with the initial experiment used to produce a ‘first stage’ image.  This 

would allow us to produce a more accurate image of the target, with less uncertainty.  
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What is being described here is an example of Two-Stage, Adaptive OED introduced 

in Chapter 2 and first examined in Chapter 4. 

 Alternately, one can attempt real-time adaptive experimental design by toggling 

between design and inversion stages, as described in Chapter 2 and first investigated 

in the ‘Small Batch’ example in Chapter 4.  In this section, both Two-Stage and 

Small-Batch AOED are implemented. 

5.6.1 150-Observation Adaptive OED 

A Small-Batch approach was executed as follows: 1) an initial survey of 50 observa-

tions was designed based on a homogeneous earth assumption; 2) data were synthe-

sized (and were either subsequently left clean or contaminated with random noise) 

and partially inverted, with the inversion algorithm being allowed greater than four 

but no more than ten iterations; 3) using the updated earth model, an additional 10 

observations were prescribed to the experiment, using the design algorithm; 4) the 

inversion step (Step 2) was revisited; 5) the algorithm then toggled between the inver-

sion and design steps (Steps 2 through 4) until a total of 150 observations were gener-

ated.  A noiseless and a noisy data example are considered in this section.   

 A note on implementing inversion constraints for Small Batch AOED: Equation 

(5.1) indicates that the inversion objective function comprises a data rms error objec-

tive and an L1 model smoothness objective; the Lagrange multiplier, λ, governs the 

tradeoff between the two; for the noiseless data case, the tradeoff parameter was con-

trolled by the Levenberg-Marquardt algorithm and, each time an inversion stage was 

initiated, the final value of λ from the previous inversion stage was used as the initial 

value in the current stage; for the noisy data case, λ was also governed by the LM al-

gorithm but it was always reset to its maximum value at the beginning of each inver-

sion stage, to aid inversion stability. 

 Figure 5-16 shows the results for a 150-observation, real-time adaptively designed 

survey with clean data.  The true model is show in Figure 5-8.  The technique does 

astonishingly well, converging to an excellent earth image in approximately 120 ob-
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servations, and taking approximately 10 minutes to execute the coupled de-

sign/inversion procedure.  For comparison, consider the performance curves in Figure 

5-17.  Observe that the adaptive technique produces a final model % rms error over an 

order of magnitude smaller than the largest homogeneously designed survey and the 

ERL survey. 

 This simple example provides compelling evidence that adaptive design tech-

niques can be used in the field to good advantage.  However, there is a very important 

caveat.  The inversion step of this integrated approach is dependent on the model 

regularization scheme, which we have previously explained is an L1-smoothness con-

straint.  Customarily, one employs a Lagrange multiplier to govern the tradeoff be-

tween the data rmse objective and the smoothness objective and this tradeoff variable 

is typically dynamic, changing from iteration to iteration in a nonlinear least squares 

inversion (here we use Levenberg-Marquardt to control the dynamics).  However, 

tradeoff parameter dynamism was not intended for situations where the number of 

data points changes from iteration to iteration.  As additional data observations are 

added to a least squares problem, the relative weight of data error (which is formally 

expressed as the sum of squared data esiduals) in the inverse problem increases with 

respect to the smoothness constraint.  Therefore, it becomes difficult to dynamically 

vary the tradeoff parameter in an integrated design/inversion algorithm because one 

cannot know a priori at what level to set the Lagrange multiplier at the beginning of 

each inversion stage.  In effect, if the integrated design/inversion procedure starts to 

diverge, additional observations will be prescribed for a model that is moving away 

from the true earth model, which in turn may further destabilize the inversion, creat-

ing a catastrophic negative feedback. 

 The preceding caveat is particularly exemplified in the presence of noisy data.  

Noisy data can heavily bias the inversion model, especially in the initial stages of a 

real-time adaptive procedure when only small numbers of data have been collected.  

If the algorithm begins to diverge in these early stages, there may be little to prevent 

runaway divergence.  Figure 5-18.a shows a final inversion image for the adaptive 

procedure in the presence of noisy data and Figure 5-18.b shows the model % rms er-
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ror of the image; recall that the same adaptive algorithm was used as that for the re-

sults in the noiseless data scenario in Figure 5-16 and Figure 5-17 except the La-

grange multiplier was reset to its maximum value at the beginning of each inversion 

step.  Though this represents a single realization of data noise, the model % rmse is 

significantly larger than that for comparably sized surveys shown in Figure 5-10 (see 

right hand panels), which were produced by inverting noisy data using homogene-

ously designed surveys. 

 For real-time adaptive procedures to be practical, some safeguard must be created 

to prevent divergence.  Otherwise, the field operator risks wasting a good deal of time 

and money running a real-time adaptive scheme whose end product is worthless, pos-

sibly forcing the operator to start all over again.  Perhaps a form of automatic ridge 

regression could be used to control the Lagrange multiplier.  This method automati-

cally picks an ideal trade-off parameter at each iteration of a nonlinear LS inversion 

(though it is computationally more expensive to control the tradeoff parameter with 

this technique) and should therefore be capable of dealing with changing numbers of 

observations. 

5.6.2 153-Observation Two-Stage AOED 

The Two-Stage AOED approach was implemented on the heterogeneous model in 

Figure 5-8.  A first stage inversion image (Figure 5-19) was produced by deploying 

the ‘All’ design of 153 observations optimized for a homogenous earth.  This image 

derived from the inversion of synthetic field data contaminated with 3% Gaussian 

noise, yielding a reported model % rmse of ~31%.  This model was used to design a 

series of adapted, optimal experiments to be used in a second stage inversion.  All 

second stage inversions started with the earth model in Figure 5-19 as an initial guess.  

Designed experiments of 153 and 765 observations were created, to facilitate com-

parison with the Pseudosection and ERL surveys of those respective sizes.  Further-

more, designed experiments were created using both the ‘Straddling’ and ‘All’ meth-

ods described previously in this work. 

 246



 

 In deference to the reality of data noise, all second stage data sets were contami-

nated with noise.  This permitted us to directly compare the performances of homoge-

neous designs in the previous section with the heterogeneous designs in this section, 

in the presence of the data noise.  Accordingly, a series Monte of Carlo simulations 

like those performed above were executed here.  50 realizations of 3% Gaussian noise 

were added to the data for each experimental design, and the contaminated data were 

then inverted and their images and modeling errors stored. 

 Figure 5-20 graphically shows the results of Monte Carlo simulations of second 

stage inversions carried out using 153 observations.  As has been amply shown 

throughout this document the performance of the Pseudosection survey is inferior, and 

that fact is no less evident in this figure.  Both adapted designs produce smaller mod-

eling errors at the 90th percentile than the Pseudosection survey produces at the 10th 

percentile!  A glance at the first columns in Table 5-5.a-b further confirms this; the 

Pseudosection survey has no more than a 3% probability of producing smaller model 

errors than either the adapted ‘Straddling’ or ‘All’ designs (Panel (a), labeled ‘Strad-

dling (Het.)’ and ‘All (Het.)’), and the average difference in model % rms error is no 

less than 36%, which is even worse than the expected difference in model % rmse be-

tween the Pseudosection and homogeneous ‘Straddling’ and ‘All’ designs (Panel (b), 

labeled ‘Straddling (Hom.)’ and ‘All (Hom.)’). 

 Of much more interest is a comparison of the model error percentiles between 

Figure 5-10 and Figure 5-20 for the ‘All’ and ‘Straddling’ designs.  The 10th, 50th and 

90th percentiles for the model % rms error of the adapted designs (Figure 5-20) were 

between ~3% and ~6% less than those for the homogeneous ones (Figure 5-10).  In-

deed, columns 2 - 3, rows 4 - 5 in Table 5-5.b show that the average differences in 

model % rms error between homogenous and heterogeneous designs were approxi-

mately between 5% and 8%.  In addition, the same columns and rows in Table 5-5.a 

show that the adapted experiments were no less than 60% likely to produce smaller 

model % rms errors than the homogeneous designs, and particularly, the adapted ‘All’ 

design (‘All (Het.)’) was nearly 90% likely to produce a smaller modeling error than 

the homogeneous ‘Straddling’ design (‘Straddling (Hom.)’).  Lastly, a visual compari-
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son of the ‘Monte Carlo Parameter Uncertainties’ for the ‘Straddling’ and ‘All’ design 

in Figure 5-10 and Figure 5-20 clearly show that parameter uncertainties within the 

target window were smaller for the both adapted designs.  This body of evidence 

strongly indicates that experiments that have been deliberately adapted to site-specific 

structure produce smaller modeling errors and less parameter uncertainty than ‘stan-

dard’ experiments or even experiments that have been optimized for a homogeneous 

earth. 

 Before moving on to examine the Monte Carlo simulations of 765 observations, 

we compare the performances of the adapted ‘Straddling’ and ‘All’ designs of 153 ob-

servations.  Recall from the discussion in the previous section that the homogeneous 

‘All’ design outperformed the homogeneous ‘Straddling’ design.  Figure 5-20 and 

Table 5-5 show the same pattern for adapted experiments.  Table 5-5 indicates that the 

adapted ‘All’ design is 68% likely to produce a smaller model % rmse than the 

adapted ‘Straddling’ design, and the average difference in model % rmse is 2.6%, in 

favor of the ‘All’ design.  Additionally, the model error percentiles for the ‘All’ design 

in Figure 5-20 are less than the corresponding percentiles for the ‘Straddling’ design, 

and the Monte Carlo parameter uncertainties for the ‘All’ design are evidently smaller 

as well, particularly in the vicinity of the hypothetical cave.  This further substantiates 

the conclusion that geoelectrical experiments should be designed from the set of all 

possible quadrupoles when a small number of observations are to be made. 

5.6.3 765-Observation Two-Stage AOED 

As was the case in the Homogeneous Designs section above, the disparities in the per-

formances of standard and designed experiments became smaller for larger numbers 

of observations.  Figure 5-21 graphically shows the results of the Monte Carlo simula-

tions of second stage inversions executed using 765 observations.  Again, as was seen 

in the homogeneous case previously, both adaptively designed experiments produced 

smaller model error percentiles at all levels compared with the ERL survey.  The 

Monte Carlo parameter uncertainties in the right-hand panels also clearly show that 

the designed surveys were much better adapted to data noise rejection than was the 
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ERL survey.  The first columns in Table 5-6 further substantiate these findings.  Com-

pared with the adapted surveys (‘Straddling (Het.)’ and ‘All (Het.)’), the ERL survey 

was no more than 22% likely to produce a smaller model % rmse, and in fact pro-

duced an average model % rmse at least 11% greater than either designed survey.  

Hence, it has been shown that our adaptive OED method produces smart data sets 

with superior noise cancellation properties compared with the standard Pseudosection 

and ERL surveys, no matter whether the designs use 153 observations or 765. 

 Next, we examine the relative performances of experiments designed using a ho-

mogeneous earth model versus those adapted to the target site.  Comparing the model 

% rms error percentiles for designed experiments in Figure 5-11 and Figure 5-21, it is 

evident that the adapted designs generally produced smaller error percentiles than did 

the homogeneous designs (except for the 90th percentile for the ‘Straddling’ designs).  

Significantly, the Monte Carlo parameter uncertainties in the right-hand panels in 

these two figures show that the adapted designs substantially reduced uncertainty in 

the target window compared with the homogeneous designs.  This suggests that the 

adapted designs produced less variability in modeling error than did the homogeneous 

designs; hence, the adapted designs were less prone to data noise.  This assertion is 

partly confirmed by considering columns 2 –3, rows 4 – 5 in Table 5-6.a-b.  With the 

exception of the ‘All (Het.)’/’Straddling (Hom.)’ comparison, the adapted designs 

were no less than 61% likely to produce smaller model % rms errors than the homo-

geneous designs, and they produced average model % rms errors between ~2% and 

~5% smaller than the homogeneous designs.  Compared with the relative differences 

in performance seen for the 153-observation case just above, the relative improve-

ments in performance for these 765-observation experiments is smaller.  Once again, 

we see the effects of diminishing returns: the larger experiments are allowed to be-

come, the less benefits there are in deliberately designing them. 

 Interestingly, the homogeneous ‘Straddling’ design (‘Straddling (Hom.)’) and the 

adapted ‘All’ design (‘All (Het.)’) perform almost identically, according to Table 5-6.  

Based on the ‘Curious Reversal’ discussion in the preceding section, this is not en-

tirely surprising.  It was shown in Figure 5-13 that, as the number of observations in-
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creases, designs restricted to only straddling quadrupoles produce more ‘old informa-

tion’ than do designs that pick from all quadrupoles.  Hence, while ‘All’ designs ini-

tially produce more information than ‘Straddling’ designs, ‘Straddling’ designs even-

tually overtake the ‘All’ designs.  This ultimately translates into smaller parameter 

uncertainties, as has been shown in Figure 5-11 and Figure 5-21.  Despite the fact that 

the homogeneous ‘Straddling’ design of 765 observations was designed for the wrong 

earth model, it still apparently produced more information about the true, heterogene-

ous target than did the adapted ‘All’ design. 

 This leads naturally to the last necessary comparison before ending the section: 

the relative performances of adapted ‘Straddling’ and ‘All’ designs of 765 observa-

tions.  Figure 5-21 shows that the model error percentiles for the adapted ‘Straddling’ 

design are less than those for the adapted ‘All’ design, except at the 90th percentile.  

More importantly, visual inspection of the Monte Carlo parameter uncertainties in the 

right-hand panels plainly shows that uncertainties are generally smaller throughout 

the target window for the ‘Straddling’ design.  Table 5-6 confirms this observation, 

indicating that there is a 60% likelihood that the adapted ‘Straddling’ design will pro-

duce a smaller model error and that its expected model % rmse is 1.8% smaller than 

that for the adapted ‘All’ design.  This shows that, like the foregoing homogeneous 

examples, ‘Straddling’ designs of large numbers of observations outperform their 

competing ‘All’ counterparts.  Therefore, the hypothesis still stands: for the sequential 

design method developed in this work, ‘All’ designs should be used for small experi-

ments and ‘Straddling’ designs should be used for large ones. 

5.7 Integration and Summary 

This chapter has presented several case studies in 2D surface resistivity OED, focus-

ing on the sequential optimal experimental design methodology developed in Chapter 

2.  Many of the issues germane to 4-electrode or quadripolar geoelectrical experi-

ments have already been introduced and discussed in the Borehole OED Chapter, 

which we have taken advantage of here, freeing us to examine other aspects of the 2D 
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surface resistivity OED problem.  Particularly, the 2D resistivity examples in this 

chapter used a large number of modeling cells and a large number of fixed survey 

electrodes, making the optimal ED problem especially challenging because computa-

tional expense scales with the number of model parameters and with the number of 

permitted observations.  Below is a summary of the exercises carried out. 

 

5.7.1 Modeling and Inversion 

The two-dimensional resistivity forward and inverse problems have been addressed 

using the transmission line network analogy (e.g., Swift, 1971; Madden, 1972; Zhang 

et al., 1995; Shi, 1998).  Of particular interest in this chapter was the necessity to use 

a considerable number of boundary blocks to implement far-field boundary conditions 

and to ensure accurate modeling of electrical potentials in the vicinity of the survey.  

Though they were essentially nuisance parameters, it was necessary to invert for the 

resistivities in the boundary blocks, causing the inverse problem to be ill posed.  In 

effect, the inversion had to solve for 1100 parameters while having a maximum at-

tainable rank of only 170 (for 20-electrode surveys).  More is said about this ill-

posedness below.  All inversions herein implemented model regularization via the L1-

norm of the spatial gradient of the model.  This permitted inversion models to have 

sharp contrasts because contrasts are not as heavily penalized by an L1-norm as they 

would be by an L2-norm smoothness constraint. 

5.7.2 Expediting Design: Reducing the Size of the Jaco-
bian Matrix 

Aside from the design methodology itself, one of the most important aspects of this 

research may turn out to be the discovery of useful ways to shorten OED computation 

times.  As mentioned above, all OED examples in this chapter had to contend with 

designs for a large number of model parameters (nearly 1100) as well as a large num-

ber of permissible quadripolar observations (more than 14,000).  As our sequential 

OED method is a Jacobian-based technique, and a Jacobian must respectively have as 
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many rows and columns as observations and parameters, it follows that design times 

increase in proportion to these two.  While our sequential, greedy design algorithm 

has shown itself to be quite fast in general, even this algorithm is impeded by the in-

creased scope of a large design problem. 

 We examined three alternative methods of reducing the size of the Jacobian matrix 

in an attempt to expedite design times.  Two truncation methods were introduced. The 

simplest just eliminated all columns of the Jacobian matrix corresponding to boundary 

blocks, arguing that their sensitivities were irremediably small and could not be re-

deemed no matter how many observations were made.  The second method truncated 

the Jacobian matrix according to a percentile-based approach.  Only those model cells 

whose cumulative sensitivities were above a user-specified percentile, α, would be 

retained.  The underlying argument behind this approach was that we wished to retain 

as much overall sensitivity as possible in the design exercise.  By choosing a large 

percentile threshold, say 99.9%, we would ensure that the set of retained model pa-

rameters would be responsible for 99.9% of all sensitivity that a data set could ever 

have to the model parameters.  The third reduction scheme cannot be called a trunca-

tion method.  Rather than simply eliminating certain parameters (columns) from the 

Jacobian matrix, it is possible to compress the number of columns in the Jacobian ma-

trix by taking advantage of its singular value decomposition and the fact that the in-

verse problem is rank limited.  It was shown that this act losslessly compresses the 

information that each observation provides.  In brief, the sensitivity kernel of each 

observation occupies one row of the Jacobian matrix, and these sensitivity kernels can 

be losslessly compressed from vectors in 1071 dimensions to vectors in 170 dimen-

sions.  Moreover, because this compression uses an orthonormal basis (the truncated 

right singular vectors of the Jacobian), the magnitudes and angles between sensitivity 

kernels are preserved, which is critical for our design algorithm. 

  These three Jacobian-reduction methods were implemented in the design algo-

rithm and compared with an experimental design that did not avail itself of any expe-

diting strategy.  It was shown that the ‘Compressed Jacobian’ and the percentile-based 

‘Truncated Jacobian’ methods expedited design by a factor of more than 20, and the 
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simple ‘Truncated Jacobian’ approach expedited design times by a factor of nearly 3.  

At the end of the day, it is important to point out that the three reduced-Jacobian de-

sign methods execute in a few minutes, which makes them all realistically accessible 

in real-world field situations.  Importantly, it was shown that the three reduction 

schemes were all more likely to produce a smaller model % rmse than the ‘Unaltered 

Jacobian’ method, and they also all produced smaller average model % rms errors.  

Ultimately, the ‘Compressed Jacobian’ method was shown to produce not only the 

shortest design times but also the smallest average model % rms errors, making it the 

most useful of the three proposed design expedients. 

5.7.3 Homogeneous Designs 

In this section, an examination was undertaken to determine whether experimental 

designs optimized for a homogeneous earth could be usefully applied to a heterogene-

ous target.  The primary benefit of such an investigation would be to demonstrate that 

surveys designed for a homogeneous half-space could perform as well or better than 

either random or standard surveys.  If such were the case then it would be better to 

use these designed experiments than the standard surveys in widespread use today.  

Four topical areas were considered in this section: (1) expediting design times by de-

signing with quadrupoles of only one type; (2) noiseless data trials; (3) noisy data tri-

als; and (4) finding patterns in designed experiments. 

 Expediting design times by designing with only a single quadrupole type has al-

ready been examined in the Borehole OED Chapter, and Figure 5-5 reaffirms the as-

sertion from that chapter that the best single quadripolar type is the straddling ar-

rangement, followed closely by the internal arrangement and distantly by the external 

arrangement.  Because the straddling-type quadrupole is observed to be the best of the 

quadrupole types, this chapter examined surveys designed using only this quadripolar 

type as compared with designs picking from all quadrupole types.  Using only strad-

dling quadrupoles (rather than all possible quadrupole types for OED), design times 

could be reduced by more than a factor of 2.  But the important issue was whether 

faster design times also corresponded with equal or better inversion performances.  
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Interestingly, it was shown that when small numbers of observation were used, the 

‘All’ design performed better than the ‘Straddling’ design, but when large numbers of 

observations were used, the ‘Straddling’ design did better.  This was explained by not-

ing that ‘All’ designs initially produced more information about the target area when 

small numbers of observations were used, but owing to the nature of our greedy de-

sign algorithm, ‘Straddling’ designs eventually produced more information about the 

target area as the number of observations became large.  Therefore, as it imposes little 

additional computational expense, it is recommended that small designs should be 

created using all possible quadrupoles, and large designs should use only straddling 

quadrupoles, as these will not only ensure shorter design times but smarter data. 

 While the noiseless data examples in the Homogeneous Design section (Figure 

5-9) indicated that designs using all quadripolar types produced smaller model errors 

than any other type of experiment, it was important to consider the performances of 

designed experiments in the presence of realistic data noise.  The preceding discus-

sion relates to this concern and has demonstrated that the actual situation, in the pres-

ence of data noise, suggests that ‘Straddling’ designs outperform ‘All’ designs when 

large numbers of observations are collected. 

 Though it would be useful if homogeneous designed experiments could be com-

municated in a simple manner, preferably using some sort of basic recursion, it was 

explained that this is an as yet unattainable goal.  The physical law of superposition 

for electrostatics allows that the information of two observations can be linearly com-

bined to produce a third observation or piece of information, but it was shown from an 

inversion standpoint that the information that this third observation produces is not 

necessarily equivalent to the information produced by the two observations from 

which it derived.  Therefore, designed experiments can apparently give rise to unrec-

ognizable observation patterns that contravene our wish to categorize them into sim-

ple, communicable packets. 
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5.7.4 Adaptive, Optimal Experimental Design 

The last investigation executed in this chapter examined the adaptive design of opti-

mal experiments tailored to a specific site.  The main objective in this investigation 

was to determine whether there was any quantifiable benefit to adapting 2D surface 

resistivity experiments to a specific heterogeneous site, using our sequential design 

methodology, rather than just using standard surveys or experiments optimized for a 

homogeneous earth. 

 A ‘Two-Stage’ AOED method was adopted for these exercises, as this method had 

previously been shown in the Chapter 4 to produce the fastest and most reliable re-

sults.  It was definitively shown in this chapter that adapted 2D surface resistivity 

‘Straddling’ and ‘All’ designs outperformed homogeneously designed surveys as well 

as standard Pseudosection and ERL surveys. 

 These AOED studies also reaffirmed the observation that optimal ED is subject to 

a law of diminishing returns.  The relative improvement in data quality was more pro-

nounced when small numbers of observations were used, and as the number of obser-

vations increased, these relative improvements decreased. 

 Additionally, as was observed in the concluding remarks on Homogeneous De-

signs, ‘All’ designs outperformed ‘Straddling’ designs when small numbers of obser-

vations were used, but the situation reversed for large number of observations.  The 

same result was observed in the adapted design studies.  Therefore, it is concluded 

that this is, at least, an invariant feature of our sequential design method, and perhaps 

a general feature of experimental 2D resistivity design problems. 

5.7.5 Conclusion 

Withal, it has been shown that our sequential optimal experimental design methodol-

ogy produces 2D surface resistivity experiments whose data are smart in the sense 

that they produce smaller average model errors and smaller parameter uncertainties 

than competing random or standard surveys.  Moreover, our greedy design algorithm 

achieves these results at a computational expense on the order of only minutes.  At 
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most, our technique requires a second data collection and inversion, and at least, it 

only requires a single data collection and inversion, depending on how important the 

practitioner perceives accurate and certain imaging to be. 
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Figure 5-1 (a) Example of the discretization of a homogeneous earth and the target 
window (red box) within which we are concerned with properly modeling resistivity.  
(b) Magnification of the target window.  
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Figure 5-2 (a) Cumulative absolute sensitivities (log10) and (b) a binary image show-
ing the spatial distribution of cumulative sensitivities at or above the 99.9th percentile 
(red region).  That is, 99.9% of all sensitivity that the complete set of all observations 
affords is relegated to the small red region. 
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Figure 5-3 CPU times for experiments designed using the ‘Unaltered Jacobian’, 
‘Truncated Jacobian, Method 1’, ‘Truncated Jacobian, Method 2’ (at the 99th percen-
tile), and the ‘Compressed Jacobian’ methods.  Note that the ‘Truncated Jacobian, 
Method 2’ and ‘Compressed Jacobian’ methods produced nearly identical CPU times.  
Also, note that the ‘Unaltered’ technique took nearly 2 hours (~7,000 seconds) to pro-
duce the largest experiment, while comparably sized ‘reduced Jacobian’ methods took 
~0.5 hours and ~7.5 minutes.  All CPU times were clocked on a dual 2GHz laptop 
with 2GB RAM. 
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Figure 5-4 Heterogeneous model (a) and the average Monte Carlo models for the 
‘Unaltered Jacobian’ method (b), the ‘Truncated Jacobian, Method 1’ (c), the ‘Com-
pressed Jacobian’ (d), and the ‘Truncated Jacobian, Method 2’.  The bracketed num-
bers beneath the ‘Model % RMSE’ header in each panel specify model % rms errors 
at the 10th, 50th and 90th percentiles (generated by the Monte Carlo simulations).  For 
example, the median model % rmse of the ‘Compressed Jacobian’ technique is 
15.39% while it is 19.68% for the ‘Unaltered Jacobian’ technique. 
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Table 5-1 (a) Comparative probabilities of producing smaller model % rms error be-
tween the four design methodologies according to Equation (5.20).  Each column re-
cords the probabilities that the design technique of that column will produce an ex-
periment with smaller model % rms errors than the experiments produced by the de-
sign techniques in the competing rows. (b) Difference between average model % rms 
errors for Monte Carlo simulations of noisy field data for experiments designed by the 
four competing techniques. 
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Figure 5-5 Cumulative absolute sensitivities (log10) of the three 4-electrode configura-
tions – external, internal and straddling – querying a homogeneous earth.  20 survey 
electrodes were simulated, and as predicted in Equation (5.23), the ranks of the Jaco-
bian matrices comprising all observations of one quadrupole type are 153, 169 and 
170 for the external, internal and straddling configurations, respectively. 
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Figure 5-6 CPU times for experiments that picked from the set of ‘All’ quadrupoles 
(broken line) and from the smaller set of ‘Straddling’ quadrupoles (solid line).  The 
‘Straddling’ designs executed more than twice as fast on average.  All CPU times 
were clocked on a dual 2GHz laptop with 2GB RAM. 
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Figure 5-8 A hypothetical cave model (5000 Ωm) situated above a water table (200 
Ωm).  
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Figure 5-9 Performance curves for standard, random and ‘homogeneously’ designed 
experiments of varying sizes.  Model % rms errors for the various experiments are 
plotted against the number of observations used.  All experiments queried the hypo-
thetical cave model in Figure 5-8 and the data were noiseless in all cases.  The Pseu-
dosection and ERL surveys are identified in the figure as well as a ‘Decimated ERL’ 
survey (every other observation removed from the ERL survey) and a ‘Left-Right’ 
Sweep’ (the ERL Survey minus the Pseudosection survey) are shown betwixt. 
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Figure 5-10 Graphical synopses of Monte Carlo simulations for data inversions with 
50 realizations of 3% Gaussian noise for the three experiments, ‘Pseudosection’, 
‘Straddling’ and ‘All’.  All experiments queried the cave model in Figure 5-8 with 153 
observations.  The left-hand panels show the average Monte Carlo models for each 
experiment over all 50 noise realizations.  The bracketed numbers beneath the ‘M.C. 
Model % RMSE’ headers in each of the left-hand panels specify model % rms errors 
at the 10th, 50th and 90th percentiles (generated by the Monte Carlo simulations).  The 
right-hand panels show the ‘Monte Carlo Parameter Uncertainties’, measured as % 
rms error according to Equation (5.24), for the three experiments.   
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Table 5-2 Monte Carlo comparison of two optimally designed experiments using 153 
observations.  The Pseudosection survey was also considered for completeness.  All 
designs were based on a homogeneous earth assumption.  (a) Comparative probabili-
ties of producing smaller model % rms error between the three designed experiments 
according to Equation (5.20).  Each column records the probabilities that the experi-
ment in that column will produce a smaller model % rms error than the experiments in 
the competing rows. (b) Difference between average model % rms errors for the three 
experiments. 
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Figure 5-11 Graphical synopses of Monte Carlo simulations for data inversions with 
50 realizations of 3% Gaussian noise for the three experiments, ‘ERL’, ‘Straddling’ 
and ‘All’.  All experiments queried the cave model in Figure 5-8 with 765 observa-
tions.  The left-hand panels show the average Monte Carlo models for each experi-
ment over all 50 noise realizations.  The bracketed numbers beneath the ‘M.C. Model 
% RMSE’ headers in each of the left-hand panels specify model % rms errors at the 
10th, 50th and 90th percentiles (generated by the Monte Carlo simulations).  The right-
hand panels show the ‘Monte Carlo Parameter Uncertainties’, measured as % rms er-
ror according to Equation (5.24), for the three experiments.   
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Table 5-3 Monte Carlo comparisons of two optimally designed experiments using 765 
observations.  The ERL survey was also considered for completeness.  All designs 
were based on a homogeneous earth assumption.  (a) Comparative probabilities of 
producing smaller model error between three designed experiments according to 
Equation (5.20).  Each column records the probabilities that the experiment in the 
column header will produce smaller model errors than the experiment in the row 
headers. (b) Difference between average model % rms errors for the three experi-
ments. 
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Figure 5-12 Cartoon depicting the partitioning of ‘Old’ and ‘New Information’ into 
orthogonal subspaces.  As our sequential design algorithm builds the experiment, ‘old 
information’ is defined as that information which is already available to the base ex-
periment, and this is expressed by the model space spanned by G, the Jacobian matrix 
of the base experiment. ‘New information’ must be complementary to ‘old informa-
tion’ and is therefore defined as that information which exists in a model subspace 
orthogonal to the ‘old information’; this is expressed by the nullspace of G, denoted 
N.  The sensitivity kernel of a candidate observation, g, can therefore be completely 
decomposed into components which reside in the ‘old information’ space, gold, and 
which reside in the ‘new information’ space, gnew.  Because the union of the spaces 
spanned by G and N spans all of model space, it follows that T T T

new new old old= +g g g g g g  
and that T

new newg g  is the energy in g that maps to ‘new information’ space and T
old oldg g  

is the energy that maps to ‘old information’ space. 
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Figure 5-14 A Simple hypothetical experiment of three observations.  Red indicates 
the current-source dipoles and blue indicates the potential-receiver dipoles (though 
reciprocity permits these roles to be reversed).  Because electrostatic problems obey 
the law of superposition, the potentials of any two observations can be combined to 
produce the third; that is, φ3 = φ1 + φ2, φ2 = φ3 - φ1, and φ1 = φ3 - φ2.  Hence, these 
three observations can only produce two bits of unique information about any target, 
because the information of any one of these observations is dependent on the informa-
tion provided by the other two. 
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Table 5-4 The magnitudes of, and angles between, the sensitivity kernels for the three 
hypothetical observations in Figure 5-14.  All sensitivity kernels were based on query-
ing a homogeneous earth. 
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Figure 5-17 Performance curve for the Small Batch AOED method (model % rms er-
rors in Figure 5-16) as compared with the performance curve of homogeneously de-
signed surveys of varying numbers of observations (picking from ‘All’ available 
quadrupoles).  Also shown are the performances for various ‘Standard’ surveys.
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Figure 5-19 Heterogeneous earth model used as the design model for the adaptive, 
optimal experimental design exercise.  The model was generated by inverting noisy 
synthetic data that had been generated for a designed experiment of 153 observations 
(using a design that picked from ‘All’ available quadrupoles) optimized for a homo-
geneous earth.  The model % rms error for this image was 31.22%. 
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Figure 5-20 Graphical synopses of Monte Carlo simulations for data inversions with 
50 realizations of 3% Gaussian noise for the three experiments, ‘Pseudosection’, 
‘Straddling’ and ‘All’.  The designed experiments were adapted to the model in Figure 
5-19, rather than using a homogeneous one.  All experiments queried the cave model 
in Figure 5-8 with 153 observations.  The left-hand panels show the average Monte 
Carlo models for each experiment over all 50 noise realizations.  The bracketed num-
bers beneath the ‘M.C. Model % RMSE’ headers in each of the left-hand panels spec-
ify model % rms errors at the 10th, 50th and 90th percentiles (generated by the Monte 
Carlo simulations).  The right-hand panels show the ‘Monte Carlo Parameter Uncer-
tainties’, measured as % rms error according to Equation (5.24), for the three experi-
ments.   
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Table 5-5 Monte Carlo comparisons of five experiments using 153 observations.  The 
experiments labeled ‘(Hom.)’ were designed based on a homogeneous earth, and the 
ones labeled ‘(Het.)’ were adaptively designed based on the heterogeneous model in 
Figure 5-19.  The Pseudosection survey was also considered for completeness.  (a) 
Comparative probabilities of producing smaller model error between three designed 
experiments according to Equation (5.20).  Each column records the probabilities that 
the experiment in the column header will produce smaller model errors than the ex-
periment in the row headers. (b) Difference between average model % rms errors for 
the three experiments. 
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Figure 5-21 Graphical synopses of Monte Carlo simulations for data inversions with 
50 realizations of 3% Gaussian noise for the three experiments, ‘ERL’, ‘Straddling’ 
and ‘All’.  The designed experiments were adapted to the model in Figure 5-19, rather 
than using a homogeneous one.  All experiments queried the cave model in Figure 5-8 
with 765 observations.  The left-hand panels show the average Monte Carlo models 
for each experiment over all 50 noise realizations.  The bracketed numbers beneath 
the ‘M.C. Model % RMSE’ headers in each of the left-hand panels specify model % 
rms errors at the 10th, 50th and 90th percentiles (generated by the Monte Carlo simu-
lations).  The right-hand panels show the ‘Monte Carlo Parameter Uncertainties’, 
measured as % rms error according to Equation (5.24), for the three experiments. 
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Table 5-6 Monte Carlo comparisons of five experiments using 765 observations.  The 
experiments labeled ‘(Hom.)’ were designed based on a homogeneous earth, and the 
ones labeled ‘(Het.)’ were adaptively designed based on the heterogeneous model in 
Figure 5-19.  The ERL survey was also considered for completeness.  (a) Comparative 
probabilities of producing smaller model error between three designed experiments 
according to Equation (5.20).  Each column records the probabilities that the experi-
ment in the column header will produce smaller model errors than the experiment in 
the row headers. (b) Difference between average model % rms errors for the three ex-
periments. 
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Chapter 6  

Conclusion 

This thesis has examined various aspects of geophysical optimal experimental design 

(OED) applied to DC resistivity problems.  A novel method of experimental design 

was developed and attendant algorithms were created to practically execute survey 

optimization.  Three variations on the design method were introduced: (1) a basic 

method that allows geophysical surveys to be designed without prior knowledge of 

earth structure; (2) an adaptive method that designs experiments once some prelimi-

nary knowledge of earth structure is known; and (3) a real-time or in-line adaptive 

method that attempts to design experiments as information on earth structure is being 

gathered and the earth image is being refined.  These methods were variously applied 

to three unique geoelectrical settings to assess their advantages and drawbacks as 

compared with standard geoelectrical surveys and random surveys.  The three applica-

tions settings included 1D surface resistivity, single-borehole (pseudo-2D) resistivity, 

and 2D surface resistivity.   

 In the course of investigation, many additional practical insights into the nature of 

geoelectrical data acquisition and inversion were brought to light that either directly 

or indirectly affect optimal experimental design.  Additionally, both noiseless and 

noisy data scenarios were examined to demonstrate the strengths and weaknesses of 

these design techniques in theoretical versus real-world situations.    

 Several subsections are provided below that synthesize the theory and/or results 

from the various thesis chapters into comprehensive units that will hopefully provide 
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a macroscopic picture of the geophysical OED enterprise as it has been posed and in-

vestigated in these pages.  Following these is a brief discussion of potential future re-

search avenues. 

6.1 Modeling and Inversion 

Transmission line network analogs were applied to the forward models for the 2D and 

Borehole DC resistivity problems.  These methods required additional boundary 

blocks to ensure modeling accuracy near the survey electrodes and to impose bound-

ary conditions, which increased the number of model parameters, exacerbating the ill 

posedness of these inverse problems.   

 One-dimensional resistivity forward modeling was treated through a general ana-

lytic solution for horizontally layered media, permitting the earth to be modeled in 

terms of layer thicknesses and associated resistivities. 

 All data inversions were executed using nonlinear least squares formalism.  Model 

regularization was managed through an L1-norm smoothness constraint applied to the 

spatial gradient of the model, in conjunction with the Levenberg-Marquardt algo-

rithm, which handled the trade-off between data rmse and model smoothness. 

6.2 Theory 

A novel optimal experimental design strategy was introduced. The prime characteris-

tic of the technique lies in the treatment of observation sensitivity kernels as informa-

tion vectors that bridge data and model spaces.  In the OED framework, the fitness of 

an observation that is a candidate for addition to a base experiment is evaluated in 

terms of the magnitude and complementarity of the information it can provide relative 

to the base experiment.  These two concepts are loosely quantified in terms of the 

magnitude (vector norm) of an observation’s sensitivity kernel after it has been pro-

jected onto the null space of the base experiment and the angle its sensitivity kernel 

makes with respect to the space spanned by the base experiment.  It was shown that 
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this formulation gives rise to an OED objective function equivalent to the ratio of the 

determinants of the augmented and base Jacobian matrices.  The parameter uncer-

tainty volume is a function of the determinant of a Jacobian matrix, so the basic de-

sign method attempts to minimize this measure of parameter uncertainty in a sequen-

tial fashion. 

 A second, and equally important, characteristic of the design methodology is that 

it is implemented using greedy optimization. That is, it approaches the survey optimi-

zation problem by sequentially finding observations to be added to a base experiment 

that are locally optimal with respect to the base experiment.  This is in direct contrast 

to most historic OED techniques, which have approached the optimization problem in 

a global sense, trying to find whole experiments at once that are globally optimal with 

respect to some design objective function.  Choosing to optimize experiments through 

a series of locally optimal updates generally cannot ensure that the final survey is 

globally optimal for a particular problem, but it does allow the design algorithms to 

execute in a fraction of the time that would be needed to find global solutions.  This 

means that computationally expensive search algorithms such as the genetic and 

simulated annealing algorithms can be avoided.   

 Below are brief descriptions outlining the machinery of three algorithms that im-

plement the preceding ideas. 

6.2.1 Basic Design Algorithm 

The basic algorithm initializes an experiment with one or more observations – typi-

cally the seed is a ‘lead’ observation whose sensitivity kernel has the largest vector 

norm – and sequentially adds additional observations.  Candidacy for addition to the 

base experiment is evaluated by determining the L2-norm of an observations sensitiv-

ity kernel onto the null space of the Jacobian of the base experiment.  In this manner, 

the dual objective of maximizing information magnitude and complementarity is 

achieved. 
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 In all design scenarios, a working model of the earth resistivity distribution is re-

quired.  If no knowledge of this distribution is available, we start from a homogene-

ous assumption.  

6.2.2 Modified Algorithm for Maximum Attainable Rank 

This algorithm builds on the basic design algorithm.  When the number of observa-

tions in the base experiment reaches the maximum attainable rank of the sensitivity 

matrix, candidacy for addition to the experiment can no longer be evaluated based on 

the projection of sensitivity kernels onto the null space of the sensitivity matrix.  This 

is because, at this point, the sensitivity kernels of all candidate observations reside 

wholly in the space spanned by the Jacobian of the base experiment; i.e., no compo-

nent of any sensitivity kernels resides in the null space of the Jacobian. 

 To overcome this problem, the design objective function is altered once the maxi-

mum attainable rank has been encountered.  Instead of projections onto the null space 

of the Jacobian, we instead perform projections onto the vector space spanned by the 

singular vectors of the Jacobian corresponding to the smallest singular values.  Can-

didacy is based on those observation sensitivity kernels that are of maximal length 

when projected onto this subspace and which therefore contribute the most informa-

tion to the small singular values, reducing model uncertainty and the inversion insta-

bility associated with these small values. 

 Bringing singular vectors into the evaluation of observation candidacy does in-

crease computational expense, but because the modified algorithm still approaches the 

problem through a greedy optimization method, it still executes relatively quickly. 

6.2.3 Adaptive Design Methods 

The adaptive design methods introduced in this work have taken one of two ap-

proaches to the design problem.   

 The simpler of the two performs an initial survey and uses that inversion image as 

the model submitted to the design algorithm to generate a tailored survey for a second 
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inversion.  This was labeled Two-stage Adaptive OED.  Either of the algorithms dis-

cussed above are suitable, without modification, for use in this Two-Stage technique.  

 The more elaborate methods approached the design problem in real-time.  Both 

techniques integrate inversion and design into a super-algorithm that cycles between a 

design stage and an inversion stage, as new observations are optimally added to the 

experiment.   

 One suggested methodology, termed In-Line AOED, approached the real-time de-

sign problem by first collecting, and partially inverting, a seed data set.  The updated 

earth model was then submitted to the design algorithm, which found a single optimal 

observation to add to the base experiment.  The new observation would then be col-

lected; a new updated model would be created, again by partial inversion; and the 

process would then cycle until convergence. 

 An alternate methodology, termed Small-Batch AOED, worked in a manner simi-

lar to the In-Line technique, except instead of adding one observation at a time, small 

batches were added.  This was hypothesized to speed up the overall run-time of the 

integrated super-algorithm and to ensure more reliable modeling results at the end of 

the day. 

6.3 Continuous Versus Discrete Experimental Spaces 

Depending on how the geoelectrical forward and inverse problems were posed, survey 

electrodes could either be placed anywhere on a continuum or would be restricted to 

discrete positions.  This affected the type of optimization algorithms that could be 

brought to bear on the survey optimization problem.   

 One-dimensional resistivity problems were posed in such a way that the survey 

electrodes could be placed anywhere along a continuous line.  This meant that there 

were literally an infinite number of observations available to the survey designer, or 

that the experimental search space was infinite.  While a continuous experimental 

search space would suggest that partial derivatives of experiment fitness (evaluated 

through the design objective function) could be evaluated with respect to electrode 
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positions, it was shown that the complexity of the design objective function makes 

their evaluation nearly impossible.  Consequently, fast gradient-following optimiza-

tion algorithms were not available to solve the greedy optimization problem for each 

additional observation.  Instead, an evolutionary optimization method, called Differ-

ential evolution, was employed. 

 The 2D surface and borehole resistivity problems were cast in terms of resistor 

networks (transmission line network analogy), forcing survey electrode placements to 

be at discrete pre-defined positions, at nodes of the network.  As a consequence, there 

were finite sets of 4-electrode or quadrupole observations available for experimenta-

tion.  In this case, partial derivatives of the design objective function with respect to 

electrode position were undefined, precluding the possibility of gradient-following 

greedy optimization algorithms, which, in light of previous discussion, would have 

nonetheless been impossible to find.  However, unlike the 1D surface resistivity prob-

lem, a finite set of permitted observations allowed us to exhaustively evaluate the fit-

ness of candidate observations. 

6.4 Sequential Versus Global Design Algorithms 

Sequential design does produce suboptimal experiments compared to global search 

methods but approaches global optimality as the number of observations increases.  In 

an exercise conducted in this research, the sequential method reached more than 90% 

of global optimality, which is excellent considering it took ~1/100th the CPU time of a 

global search algorithm to do so.  The sequential method imposes significantly less 

computational expense, requiring as little as (or less than) 1% of the compuataion 

time of global search techniques.  All of which is to say that sequential design pro-

duces extremely high-quality, albeit suboptimal, data quality in a fraction of the time 

needed to design experiments by stochastic search methods.  The trade-off comes in 

deciding whether an additional 10 or 20% increase in optimality is worth increasing 

CPU time by more than 2 orders of magnitude.  Ultimately, sequential design closes 

the ‘optimality gap’ between itself and global search methods as experiment sizes in-
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crease, arguing strongly for its application in real-world problems.  It is hypothesized 

that the sequential method may indeed produce global optima as the number of obser-

vations continues to increase, but this must be tempered by the fact that OED is sub-

ject to a general law of diminishing returns, which asserts that arbitrarily large ran-

dom surveys can perform as well as deliberately designed ones. 

6.5 Homogeneous-Earth Experimental Designs 

The first avenue of investigation for all optimal experimental design exercises was to 

consider the case where no a priori information was available on the distribution of 

earth media.  Absent this knowledge, a homogeneous earth was assumed for survey 

optimization exercises.  These ‘homogeneously’ designed experiments were then de-

ployed on heterogeneous targets and compared with random and standard surveys to 

ascertain whether any benefit could be garnered in survey optimization for the wrong 

(but ‘neutral’) earth model.  

6.5.1 Random, Standard and Designed Experiments 

It was shown in the 2D and borehole resistivity chapters that experiments optimized 

for a homogeneous earth but deployed on heterogeneous targets were statistically 

more likely to produce high quality data sets than either random or standard surveys 

(Pseudosection and ERL surveys) of equal size, where ‘quality’ connotes small model 

% rms error.  Because the optimization method uses a greedy optimization approach, 

it cannot guarantee globally optimal surveys, meaning that occasionally a random 

survey could produce a smaller modeling error than a designed survey, but the prob-

ability of generating such a survey at random was generally so low as to preclude 

adopting a wholly random experiment strategy.  Moreover, homogeneously designed 

surveys outperformed both the standard Pseudosection and ERL surveys.  Hence, it is 

concluded that the sequential survey optimization procedures developed herein do in-

deed produce smarter data sets in the case where no prior information on the target 

site is available. 
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6.5.2 Diminishing Returns 

There is one significant caveat to the preceding remarks: geophysical optimal experi-

mental design is subject to a law of diminishing returns.   The 2D and borehole exam-

ples both showed that as the number of observations in an experiment becomes large, 

the difference in performance between designed, random and standard surveys dimin-

ishes (as measured by the model % rmse).  In particular, as designed experiments ap-

proached the size of ERL surveys, the relative difference in their performances, while 

still favoring designed surveys, was only marginally.  From a practical point of view, 

it becomes relevant to ask whether the additional time and computational effort 

needed to design ‘large’ surveys is worth the marginal benefit they can give, relative 

to a ready-made survey like the ERL survey. 

 Notably, the largest relative improvements in data quality were realized when 

small designed experiments were compared with equally sized random and standard 

ones.  This is advantageous on two related scores: first, the smaller the experiment is 

chosen to be, the faster the design algorithm executes; second, by choosing to use 

small designed surveys that provide compact information-dense data, the entire field 

operation can be executed more rapidly than by heavy handedly collected large quan-

tities of data pell mell. 

6.5.3 Noiseless Versus Noisy Data 

The 2D surface resistivity chapter formally examined the use of homogeneously de-

signed experiments deployed on heterogeneous targets in the presence of data noise.   

To some extent, so did the 1D resistivity chapter, but the design algorithm was not 

employed to design a 1D homogeneous survey for practical reasons.  It was shown 

that designed surveys were statistically more likely to produce higher quality data 

than competing standard surveys but that, compared with the differences in perform-

ance in the noiseless data cases, the designed experiments were not nearly as superior.  

This fact is more fully developed below, after concluding remarks have been offered 

regarding adaptively designed experiments in the presence of noisy data. 
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6.5.4 Experimental Design Pattern Recognition 

The 2D and borehole resistivity chapters showed ‘piano roll’ depictions of the quad-

rupoles, in the order they were added to the base experiment, for ‘homogeneously’ 

designed experiments.  It was hoped that a simple pattern could be deduced governing 

the selection of optimal quadrupoles, which could be easily communicated.  Were this 

the case, a new general survey would be established that could easily be scaled up or 

down depending on the number of electrodes used in a survey.  Based on demonstra-

tions that homogeneously designed experiments produced superior data quality rela-

tive to standard or random experiments, such a general survey would supercede, to 

some degree, computational optimal experimental design all together. 

 Unfortunately, no such pattern was readily apparent.  Three explanations were of-

fered why this might be so.  First, it was shown that observations could be linearly 

combined to produce new observations.  This means that two or more observations in 

an experiment could be combined to produce a third observation that might be more 

amenable to the pattern recognition exercise.  But, from a mathematical point of view, 

this third observation does not generally provide the same information between data 

and model space as was provided by the two observations from which it derived.  

Consequently, an effort to substitute observations that were not placed in the experi-

ment by design is either difficult or impossible.  Such substitutions will likely dimin-

ish the quality of the information provided by the designed experiment. 

 Second, and perhaps most importantly, the pattern recognition exercise is made 

more difficult by the fact that we do not know a priori what pattern we are looking 

for.  The first few observations in designed experiments have a readily identifiable 

pattern, but this identifiability breaks down quickly thereafter.  It would indeed be a 

prodigious and frustrating exercise to ascertain a pattern in designed surveys when 

one has no foreknowledge what one is looking for. 

 Finally, the greedy sequential optimization algorithms employed in this research 

sacrifice global optimality in exchange for faster computation times.  While there may 

be a readily apparent pattern in a globally optimal homogeneous survey, it is likely 

that the ‘locally optimal’ surveys produced by our design algorithms do not give rise 
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to identifiable patterns.  It might therefore be worthwhile to expend the effort to de-

sign a truly globally optimal experiment for a homogeneous earth, on the hypothesis 

that a discernible pattern will arise in the resulting experiment. 

6.6 Adaptive Optimal Experimental Design 

The next level of sophistication in our investigations of optimal experimental design 

was to adapt experiments to specific targets.  Of the three adaptive procedures intro-

duced, the Two-Stage methodology was most promising.  It was employed success-

fully in all three chapters, 1D, 2D and borehole resistivity, in both noiseless and noisy 

data scenarios.  In addition to the fact that the 2-stage method performed as well or 

better than both the In-Line and Small-Batch AOED methods, it also had the fastest 

execution times and required less hyperparameter tuning, making it more practical in 

field applications. 

 Furthermore, it was clear from the 2D and borehole investigations that adapted 

surveys produced data quality superior to that produced by the homogeneously de-

signed ones.  However, the law of diminishing returns was still evident in the adaptive 

cases.  There comes a point where the user must decide whether it is worthwhile to 

submit to the additional expense of designing large adapted surveys when large ran-

dom or standard surveys would suffice to produce comparable data quality. 

6.6.1 Noiseless Data Versus Noisy Data 

As was seen in the 2D and borehole resistivity studies, homogeneous designs did not 

show a comparable degree of superiority over random and standard surveys once 

noise was introduced into the data.  The same situation was observed for adapted ex-

perimental designs.  Though the adapted designs in all three resistivity chapters were 

shown to produce statistically significant improvements in data quality in the pres-

ence of data noise compared with standard surveys, they did not show such a marked 

degree of improvement as was seen in noiseless data cases.  In particular, the borehole 

AOED example showed that there was a distinct possibility that the designed experi-
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ment would actually produce a significantly larger modeling error than the ERL sur-

vey, though the probability was not exceedingly high.  The 2D resistivity AOED ex-

amples did not show this behavior, but it was nonetheless clear that the quality of the 

data for designed surveys was compromised by noise.  The 1D AOED examples also 

showed that the designed experiments reduced parameter uncertainty relative to 

Schlumberger and Wenner surveys, but the improvements were not profound.  This 

leads to the possible hypothesis that the quality of data for designed experiments (for 

noiseless or noisy data) is model dependent.  Sometimes an experimental design can 

greatly improve data quality relative to random or standard surveys and sometimes 

the improvements will not be so spectacular.   

 Moreover, all AOED results in the presence of noisy data highlight the fact that 

geoelectrical problems are ill posed, or at least poorly conditioned, inverse problems.  

Such problems are always very susceptible to data noise, and this is apparently an ir-

remediable characteristic of geoelectrical imaging methods, no matter whether sur-

veys are optimally designed or not.  Therefore, though it is disappointing, it is none-

theless unsurprising that the adaptively optimized geoelectrical surveys, in the pres-

ence of data noise, did not perform comparably with their counterparts in the noise-

less cases. 

 Further concluding remarks on optimal experimental design in the presence of 

noisy data are offered separately below. 

6.7 CPU Time 

By dint of the fact that the design methods in this research were executed via greedy 

optimization methods, their CPU times were extraordinarily small.  In all three resis-

tivity scenarios, CPU times were typically on the order of seconds to a few minutes.  

This is in contrast to the computational burden imposed by global search methods, 

which have been only sporadically reported in the literature and which usually ranged 

from hours to days.  Practically speaking, design algorithms that take hours or days to 

execute are of only limited use in geophysics.  Primarily, they might be used for 
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monitoring problems, but they certainly would be of little use in near real-time field 

exercises.   

 A greedy approach to the design exercise sacrifices global optimality in exchange 

for fast computation time.  And though some of the results reported herein are perhaps 

not as profound as we would like, the fact is that our design methodology does pro-

duce superior data sets in nearly all instances.  That it can do so for such small addi-

tional computational burden makes greedy optimization an important inclusion in the 

emerging field of optimal experimental design. 

6.8 Expediting Design 

As the number of model parameters and the size of experiments increase (typically in 

lockstep), even greedy optimization algorithms run less quickly than might be practi-

cal for real-world application.  Two ideas were examined that could usefully reduce 

computation times.  The first was relevant particularly to electrical tomography prob-

lems and the second related to reduction in the size of the Jacobian matrix, which is 

ultimately the mathematical construct upon which our experimental design algorithms 

operate. 

6.8.1 External, Internal and Straddling Quadrupoles 

In electrical resistivity tomography, the set of all possible 4-electrode or quadrupole 

observations can be partitioned into three distinct subsets, called ‘Internal’, ‘External’ 

and ‘Straddling’.  These names derive from the type of quadrupoles the subsets com-

prise.  The ‘Internal’ configuration signifies that the potential dipole is inside the cur-

rent dipole; the ‘External’ configuration signifies that the potential dipole is outside 

the current dipole; and the ‘Straddling’ configuration signifies that the potential dipole 

is half inside half outside the current dipole.   

 It was shown that the set of all straddling quadrupoles produced the highest cumu-

lative sensitivity within the inversion target window, followed closely by the set of all 

internal configurations and distantly by the set of all external configurations.  Addi-
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tionally, it was shown that the rank of the Jacobian of all straddling configurations 

was equal to the maximum attainable rank (MAR) of the Jacobian of all quadrupoles, 

that the rank of the Jacobian of all internal configurations was one less than that, and 

that the Jacobian of all external configurations was N less than the MAR, where N is 

the number of survey electrodes. 

 Trials in the 2D and borehole resistivity chapters confirmed that experiments con-

sisting only of straddling quadrupoles do indeed produce data quality comparable to, 

and sometimes in excess of, experiments designed from all possible quadrupole con-

figurations. 

 Thus, it was illustrated that the straddling quadrupole configuration was the most 

superior of the three configuration types and could be exclusively used in design ex-

ercises, reducing the set of permitted candidate observations by two-thirds and com-

mensurately increasing design times. 

 In addition, it was shown repeatedly in both the 2D and borehole chapters that the 

performance of the Pseudosection survey, which consists exclusively of external 

quadrupoles (by far the poorest of the three configurations), was exceptionally poor.  

In point of fact, the Pseudosection survey performed worse than even random experi-

ments of the same size.  It is therefore recommended that the Pseudosection survey 

should be avoided in geophysical exploration. 

6.8.2 Truncating and Compressing the Jacobian 

As the number of model parameters becomes large, the number of columns in the 

Jacobian matrix of an experiment increases.  The sequential experimental design ob-

jectives operate on the sensitivity kernels of observations, and these kernels increase 

in length as the number of columns in the Jacobian increase.  All of which is to say 

that OED computation time is proportional to the number of model parameters.  Three 

novel approaches for decreasing the number of columns in the Jacobian matrix 

(strictly for use in the OED exercise) were introduced, which would be useful in re-

ducing design computation time for large imaging problems. 
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 The first method was a simple Jacobian truncation method that expunged all col-

umns of the Jacobian corresponding to boundary blocks outside the target window.  

The second method was also a truncation approach that expunged columns of the 

Jacobian based on whether the magnitude of their ‘global’ sensitivity was above a 

user-defined threshold.   This method was similar to the first, but allowed some 

boundary cells to remain in the truncated Jacobian so long as their ‘global’ sensitivity 

was above the threshold.  The third method compressed the Jacobian matrix from M 

columns (corresponding to a total of M model cells) to a number of columns equal to 

the maximum attainable rank.  This last method worked on the principle that all in-

formation in the sensitivity kernels resides in the vector space spanned by the right 

singular vectors of the Jacobian of all observations.  Because this Jacobian is neces-

sarily rank limited, the number of right singular vectors corresponding to nonzero 

singular values must equal the MAR.  Therefore, left multiplying with the truncated 

set of its right singular vectors losslessly compresses the Jacobian matrix.  The advan-

tage of this last approach is that all information in the sensitivity kernels is preserved, 

but in a compressed format where lengths and angles have been preserved. 

 Comparison of these three Jacobian reduction schemes showed that experimental 

design executed with the compressed Jacobian method produced the best data quality, 

followed closely by the simple method of truncation (expunging all boundary blocks 

from the Jacobian).  Moreover, the compressed and simple-truncation methods pro-

duced data quality comparable with experiments designed without reducing the Jaco-

bian matrix.  The main difference between these two successful reduction schemes, 

compared with the unaltered Jacobian approach, was that design times were reduced 

by a factor of more than 20.  This is a very significant improvement in computation 

time and constitutes an important contribution to the theory of experimental design. 
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6.9 Noisy Data 

Though data noise has already been discussed in the context of homogeneous and 

adapted designs, a separate concluding section is provided here to add a few pertinent 

final remarks. 

6.9.1 Data Noise Due to Electrode Misplacement 

In the 1D resistivity chapter, the issue of data noise created by electrode misplace-

ment errors was taken up.  Misplacement errors can derive from the finite precision 

with which electrodes can be placed, simple carelessness, or the need to place the 

electrode elsewhere because of obstacles. 

 A Monte Carlo exercise and subsequent statistical analysis showed that for 1D re-

sistivity soundings, the ideal spacing of the inner electrodes is ~43% of the spacing of 

the outer electrodes.  This spacing minimizes the expected error in an apparent resis-

tivity datum owing to electrode misplacement, regardless of the outer electrode spac-

ing.  Additionally, expected data errors decrease as the outer electrode spacing in-

creases.  This was a very unusual discovery, but the analysis was double checked two 

different ways and was found to be correct.  Among other things, it implies that the 

Wenner array (inner electrode spacing is 33% of the outer electrode spacing), which 

has for a long time been disregarded for being inferior to the Schlumberger array, 

might in fact be superior to the Schlumberger array in cases where electrode mis-

placement is a concern. 

 A Monte Carlo trial simulating random electrode misplacements for a 1D resistiv-

ity scenario strongly confirmed the unusual ‘43% Rule’.  It was statistically shown 

that modeling errors for a ‘43%-survey’ were considerably smaller than modeling er-

rors for a competing Schlumberger survey of comparable size. 

6.9.2 Random Data Noise 

The homogeneous and adapted experimental designs in this research showed a great 

deal of improvement in data quality over random and standard surveys when data 
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were noiseless, but these improvements partially evaporated when the data were con-

taminated with noise.  Two related hypotheses were posited to explain this apparent 

decline in survey performance, and both pertain to the model regularization scheme 

needed to stabilize the ill-posed/ill-conditioned inverse problems in this work. 

 First, in the presence of data noise, it was explained that the Lagrange multiplier 

governing the trade-off between the data rmse and model smoothness had to be kept 

larger than was the case for noiseless data.  The ultimate effect of which was that the 

inversion result was biased toward an external source of information – the smoothness 

constraint – for which designed experiments had not been optimized.  As a result, de-

signed experiments (which, it should be pointed out, still outperformed their standard 

and random competitors) did not perform as well as might have been expected and in 

fact performed much more similarly to random and standard surveys, which were also 

subject to increased reliance on the smoothness constraint. 

 Second – and this is really just an extension of the first – the design objective 

would need to be modified to incorporate the constraint matrix.  Because of the heavy 

reliance on constraints for ill-posed/ill-conditioned inverse problems in the presence 

of data noise, the eigenspectrum of the constraint matrix actually dominates the ei-

genspectrum of the Jacobian matrix for all but a handful of the lead eigenvalues.  It 

was hypothesized that the experimental design objectives might need to modified in 

such a way that they favor the large eigenvalues in the Jacobian, rather than the small, 

as these are the only eigenvalues that in effect convey information on the bridge be-

tween data and model space. 

6.10 Future Work 

Below is a non-exhaustive list of future avenues of research in geophysical OED. 

6.10.1 ERT Optimal ED Using Current Dipoles 

Two-dimensional and borehole resistivity experiments were designed one observation 

at a time, choosing from a large set of permitted quadrupoles.  Rather than designing 
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ERT experiments in this fashion, it might be possible to simplify the design method 

by designing using only current dipoles.  Each current dipole would automatically 

come with a suite of electrical potential observations (perhaps via a set of simple 

translating potential dipoles) that measure the potential field at all remaining elec-

trode positions.  This would reduce the ‘permitted number of observations’ very sig-

nificantly.  In fact, there would just be  current dipoles, which is considerably 

smaller than the  permitted quadrupole observations.   Hence, design time could 

be extraordinarily efficient, as the number of possible ‘observation sets’ would be 

small.  Moreover, it might also be much easier to identify a design pattern for a ho-

mogeneous earth when the design process is executed in terms of these observation 

sets. 

2N C

43 NC

6.10.2 Nonlinear Optimal Experimental Design 

It was explained in the Theory chapter that most contemporary methods of experi-

mental design operate on the Jacobian matrix, which is a linear approximation of the 

nonlinear forward operator.  In this sense, this work, and most historic work, in opti-

mal experimental design are examples of what might generally be termed approxi-

mately linear experimental design.  Contextually, experimental designs are only prac-

tically optimal in a neighborhood around the point in model space for which they 

have been designed.  If the true model is outside this conceptual ‘neighborhood of op-

timality’, the final inversion result for a designed survey can in no way be claimed to 

be optimal.  This naturally begs the question whether some form of nonlinear experi-

mental design might be better suited for design problems. 

 Instead of working with linear approximations of the forward modeling equa-

tion(s), perhaps there is some way of setting up design problems with respect to the 

nonlinear equation(s).  In fact, this author is aware of at least one group who has be-

gun to tackle the fully nonlinear problem (Andrew Curtis, personal communication).  

Hypothetically, working with the full nonlinear constitutive equations might be useful 

in designing more robust experiments whose optimality can be expected to encompass 
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a larger neighborhood in model space than can currently be defined with respect to 

linear approximations. 

6.10.3 An Exhaustive Comparison of Current Design 
Strategies 

As yet, an exhaustive comparison of current design methodologies has not yet been 

undertaken.  This would be a formidable but important next step in the development 

of geophysical OED theory.  It is envisioned that this study would entail a large num-

ber of comparative Monte Carlo exercises to compare the various design methods and 

would also account for computation time and feasibility in field settings.  This would 

require a very significant amount of coding and error checking, for each of the design 

methodologies has different objectives and may be better suited to one of any number 

of optimization algorithms. 

6.10.4 Incorporating Model Regularization 

As was discussed in the concluding remarks on data noise and experimental design, 

many of the results reported in this research indicated that the model smoothness con-

straints had an undue (though necessary) influence on inversion results.  The design 

objectives set forth in the Theory chapter were geared toward maximizing the infor-

mation in a survey that bridges model and data space; they did not address the infor-

mation imposed by model regularization, however.  In light of the heavy reliance on 

model regularization for noisy data inversions, the design objective might need to be 

modified to maximize the available information a survey provides.  That is, the in-

formation in the data that cannot be ‘swamped out’ or overwhelmed by the informa-

tion imposed by model constraints.  In short, future efforts at experimental design in 

the presence of noisy data should somehow incorporate the model regularization 

method into their optimization scheme. 

6.10.5 Field Trials 
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To this author’s knowledge, only a small number of actual field trials have been car-

ried out to assess OED methods in the real world.  This is forgivable because it is im-

portant to make sure the theory is right before going out to collect real data.  It is in 

our opinion time to bring the theory of geophysical OED into the world with real field 

examples. 

6.10.6 Combining Electrode Misplacement Errors and 
Random Errors in the OED Exercise 

An interesting prospect for one-dimensional resistivity OED would be to incorporate 

the two distinct error sources, electrode misplacement and random potential field fluc-

tuations, into the same OED exercise.  This research has looked at optimal survey de-

sign with respect to these noise sources independently of one another, but it might be 

possible to bring them together under the same optimization algorithm.  Appendix B 

concludes with an expression for the expected data noise due to electrode misplace-

ment. If this expression were incorporated into a data-error covariance matrix (which 

depends on the Jacobian) that also accounted for random field fluctuations, one might 

have the beginnings of a fine OED technique that addressed both error sources simul-

taneously. 

6.10.7 Continued Effort to Find Design Patterns 

The author concedes that efforts to find patterns in designed surveys over homogene-

ous media were fairly limited.  While the author does not relent on any of the argu-

ments concerning the difficulty of finding such patterns, it is certainly possible that 

the clever application of clustering algorithms or other artificial intelligence methods 

might go a long way toward identifying any patterns if they exist. 

6.10.8 Integrate Sequential and Global Design Strategies 

An interesting possibility would be to create a hybrid optimization technique that 

couples the two strategies.  In the first stage, a sequential design could be performed 
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to produce an experiment close to, but not quite, optimal.  This experiment would 

then be used to seed a global search algorithm, allowing the algorithm to start in the 

neighborhood of the optimal experiment and possibly greatly reducing convergence 

times.  
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Appendix A 

Differential Evolution 

Differential Evolution (DE) is an optimization technique for finding the critical point 

of a multivariable function, developed by Price, Storn and Lampinen (2005).  As its 

name implies, DE is an evolutionary algorithm that, similar to the genetic algorithm, 

evolves a solution that (with high probability) globally minimizes a multivariable 

function, even for functions with multiple critical points.  One of the distinguishing 

features of DE is that it operates on model vectors directly, rather than on their binary 

encodings.  This is advantageous because it removes resolution limitations imposed 

by binary representation. 

 Aside from working with real solutions rather than encoded representations, the 

primary difference between DE and the basic genetic algorithm is its crossover opera-

tion.  Crossover is effected by picking three solutions from the population (using a 

selection operator that favors the fittest solutions) and combining them to create a 

new trial solution.  The trial solution is created as follows: 

 ( )1 2trial α 3= − +x x x x

2

, (A.1) 

where x1, x2 and x3 are three solutions selected from the population, and α is scalar 

between 0 and 1.  In effect, 1 −x x  is a perturbation that is added to x3 to produce a 

trial solution.  This perturbation term is customarily scaled by α to expedite conver-

gence.   
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A nice property of (A.1) is that the magnitude of 1 2−x x  becomes small as the popula-

tion converges on a solution (convergence coincides with population homogeniza-

tion), so the magnitude of perturbations scales down with convergence.  This is simi-

lar to simulated annealing, where the magnitude of perturbations are controlled by a 

reduction schedule.  

Flowchart A-1 describes the mechanics of a basic differential evolution algorithm.
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Flowchart A-1 Differential Evolution Algorithm (after (Price et al., 2005)). 
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Appendix B 

Minimizing the Effects of Elec-
trode Misplacement  

The geometric factor is given by 

 
11 1 1 12k

AM BM AN BN
π

−
⎛= − − +⎜
⎝ ⎠

⎞
⎟ , (B.1) 

which is alternately expressed as 

 

2 1 3 1 4 2 4 3

2
1 1 1 1k

x x x x x x x x

π
=

− − +
− − − −

, (B.2) 

where 1 2 3 4x x x x< < <  and  

 

2 1

3 1

4 2

4 3

AM L l x x
AN L l x x
BM L l x x
BN L l x x

= − = −
= + = −
= + = −
= − = −

. (B.3) 

If the misplacement error for electrode xj is jxδ , it follows by the Chain Rule that the 

error in k is approximated by 

 1 2 3
1 2 3 4

k k k kk x x x
x x x x 4xδ δ δ δ∂ ∂ ∂ ∂

≅ + + +
∂ ∂ ∂ ∂

δ . (B.4) 

If we are interested in the percent error, we divide (B.4) by k, producing 

 1 2 3
1 2 3 4

1 1 1 1k k k k k
4x x x

k k x k x k x k x
xδ δ δ δ∂ ∂ ∂ ∂

≅ + + +
∂ ∂ ∂ ∂

δ . (B.5) 
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If we assume that the misplacement errors are random and uncorrelated, it follows 

from (B.5) that  

 ( ) ( ) ( ) ( )
22 22

2 2 2
1 2 3

1 2 3 4

1 1 1 1k k k k k
2

2
4x x x x

k k x k x k x k x
δ δ δ δ δ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ≅ + + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
,(B.6) 

from which it is seen that k kδ  is the square root of the sum of the squared percent 

errors.  

 If the misplacement errors are random variables that come from the same zero-

mean distribution with variance, 2σ , we can determine the expected value of Equa-

tion (B.6), 

 
2k

k
δ⎛ ⎞

⎜ ⎟
⎝ ⎠

, (B.7) 

by taking advantage of the fact that 

 ( ) ( ) ( ) ( )2 2 2 2 2
1 2 3 4x x x xδ δ δ δ= = = σ= ; (B.8) 

hence, 

 
22 22

2

1 2 3

1 1 1 1k k k k k
k k x k x k x k

δ σ
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ≅ + + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂ ∂ ∂⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

2

4x
. (B.9) 

Note that Equation (B.9) can be simplified to 

 (
2

2 ln lnk k
k

δ σ⎛ ⎞ = ∇ ⋅∇⎜ ⎟
⎝ ⎠

x x )k , (B.10) 

where ∇  is the gradient operator with respect to the electrode positions.   x

 Equation (B.10) expresses the expected squared percent error in the geometric fac-

tor due to electrode misplacement (where the misplacements have variance 2σ ).  If 

we wish to minimize this expected error, we must choose electrode positions, xj, that 

minimize (B.10).  The gradient of ln k is 

 310



 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2
3 1 2 1

2 21
4 2 2 1

2 1 3 1 4 2 4 3
2 2

3 1 4 3

2 2
4 3 4 2

1 1

1 1

1 1 1 1ln
1 1

1 1

x x x x

x x x x
k

x x x x x x x x
x x x x

x x x x

−

⎡ ⎤−⎢ ⎥− −⎢ ⎥
⎢ ⎥

+⎢ ⎥
− −⎛ ⎞ ⎢ ⎥∇ = − − +⎜ ⎟ ⎢ ⎥− − − −⎝ ⎠ ⎢ ⎥− −
− −⎢ ⎥

⎢ ⎥
⎢ ⎥−
⎢ ⎥− −⎣ ⎦

x . (B.11) 

Because the electrodes are placed concentrically about the center of the survey, it is 

convenient to introduce the following substitutions: 1 2 3 4, , ,x L x L x L x Lα α= − = − = = .  

These substitutions allow us to express the entire survey in terms of the outer elec-

trode spacing, L, and a fractional factor, α, which multiplies L to produce the inner 

electrode spacing.  Using these substitutions, Equation (B.11) becomes 

 

( )

( )

( )

( )

2

2

2

2

2

2

1
1

1
2 1

ln
1

2 1

1
1

L

L
k

L

L

α

α
α α

α
α α

α

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥+
⎢ ⎥

−⎢ ⎥
∇ = ⎢ ⎥

+⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

x . (B.12) 

Plugging (B.12) into (B.10), we arrive at the following expression for the expected 

squared percent error of the geometric factor: 

 
( )

2 2 4
2

22 2 2

1 6

2 1

k
k L

δ ασ
α α

⎛ ⎞+ +⎛ ⎞ ⎜=⎜ ⎟ ⎜ ⎟⎝ ⎠ −⎝ ⎠

α ⎟

1

, (B.13) 

defined over the interval 0 α< < .  We need to minimize this expression with respect 

to α to determine the inner electrode spacing (for fixed L) that produces the smallest 

error in the geometric factor (recall the inner electrode spacing is given by αL).  This 

is done by setting the derivative of (B.13) with respect to α to zero and solving for α: 
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( )

2 6 4 2
2

32 3 2

13 3 1 0
1

k
k L

δ α α ασ
α α α

∂ + +⎛ ⎞ −
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. (B.14) 

Equation (B.14) can be simplified to  

 6 4 213 3 1 0α α α+ + − =  (B.15) 

without loss of generality, and a root finding algorithm can be employed to find solu-

tions for α (the Mathematica root finder was used here).  The roots are 

 { 0.429195,  0.652292 ,  3.57194 }i iα = ± ± ± , (B.16) 

and only one root satisfies the condition 0 1α< < , 

 0.429195α = . (B.17) 

 Careful algebraic manipulation, using the cubic formula, reveals that the single 

positive root of (B.15) is given by the expression 

 
1/ 2

113 8 10 1 3 111cos tan 0.429195
3 3 3 251

α π −
⎛ ⎞⎡ ⎤⎛ ⎞
⎜ ⎟= − + − =⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

. (B.18) 

 

 As an aside, if we take the square root of (B.13) we have the coefficient of varia-

tion of the geometric factor.  This follows because ( )2 2
k kk k 2δ σ µ= , where 2 2

kkδ σ=  

is the expected variance and 2
kk 2µ=  is the expected squared mean of the geometric 

factor.  Taking the square root therefore yields the coefficient of variation, k kσ µ
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Appendix C 

Pseudosection Survey 

The Pseudosection survey for an array of 10 electrodes is tabulated at 

right.  A and B designate the positive and negative transmitter elec-

trodes, respectively; M and N designate the positive and negative re-

ceiver electrodes, respectively.  

A B M N
1 1 2 3 4
2 1 2 4 5
3 1 2 5 6
4 1 2 6 7
5 1 2 7 8
6 1 2 8 9
7 1 2 9 10
8 2 3 4 5
9 2 3 5 6

10 2 3 6 7
11 2 3 7 8
12 2 3 8 9
13 2 3 9 10
14 3 4 5 6
15 3 4 6 7
16 3 4 7 8
17 3 4 8 9
18 3 4 9 10
19 4 5 6 7
20 4 5 7 8
21 4 5 8 9
22 4 5 9 10
23 5 6 7 8
24 5 6 8 9
25 5 6 9 10
26 6 7 8 9
27 6 7 9 10
28 7 8 9 10
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Appendix D 

ERL Survey 

The ERL Survey for an array of 10 electrodes is tabulated on the next page.  The same 

descriptions for A, B, M and N apply as in Appendix C.  
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A B M N A B M N A B M N A B M N
1 1 2 3 4 46 1 4 8 9 91 9 10 7 8 136 1 10 4 5
2 1 2 4 5 47 1 4 9 10 92 8 10 1 2 137 1 10 5 6
3 1 2 5 6 48 1 5 2 3 93 8 10 2 3 138 1 10 6 7
4 1 2 6 7 49 1 5 3 4 94 8 10 3 4 139 1 10 7 8
5 1 2 7 8 50 1 5 6 7 95 8 10 4 5 140 1 10 8 9
6 1 2 8 9 51 1 5 7 8 96 8 10 5 6
7 1 2 9 10 52 1 5 8 9 97 8 10 6 7
8 2 3 4 5 53 1 5 9 10 98 7 10 1 2
9 2 3 5 6 54 1 6 2 3 99 7 10 2 3

10 2 3 6 7 55 1 6 3 4 100 7 10 3 4
11 2 3 7 8 56 1 6 4 5 101 7 10 4 5
12 2 3 8 9 57 1 6 7 8 102 7 10 5 6
13 2 3 9 10 58 1 6 8 9 103 7 10 8 9
14 3 4 5 6 59 1 6 9 10 104 6 10 1 2
15 3 4 6 7 60 1 7 2 3 105 6 10 2 3
16 3 4 7 8 61 1 7 3 4 106 6 10 3 4
17 3 4 8 9 62 1 7 4 5 107 6 10 4 5
18 3 4 9 10 63 1 7 5 6 108 6 10 7 8
19 4 5 6 7 64 1 7 8 9 109 6 10 8 9
20 4 5 7 8 65 1 7 9 10 110 5 10 1 2
21 4 5 8 9 66 1 8 2 3 111 5 10 2 3
22 4 5 9 10 67 1 8 3 4 112 5 10 3 4
23 5 6 7 8 68 1 8 4 5 113 5 10 6 7
24 5 6 8 9 69 1 8 5 6 114 5 10 7 8
25 5 6 9 10 70 1 8 6 7 115 5 10 8 9
26 6 7 8 9 71 1 8 9 10 116 4 10 1 2
27 6 7 9 10 72 1 9 2 3 117 4 10 2 3
28 7 8 9 10 73 1 9 3 4 118 4 10 5 6
29 1 2 3 4 74 1 9 4 5 119 4 10 6 7
30 1 2 4 5 75 1 9 5 6 120 4 10 7 8
31 1 2 5 6 76 1 9 6 7 121 4 10 8 9
32 1 2 6 7 77 1 9 7 8 122 3 10 1 2
33 1 2 7 8 78 1 10 2 3 123 3 10 4 5
34 1 2 8 9 79 1 10 3 4 124 3 10 5 6
35 1 2 9 10 80 1 10 4 5 125 3 10 6 7
36 1 3 4 5 81 1 10 5 6 126 3 10 7 8
37 1 3 5 6 82 1 10 6 7 127 3 10 8 9
38 1 3 6 7 83 1 10 7 8 128 2 10 3 4
39 1 3 7 8 84 1 10 8 9 129 2 10 4 5
40 1 3 8 9 85 9 10 1 2 130 2 10 5 6
41 1 3 9 10 86 9 10 2 3 131 2 10 6 7
42 1 4 2 3 87 9 10 3 4 132 2 10 7 8
43 1 4 5 6 88 9 10 4 5 133 2 10 8 9
44 1 4 6 7 89 9 10 5 6 134 1 10 2 3
45 1 4 7 8 90 9 10 6 7 135 1 10 3 4
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