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Doctor of Philosophy

Abstract

Model order reduction methods have proved to be an important technique for accel-
erating time-domain simulation in a variety of computer-aided design tools. In this
study we present several new techniques for model reduction of the large-scale linear
and nonlinear systems.

First, we present a method for nonlinear system reduction based on a combination
of the trajectory piecewise-linear (TPWL) method with truncated-balanced realiza-
tions (TBR). We analyze the stability characteristics of this combined method using
perturbation theory.

Second, we describe a linear reduction method that approximates TBR model
reduction and takes advantage of sparsity of the system matrices or available ac-
celerated solvers. This method is based on AISIAD (approximate implicit subspace
iteration with alternate directions) and uses low-rank approximations of a system’s
gramians. This method is shown to be advantageous over the common approach of
independently approximating the controllability and observability gramians, as such
independent approximation methods can be inefficient when the gramians do not
share a common dominant eigenspace.

Third, we present a graph-based method for reduction of parameterized RC cir-
cuits. We prove that this method preserves stability and passivity of the models for
nominal reduction. We present computational results for large collections of nominal
and parameter-dependent circuits.

Finally, we present a case study of model reduction applied to electroosmotic
flow of a marker concentration pulse in a U-shaped microfluidic channel, where the
marker flow in the channel is described by a three-dimensional convection-diffusion
equation. First, we demonstrate the effectiveness of the modified AISIAD method in
generating a low order models that correctly describe the dispersion of the marker
in the linear case; that is, for the case of concentration-independent mobility and
diffusion constants. Next, we describe several methods for nonlinear model reduction
when the diffusion and mobility constants become concentration-dependent.
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Notation

The following notation is used throughout this thesis:

AT , A∗, A−1 Matrix transpose, complex-conjugate transpose, inverse
∃,∀,→,∈ There exist, for all, converges to, is element of

n Original order (state dimensionality of the original system)
q Reduced order (state dimensionality of the reduced system)

Rn,Rn×n Space of all real vectors of length n, space of real matrices n× n
x ∈ Rn state vector of the original system
z ∈ Rq state vector of the reduced system

k, m Number of output signals and number of input signals
u(t) ∈ Rm, y(t) ∈ Rk vector of input signals, vector of output signals

s, j Complex frequency, imaginary unity
<,= Real part, imaginary part

Ar The superscript r denotes the matrix of a reduced system.
(A,B, C, D) Linear state-space dynamical system (1.7)

G(s) Transfer function of a linear dynamical system (1.6)
G,C Conductance matrix, capacitance matrix (in Chapter 6)
U, V Projection matrices (Section 2.2)

λi(A), Λ(A) i-th eigenvalue of A, spectrum of A
σ1, . . . σn Hankel singular values of the system (Page 44 )

P, Q System’s controllability and observability gramians (Section 2.2.3)
colsp Column span (also called range) of a matrix

diag(x1, . . . , xk) Diagonal (as well as block-diagonal) matrix with diagonal x1, . . . xk.
Kν(A,B) Krylov subspace; Kν(A,B) = colsp{B,AB,A2B, . . . Aν−1B}

⊆ Subset{
∂f
∂x

∣∣∣
x0

}
Jacobian matrix (matrix of derivatives) of f at the point x0

‖ · ‖ 2-norm of a vector or a matrix
cond(A) Matrix condition number

qr(A), svd(A) QR-decomposition of A, singular value decomposition of A
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Chapter 1

Introduction

Any intelligent fool can make things bigger, more complex, and more violent.

It takes a touch of genius, and a lot of courage to move in the opposite direction.

- Albert Einstein

The topic of model order reduction has a lot of interpretations. In general, the

terms similar to “reduced-basis approximation” or “dimensionality reduction” can be

found virtually in any engineering discipline. In this work we consider approximations

of continuous-time dynamical systems.

Model order reduction algorithms, broadly speaking, aim at approximating a

“complex system” (in the sense, which will be described later) by a “simpler sys-

tem”, while preserving, as much as possible, input-output properties of this system.

In this thesis, we focus on several methods of model reduction for linear and

nonlinear dynamical systems.

1.1 Motivations for model reduction

In this section, we outline several applications of MOR techniques.
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1.1.1 Compact macromodels for system-level simulation and

optimization

There is a strong need for obtaining compact dynamical models for accelerated sim-

ulation of complex interconnected systems, such as integrated circuits (ICs). In such

systems it is usually possible to obtain a large discretized model of each subsystem

from first principles, however simulating the overall system using these big models

of subsystems is computationally infeasible. Therefore, first each subsystem must be

approximated by a smaller dynamical system.

In various design problems some parameters of the physical system need to be

found, in order to optimize performance of a device. In such cases the need for a

parameterized reduced model arises. Employing such models significantly accelerates

system-level optimization, since during any optimization cycle the model is being

evaluated many times, for different values of design parameters.

1.1.2 Real-time control systems

Model reduction is also essential when an active control is being used in a feedback

system. Very frequently the result of an optimal feedback design is a high-order

dynamical system, which is expensive to implement. Model reduction can help in

reducing the complexity of such controller.

1.2 Background and problem formulation

1.2.1 Dynamical systems

In general, a dynamical system is a mapping from the space of input signals to the

space of output signals. By the term signal we mean a real vector-valued function of

a time variable [59]. Dynamical systems can be divided into two main classes, based

on the nature of this time variable:

• Discrete-time (DT) system, where the time variable is a set of integers.

20



• Continuous-time (CT) systems, where the time variable is a set of real numbers.

In this work we consider solely model reduction problem for continuous-time sys-

tems. In general, when a continuous-time system is being simulated on a computer,

it is always converted to a discrete-time system by means of time discretization:

û[i] ≈ u(iτ), x̂[i] ≈ x(iτ), ŷ[i] ≈ y(iτ),

where u(t), x(t) and y(t) are the continuous time input, state and output (for the

case of a state-space system, more details on the state-space models below), while

û[i], x̂[i] and ŷ[i] are the corresponding sampled (discretized) approximations. How-

ever, very frequently not only a time-step τ can change during the simulation, but

also the discretization algorithm. Therefore, both the input and the output of model

reduction routines for physical-domain simulations are generally continuous-time dy-

namical systems1.

In this work we consider solely time-invariant (TI) systems, namely the systems

which do not explicitly depend on the time variable: if an input signal u(t) produces

an output y(t), than for input u(t + δ) the system will produce output y(t + δ). Here

and for the rest of this work, u(t) denotes an input signal and y(t) denotes an output

signal.

Another assumption which will be implicitly made throughout this work is the

causality of the systems. We assume that the system’s output at any time is com-

pletely determined by past and current values of inputs, and is independent of the

future input values.

There are several most frequently used model descriptions for CT time-invariant

systems (sorted by increasing complexity of analysis)[88]:

1. Memoryless dependence:

y(t) = f(u(t)) (1.1)

1Quite frequently MOR routines use conversions to DT model to perform certain computations.

21



2. An ordinary differential equation (ODE) form, also called a state-space form:





ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))
, x(t) ∈ Rn (1.2)

Here a time-dependent vector x(t) called state summarizes all the past inputs

u(t) needed to evaluate future outputs y(t) of the system. In certain cases,

state-space models are written in a more general form:





dh(x)
dt

= f(x(t), u(t))

y(t) = g(x(t), u(t))
, x(t) ∈ Rn,

h(·) : Rn → Rn

f(·, ·) : Rn × Rm → Rn

g(·, ·) : Rn × Rm → Rk

(1.3)

Such descriptions arise, for example, from simulation of electrical circuits with

nonlinear capacitors and/or nonlinear inductors2.

3. A delay-differential equation (DDE), (also called time-delay system):





ẋ(t) = f(x(t), x(t− τ1), . . . , x(t− τv), u(t))

y(t) = g(x(t), x(t− τ1), . . . , x(t− τv), u(t))
(1.4)

4. A system of (nonlinear) partial differential equations (PDE):




F(x, ∂x

∂t
, ∂x

∂w1
, . . . , ∂x

∂wv
, w1, . . . , wv, u) = 0

y = G(x, w1, . . . , wv, u)
, x(w1, . . . , wv, t) ∈ Rν (1.5)

Here the state x is a vector-valued function of v continuous variables w1, . . . , wv

and time; F and G are vector-valued nonlinear operators.

2In general, for some choice of functions f(·) and g(·) with certain initial conditions, the equation
(1.3) may not have a solution (or may have infinitely many of them). These “troublesome cases”
appear for such states x when the Jacobian of g (matrix of derivatives)

{
∂g
∂x

}
becomes singular,

and therefore effectively some equations represent a constraint rather than the implicit differential
equation. We are considering the equation (1.3) with implicit assumption that nonlinearities in g(·)
are weak enough to make its Jacobian singular for practical values of x.
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PDE (1.5)

DDE
(1.4)

SS (1.2)

Alg (1.1)

dSS
(1.3)

Linear

Figure 1-1: The set relationships between different dynamical system descriptions

All of the above descriptions define a certain subspace in a (linear) space of all

possible dynamical systems (for a given number of input and output signals), and

each can be linear or nonlinear. The above mentioned descriptions, along with the

appropriate initial conditions for non-algebraic relationships, uniquely identify a dy-

namical system. However, there is a redundancy in the descriptions via differential

equations, for example, in the descriptions (1.3, 1.4) we can always change variables

as x = V x̃, using any square nonsingular matrix V ∈ Rn×n and obtain a system with

completely identical input-output behavior.

When modeling physical devices, the first-principle descriptions are usually de-

scribed in the form (1.5), and by using a spatial discretization methods (for example,

finite-difference, finite-volume, finite-element) or by other kinds of methods they are

converted to either (1.2) or (1.3).

The encapsulation scheme of the classes above is depicted on figure 1-1.
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1.2.2 Stability of a dynamical system

For an arbitrary dynamical system there are two major kinds of stability notions:

internal stability and external stability. The internal stability considers trajectories of

an autonomous system ẋ(t) = f(x(t)), i.e. system without any inputs and outputs;

this way, it is a property of internal dynamics of the system. External stability

concerns with how much the system amplifies signals. One of such notions is a

BIBO-stability (BIBO stands for “bounded input - bounded output”). The system is

BIBO-stable if and only if any bounded input signals will necessarily produce bounded

output signals.

In our work we will consider mostly the internal stability of systems locally near

equilibrium states. An equilibrium state is a state that the autonomous system can

maintain for an infinite time. There are many notions of local internal stability,

among which we will be mostly concerned with two:

Definition 1.2.1 (Lyapunov stability). An equilibrium state x0 is called Lyapunov-

stable, if ∀ε > 0, ∃δ > 0, such that if ‖x(t0)−x0‖ < δ, then ‖x(t)−x0‖ < ε, ∀t > t0.

A stronger notion is the following:

Definition 1.2.2 (Asymptotic stability). An equilibrium state x0 is called asymptot-

ically stable if it is stable in sense of Lyapunov and in addition x0 is attractive, i.e.

∃γ > 0 such that if ‖x(t0)− x0‖ < γ, then x(t) → x0, as t →∞.

A frictionless pendulum with x0 corresponding to the resting state is an example

of a Lyapunov-stable system around x0, but not asymptotically stable. A pendulum

with friction is an asymptotically stable system around such x0.

The system ẋ1 = ux1, y = x1 has any point x1 as an internal equilibrium; it is

Lyapunov-stable around any x1, but not asymptotically stable. It is not BIBO stable,

either.
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1.2.3 Passivity of the dynamical model

There is a number of problem-dependent constraints, apart from stability, which

are required for some models of real devices. One such constraint, which is very

important for circuit simulation, is called passivity. A model of a circuit is passive

if it doesn’t generate energy. This notion ultimately depends on the nature of the

input and output signals. For example, if the dynamical model represents a passive

linear subcircuit3 where input signals are port currents and output signals are port

voltages, the passivity constraint would require such a system to be positive-real [87].

We will have more to say about such constraints in the following Chapters.

1.2.4 Linear dynamical models

The subset of linear time-invariant (LTI) dynamical systems within each class de-

scribed in (1.1 - 1.5) is pretty obvious: one just needs to restrict all of the functions

g(. . . ), f(. . . ), h(. . . ), F(. . . ), G(. . . ) to be linear with respect to their arguments. In

addition, since we are considering only causal systems, we are assuming zero initial

conditions of all state variables at t = −∞.

An essential property of any linear dynamical system is its transfer function G(s),

which describes an algebraic relation between input and output signals in the Laplace

domain:

Y (s) = G(s)U(s), U(s) = L(u(t)) ,
∫ ∞

−∞
e−stu(t)dt, Y (s) = L(y(t)), (1.6)

where U(s) and Y (s) denote Laplace transforms (vector-valued functions of a com-

plex frequency s) of the input and output signals, respectively. Alternatively, one

can think of a system’s transfer function as a Laplace transform of system’s impulse

response. Strictly speaking, a given transfer function may correspond to several dif-

ferent dynamical systems (depending on the region of convergence), however if one

assumes that the system is causal, specifying a transfer function uniquely specifies

3A passive subcircuit is a part of a circuit, which does not contain any kind of energy sources.
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the linear dynamical system4.

1.2.5 Model reduction methods - problem setup

As it is shown on the figure 1-1, the most general model description is based on

partial differential equations (PDE). When simulating physical devices with dynamics,

the first-principle descriptions are usually of this kind. However, such a description

usually cannot be directly simulated on a computer. Only systems in the form (1.2),

(1.3) or (1.4) can be simulated using generic ODE or DDE solvers [73, 80]. Therefore,

spatial discretization is required. However, obtaining a compact discretized dynamical

model for a given PDE and geometry is usually very difficult, unless the system has

a very simple geometry. There exist several model reduction methods which aim at

producing compact macromodels directly from a PDE description of, for example,

transmission lines [24]; however such methods are targeted at very particular devices.

All generic discretization algorithms, such as the finite-element method and the finite-

difference method, usually produce large dynamical system descriptions in the form

of a state-space (1.2) or descriptor state space (1.3).

The departing point of almost all general-purpose model reduction methods are

state-space models (1.2) or (1.3), or their linear counterparts:





ẋ = Ax + Bu

y = Cx + Du
,

x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m

C ∈ Rk×n, D ∈ Rk×m
(1.7)

and





Eẋ = Ax + Bu

y = Cx + Du
,

x ∈ Rn, A, E ∈ Rn×n, B ∈ Rn×m

C ∈ Rk×n, D ∈ Rk×m
(1.8)

Summarizing, the model construction workflow for simulation can be outlined as

4Laplace transform of a function does not uniquely specify it’s original: for example, the transform
1

s+1 may correspond to either e−thh(t), or −e−thh(−t), where hh(·) is the Heaviside step function.
Specifying additionally the region of convergence of the Laplace transform uniquely specifies the
original function. Initial conditions play similar role in the time-domain system description via
ODE.
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the following:

1. Given a system to be simulated, obtain a (large) state-space model by using any

applicable discretization technique (for example, finite-element method, finite-

difference method, etc.).

2. Reduce the number of unknowns in the state vector using model reduction.

1.2.6 Reduction accuracy measures

How can we quantify how well a reduced system “approximates” the original system?

One way is to define an error signal, e(t), as the difference between outputs of the

reduced and the original system for the same input signal u(t). We can use any

measure of the resulting map u(t) → e(t) to characterize the error (cf. Figure 1-2).

Initial system

Reduced

system

+
-

u(t) y(t) e(t)

yr (t)

Figure 1-2: Measuring error of approximation

There are many such system measures ([18], Chapter 16); one of the most impor-

tant ones is L2-gain, which for linear time-invariant systems equals to H∞ norm of the

system’s transfer function [53]. If such measure is used for quantification of the re-

duction accuracy, this would correspond to equally weighting error for all frequencies

of operation. For linear systems, this would lead to the problem of H∞-optimal re-

duction with error metric as in (2.21). This way, we are talking about wide-bandwidth

models, i.e. models which should be valid in essentially large frequency span, com-

pared to the system’s dynamics. This kind of model reduction problems can be solved

using balancing methods similar to the method described in Section 2.2.3. There are
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frequency-weighted versions of balancing methods. For an overview of such methods

the reader is referred to [8].

However, very frequently the MOR accuracy is treated quite differently. As an

example, when simulating passive electrical circuits it is enough to reproduce only

a low-frequency behavior. For example, preserving an Elmore delay (approximate

rise-time of a step response) requires a first-order accurate matching of the system’s

frequency response near zero frequency. Here we are concerned with narrow-band

models. Moment-matching methods based on Krylov-subspace projections (see Sec-

tion 2.2.2) are quite often used for such applications. In such cases we can link the

reduction accuracy with the number of matched moments.

In various application areas other accuracy measures can be considered. For ex-

ample, in Chapter 6 we are using yet another error measure (6.29), which effectively

scales the error tolerance according to the magnitude of the unreduced system’s re-

sponse. This measure is adequate if, for example, one wants to preserve very small

entries of the transfer function, or in cases where at certain frequencies the transfer

function is infinitely large.

Finally, almost every application area requires the reduced models to be stable.

In addition, passivity of the reduced model is also required in some cases.

1.2.7 Model complexity measures

As we have mentioned, the goal of model reduction is to approximate a “complex”

dynamical system by a “simpler” one. Here by model complexity we mean the cost

associated with the time of simulating the model alone or as a sub-system in a larger

system. This is an informal definition of model complexity.

For linear systems such simulation cost can be treated as growing (no slower than

linearly) with the dimensionality of the state vector. It is very important to note

that the cost of evaluating right-hand side of (1.7) is different depending on whether

matrix A is sparse or not, since majority of commercial simulators take advantage of

the sparsity. From another hand, by employing the eigenvalue decomposition of A one
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can almost always transform A to tri-diagonal form5. Therefore, assuming that the

number of input and output signals is not too large, the number of nonzero entries,

which this model introduces into the overall Jacobian matrix6, is proportional to the

order of the system n.

For nonlinear systems an analysis of complexity is more complicated and we will

describe it in Chapter 3.

1.2.8 Trade-offs and practical reduction methods

In general, there is no ideal reduction method which would solve all the problems,

even for linear dynamical systems. As we have already observed for the case of the

accuracy metric, different applications require different trade-offs to be chosen. In

some applications the time of reduction is extremely important, so even for moderate

sizes of original systems, methods like balancing (see Section 2.2.3) are too expensive.

This way, the size of reduced model may be sacrificed for reduction speed. In other

application areas the reduced models are being simulated and used for a long time,

therefore it is extremely important to get the most compact model possible, therefore

justifying more expensive reduction algorithms.

The following is a general list of such trade-off directions.

• Speed of the reduction process

• Quality of reduction (getting a smaller model for given accuracy)

• Reliability of the method (for example, preservation of stability, error bounds)

• Region of applicability (i.e. frequency range where error is small)

• Generality of the reduction method (exploring symmetry of matrices etc.)

5If matrix A is diagonalizable and has real spectrum, then by change of variables we can transform
the system to A in a diagonal form. If A is diagonalizable and has complex-conjugate pairs of
eigenvalues, we can represent each complex-conjugate pair with 2× 2 block on the diagonal. In the
general case of non-diagonalizable matrices, a real Jordan form can be used.

6Here we consider a case where the system to be reduced is a part of some big nonlinear network
to be simulated. Sparsity of the derivative matrix (Jacobian) of this big system is very important for
accelerating such simulation. All of the nonzero entries in matrices A,B,C and D of the sub-system
we are reducing will be typically introduced into this global Jacobian.
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As an example, Krylov-subspace methods are fast, but do not have stability and

error guarantees for general systems. The TICER method described in the Chapter

6 exploits the fact that the underlying system is an RC network, and performs a

narrow-band approximation, but on the positive side it is very fast and preserves

passivity of the model.

The reduction problem can be posed in two alternative ways:

• Find the most compact model for a given accuracy metric

• Find the best approximation among all systems of a given complexity, which

usually corresponds to the order.

Solving the first problem requires either an a-priori error bound, or iterative search

over the space of reduced orders. Alternatively, a heuristic can be employed based on

large number of training examples.

Many model reduction methods assume a particular reduced order, therefore they

fall into the second category. Such methods are quite frequently used as an inner

loop for the first problem. With this in mind, one of the desirable properties of such

MOR methods is incrementality, i.e. ability to re-use computations while iterating

over reduced orders.

1.3 Thesis contributions and outline

The next two Chapters are of an introductory nature and provide an in-depth overview

of the model reduction methods for linear (Chapter 2) and nonlinear (Chapter 3)

dynamical systems. The rest of the dissertation contains the following major contri-

butions:

• In the Chapter 4 we analyze applicability and properties of the TBR-based

TPWL nonlinear reduction method. We also provide perturbation analysis of

the TBR reduction in order to assess the stability of the reduced models.

• In the Chapter 5 we present a fast approximation of the TBR linear model

reduction method called modified AISIAD.
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• In the Chapter 6 we present a graph-based linear reduction method for para-

meterized RC circuits.

• In the Chapter 7 we provide a case study for the linear and nonlinear models

of a microfluidic channel.

Conclusions end the dissertation.
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Chapter 2

Linear model reduction methods –

an overview

Everything that can be invented has been invented.

- Charles H. Duell, Commissioner, U.S. Office of Patents, 1899.

The problem of linear model reduction can be stated as following: given a system

in the form (E, A, B, C, D) as in (1.8), obtain a reduced system (Er, Ar, Br, Cr, Dr),

which approximates the original system.

Applying Laplace transform to the both sides in (1.8), yields the following expres-

sion for the transfer function G(s), which is defined in (1.6):

G(s) = D + C(sE − A)−1B. (2.1)

That is, the transfer function is a k × m matrix, where each element is a ra-

tional function of s. Therefore, the problem of linear model reduction turned into

the approximation of one matrix of rational functions by another matrix of rational

functions, with smaller state-space representation.

One should note that if the matrix E in (1.8) is nonsingular, then the model

reduction for the system (1.8) can be (formally) cast as a model reduction for the

system (E−1A,E−1B,C,D) in (1.7), however this transformation has two possible

disadvantages. First, matrices E and A might be sparse, but matrix E−1A may
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be dense; therefore manipulations with such a model may be much more expensive.

Second, computing an inverse of matrix E may lead to numerical round-off errors.

All model reduction methods can be divided into two major classes:

1. Projection-based methods

2. Non projection-based methods

In this Chapter we describe some of the most popular generic linear model reduc-

tion methods. We should note however that there is a variety of specialized methods

targeted at a particular subclasses of systems, for example, RLC circuits etc. We

start with some necessary background from linear systems theory.

2.1 Properties of linear dynamical systems

Though arbitrary linear time-invariant systems can exhibit even more complex behav-

ior, the class of systems that are represented by a state space (1.8) having a transfer

function (2.1) is of paramount importance to our analysis1. There are two important

sub-classes of this class, namely proper and stable systems.

2.1.1 Proper systems

Definition 2.1.1. The system (1.8) is called proper if all elements of the transfer

function matrix G(s) in (2.1) are proper rational functions of s, i.e. the degrees

of the numerator polynomials are not greater than the degrees of the corresponding

denominator polynomials. The system is called strictly proper if the numerator

degrees are strictly less than the denominator degrees.

In other words, a proper system is a state-space system, whose transfer function

doesn’t infinitely grow as s → j∞.

A sufficient condition for the system (1.8) to be proper is that matrix E is non-

singular. The reverse is not necessarily true: under certain conditions a singular E

results in a proper system.

1As before, in addition to the system’s ODE (1.8) we assume causality
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In general, a transfer function (2.1) with singular E can be represented as a sum

of a proper transfer function and a matrix of polynomials in s:

G(E,A,B,C,D) = Gp.r.(s) +
∑
i>0

Gis
i, Gi ∈ Rk×m, (2.2)

where Gp.r.(s) is a matrix of proper rational functions of s.

2.1.2 Stability of linear systems

The following results are well-known in literature [18], p. 137:

Theorem 2.1.1 (Asymptotic stability of linear systems). The causal system (A,B,C, D)

is asymptotically stable around x0 = 0 if and only if all eigenvalues of matrix A have

strictly negative real parts.

Theorem 2.1.2 (Marginal stability of linear systems). The causal system (A,B,C,D)

is Lyapunov-stable around x0 = 0 if and only if all real parts of eigenvalues of A are

nonpositive. In addition, all pure imaginary eigenvalues of A should have their alge-

braic multiplicities equal to their geometric multiplicities.

As it can be seen, determination of the (internal) stability of any LTI system

(A,B, C, D) is quite simple by computing eigenvalues of matrix A. For systems in

descriptor form (E, A,B,C,D) asymptotic stability is guaranteed if and only if all

finite generalized eigenvalues of the pair (E,A) lie in the open left-half plane [78].

2.2 Projection-based linear MOR methods.

Projection-based model reduction methods are by far the most widely used MOR

methods [8]. In addition, projection-based methods generalize naturally to handle

nonlinear systems.

Consider a dynamical system (E, A, B, C, D) as in (1.8). A reduced model can be

obtained by (formally) changing the variables x = Uz, U ∈ Rn×q, and projecting the
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residual in the first equation of (1.8) onto the column span of some matrix V ∈ Rn×q:





V T EUż = V T AUz + V T Bu

y = CUz + Du
, z ∈ Rq, (2.3)

The equation (2.3) can be viewed as a reduced-order system (V T EU, V T AU, V T B,CU,D)

of order q.

An essential property of the projection-based methods is the fact that the transfer

function of the reduced system depends only on the column spans of the projection

matrices U and V (Proposition 6 in [44], p. 23).

All projection-based methods, such as Krylov-subspace methods, proper orthog-

onal decomposition, truncated balanced realizations and other kinds are essentially

constructing such matrices V and U according to certain considerations.

One should note that, in general, if projection matrices U and V are dense, and

the original matrices A and E are sparse, then the system matrices V T EU and V T AU

will be dense, and therefore the simulation of a reduced model might take longer than

simulation of the original model, unless a real eigenvalue decomposition is employed

for the reduced system.

The most widely used general classes of projection-based MOR methods are the

following:

1. Proper Orthogonal Decomposition (POD) methods

2. Krylov-subspace and shifted Krylov-subspace methods

3. Balancing-based methods

The first two kinds of methods are generally fast and can take advantage of the

sparsity of the system matrices. On the negative side, such methods are generally

less reliable and are less accurate for a given order than the balancing-based methods.

The latter class of methods, in general, have an O(n3) computational complexity, even

for sparse models. On the positive side however, these methods possess a-priori error

and stability guarantees; they generally produce more compact models.
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Below we provide the most important features and descriptions of the most pop-

ular of these algorithms.

2.2.1 Proper Orthogonal Decomposition methods

This family of methods was discovered independently in many application areas, hence

there are many names (POD, Karhunen-Loéve decomposition, Principal Components

Analysis (PCA)) which refer to the same idea: construction of the projection basis

U = V from the orthogonalized2 snapshots of the state vector at different time-points

{x(t1), . . . x(tq)} during simulation of some training input (see [11] and references

therein).

The benefits of such approach are the following:

• One can re-use an existing solver in order to extract the snapshots.

• Simple to implement.

• In practice works quite reliably.

• Has a straightforward generalization for nonlinear systems.

• Fast; can take advantage of the sparsity of A and E or fast solvers.

The major drawback of this family of methods is, in general, absence of any

accuracy and stability guarantees. It is not known a-priori how many snapshots are

enough to guarantee a certain accuracy level. Also note that only information about

how input signals “populate” the state space is being used: no information about

the output matrix C is utilized in the construction of projection matrices. To say it

another way, no information about observability is used.

There is another flavor of POD called frequency-domain POD [41], where the

snapshots correspond to some frequencies of interest: x1 = (s1E − A)−1B, . . . , xq =

(sνE −A)−1B. This method stands in between POD and Krylov-subspace methods:

as we shall see further, using such projection leads to the matching of frequency

2SVD is usually employed to eliminate “almost linearly dependent” snapshots

37



response of the original and reduced systems at frequencies s1, . . . , sν . Finally, the

paper [40] extends this idea and incorporates observability measures into reduction.

Similar idea was described in [65].

2.2.2 Krylov Subspace methods, also known as Rational Krylov

subspace methods

In this Section, as well as in the previous one, we consider a system (1.8), where

matrix E may be singular.

In order to introduce Krylov-subspace methods [30, 50, 9, 62, 29], we need the

notion of transfer function moments of the system.

Definition 2.2.1. Let’s consider a linear system description (E, A,B, C, D) in (1.8).

The transfer function moments G(0)(s0), G
(1)(s0), . . . at the frequency point s0 are

defined as terms in the Taylor series of the transfer function G(s) near the point s0:

G(s) = G(0)(s0) + G(1)(s0)(s− s0) + G(2)(s0)(s− s0)
2 + . . . .

This way, the moments are directly related to the matrices of derivatives of the

transfer function:

G(k)(s0) =
1

k!

dk

dsk
G(s)

∣∣∣
s=s0

,

and for the state-space realization (E, A,B,C, D) in (1.8), we can take the derivative

in (2.1):

G(k)(s0) = C
(
(A− s0E)−1E

)k

(A− s0E)−1B, k > 0

The following theorem provides the basis for all Krylov-subspace methods (see

[30], p. 35):

Theorem 2.2.1 (Moment Matching via Projections). If

Kl{(s0E − A)−1E, (s0E − A)−1B} ⊆ colsp{U}, (2.4)
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and

Kp{(s0E − A)−T ET , (s0E − A)−T CT} ⊆ colsp{V }, (2.5)

provided the matrix (s0E − A) is invertible, then

G(k)(s0) = Gr,k(s0), k = 0, . . . , (l + p),

where Gr,k(s0) denotes kth moment of the transfer function of the reduced system

(V T EU, V T AU, V T B,CU,D).

The meaning of this theorem is obvious: given a set of frequency points si, one

can obtain a reduced system which matches any given number of moments of the

original system by appropriately constructing the projection matrices U and V and

performing the projection (provided neither of si is a generalized eigenvalue of the

pair (E, A)).

The advantages of Krylov-subspace methods are the following:

• Simple.

• Fast; can take advantage of the sparsity of A and E or fast solvers.

• Has been extended to parameterized models [19, 38].

The drawbacks:

• In general, lack of stability and accuracy guarantees.

• The number of the vectors in the Krylov subspaces (2.4) and (2.5) is directly

proportional to the number of the input and output signals, respectively.

One should note, however, that under certain assumptions stability (and even

stronger properties) of a reduced system can be guaranteed, for example in case of

symmetric systems (matrices −A and E are symmetric positive-definite and B = CT )

the system reduced with U = V is guaranteed to be stable [58].
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2.2.3 The balanced truncation algorithm

Below we describe the most general balancing method TBR (Truncated Balanced

Realization), which was first described in [10] and further developed in [61, 28, 22].

There exist several flavors of this technique, such as Positive-Real Balancing, Sto-

chastic Balancing etc., which preserve additional properties of the original system in

the reduced one. For references reader is referred to [63, 32].

In the following derivations, we will consider a system (A,B,C,D) as in (1.7), with

D = 0k×m, since for this method (as well as for all projection-based MOR methods)

matrix D is never affected in the reduction (Dr = D). In this Section we assume

that the system is asymptotically stable, or equivalently matrix A is Hurwitz (has all

eigenvalues on the open left half of a complex plane).

In order to understand the balanced truncation method, we need to introduce two

characteristics of a state: observability and controllability.

L2 norm of signals and the induced system norm

In the derivations of this Section we will need to quantify how much “larger” is a

given signal with respect to another signal. Consider a signal (vector-valued function

of time) v(t) defined over some time period (t1, t2), where times t1 and t2 may be

infinite.

Consider the following signal measure, called L2 norm of a signal:

‖v(t)‖2 ,
√∫ t2

t1

vT (t)v(t)dt. (2.6)

A signal, which has finite L2 norm will be referred as square integrable, and the set of

all such signals on (t1, t2) will be denoted by L2(t1, t2). Obviously, this set is a linear

space.

In this section, we will limit the set of possible input signals by L2(−∞,∞),

therefore we can always compute L2 norm for both input and output signals, assuming

that the system is asymptotically stable.
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The above mentioned signal measure gives rise to the system’s measure3. The L2-

induced norm (also called L2-gain) of any (not necessarily linear) dynamical system

is defined as the maximal amplification of the input signal by the system:

‖G(s)‖i,2 , sup
u∈L2(−∞,∞)

‖y(t)‖2

‖u(t)‖2

. (2.7)

The induced L2 norm of an LTI system equals to the following H∞ norm [18]:

‖G(s)‖i,2 ≡ ‖G(s)‖∞ , sup
ω

σmax(G(jω)), (2.8)

where σmax(G(jω)) refers to the maximal singular value4 of the system’s transfer

function matrix evaluated at the frequency jω.

Observability

Let’s consider a system (A,B, C, 0) being released from some state x0 at t = 0, with

zero input values for t ≥ 0. We are interested in how much energy (quantified as L2

norm) we will observe through the system’s outputs. If the energy is large, then the

state will be considered “important”, otherwise it can possibly be discarded.

The zero-input response of (1.7) is:

y(t) = Cx(t) = Cx(0)eAt.

The L2 norm of the output signal when the system is released from the state x0 is

the following quantity:

‖y(t)‖2
2 = xT

0

[ ∫ ∞

0

eAT tCT CeAtdt
]

︸ ︷︷ ︸
Q

x0 = xT
0 Qx0. (2.9)

The symmetric positive-semidefinite matrix Q is called an observability gramian.

3In general, if we have a linear space of operators, which act in a normed spaces, we can always
define an induced norm in the set of operators: if f : V1 → V2, then ‖f‖i = supv∈V1

‖fv‖
‖v‖ .

4Singular values of matrix A are the eigenvalues of the matrix AA∗. 2-norm of a matrix (denoted
as ‖A‖2) equals to the maximal singular value of A. More on matrix and system norms in [18].
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From our analysis it follows that if one picks x0 being one of the eigenvectors of

Q, the energy in the output will be exactly the corresponding eigenvalue of Q. The

largest eigenvalue will correspond to the state which produces the largest response.

However, as we see below, a simple change of basis can completely change both eigen-

vectors and eigenvalues of Q. In fact, Q is a matrix of quadratic form5, which means

that it transforms with the change of basis according to the following rule:

x̃ = Tx ⇒ ‖y(t)‖2
2 = xT

0 Qx0 = x̃T
0 T−T QT−1

︸ ︷︷ ︸
Q̃

x̃0 (2.10)

This means that the dominant observable states (states on the unit sphere having

largest observability measure) are completely dependent on the choice of basis. A

simple diagonal scaling can completely change dominant eigenvectors of Q.

The observability gramian is the solution to the following Lyapunov equation [18]:

AT Q + QA + CT C = 0. (2.11)

Controllability

Now let’s calculate how much energy in the input we need to provide in order to drive

the system from zero initial condition at t = −∞ to some state x0 at t = 0. Note

that for certain systems this is not always possible (such states are being referred as

uncontrollable). If the state can be reached, there is an infinite set of input signals,

which can achieve this goal. We need to find the signal with the smallest L2 norm.

Assuming x(−∞) = 0, the zero-state response of (1.7) is

x(t) =

∫ t

−∞
eA(t−τ)Bu(τ)dτ, (2.12)

therefore we have the following linear least-squares problem for the unknown u(t):

minimize ‖u(t)‖2
2, subject to

∫ 0

−∞
e−AτBu(τ)dτ = x0

5For definition and basic properties of quadratic forms reader is referred to [26]
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The solution to this problem is the following ([18], p. 27):

u(t) = BT e−AT t
( ∫ 0

−∞
e−AτBBT e−AT τdτ

︸ ︷︷ ︸
P

)−1

x0

Therefore, the minimal energy needed to reach the state x0 is

‖u(t)‖2
2 = xT

0

( ∫ 0

−∞
e−AτBBT e−AT τdτ

)−1

x0 = x0P
−1x0 (2.13)

The matrix P is a symmetric positive-semidefinite matrix called controllability

gramian. It is a solution of the following Lyapunov equation [18]:

AP + PAT + BBT = 0. (2.14)

Since P−1 is the matrix of a quadratic form, the controllability gramian changes

with the change of coordinates according to different rules than the observability

gramian:

x̃ = Tx ⇒ ‖u(t)‖2
2 = xT

o P−1x0 = x̃T
0 T−T P−1T−1︸ ︷︷ ︸

P̃−1

x̃0, ⇒ P̃ = TPT T . (2.15)

Again, the eigenvectors (as well as eigenvalues) of P are completely dependent on

the choice of basis. Therefore, one can speak of dominant controllable states only

relative to certain basis.

Hankel Singular Values, Hankel operator and Hankel norm of an LTI sys-

tem

Let’s consider how the product of the two gramians behaves with the change of the

coordinates (2.15, 2.10):

x̃ = Tx ⇒ P̃ Q̃ = TPT T T−T QT−1 = TPQT−1,
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therefore the eigenvalues of PQ are independent of the particular state-space re-

alization of a given transfer function. In fact, being a product of two symmetric

positive-semidefinite matrices, PQ has a real nonnegative spectrum.

Square roots of the eigenvalues of PQ, ordered nonincreasingly, are called Hankel

Singular Values:

σi ,
√

λi(PQ), σ1 ≥ σ2 ≥ · · · ≥ σn (2.16)

The Hankel singular values are also the singular values of the (infinite-dimensional,

but finite rank) Hankel operator, which maps past inputs to future outputs of the

system (Section 2.3 in [28]):

Definition 2.2.2. Hankel operator is a (linear) mapping ΓG : L2(0,∞) → L2(0,∞)

where

(ΓGv)(t) =

∫ 0

−∞
CeA(t+τ)Bv(τ)dτ

Notice that if the input signal is u(t) = v(−t) for t < 0 then the system’s output

for t > 0 will be y(t) = (ΓGv)(t), assuming zero input for t ≥ 0 (cf. Figure 2-1).

LTI SYSTEM

x(t=0)

t

u

t

y

Hankel operator

Past input Future output

0 0

Figure 2-1: The Hankel operator maps the past inputs of the system to future outputs.
The information about past inputs is stored in the system’s state.

Definition 2.2.3. Hankel norm of the system (A,B, C, 0) is the largest of the Hankel

singular values:

‖G(s)‖H , σ1.

44



Since Hankel singular values of the system are the singular values of the Hankel

operator, the Hankel norm is an L2-induced norm of the Hankel operator:

‖G(s)‖H = sup
u∈L2(−∞,0)

‖y(t)
∣∣
t>0
‖2

‖u(t)‖2

,

where y(t)
∣∣
t>0

is the system’s output after t = 0:

y(t)
∣∣
t>0

=





0, t ≤ 0

y(t), t > 0
.

this way, the Hankel norm gives the maximal L2-gain from past inputs to future

outputs of the system. Obviously, adding static gain to the system doesn’t change

neither the system’s Hankel operator or Hankel singular values.

The Balanced Truncation reduction algorithm

The idea behind TBR is to perform a change of variables of the original system such

that in the new coordinates both gramians P and Q are diagonal and equal to each

other. Such change of variables is called balancing transformation. From the previous

derivations it follows that in such representation P = Q = diag(σ1, . . . , σN), where σi

denotes ith largest Hankel singular value of the system6.

Balancing transformation for asymptotically stable system (A,B, C, 0) is guaran-

teed to exist if the system gramians P and Q are nonsingular (or equivalently the

system is completely controllable and completely observable). Indeed, since Q is

strictly positive-definite, we can perform Cholesky factorization of Q:

Q = RRT ,

and the product RPRT is a symmetric positive-definite matrix, therefore we can

6In fact, for any two symmetric strictly positive-definite matrices A and B there exist such matrix
T that both TBTT and T−T AT−1 are diagonal. By scaling the columns of T we can always make
both diagonals equal to each other. We are effectively showing this here.
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perform an eigenvalue decomposition:

RPRT = WΣ2W T , W T W = IN×N .

Let’s change system variables x̃ = Tx, where

T = Σ−1/2W T R.

In the transformed coordinates [28]:

P̃ = TPT T = Σ−1/2W T RPRT WΣ−1/2 = Σ,

Q̃ = T−T QT−1 = Σ1/2W T R−T RT RR−1WΣ1/2 = Σ,

this way, matrix T is the balancing transformation.

The balancing transformation is not unique; in the case of all distinct Hankel

singular values it is defined up to any state transformation T = diag{±1, · · · ± 1}
[61].

From our previous derivations it should be clear that the states having small

observability and controllability measures should not contribute much to the system’s

response. With this in mind, states corresponding to small Hankel singular values

can be truncated.

Balanced truncation reduction algorithm effectively truncates all the states of

the balancing transformation, which correspond to smallest (N − q) Hankel singular

values. One should keep in mind that in order to obtain the reduced system we need

to calculate only the column spans of the first q rows of W T R and the first q columns

of R−1W , which are exactly the dominant eigenspaces of QP and PQ, respectively:

PQ = PRT R = R−1(RPRT )R = (R−1W )Σ2(R−1W )−1

The Balanced Truncation algorithm is outlined as Algorithm 1. It is important

to note that this algorithm does not produce the system in the balanced form as the

canonical TBR does (see Algorithm 3 in [44]). The scaling of columns of U and V in
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the Algorithm 1 is arbitrary, as long as V T U = I, but this does not affect the transfer

function of the reduced system. The Algorithm 1 produces a state-space equivalent

of the reduced balanced model.

Algorithm 1: Balanced-truncation reduction algorithm (TBR)
Input: Initial system (A,B, C, D), desired reduced order q
Output: Reduced-order system (Ar, Br, Cr, D)
(1) Find observability gramian P from (2.14)
(2) Find controllability gramian Q from (2.11)
(3) Compute q left and right dominant eigenvectors of PQ:

(PQ)U = UΣ2, where Σ2 = diag(σ2
1, . . . , σ

2
n)

V T (PQ) = Σ2V T and scale columns of V such that
V T U = Iq×q

(4) Use V and U as projection matrices in (2.3):
Ar = V T AU, Br = V T B, Cr = CU

(5) return (Ar, Br, Cr)

The reduced system obtained by TBR algorithm is guaranteed to be stable, be-

cause the reduced gramian diag(σ1, . . . , σq) satisfies both controllability and observ-

ability Lyapunov equations of the reduced system ([28], Theorem 3.3). It is guaran-

teed to be asymptotically stable if σq 6= σq+1 [61]. It also satisfies the following H∞

error bound [28, 22]:

‖G(s)−Gr(s)‖∞ ≡ sup
ω
‖G(jω)−Gr(jω)‖2 ≤ 2

n∑
q+1

σi, (2.17)

where σi =
√

λ(PQ) are Hankel singular values of the original system, G(s) and

Gr(s) refers to the transfer functions of the original and reduced system, respectively.

Using this a-priori error bound, one can select the needed reduced order based on the

target accuracy.

Below we summarize the benefits of TBR.

1. Guaranteed stability

2. Frequency domain a-priori error bound.

3. Order of the reduced system does not directly depend on the number of inputs

47



and outputs.

4. Is generally believed to be close to optimal in the H∞ error metric.

5. Generalizations exists, which preserve various passivity notions.

The main drawbacks of the TBR are the following.

1. Not suitable for reduction of large models: requires storage of at least two

dense matrices and O(n3) operations to solve the Lyapunov equations (2.14)

and (2.11) and for eigenvalue decomposition of PQ.

2. Cannot take advantage of sparsity of A, since P and Q are generally dense.

Another feature of TBR which is worth mentioning is the fact that throughout

our derivations we have assumed that all inputs (if the system has multiple inputs)

are scaled similarly relative to one another. If some input signal is typically much less

in magnitude than other input signals, this may render our controllability gramian

inadequate. The same applies to the output signals. It is easy to take into account

this feature by scaling rows of C and columns of B accordingly to the expected

magnitudes of the input and output signals.

Cross-Gramian

If the system under consideration has the same number of inputs as the number of

outputs m = p, it is possible to define the following matrix X called the cross-gramian

as a solution of the following Sylvester equation [23]:

AX + XA + BC = 0, (2.18)

which can also be expressed as

X =

∫ ∞

0

eAtBCeAtdt.
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If, in addition, the transfer function of the system is symmetric, that is,

G(s) = GT (s), ∀s,

then the following relation holds [76]:

X2 = PQ,

which means that one can use only one gramian X, instead of P and Q in the Al-

gorithm 1 for computation of the left and right projection matrices. The idea of

approximating cross-gramian for purposes of large-scale model reduction was pro-

posed in [76].

2.2.4 TBR algorithm for systems in the descriptor form.

Let’s consider a system in the descriptor form (E, A,B,C,D) as in (1.8). Below

we assume that the pair (E, A) is regular, that is, matrices E and A do not have a

common kernel vector.

Balanced truncation model reduction has been generalized for systems in the de-

scriptor form in [78, 79]. The major distinction between the descriptions in the form

(A,B, C, D) and (E,A, B,C,D) is that the latter may not correspond to a proper

transfer function (for example, the output signal may be a time-derivative of the input

signal). In other words, such system may have poles at s = ∞, which can happen

only if matrix E is singular.

In order to possess a finite H∞ error bound (which is an essential property of

TBR), the polynomial terms in (2.2) of the transfer function of the original system

should be exactly preserved by the reduced system. The proper rational term Gp.r(s),

on the other hand, can be reduced by using TBR. The proper and polynomial parts

of the transfer function can be separated by partitioning of the state space using

projection of the system onto deflating subspaces of the pair (E, A) corresponding to

infinite and finite eigenvalues, respectively (for details see [78], p. 18). As a result,
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the problem boils down to reducing the system (E,A, B, C, D), where the matrix

E is nonsingular. With this in mind, we will assume below that the matrix E is

nonsingular.

The observability and controllability gramians P and Q of a descriptor system with

no poles at infinity are solutions to the following two generalized Lyapunov equations

[78]:

APET + EPAT + BBT = 0, (2.19)

and

AT QE + ET QA + CT C = 0. (2.20)

It is important to note that the controllability gramian P obtained in this way still has

the same energy meaning of the quadratic form associated with the minimal energy

required to reach a given state:

‖u(t)‖2
2 = xT

0 P−1x0,

where the input u(t) drives the system from x = 0 at t = −∞ to x = x0 at time t = 0

and has the minimal 2-norm among all such signals.

Note that the observability gramian Q for descriptor system does not have the

meaning of a quadratic form associated with the output energy when the system is

released from a given state. Instead, the matrix ET QE has such a property7:

‖y(t)‖2
2 = xT

0 ET QEx0,

where the output signal y(t) is observed after the system has been released from the

state x0, assuming zero input.

The Hankel singular values of the (proper) descriptor system are defined as eigen-

values of PET QE, and the reduced system can be found via projection using domi-

nant eigenvectors of QEPET and PET QE as the left and right projection matrices,

7In fact, MATLAB defines the observability gramian for descriptor systems exactly as ET QE,
where Q is solution of (2.20). This is a minor notation ambiguity, which is worth mentioning.
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respectively.

The frequency error bound (2.17) holds for such generalization of the TBR. In

fact, this reduction is mathematically equivalent to performing TBR on the system

(E−1A,E−1B, C, D), however the computation via generalized Lyapunov equations

is better conditioned numerically.

2.2.5 Approximations to balanced truncation.

Almost all approximations to TBR employ substitution of low-rank approximations

to P and Q in the Algorithm 1 [44, 45, 8].

There are many algorithms proposed for obtaining low-rank approximations to P

and Q, for example by iteratively solving projected Lyapunov equations (Approximate

Power Iteration) as in [35], or using ADI/Smith methods described in [60, 44, 31], or

performing frequency-domain POD [40], or performing an approximate integration in

(2.13) and (2.9).

As it was mentioned before, however, the dominant eigenspaces of P and Q com-

pletely depend on the choice of basis (i.e. choice of system representation); the states

which are “mostly observable” in one basis may be “least observable” even after sim-

ple scaling of the variables. Therefore, such methods work reliably only for cases

where observable states are controllable, for example for symmetric systems [44].

There exist several algorithms which try to fix the above mentioned problem.

In [7], the low-rank approximation to the cross-gramian X is proposed. However,

such method is directly applicable only to the systems with square symmetric transfer

functions.

Another algorithm, called AISIAD, which attempts to tackle this problem is de-

scribed in [90]. Since one of the contributions of this work is based on AISIAD

method, it is described in detail in Chapter 5.
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2.3 Non-projection based MOR methods

Non-projection methods do not employ construction of any projection matrices. The

following are several most commonly used methods of this kind:

1. Hankel optimal model reduction,

2. Singular Perturbation approximation

3. Transfer function fitting methods

2.3.1 Hankel optimal model reduction

One of the most useful measures of how well one system approximates another system

is an H∞ norm of the error, i.e. the H∞ norm of the error system on the figure 1-2:

‖G(s)−Gr(s)‖∞ ≡ sup
ω
‖G(jω)−Gr(jω)‖2. (2.21)

As it was mentioned, TBR method has a guaranteed bound for H∞ error (2.17).

However, the result of TBR reduction is not generally optimal in this error metric.

Unfortunately, there is no known polynomial-time algorithm which solves the

problem of finding a reduced state-space model which strictly minimizes H∞ norm of

the error.

However, there exist an optimal algorithm, which exactly minimizes Hankel norm

of the error system:

‖G(s)−Gr(s)‖H ≡ σmax(G(s)−Gr(s)), (2.22)

where σmax denotes a maximal Hankel singular value of the system.

Strictly speaking, the Hankel norm is not a norm in the space of all finite-

dimensional stable state-space systems of a given order, since it violates the following

necessary property:

‖G(s)‖ = 0 ⇔ G(s) ≡ 0,
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which does not hold for the Hankel norm, because the Hankel norm of a static gain is

zero. However, if we assume the feed-through term D of the system to be zero, then

the Hankel norm will define a valid norm in this subspace. The following inequality

holds for any stable transfer function G(s) of order n with zero feed-through term

[28]:

‖G(s)‖H ≤ ‖G(s)‖∞ ≤ n‖G(s)‖H ,

which essentially indicates that these norms are equivalent. In fact, the equivalence

of all norms in a finite-dimensional space is a widely known result.

All Hankel-optimal reduced models were characterized in [28] by providing an

explicit computational algorithm. The a-priori H∞ error bound for this reduction

method is half the right-hand side of (2.17), i.e. half the bound on the TBR error. Ap-

proach for computing the Hankel optimal model uses balancing transformations. The

overall complexity, therefore, is O(n3), as for the TBR. Comparison of this method

to TBR (as well as some other methods) on practical examples are given in [4].

2.3.2 Singular Perturbation as alternative to projection

As it will be shown below, projection-based MOR methods can almost always be

interpreted as performing a coordinate transformation of the original system’s state

space, followed by “truncation” of the system’s states, effectively setting the last

(n − q) states to zero. As an alternative, one can instead set the derivatives of the

states to be discarded to zero. This procedure is called state residualization, which is

the same as a singular perturbation approximation.

Let’s assume that we have constructed projection matrices U and V , by using

any projection-based method. For simplicity, let’s assume that the original system is

in the form (A, B, C, D). If the product V T U is full rank (which is usually true for

all projection MOR methods mentioned in this thesis), then we can always find such

nonsingular matrix T that

colsp(T1...n,1...q) = colsp(U), colsp((T−T )1...n,1...q) = colsp(V ).
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The reduced system (V T AU, V T B, CU,D) is equivalent to truncating the transformed

system (T−1AT, T−1B,CT,D), effectively setting x̃q+1 ≡ 0, . . . x̃n ≡ 0 in the new

coordinates. This implies that the original and reduced transfer functions are matched

at the infinite frequency, Gr(∞) = G(∞).

The singular perturbation approximation eliminates the states in a different way.

Instead of setting the values of the variables to zero, it sets their derivatives to zero:

˙̃xq+1 ≡ 0, . . . ˙̃xn ≡ 0.

We have: 



d
dt


x̃1(t)

x̃2(t)


 =


A11 A12

A21 A22




︸ ︷︷ ︸
T−1AT


x̃1(t)

x̃2(t)


 +


B1

B2




︸ ︷︷ ︸
T−1B

u(t)

y(t) =
[
C1 C2

]

︸ ︷︷ ︸
CT


x̃1(t)

x̃2(t)


 + Du(t)

, (2.23)

where we have partitioned the transformed system such that the states to be kept are

in the vector x̃1 ∈ Rq. By setting ˙̃x2 = 0 we have:

A21x̃1(t) + A22x̃2 + B2u(t) ≡ 0,

and substituting x2 in the equation (2.23) above, we obtain:





˙̃x1(t) = (A11 − A12A
−1
22 A21)︸ ︷︷ ︸

Ar

x̃1(t) + (B1 − A12A
−1
22 B2)︸ ︷︷ ︸

Br

u(t)

yr(t) = (C1 − C2A
−1
22 A21)︸ ︷︷ ︸

Cr

x̃1(t) + (D − C2A
−1
22 B2)︸ ︷︷ ︸

Dr

u(t)
.

Such obtained reduced system (Ar, Br, Cr, Dr) no longer necessarily matches the fre-

quency response of the original system at the infinite frequency (D 6= Dr). However,

it matches it at s = 0:

G(0) = CA−1B + D = Cr(Ar)−1Br + Dr = Gr(0),
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and as a result the approximation near zero frequency should be better if singular

perturbation is employed [8].

What should we expect if instead of truncating the states in the TBR algorithm

(Algorithm 1) we would employ residualization? Basic properties of singular per-

turbation approximation for balanced systems were derived in [49]. In particular, it

is shown that the resulting reduced system is stable and has the same error bound

(2.17) as balanced truncation.

2.3.3 Transfer function fitting methods

In the area of computer-aided modeling of high-frequency interconnects, linear de-

vices are usually characterized in the frequency domain. Variations in the dielectric

permittivity, skin effect and other phenomena are best described, and most easily

measured, in terms of frequency-dependent variables. In order to make time-domain

simulations feasible, one can construct a state-space model that approximates the

sampled transfer function of the system8.

Such methods can be treated as model reduction methods, since we can always

obtain a series of snapshots of the original transfer function and then use any of the

transfer function fitting methods to obtain reduced model.

Methods based on rational fitting [16], vector fitting [33] and method based on

quasi-convex optimization [77] fall into this category.

Rational and vector fitting methods are based on iterative application of linear

least squares. Unknowns are systems poles and residues (for the vector fitting al-

gorithm) or polynomial coefficients of numerator and denominator (rational fitting

algorithm). Though there is no convergence proof for these methods, they usually

work well in practice.

Quasi-convex optimization method [77] uses more rigorous techniques to obtain

guaranteed stable models. It can be used to obtain parameterized models, which

preserve additional properties such as passivity.

8Another way to treat this problem is by employing a direct convolution or recursive convolution
methods [47].
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All of these algorithms are currently limited to linear dynamical systems with

either single input (SIMO) or single output (MISO), or both(SISO). Approximation

to multiple input-multiple output (MIMO) dynamical system can be done by fitting

each column of the transfer matrix followed by concatenation of inputs. Such obtained

system will likely be reducible, therefore subsequent linear reduction (for example,

balanced truncation) can be applied.
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Chapter 3

Nonlinear model reduction

methods

The derivative of a drunk party is money from selling empty bottles.

A party is called nontrivial if its second derivative is nonzero.

- Russian math students folklore.

Currently the vast majority of publications and known MOR methods are tar-

geting linear dynamical models [8]. The methods for nonlinear model reduction are

much less developed and are by far more challenging to develop and analyze.

The problem of nonlinear model reduction deals with approximations of the sys-

tems in the form of a nonlinear ODE (1.3). The nonlinear model reduction goal,

broadly speaking, is to reduce costs of simulation of such systems. This involves

not only reducing the dimensionality of the state vector x, but also finding ways to

efficiently calculate the right-hand and left-hand side functions f and h. In addi-

tion to calculating the function values, some widely used ODE solvers (which employ

for example trapezoid rule or backward-Euler integration methods) need to compute

Jacobians of f and h (derivatives with respect to all components of state vector).

With this in mind, the problem of nonlinear model reduction consists of the fol-

lowing two sub-problems:

1. Reducing the dimensionality of the state vector.
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2. Finding representations of the reduced nonlinear functions such that the values

and derivatives can be computed efficiently.

In fact, addressing either one of these issues leads to computational gains. How-

ever, algorithms which address both of the issues are usually much more beneficial.

Up until now, the only practical developed nonlinear dimensionality reduction

methods (i.e. methods which solve the first problem above) are based on projections

[66, 71, 72]. As we did for the linear case, projection methods employ bi-orthogonal

projection matrices U, V ∈ Rn×q which can be obtained either from any linear MOR

method applied to linearization of (1.3) or from sequence of snapshots from nonlinear

simulation of some training trajectory [39, 5, 36, 54]. Sometimes aggregation of both

bases in the single basis works the best.

Let’s assume that we have nonlinear system in the form (1.2). As we did for the

linear systems, we assume that state vector approximately evolves within some linear

subspace spanned by columns of matrix U , therefore x ≈ Uz, z ∈ Rq. Projecting

residual in (1.2) onto the rowspan of matrix V yields:





ż = V T f(Uz, u)︸ ︷︷ ︸
fr(z,u)

yr = g(Uz, u)

(3.1)

Unfortunately, although the dimensionality of the state has been reduced, simu-

lation of such system directly (in general) is still costly, because in order to evaluate

values and the Jacobian of f r(z, u) we need to perform high-dimensional computation.

Here the second mentioned challenge of the nonlinear MOR arises, namely the

representation problem [71, 64].

There are two main known solutions for this problem:

1. Performing Taylor series expansion of f and projecting the terms [15, 13, 14, 2],

or

2. Using TPWL methods (or more generally, regression models based on function’s

snapshots) [71, 64, 85, 68].
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The first solution is applicable to either quadratic (or polynomial) or weakly non-

linear systems. The second kind of algorithms is applicable for highly nonlinear

systems, however tends to be less accurate if being simulated with inputs sufficiently

different from training input.

3.1 Nonlinear reduction based on Taylor series.

Very first practical approaches to nonlinear model reduction were based on using

Taylor series expansions of function f in [15, 66, 13, 14, 2, 37]. Let’s assume that we

have performed a Taylor series expansion of function f in the state-space model (1.2)

around some nominal state x0 and input u0:

ẋ ≈ f(x0, u0) +

{
∂f

∂x

}
(x− x0) +

{
∂f

∂u

}
(u− u0) +

1

2

({
∂2f

∂x2

}
(x− x0)⊗ (x− x0)+

+

{
∂2f

∂x∂u

}
(x− x0)⊗ (u− u0) +

{
∂2f

∂u2

}
(u− u0)⊗ (u− u0)

)
+ . . . , (3.2)

where all derivatives of f are taken at the expansion point (x0, u0).

We can assume that the Taylor series, truncated up to certain order, can approx-

imate the original state-space model with sufficient accuracy.

Now we can employ projection strategy as we have described above. We represent

x ≈ Uz, z ∈ Rq and project the residual in (3.2) onto the rowspan of matrix V ,

assuming it is biorthogonal to U :

ż = V T f(Uz0, u0)︸ ︷︷ ︸
fr(z0,u0)

+ V T

{
∂f

∂x

}
U

︸ ︷︷ ︸
∂fr

∂z

(z − z0) + V T

{
∂f

∂u

}

︸ ︷︷ ︸
∂fr

∂u

(u− u0)+

+
1

2

(
V T

{
∂2f

∂x2

}
U ⊗ U

)

︸ ︷︷ ︸
∂2fr

∂z2

(z − z0)⊗ (z − z0) + . . . . (3.3)
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This expansion is equivalent to the Taylor expansion of the function

f r(z, u) ≡ V T f(Uz, u)

with respect to reduced state z and input u up to the same order as in (3.2).

Using tensor manipulations, in theory, it is straightforward to obtain reduced

models of any differentiable original system up to any order. Unfortunately, however,

memory and computation requirements increase exponentially with increasing of the

order of the Taylor expansion, making practical only expansions of low order (usually

up to second or third).

The method has the following advantages and limitations:

• Employing Taylor series limits the applicability of the reduction to only weakly

nonlinear dynamical systems. It is directly applicable to quadratic (or more

generally, polynomial) systems.

• Quite frequently original system’s Jacobian and higher-order derivatives are

sparse. Projections in (3.3) destroys the sparsity of tensors. As a result, memory

and computational costs impose severe constraints on the reduced order of the

system, making large reduced models not practical.

• There is no global guarantee of stability of the reduced system. No error bounds

are guaranteed, in general. Local stability can be established based on the

linearization around equilibrium.

• There is little known about global stability of quadratic, as well as higher order,

systems1.

3.2 TPWL and regression-based methods

Another approach to deal with the representation complexity of the projected non-

linear function f r(z, u) in (3.1) is to approximate this function using snapshots of the

1Here by the term global stability we mean absence of diverging system trajectories
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values and Jacobians of the original nonlinear function [68, 69, 71, 85].

For simplicity, as it was done in the original paper [68], let’s assume that f(x, u) ≡
f(x)+Bu. In our later development we generalize the TPWL algorithm to the general

(nonseparable) case.

Let’s assume that we have obtained a set of “important” state vectors xi, i =

1 . . . l, near which the trajectories of the original system are most likely to be found.

We can approximate the original nonlinear function f(x) near these points as the

following:

f̂(x) ≈
l∑

i=1

wi(x)
(
f(xi) +

{∂f

∂x

∣∣∣
xi

}

︸ ︷︷ ︸
Jf (xi)

(x− xi)
)
, (3.4)

where Jf

∣∣∣
xi

is a Jacobian matrix of f evaluated at the state vector xi. The weights

wi satisfy the following properties:

l∑
i=1

wi(x) ≡ 1, lim
x→xi

wi(x) → 1, ∀i.

This way, the approximation (3.4) is a convex combination of the linearizations of f .

The reduced model can be obtained using similar approximation as in (3.4) using

projected snapshots of function values and projected Jacobians:

f̂ r(x) = V T f(Uz) ≈
l∑

i=1

wr
i (z)

(
V T f(xi)− V T Jfxi + V T Jf (xi)Uz)

)
, (3.5)

which can be evaluated in time proportional to lq2, assuming that the projected

Jacobians and snapshots of f are computed off-line, during reduction step2. The

reduced weights wr
i (z) are usually sought in the form similar to wi(x), and satisfy

similar properties as unreduced weights:

l∑
i=1

wr
i (z) ≡ 1, lim

z→V T xi

wr
i (z) → 1, ∀i,

2Computation of weights wr
i is considered to be cheaper than this estimate, which is a typical

case [71].

61



this way, points V T xi are treated as projected linearization points. Note that (3.5) is

not a projection of (3.4), because weighting functions wr
i (·) are generally not projec-

tions of wi(·).
The above described idea first appeared in [68] and further developed in [69, 70,

85, 56, 12]. In [64] the TPWL method was interpreted as performing a kernel-based

approximation of f r(x).

The main benefit of the (nominal) TPWL approximation (3.4) over Taylor series-

based approach is its applicability to strongly nonlinear systems, where the Taylor

expansion would require too many terms to achieve needed accuracy.

The weaknesses of the (nominal) TPWL approximation (3.4) are the following:

• The expansion points xi are usually collected my means of simulating a training

input. Far away from this trajectory the approximation becomes poor.

• In general, no stability guarantees exist, and no error bounds are known.

• The method performs poorly if components of the state vector are scaled very

differently. If the values of f are much more sensitive to some subset of coordi-

nates of x, the weightings wi should normally account for this.

• It is impossible, in general, to know how many snapshots are needed in order to

achieve decent accuracy. The problems where the solution is a wave are espe-

cially difficult, because snapshots capture only certain waveform at a particular

time, which makes any other waveform not represented correctly by TPWL

approximation.

The error of the reduced representation (3.5), therefore, consists of two compo-

nents:

• Error associated with the projection of nonlinear system

• Error associated with the TPWL approximation of the projected system.
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Chapter 4

TBR-based trajectory

piecewise-linear model reduction

for nonlinear systems

Heavier-than-air flying machines are impossible.

- Lord Kelvin, president, Royal Society, 1895.

In this Chapter we develop further the TPWL framework described earlier and

discuss how the choice of the linear reduction method affects the TPWL framework.

Surprisingly, such analysis provided some insights into the fundamental properties of

TBR linear reduction method, as well.

We consider a dynamical system in the following form:





ẋ(t) = f(x(t), u(t))

y(t) = Cx(t)
, (4.1)

which is a slight simplification of (1.2).

As we did before, we assume nonlinear function f being differentiable for all values

of x and u:

f(x, u) = f(x0, u0) + A(x− x0) + B(u− u0) + h.o.t., (4.2)

where matrices A and B (which are dependent on the linearization point (x0, u0))
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contain derivatives of f with respect to the components of the state and input signals

respectively.

The TPWL approximation for such system can be generalized as the following:

f(x, u) ≈
l∑

i=1

w̃i(x, u) (f(xi, ui) + Ai(x− xi) + Bi(u− ui)) , (4.3)

where xi’s and ui’s (i = 1, . . . , l) are selected linearization points (samples of state

and input values), Ai and Bi are derivatives of f with respect to x and u, evaluated

at (xi, ui), and finally w̃i(x, u)’s are state-and-input-dependent weights which satisfy:

l∑
i=1

w̃i(x, u) = 1 ∀(x, u), w̃i(x, u) → 1 as (x, u) → (xi, ui). (4.4)

Projecting the piecewise-linear approximation in (4.3) using biorthogonal projec-

tion matrices V and U yields the following reduced-order nonlinear dynamical system:





ż = γ · w(z, u) + (
∑l

i=1 wi(z, u)Air)z + (
∑l

i=1 wi(z, u)Bir)u

y = Crz
, (4.5)

where z(t) ∈ Rq is the q-dimensional vector of states:

γ =
[
V T (f(x1, u1)− A1x1 −B1u1) . . . V T (f(xl)− Alxl −Blul)

]
.

Here, w(z, u) = [w1(z, u) . . . wl(z, u)]T is a vector of weights, Air = V T AiU , Bir =

V T Bi, and Cr = CU . One should note that
∑l

i=1 wi(z, u) = 1 for all (z, u), wi → 1

as (z, u) → (V T xi, u), and that the evaluation of the right hand side of equation (4.5)

requires at most O(lq2) operations, where l is the number of linearization points.

Linearization points (xi, ui) used in system (4.5) are usually selected from a ‘train-

ing trajectory’ of the initial nonlinear system, corresponding to some appropriately

determined ‘training input’. The choice of the training input is an important aspect

of the reduction procedure, since this choice directly influences accuracy. As the gen-

eral rule, the training signal should be as close as possible to the signals for which the
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Figure 4-1: An example of a nonlinear transmission line RLC circuit model.

reduced system will be used. Additionally, this input signal should be rich enough to

collect all “important” states in the set of linearization points (xi, ui) [81].

In the original papers [70] Krylov-subspace linear methods were solely used for

TPWL reduced models. TBR reduction can be more accurate than Krylov-subspace

reduction as it possesses a uniform frequency error bound [28], and TBR preserves

the stability of the linearized model. This superior performance for the linear cases

suggests that TPWL approximation models obtained using TBR are more likely to

be stable and accurate. This is not necessarily the case, as will be shown below.

4.1 Examples of nonlinear systems

In this Section we consider three examples of nonlinear systems which arise in the

modeling of MEMS devices that have nonlinear dynamical behaviors, which make

good test cases for reduction algorithms.

4.1.1 Nonlinear transmission lines

The first two examples (the first one was also examined in [9] and [14]) refer to a

nonlinear transmission line circuit model shown in Figure 4-1. The first circuit consists

of resistors, capacitors, and diodes with a constitutive equation id(v) = exp(40v)− 1.

For simplicity we assume that all the resistors and capacitors have unit resistance

and capacitance, respectively (R = 1, C = 1) (In this case we assume that L = 0).

The input is the current source entering node 1: u(t) = i(t) and the (single) output is

chosen to be the voltage at node 1: y(t) = v1(t). Consequently, if the state vector is
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Figure 4-2: Microswitch example (following Hung et al. [36]).

taken as x = [v1, . . . , vN ], where vi is the voltage at node i, the system has symmetric

Jacobians at any linearization point, and B = C. In this example we considered the

number of nodes N = 400 and N = 1500. In the second example (cf. Figure 4-1)

we also consider inductors (with inductance L = 10), connected in series with the

resistors. We apply the RL formulation in order to obtain a dynamical system in form

(4.1) with voltages and currents at subsequent nodes (or branches) of the circuit as

state variables. In this case the Jacobians of f become nonsymmetric. The governing

nonlinear system of equations which is being described by the form (4.1) is:





v̇1 = (i + i1 − i2 − (e40v1 − 1)− (e40(v1−v2) − 1)) 1
C

v̇2 = (i2 − i3 + (e40(v1−v2) − 1)− (e40(v2−v3) − 1)) 1
C

. . .

v̇N = (in − (e40(vN−1−vN ) − 1)) 1
C

i̇1 = (−v1 − i1R) 1
L

i̇2 = (v1 − v2 − i2R) 1
L

. . .

i̇N = (vN−1 − vN − iNR) 1
L

4.1.2 Micromachined switch

The third example is a fixed-fixed beam structure, which might be used as part of a

microswitch or valve, shown in Figure 4-2. Following Hung et al. [36], the dynamical
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behavior of this coupled electro-mechanical-fluid system can be modeled with a 1D

Euler’s beam equation and the 2D Reynolds’ squeeze film damping equation [36]:





ÊI ∂4w
∂x4 − S ∂2w

∂x2 = Felec +
∫ d

0
(p− p0)dy − ρ∂2w

∂t2

∇ · ((1 + 6K)w3p∇p) = 12µ∂(pw)
∂t

.
(4.6)

Here, the axes x, y and z are as shown on figure 4-2, Ê is a Young’s modulus, I is the

moment of inertia of the beam, S is the stress coefficient, K is the Knudsen number,

d is the width of the beam in the y direction, w = w(x, t) is the height of the beam

above the substrate, and p(x, y, t) is the pressure distribution in the fluid below the

beam. The electrostatic force is approximated assuming nearly parallel plates and is

given by Felec = ε0dv2

2w2 , where v is the applied voltage.

Spatial discretization of (4.6) described in detail in [71] uses a standard finite-

difference scheme and leads to a nonlinear dynamical system in form of (4.1), with

N = 880 states. After discretization, the state vector, x, consists of the concatenation

of: heights of the beam above the substrate w, values of ∂(w3)/∂t, and values of the

pressure below the beam. For the considered example, the output y(t) was selected

to be the deflection of the center of the beam from the equilibrium point (cf. Figure

4-2).

The remarkable feature of this example is that the system is strongly nonlinear,

and no feasible Taylor expansion made at the initial state can correctly represent

the nonlinear function f , especially in the so called pull-in region1[36]. In addition,

this example is illustrative in that it combines electrical actuation with the structural

dynamics and is coupled to fluid compression. We expect model reduction methods

that are effective for this example problem to be extendable to realistic micropumps

and MEMS.

1If the beam is deflected by more than ≈1/3 of the initial gap, the beam will be pulled-in to the
substrate.
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Figure 4-3: Comparison of system response (nonlinear transmission line RLC circuit)
computed with nonlinear and linear full-order models, as well as TBR TPWL reduced
order model (20 models of order q = 4) for the input current i(t) = (sin(2πt/10)+1)/2.
The TPWL model was generated using a unit step input current.

4.2 Computational results

In this Section results are presented for the models of transmission line and micro-

machined switch. The most challenging example was the micromachined switch.

4.2.1 Nonlinear transmission line models

First, we considered nonlinear transmission line RLC circuit model. The initial prob-

lem size n was equal to 800. The TBR reduced order q = 4 (using the linearized

system at the initial state x0 = 0). Figure 4-3 compares a transient computed with

the obtained reduced order model (denoted as TBR TPWL model) with the transients

obtained with full order nonlinear and linear models. One may note that TBR-based

TPWL reduced model provides an excellent approximation of the transient for the

initial system. It is also apparent that the model is substantially more accurate than
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a full order linear model of the transmission line.
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Figure 4-4: Errors in output computed with Krylov and TBR TPWL reduced order
models (nonlinear transmission line RC circuit). Both training and testing inputs
were unit step voltages. Initial order of system n = 1500. Note: solid and dashed
lines almost overlap.

Similar results were obtained for the nonlinear RC circuit example. Figure 4-4

shows the error in the output signal ‖yr−y‖2, where yr is the output signal computed

with TBR TPWL reduced order model, and y is computed with full order nonlinear

model, for different orders q of the reduced model (in this example ‖y‖2 = 0.44).

Analogous errors were also computed for reduced order TPWL models obtained with

pure Krylov-based reduction. The results on the graph show that TBR TPWL models

are significantly more accurate than the Krylov TPWL models of the same size. Also

(limited by the quality of TPWL approximation to f) the TBR TPWL model achieves

its best accuracy at a much lower order than the TPWL model based on Krylov

subspace reduction.

It follows from Fig. 4-4 that the total error of TPWL reduced order approximation
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of a full nonlinear model consists of two components: the error due to projection

procedure and the error associated with piecewise-linear approximation of nonlinear

function f . The first component is dominant when the order of the reduced model is

small. One may note that for TBR approach this error component becomes negligible

as soon as the order of the reduced model is greater than 4. Further considerations

on error estimation in TPWL models may be found in [70].

4.2.2 Micromachined switch example

The TBR TPWL model order reduction strategy was applied to generate macromod-

els for the micromachined switch example described in Section 4.1. The projection

matrices were obtained using the linearized model of system (4.1) only at the initial

state, and the initial state was included in the projections V and U .

Surprisingly, unlike in the nonlinear circuit examples, the output error did not

decrease monotonically as the order q of the reduced system grew. Instead, macro-

models with odd orders behaved very differently than macromodels with even orders.

Models of even orders were substantially more accurate than models of the same order

generated by Krylov reduction – cf. Figure 4-5. However, if q was odd, inaccurate

and unstable reduced order models were obtained. This phenomenon is reflected in

the error plot shown in Figure 4-5. Figure 4-6 illustrates that a fourth-order (even)

reduced model accurately reproduces transient behavior.

This ‘even-odd’ phenomenon was observed in [55] and explained in the very general

sense in [83]. The main result of [83] is described in Section 4.3. However, there is

also an insightful but less general way of looking at this effect.

The ‘even-odd’ phenomenon can be viewed by examining eigenvalues of the re-

duced order Jacobians from different linearization points. For the switch example, the

initial nonlinear system is stable and Jacobians of f at all linearization points are also

stable. Nevertheless, in this example the generated reduced order basis corresponds

to the balancing transformation only for the linearized system from the initial state

x0. Therefore, only the reduced Jacobian from x0 is guaranteed to be stable. Other

Jacobians, reduced with the same projection matrices, may develop eigenvalues with
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Figure 4-5: Errors in output computed by TPWL models generated with different
MOR procedures (micromachined switch example); n = 880; 5.5-volt step testing and
training input voltage.

positive real parts.

Figure 4-7 shows spectra of the reduced order Jacobians for models of order q = 7

and q = 8. One may note that, for q = 8, the spectra of the Jacobians from a few

first linearization points are very similar. They also follow the same pattern: two

of the eigenvalues are real, and the rest form complex-conjugate pairs. Increasing or

decreasing the order of the model by 2 creates or eliminates a complex-conjugate pair

of stable eigenvalues from the spectra of the Jacobians. If the order of the model

is increased or decreased by 1 (cf. Figure 4-7 (left)), the situation is very different.

A complex-conjugate pair will be broken, and a real eigenvalue will form. At the

first linearization point this eigenvalue is a relatively small negative number. At the

next linearization point, the corresponding eigenvalue shifts significantly to the right

half-plane to form an unstable mode of the system. An obvious workaround for this

problem in the considered example is to generate models of even order. Nevertheless,

a true solution to this problem would involve investigating how perturbations in the
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Figure 4-6: Comparison of system response (micromachined switch example) com-
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order model (7 models of order q = 4); 5.5-volt step testing and training input volt-
age. Note: solid and dashed lines almost fully overlap.

model affect the balanced reduction, and this is examined in Section 4.3.

4.3 Perturbation analysis of TBR reduction algo-

rithm

For the micromachined switch example, the even-odd behavior exhibited by the TBR-

TPWL model reduction can be investigated using perturbation analysis. Assume

the projection bases V and U are computed using TBR reduction from a single

linearization point. The key issue is whether or not the TBR basis obtained at one

linearization point is still suitable for reducing piecewise-linear models further along

the trajectory. To understand this issue, consider two linearizations of the nonlinear

system (4.1) (A0, B, C) (initial) and (A,B,C) (perturbed). Suppose TBR reduction

is performed for both of these models, resulting in projection bases V, U and Ṽ , Ũ
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Figure 4-7: Eigenvalues of the Jacobians from the first few linearization points (mi-
cromachined switch example, Krylov-TBR TPWL reduction). Order of the reduced
system q = 7 (left), q = 8 (right).

respectively. If these two bases are not significantly different, then perhaps V and

U can be used to reduce the perturbed system, as is done for TPWL macromodels.

This is true given some care, as will be made clear below.

4.3.1 Effect of Perturbation on Gramians

Consider the case for the controllability gramian P only, the results are valid for

Q as well. Let A = A0 + Aδ, P = P0 + Pδ, where P0 is an unperturbed gramian

corresponding to unperturbed matrix A0, and Aδ is relatively small so that Pδ is also

small.

Using the perturbed values of A and P in the Lyapunov equation and neglecting

PδAδ yields

A0Pδ + PδA
T
0 + (AδP0 + P0(Aδ)

T ) = 0. (4.7)

Note that (4.7) is a Lyapunov equation with the same matrix A0 as for unper-

turbed system. This equation has a unique solution, assuming that the initial system

is stable. The solution to (4.7) can be expressed using the following integral formula:

Pδ =

∫ ∞

0

eAT
0 t(AδP0 + P0(Aδ)

T )eA0tdt. (4.8)
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Assuming A is diagonalizable, Pδ can be bounded as

||Pδ|| ≤ 2(cond(T ))2||Aδ||||P0||
∫ ∞

0

e2Re(λmax(A0))tdt, (4.9)

where T is the matrix which diagonalizes A.

Since A is stable, the integral in (4.9) exists and yields an upper bound on infini-

tesimal perturbations of the gramian:

||Pδ|| ≤ 1

|Re(λmax(A0))|(cond(T ))2||P0||||Aδ||. (4.10)

Equation (4.10) shows that the bound on the norm of δP increases as the maximal

eigenvalue of A0 approaches the imaginary axis. In addition, note that perturbations

in A will result in small perturbations in the gramian P as long as the system remains

“stable enough”, i.e. its eigenvalues are bounded away from the imaginary axis.

4.3.2 Effect of perturbations on the balancing transforma-

tion

As we have described in the Section 2.2.3, the balancing transformation in the TBR

algorithm can be viewed essentially as a symmetric eigenvalue problem [28]:

RPRT = W diag(σ2
1, . . . , σ

2
N)︸ ︷︷ ︸

Σ2

W T , T = Σ−1/2W T R, (4.11)

where RT R = Q (R is a Cholesky factor of Q) and T is the coordinate transformation

which diagonalizes both gramians. In the algorithm 1, the left projection matrix V

consists of the first q columns of T T , and the right projection matrix U consists of

the first q columns of T−1.

Applying the same perturbation analysis to the Cholesky factors, it can be shown

that the perturbations in the Cholesky factors due to the perturbations in the original

gramian are also small, provided that the system remains “observable enough”, that

is the eigenvalues of Q are bounded away from zero. Therefore we can state that
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the perturbation properties of the TBR algorithm are dictated by the symmetric

eigenvalue problem RPRT = WΣ2W T .

The perturbation theory for the eigenvalue problem has been developed quite

thoroughly [43], and one of the first observations is that small perturbations of a

symmetric matrix can lead to large changes in the eigenvectors, if there are subsets

of eigenvalues in the initial matrix which are very near to each other.

Below we summarize a perturbation theory for a symmetric eigenvalue problem

with a nondegenerate spectrum.

Consider a symmetric matrix M = M0+δM , where M0 is the unperturbed matrix

with known eigenvalues and eigenvectors, and no repeated eigenvalues. Eigenvectors

of M can be represented as a linear combination of eigenvectors of M0:

xk =
N∑

i=1

ck
i x

0
i ,

where xk is the k-th eigenvector of the perturbed matrix M and x0
i is the i-th eigen-

vector of the unperturbed matrix. Coefficients ck
i show how the eigenvectors of matrix

M0 are intermixed due to the perturbation δM , as in

(M0 + δM)
N∑

i=1

ck
i x

0
i = λk

N∑
i=1

ck
i x

0
i ⇒

N∑
i=1

ck
i δMji = (λk − λ0

j)c
k
j

where λk and λ0
k are the k-th eigenvalues of M and M0 respectively and δMij =

(x0
i )

T δMx0
j is a matrix element of the perturbation in the basis of the unperturbed

eigenvectors.

Now assume small perturbations and represent λk = λ0
k + λ

(1)
k + λ

(2)
k + ... and

cn
k = δkn + c

n(1)
k + c

n(2)
k ... where each subsequent term represents smaller orders in

magnitude. The first-order terms are:

λ
(1)
k − λ0

k = δMjj (4.12)
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and

cn
k =

δMkn

λ0
n − λ0

k

, k 6= n. (4.13)

Equation (4.13) implies that the greater the separation between eigenmodes, the

less they tend to intermix due to small perturbations. If a pair of modes have eigen-

values which are close, they change rapidly with perturbation. The following recipe

for choosing an order of projection basis exploits this observation.

4.3.3 Recipe for using TBR with TPWL

Pick a reduced order to ensure that the remaining Hankel singular values are small

enough and the last kept and first removed Hankel singular values are well separated.

The above recipe yields a revised TBR-based TPWL algorithm:

TBR-based TPWL with the linearization at the initial state

1. Perform the TBR linear reduction at the initial state x0. Add x0 to the projec-

tion matrices U and V by using biorthogonalization.

2. Choose the reduced order q such that the truncated Hankel singular values are:

• Small enough to provide sufficient accuracy

• separated enough from the Hankel singular values that are kept

3. Simulate the training trajectory and collect linearizations

4. Reduce linearizations using the projection matrices obtained in step 1.

4.3.4 Even-odd behavior explained

The perturbation analysis suggests that the sensitivity of TBR projection basis is

strongly dependent on the separation of the corresponding Hankel singular values.

The Hankel singular values for the linearization point of the micromachined switch

example are shown in Figure 4-8.
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Figure 4-8: Hankel singular values of the balancing transformation at the initial state,
Micromachined switch example.

As one can clearly see, the Hankel singular values for the microswitch example

are arranged in pairs of values, and evidently, even-order models violates the recipe

for choice of reduction basis.
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Chapter 5

Modified AISIAD model reduction

for LTI systems

Different groups of MOR researchers cannot understand each other without fighting

- Alex Megretski, 6.242 lecture, MIT 2004

In this Chapter we develop a linear model reduction algorithm for systems in the

form (E, A, B, C, D), where matrix E is nonsingular. It is an approximation to TBR

reduction.

5.1 Background and prior work

As we have already mentioned in Chapter 2, the majority of approximations to TBR,

as well as Krylov-subspace methods, effectively approximate dominant eigenvectors

of the controllability gramian P and/or observability gramian Q [44, 3, 31]. However,

for the TBR we ultimately need approximations of the eigenvectors of products PQ

and QP . The question arises as to whether a good approximations to P and Q leads

to good approximations of the dominant eigenvectors of products PQ and QP . As

we will show below, the answer to this question is “not necessarily”.

If the dominant eigenspaces of system gramians P and Q are the same (for ex-

ample, if gramians are equal), the reduction algorithms based on separate gramian

approximations will provide a good approximation to TBR models. However, when
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eigenspaces of P and Q are different, approximation of dominant eigenspaces of PQ

and QP in the Algorithm 1 can be poor when using low-rank approximations of P

and Q. This issue was raised in [90, 76].

The work [90] was the first successful attempt of approximating the dominant

eigenspaces of the products of gramians for generic MIMO systems. This work is the

basis of the proposed algorithm.

5.1.1 Motivating example: simple RLC line

+

-

...

C C C C C

R R R LLLL

V(t)

R

C C C C

Figure 5-1: RLC transmission line model as a motivating example.

The fact that utilizing low-rank approximations of P and Q in the Algorithm 1 may

not be sufficient to approximate the TBR reduction becomes apparent if one performs

a modified nodal analysis (MNA) of the simple RLC transmission line depicted on

figure 5-1 and then considers a very lightly damped case. In the MNA formulation, the

state space consists of the voltages on the capacitors and currents through inductors

of a circuit. Let the input to the system be the voltage applied to the first node,

and the output be the current through the first resistor in the chain. The MNA

analysis results in the descriptor system (E, A,B,C) of order n = 2N with the

positive semidefinite matrices E and (−A) and C = BT . We used a lightly damped

line, with the parameters R = 0.05, L = 10−10, C = 10−15, the number of inductors

N = 100. If we convert this system to the state-space model (A,B, C), the first

N dominant eigenvectors of P and first N dominant eigenvectors of Q span almost

completely orthogonal subspaces! This gives an approximation of PQ being almost

zero.
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This means that in order to get a good approximation of a product PQ one needs

to get a low-rank approximations of P and Q essentially greater than N , and is

consequently not applicable in a large-scale setting.

This example illustrates a fundamental problem: capturing dominant controllable

and dominant observable modes separately is not sufficient to get a good approxi-

mation to TBR, and can lead to arbitrarily large errors in the frequency domain.

Even the PRIMA algorithm [58], which guarantees passivity of the reduced model1

produces quite poor approximations in the lightly damped cases in the H∞ norm,

due to the fact that it approximates only dominant controllable states2 (see Section

5.7 for numerical results).

The method below is different in the sense that it directly approximates the prod-

uct of PQ and therefore takes into account the fact that the separately determined

most controllable and most observable states may be different than the states with

the highest “controllability times observability” measure.

5.1.2 Original AISIAD algorithm

It is known that for the projection-based methods the transfer function of the reduced

system depends only on the column spans of the projection matrices V and U (see

[44], p. 23), therefore for the approximation of the TBR we need to approximate the

dominant eigenspaces of PQ and QP .

The AISIAD algorithm approximates the dominant eigenspaces of the products

PQ and QP using a power method, and then constructs projection matrices using

these approximations.

The AISIAD algorithm was originally proposed in [90], and we present it here as

Algorithm 2. It does not use low-rank approximations of gramians at all, however as

we show below, it is highly desirable to use low-rank approximations of P and Q in

order to produce accurate reduced models.

1For considerations on passivity enforcement read further sections
2Here we refer to the PRIMA algorithm which incorporates controllability approximation. There

exist flavors of PRIMA which incorporate observability. However, this does not change our point
that both of approximations are being accounted for independently of each other.
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Algorithm 2: Original AISIAD algorithm
Input: System matrices (A, B, C), reduced order q, initial orthogonal
basis V ∈ Rn×q

Output: Order-q reduced model (Ar, Br, Cr).
(1) repeat
(2) Approximate Xi ≈ PVi by solving

AXi + XiH
T
i + M̂i = 0, where

Hi = V T
i AVi, M̂i = BBT Vi

(3) Obtain orthogonal basis which spans the same subspace as
Xi: [Ui, Si] = qr(Xi, 0)

(4) Approximate Yi ≈ QUi by solving
AT Yi + YiFi + N̂i = 0, where
Fi = UT

i AUi, N̂i = CT CUi

(5) Obtain orthogonal basis for the approximation of QUi and
make it the next approximation of V : [Vi+1, Ri+1] = qr(Yi, 0)

(6) until convergence
(7) Biorthogonalize the matrices Vi+1 and Ui:

VL ← Vi+1, UR ← Ui[
Ul Σ Vl

]
= svd(V T

L UR)

V = VLUlΣ
−1/2, U = URVlΣ

−1/2

Project the initial system using V and U :

Ar = V T AU, Br = V T B, Cr = CU

(8) return (Ar, Br, Cr)

Consider the steps 2 and 4 of the Algorithm 2 in more detail. We present deriva-

tions for approximation of PVi here, the derivations for QUi are similar. From Lya-

punov equation for P :

AP + PAT + BBT = 0 (5.1)

Multiplying from the right-hand side by Vi, we get the following equation:

A PVi︸︷︷︸
Xi

+ PVi︸︷︷︸
Xi

V T
i AVi︸ ︷︷ ︸

Hi

+ P (I − ViV
T
i )AT Vi + BBT Vi︸ ︷︷ ︸

Mi

= 0 (5.2)

As we see, in the original AISIAD algorithm the term P (I − ViV
T
i )AT Vi is ne-

glected. We suggest that neglecting this term can result in a poor approximation
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quality, and this term can be instead approximated, using a low-rank approximant

for the gramian.

5.1.3 Solution of a specialized Sylvester equation

The most important routine in the algorithm 2 is obtaining a solution of the Sylvester

equation

AX + XH + M = 0, A ∈ Rn×n, H ∈ Rq×q,M ∈ Rn×q (5.3)

where q ¿ n (hence the name “specialized”).

Original solver of Sylvester equation

Consider the following matrix:

S =


A M

0 −H


 (5.4)

and assume that we have found the matrices V1 ∈ Rn×q, Z ∈ Rq×q and nonsingular

V2 ∈ Rq×q such that 
A M

0 −H





V1

V2


 =


V1

V2


 Z (5.5)

Then one can clearly see that the matrix V1V
−1
2 satisfies (5.3). Moreover, for the

purposes of the algorithm 2 it is sufficient to find only V1, since we make use only of

the column span of X.

Evidently, Λ(S) = Λ(A) ∪ Λ(−H), and since −HV2 = V2Z, matrix V2 is nonsin-

gular if and only if Λ(Z) = Λ(−H). Note that the matrices A and (−H) should not

have common eigenvalues, otherwise (5.3) does not have a unique solution.

In the original AISIAD the use of Implicitly Restarted Arnoldi (IRA) method [75]

is proposed as the means of solving (5.5). This way, one can obtain a partial Schur

decomposition of S with upper-triangular matrix Z in (5.5). In order to impose

the condition Λ(Z) = Λ(−H) using IRA, authors [75] needed to restrict H to be a

Hurwitz matrix. Therefore, original algorithm is applicable only to the cases where
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H is Hurwitz (i.e. the initial matrix A satisfies the condition of V T
i AVi being Hurwitz

for all choices of orthogonal basis Vi). This imposes a severe constraint on matrix A

and narrows the class of applicable systems for the whole original method.

5.2 Algorithm for specialized Sylvester equation

It is possible to solve equation (5.3) in the following way.

Let’s consider a complex Schur decomposition of matrix H = WSW ∗, where S

is upper-triangular, and W is unitary. Since matrix H is small q × q, this Schur

decomposition is inexpensive. Multiplying (5.3) from right by W yields:

A(XW ) + (XW )S + MW = 0, (5.6)

Backsolving for each column of the matrix (X̃ = XW ) starting from the first one:

(A + sjjIn)x̃j = (MW )j −
j−1∑
i=1

sijx̃i, (5.7)

Here x̃j denotes jth column of the matrix XW , and sij denotes (i, j)-th element of

the matrix S. The speed of these q solutions of linear system of equations determines

the overall speed of the proposed algorithm. We can employ a sparse solver if matrix

A is sparse. Alternatively, if fast matrix-vector products can be computed, one can

employ an iterative Krylov-subspace solver such as GMRES in order to solve (5.7).

After the matrix X̃ = XW has been computed, the solution X can be recovered

using multiplication by W ∗ from the right.

We summarize our algorithm for solving (5.3) in algorithm 3.

It is evident that for single-input single-output (SISO) system the proposed ap-

proximation is equivalent to rational Krylov method [30], for the interpolation points

being (−Λ(H)) (assuming H being diagonalizable). If one performs projection of the

initial system onto dominant eigenspaces of these approximations of P and Q, such

obtained reduced model will match the initial model at s1...q = −Λ(V T
i AVi). This im-
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Algorithm 3: Solving generalized sylvester equation
Input: Matrices A,H and M
Output: Solution X
(1) Perform a complex Schur decomposition of H:

H = WSW ∗

(2) M̃ ← MW
(3) for j=1 to q
(4) Solve for x̃j:

(A + sjjIn)x̃j = M̃j −
∑j−1

i=1 sijx̃i

(5) Assign jth column of X̃ being x̃j.
(6) return X = X̃W ∗

portant fact unifying Krylov-subspace model reduction and low-rank approximation

of gramians was first noted in [25].

5.2.1 Comparison of the two Sylvester solvers

For Hurwitz H both methods are equivalent assuming exact arithmetic. The method

described in the section 5.1.3 ensures that matrix


V1

V2


 contains orthonormal set

of vectors. However, this fact does not impose any constraint on the conditioning

of V1. Matrix V1 can have a very small condition number, whereas columns of V1

may be almost linearly dependent. On contrary, the proposed method employs only

orthogonal transformations, therefore it is more numerically favorable.

In addition, the proposed method eliminates the above mentioned important ap-

plicability constraint. It can be applied to any solvable Sylvester equation, broadening

the set of applicable problems.

5.3 Employing low-rank gramian approximations

As another important modification, we do not discard terms P (I − ViV
T
i )AT Vi in

(5.2). We can use any well-developed method to obtain low-rank approximations

of P and Q, such as Low-rank ADI [44] or LR-Smith algorithms [3], or projection-

based methods [76]. In our code we use simple projection-based algorithm outlined

in Algorithm 4 for the example of controllability gramian approximation.
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Algorithm 4: Low-rank approximation of gramians
Input: Matrices A and B, desired order of approximation k
Output: Low-rank approximation of P ≈ VpSpV

T
p

(1) Compute orthogonal basis for the Krylov subspace as an initial
guess:
colspan(V0) = Kk(A

−1, B)
(2) repeat
(3) Approximate Xi ≈ PVi by solving

AXi + XiH
T
i + M̂i = 0, where

Hi = V T
i AVi, M̂i = BBT Vi

(4) Perform SVD of X:
[Vi+1, Si+1, Gi+1] = svd(X, 0)

(5) until convergence
(6) return Vi+1, Si+1

5.4 The modified AISIAD algorithm

Combining two improvements outlined above, we now describe the modified AISIAD

method which we propose as a replacement for the algorithm 2. We outline it as the

Algorithm 5

We would like to note that if full exact gramians are known, the modified AISIAD

algorithm becomes the power method for the matrices PQ and QP and therefore is

guaranteed to converge to the exact TBR solution.

5.5 Modified AISIAD algorithm for descriptor sys-

tems

We have generalized the modified AISIAD (Algorithm 5) for the systems in the de-

scriptor form with nonsingular matrix E. As we have discussed in Section 2.2.4, the

treatment of the case of singular matrix E boils down to the case of nonsingular

descriptor matrix.

From our discussion in Section 2.2.4, the projection matrices V and U in TBR

for descriptor systems span the dominant eigenspaces of QEPET and PET QE re-

spectively, where P and Q are solutions of the generalized Lyapunov equations (2.19,
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Algorithm 5: Proposed algorithm for approximation of TBR.
Input: System matrices (A,B,C), desired reduced order q, initial pro-
jection matrix V ∈ Rn×q

Output: Order-q reduced model (Ar, Br, Cr).
(1) Get low-rank approximations of gramians

P̃ ≈ P and Q̃ ≈ Q using any applicable algorithm.
(2) repeat
(3) Solve using algorithm 3

AXi + XiH
T
i + M̂i = 0, where

Hi = V T
i AVi

M̂i = BBT Vi + P̃ (I − ViV
T
i )AT Vi

(4) [Ui, Si] = qr(Xi, 0)
(5) Solve using algorithm 3

AT Yi + YiFi + N̂i = 0, where
Fi = UT

i AUi

N̂i = CT CUi + Q̃(I − UiU
T
i )AUi

(6) [Vi+1, Ri+1] = qr(Yi, 0)
(7) until convergence
(8) Biorthogonalize matrices Vi+1 and Ui:

VL ← Vi+1, UR ← Ui[
Ul Σ Vl

]
= svd(V T

L UR)

V = VLUlΣ
−1/2, U = URVlΣ

−1/2

Project the initial system using V and U :

Ar = V T AU, Br = V T B, Cr = CU

(9) return (Ar, Br, Cr)

2.20). The reduced system is (V T EU, V T AU, V T B, CU).

In the modified AISIAD algorithm for descriptor systems, we use the approximated

power iterations in order to obtain the dominant eigenspaces of QEPET and PET QE

by approximating PET Vi and QEUi. For the approximation of the first product,

multiply the generalized Lyapunov equation for P from right by Vi:

APET Vi︸ ︷︷ ︸
X

+E PET Vi︸ ︷︷ ︸
X

V T
i EAT Vi︸ ︷︷ ︸

H

+ EP (I − ET ViV
T
i )AT Vi + BBT Vi︸ ︷︷ ︸
M

= 0 (5.8)

As before, we can compute a low-rank approximation for the gramian P̂ ≈ P using
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methods, for example, described in [79], and therefore obtain approximation of the

term M̂ ≈ M .

The equation (5.8) leads to the following matrix equation:

AX + EXĤ + M̂ = 0, (5.9)

We can solve (5.9) analogously to solving (5.3) by performing a Schur decomposition

of H = WSW ∗ and then solving for the columns of matrix XW . In this case instead

of (5.7) we will have to solve the following system of equations:

(A + sjjE)x̃j = (MW )j −
j−1∑
i=1

sijx̃i (5.10)

Again, this system can be solved fast if matrices A and E are sparse, or if the fast

solver is available.

The calculations for approximation of QEUi are analogous.

We outlined the resulting algorithm as Algorithm 6.

5.6 Advantages and limitations of the proposed al-

gorithm

The proposed algorithm is applicable to any stable linear system in a state-space

form. We have extended it for descriptor systems with nonsingular descriptor matrix

E.

Advantages of the proposed method with respect to the original AISIAD is its

extended applicability to a broader range of systems (original AISIAD is applicable

only to the cases where A > 0) and its improved accuracy. It comes at extra cost,

however - the cost usually comparable to gramian approximation.

The major factor, which governs the accuracy of the proposed method is the

accuracy of low-rank approximations of P and Q.

In addition, there is no benefit of applying AISIAD to the symmetric systems

88



Algorithm 6: Modified AISIAD algorithm for descriptor systems with non-
singular E.

Input: System matrices (E, A,B, C), desired reduced order q, initial
projection matrix V ∈ Rn×q

Output: Order-q reduced model (Er, Ar, Br, Cr).
(1) Get a low-rank approximations of proper gramians

P̃ ≈ P and Q̃ ≈ Q
(2) repeat
(3) Solve AXi + EXiHi + M̂i = 0, where

Hi = V T
i AT Vi

M̂i = BBT Vi + EP̃ (I − ET ViV
T
i )AT Vi

(4) [Ui, Si] = qr(Xi, 0)
(5) Solve AT Yi + ET YiFi + N̂i = 0, where

Fi = UT
i AUi,

N̂i = CT CUi + ET Q̃(I − EUiU
T
i )AUi

(6) [Vi+1, Ri+1] = qr(Yi, 0)
(7) until convergence
(8) Set V ← Vi+1 and U ← Ui,
(9) Project the initial system using V and U :

Er = V T EU, Ar = V T AU, Br = V T B, Cr = CU

(10) return (Er, Ar, Br, Cr)

(A = AT , B = CT ), since for such systems P = Q, and AISIAD cannot do better

than dominant gramian eigenspace method (DGE).

5.6.1 Complexity of the modified AISIAD algorithm

The computational cost of the modified AISIAD algorithm is directly proportional

to the cost of solving q linear systems of equations in (5.10). If we assume that the

matrices A and E are sparse enough to compute the solution in order-n time, this

will correspond to linear complexity of the whole algorithm with respect to scaling

by n. Our numerical experiments on the RLC circuit example (described in the next

section) fully support this statement: for RLC example the time taken to reduce

the system scales linearly with n. The largest model we tried so far had the order

n = 500, 000.

One can employ iterative solvers for the solution of (5.10) if the matrices are dense.
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If the sparse solver is employed, the cost of the algorithm with available low-rank

approximations to P and Q is approximately

2Nitq(Cfactor + Cbksolve),

where Nit is a number of modified AISIAD iterations, Cfactor is a cost of a matrix

factorization of A + sjjE, and Cbksolve is a cost of backward-solving for the solution.

An interesting feature of the proposed algorithm is that it uses one backward solve

per one matrix factorization, therefore for each iteration 2q matrix factorizations and

2q backward solves need to be performed. The linear systems in (5.10) are essentially

the same as in the multiple-point Padé approximation via Krylov-subspaces [62].

However, modified AISIAD algorithm uses q different shift parameters, whereas PVL

method generally uses less than q, therefore for PVL the number of backward solves

per one matrix factorization is usually more than one. The Arnoldi algorithm requires

only one matrix factorization and q backward solves. Therefore, both PVL and

Arnoldi are faster than the modified AISIAD algorithm by a constant factor.

5.6.2 Passivity preservation

The modified AISIAD method does not impose any assumptions on the physical

nature of the input and output signals. In other words, this method is generic.

However, it is very important for many model reduction problems to preserve some

properties of the transfer function, like positive-realness (in case where input signals

are port voltages and output signals are port currents) or bounded-realness (in case

of S-parameter modeling).

So far, the only method which is applicable for large-scale model reduction and

which preserves passivity3 is the PRIMA algorithm [58]. This method is based on

Krylov-subspace projections, which can be viewed as approximating dominant con-

trollable states [25]. As it was mentioned before, this can sometimes lead to large

errors in the frequency domain, which do not necessarily decrease with increasing of

3with assumption A being positive semidefinite and B = CT
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the reduced order. This is fully consistent with the experimental results which we

present in the next section. The same can be said about variants of PRIMA, which

uses dominant eigenspaces of P and Q for the projection bases.

As a practical (and widely used) solution, we can obtain a passive model by post-

processing. Since modified AISIAD produces a very accurate models in the frequency

domain, we can, for example, use the poles of the reduced model, and re-fit the

reduced transfer function using any convex optimization algorithms which ensure

passivity [17, 34, 77]. We have tested this approach on the RLC line example and

present our results in the next section.

5.7 Computational results

For the test cases we used four benchmark systems, which we describe below. For

each of these systems we compared the original AISIAD, modified AISIAD, domi-

nant gramian eigenspaces (DGE), low-rank square root (LRSQRT), Arnoldi [30, 58]

and Padé via Lanczos (PVL) [62] reduction algorithms. As an error metric, we used

the H∞ norm of the difference between sufficiently accurate reduced model 4 (in the

examples it was the TBR model of order 100-150) and all above mentioned approx-

imations. Note that our error metric is essentially the maximum of the difference

between the original and reduced system’s transfer functions over the entire jω axis.

We assumed an error to be infinity if the reduced model was unstable (these cases

correspond to discontinuities of the lines on our error plots).

Our results showed that the modified AISIAD always outperforms all of the above

mentioned methods, with the exception of LRSQRT. For example of the rail cooling

and some RLC circuits, modified AISIAD performed much better than LRSQRT.

However, for other cases it showed almost identical performance. For several RLC

examples modified AISIAD turned out to be slightly inferior to LRSQRT method.

91



...

C C C C C

R R R LLLL

V(t)
+

-

R

Figure 5-2: RLC transmission line example

5.7.1 RLC transmission line

The first system is an RLC transmission line depicted on figure 5-2, with varying

values for R, L and C. Input signal u(t) is the voltage at the first node. The out-

puts are the voltage at the last node and current flowing through the first inductor.

The state vector consists of node voltages and inductor currents, and nodal analysis

equations result in a system (A,B,C) with non-symmetric, indefinite matrix A. We

varied the size of this system from several hundreds to hundreds of thousands, for

different values of R, L and C and different choices of output signals. The maximal

order of the system was 500,000.

Our results showed that modified AISIAD method always produces more accurate

results than any above mentioned reduction methods in the H∞ error metric.

On the figure 5-3 the H∞ errors of the reductions for this RLC line are plotted

versus the reduced order q. The initial order of the system was 1000. As the figure

suggests, the errors for the DGE method (as well as all other methods!) is much

bigger than the errors for the modified AISIAD algorithm. We’d like to stress that

here we used exact low-rank approximant for DGE method, whereas for the modified

AISIAD we used approximated gramians (the ones provided by algorithm 4). This

way, the curve for DGE is a universal upper bound for all family of methods that

approximate P and Q separately. Evidently, AISIAD is the best method for this case,

significantly outperforming the original AISIAD method.

4Using non-reduced model for computing H∞ norm is very expensive
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Figure 5-3: Reduction errors for the RLC transmission line of order n = 1000, R =
1, L = 2, C = 3

RLC line - MNA formulation

We have used modified nodal analysis (MNA) formulation for the transmission line

depicted on figure 5-4. The inputs were the voltage sources either at a single end or

both ends, and the outputs were either currents through the end resistors or (in the

case of a single input) voltage at the other end of a line.

+

-

...

C C C C C

R R R LLLL
V1(t)

R

C C C C +

-

V2(t)

Figure 5-4: RLC transmission line two-port model.

The MNA formulation for this line results in a dynamical system in the form

(E,A, B,C). We have observed that the modified AISIAD method always works
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better than PVL, DGE and Arnoldi (which is the PRIMA algorithm [58])5. However,

low-rank square root method sometimes gives comparable results as modified AISIAD,

and for two-port impedance model in some cases it even produces inferior results with

respect to LRSQRT. However, the two-port impedance model is almost irreducible,

it’s Hankel singular values are quite high.

Passive post-processing

We have used the RLC transmission line model with input being the voltage at the

first node and the output being current through the first resistor of the line (cf. Figure

5-1). The passivity constraint implies the transfer function being positive-real, that

is, in addition to being stable, it satisfies the following condition:

Re(H(jω)) > 0, ∀ω (5.11)

The parameters of RLC line were N = 1000, R = 0.1, L = 2, C = 15. For this

model, the modified AISIAD reduced model of order q = 30 is not passive, with

the H∞ norm of error being 0.70%. We have used this model for the passive fitting

algorithm from [77] and obtained a positive-real reduced model of order q = 20, with

an H∞ error 0.96%. The PRIMA algorithm for this order has a tremendously higher

H∞ error, which is 88.2%. Figure 5-5 shows the real parts of the above mentioned

transfer functions.

RC line

In order to test the modified AISIAD algorithm on a symmetric system (A = AT , B =

CT ), we used a simple RC line (figure 5-2 with L = 0) with input being the voltage at

the first node and output being the current through the first resistor. The state vector

was the vector of node voltages. For this system P = Q and dominant eigenspaces of

PQ and QP will be the same as the ones of P and Q separately, therefore modified

AISIAD should achieve exactly the same accuracy as DGE method. Our numerical

5PRIMA algorithm has it’s own advantages though, because it preserves passivity of a reduced
model. However, we are concerned here only with H∞ norm as an error measure.
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model (dash-dotted line) and the model obtained after post-processing of modified
AISIAD model (dashed line). One can note that PRIMA algorithm poorly approxi-
mates the original transfer function away from the expansion point (which is at zero
frequency). The non-reduced transfer function is almost indistinguishable from the
modified AISIAD model.

experiments fully support this statement: errors for DGE and modified AISIAD are

the same for this test case.

5.7.2 Linearization of micromachined pump

The second example was the linearization of the micromachined pump (fixed-fixed

beam), which has been discussed in the previous Chapter. The linearization of this

model around equilibrium leads to the nonsymmetric system (A, B, C) with indefinite

system matrix A. The order n = 880.

On the figure 5-6 the errors for the MEMS test case are presented. Here still
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Figure 5-6: Errors for the MEMS linearization, N = 880.

modified AISIAD method performs better than any other method, but the difference

is not as dramatic as for other examples. The LRSQRT method showed the results

similar to the modified AISIAD.

5.7.3 Cooling profile of steel rail

This test case was obtained from the Oberwolfach Model Reduction Benchmark Col-

lection web site [1]. The reader is referred to the description of Heat transfer problem

for cooling of steel profiles benchmark on the mentioned web site for descriptions.

This is the model in a descriptor form (E,A, B, C) with n = 1357, having 7 inputs

and 6 outputs.

For this example the modified AISIAD showed superior performance with respect

to any other approximations, including LRSQRT method.

On the figure 5-7 we present the error plot for this example. Here, again, AISIAD

greatly outperforms any other approximations to TBR, as well as Krylov-subspace

96



0 5 10 15 20 25 30 35 40

10
−4

10
−3

10
−2

10
−1

10
0

||G
15

0
tb

r
(s

) 
−

 G
D

G
E

, A
IS

IA
D

, P
V

L (s
)|

| ∞

reduced order, q

mAISIAD
DGE

original AISIAD
Pade via Lanczos

Arnoldi
LRSQRT

Figure 5-7: Reduction errors for the rail example, n = 1357, 7 inputs, 6 outputs

based reductions. The reduced models of order q = 2, 3, 4 are unstable, but it’s

even smaller than the number of inputs. As expected, modified AISIAD outperforms

original AISIAD algorithm.

5.7.4 Optical filter

This test case was obtained from the Oberwolfach Model Reduction Benchmark Col-

lection web site [1]. The reader is referred to the description of Tunable Optical

Filter benchmark on the mentioned web site for descriptions. This is the model in a

descriptor form (E,A, B,C) with n = 1668, having 1 input and 5 outputs. The cor-

responding errors are presented on figure 5-8. Here the dominant gramian eigenspace

projection was computed using the same approximate gramians which were used for

the modified AISIAD method. The LRSQRT method showed very similar errors as

the modified AISIAD.
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Chapter 6

A graph-based model reduction for

parameterized RC networks

That’s OK. I do it all the time

- Irina Missiuro (after falling down the stairs)

The work in this Chapter has been done in collaboration with Dr. Joel Phillips

and Dr. Zhenhai Zhu during an internship at Cadence Research Labs, Berkeley, CA.

This work has been published in [84].

In this Chapter we present a graph-based reduction algorithm for RC networks.

6.1 Problem setup, notation and prior work

The problem of reduction of RC networks typically appears within integrated circuit

simulation software. For example, every piece of interconnect can be represented as

an RC network. External connections are made to port nodes of such RC network.

The goal of the reduction is to approximate the network’s response at the port nodes.

Depending on the formulation, the inputs can be port currents and outputs can be

port voltages (Z-formulation) or the other way around (Y-formulation). The output

model can be another smaller RC circuit or just a general state-space model.

The nodal analysis applied to such network leads to the description in the form

(E,A, B,C,D) as in (1.8). In the case where inputs are considered to be currents (Z-
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formulation), system states are node voltages, matrix A is negative of the conductance

matrix, matrix E is a capacitance matrix and matrix B = CT maps port numbers to

the port nodes. In order to emphasize the physical meaning of the variables, in the

derivations of this Chapter we will denote state vector (consisting of node voltages)

by v, conductance matrix by G and capacitance matrix by C. External currents into

the port nodes will be denoted by J. The ground node will be one of the port nodes.

Other notation remains the same.

For deterministic and non-parameter varying RC networks, model order reduction

is a mature area with three main classes of well-established algorithms:

1. Methods based on TBR;

2. Moment-matching methods such as PVL [62] and PRIMA [57];

3. Graph-based reduction methods [52, 21, 82, 74, 6], among which the TICER

algorithm [74, 6] is most widely known.

These classes of methods complement each other: while methods from the first

group are generally slow, but provide more reduction, methods from the last group

are much faster but less accurate.

More recently, several approaches have been proposed for reduction that considers

process variability effects [67, 48, 19, 86, 46, 51] in which the parametric models are

considered. Algorithms in [48, 19, 86, 46] are moment matching type algorithms, or

related to moment matching type algorithms.

Interestingly, to our best knowledge, there is very little work on the graph-based

algorithms for the parameterized model order reduction. In this Chapter, we propose

such an algorithm.

There are three independent works which are the predecessors to the reduction

algorithm outlined in Section 6.2. The first work is described in the Ph.D. thesis of

McCormick [52]. This work presents a general method (Moment Polynomial Nodal

Analysis) that computes the voltage response time moments of a linear circuit up to

any prescribed order. It is based on standard Gaussian elimination and the single-

variable Taylor series expansion. Another two related works are [82] and [74]. Basic
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node elimination rules were derived in [82], and simple node selection rules based on

node time constants were introduced in the TICER algorithm [74].

The node elimination rules presented in Section 6.2 can be treated as a special case

of the general method in [52] where the truncation is up to the quadratic polynomials

of s, the complex frequency in Laplace domain. We have extended the single-variable

Taylor expansion in [52, 21, 74] to the multi-variable one and used it as the theoretical

foundation for the parameterized model order reduction. This reduction algorithm

automatically adjusts to the parameter variation range. Smaller range results in

smaller reduced model and vice versa.

6.2 Graph-Based Nominal Reduction

The graph-based reduction algorithms for RC networks are quite different than the

methods we were dealing with so far in this work. From one hand, the applicability

of the graph-based methods is very well defined, therefore we can use our insight

from circuits theory. From another hand, this method operates differently than all

previously described MOR methods. Though, as we show below, our graph-based

method can be interpreted as performing certain projections, it does not make sense

to implement it as a series of projections. Instead, this algorithm is implemented in a

way similar to a symmetric sparse matrix solver where the circuit elements are stored

as a graph and nodes of the graph are eliminated in such way as to minimize the

fill-ins. This way, a single reduction step corresponds to elimination of a single node

of a network, or equivalently reducing the dynamical system’s order by one.

Another important feature of the presented method is that it preserves the sparsity

structure of the original RC network. For example, if the original circuit has a tree-like

structure, so will be the reduced circuit.

In this Section we derive and describe the proposed graph-based reduction method

for nominal (non-parameterized) RC circuits. We highlight the differences between

the original TICER algorithm and the proposed method.
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6.2.1 Basic Formulation

The frequency-domain circuit description of an RC network with N nodes can be

written as:

(sC + G)v = J, (6.1)

where

Cij =




−cij, i 6= j
∑N

m=1 cmi, i = j
, Gij =




−gij, i 6= j
∑N

m=1 gmi, i = j
, (6.2)

gij and cij are respectively the conductance and the capacitance between nodes i and

j, v is a vector of node voltages, J is a vector of external currents into the circuit,

and s is the complex frequency. Without loss of generality, let the N -th node be the

internal node we want to eliminate. Then the matrices in (6.1) can be partitioned as

following: 
 sC̃ + G̃ −(scN + gN)

−(scN + gN)T sCNN + GNN





 ṽ

vN


 =


 J̃

JN


 (6.3)

where matrices C̃ and G̃ are the capacitance and conductance matrices for the sub-

circuit excluding node N , gN and cN are the vectors of size (N−1) with conductances

giN and capacitances ciN between node N and other nodes, ṽ contains all node volt-

ages except for vN , and J̃ contains all external current sources except for JN . Since

node N is an internal node, by definition, JN = 0. We can solve the second equation

in (6.3) for vN and obtain

vN =
scT

N + gT
N

sCNN + GNN

ṽ. (6.4)

Substituting vN into the first equation in (6.3), we obtain

(sC̃ + G̃− E)ṽ = J̃, (6.5)

where

E =
(scN + gN)(scT

N + gT
N)

sCNN + GNN

. (6.6)
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It should be noted that the procedure in (6.4)-(6.6) is nothing but one step in the

standard Gaussian elimination for symmetric matrix (sC + G).

Matrix E is not an affine function of frequency s, hence the circuit described

by (6.5) can not be realized by an RC circuit with (N − 1) nodes. In other words,

equation (6.5) can not be cast into the form like that in (6.1). Hence the procedure in

(6.4)-(6.6) does not land itself as a recursive node-elimination algorithm that we can

use to perform reduction. It is proposed in [52, 21, 74] that one can use the truncated

Taylor series to approximate matrix E such that the reduced network is realizable.

We briefly summarize this procedure in the following. Re-write (6.6) as

E =
(scN + gN)(scT

N + gT
N)

GNN

(1 +
sCNN

GNN

)−1

' (scN + gN)(scT
N + gT

N)

GNN

(1− s
CNN

GNN

)

' gNgT
N

GNN

+ s
(cNgT

N + gNcT
N

GNN

− CNN

GNN

gNgT
N

GNN

)
(6.7)

where the first approximate equal sign is due to the truncated Taylor series expansion

at s = 0 and the second approximate equal sign is due to the truncated polynomial of

s. The leading truncation term after the first approximate equal sign is s2 C2
NN

G2
NN

. This

suggests the following truncation criterion for this step:

∣∣∣smax
CNN

GNN

∣∣∣ < ε1, (6.8)

where smax = jωmax is the maximal complex frequency of interest and ε1 is a user-

defined small constant. The truncated term after the second approximate equal sign

is s2 cNcT
N

GNN
. Since this is essentially an entry-by-entry perturbation s2 ciN cjN

GNN
to a sym-

metric matrix, we have chosen to enforce that these errors be small with respect to

the corresponding diagonal elements. Therefore, a reasonable truncation criterion for
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this step is1





∣∣∣s2 ciN cjN

GNN

∣∣∣ < ε2

∣∣∣sCii + Gii

∣∣∣∣∣∣s2 ciN cjN

GNN

∣∣∣ < ε2

∣∣∣sCjj + Gjj

∣∣∣
∀i, j 6= N ; s = smax, (6.9)

where ε2 is another user-defined small constant. One should note that the tolerances

ε1 in (6.8) and ε2 in (6.9) should be different because they have very different origin. In

addition, the truncation criteria in (6.8) and in (6.9) are equally important. However,

in the TICER algorithm [74], the criteria in (6.9) are not enforced and the negative

term −CNN

GNN

giNgT
jN

GNN
in (6.11) is dropped.

Substituting (6.7) into (6.5), we obtain

(sĈ + Ĝ)v̂ = J̃, (6.10)

where

Ĉij = C̃ij −∆Cij, ∆Cij =
ciNgjN + giNcjN

GNN

− CNN

GNN

giNgjN

GNN

, (6.11)

and

Ĝij = G̃ij −∆Gij, ∆Gij =
giNgjN

GNN

. (6.12)

The vector v̂ approximates the original vector of voltages ṽ, due to the approximation

made in (6.5) for the term E. The terms ∆Cij in (6.11) and ∆Gij in (6.12) can be

viewed respectively as a capacitance update and a conductance update to the sub-

circuit excluding the node to be eliminated.

6.2.2 Nominal Reduction Algorithm

The procedure in (6.1)-(6.10) suggests a recursive node-elimination algorithm for

model order reduction. The accuracy of this algorithm can be controlled by toler-

ances in the elimination criteria (6.8) and (6.9). Smaller values of tolerances ε1,2 will

lead to less reduction but better accuracy. Since the essence of this algorithm is the

1The inequalities in (6.8,6.9) should hold for any s ∈ [0, smax], however obviously the worst-case
condition is when s = smax.
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truncated Gaussian elimination for symmetric sparse matrix, the most efficient im-

plementation is based on a graph representation of the RC network [27] and hence

the name graph-based reduction. The same as in standard symmetric sparse matrix

solver, the minimum degree ordering is used to minimize the number of fill-ins. The

algorithm starts with the nodes with the fewest neighboring nodes (the degree) and

stops when the degree of each node is above a user-specified value. The proposed

algorithm is summarized as Algorithm 7.

Algorithm 7: Graph Based Nominal Reduction
Input: C, G; truncation tolerance ε1 and ε2; dm: maximal degree al-
lowed for a node to be considered for elimination
Output: Ĉ, Ĝ
(1) Set up graph G for C,G
(2) Find all internal nodes with degree less than dm and put them

into a set Ω. Order the nodes in Ω by the number of neighbors.
(3) foreach nodeN ∈ Ω
(4) if nodeN satisfies (6.8) and (6.9)
(5) Eliminate nodeN and all edges (resistors and capacitors)

connected to it from graph G
(6) foreach node pair (i, j) that had been connected to nodeN

by either a resistor or a capacitor
(7) add conductance ∆Gij in (6.12) between nodes i and j

in graph G
(8) add capacitance ∆Cij in (6.11) between nodes i and j

in graph G
(9) Update neighbor counts of the nodes in Ω and eliminate N

from Ω.
(10) Go to step 2 and iterate until no node from Ω satisfies (6.8) and

(6.9).

6.2.3 Passivity Preservation

As shown above, the RC circuit description in (6.10) generated from each node elim-

ination step in Algorithm 7 is potentially realizable. However, it is possible that the

added capacitance ∆Cij in (6.11) is negative. Consequently, the final circuit may have

some negative capacitances. It is for this reason that the negative term −CNN

GNN

giNgT
jN

GNN

in (6.11) is dropped in TICER algorithm [74]. As the following Theorem states, even
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if the final circuit does have negative capacitances, such circuit is always stable and

passive.

Theorem 6.2.1. The resulting system (6.10) obtained after each node elimination in

Algorithm 7 is stable and passive.

A complete proof of this statement is presented in the Appendix A.

This is an important result because it allows us to use the full series-based elimina-

tion rules with rigorous error control (6.8, 6.9), which we generalize for parameterized

circuits in the next Section. As our results will show, ad-hoc deletions of components

results in a reduction approach that is less reliable than when more rigorous rules are

used. All such sources of “scatter” can potentially cause problems for timing conver-

gence. While at one time the existence of negative capacitors introduced potential

problems in a timing analysis flow, more modern timing and signal integrity analysis

engines make heavier use of advanced modeling engines. These engines can often ac-

cept general state-space or pole-residue type macromodels. Most SPICE-type circuit

simulators can also accept these general macromodels. Due to this change, it is now

practical in many contexts to consider using the full rigorous rules, which as we will

show provide more accurate and reliable results.

6.3 Graph-Based Parameterized Reduction

In this Section we describe a generalization of the nominal graph-based reduction

method for circuits where the values depend on a set of parameters. A remarkable

feature of the nominal reduction method is that it considers the frequency band of

interest and will produce more compact models for smaller bandwidth. Likewise, the

parameter-dependent generalization utilizes the limits of parameter’s variability.
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6.3.1 Formulation

Similar to [67, 48, 19, 86, 46], we assume that the conductance and capacitance are

affine function of parameters λ1 . . . λν as

C(λ̄) = C0 +
ν∑

k=1

λkC
k, G(λ̄) = G0 +

ν∑

k=1

λkG
k (6.13)

where C0 and G0 are respectively nominal capacitance and conductance matrix, Ck

and Gk are respectively capacitance and conductance sensitivity with respect to pa-

rameter λk. The circuit equation for the RC network is identical to (6.1) except that

C and G are replaced by C(λ̄) and G(λ̄).

Assuming node N is to be eliminated and following the same procedure as in

(6.3)-(6.5), we obtain

(sC̃(λ̄) + G̃(λ̄)− E(λ̄, s))ṽ = J̃ (6.14)

where

E(λ̄, s) =
α(λ̄, s)αT (λ̄, s)

sCNN(λ̄) + GNN(λ̄)
(6.15)

α(λ̄, s) = scN(λ̄) + gN(λ̄). (6.16)

Following the similar truncation procedure in (6.7), we obtain

E(λ̄, s) =
α(λ̄, s)αT (λ̄, s)

G0
NN

(
1 +

sCNN(λ̄) +
∑ν

k=1 λkG
k
NN

G0
NN

)−1

' α(λ̄, s)αT (λ̄, s)

G0
NN

(
1− sCNN(λ̄) +

∑ν
k=1 λkG

k
NN

G0
NN

+

+2sC0
NN

∑ν
k=1 λkG

k
NN

(G0
NN)2

)

' s(∆C0 +
ν∑

k=1

λk∆Ck) + (∆G0 +
ν∑

k=1

λk∆Gk) (6.17)

where

∆G0
ij =

g0
iNg0

jN

G0
NN

(6.18)

∆Gk
ij =

g0
iNgk

jN + gk
iNg0

jN

G0
NN

−Gk
NN

g0
iNg0

jN

(G0
NN)2

(6.19)
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∆C0
ij =

g0
iNc0

jN + c0
iNg0

jN

G0
NN

− C0
NN

g0
iNg0

jN

(G0
NN)2

(6.20)

∆Ck
ij =

gk
iNc0

jN + c0
iNgk

jN + ck
iNg0

jN + g0
iNck

jN

G0
NN

− Gk
NN

c0
iNg0

jN + g0
iNc0

jN

(G0
NN)2

− C0
NN

gk
iNg0

jN + g0
iNgk

jN

(G0
NN)2

− Ck
NN

g0
iNg0

jN

(G0
NN)2

+ 2C0
NNGk

NN

g0
iNg0

jN

(G0
NN)3

. (6.21)

The first approximate equal sign in (6.17) is due to the truncated Taylor series ex-

pansion. We use the following condition to ensure the leading truncation term is

small ∣∣∣∣∣
smaxCNN(λ̄) +

∑ν
k=1 λkG

k
NN

G0
NN

∣∣∣∣∣ < ε1 (6.22)

where ε1 is a user-specified small constant. The second approximate equal sign in

(6.17) is due to the truncated polynomial of s and λ̄. To ensure its leading truncation

term is small, we require

1

G0
NN

∣∣∣δgiN(λ̄)δgjN(λ̄) + s(δciN(λ̄)δgjN(λ̄) + δgiN(λ̄)δcjN(λ̄))

+ s2ciN(λ̄)cjN(λ̄)
∣∣∣ ¿ min

k=i,j

∣∣∣sCkk(λ̄) + Gkk(λ̄)
∣∣∣,

∀i 6= N, j 6= N (6.23)

where

δgiN(λ̄) =
ν∑

k=1

λkg
k
iN , δciN(λ̄) = s

ν∑

k=1

λkc
k
iN . (6.24)

However, it is no longer sufficient to enforce (6.23) at the maximal frequency of

interest to ensure that the inequality (6.23) holds at all frequencies and parameter

values! To avoid a search for the worst-case corner over all frequencies, we suggest

108



using a slightly more conservative but more convenient set of conditions:





∣∣∣ δgmax
iN δgmax

jN

G0
NN

∣∣∣ < ε2 mink=i,j Gmin
kk∣∣∣s δgmax

iN δcmax
jN

G0
NN

∣∣∣ < ε2 mink=i,j

∣∣∣sCmin
kk + Gmin

kk

∣∣∣∣∣∣s2 cmax
iN cmax

jN

G0
NN

∣∣∣ < ε2 mink=i,j

∣∣∣sCmin
kk + Gmin

kk

∣∣∣
, ∀i 6= N, j 6= N, (6.25)

where ε2 is another user-specified small constant and

δcmax
iN = maxλ1,...λν

∣∣∣δciN(λ̄)
∣∣∣, δgmax

iN = maxλ1,...λν

∣∣∣δgiN(λ̄)
∣∣∣,

Cmin
kk = minλ1,...λν

∣∣∣Ckk(λ̄)
∣∣∣, Gmin

kk = minλ1,...λν

∣∣∣Gkk(λ̄)
∣∣∣,

cmax
iN = maxλ1,...λν

∣∣∣ciN(λ̄)
∣∣∣, gmax

iN = maxλ1,...λν

∣∣∣giN(λ̄)
∣∣∣.

It is easy to verify that enforcing the last two conditions in (6.25) at maximal fre-

quency of interest smax is sufficient to ensure that they are satisfied at all frequencies

within the bandwidth of interest.

Substituting (6.17) into (6.14) and in view of (6.13), we obtain

[
s(Ĉ0 +

ν∑

k=1

λkĈ
k) + (Ĝ0 +

ν∑

k=1

λkĜ
k)

]
ṽ = J̃, (6.26)

where

Ĉ0
ij = C̃0

ij −∆C0
ij, Ĉk

ij = C̃k
ij −∆Ck

ij (6.27)

Ĝ0
ij = G̃0

ij −∆G0
ij, Ĝk

ij = G̃k
ij −∆Gk

ij. (6.28)

Similar to the nominal reduction, the terms in (6.18)-(6.21) can be viewed as updates

to the original circuit excluding the node to be eliminated.

6.3.2 Parameterized Reduction Algorithm

We summarize the procedure in (6.13)-(6.28) in the following algorithm

The Algorithm 8 automatically incorporates parameter variation ranges. Smaller

variation range means that more nodes might satisfy conditions in (6.22) and (6.25)

and hence are to be eliminated. This directly leads to a smaller reduced model.
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Algorithm 8: Graph Based Parameterized Reduction

Input: C0, Ck, G0, Gk; truncation tolerance ε1 and ε2; dm: maximal
degree allowed for a node to be considered for elimination
Output: Ĉ0, Ĉk, Ĝ0, Ĝk

(1) Set up graph G for C0, Ck, G0, Gk

(2) Find all internal nodes with degree less than dm and put them
into a set Ω. Order the nodes in Ω by the number of neighbors.

(3) foreach nodeN ∈ Ω
(4) if nodeN satisfies (6.22) and (6.25)
(5) Eliminate nodeN along with all edges connected to it from

graph G
(6) foreach node pair (i, j) that had been connected to node

N by either a resistor or a capacitor
(7) Add the nominal conductance update in (6.18) between

nodes i and j
(8) Add the nominal capacitance update in (6.20) between

nodes i and j
(9) foreach sensitivity k affecting elements between the

node N and node i and j
(10) Add the conductance sensitivity in (6.19) between

nodes i and j
(11) Add the capacitance sensitivity in (6.21) between

nodes i and j
(12) Update neighbor counts of the nodes in Ω and eliminate

node N from Ω.
(13) Go to step 2 and iterate until no node from Ω satisfies (6.22)

and (6.25).

It should be noted that the transformation in (6.17) does not appear to have

a projection interpretation like the one described in the proof of Lemma A.0.2 in

Appendix A. Therefore, the question of preserving the stability and passivity in the

reduced model is still open.

6.4 Numerical results

In this Section, we first compare the accuracy of Algorithm 7 in Section 6.2.2 to that

of the TICER algorithm in [74]. We then show the accuracy of the parameterized

reduction (Algorithm 8 in Section 6.3.2). All examples used here are practical industry

examples.
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In our analysis the following relative error measure was used:

E = max
i,j

max
s∈[smin,smax]

∣∣∣hij(s)− hr
ij(s)

hij(s)

∣∣∣ (6.29)

where hij(s) and hr
ij(s) denote the (i, j)-th element of the transfer functions of the

original and reduced circuits, respectively.

We use the so-called compression ratio to measure the effectiveness of the graph-

based reduction algorithms. It is defined as the ratio between the number of nodes

in the reduced model and the original model. Therefore, smaller ratio means more

effective reduction.

Unless stated otherwise, the parameters in (6.8) and (6.9) as well as in (6.22) and

(6.25) are smax = 2πj× 1011, ε1 = 0.1 and ε2 = 10−4. The maximum degree threshold

in both Algorithm 7 and 8 is set to be dm = 3.

6.4.1 Accuracy of the nominal reduction algorithm

We use two collections of non-parameterized RC circuits in this Section, denoted as

collection A and collection B. The collection A contains 24792 RC circuits, most of

which are small and hence almost irreducible. The collection B contains 35900 RC

circuits, most of which are large and hence reducible.

In order to clearly see the impact of keeping the negative capacitance term, we

re-implemented our code in such way that the criterion (6.8) was checked only for the

nodes of the initial circuit. This way, we have fixed the nodes to be eliminated and

the elimination order, regardless of the node elimination rules. The reduction errors

of the elimination rules of the Algorithm 7 and the original TICER are shown as a

CDF (actually 1-CDF) in Figure 6-1. We show the “1-CDF” plot because it most

clearly exposes the data of interest in assessing a reduction algorithm. Typically we

are interested in how many cases fail to meet a given accuracy metric, typically a few

percent or fractions of percent. The number of failures is usually small so we display

1-CDF instead of the CDF. It is clear from Figure 6-1 that keeping the negative

capacitance term indeed produces more accurate results.
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Figure 6-1: Number of cases for which the reduction error exceeds a given value for
different update rules. Solid line: using the update based on correct Taylor series as
in (6.11). Dashed line: using the original TICER update, without the last negative
term in (6.11). In both cases the same nodes were eliminated, in the same order.

We then re-ran the Algorithm 7 with both conditions (6.8) and (6.9). The reduc-

tion errors of Algorithm 7 and the original TICER are compared in Table 6.1 where

E refers to the errors for 98% of the reduced circuits. From Table 6.1 it is clear that

the severity of outlier cases (cases with large error) are significantly reduced when

both conditions (6.8) and (6.9) are used for node selection. Since the outlier cases

often influence global parameter settings and therefore overall performance of the re-

duction algorithm, elimination of them can have a measurable impact on the overall

reduction strategy. This is the most important benefit of using the full rigorous rules.

It should be noted that the compression ratio by both algorithms is the same in this

experiment (given similar parameter settings).
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Table 6.1: Error spreads for different elimination conditions

collection A collection B
TICER 2.1e− 5 < E < 3.3e− 2 9.9e− 5 < E < 2.3e− 1

Algorithm 7 1.8e− 5 < E < 2.2e− 3 5.8e− 6 < E < 6.5e− 3

6.4.2 Accuracy of the parameterized reduction algorithm

We have run Algorithm 8 on a collection of 501 RC circuits with 8 parameters. The

circuit size varies from 11 to 192. In order to assess the accuracy of the method,

we have measured the error in (6.29) for 3000 random drawings in the parameter

space. The error histogram is shown in Figure 6-2 where only 1% of cases have an

error greater than 1.71e-4 and not a single case has error bigger than 1e-3. The

compression ratio is plotted in Figure 6-3, where the mean compression is 0.23.

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3
0

5

10

15

20

25

Log
10

 error

# 
of

 c
as

es

Figure 6-2: Error histogram for Algorithm 8
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Chapter 7

Case study: linear and nonlinear

models of microfluidic channel

In this Chapter we illustrate how some of the described reduction methods work on

a particular example.

7.1 Model description

The presented example, first suggested in [89], is the injection of a (marker) fluid

into a U-shaped three-dimensional microfluidic channel. The carrying (buffer) fluid is

driven electrokinetically as depicted in Figure 7-1, and the channel has a rectangular

cross-section of height d and width w. In this example, the electrokinetically driven

flow of a buffer (carrier) fluid is considered to be steady, with the fluid velocity directly

proportional to the electric field as in:

~v(x, y, z︸ ︷︷ ︸
~r

) = −µ∇Φ(~r),

where µ is an electroosmotic mobility of the fluid. The electric field can be determined

from Laplace’s equation

∇2Φ(~r) = 0,
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Figure 7-1: The microfluidic channel.

with Neumann boundary conditions on the channel walls [20]. If the concentration

of the marker is not small, the electroosmotic mobility can become dependent on the

concentration, i.e. µ ≡ µ(C(~r, t)), where C(~r, t) is the concentration of a marker

fluid. Finally, the marker can diffuse from the areas with the high concentration to

the areas with low concentration. The total flux of the marker, therefore, is:

~J = ~vC −D∇C, (7.1)

where D is the diffusion coefficient of the marker. Again, as the concentration of

the marker grows, the diffusion will be governed not only by the properties of the

carrying fluid, but also by the properties of a marker fluid, therefore D can depend

on concentration. Conservation applied to the flux equation (7.1) yields a convection-

diffusion equation [42]:

∂C

∂t
= −∇ · ~J = ∇Φ · (C∇µ(C) + µ(C)∇C) +∇D(C) · ∇C + D(C)∇2C. (7.2)

The standard approach is to enforce zero normal flux at the channel wall bound-
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aries, but since ~v has a zero normal component at the walls, zero normal flux is

equivalent to enforcing zero normal derivative in C. The concentration at the inlet

is determined by the input, and the normal derivative of C is assumed zero at the

outlet.

Note that equation (7.2) is nonlinear with respect to marker concentration as long

as either electroosmotic mobility or diffusion coefficient is concentration dependent.

A state-space system was generated from (7.2) by applying a second order three-

dimensional coordinate-mapped finite-difference spatial discretization to (7.2) on the

half-ring domain in Figure 7-1. The states were chosen to be concentrations of the

marker fluid at the spatial locations inside the channel. The concentration of the

marker at the inlet of the channel is the input signal, and there are three output

signals: the first being the average concentration at the outlet, the second and third

signals being the concentrations at the inner and outer radii of the outlet of the

channel, respectively.

Figure 7-2 illustrates the way an impulse of concentration of the marker at the

inlet propagates through the channel: diffusion spreads the pulse, and due to the

curvature of the channel, the front of the impulse becomes tilted with respect to the

channel’s cross-section. That is, the marker first reaches the points at the inner radius

(point 1).

7.2 Microchannel - linear model via modified AISIAD

First, in order to demonstrate the effectiveness of TBR linear reduction, we consider

applying balanced-truncation algorithm to the linear microchannel model. This cor-

responds to the problem of a very diluted solution of a marker in the carrier liquid

(a widely used approximation in the literature). The values used for the electroos-

motic mobility and diffusion coefficients are from [89]: µ = 2.8 × 10−8m2V −1s−1,

D = 5.5 × 10−10m2s−1. Physical dimensions of the channel were chosen to be

r1 = 500µm, w = 300µm, d = 300µm. Finite-difference discretization led to a

linear time-invariant system (A,B,C) of order N = 2842 (49 discretization points by
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Figure 7-2: Propagation of the square impulse of concentration of the marker through
the microfluidic channel. Due to the difference in lengths of the inner and outer arc,
the marker reaches different points at the outlet with different delay.

angle, 29 by radius, and 2 by height). Since Algorithm 1 requires O(n3) computation,

the discretized system is quite costly to reduce using original TBR algorithm. We

have also used a fast-to-compute approximation to the TBR called modified AISIAD,

which we present in Chapter 5.

As shown in Figure 7-3, applying TBR reduction to the spatial discretization

of (7.2) with constant diffusion and mobility coefficients demonstrates excellent effi-

ciency of the TBR reduction algorithm. The reduction error decreases exponentially

with increasing reduced model order, both in frequency-domain and in time-domain

measurements (see also Figure 7-4).

We have also compared the modified AISIAD method with Krylov subspace-based

reduction (Arnoldi method [30], described in Section 2.2.2) and the original TBR

method in both time and frequency domains. As shown in Figure 7-3, TBR and

modified AISIAD are much more accurate than the Krylov method, and are nearly

indistinguishable. Though, the modified AISIAD model is much faster to compute.

To demonstrate the time-domain accuracy of the reduced model, we first re-defined
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Figure 7-3: H-infinity errors (maximal discrepancy over all frequencies between trans-
fer functions of original and reduced models) for the Krylov, TBR and modified
AISIAD reduction algorithms.

the outputs of the model as concentrations at the points 1, 2 and 3 on Figure 7-2, and

then performed approximate TBR reduction using the modified AISIAD method.

In Figure 7-4, the output produced by a 0.1 second unit pulse is shown. The

results for the 2842 state model and modified AISIAD reduced model of order 13 are

compared. One can clearly see that the reduced model nearly perfectly represents

different delay values and the spread of the outputs. For example, in the time-domain

simulations, the maximum error in the unit step response for the reduced model of

order q = 20 (over a 100 times reduction) was lower than 10−6 for all three output

signals.

The runtime comparison between the modified AISIAD approximation of order

30 and TBR model reduction is given in the Table 7.1. One should note that the
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Figure 7-4: Transient response of the original linear (dashed lines) and the reduced
by using modified AISIAD (solid lines) model (order q = 13). Input signal: unit pulse
with duration 0.1 seconds. The maximum error between these transients is ≈ 1×10−4,
therefore the difference is barely visible. The different outputs correspond to the
different locations along the channel’s outlet (from left to right: innermost point,
middle point, outermost point).

complexity of the TBR reduction is proportional to n3, however the complexity of

the modified AISIAD reduction is directly proportional to complexity of the sparse

matrix factorization, and for this model it is close to linear (approximately O(n1.2)).

7.3 Nonlinear microfluidic example via TBR-based

TPWL

Consider introducing a mild nonlinearity into the mobility and diffusion coefficients

in (7.2):

µ(C) = (28 + C · 5.6)× 10−9m2V −1s−1,

D(C) = (5.5 + C · 1.1)× 10−10m2s−1
(7.3)
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Table 7.1: Execution times of the modified AISIAD (Chapter 5) of order 30 and TBR
reduction algorithms for the linear microfluid model2

Model size (# of states) TBR reduction runtime, s modified AISIAD runtime, s
1296 212.5 27.9
1421 287.5 31.7
2871 2207.4 72.8

Our experiments showed that even such a small nonlinearity creates a challenging

problem for the TPWL algorithm. For this problem, the choice of training input sig-

nificantly affects the set of the inputs signals for which the reduced model produces

accurate outputs. For the case of a pulsed marker, this example has, in effect, a trav-

eling wave solution. Therefore, linearizing at different time-points implies linearizing

different spatially local regions of the device, and many linearizations will be needed

to cover the entire device.

Our experiments showed that a workable choice of projection matrices V and U

for this example is an aggregation of the TBR basis and some of the linearization

states xi. Therefore, the projection used was a mix between TBR and snapshots-

based projection [40]. For example, the reduced model whose transient step response

is presented in Figure 7-5 was obtained using an aggregation of an order-15 TBR basis

and 18 linearization states. The resulting system size was q = 33, and the number of

linearization points was 23 (the initial model size was N = 2842). The linearization

points were generated using the same step input for which the reduced simulation

was performed. Although the results from the reduced model match when the input

is the same as the training input, the errors become quite large if other inputs are

used. For these nonlinear wave propagation problems, one needs to use a richer set

of training inputs, which will result in a larger set of TPWL linearization points. In

addition, instability in this simulation is still an issue, which makes the exact choice

of projection basis an ad-hoc procedure.

Remarkably, we have found that the Taylor series-based reduction described in

Section 3.1 works much more reliably for this example. We present this result in
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Section 7.4.
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Figure 7-5: Step response of reduced and initial microfluidic model. Solid lines: order-
33 TPWL reduced model obtained by using step training input. Dashed lines - full
nonlinear model, N=2842. Note: solid and dashed lines almost fully overlap. The
leftmost lines is the second input, which corresponds to the concentration closer to
the center of the channel’s curvature. The middle lines correspond to the first output
signal (average concentration at the outlet). The rightmost lines correspond to the
concentration at the outlet’s points away from the center of curvature.

7.4 Quadratic model reduction as a better alter-

native for microchannel example

As it was mentioned before, microchannel example provides a challenging case for

TPWL reduction algorithm. In fact, the linear models of diffusion and mobility

coefficients (7.3) lead to quadratic dynamical model, and therefore we can apply the

Taylor series-based reduction by projecting the system’s Jacobian and Hessian as
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described in Section 3.1. An obvious benefit of such approach is that no training

trajectories are required for model construction, therefore the model is expected to

work for any input signal.

This approach appears to work more reliably for microchannel example. From our

observations, using oblique projections leads to unstable models. Models obtained by

using orthogonal projections, on the other hand, are almost always stable.

On Figure 7-6 the transient response is plotted for the quadratic reduction method.

The projection basis was obtained at x = 0 using Arnoldi method (colsp(V ) =

K60(A
−1, A−1B), where A denotes Jacobian matrix). As it can be seen, the reduced

model approximates the response of the original system quite well; the response which

is quite different from the linearized system (dash-dotted line on the graph).
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Figure 7-6: Transient response of the original quadratic (dashed lines) model of order
N = 4356 and the reduced quadratic (solid lines) model (order 60). Input signal: unit
pulse of duration 1 second. Projection basis was obtained by using Arnoldi method.
The dash-dotted line is the response of the linearized model.
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Chapter 8

Conclusions

In the presented work we have made several contributions to the field of model order

reduction for linear and nonlinear systems. We have analyzed TBR projection for

its applicability to nonlinear TPWL model reduction and we have found analysis

based on perturbation theory providing important insight into this problem. We have

shown that TBR-based TPWL models provide much more compact macromodels,

however certain rules should be used in order to make the reduced models stable.

We have found that for nonlinear convection-diffusion models TPWL is less robust

than model reduction based on Taylor series. We have proposed and tested a new

reduction method called modified AISIAD, which is an iterative approximation to

TBR and is applicable to linear systems in descriptor form, for which controllability

and observability gramians may not share common dominant eigenspace. In the

work which was carried at Cadence Research Laboratories we have also improved

TICER model reduction algorithm and showed that it belongs to projection-based

model reduction family; in addition we have generalized this method to parameter-

dependent RC circuits.
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Appendix A

Passivity proof of the graph-based

nominal reduction

Below we will show that the Algorithm 1 always produces a passive models given a

legitimate RC circuit as the input. This means that the reduced model never generates

energy, and using such reduced model as a part of a more complex interconnection

can never lead to instabilities.

The outline of the proof requires some system-theoretic insight and will proceed

in the following steps:

1. Cast the circuit description into an input-output state-space description.

2. Show that each step of the Algorithm 1 is equivalent to projection of the state-

space model using some matrix M , which will be explicitly provided.

3. Use the fact that the projection does not change the definiteness of system

matrices to establish passivity.

Let’s assume that we are given a circuit description (6.1), with possibly negative

capacitors. Without loss of generality, and in accordance with the notation in Eq.

(6.1), we consider the input signals to be the currents of “current sources” that are

connected to the external nodes of the circuit. With some abuse of terminology we call

these “port” nodes. In reality the “port” nodes could be connected to any circuitry,
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depending on how the reduced circuit is used, and there could be very many of them.

For example, we might need these nodes to represent capacitive couplings to other

networks. We define the system’s outputs as the voltages at the port nodes. This

way, we can re-write the circuit’s input-output relationships in the following state

space form of ordinary differential equation:





Cv̇(t) = −Gv(t) + Bi(t)

u(t) = BT v(t)
, (A.1)

where v(t) are node voltages, i(t) are port currents, u(t) are port voltages, and the

matrix B of size (# of nodes × # of ports) maps port numbers to the circuit nodes:

bij =





1, if current source j is connected to node i,

0, otherwise

In the description (A.1) we assume that the variable corresponding to the ground

node has been removed, this way implicitly assigning zero potential to the ground

node. In the following derivations we make an assumption that the matrices C and G

do not have a common kernel vector, that is, there is no such vector v that Cv = Gv =

0. If C and G share at least one common kernel vector, this would mean that a given

circuit consists of several completely separate subnetworks (not connected neither by

resistors nor by capacitors). The analysis below is not directly applicable for this

case, because any finite current into such a subnetwork may result in infinitely large

node voltages; however, the passivity result holds even for such case, by applying the

presented results for each subnetwork.

The transfer function H(s) of the system (A.1) provides an algebraic relation-

ship between input and output signals in the frequency domain, and is equal to the

impedance of the circuit:

U(s) = H(s)I(s), H(s) = BT (sC + G)−1B,

where I(s) and U(s) are Laplace transforms of the port currents and voltages, respec-
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tively. This way, H(s) is a complex matrix-valued function of a complex frequency

s.

It is known that the described system is passive if and only if the transfer function

H(s) satisfies the following three properties [87]:

1. H(s) = H(s) for all s,

2. H(s) is analytic on the open right half of the complex plane <(s) > 0,

3. H(s) is positive-semidefinite matrix for <(s) > 0, that is,

z∗(H(s) + H∗(s))z ≥ 0, ∀s, such that <(s) > 0, ∀z ∈ Cp, (A.2)

where the “*” is a complex-conjugate transpose operator, and p denotes the

number of ports.

The following statement, proved for a broader class in [57], will be used to establish

passivity:

Lemma A.0.1. If in the description (A.1) the matrices C and G are real symmetric

positive-semidefinite, do not share common kernel vectors and B is real, then such

system is passive.

Proof. Since matrices C,G and B are real, the condition 1) above is satisfied.

To show that the condition 2) holds, it suffices to show that the matrix (sC + G)

is always invertible for all s having positive real part. Let’s consider otherwise; then

there exist such s0 with <(s0) > 0 and vector v0, such that

(s0C + G)v0 = 0, ⇒ v∗0(s0C + G)v0 = 0

Taking a complex-conjugate transpose of the expression on the left, and multiply-

ing from the right by v0, we have:

v∗0(s
∗
0C + G)v0 = 0.
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Comparing two last equalities, we conclude that s0 is real and v0 is a real vector. We

have:

vT
0 (s0C + G)v0 = s0 vT

0 Cv0︸ ︷︷ ︸
≥0

+ vT
0 Gv0︸ ︷︷ ︸
≥0

= 0.

Since both C and G are positive-semidefinite, the equality above cannot hold for

positive s0. This is a contradiction. Therefore, the condition 2) is satisfied.

Checking the condition 3) is straightforward:

z∗(H(s) + H∗(s))z = (Bz)∗((sC + G)−1 + (s∗C + G)−1)(Bz) =

= ((sC + G)−1Bz)∗(s∗C + G + sC + G)((sC + G)−1Bz)) ≥ 0,

provided <(s) > 0. This proves the condition 3).

Let us now consider a single elimination step of the Algorithm 1. Again, for

simplicity let the last node N be subjected to elimination.

Let the circuit description before the elimination be in the form (A.1), which is

equivalent to (6.1), and the obtained state-space model after elimination becomes





Ĉ ˙̂v(t) = −Ĝv̂(t) + B̂i(t)

û(t) = B̂T v̂(t)
, (A.3)

which correspond to the system in (6.10).

The following Lemma provides a connection between the Algorithm 1 and projection-

based reduction methods, and is the key to establishing the passivity of the reduced

system.

Lemma A.0.2. Each node elimination step in Algorithm 7 is equivalent to imposing

a projection on the system matrices C,G and B in (A.1):

Ĉ = MT CM, Ĝ = MT GM, B̂ = MT B, (A.4)
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Proof. Let us define the following matrix:

M =




I(N−1)×(N−1)

gT
N/GNN




, (A.5)

where I(N−1)×(N−1) is an identity matrix of size (N − 1)× (N − 1). Using partitioned

forms of matrices C and G from (6.3), we can easily verify that

MT CM =
[
I gN/GNN

]

 C̃ −cN

−cN sCNN





 I

gT
N/GNN


 =

= C̃ − cNgT
N + gNcT

N

GNN

+
CNN

G2
NN

gNgT
N ,

which is the same expression as (6.11). The equivalence of Ĝ = MT GM and (6.12)

can be shown analogously.

Since the node N is not the port node, B̂ is a sub-matrix of B with the last row

excluded, wherefore B̂ = MT B holds as well.

(Note that, after reduction finishes, we can take B̂ = I, i.e. every remaining

node can be connected to external circuitry, as is usual for a reduced circuit, without

affecting any of the theorems in this section.)

The main result directly follows.

Corollary A.0.1. The system description resulting from Algorithm 1 is always pas-

sive.

Proof. One can note that for the original (unreduced) circuit in (6.1) the conditions

of the Lemma A.0.1 are satisfied, because matrices C and G are diagonally dominant,

with positive diagonals. At each step, due to (A.4), the system matrices are projected

as

Ĝ = MT GM, Ĉ = MT CM,
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which is a congruence transform, and therefore matrices Ĝ and Ĉ remain positive

semidefinite. By induction, the system is passive after every elimination step of the

Algorithm 1.

The passivity proof is now complete.
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